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Abstract

Community Detection in Social Networks: Multilayer Networks and Pairwise Covariates

Sihan Huang

Community detection is one of the most fundamental problems in network study. The

stochastic block model (SBM) is arguably the most studied model for network data with different

estimation methods developed with their community detection consistency results unveiled. Due

to its stringent assumptions, SBM may not be suitable for many real-world problems. In this

thesis, we present two approaches that incorporate extra information compared with vanilla SBM

to help improve community detection performance and be suitable for applications.

One approach is to stack multilayer networks that are composed of multiple single-layer

networks with common community structure. Numerous methods have been proposed based on

spectral clustering, but most rely on optimizing an objective function while the associated

theoretical properties remain to be largely unexplored. We focus on the ‘early fusion’ method

[114], of which the target is to minimize the spectral clustering error of the weighted adjacency

matrix (WAM). We derive the optimal weights by studying the asymptotic behavior of

eigenvalues and eigenvectors of the WAM. We show that the eigenvector of WAM converges to a

normal distribution as in [129], and the clustering error is monotonically decreasing with the

eigenvalue gap. This fact reveals the intrinsic link between eigenvalues and eigenvectors, and thus

the algorithm will minimize the clustering error by maximizing the eigenvalue gap. The

numerical study shows that our algorithm outperforms other state-of-art methods significantly,

especially when signal-to-noise ratios of layers vary widely. Our algorithm also yields higher



accuracy result for S&P 1500 stocks dataset than competing models.

The other approach we propose is to consider heterogeneous connection probabilities to

remove the strong assumption that all nodes in the same community are stochastically equivalent,

which may not be suitable for practical applications. We introduce a pairwise covariates-adjusted

stochastic block model (PCABM), a generalization of SBM that incorporates pairwise covariates

information. We study the maximum likelihood estimates of the coefficients for the covariates as

well as the community assignments. It is shown that both the coefficient estimates of the

covariates and the community assignments are consistent under suitable sparsity conditions.

Spectral clustering with adjustment (SCWA) is introduced to fit PCABM efficiently. Under

certain conditions, we derive the error bound of community estimation under SCWA and show

that it is community detection consistent. PCABM compares favorably with the SBM or

degree-corrected stochastic block model under a wide range of simulated and real networks when

covariate information is accessible.
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Chapter 1: Introduction and Background

The network describes the connections among subjects in a population of interest. Its wide

applications have attracted researchers from different fields, which includes but not limited to so-

cial sciences [135, 93], physics [10], computer science [110], biology [79] and so on. Among

all problems for network, community detection is one of the most studied ones, and the stochas-

tic block model (SBM) has long been used as a canonical model for that. Although theoretical

properties of classical SBM have been studied thoroughly, the theoretical framework hasn’t been

established for its variants. We’re interested in the expanded version of SBM, say when there is

extract information beside the network edges, how we could exploit that information and make a

better inference.

We will review the history of network analysis in Section 1.1, especially focusing on the re-

searches of community detection and SBM. In Section 1.2, we provide an overview of our two

variants of SBM. Section 1.3 introduces some basic notations that will be used later.

1.1 Literature review

The very first researches for network date back to the middle of last century, marked by some

empirical studies in social psychology and sociology [104, 124, 103, 130]. The works in social sci-

ence ignite researchers’ passion for mathematical insights of network models. Erdős-Rényi model,

which became the canonical model in network analysis later, was first introduced in the 1960s [55].

The random graph theory that later arose was mostly based on that. People studied the asymptotic

behavior of the Erdős-Rényi model, which has n nodes and each edge is generated by the homoge-

neous probability p. The ‘phase transition’ that later became well-known associated with the value

of pn = 1, at which point many small clusters will merge into a single giant connected component.
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Erdős-Rényi model was extended and generalized in the 1980s. The models have the most lasting

impact include but are not limited to p1 model [74, 60], multidimensional network structures [59],

SBM [73], exponential random graph models [64, 126, 136, 113, 118] and so on. More litera-

ture in the 1990s linked random graph models with stochastic processes and dig deeper into the

probabilistic properties [43, 52]. The machine learning approach is what emerged at the turn of

this century. Some empirical studies were done by [57, 83, 82, 84]. More recent efforts focus on

the variants of SBM. [72] combines SBM with latent space models. [70] introduced model-based

clustering. [8] includes the latent Dirichlet allocation [28] to provide a novel generative model,

which is a kind of soft clustering [56].

Communities in a network can be intuitively understood as groups of nodes that are densely

connected within groups while sparsely connected between groups. The goal of community detec-

tion is to partition the nodes into different sets. Not only does identifying network communities

help better understand the structural features of the network, but it also offers practical benefits.

Besides its original target to understand sociological behavior [67, 63], other applications of com-

munity detection have also been widely explored. Biologists classify protein function from the

protein-protein interaction network [7, 9, 38, 100]. By analyzing communication networks [18],

people can detect possible latent terrorist cells. With the emerging of online ‘networking com-

munities’ such as Facebook, Twitter and Instagram, the need for a recommender system based on

the similarity of nodes within the network also becomes nonnegligible [71, 94, 120, 140]. Other

applications include but are not limited to gene expressions [45, 77], natural language processing

[19], image segmentation [123] and more.

Classical community detection methods fall into three categories. The first category is algorithm-

based. One example is hierarchical clustering, which gradually removes edges until disconnected

clusters are obtained. More reviews can be found in [107]. The second category is criterion-based.

Such methods optimize some criterion to obtain the best partition of the network. This criterion

often refers to some cuts or modularities, which include Newman-Girvan modularity [109], the

ratio cut [137], the normalized cut [123] and more. The third category is model-based, which
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is the main focus of this thesis. This kind of model builds a generative probabilistic model for

the network and tries to identify the latent community labels by fitting the model. Besides SBM

[125, 112] and mixed membership SBM that have been mentioned, other examples include degree-

corrected stochastic block models (DCBM) [80, 147], the latent position cluster model [70], latent

space model [72], etc. One thing that needs to remember is that those categories mentioned above

are just rough philosophical descriptions for different methods rather than strict divisions. For ex-

ample, we’ll see that the model in Chapter 3 can be both model-based and criterion-based, just like

[147, 24].

Among all the models, SBM might be the most natural one for describing the community

detection problem because of its neat form. Although the block structure of the network has already

been discussed as early as the 1970s [95], the random graph framework only came up a decade later

in [73], after numerous papers for deterministic blocks arose [14, 51, 50]. People in different fields

name it differently, for example, planted partition model (PPM) in theoretical computer science

[33, 53, 30], inhomogeneous random graph in math [29] and so on.

The enthusiasm for SBM theories mainly focuses on the consistency of community estimation.

Analogous to the concept of random variable convergence, for community detection, we have

strong consistency and weak consistency, which we will define in detail later. [49] pictured the

weak recovery in detail and conjectured that there exist phase transition phenomena for weak

consistency at the Kesten-Stigum threshold. The later activation of establishing phase transitions

should be credited to this paper. [106] proved the impossibility part of the conjecture for two

symmetric communities, while the positive part for two communities was shown in [101]. For

non-symmetric case, [31] proved that the threshold can be achieved under a more general setting

which covers asymmetric SBM of two communities. This borrows the idea from the ‘spectral

redemption’ paper [85], which introduces the nonbacktracking operator. More general cases for

arbitrarily many communities were shown in [3, 2], using a high-order nonbacktracking matrix and

a spectral-message passing. Crossing information-theoretic Kesten-Stigum threshold under more

communities were further discussed in [4, 17]. For exact recovery, the phase transition also exists,
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though in the logarithmic rather than constant degree regime. For years, researchers worked on

this problem [33, 53, 30, 125, 46, 102, 24, 42, 133] until the sharp threshold was given in [1, 105]

for two symmetric communities. For general SBM, the parallel results were shown in [3, 5].

To efficiently perform inference for SBM under different settings, people designed various

algorithms. Some popular ones include modularity maximization [109], likelihood methods [24,

42, 147, 12, 35], spectral clustering [16, 119, 61, 78, 91, 122], variational inference [37, 26, 48,

35], belief propagation [49], convex optimization [41], semidefinite programming [1, 34, 108],

penalized local maximum likelihood estimation [65] and more.

Among all of them, spectral clustering stands out for its neat form and simplicity to implement,

so it’s long been a fascination for researchers. The detailed tutorial of spectral clustering can be

found in [132], and we just list a few important literature here. [119] proved the consistency for

spectral clustering with the normalized graph Laplacian, but it assumes the average degree grows

faster than log n. The same assumption holds in [78] and [122]. The former one proposed spectral

clustering on ratios-of-eigenvectors (SCORE) for the DCBM. The latter one compared normalized

and unnormalized spectral clustering. Shortly after, [91] proved consistency when the maximum

expected node degree is of order log n or higher. Also, an approximate k-means algorithm solvable

in polynomial time [86] is considered in [91] rather than the global optimizer of k-means. However,

on sparser graphs (e.g., average degree is of order O(1)), spectral clustering on standard graph

Laplacian performs poorly [37, 34, 13, 89], that’s where the regularized graph Laplacian came into

place [37]. It’s proven to misclassify at most arbitrarily small proportion of nodes [88]. There

are some other variants of spectral clustering for different purposes. [36] introduced the notion

of a degree-corrected graph Laplacian for the extended PPM. [61] required only an upper bound

of the number of communities for the modified adjacency matrix to guarantee the consistency

of spectral clustering. [117] applied the regularized graph Laplacian to the canonical spectral

clustering algorithm and provided the error bound for DCBM and extended PPM.

Besides what we’ve mentioned above, there are some other research topics on SBM’s variants

over the recent years. One concern is about the ‘outliers’ in the network, which refers to the node
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that doesn’t belong to any group. Similar to regression, robust community detection algorithm is

proposed to solve this problem. [146] extracts one community at a time, allowing for arbitrary

structure in the remainder of the network, which can include weakly connected nodes. [34] ex-

tended SBM to generalized SBM, allowing the ‘outliers’ to connect with other nodes arbitrarily,

and the model is fitted by SDP. Also, some people work on local community detection [62, 44,

141, 131, 116], the target of which is to partition some nodes of interests rather than all. An-

other topic is to determine the number of communities since most researches we have mentioned

assume the number of community to be known, which is unrealistic. [146] sequentially extracts

communities until the remaining part behaves like an Erdős-Rényi graph from a hypothesis testing.

Two papers designed hypothesis testing based on random matrix theories. One [25] is based on

the limiting distribution of the principal eigenvalue of a centered and scaled adjacency matrix, and

the other [90] is based on the largest singular value of a residual matrix obtained by subtracting

the estimated block mean effect from the adjacency matrix. Some BIC approaches have also been

proposed [121, 134, 75]. Another topic is nodal covariates, which we will discuss in more details

in Chapter 3.

1.2 Overview of the thesis

In this thesis, we proposed two models that take care of extra information besides the edge

connection under the single layer SBM model.

In Chapter 2, we used a weighted method to combine the information in a multilayer PPM. We

focus on the ‘early fusion’ method [114], of which the target is to minimize the spectral clustering

error of the weighted adjacency matrix (WAM). It’s shown in Section 2.3.1 that the clustering error

is monotonically decreasing with a signal-to-noise ratio (SNR) that is determined by the connec-

tivity matrix of the multilayer network. This is proven by studying the asymptotic distribution

of eigenvectors, which converges to a normal distribution as [129]. By maximizing the SNR, we

derived the optimal weights. We also showed in Section 2.3.2 that the limit of the eigenvalue gap

is also a monotonic function of SNR in some scenarios, which allows us to minimize the clustering
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error by maximizing the eigenvalue gap.

In Chapter 3, we introduced a pairwise covariates-adjusted stochastic block model (PCABM),

which is a generalization of SBM that incorporates nodal information. We studied the maximum

likelihood estimates of the coefficients for the covariates as well as the community assignments. It

is shown in Section 3.3.1 that both the coefficient estimates of the covariates and the community

assignments are consistent under mild conditions. As a more efficient algorithm than the likelihood

method, a variant of spectral clustering, spectral clustering with adjustment (SCWA), is introduced

in Section 3.3.2 to estimate PCABM. We derived the error bound of community estimation by

SCWA and showed that it is community detection consistent, which achieves the same convergence

rate as in [91].

1.3 Notation and terminology

For the convenience of reference, we define some notations that will be commonly used in both

Chapter 2 and 3.

First, we clarify some mathematical terminologies. We define IK ∈ R
K×K to be the identity

matrix, JK ∈ R
K×K to be all-one matrix and 1K to be all-one vector. When there is no confusion, the

subscript K will be omitted. For any positive integer K , [K] denotes the set of numbers 1, · · · ,K .

For a vector x ∈ RK , D(x) ∈ RK×K represents the diagonal matrix whose diagonal elements are the

entries of x. For an event A, 1A denotes the indicator function. For two real number sequences xn

and yn, we say xn = o(yn) if limn→∞ xn/yn = 0, xn = O(yn) if lim supn→∞ |xn |/yn ≤ ∞, xn = ω(yn)

if limn→∞ |xn/yn | = ∞ and xn = Θ(yn) if ∃c1, c2,n0 > 0, ∀n > n0, c1yn ≤ xn ≤ c2yn.

For a square matrix X ∈ Rn×n, let ‖X ‖ be the operator norm, ‖X ‖F =
√

trace(XT X), ‖X ‖∞ =

maxi
∑n

j=1 |Xi j |, ‖X ‖0 = |{i j |Xi j , 0}|, ‖X ‖max = maxi j |Xi j | and ‖X ‖1 = maxi∈[n]
∑n

j=1 |Xi j |. For

index sets I, J ⊂ [n], XI · and X·J are the sub-matrix of X consisting of the corresponding rows and

columns. Similarly, for a vector x ∈ Rn, ‖x‖ =
√∑n

i=1 x2
i , ‖x‖1 =

∑n
i=1 |xi | and ‖x‖∞ = maxi |xi |.

The Kronecker power is defined as x⊗(k+1) = x⊗k ⊗ x, where ⊗ is the Kronecker product.

Now we provide the mathematical form of SBM. Consider a graph with n nodes and K com-
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munities, where K is fixed and does not increase with n. We only focus on undirected graph

without self-loops, whose all edge information is incorporated into a symmetric adjacency ma-

trix A = [Ai j] ∈ N
n×n with diagonal elements being zero. The total count of possible edges is

Nn ≡ n(n − 1)/2. The true node labels c = (c1, · · · , cn)
T ∈ [K]n are drawn independently from

a multinomial distribution with parameter π = (π1, · · · , πK)
T , where ‖π‖1 = 1 and πk > 0 for

all k. The community detection problem is aiming to find a disjoint partition of the node set, or

equivalently, a set of node labels e = {e1, · · · , en} ∈ [K]n, that is as close to the true label c as

possible, up to a permutation. In classical SBM, we assume Ai j ∼ Bernoulli(Bcicj ), where the

connectivity matrix B = [Bab] ∈ (0,1)K×K is a symmetric matrix with no identical rows. Usually,

we need to consider a sparse setting where the connectivity matrix B scale with n rather than fixed.

Assume B = ρnΩ with Ω fixed and ρn → 0 as n → ∞. In this case, ϕn ≡ nρn represents the

expected degree. nk denotes the number of nodes in group k, so
∑K

k=1 nk = n. Also, we sometimes

need the probability matrix P ∈ (0,1)n×n, where Pi j = Bcicj . We say A ∼SBM(Ω,c, ρn) if the

adjacency matrix A ∈ {0,1}n×n is symmetric and for all i < j, Ai j ∼Bernoulli(ρnΩcicj ).

At last, we briefly discuss the classical spectral clustering with k-means for SBM. Define the

membership matrix M ≡ [1ci= j] ∈ Mn,K , where Mn,K is the space of all n × K matrices where

each row has exactly one 1 and (K − 1) 0’s. Note that M contains the same information as c

and it’s only introduced to facilitate the discussion of spectral methods. It is easy to see that

P = MBMT . For adjacency matrix A, we consider only K largest eigenvalues in absolute values

|λ1 | ≥ |λ2 | ≥ · · · ≥ |λK | and their corresponding eigenvectors u1,u2, · · · ,uK . Suppose the matrix

ΛA ≡ D((λ1, · · · , λK)
T ) ∈ RK×K and UA ≡ [u1, · · · ,uK] ∈ R

n×K , where UT
AUA = IK . Since E[P] =

A, UP is expected to be close to UA, where UP comes from the decomposition P = UPΛPUT
P .

Only K unique rows appear in UP, which corresponds to different communities, so the k-means

clustering on the rows of UA should lead to a good estimate of M . To evaluate the performance

of clustering, we use the measure adjusted rand index (ARI) [76], which is commonly used in

clustering problem. We summarize the procedure of spectral clustering algorithm as follows.
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Algorithm 1.1 Spectral clustering

Input: adjacency matrix A ∈ Nn×n and community number K

Output: community estimation M̂

1: Consider the decomposition A = UAΛAUT
A, which corresponds to K largest eigenvalues.

2: Treating each of the n rows of UA as a point in RK , run k-means with K clusters. This creates

a K partition of [n], from which we could produce the estimated membership matrix M̂ .
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Chapter 2: Optimal Weights for Multilayer Networks

2.1 Introduction

Tons of papers only focus on single-layer network, while multilayer networks are very common

in the real world. For example, for professors working in the same department, there might be a

network of lunch, a network of research and a network of race. People may have different social

patterns in different social media such as Facebook, Twitter and Instagram. Multilayer network

displays diverse relations among the same set of nodes, so how to combine the information across

different layers turns out to be a very important problem.

Among limited literature using an ‘early fusion’ technique, most of them assume an SBM

framework [73]. [40] proposes to combine multiple layers linearly and it explores the threshold

for detection. However, the conclusion is weak because of the dense setting and optimal weights

choice isn’t discussed. [69] derives the consistency result when the number of layers grows and

the number of nodes does not. [114] compares different algorithms for multilayer networks. Some

are presented in a matrix factorization manner, while some use the modularity method, but nothing

much has been discussed about the mean adjacency matrix.

Our target is to find an adaptive algorithm to find the optimal weights vector to linearly combine

adjacency matrices. The ‘optimal’ is defined as minimizing the spectral clustering error. To achieve

that, we studied the limit distribution for eigenvectors and eigenvalues of WAM and derived the

optimal weights’ formula based on that. We showed that under some sparsity scales, the optimal

weights we derived could improve the clustering error rate asymptotically.

The rest of this chapter is organized as follows. Section 2.2 will introduce the intuition of the

problem and our approach to solve the problem. Theory and the corresponding algorithms are

presented in Section 2.3. Simulation results are described in Section 2.4, and one real example of

9



S&P 1500 data is presented in Section 2.5. We finally conclude this chapter with a short discussion

in Section 2.6. Proofs are summarized in Section 2.7.

2.2 Multilayer network model

In this chapter, we will only consider balanced SBM, which means π1 = · · · = πK = 1/K . PPM,

one special case of SBM, will be discussed in this chapter as well. Under PPM, the connectivity

matrix has a special form of

Ω = (Ωin −Ωout)IK +Ωout JK ∈ (0,1)K×K .

This means the within-class probabilities of PPM are all Ωin while the between-class probabilities

are all Ωout . Here, we consider only the assortative network, which requires Ωin ≥ Ωout .

We can simply stack single layer network to define the multilayer network model. A multilayer

network of L layers is a collection of L networks that share the same nodes but with different

edges. Specifically, a multilayer stochastic block model (MSBM) is a multilayer network that

each layer follows a SBM with consensus group assignment c, i.e., A(l) ∼ SBM(Ω(l),c, ρn) for

l ∈ [L]. We write that as A[L] ∼ MSBM(Ω[L],c, ρn) for short. If every layer is PPM, we call it a

multilayer planted partition model (MPPM) and write it as A[L] ∼ MPPM(Ω[L],c, ρn). Throughout

this chapter, we will assume the following sparsity condition.

Condition 2.1. nρn ≥ C log n for some positive constant C > 0 and ρn → 0 as n→∞.

For a multilayer network, though different layers share a common community structure, the

information contained in different layers varies. Some layers may connect more densely within

groups compared with others. When aggregating such a multilayer network, the former layer

should overweigh the latter. Starting from this intuition, we wish to find the optimal weights in

an ‘early fusion’ style [40, 114] if it ever exists. The target is to find the optimal weights’ vector

w = (w1, · · · ,wL)
T ∈ WL to minimize the mismatch error of spectral clustering on the WAM

Aw =
∑L

l=1 wl A(l). Here, WL = {w ∈ RL | ‖w‖1 = 1,wl ≥ 0}. The mismatch error refers to

10



the proportion of error up to a permutation, which is n−1 minσ∈PK
∑n

i=1 1σ(ĉi),ci . Here, PK is the

collection of all permutation functions of [K].

2.3 Theory and algorithms for the optimal weights

We proposed two approaches for finding the optimal weights. The first one in Section 2.3.1

is based on a closed-form formula of connectivity matrix, which can be estimated empirically in

practice. The second one in Section 2.3.2 is based on the maximization of the eigenvalue gap. The

theoretical supports behind those two algorithms are the asymptotic distributions of eigenvectors

and eigenvalues of WAM respectively, which are established on some previous results for random

matrices.

2.3.1 Closed-form solution for optimal weights

Under the spectral clustering algorithm, if the eigenvector features for different groups are sepa-

rable, the clustering results will be good. Similar to [129], we studied the eigenvectors’ asymptotic

distribution of WAM and found the distribution of eigenvectors is closely correlated with the SNR,

which is defined as

τw
n ≡

1
2

(nρn

K

)1/2 Ωw
in −Ω

w
out

{Ωw2

in + (K − 1)Ωw2
out}

1/2
,

where Ωw
in =

∑L
l=1 wlΩ

(l)
in , Ωw

out =
∑L

l=1 wlΩ
(l)
out , Ω

w2

in =
∑L

l=1 w
2
l Ω
(l)
in , and Ωw2

out =
∑L

l=1 w
2
l Ω
(l)
out . As

we can see, the nominatorΩw
in−Ω

w
out measures the difference between two connection probabilities

while the denominator {Ωw2

in + (K − 1)Ωw2
out}

1/2 represents the standard deviation of the connection

probability. Thus, τw
n is just a normalized version of the original SNR. We assume the following

condition for all theoretical results, which helps us to analyze the rate. The monotonic relation

between clustering error and SNR is stated in Proposition 2.1.

Condition 2.2. τw
∞ ≡ limn→∞ τ

w
n exists.
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Proposition 2.1. For balanced A[L] ∼ MPPM(Ω[L],c, ρn) under Condition 2.1 and 2.2, if w ∈ WL ,

the asymptotic Bayes error rate for spectral clustering on WAM Aw is monotonic decreasing with

τw
∞. Specifically,

1. If τw
∞ = ∞, the asymptotic error is 1/K .

2. If τw
∞ = 0, the asymptotic error is 1.

3. If 0 < τw
∞ < ∞, the asymptotic error is a constant between 1/K and 1.

Notice that Proposition 2.1 provides a guideline for the asymptotic error. In practice, although

we don’t know the value of τw
∞, we can always maximize the finite sample SNR τw

n to achieve

asymptotic optimality, which has an explicit solution as shown in Theorem 2.2. The optimization

of τw
n is just calculation and we will omit the proof. It’s also worth noticing that when Ωw is fixed,

τw
∞ = ∞, in which the asymptotic error will always be 1. As we will see in Section 2.4, optimizing

τw
n would always give us a better finite sample result no matter whether the limit τw

∞ is the same or

not.

Theorem 2.2. For balanced A[L] ∼ MPPM(Ω[L],c, ρn) under Condition 2.1 and 2.2, the optimal

weight w∗ ∈ WL that minimizes the asymptotic spectral clustering error satisfies

w∗l ∝
Ω
(l)
in −Ω

(l)
out

Ω
(l)
in + (K − 1)Ω(l)out

, for l ∈ [L]. (2.1)

Theorem 2.2 is illuminating because of its simple and intuitive form. We can see that the

optimal weight for each layer is only determined by the layer’s parameters. The right-hand side

of (2.1) can be considered as the SNR of each single-layer network. The larger the difference

between the within- and between-community probability is compared with the average connection

probability, the larger the weight should be. This indicates that to make full use of the information,

we should put more weights on the more informative layer. For balanced MPPM, Theorem 2.2

provides a closed-form solution of the optimal weights, so we could iteratively estimate ŵ and

Ω̂[L].
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Algorithm 2.1 Closed-form solution optimization

Input: adjacency matrices A[L], number of communities K and precision parameter δ
Output: multilayer network weight ŵ and community estimation ĉ

1: Apply spectral clustering on each single adjacency matrix A(l), compute connectivity matrix
estimate Ω̂(l) and the corresponding weight estimate ŵl .

2: while ‖ŵold − ŵnew‖ > δ do
3: Apply spectral clustering on WAM Aŵold and obtain the community estimate ĉ.
4: Compute the corresponding Ω̂(l) and weights ŵnew based on ĉ.
5: end while

However, as we will see in Section 2.4, Algorithm 2.1 may easily fail when the true model

violates the MPPM setting. To handle more complicated cases, some intrinsic properties should be

explored, as it is discussed in the next subsection.

2.3.2 Eigenvalue gap optimization

We take a detour by looking at the spectrum of Aw, then we will see the monotonic relation

between SNR τw
n and the eigenvalue gap λw

K/λ
w
K+1, where λw

i is ith largest eigenvalue of Aw in

magnitude. By combining the semicircle law [54] and matrix perturbation theory [23], we could

prove the following proposition.

Proposition 2.3. For balanced A[L] ∼ MPPM(Ω[L],c, ρn) under Condition 2.1 and 2.2, if w ∈ WL ,

we have

lim
n→∞

λw
K

λw
K+1
=


τw
∞ + (4τw

∞)
−1, if τw

∞ > 1/2,

1, if τw
∞ ≤ 1/2.

Specifically, when τw
∞ = ∞, limn→∞ λ

w
K/λ

w
K+1 = ∞.
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Figure 2.1: Eigenvalue gap versus SNR

Figure 2.1 shows the simulation and theoretical results from a PPM, in which 1/2 is obviously

the critical point. Proposition 2.3 tells us that when τw
∞ > 1/2, we could maximize the eigenvalue

gap λw
K/λ

w
K+1 to maximize τw

n , which leads to the following theorem.

Theorem 2.4. For balanced A[L] ∼ MPPM(Ω[L],c, ρn) under Condition 2.1 and 2.2, if

lim
n→∞

nρn

K

L∑
l=1

Ω
(l)
in −Ω

(l)
out

Ω
(l)
in + (K − 1)Ω(l)out

> 1,

minimizing the asymptotic clustering error is equivalent to maximizing the eigenvalue gap λw
K/λ

w
K+1

for w ∈ WL .

The additional condition in Theorem 2.4 is obtained by taking the limit of τw∗
n . Only requiring

the maximum of τw
∞ to be larger than 1/2 is enough for us to apply Proposition 2.3. By Theo-

rem 2.4, we define the objective function g(w) ≡ λw
K/λ

w
K+1, and maximize it using Algorithm 2.2.

We use the explicit formula provided in [99] to compute the gradient of eigenvalues, which is

dλi = uT
i dAui in our case. Taking the constraint ‖w‖1 = 1 into consideration and applying the

chain rule, we can derive dλw
i /dwl = uT

i {A
(l) − (L − 1)−1 ∑

l ′,l A(l
′)}ui, so the gradient of g(w) is

∇g(w) = (λw
K+1∇λ

w
K − λ

w
K∇λ

w
K+1)/λ

w
K+1

2.
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Algorithm 2.2 Eigenvalue gap optimization

Input: adjacency matrices A[L], number of communities K , initial learning rate γ0, decay rate r ,
maximum iteration T and weight precision parameter δ

Output: multilayer network weight ŵ and community estimation ĉ
1: Apply spectral clustering on each single A(l), compute connectivity matrix estimate Ω̂(l) and

the corresponding weight estimate ŵl .
2: while ‖ŵold − ŵnew‖ ≤ δ and t ≤ T do
3: Calculate the eigendecomposition of Aŵold .
4: Use the gradient descent method on λŵ

K/λ
ŵ
K+1 to update ŵnew.

5: end while

By gradient descent algorithm, we update w using wt+1 = wt + γt∇g, where γt = γ0/(1 + rt) is

the learning rate decaying with iterations, r is the dacay rate and t is the number of iterations. To

avoid the algorithm converges to local maximum, we also need different random initial values for

w. It’s worth noticing that although in this paper we only prove Theorem 2.4 for balanced MPPM,

it’s very robust under misspecified models as we will see in Section 2.4.2.

2.4 Simulations

We compare our methods with three different methods, which are mean adjacency matrix

(Mean adj.) [69], aggregate spectral kernel (SpecK) [114] and module allegiance matrix (Mod-

ule alleg.) [32]. We use ‘Algo_fm’ and ‘Algo_eg’ to refer Algorithm 2.1 and 2.2 respectively. For

underlying models, we consider MPPM and MSBM to check the performance of our algorithms

under different settings.

2.4.1 MPPM setting

For balanced MPPM(Ω[L],c, ρn), there are at least five parameters to tune, which areΩ,K, L,n, ρn.

We take ρn = cρ log n/n, and only change cρ in the experiments when tuning ρn.

For Ωout column in the above table, we list two parameters respectively for two layers in ex-

periment a,b,d,e. In experiment c, 0 is used for 1 layer, all other layers use 4. We can see that our

algorithms perform best under different settings from Figure 2.2, especially when there are more

noise layers. Under the balanced MPPM, Algorithm 2.1 and 2.2 perform alike.
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Table 2.1: Parameters of experiments under MPPM

Experiment n K L cρ Ωin Ωout
a 600 2 2 1.5 4 2/0-4
b 600 2-6 2 1.5 4 0/3
c 600 2 1-5 1.5 4 0/4
d 600 2 2 0.3-1.5 4 0/3
e 500-1000 2 2 0.3 4 0/3

(a) a: Connectivity matrix Ω (b) b: Number of communities K

(c) c: Number of layers L (d) d: Multiplier of sparsity cρ

(e) e: Number of nodes n (f) Weight in Experiment a

Figure 2.2: ARI results from MPPM experiments
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In Experiment a, we change the between-group probability of a single layer. A larger Ωout

introduces more noises. As we can imagine, with the number of layers fixed, ARI decreases with

the increase of noises for all algorithms. However, compared with Mean adj., Algorithm 2.1 and

2.2 are both very robust against the increase of noises in one single layer since they will adaptively

downweigh the noise layers. Figure 2.2f shows the optimal weight for the first layer learned from

our algorithms matches the theoretical oracle value. When we add the number of communities in

Experiment b, Mean adj. becomes worse. The reason is that when community numbers increase

with everything else fixed, the decay of effective information in each layer is different, so the

optimal weights change as well. This can be seen from Equation (2.1). A layer with lower between-

group noises should be weighted more when the number of communities increases. As we fix one

layer to be informative while adding more noise layers in Experiment c, our algorithms are very

robust even when multiple noise layers exist. As we can imagine, the Mean adj. cannot handle

noise layers properly. Although our algorithms and Mean adj. are all consistent in dense cases, our

algorithms still outperform Mead adj. in sparse cases in Experiment d. With the increase of n in

Experiment e, although Mean adj. is also consistent, our algorithms are better in finite samples.

Instead of fixing Ω[L], we also consider the following three cases corresponding to Proposi-

tion 2.1. Algorithm 2.2 and Mean adj. are compared.

• High (τw
∞ = ∞): ∆n = (log 100)−1/2

• Medium (0 < τw
∞ < ∞): ∆n = (log n)−1/2

• Low (τw
∞ = 0): ∆n = {log(0.01n2)}−1/2

Table 2.2: Parameters of experiments under MPPM for different scales

Experiment n K L cρ Ω

f 100-4600 2 2 2 2J2 +

(
2∆n −2∆n
−2∆n 2∆n

)
,2J2 +

(
∆n/2 −∆n/2
−∆n/2 ∆n/2

)
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Figure 2.3: ARI results under different scales

Figure 2.3 validates what we claim in Proposition 2.1. In all cases, Algorithm 2.2 is better than

Mean adj. We can see that in the high SNR case, the error rates for both algorithms converge to

0.5. In the low SNR case, the error rates increase as n grows, but Algorithm 2.2 is much more

robust. For the medium SNR case, the accuracy of both algorithms converge to some constant,

while Algorithm 2.2 is asymptotically better.

2.4.2 MSBM setting

Besides the MPPM setting, we also apply our algorithms under balanced MSBM to test the

robustness under misspecified models. We have three MSBM models as described in Table 2.3. In

Experiment g1 and g2, we have two layers MSBM, each with two communities. One layer has

parameters that deviate a lot from PPM, which could potentially deteriorate the performance of

Algorithm 2.1. As we can see in Figure 2.4a, Algorithm 2.1 always underperforms Algorithm 2.2

and Mean adj. except when the network is dense, so even suboptimal weights would yield good

result. In this situation, using a simple mean weight is good enough.

However, applying a simple mean weight won’t give us optimal results when there are more

noise layers, just like Experiment h1, h2, i1 and i2. As we can see, in all those four experiments,

even though the informative layers are against PPM settings, Algorithm 2.2 still consistently out-

performs Mean adj. The performance of Algorithm 2.1 is very interesting. While it’s similar or

even slightly better than Algorithm 2.2 in Experiment i1 and i2, it’s not consistent in Experiment
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Table 2.3: Parameters of experiments under MSBM

Experiment n K L cρ Ω

g1 600
2 2

0.4-1.6
(
10 2
2 3

)
,

(
3 2
2 3

)
g2 600-1000 0.7

h1 600
3 4

1.2-2.7 ©«
9 2 2
2 2 2
2 2 9

ª®¬ ,©«
2 2 2
2 4 2
2 2 2

ª®¬ ,2J3,2J3
h2 600-1000 1.2

i1 600
3 4

1.2-2.7 ©«
8 2 2
2 6 2
2 2 4

ª®¬ ,2J3,2J3,2J3
i2 600-1000 1.2

h1 and h2. The reason is that while Algorithm 2.2 is pretty robust when more noise layers present,

it can’t handle the case when SBM is too far away from PPM setting. This is straightforward

to see because Algorithm 2.1 relies heavily on PPM assumptions to derive the optimal weights.

Although we only prove the consistency of Algorithm 2.2 under MPPM, the simulation results

indicate that the theory may also hold for more general cases.

2.5 Real data example

We apply our algorithms to S&P 1500 data to see whether we could get extra information from

combining multilayer networks in practice. S&P 1500 index should be a good representative of

the US economy since it covers 90% of the market value of US stocks. We get the daily adjusted

close price of stocks from Yahoo! Finance, of which dates range from 2001-01-01 to 2019-06-30,

including 4663 trading days in total. We keep only stocks with less than 50 days’ missing data and

forward fill the price, which leaves us with 1020 stocks. According to the newest Global Industry

Classification Standard, there are in total of 11 sectors, which we treat as the hidden ground truth

that we hope to discover from stock prices. We remove sector ‘Communication Services’ because

of small sizes and sectors ‘Industrials’ and ‘Materials’ because of their similar performances during

economic cycles. The final dataset contains 770 stocks from 8 sectors.

We use the Pearson correlation of log returns between stocks to construct the network. The
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(a) g1: Multiplier of sparsity cρ (b) g2:Number of nodes n

(c) h1: Multiplier of sparsity cρ (d) h2: Number of nodes n

(e) i1: Multiplier of sparsity cρ (f) i2: Number of nodes n

Figure 2.4: ARI results from MSBM experiments

usage of log returns is the convention for stock prices. The correlation usage is based on the

belief that stocks from the same sector should yield more similar returns because of their intrinsic

similarities. Although the correlation is a continuous random variable ranging from −1 to 1, which

contradicts the MSBM setting, it’s the most natural way to construct the network. Since different

sectors have a different baseline of correlations, we’ll lose a lot of information if applying a uniform

threshold to transform the correlation matrix into a matrix with only 0 and 1 entries. We could use

this example to test the robustness of our algorithms to non-Bernoulli distributions. The most
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Figure 2.5: Correlation adjacency matrices for different time windows

straightforward idea to build the adjacency matrix is to use the whole time window to calculate

the correlation. However, since financial data is usually non-stationary, correlation is very likely

to change through time. In that case, connection probability may change over time, which is even

against the assumption of general SBM.

With this intuition, we split the data into four time periods according to the National Bureau of

Economic Research, which are respectively recession I (2001/03-2001/11), expansion I (2001/12-

2007/12), recession II (2008/01-2009/06) and expansion II (2009/07-2019/06). The intuition is that

the economy cycle is a determinant of sector performance over the intermediate-term. Different

sectors tend to perform differently compared with the market in different phases of the economy.

For example, ‘consumer discretionary’ tends to outperform the market in the early cycle. Also,
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even within the same sector, correlation can vary a lot at different times, which could be handled

by our model. Taking a look at the correlation adjacency matrix in Figure 2.5, in which the box

represents different sectors. We could observe that the correlations vary during different time win-

dows. In the second recession period, we could observe an obviously higher correlation between or

within all sectors, which is exactly what we expect. Also, for the expansion period, there are larger

differences both within and between sectors. This demonstrates the necessity to use a multilayer

model in this example.

(a) Single-layer network (b) Multilayer network by Algorithm 2.2

Figure 2.6: Confusion matrices of different clustering methods

The ARIs from Algorithm 2.1, Algorithm 2.2, Mean adj., SpecK, Module alleg. are re-

spectively 0.35, 0.58, 0.37, 0.44 and 0.33, while the ARI from spectral clustering on the whole

time window is 0.41. We can see only Algorithm 2.2 significantly outperforms the baseline,

which shows its robustness. One thing worth noticing is that the weights for four layers are and

[0.56,0.21,0.07,0.16] by Algorithm 2.1 and [0.075,0.324,0.000,0.601] by Algorithm 2.2, which

shows the relative importance in clustering for different time windows. The weight learned from

Algorithm 2.2 tells us expansions play a much more important role compared with recessions. This

is in accordance with our knowledge that in recession different sectors collapse in a similar way,

but they will grow in different paces during expansion. Figure 2.6 shows the confusion matrix of

using single-layer network versus multilayer network by Algorithm 2.2, from which we can ob-

serve significant accuracy improvement for consumer discretionary, consumer staples and health
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care sectors by using multilayer networks.

2.6 Discussion

Although we only prove Theorem 2.4 under balanced MPPM setting, we see the potential

of Algorithm 2.2 under more general models from both simulations and real data. For future re-

searches, one possibility is to extend the theoretical results to general SBM. Also, we only consider

assortative networks here. For disassortative cases, we may introduce negative weights.

We see a phase transition phenomenon in Proposition 2.3, and there are two possible research

directions that originated from here. One is whether below the threshold the problem is unsolvable

by spectral clustering. The other is whether the threshold we derive here is a threshold for all

algorithms or just for spectral clustering.

2.7 Proofs

The proofs are organized according to the order of the results in Section 2.3.

2.7.1 Proof of Proposition 2.1

To derive the error rate, we need to study the asymptotic distribution of eigenvectors first.

Similar to [129], we define the spectral embedding for general SBM. For a fixed positive integer

d ≤ n, we call the n× d matrix X̂ = UAΛ
1/2
A the adjacency spectral embedding (ASE) of A into Rd .

We call X = ρ−1/2
n UPΛ

1/2
P and ν = UΩΛ

1/2
Ω

respectively the probability spectral embedding (PSE)

and connectivity spectral embedding (CSE). Let µw denote the CSE of Ωw, then

µwµwT
= Ωw =

L∑
l=1

wlΩ
(l) =

L∑
l=1

wlν
(l)ν(l)

T
.

The entry of Ωw is Ωw
i j =

∑L
l=1 wlν

(l)
i·

T
ν
(l)
j · = µ

w
i·

T µw
j ·. Similarly, define Pw = XwXwT .

Remark 2.1. When Ω is positive semi-definite, which is true for assortative SBM since it’s a Gram

matrix. By taking d = K , we have Ω = ννT . Since P is an augmentation of Ω, we know ΛP = ΛΩ
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and rows of UP are just replications of rows of UΩ. We will still keep d instead of K in later

statements to avoid the confusion of columns and rows.

Remark 2.2. The PPM assumes homogeneous probability across different communities. In this

case, we know the exact eigenvalues are λ1(Ω) = Ωin + (K − 1)Ωout and λ2(Ω) = · · · = λd(Ω) =

Ωin −Ωout . When Ωin > Ωout , Ω is full rank. The orthogonal eigenvectors are chosen as

UΩ =



K−1/2 −{(K − 1)/K}1/2 0 · · · 0

K−1/2 {K(K − 1)}−1/2 −{(K − 2)/(K − 1)}1/2 · · · 0
...

...
...

. . .
...

K−1/2 {K(K − 1)}−1/2 {(K − 1)(K − 2)}−1/2 · · · 2−1/2


∈ RK×d,

then

ν =



(λ1/K)1/2 −{λ2(K − 1)/K}1/2 0 · · · 0

(λ1/K)1/2 [λ2/{K(K − 1)}]1/2 −{λ3(K − 2)/(K − 1)}1/2 · · · 0
...

...
...

. . .
...

(λ1/K)1/2 [λ2/{K(K − 1)}]1/2 [λ3/{(K − 1)(K − 2)}]1/2 · · · (λd/2)1/2


∈ RK×d .

In [129], the eigenvector distribution for SBM has been discussed thoroughly, the question

remains to be whether the eigenvector distribution of WAM still asymptotically follows a multi-

variate normal distribution. This result will be validated and expanded here, which is organized

as follows. First, we introduce a direct consequence of Corollary 2.3 in [129] and prove a parallel

theorem for WAM. Then, we’ll prove a theorem when the connection of the random graph changes

with n rather than fixed as usual. We will only focus on the case when ρn → 0 because ρn = 1 is

trivial in terms of the clustering error rate.

Theorem 2.5 (ASE convergence). Let A[L] ∼ MSBM(Ω[L],c, ρn). For any fixed w ∈ WL , consider

the spectral embedding of Aw. There exists an orthogonal matrix Wn ∈ R
d×d and a matrix Rn ∈

n × d such that

X̂wWn − ρ
1/2
n Xw = ρ

−1/2
n (Aw − Pw)Xw(XwT Xw)−1 + Rn.
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Also, ‖Rn‖ = O((nρn)
−1/2). Let θ l = E[X

(l)
1· ] for l ∈ [L] and ∆w = E[Xw

1·X
w
1·

T ]. If Condition 2.1

holds, then there exists a sequence of orthogonal matrices Wn ∈ R
d×d satisfying

‖ X̂wWn − ρ
1/2
n Xw‖2F

a.s.
−−→ trace

[
∆
−1
w E

{
Xw

1·X
w
1·

T

(
L∑

l=1
w2

l X (l)1·
T
θ l

)}
∆
−1
w

]
.

Theorem 2.6 (WAM eigenvector distribution). Let A[L] ∼ MSBM(Ω[L],c, ρn), then for any fixed

w ∈ WL , consider the spectral embedding of Aw. If Condition 2.1 holds, then for any fixed index

i, given ci = k, there exists a sequence of orthogonal matrices Wn satisfying

n1/2(Wn X̂w
i· − ρ

1/2
n Xw

i· )
d
−→ N(0,Σk),

where Σk = ∆
−1
w E[X

w
1·X

w
1·

T ∑L
l=1 w

2
l ν
(l)
k ·

T
X (l)1· ]∆

−1
w .

Corollary 2.7 (SBM eigenvector distribution). Let A ∼ SBM(Ω,c, ρn), if Condition 2.1 holds, then

there exists a sequence of orthogonal matrices Wn such that for any fixed index i that Xi· = νk ·,

n1/2(Wn X̂i· − ρ
1/2
n Xi·)

d
−→ N(0,Σk),

where Σk = ∆
−1E[(νT

k ·X1·)X1·XT
1·]∆

−1 = ∆−1(
∑K

i=1 πiΩikνi·ν
T
i· )∆

−1 and∆ = E[X1·XT
1·] =

∑K
k=1 πkνk ·ν

T
k ·.

Corollary 2.7 is straightforward from Theorem 2.6 since a single layer SBM is just a special

case of WAM. It is exactly the same as what we could derive from Corollary 2.3 in [129] since

all assortative SBM can be expressed in the form of the random dot product graph. The only

difference between WAM and SBM is the variance. Since WAM changes the variance rather than

the mean of the edge weight, this consequence should be expected.

From Theorem 2.6, we can see as long as νk are distinct, the asymptotic eigenvector distribution

will be different, which makes the clustering problem relatively easy. To provide more insights,

we consider the case when the mean connection probabilities of different communities converge

to the same value, i.e., the connectivity matrix Ω is allowed to change with n but with a finite limit

Ω∞, whose elements are all the same. By Remark 2.2, we see the first eigenvector is determined
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by the degree and doesn’t contribute to community detection, so we consider the ‘effective’ CSE,

which is the sub-matrix corresponding to λ2(Ω
w) until λd(Ω

w). Since λ2(Ω
w) = · · · = λd(Ω

w), we

could define the ‘effective’ CSE as

µ̃w =
√
λw

2



−{(K − 1)/K}1/2 0 · · · 0

{K(K − 1)}−1/2 −{(K − 2)/(K − 1)}1/2 · · · 0
...

...
. . .

...

{K(K − 1)}−1/2 {(K − 1)(K − 2)}−1/2 · · · 2−1/2


=[µ̃1, · · · , µ̃K]

T =

√
λw

2 [u1, · · · ,uK]
T ∈ RK×(d−1),

which is just a constant matrix multiplied by
√
λw

2 . We can see that for fixed K , u1, · · · ,uK are just

fixed constant vectors.

Notice that

∆w =
1
K

K∑
k=1

µw
k ·µ

w
k ·

T
=

1
K
µwT µw =

1
K

D((λ1(Ω
w), · · · , λd(Ω

w))T )

and

ν
(l)
k ·

T
ν
(l)
m· = Ω

(l)
km =


Ω
(l)
in if k = m,

Ω
(l)
out if k , m.

So

E[Xw
1·X

w
1·

T
L∑

l=1
w2

l ν
(l)
k ·

T
X (l)1· ] =

1
K

K∑
m=1

µw
m·µ

w
m·

T
L∑

l=1
w2

l Ω
(l)
km

=
Ωw2

out

K

K∑
m=1

µw
m·µ

w
m·

T
+
Ωw2

in −Ω
w2
out

K
µw

k ·µ
w
k ·

T
=
Ωw2

out

K
µwT µw +

Ωw2

in −Ω
w2
out

K
µw

k ·µ
w
k ·

T

=
Ωw2

out

K
D((λ1(Ω

w), · · · , λd(Ω
w))T ) +

Ωw2

in −Ω
w2
out

K
µw

k ·µ
w
k ·

T .
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Then it’s straight forward to see

Σk =∆
−1
w

[
Ωw2

out

K
D((λ1(Ω

w), · · · , λd(Ω
w))T ) +

Ωw2

in −Ω
w2
out

K
µw

k ·µ
w
k ·

T

]
∆
−1
w

=KΩw2

out D((1/λ1(Ω
w), · · · ,1/λd(Ω

w))T ) +
Ωw2

in −Ω
w2
out

K
∆
−1
w µw

k ·µ
w
k ·

T
∆
−1
w .

We define Σ̃k to be the sub-matrix of Σk corresponding to µ̃w. Also, we could define the limit

‘effective’ covariance matrix

Σ̃ =
Ωw2

in + (K − 1)Ωw2
out

Ωw
in −Ω

w
out

Id−1 ≡ σ
2
wId−1,

then it’s easy to see that Σ̃k Σ̃
−1 p
−→ I. Here we require that there ∃w s.t. σw , ∞. This is equivalent

to ∃l ∈ [L] s.t. Ω(l)in , Ω
(l)
out , otherwise the problem is undetectable.

Based on Theorem 2.6, we could have the following theorem by the Slutsky’s theorem.

Theorem 2.8 (WAM with varied mean). Let A[L]n ∼ MSBM(Ω[L]n ,c, ρn). For l ∈ [L], assume

limn→∞Ω
(l)
n = Ω

(l)
∞ ∈ R

K×K , whose entries are all the same. Also, there ∃l ∈ [L] s.t. Ω(l)in , Ω
(l)
out .

For any fixed w ∈ WL , if Condition 2.1 holds, there exists a sequence of orthogonal matrices Wn

such that for any fixed index i that ci = k,

σ−1
w n1/2(Wn X̂w

i,2:d − ρ
1/2
n Xw

i,2:d)
d
−→ N(0, Id−1).

Under the setting of Theorem 2.8, the asymptotic variance for different classes are all the same,

which reduces the clustering problem from QDA to LDA. Also, the problem becomes non-trivial

since the asymptotic means are all the same, so the error rate may not converge to 0 as before. We

consider the probability of classifying a node to group k for k ≥ 2 when it’s from group 1 if only

considering a two-class classification problem. The asymptotic distribution for ci = k,

(nρnλ
w
2 )

1/2

σw
{X̂i,2:d/(ρnλ

w
2 )

1/2 − uk}
d
−→ N(0, Id−1).
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Since we use UA for spectral clustering, here we focus on X̂i,2:d/(ρnλ
w
2 )

1/2, whose density function

under group k is

fk(x) =
(nρnλ

w
2 )

1/2

(2π)(d−1)/2σw
exp

{
−

nρnλ
w
2

2σ2
w
(x − uk)

T (x − uk)

}
.

The probability of misclassifying k-th class to 1st class is P( fk ≥ f1 |1) =
∫
x∈Rk1

f1(x)dx, where

Rk1 =
{
x ∈ Rd−1 | (x − 1

2 (uk + u1))
T (uk − u1) ≥ 0

}
is the region that the likelihood of group k is

larger than group 1.

We can see that the region is a constant scale area and has nothing to do with Ωw and n.

Since the centers u1, · · · ,uk are all fixed, the error rate only depends on the SNR, which is

(nρnλ
w
2 )

1/2/σw = 2K1/2τw
n . When K fixed, the error rate is monotonic decreasing with τw

n and

the conclusion in Proposition 2.1 can be seen. In general, we can always maximize τw
n to mini-

mize the asymptotic error. Specifically, when Ωw is fixed and Ωw
in , Ω

w
out , the limiting error rate

is always 0 since uk are distinct, although we can still minimize finite sample error rate. When

Ωw
in − Ω

w
out = Θ((nρn)

−1/2), which is case 3, we can minimize the error rate even in the asymptotic

sense.

A. Proof of Theorem 2.5

Proof. We need to bound ‖Aw − Pw‖ like Proposition 7 in [97]. We show a stronger result, which

can be seen directly from Theorem 5.2 of [91]. Since we don’t need to prove the theorem for the

laplacian matrix, we only need ρn of order log n/n instead of log4 n/n.

Lemma 2.9. For any constant c,r > 0, there exists constant C(c,r) > 0 independent of n and

w such that the following holds. If ‖Pw‖1 > c log n, then with probability at least 1 − n−r , the

following hold

‖Aw − Pw‖ ≤ C
√
‖Pw‖1.

Following the same proof procedure of Theorem A.5 in [128], we can prove the following

lemma. Since all procedures are the same once Lemma 2.9 is established, we’ll omit the proof of
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Lemma 2.10.

Lemma 2.10. Under the same assumption in Lemma 2.9, there exists an orthogonal matrix Wn

such that for sufficiently large n,

‖ X̂w − ρ
1/2
n XwWn‖ = ‖(Aw − Pw)UPw S−1/2

Pw ‖F +O
(
d‖Pw‖21λd(Pw)−5/2

)
with high probability.

To verify Theorem 2.5, all steps are the same as Theorem 2.1 in [129], except for the calculation

of E[(Aw − Pw)2], so we only show that part here. Since

E

[∑
k

(Aw
ik − Pw

ik)(A
w
k j − Pw

k j)

]
=


0 if i , j,∑

k,i
∑L

l=1 w
2
l P(l)k j (1 − P(l)k j ) if i = j,

so

n−2ρ−1
n XwTE

[
(Aw − Pw)2

]
Xw = n−2ρ−1

n

n∑
i=1

Xw
i· Xw

i·
T
∑
k,i

L∑
l=1

w2
l P(l)ki (1 − P(l)ki )

=n−2
n∑

i=1
Xw

i· Xw
i·

T
∑
k,i

L∑
l=1

w2
l {X

(l)
i·

T
X (l)k · − ρn(X

(l)
i·

T
X (l)k · )

2}

When ρn → 0, the above term converges to

E[Xw
1·X

w
1·

T
(
∑

l

w2
l X (l)1

T
θ l)].
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B. Proof of Theorem 2.6

Proof. The proof is similar to the proof of Theorem 2.2 in [129] except for the variance calculation.

For any fixed index i we have

√
n(Wn X̂w

i· − ρ
1/2
n Xw

i· ) =
√

nρ−1/2
n (XwT Xw)−1

∑
j,i

(Ai j − Pi j)Xw
j · + o(1)

=(n−1XwT Xw)−1
∑
i, j

(Aw
i j − ρn

∑
l wl X

(l)
i·

T
X (l)j · )

√
nρn

Xw
j · + o(1)

Given Xw
i· = µk ,

∑
i, j(Aw

i j − ρn
∑

l wl X
(l)
i·

T
X (l)j · )X

w
j · is a sum of i.i.d. mean zero random variables.

The conditional variance is calculated as

E[(Aw
i j − ρn

∑
l

wlν
(l)
k ·

T
X (l)j · )

2Xw
j · X

w
j ·

T
]

=Em[E[(Aw
i j − ρn

∑
l

wlν
(l)
k ·

T
X (l)j · )

2Xw
j · X

w
j ·

T
|Xw

j · = µm]]

=Em[µmµ
T
mE[(A

w
i j − ρn

∑
l

wlν
(l)
k ·

T
X (l)j · )

2 |Xw
j · = µm]]

=ρnEm[µmµ
T
m

L∑
l=1

w2
l ν
(l)
k ·

T
ν
(l)
m·(1 − ρnν

(l)
k ·

T
ν
(l)
m·)].

This yields

∑
i, j

(Aw
i j − ρn

∑
l wl X

(l)
i·

T
X (l)j · )

√
nρn

Xw
j ·

d
−→ N(0,E[Xw

1·X
w
1·

T
L∑

l=1
w2

l ν
(l)
k ·

T
X (l)1 (1 − ρnν

(l)
k ·

T
X (l)1 )]).

Since n−1XwT Xw a.s.
−−→ ∆w as n→∞, by Slutsky’s theorem, when ρn → 0,

√
n(Wn X̂w

i· − ρ
1/2
n Xw

i· )
d
−→ N(0,∆−1

w E[X
w
1·X

w
1·

T
L∑

l=1
w2

l ν
(l)
k ·

T
X (l)1· ]∆

−1
w ).
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2.7.2 Proof of Proposition 2.3

Results in this subsection will mostly be based on Proposition 2 in [15] with some slight mod-

ifications. By studying the asymptotic behavior of eigenvalue gap λw
K/λ

w
K+1, we will see clearly

its connection with SNR τw
n , which results in Theorem 2.4. Since general SBM doesn’t have an

explicit solution for eigenvalues, we consider only balanced PPM here, whose eigenvalues have an

explicit form.

We first make a decomposition as in [15] and state the spectrum property as follows.

Proposition 2.11 (WAM decomposition). Suppose Aw is the WAM generated from a balanced

MPPM. Consider the scaled matrix Âw = γ(n)Aw, where γ(n) = K/{nρn(Ω
w
in − Ω

w
out)}. We

decompose Âw into two parts

Âw = Ãw + Āw,

where Āw = γ(n)Pw is the expectation of Âw and Ãw is a random matrix with zero mean random

entries. The spectrum property of Āw and Ãw is summarized as follows.

1. Āw is of rank K and the 2nd to Kth largest eigenvalues all converge to 1.

2. The spectrum bound of Ãw is 1/τw
n , the reciprocal of SNR.

According to [23], the scale of τw
n determines the behavior of the 2nd to Kth eigenvalues, which

is crucial for determining the spectrum of Âw. The property is summarized as follows.

Proposition 2.12 (WAM spectrum). Based on the decomposition in Proposition 2.11, τw
∞ deter-

mines the asymptotic behavior of the spectrum of Âw as follows.

1. If τw
∞ = ∞, the asymptotic spectrum of Âw and Āw are the same since the noises degenerate.

2. If τw
∞ = 0, the asymptotic spectrum of Âw and Ãw are the same since the noises dominate.

3. If τw
∞ is a finite constant, the signals and noises are in the same scale. Specifically,

(a) If τw
∞ > 1/2, the 2nd to Kth eigenvalue of Âw converges to 1 + (4τw

∞)
−2.
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(b) If τw
∞ ≤ 1/2, the 2nd to Kth eigenvalue of Âw converges to τw

∞
−1.

We can see that τw
∞ is monotonic with the eigenvalue gap λw

K/λ
w
K+1. A larger τw

∞ leads to a larger

gap, except when τw
∞ ≤ 1/2, in which case the noises still dominate signals. When τw

∞ > 1/2, the

limit of eigenvalue gap converges to (4τw
∞)
−1 + τw

∞, which is monotonic increasing with τw
∞. Thus,

we can maximize the eigenvalue gap to maximize τw
n asymptotically. This shows Theorem 2.4.

The proofs of Proposition 2.11 and 2.12 are mainly based on the semicircle law of Ãw [15],

and Theorem 2.1 in [23], which shows the spectrum property of the perturbations of large random

matrices.

A. Proof of Proposition 2.11

Proof. By some algebra, it’s easy to show Āw is similar to some matrix with only K × K non-zero

entries, whose eigenvalues are the same as the following K × K matrix

Yn =
K

n(Ωw
in −Ω

w
out)

D((n1, · · · ,nK)
T )Ωw

=
1

Ωw
in −Ω

w
out
Ω

w +
1

Ωw
in −Ω

w
out

D((1 − Kn1n−1, · · · ,1 − KnKn−1)T )Ωw.

By decomposing Yn into two parts, we see that the 2nd to Kth eigenvalues of the first part is

exactly 1. For the second part, since 1 − Knin−1 = Θ(n−1/2) by CLT, as long as Ωw
in − Ω

w
out =

ω(n−1/2), the second matrix converges to 0 elementwisely, so do all the eigenvalues. By Weyl’s

eigenvalue interlacing inequalities, the 2nd to Kth eigenvalues of Yn converge to 1 as well.

Intuitively, the bound of Ãw represents the magnitude of noises, which we hope to be as small

as possible. To obtain the bound, we consider the following scaling and decomposition. Let sw
i =

{
∑L

l=1 w
2
l
∑

j P(l)i j (1 − P(l)i j )}
1/2 be the empirical standard deviation of node i and sw = {nρn(Ω

w2

in +

(K − 1)Ωw2
out)/K}

1/2 be the population standard deviation. Then

Aw − Pw

sw =

[
Aw

i j − Pw
i j

sw
i

]
n×n

+

[
(Aw

i j − Pw
i j )(

1
sw

i
−

1
sw )

]
n×n

.
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The first part is a generalized Wigner matrix, so its eigenvalues follow local semicircle law accord-

ing to [54]. We claim that the spectrum bound of the second matrix converges to 0 asymptotically.

Then by Weyl’s inequality, we know the asymptotic spectrum distribution of (Aw − Pw)/sw is not

affected by the deformation, so it follows local semicircle law as well.

To validate the claim, we show a more general spectrum bound using the conclusion from [21].

Let dw = maxi
∑L

l=1 w
2
l
∑

j P(l)i j , Hw = d−1/2
w (Aw − Pw), q = [nρnK−1{Ωw2

in + (K − 1)Ωw2
out}]

1/2

and κ = (Ωw2

in /Ω
w
out)

2. It’s easy to verify that dw ≥ q2, |Hw
i j | ≤ d−1/2

w ≤ 1/q and EHw
i j

2 ≤∑L
l=1 w

2
l P(l)i j /dw ≤ 1, then Hw satisfies the following assumption.

Condition 2.3. Let H be a symmetric random matrix whose upper triangular entries (Hi j)1≤i≤ j≤n

are independent mean-zero random variables. Moreover, suppose that there exist q > 0 and κ ≥ 1

such that

max
i

∑
j

E[H2
i j] ≤ 1, max

i
E[H2

i j] ≤
κ

n
, max

i,j
|Hi j | ≤

1
q

a.s.

Directly applying Theorem 2.6 in [21], we have the following theorem.

Theorem 2.13. Assume Assumption 2.3 is satisfied by Hw, then for 2 ∨ q ≤ n1/13κ−1/12,

E‖Hw‖ ≤ 2 + C
η

(1 ∨ log η)1/2
, with η =

(log n)1/2

q
,

for some universal constant C > 0. In particular,

E‖Hw‖ ≤ 2 + C
(log n)1/2

q
.

Theorem 2.13 shows that with high probability, ‖Hw‖ ≤ 2 + o(1) as long as q2 � log n and

κ � n12/13. By Theorem 2.2 of [81] and Corollary 1.4 of [22], we know this bound is actually

sharp. Since (sw
i sw)−1(sw

i − sw)d1/2
w = Θ(n−1/2), we know from Theorem 2.13 that the spectrum

bound of the second matrix is Θ(n−1/2), which validates the claim.

33



From above discussion, we know immediately that ‖ Ãw‖ is bounded by

2swγ(n) = 2
(

K
nρn

)1/2 {Ωw2

in + (K − 1)Ωw2
out}

1/2

Ωw
in −Ω

w
out

=
1
τw

n
.

When τw
∞ is finite, the semi-circle law holds for Ãw with bound 1/τw

∞.

B. Proof of Proposition 2.12

Proof. Now we know τw
∞ plays a critical role in determining the asymptotic spectrum distribution

of Âw. When τw
∞ = 0, the 2nd to Kth eigenvalues of Âw will be dominated by unbounded noises.

When τw
∞ = ∞, the asymptotic behavior of Âw will be exactly the same as Āw. When 0 < τw

∞ < ∞,

[23] provides us with the necessary tool to determine the spectrum distribution of Âw, which is the

summation of a low-rank matrix Āw and a noise matrix Ãw whose eigenvalues are both constant

scale.

For a symmetric matrix Xn ∈ R
n×n with ordered eigenvalues λ1(Xn) ≥ · · · ≥ λn(Xn). Let f̂Xn

be the empirical eigenvalue distribution, which is

fXn =
1
n

n∑
j=1

δλj (Xn).

If fXn converges almost surely weakly, as n → ∞, to a non-random compactly supported proba-

bility measure, we let fX∞ denote the limit. Let aX∞ and bX∞ be the infimum and supremum of the

support of fX∞ , then the smallest and largest eigenvalue of Xn converge almost surely to aX∞ and

bX∞ .

Since Āw ∈ Rn×n is a positive semi-definite matrix with rank K , and limn→∞ λi(Āw) = 1 for

i = 2, · · · ,K . Applying Theorem 2.1 and Remark 2.15 in [23], we have the following theorem.

Theorem 2.14. The extreme eigenvalues of Âw exhibit the following behavior as n→∞. We have
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that for each 1 ≤ i ≤ K,

λi(Âw)
a.s.
−−→


G−1

fX
(1) if G fX∞ (b

+) < 1,

b otherwise,
(2.2)

while for each fixed i > K , λi(Âw)
a.s.
−−→ b. Here,

G fX (z) =
∫

1
z − t

dfX(t) for z < supp fX,

is the Cauchy transform of fX , G−1
fX
(·) is its functional inverse so that 1/±∞ stands for 0.

By semicircle law [15], fÃw
∞
(t) = 2π−1τw

∞
2{(1/τw

∞
2 − t2)+}

1/2, then it’s easy to verify that

G fX (z) =


τw
∞

2{2z − 2(z2 − 1/τw
∞

2)1/2} if z > 1/τw
∞,

τw
∞

2{2z + 2(z2 − 1/τw
∞

2)1/2} if z < −1/τw
∞,

G fX (±1/τw
∞) = ±1/2τw

∞ and G−1
fX
(1/x) = (4xτw

∞
2)−1 + x for x , 0. Thus, for 2 ≤ i ≤ K ,

λi(Âw)
a.s.
−−→


1 + (4τw

∞
2)−1, if τw

∞ > 1/2,

1/τw
∞, otherwise.
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Chapter 3: Pairwise Covariate-Adjusted Block Model

3.1 Introduction

In the real world, the connection of nodes may depend on not only community structure but also

on some nodal information. For example, in an ecological network, the predator-prey link between

species may depend on their prey types as well as their habits, body sizes and living environment.

Incorporating nodal information into the network model should help us recover a more accurate

community structure.

Depending on the relationship between communities and covariates, there are in general two

classes of models as shown in Figure 3.1: covariates-adjusted and covariates-confounding. c, X

and A respectively stands for latent community label, nodal information and adjacency matrix.

In Figure 3.1a, the latent community and the covariates jointly determine the network structure.

One typical example of this model is the friendship network between students. Students become

friends for various reasons: they are in the same class; they have the same hobbies; they are of the

same ethnic group. Without adjusting those covariates, it is hard to believe A represents any single

community membership. We will analyze one such example in detail in Section 3.5. On the other

hand, covariates sometimes carry the same community information as the adjacency matrix, which

is shown in Figure 3.1b. The name ‘confounding’ comes from graph model [68]. Citation network

is a perfect example of this model [127]. When the research topic is treated as the community label

for each article, the citation links would largely depend on the research topics of the article pair.

Meanwhile, the distribution of the keywords is also likely to be driven by the specific topic the

article is about.

Most researchers modify SBM in the above two ways to incorporate covariates’ information.

For the covariates-adjusted model, [111] uses covariates to construct the prior for community label
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(a) Covariates-adjusted

c

A

Z
(b) Covariates-confounding

Figure 3.1: Different network models including covariates

and then generates edges by degree-corrected model; [144] proposes a directed network model

with logistic function, but it does not consider possible community structure. For the covariates-

confounding model, [139] uses a logistic model as the prior for community labels. [145] proposes a

joint community detection criterion, which is an analog of modularity, to incorporate node features.

[98] presents algorithms for two special classes of the latent space model that incorporate edge

covariates. [142] proposes a generalized linear model with low-rank effects to model network

edges, which implies the community structure though not mentioned explicitly.

In this chapter, we propose a simple yet effective model called PCABM, which extends the

SBM by adjusting the probability of connections with the pairwise covariates. Through this model,

we can learn how each covariate affects the connections by looking at its corresponding regression

coefficient. Also, we show the consistency and asymptotic normality for MLE. Besides likelihood

methods, we also propose a novel spectral clustering method called SCWA. Note that [27] also

uses a modified version of spectral clustering to incorporate nodal covariates, but it is not based

on a specific model. We prove desirable theoretical properties for SCWA applied to PCABM, and

show that as a fast algorithm, using it as an initial estimator for the likelihood method usually leads

to more accurate community detection than random initialization.

The rest of this chapter is organized as follows. In Section 3.2, we introduce the PCABM. We

then show the asymptotic properties of the coefficient estimates as well as the community detection

consistency in Section 3.3.1. Section 3.3.2 introduces SCWA and its asymptotic properties. Sim-
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ulations and applications on real networks will be discussed in Section 3.4 and 3.5. We conclude

this chapter with a short discussion in Section 3.6. All proofs are relegated to Section 3.7.

3.2 PCABM setup

Upon classical SBM, we assume in addition to A, we have additionally observed a pairwise p-

dimensional vector zi j between node i and j. Denote the collection of the pairwise covariate among

nodes as Z = [zT
i j] ∈ R

n2×p. Define γ as a fixed common coefficient vector for all node pairs (i, j)

with the true value denoted by γ0. For i < j, conditioned on c, Z,γ0,B, Ai j’s are independent and

Ai j ∼ Poisson(λi j), λi j = Bcicj e
zTijγ

0
.

In this thesis, we only consider sparse networks, which means λi j is far less than 1. For simplicity,

we assume λi j < 1/2. The specific term ezTijγ
0

is introduced here to adjust the SBM with the

pairwise covariates. ϕn is no longer the expected degree as in [147], but we can still use it to

measure the rate of ρn. For theoretical purposes, we need the following conditions on Z and γ0.

Condition 3.1. {zi j, i < j} are i.i.d. and zi j = z ji.

Condition 3.2. {zi j, i < j} are uniformly bounded, i.e., for ∀i < j, ‖zi j ‖∞ ≤ ζ , where ζ > 0 is

some constant.

Remark 3.1. The bounded support condition for zi j is introduced to simply our proofs. It could

be relaxed to allow the upper bound grow slowly with network size n.

By Condition 3.2, we know that ezTijγ
0

is also uniformly bounded. We define the bound as βl ≤

ezTijγ
0
≤ βu. Thus, the following expectations exist: θ(γ0) ≡ EezTijγ

0
∈ R+, µ(γ0) ≡ Ezi je

zTijγ
0
∈ Rp,

and Σ(γ0) ≡ Ezi jzT
i je

zTijγ
0
∈ Rp×p.

Condition 3.3. Σ(γ0) − θ(γ0)−1µ(γ0)⊗2 is positive definite.

Remark 3.2. Condition 3.3 is imposed to ensure that γ0 is the unique solution to maximize the

likelihood in the population version. Consider the function g(γ) = θ(γ)Σ(γ) − µ(γ)⊗2. If γ0 = 0,
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we have g(0) = E[z⊗2] − E[z]⊗2 = cov(z). To avoid multicollinearity, it’s natural for us to require

cov(z) to be positive definite. Similarly, we require g(γ0) to be positive definite at the true value

γ0.

Define

nk(e) ≡
n∑

i=1
1ei=k, Okl(e) ≡

∑
i j

Ai j1ei=k,ej=l, Ekl(e,γ) ≡
∑
i, j

ezTijγ1ei=k,ej=l =
∑

(i,j)∈se(k,l)

ezTijγ,

where se(k, l) = {(i, j)|ei = k, e j = l, i , j}. Under assignment e, nk(e) represents the number of

nodes in community k. For k , l, Okl is the total number of edges between communities k and l;

for k = l, Okk is twice of the number of edges within community k. Ekl is the summation of all

pair-level factors. We can write the log-likelihood function as

logL(e,γ,B,π |A, Z) ∝
∑

k

nk(e) log πk +
1
2

∑
kl

Okl(e) log Bkl −
1
2

∑
kl

Bkl Ekl(e,γ) +
∑
i< j

Ai jzT
i jγ.

For fixed e and γ, the MLE of π and B is π̂k(e) = nk(e)/n and B̂kl(e) = Okl(e)/Ekl(e,γ).

Plugging B̂(e), π̂(e) into the original log-likelihood and discarding the constant terms, we have

logL(e,γ, B̂, π̂ |A, Z) ∝
1
2

∑
kl

Okl(e) log
Okl(e)

Ekl(e,γ)
+

∑
i< j

Ai jzT
i jγ +

∑
k

nk(e) log
nk(e)

n
. (3.1)

Out target is to maximize (3.1) w.r.t. e and γ. To achieve that, we apply a two-step procedure here,

which means we estimate γ0 and c sequentially. The theoretical properties for the MLE γ̂ and ĉ

will be demonstrated in the following section.

3.3 Theory and algorithms for PCABM

In this section, we will introduce two approaches for PCABM estimation. One is likelihood

method in Section 3.3.1, and the other is a modified spectral clustering method in Section 3.3.2.

While the former is the canonical analysis for a new model, the latter is a more efficient approach.
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3.3.1 Likelihood method

The likelihood theory will be divided into three parts. First, we investigate the property of MLE

γ̂(e) under some random community assignment e. We derive the consistency and asymptotic

normality of γ̂(e) under some mild conditions of e. Second, we demonstrate that under a large

class of criteria Q, given γ̂(e) is consistent, the consistency of ĉ(e) is guaranteed under PCABM.

At last, we show that under our likelihood criterion, ĉ is consistent under any γ̂, even if it’s not

consistent, which could potentially save time by skipping the γ̂ estimation step.

A. Consistency of γ̂

Consider the terms in (3.1) only containing γ, which is

`e(γ) ≡
∑
i< j

Ai jzT
i jγ −

1
2

∑
kl

Okl(e) log Ekl(e,γ).

Define γ̂(e) ≡ arg maxγ `e(γ) to be the MLE. When there is no need to emphasize, we will simply

omit e. To derive the asymptotic property for γ̂, the following regularity condition regarding the

community assignment e is assumed.

Condition 3.4 (non-degeneracy). For any k ∈ [K], κ1 ≤ |nk(e)/n| ≤ κ2, where 0 < κ1 ≤ κ2 < 1

are some positive constants.

Condition 3.4 is very mild and natural since we know the size of each community is approxi-

mately a constant proportion of the total number of nodes under the true model. The consistency

of γ̂ is guaranteed by the following theorem.

Theorem 3.1. Under PCABM, assume Condition 3.1, 3.3 and 3.4 hold. As n→∞, if Nnρn →∞,

γ̂(e)
p
−→ γ0.

This theorem saves us from tedious estimations of γ0 and c iteratively. It shows that we can

get a consistent estimate of γ0 under any community assignment e with mild conditions. With

Theorem 3.1, we no longer need a good initial estimate of c to guarantee the consistency of γ̂. We
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can simply take any random non-degenerate assignment e as the initial class label and optimize the

likelihood function to get γ̂(e). Next, we present the asymptotic normality property for γ̂(e).

Theorem 3.2. Under PCABM, assume Condition 3.1, 3.3 and 3.4 hold. As n→∞, if Nnρn →∞,

the asymptotic distribution of
√

Nnρn(γ̂(e)−γ0) is multivariate normal with mean 0 and covariance

matrix Σ−1
∞ (γ

0), where Σ∞(γ0) =
∑

abΩabπaπb(Σ(γ
0) − θ(γ0)−1µ(γ0)⊗2).

Different from [144], in which the network is dense, the convergence rate in our theorem is
√

Nnρn rather than
√

Nn since the effective number of edges is reduced from Nn to Nnρn. The

asymptotic covariance matrix Σ−1
∞ (γ

0) depends on θ(γ0), µ(γ0),Σ(γ0), which can be estimated

empirically.

B. Consistency of ĉ

The second step is to optimize (3.1) w.r.t. e by plugging γ̂ from the first step. The log-likelihood

function to maximize is defined as

`γ̂(e) =
1
2

∑
kl

Okl(e) log
Okl(e)

Ekl(e, γ̂)
+

∑
k

nk(e) log
nk(e)

n
. (3.2)

Instead of dealing with `γ̂(e) directly, as in [147], we first show the consistency of ĉ under a

large class of criteria defined as

Q(e, γ̂) = F
(

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)
. (3.3)

Next, we show our likelihood method falls within this class of criteria, so the consistency of la-

bel estimation naturally follows. We say the criterion Q is consistent if the labels obtained by

maximizing the criterion ĉ ≡ arg maxe Q(e, γ̂) is consistent.

Here, we consider two versions of consistency. While weak consistency means convergence

in probability: Pr(
∑n

i=1 1ĉi,ci/n < ε) → 1 for any ε > 0 as n → ∞, strong consistency means

convergence almost surely: Pr(ĉ , c) → 1, as n → ∞. Here, the equality is interpreted to mean
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membership in the same equivalence class with respect to label permutations. We prove both

versions of consistency under the same sparsity conditions as those in [147], respectively.

Naturally, one key condition of Q is the maximum value under the ‘population version’ should

be obtained at the true community assignment. Given a community assignment e ∈ [K]n, we define

R(e) ∈ RK×K with its elements being Rka(e) = 1
n
∑n

i=1 1ei=k,ci=a. One can view R as the empirical

joint distribution of e and c. The condition for maximum value and some other regularity conditions

satisfied by F are as follows, which are analog to those in [147].

Condition 3.5. F(RΩRT,RJRT ) is uniquely maximized over R = {R : R ≥ 0,RT1 = π} by

R = D(π).

Condition 3.6. Some regularity conditions hold for F.

1. F is Lipschitz in its arguments and F(cX0, cY0) = cF(X0,Y0) for constant c , 0.

2. The directional derivatives ∂2F
∂ε2 (X0+ε(X1−X0),Y0+ε(Y1−Y0))|ε=0+ are continuous in (X1,Y1)

for all (X0,Y0) in a neighborhood of (D(π)ΩD(π)T,ππT ).

3. Let G(R,Ω) = F(RΩRT,RJRT ). On R, the gradient ∂G((1−ε)D(π)+εR,Ω)
∂ε |ε=0+ < −C < 0 for all

π and Ω.

Now the main theorem can be stated as follows.

Theorem 3.3. For all criteria Q of the form (3.3), if π,Ω,F satisfy Condition 3.5 and 3.6, and

γ̂ is consistent, then under PCABM, Q is weakly consistent if ϕn → ∞ and strongly consistent if

ϕn/log n→∞.

Remark 3.3. Consider a network generated by PCABM. If we ignore the covariates and use SBM

instead, it is equivalent to estimate PCABM with γ̂ = 0. Suppose nodes i, j and k belong to the

first community. We have λik = B11ezT
ik
γ0
, B11ezT

jk
γ0
= λ j k unless zT

ikγ
0 = zT

jkγ
0. Therefore,

the nodes in the same community could behave very differently depending on the value of the

pairwise covariates. As a result, we would expect the regular SBM to have difficulty in detecting
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the communities when the magnitude of γ0 is large. We will demonstrate this point through a

simulation example in Section 3.4 where we vary the magnitude of γ0.

We will show in Section 3.7.4 that the log likelihood satisfy above conditions, thus is con-

sistent. Surprisingly, we further show that the consistency of γ̂ is not necessary to guarantee the

consistency of ĉ, which will save us from parameter estimation. Under the PCABM, we could

simply plug γ̂ = 0 into the likelihood and obtain ĉ. The theorem is formally stated as follows.

Corollary 3.4. Under PCABM, the likelihood criterion (3.2) is weakly consistent if ϕn → ∞ and

strongly consistent if ϕn/log n→∞ for any γ̂.

At the first glance, Theorem 3.4 may be kind of astonishing. It shows the community block

probability and the covariates probability are decoupled and we could estimate them separately.

One way to understand this is to see the covariates part from an expectation view, then you may

still get a consistent estimate ĉ asymptotically. However, in practice, we always deal with finite

samples, which might cause large bias by simply ignoring the covariates.

Since finding ĉ is a non-convex problem, we use tabu search [20, 66] to find a solution. The

idea of is to randomly switch the class label for a pair of nodes. If the value of log-likelihood

function increases after switching, we proceed with the switch. Otherwise, we ignore the switch

by sticking with old labels. Because this algorithm is greedy, to avoid being trapped in local

maximum, we ‘tabu’ those nodes whose labels have been switched in a preceding period time, i.e.

we don’t consider switching the label of a node if it is in the tabu set. Though global maximum

is not guaranteed, tabu search usually gives satisfactory results in our numerical experience. The

detailed algorithm is described as follows. Although theoretically we don’t need a consistent γ̂ to

guarantee the consistency of ĉ, for the reasons we have disscused, we still use a two step procedure

to get more stable results.
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Algorithm 3.1 PCABM.MLE0
Input: adjacency matrix A, pairwise covariates Z , initial assignment e, likelihood function

L(e,γ, B̂, π̂) and number of communities K

Output: coefficient estimate γ̂ and community estimate ĉ

1: Optimize `e(γ) by some optimization algorithm (e.g., BFGS) to derive γ̂.

2: Use tabu search to optimize `γ̂(e) to get ĉ.

3.3.2 Spectral clustering with adjustment

Though the likelihood method has appealing theoretical properties, tabu search can sometimes

be slow when the network size is large. Also, the community detection results can be sensitive to

the initial label assignments e. As a result, we aim to propose a computationally efficient algorithm

in the flavor of spectral clustering [119] to be used as the initial solution for PCABM.

A. (1 + ε) spectral clustering algorithm

From now on, we use PCABM(M,B, Z,γ0) to represent PCABM generated with parameters

in the parentheses. Let Gk = Gk(M) = {1 ≤ i ≤ n : ci = k}, then nk = |Gk | for k = 1, · · · ,K .

Let nmin = min1≤k≤K nk , nmax = max1≤k≤K nk and n′max is the second largest community size. We

define k-means clustering in another form

(M̂, X̂) = arg minM∈Mn,K ,X∈RK×K ‖M X −UA‖
2
F . (3.4)

Though finding a global minimizer for the k-means problem (3.4) is NP-hard [11], for any positive

constant ε , we have efficient algorithms to find an (1 + ε)-approximate solution [86, 96]

(M̂, X̂) ∈ Mn,K × R
K×K

s.t. ‖M̂ X̂ −UA‖
2
F ≤ (1 + ε) min

M∈Mn,K ,X∈RK×K
‖M X −UA‖

2
F .

The goal of community detection is to find M̂ that is close to M . To define a loss function,
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we need to take permutation into account. Let SK be the space of all K × K permutation matrices.

Following [91], we define two measures of estimation error: the overall relative error and the worst

case relative error:

L1(M̂,M) = n−1 min
S∈SK
‖M̂S − M ‖0,

L2(M̂,M) = min
S∈SK

max
1≤k≤K

n−1
k ‖(M̂S)Gk · − MGk ·‖0.

It can be seen that 0 ≤ L1(M̂,M) ≤ L2(M̂,M) ≤ 2. While L1 measures the overall proportion of

mis-clustered nodes, L2 measures the worst performance across all communities.

B. Spectral clustering with adjustment

The existence of covariates in PCABM prevents us from applying spectral clustering directly

on A. Unlike SBM where A is generated from a low rank matrix P, A consists of both community

and covariate information in PCABM. Since Pi j = E[Ai j/e
zTijγ

0
], one natural idea to take advantage

of the low rank structure is to remove the covariate effects, i.e. using the adjusted adjacency matrix

[Ai j/e
zTijγ

0
] for spectral clustering. However, in practice, we don’t know what the the true parameter

γ0 is, so we need to replace γ0 with empirical estimate γ̂. Define the adjusted adjacency matrix as

A′ = [A′i j] where A′i j = Ai j exp(−zT
i j γ̂). By the consistency of γ̂ proved in Theorem 3.1, we hope

‖A′ − P‖ can be bounded in probability as in [91]. Based on this bound, we could then apply the

normal spectral clustering algorithm on matrix A′ to detect the community. This SCWA algorithm

is elaborated in Algorithm 3.2. Also, the following regularity conditions are assumed throughout

this section, which is similar to the degree sparsity condition in [91].

Condition 3.7. ‖Ω‖max ≤ 1 and ϕn ≥ C log n for some constant C > 0.

Theorem 3.5 (Spectral bound of Poisson random matrices). Let A be the adjacency matrix gener-

ated by PCABM (M,B, Z,γ0), and the adjusted adjacency matrix A′ is derived from the MLE γ̂.

Assume Condition 3.1 3.2 3.4 3.7 hold. For any constant r > 0, there exists a constant C such that

‖A′ − P‖ ≤ C
√
ϕn with probability at least 1 − n−r .
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Algorithm 3.2 PCABM.SCWA
Input: adjacency matrix A, pairwise covariates Z , initial assignment e, likelihood function
L(e,γ, B̂, π̂), number of communities K and approximation parameter ε

Output: coefficient estimate γ̂ and community estimate ĉ
1: Optimize `e(γ) by some optimization algorithm (e.g., BFGS) to derive γ̂.
2: Divide Ai j by exp(zT

i j γ̂) to get A′i j .
3: Calculate UA′ ∈ R

n×K consisting of the leading K eigenvectors (ordered in absolute eigen-
value) of A′.

4: Calculate the (1+ε)-approximate solution (M̂, X̂) to the k-means problem (3.4) with K clusters
and input matrix UA′.

5: Output ĉ according to M̂ .

With similar proof of Theorem 3.1 in [91], we can prove the following Theorem 3.6 by com-

bining Lemmas 5.1 and 5.3 in [91], and Theorem 3.5.

Theorem 3.6. Based on the conditions of Theorem 3.5, assume that P = MBMT is of rank K with

the smallest absolute non-zero eigenvalue at least ξn. Let M̂ be the output of spectral clustering

using (1+ε) approximate k-means on A′. For any constant r > 0, there exists an absolute constant

C > 0, such that, if

(2 + ε)
Knρn

ξ2
n

< C,

then, with probability at least 1 − n−r , there exist subsets Hk ⊂ Gk for k = 1, · · · ,K , and a K × K

permutation matrix J such that M̂G·J = MG·, where G = ∪K
k=1(Gk \ Hk), and

K∑
k=1

|Hk |

nk
≤ C−1(2 + ε)

Knρn

ξ2
n

. (3.5)

Inequality (3.5) provides an error bound for L2(M̂,M). In set Hk , the clustering accuracy of

nodes can not be guaranteed. Theorem 3.6 doesn’t provide us with an error bound in a straightfor-

ward form since ξn contains ρn. The following corollary gives us a clearer view of the error bound

in terms of model parameters.

Corollary 3.7. Based on the conditions of Theorem 3.5, assume Ω′s minimum absolute eigenvalue

bounded below by τ > 0 and ‖Ω‖max = 1. Let M̂ be the output of spectral clustering using (1 + ε)
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approximate k-means. For any constant r > 0, there exists an absolute constant C such that if

(2 + ε)
Kn

n2
minτ

2ρn
< C,

then with probability at least 1 − n−r ,

L2(M̂,M) ≤ C−1(2 + ε)
Kn

n2
minτ

2ρn
and L1(M̂,M) ≤ C−1(2 + ε)

Kn′max

n2
minτ

2ρn
.

The result provides us with the same convergence rate as in [91]. The intuition is that if we see

the covariate from an expectation view, then it’s just a constant multiplied to the original probabil-

ity, the rate of convergence shouldn’t be affected.

Algorithm 3.3 PCABM.MLE
Input: adjacency matrix A, pairwise covariates Z , initial classes e, likelihood function

L(e,γ, B̂, π̂), number of communities K and approximation parameter ε

Output: coefficient estimate γ̂ and community estimate ĉ

1: Use Algorithm 3.2 to get an initial community estimate c̃.

2: Use c̃ as the initial value in `γ̂(c̃) for tabu search to derive ĉ.

Compared with SCWA, the likelihood tabu search usually leads to more precise results but

takes longer time. Also, the results of the likelihood tabu search are sensitive to the initial labels e

in some settings. To combine the advantages of those two methods, we propose to use the results

of SCWA as the initial solution for tabu search (PCABM.MLE as described in Algorithm 3.3),

which shows better empirical performance than each method alone. We will conduct extensive

simulation studies in Section 3.4.

3.4 Simulations

For all simulations, we consider K = 2 communities with prior probability π1 = π2 = 0.5. In

addition, we fix Ω =
( 2 1

1 2
)

and generate data by applying the following procedure:
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1. Determine parameters ρn and γ0. Generate Z from certain distributions.

2. Generate adjacency matrix A = [Ai j] by PCABM with parameters in step 1.

We use the same pairwise covariate Z in all simulations, whose 5 entries are generated indepen-

dently from Bernoulli(0.1), Poisson(0.1), Uniform[0,1], Exponential(0.3), N(0,0.3), respectively.

We use a uniform bound 2 for Z . The parameters for each distribution are chosen to make the

variances of covariates similar. In the following experiments, we will omit the above procedures

and only state the other parameters.

3.4.1 Coefficient estimation

For PCABM, although we could skip the step of estimating γ, but empirically a good estimation

would provide more stable results. Also, we want to check the consistency of γ̂ in Section 3.3.1.

We ran 100 simulations respectively for n = 100,200,300,400,500. The parameters are set as

ρn = 2(log n)1.5/n, γ0 = (0.4,0.8,1.2,1.6,2)T . The parameter ρn is chosen to satisfy the strong

consistency condition.

We obtain γ̂ by using BFGS to optimize `e(γ) assuming no community structure exists. We

also tried to optimize under random community assignments, which yields similar results. This

validates Theorem 3.1, showing that estimating γ and c are decoupled. We list the mean and

standard deviation of γ̂ in Table 3.1. It is clear that γ̂ is very close to γ0 even for a small network.

The shrinkage of standard deviation shows consistency of MLE.

By taking a closer look at the network of size n = 500, we compare the distribution of γ̂ with

the theoretical asymptotic normal distribution derived in Theorem 3.2. We show the histogram for

the first three coefficients in Figure 3.2. We can see that the empirical distribution matches well

with the theoretical counterpart.

3.4.2 Community detection

After obtaining γ̂, we focus on the estimation of community labels. Under PCABM, there

are three parameters that we could tune to change the property of the network: γ0, ρn and n. To
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Table 3.1: Simulated results for distribution of γ̂, displayed as mean (standard deviation)

n γ0
1 = 0.4 γ0

2 = 0.8 γ0
3 = 1.2 γ0

4 = 1.6 γ0
5 = 2

100
0.4018 0.8003 1.1944 1.6153 2.0214

(0.0269) (0.0184) (0.0369) (0.0309) (0.0302)

200
0.3929 0.7956 1.1648 1.5901 2.0057

(0.0139) (0.0117) (0.0228) (0.0151) (0.0205)

300
0.4162 0.7953 1.1607 1.5962 1.9912

(0.0114) (0.0073) (0.0186) (0.0086) (0.0120)

400
0.3931 0.8049 1.1960 1.6075 2.0122

(0.0091) (0.0057) (0.0144) (0.0081) (0.0097)

500
0.3944 0.7998 1.2017 1.5970 2.0038

(0.0081) (0.0051) (0.0124) (0.0086) (0.0099)

Figure 3.2: Simulation results for γ̂ compared with theoretical values

illustrate the impact of these parameters on the performance of community detection, we vary one

parameter while fixing the remaining two in each experiment. More specifically, we consider the

form ρn = cρ(log n)1.5/n and γ0 = cγ(0.4,0.8,1.2,1.6,2)T in which we will vary the multipliers cρ

and cγ. We also did one more experiment by plugging different γ̂ into `γ̂(e) and estimate ĉ. Here

we use one dimensional covariate following Poisson(0.1). The detailed parameter settings for the

four experiments are as follows.

1. n ∈ {100,200,300,400,500}, with cρ = 0.5 and cγ = 1.4.

2. cρ ∈ {0.3,0.4,0.5,0.6,0.7}, with n = 200 and cγ = 1.4.

3. cγ ∈ {0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6}, with n = 200 and cρ = 1.

4. γ̂ ∈ {0,0.5,1,1.5,2,2.5,3,3.5}, with γ0 = 2, n = 500 and cρ = 1.

The results for the three experiments are presented in Figure 3.3. Each experiment is carried

out for 100 times. The error rate is reported in terms of average ARI. SBM.MLE and SBM.SC
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refer to likelihood and spectral clustering methods under SBM, respectively. PCABM.MLE and

PCABM.SCWA refer to Algorithms 3.3 and 3.2 respectively.

(a) Number of nodes n (b) Multiplier of sparsity cρ

(c) Multiplier of coefficient cγ (d) Coefficient γ

Figure 3.3: Simulation results under PCABM for different parameter settings

When the number of nodes increases, it is clear from the first plot in Figure 3.3 that both algo-

rithms under SBM provides us little more than random guess. On the other hand, both PCABM-

based algorithms perform quite well with PCABM.MLE having nearly perfect community detec-

tion performance throughout all n. Note that SCWA gradually catches up with MLE as we have

more nodes. We observe a similar phenomenon when the sparsity level is changed. When the

scale of γ0 is changed, both algorithms under PCABM still yield good results. As we know, when

γ0 = 0, our model reduces to SBM, so it is not surprising that SBM.MLE and SBM.SC both

perform well when the magnitude of γ0 is relatively small and fail when the magnitude increases.

Also, it appears that compared with the likelihood method, spectral clustering is more robust to

model misspecification. The last plot of Figure 3.3 shows what we claim earlier. Although Theo-

rem 3.4 doesn’t require a consistent γ̂ to guarantee the consistency of ĉ, using a more accurate γ̂
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would yield better result in finite sample experiment. We can also see the improvement of likeli-

hood method upon SCWA when γ̂ is accurate. When it’s not, it’s possible for likelihood method

to introduce more bias.

(a) Number of nodes n with cρ = 2 (b) Multiplier of sparsity cρ with n = 200

Figure 3.4: Simulation results under DCBM for different parameter settings

To show the robustness of our algorithms, we also apply Algorithms 3.2 and 3.3 to networks

generated by DCBM, which can be viewed as a misspecified case. The degree parameter for each

node is chosen from {0.5,1.5} with equal probability, while other parameters follow the same

scheme as PCABM. For covariates construction, we take zi j = log di + log d j , where di is the

degree of node i. As a comparison, we also implemented the likelihood method in [147] and the

SCORE method in [78]. In Figure 3.4, all algorithms perform better when the network is larger or

denser. Surprisingly, SCWA is slightly better than SCORE in most cases. The two likelihood-based

methods perform similarly and better than their spectral counterparts. The flexibility of PCABM

allows us to model any factors that may contribute to the structure of network in addition to the

underlying communities.

3.5 Real data examples

3.5.1 Example 1: political blogs

The first real world dataset we used is the network of political blogs created by [6]. The nodes

are blogs about US politics and edges represent hyperlinks between them. We treated the network

as undirected and only focus on the largest connected component of the network, resulting in a
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network with 1,222 nodes and 16,714 edges.

Because there are no other covariates available in this dataset, we created the pairwise covari-

ates by aggregating the degree information. We let zi j = log(di × d j), where di is the degree for the

i-th node. The corresponding γ̂ is 1.001, which essentially reduces PCABM to DCBM. Table 3.2

summarizes the performance comparison of PCABM with some existing results on this dataset.

Besides ARI, we also evaluated normalized mutual information (NMI) [47], which is a measure

of the mutual dependence between the two variables. It is observed that our model slightly out-

performs all previous results and the error rate is very close to the ideal results mentioned in [78],

which is 55/1222. This shows that PCABM can effectively incorporate the degree information into

a specific pairwise covariate and provide significant improvement over the vanilla SBM, whose

NMI is only 0.0001 as reported in [80].

Table 3.2: Performance comparison on political blogs data

ARI NMI Errors
Karrer and Newman (2011) [80] - 0.72 -

Zhao et al. (2012) [147] 0.819 - -
Jin (2015) [78] 0.819 0.725 58
PCABM.MLE 0.825 0.737 56

3.5.2 Example 2: school friendship

For real networks, people often use certain nodal labels as the ground ‘truth’ for community

labels to evaluate the performance of various community detection methods. However, there could

be different ‘true’ community assignments based on different nodal labels (e.g., gender, job, and

age). [115] mentioned that communities and the covariates may capture different aspects of the

network, which is inline with the idea presented here. To examine whether PCABM can discover

different community structures, in our second example, we treat one covariate as the indicator for

the unknown ‘true’ community assignments while using the remaining covariates as the known

covariates in our PCABM model.

The dataset is a friendship network of school students, which is from the National Longitudinal
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Study of Adolescent to Adult Health (Add Health). It contains 795 students from a high school

(Grades 9-12) and its feeder middle school (Grade 7-8). The pairwise covariates include grade,

gender, ethnicity and number of friends nominated (up to 10). We focused on the largest connected

component with at least one covariate non-missing and treat the network as undirected, resulting in

a network with 777 nodes and 4124 edges. For the nodes without gender, we let them to be female,

which is the smaller group. For those without grade, we generated a random grade according to

their schools.

Different from traditional community detection algorithms which can only detect one underly-

ing community structure, PCABM provides us with more flexibility to uncover different commu-

nity structures by controlling different covariates. Our intuition is that social network is usually

determined by multiple underlying structures, so it cannot be simply explained by one covariate.

Sometimes one community structure seems to dominate the network, but if we control the covariate

associated with this structure, we may discover other interesting community structures.

In this example, we conducted three community detection experiments. In each experiment,

out of the three nodal labels (school, ethnicity and gender), one was viewed as the indicator for the

underlying community, and community detection was carried out by using the pairwise covariates

constructed using the other two covariates. For gender, school and ethnicity, we created indicator

variables to represent whether the corresponding covariate values were the same for the pair of

nodes. Besides, we considered the number of nominated friends in all experiments and grade for

predicting ethnicity and gender. For number of nominated friends, we used log(ni +1)+ log(n j +1)

as one pairwise covariate, where ni is the number of nominated friends for the i-th student. ‘+1’

was used here because some students didn’t nominate anyone. For grades, we used the absolute

difference to form a pairwise covariate. Using random initial community labels, we derived the

estimates γ̂ in each experiment. In Tables 3.3 and 3.4, we show respectively the estimates when

school and ethnicity are taken as the targeted community.

In both tables, the standard error is calculated by Theorem 3.2, with the theoretical values

replaced by the estimated counterparts. Thus, we can calculate the t value for each coefficient
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Table 3.3: Inference results when school is targeted community

Covariate Estimate Std. Error t value Pr(> |t|)
White 1.251 0.043 29.002 < 0.001***
Black 1.999 0.051 38.886 < 0.001***

Hispanic 0.048 0.523 0.091 0.927
Others 0.019 0.543 0.035 0.972
Gender 0.192 0.034 -5.620 < 0.001***

Nomination 0.438 0.024 18.584 < 0.001***

Table 3.4: Inference results when ethnicity is targeted community

Covariate Estimate Std. Error t value Pr(> |t|)
School 1.005 0.076 -13.168 < 0.001***
Grade -1.100 0.028 -39.182 < 0.001***
Gender 0.198 0.034 -5.813 < 0.001***

Nomination 0.498 0.023 21.679 < 0.001***

and perform statistical tests. We can see that in both experiments, the coefficients for gender and

the number of nominations are similar. They both appear to be significant in the creation of the

friendship network. The significant positive coefficient of nominations shows that students with a

large number of nominations tend to be friends with each other, which is intuitive. The positive

coefficients of gender and school shows students of the same gender and school are more likely

to be friends with each other, which is in line with our expectations. The negative coefficient of

grade means that students with closer grades are more likely to be friends with each other. If we

take a closer look at the coefficients of different ethnic groups in Table 3.3, we find that only those

corresponding to white and black are significant. This is understandable if we observe that among

777 students, 476 are white and 221 are black. As for school and grade, students in the same school

or grade are more likely to be friends with each other, which is as we expected.

The network is divided into two communities each time (we only look at white and black stu-

dents in the second experiment because the sizes for other ethnicities are very small). In Figure 3.5,

school, ethnicity and gender are targeted communities respectively. We use different shades to dis-

tinguish true communities. Predicted communities are separated by the middle dash line, so the

ideal split would be shades vs. tints on two sides. By this criteria, our model performs pretty
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well for the first two cases, but fails to distinguish different genders. Also, more edges between

two communities in the third plot indicates bad performance. It can either be the existence of an-

other unknown variables or gender’s contribution to the network structure is insignificant given the

covariates considered.

The results in terms of ARI are shown in Table 3.5. Note that, for all other methods, we would

get only one community structure, whose performance is doomed to be bad for capturing different

community structures. Also, to test the robustness of our method, in the experiment of detecting

the ethnicity community, we tried to use the square of the grade difference which led to almost the

same ARI.

Table 3.5: ARI comparison on school friendship data

School Race Gender
PCABM.MLE 0.909 0.914 0.030

SBM.MLE 0.048 0.138 -0.001
SBM.SC 0.043 -0.024 0.000

DCBM.MLE 0.909 0.001 0.002
SCORE 0.799 0.012 0.011

3.6 Discussion

In this chapter, we extended the classical stochastic block model to let the connection probabil-

ity between nodes not only depend on communities but also on the pairwise covariates. We proved

consistency in terms of both coefficient estimates and community label assignments for MLE under

PCABM. Also, we introduced a fast spectral method SCWA with theoretical justification, which

may serve as a good initial solution for the likelihood method.

Though we assumed Ai j’s are non-negative integers, it can be relaxed to be any non-negative

number, and the proof still holds. Also, we would like to consider unbalanced community sizes

nmin/nmax = o(1) or when the number of communities Kn diverges.

One possible future work is to extend PCABM to directed network. Besides, for the bounded

degree case where ϕn = O(1), it is of great interest to discuss the properties of estimators under
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Figure 3.5: Community detection with different pairwise covariates
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our framework. When we have high-dimensional pairwise covariates, adding a penalty term to

perform variable selection is also worth investigating.

Another interesting issue is the choice of the number of communities K which is assumed to

be known in this thesis. However, in practice, it would be desirable to have an automatic selection

procedure for choosing K . Some recent efforts toward this direction include [121, 87, 134, 90, 39,

92, 143]. It would be interesting to study some of the methods under PCABM.

3.7 Proofs

This section contains proofs of Theorems 3.1, 3.2, 3.3, 3.4 and 3.5.

3.7.1 Proof of Theorem 3.1 and Theorem 3.2

Proof. In the following proof, we will use γ̂ instead of γ̂(e) for simplicity. Define the empirical

version of θ(γ), µ(γ) and Σ(γ) as

θ̂kl(γ) =
∑

(u,v)∈se(k,l)

ezTuvγ/|se(k, l)|,

µ̂kl(γ) =
∑

(u,v)∈se(k,l)

zuvezTuvγ/|se(k, l)|,

Σ̂
kl(γ) =

∑
(u,v)∈se(k,l)

zuvzT
uvezTuvγ/|se(k, l)|.

For fixed γ, under Condition 3.1 and 3.4, for ∀k, l ∈ [K], we know the weak law of large numbers

holds, i.e., θ̂kl(γ)
p
−→ θ(γ), µ̂kl(γ)

p
−→ µ(γ) and Σ̂kl(γ)

p
−→ Σ(γ).

First, we calculate the first and second order derivative of `e w.r.t. γ as

`′e(γ) =
∂`e
∂γ
=

∑
i< j

Ai jzi j −
∑
i< j

Ai j µ̂
eiej (γ)/θ̂eiej (γ),

`′′e (γ) =
∂2`e

∂γ∂γT =
∑
kl

Okl(e)
2θ̂kl(γ)2

[
µ̂kl(γ)⊗2 − θ̂kl(γ)Σ̂kl(γ)

]
.

Then conditioned on Z , we define the expectation and variance of `′e(γ) as µ`(e,γ) = E[`′e(γ)|Z]
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and Σ`(e,γ) = var[`′e(γ)|Z].

µ`(e,γ)
Nnρn

=(Nnρn)
−1

∑
i< j

Bcicj e
zTijγ

0
[
zi j −

µ̂eiej (γ)

θ̂eiej (γ)

]
=N−1

n

∑
i< j

Ωcicj e
zTijγ

0
[
zi j −

µ(γ)

θ(γ)

]
+ o(1)

=N−1
n

∑
i< j

Ωcicj [(e
zTijγ

0
zi j − µ(γ)) +

µ(γ)

θ(γ)
(θ(γ) − ezTijγ

0
)] + o(1),

Σ`(e,γ)
Nnρn

=(Nnρn)
−1

∑
i< j

Bcicj e
zTijγ

0
[
zi j −

µ̂eiej (γ)

θ̂eiej (γ)

]⊗2

=N−1
n

∑
i< j

Ωcicj e
zTijγ

0
[
zi j −

µ(γ)

θ(γ)

]⊗2
+ o(1)

=(2Nn)
−1

∑
kl

Ωkl

∑
(i,j)∈sc(k,l)

[ezTijγ
0
z⊗2

i j − 2ezTijγ
0
zi jµ(γ)

T/θ(γ)

+ ezTijγ
0
µ(γ)⊗2/θ(γ)2] + o(1).

By LLN, limn→∞
µ`(e,γ)
Nnρn

and limn→∞
Σ`(e,γ)
Nnρn

exist, and we use µ∞(γ) and Σ∞(γ) to denote them

respectively, where

µ∞(γ) =
∑
ab

Ωabπaπb

[
µ(γ0) −

µ(γ)

θ(γ)
θ(γ0)

]
,

Σ∞(γ) =
∑
ab

Ωabπaπb

[
Σ(γ0) −

2µ(γ0)µ(γ)T

θ(γ)
+
θ(γ0)µ(γ)⊗2

θ(γ)2

]
,

Specifically, at γ0, we have µ∞(γ
0) = 0 and Σ∞(γ0) =

∑
abΩabπaπb[Σ(γ

0) − θ(γ0)−1µ(γ0)⊗2]. By

Condition 3.3, Σ∞(γ) is positive definite in a neighborhood of γ0.

Using Taylor expansion,

`′e(γ̂) − `
′
e(γ

0) = `′′e (γ̄)(γ̂ − γ
0),

where γ̄ = qγ0 + (1 − q)γ̂ for some q ∈ [0,1]. Noticing that `′e(γ̂) = 0, so

γ̂ − γ0 =

(
`′′e (γ̄)

Nnρn

)−1 `′e(γ
0)

Nnρn

p
−→ 0.
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To prove asymptotic normality, we rewrite above formula as

√
Nnρn(γ̂ − γ

0) = −

[
1

Nnρn
`′′e (γ̄)

]−1
×

[
1

√
Nnρn

`′e(γ
0)

]
.

Since γ̂
p
−→ γ0, we have Nnρn`

′′−1
e (γ̄)

p
−→ Σ2(γ

0). Also, conditioned on Z , by C.L.T.,

1
√

Nnρn
`′e(γ

0) =
√

Nnρn

[
1

Nnρn
`′e(γ

0)

]
d
−→ N(0,Σ2(γ

0)).

Thus, √
Nnρn(γ̂ − γ

0)
d
−→ N(0,Σ−1

∞ (γ
0)).

3.7.2 Some concentration inequalities and notations

For the purpose of later proofs, we introduce some concentration inequalities and necessary

notations first.

One inequality that we will apply repeatedly is extended version of Bernstein inequality for

unbounded random variables introduced in [138].

Lemma 3.8 (Bernstein inequality). Suppose X1, · · · ,Xn are independent random variables with

EXi = 0 and E|Xi |
k ≤ 1

2EX2
i Lk−2k! for k ≥ 2. For M ≥

∑
i≤n EX2

i and x ≥ 0,

Pr

(∑
i≤n

Xi ≥ x

)
≤ exp

(
−

x2

2(M + xL)

)
.

To show that all Poisson distributions satisfy the above Bernstein condition uniformly under

some constant L̄, we give the following lemma.

Lemma 3.9 (Bernstein condition). Assume A ∼ Pois(λ), let X = A− λ, then for any 0 < λ < 1/2,

there exists a constant L̄ > 0 s.t. for any integer k > 2, E[|X k |] ≤ E[X2]L̄k−2k!/2.
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Proof.

2E[|A − λ |k]
λk!

=
2
λk!
E[(A − λ)k |A ≥ 1]Pr(A ≥ 1) +

2λk−1e−λ

k!

≤
2
λk!
E[Ak |A ≥ 1]Pr(A ≥ 1) + e−λ =

2
λk!
E[Ak] + e−λ

2
k!

k∑
i=1


k

i

 λi−1 + e−λ

≤
1
k!

k∑
i=1

(
k
i

)
ik−iλi−1 + e−λ ≤

ek−1

k k

k∑
i=1

(
ek
i

) i

ik−iλi−1 + e−λ

=

k∑
i=1

ei+k−1ik−2i ki−kλi−1 + e−λ <
k∑

i=1
ei+k−1e−iλi−1 + e−λ = ek−1 1 − λk

1 − λ
+ e−λ

≤
ek−1

1 − λ
+ 1 ≤

(
e2 + 1
1 − λ

) k−2

.

Notice that when λ is bounded away from 1, say λ < 1/2, we can simply set L̄ = 2(e2 + 1), then

Bernstein condition is satisfied uniformly for all λ.

We introduce some notations. Let |e − c| =
∑n

i=1 1ei,ci . Given a community assignment

e ∈ [K]n, we define V(e) ∈ RK×K with its elements being

Vka(e) ≡
∑n

i=1 1ei=k,ci=a∑n
i=1 1ci=a

=
Rka(e)
πa(c)

.

One can view V as the empirical conditional distribution of e given c. We can see that V(e) =

R(e)D(c)−1. Also, note that V(e)T1 = 1, V(e)π(c) = π(e) and V(c) = IK . For the convenience of

later proof, we also define W(c) = D(c)ΩD(c) and

T̂(e) ≡R(e)ΩR(e)T = V(e)W(c)V(e)T,

Ŝ(e) ≡V(e)π(c)π(c)TV(e)T .

Replacing the empirical distribution π(c) by the true distribution π, we define W0 = D(π)ΩD(π),
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and T(e),S(e) ∈ RK×K as

T(e) ≡V(e)W0V(e)T,

S(e) ≡V(e)ππTV(e)T .

The population version of F
(

O
2Nnρn

, E
2Nn

)
is F(θ(γ0)T(e), θ(γ̂)S(e)). To measure the discrep-

ancy between empirical and population version of F, we define X(e),Y (e, γ̂) ∈ RK×K to be the

rescaled difference between O,E and their expectations

X(e) ≡
O(e)

2Nnρn
− θ(γ0)T̂(e),

Y (e, γ̂) ≡
E(e, γ̂)

2Nn
− θ(γ̂)Ŝ(e).

Before we establish bound for Y (e, γ̂), we need to consider the bound for γ̂. The following is

a direct corollary of Theorem 3.2. Conditioned on ‖γ̂ − γ0‖∞ ≤ φ, we have |ezi j γ̂ − Eezi j γ̂ | ≤

exp{pα(φ + ‖γ0‖∞)} ≡ χ uniformly for any i, j ∈ [n] and γ̂. Under this condition, we establish

Lemma 3.11 using Bernstein inequality.

Lemma 3.10. For any constant φ > 0, ∃ positive constants Cφ and vφ s.t., Pr(‖γ̂ − γ0‖∞ > φ) <

Cφ exp(−vφNnρn).

Lemma 3.11.

Pr(max
e
‖X(e)‖∞ ≥ ε) ≤ 2Kn+2 exp(−C1ε

2Nnρn) (3.6)

for ε < βu‖Ω‖max/L̄.

Pr( max
|e−c|≤m

‖X(e) − X(c)‖∞ ≥ ε) ≤ 2
(

n
m

)
Km+2 exp

(
−

C3n
m

ε2Nnρn

)
(3.7)
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for ε < ηm/n, where η = 2βu‖Ω‖max/L̄.

Pr( max
|e−c|≤m

‖X(e) − X(c)‖∞ ≥ ε) ≤ 2
(

n
m

)
Km+2 exp (−C4εNnρn) (3.8)

for ε ≥ ηm/n.

Pr(max
e
‖Y (e, γ̂)‖∞ ≥ ε) ≤ 2Kn+2 exp(−C2ε

2Nnρn) (3.9)

for ε < χκ2
2 .

Pr( max
|e−c|≤m

‖Y (e, γ̂) − Y (c, γ̂)‖∞ ≥ ε) ≤ 2
(

n
m

)
Km+2 exp

(
−

C5n
m

ε2Nnρn

)
(3.10)

for ε < 2χm
n .

Pr( max
|e−c|≤m

‖Y (e, γ̂) − Y (c, γ̂)‖∞ ≥ ε) ≤ 2
(

n
m

)
Km+2 exp (−C6εNnρn) (3.11)

for ε ≥ 2χm
n .

Proof. The proofs are all given conditioned on |ezi j γ̂ − Eezi j γ̂ | ≤ χ. By combining Lemma 3.10,

we could have the conclusion directly. For any γ̂, by Bernstein inequality, when ε < χκ2
2 ,

Pr(|Ykl(e, γ̂)| ≥ ε) ≤ 2 exp

(
−

1
2 (2Nnε)

2

|se(k, l)|χ2 + 2
3 χNnε

)
≤2 exp

(
−

6Nnε
2

3κ2
2 χ

2 + 2χε

)
≤ 2 exp

(
−

6
5κ2

2 χ
2
ε2Nn

)
.

Let X1(e) = O(e)−E[O(e)|Z]
2Nnρn

and X2(e) = X(e) − X1(e), and we establish bound for X1(e) and

X2(e) respectively. By Lemma 3.8, for any k, l ∈ [K], let M = βu‖Ω‖max |se(k, l)|ρn, L = L̄, and

x = 2Nnρnε , then for ε < βu‖Ω‖max/L̄,

Pr(X1
kl(e) ≥ ε) ≤ exp

(
−

4N2
n ρ

2
nε

2

2(βu‖Ω‖max |se(k, l)|ρn + 2Nnρnε L̄)

)
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≤ exp
(
−

Nnρnε
2

βu‖Ω‖max + ε L̄

)
≤ exp

(
−

ε2Nnρn

2βu‖Ω‖max

)
.

Notice that |X2
kl(e)|/‖Ω‖max ≤ |Ykl(e,γ0)|. Thus, for ε < χκ2

2 ‖Ω‖max,

Pr(|X2
kl(e)| ≥ ε) ≤Pr

(
|Ykl(e,γ0)| ≥

ε

‖Ω‖max

)
≤ 2 exp

(
−

6
5κ2

2 χ
2‖Ω‖max

ε2Nn

)
.

Thus, the bound of X(e) will be dominated by X1(e), and we will ignore the second term in the

bound because it is just a small order and can be absorbed into the first one.

Similar to the arguments in [147], for |e − c| ≤ m, ε < 2χm
n ,

Pr(|Ykl(e, γ̂) − Ykl(c, γ̂)| ≥ ε) ≤ 2 exp
(
−

6Nnε
2

6χ2mn/Nn + 2χε

)
≤2 exp

(
−

3(n − 1)
8χ2m

ε2Nn

)
≤ 2 exp

(
−

n
4χ2m

ε2Nn

)
.

For ε ≥ 2χm
n ,

Pr(|Ykl(e, γ̂) − Ykl(c, γ̂)| ≥ ε) ≤ 2 exp
(
−

6Nnε
2

6χ2mn/Nn + 2χε

)
≤ 2 exp

(
−

3
4χ

εNn

)
.

Also, for ε < 2βu ‖Ω‖maxm
nL̄ ,

Pr(|X1
kl(e) − X1

kl(c)| ≥ ε) ≤ exp
(
−

Nnρnε
2

βu‖Ω‖maxmn/Nn + ε L̄

)
≤ exp

(
−

n − 1
2βu‖Ω‖maxm

ε2Nnρn

)
≤ exp

(
−

n
4βu‖Ω‖maxm

ε2Nnρn

)
.

For ε ≥ 2βu ‖Ω‖maxm
nL̄ ,

Pr(|X1
kl(e) − X1

kl(c)| ≥ ε) ≤ exp
(
−

Nnρnε
2

βu‖Ω‖maxmn/Nn + ε L̄

)
≤ exp

(
−

1
3L̄

εNnρn

)
.

We will omit the bound for |X2
kl(e) − X2

kl(c)| since it’s a smaller order.
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3.7.3 Proof of Theorem 3.3

Proof. We divide the proof into three steps.

Step 1 : sample and population version comparison. We prove ∃ εn → 0, such that

P
(
max

e

����F (
O(e)

2Nnρn
,

E(e, γ̂)
2Nn

)
− F(θ(γ0)T(e), θ(γ0)S(e))

���� ≤ εn

)
→ 1, (3.12)

if ϕn →∞ and γ̂
p
−→ γ0.

Since ����F (
O(e)

2Nnρn
,

E(e, γ̂)
2Nn

)
− θ(γ0)F(T(e),S(e))

����
≤

����F (
O(e)

2Nnρn
,

E(e, γ̂)
2Nn

)
− F(θ(γ0)T̂(e), θ(γ̂)Ŝ(e))

����
+

��F(θ(γ0)T̂(e), θ(γ̂)Ŝ(e)) − θ(γ0)F(T̂(e), Ŝ(e))
��

+ θ(γ0)
��F(T̂(e), Ŝ(e)) − F(T(e),S(e))

�� ,
it is sufficient to bound these three terms uniformly. By Lipschitz continuity,����F (

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)
− θ(γ0)F

(
T̂(e), Ŝ(e)

)���� ≤ M1‖X(e)‖∞ + M2‖Y (e, γ̂)‖∞, (3.13)��F(θ(γ0)T̂(e), θ(γ̂)Ŝ(e)) − θ(γ0)F(T̂(e), Ŝ(e))
�� ≤ M2 |θ(γ̂) − θ(γ

0)|‖Ŝ(e)‖∞. (3.14)

By (3.6) and (3.9), (3.13) converges to 0 uniformly if ϕn → ∞. Since ‖Ŝ(e)‖∞ is uniformly

bounded by 1, (3.14) also converges to 0 uniformly.

���F (
T̂(e), Ŝ(e)

)
− F (T(e),S(e))

��� ≤ M1‖T̂(e) − T(e)‖∞ + M2‖Ŝ(e) − S(e)‖∞. (3.15)

Since π(c)
p
−→ π, (3.15) converges to 0 uniformly. So we prove (3.12).
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Step 2 : proof of weak consistency. We prove that there exists δn → 0, such that

Pr
(

max
{e:‖V(e)−IK ‖1≥δn}

F
(

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)
< F

(
O(c)

2Nnρn
,

E(c, γ̂)
2Nn

))
→ 1. (3.16)

By continuity property of F and Condition 3.5, there exists δn → 0, such that

θ(γ0)F(T(c),S(c)) − θ(γ0)F(T(e),S(e)) > 2εn

if ‖V(e) − IK ‖1 ≥ δn, where IK = V(c). Thus, following (3.12),

Pr

(
max

{e:‖V(e)−IK ‖1≥δn}
F

(
O(e)

2Nnρn
,

E(e, γ̂)
2Nn

)
< F

(
O(c)

2Nnρn
,

E(c, γ̂)
2Nn

) )
≥Pr

( ���� max
e:‖V(e)−IK ‖1≥δn

θ(γ0)F(T(e),S(e)) − max
e:‖V(e)−IK ‖1≥δn

F
(

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)���� ≤ εn,�����θ(γ0)F(T(c),S(c)) − F
(

O(c)
2Nnρn

,
E(c, γ̂)

2Nn

) ����� ≤ εn

)
→ 1.

(3.16) implies Pr(‖V(e) − IK ‖ < δn) → 1. Since

1
n
|e − c| =

1
n

n∑
i=1

1ci,ei =
∑

k

πk(1 − Vkk(e)) ≤
∑

k

(1 − Vkk(e)) = ‖V(e) − IK ‖1/2,

weak consistency follows.

Step 3 : proof of strong consistency.

To prove strong consistency, we need to show

Pr
(

max
{e:0<‖V(e)−IK ‖1<δn}

F
(

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)
< F

(
O(c)

2Nnρn
,

E(c, γ̂)
2Nn

))
→ 1. (3.17)

Combining (3.16) and (3.17), we have

Pr
(

max
{e:e,c}

F
(

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)
< F

(
O(c)

2Nnρn
,

E(c, γ̂)
2Nn

))
→ 1,
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which implies strong consistency.

By Lipschitz continuity and the continuity of derivative of F w.r.t. V(e) in the neighborhood of

IK , we have

F
(

O(e)
2Nnρn

,
E(e, γ̂)

2Nn

)
− F

(
O(c)

2Nnρn
,

E(c, γ̂)
2Nn

)
=θ(γ0)F(T̂(e), Ŝ(e)) − θ(γ0)F(T̂(c), Ŝ(c)) + ∆(e,c),

(3.18)

where |∆(e,c)| ≤ M3(‖X(e) − X(c)‖∞) + M4‖Y (e, γ̂) − Y (c, γ̂)‖∞), and

F(T(e),S(e)) − F(T(c),S(c)) ≤ −C‖V(e) − I ‖1 + o(‖V(e) − IK ‖1).

Since the derivative of F is continuous w.r.t. V(e) in the neighborhood of IK , there exists a δ′

such that,

F(T̂(e), Ŝ(e)) − F(T̂(c), Ŝ(c)) ≤ −(C/2)‖V(e) − I ‖1 + o(‖V(e) − IK ‖1) (3.19)

holds when ‖π(c) − π‖∞ ≤ δ′. Since π(c) → π, (3.19) holds with probability approaching 1.

Combining (3.18) and (3.19), it is easy to see strong consistency follows if we can show

Pr
(
max
{e,c}
|∆(e,c)| ≤ C‖V(e) − IK ‖1/4

)
→ 1.

Note 1
n |e − c| ≤ 1

2 ‖V(e) − IK ‖1. So for each m ≥ 1,

Pr
(

max
|e−c|=m

|∆(e,c)| > C‖V(e − IK)‖1/4
)

≤Pr
(

max
|e−c|≤m

‖X(e) − X(c)‖∞ >
Cm

4M3n

)
(≡ I1)

+ Pr
(

max
|e−c|≤m

‖Y (e, γ̂) − Y (c, γ̂)‖∞ >
Cm

4M4n

)
(≡ I2).

(3.20)
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Let ζ1 = C/4M3, if ζ1 < η, by (3.7),

I1 ≤2Km+2nm exp
(
−η2

1
C3m

n
Nnρn

)
= 2K2[K exp(log n − η2

1C3Nnρn/n)]m.

If ζ1 > η, by (3.8),

I1 ≤2Km+2nm exp
(
−η1

C4m
n

Nnρn

)
= 2K2[K exp(log n − η1C4Nnρn/n)]m.

Similar arguments hold for I2 by using (3.10) and (3.11). In all cases, since ϕn/log n→∞,

Pr
(
max
{e,c}
|∆(e,c)| > C‖V(e) − IK ‖1/4

)
=

∞∑
m=1

Pr
(

max
|e−c|=m

|∆(e,c)| > C‖V(e) − IK ‖1/4
)
→ 0.

as n→∞. The proof is completed.

3.7.4 Proof of Theorem 3.4

By scaling `γ̂(e), we have

1
Nn
`γ̂(e) = ρnF

(
O

2Nnρn
,

E
2Nn

)
+ (ρn log ρn)

∑
kl

Okl(e)
2Nnρn

+O(n−1),

where F(X,Y ) =
∑

kl Xkl log
(

Xkl

Ykl

)
, X,Y ∈ RK×K . Note that F is closely related to the likelihood

criterion used in [147]. In our case,

F(θ(γ0)RΩRT, θ(γ0)ππT ) − F(θ(γ0)RΩRT, θ(γ̂)ππT )

=θ(γ0) log
θ(γ0)

θ(γ̂)
(1T RΩRT1),

which is basically the population degree up to a constant. This fact shows that the consistency

of γ̂ is unnecessary to ensure the consistency of community detection. Thus, we can plug in any
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random fixed γ̂, which is different from our general theorem. For simplicity, just assume we use

the true value γ0 here. Observe that

F(θ(γ0)RΩRT, θ(γ0)ππT ) = θ(γ0)F(RΩRT,ππT ),

then the form of F is exactly the same as F defined in [24], which automatically satisfies all

conditions for F.

3.7.5 Proof of Theorem 3.5

This proof is adapted from [91]. First, as a direct corollary of Theorem 3.2, we have the

following estimation error bound for γ̂.

Lemma 3.12. For any constant η > 0, ∃ positive constants Cη and vη s.t., Pr(√nρn‖γ
0 − γ̂‖∞ >

η) < Cη exp(−vηn).

The following notations will be used in the proof.

• W = A′ − P and denote by wi j the (i, j)-th entry of W .

• For t > 0, let St = {x ∈ Rn : ‖x‖2 ≤ t} be the Euclidean ball of radius t and set S = S1.

The proof of Theorem 3.5 is adapted from [91], so we will skip the common part and only

clarify the modifications. The main idea is to bound

sup
x∈S
|xT (A′ − P)x|. (3.21)

The original proof consists of three steps: discretization, bounding the light pairs and bounding

the heavy pairs. Discretization is to reduce 3.21 to the problem of bounding the supremum of

xT (A′− P)y for x,y in a finite set of grid points in S. Then we divide x,y into light and heavy pairs

and bound them respectively. We will focus on the last two steps since the first step is the same as

in [91].
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A. Discretization

For fixed δn ∈ (0,1), define

T = {x = (x1, · · · , xn) ∈ S :
√

nxi/δn ∈ Z,∀i},

where Z stands for the set of integers. The following lemma is the same as Lemma B.1 in [91] and

we will skip the proof.

Lemma 3.13. S1−δn ⊂ convhull(T ). As a consequence, for all W ∈ Rn×n,

‖W ‖ ≤ (1 − δn)
−2 sup

x,y∈T
|xTWy|.

For any x,y ∈ T , we have

xT (A′ − P)y =
∑

1≤i,j≤n

xiy j(A′i j − Pi j).

We only need bound the above quantity now. We divide (xi, y j) into light pairs L = {(i, j) : |xiy j | ≤

√
ϕn/n} and heavy pairs H = {(i, j) : |xiy j | >

√
ϕn/n}. We will show that the tail for light pairs

can be bounded exponentially while heavy pairs have a heavier tail. Thus, the rate of the latter one

dominates.

B. Bounding the light pairs

Lemma 3.14. Under estimation error condition, for c > 0, there exist constants Cc, vc > 0 s.t.

P ©« sup
x,y∈T

������ ∑
(i,j)∈L(x,y)

xiy jwi j

������ ≥ c
√
ϕn

ª®¬ ≤ Cc exp
[
−

(
vc − log

(
7
δ

))
n
]
.

Proof. Define w′i j = Ai je
−zTijγ

0
−Pi j and δi j = Ai je

−zTij γ̂− Ai je
−zTijγ

0
, then wi j = w′i j +δi j , and notice
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that

Pr(
∑

wi j > 2t) ≤ Pr(
∑

w′i j > t) + Pr(
∑

δi j > t),

so we could bound two parts respectively. Also, we need to keep in mind that

∑
i< j

u2
i j ≤

∑
i< j

2(x2
i y

2
j + x2

j y
2
i ) ≤ 2

∑
1≤i,j≤n

x2
i y

2
j = 2‖x‖22 ‖y‖

2
2 ≤ 2.

Step1 : Bound w′i j .

Since

∑
i< j

E[(w′i jui j)
2 |zi j] =

∑
i< j

u2
i jλi je

−2zTijγ
0
=

∑
i< j

u2
i j Pi je

−zTijγ
0

≤ρnβ
−1
l ‖Ω‖max

∑
i< j

u2
i j ≤ 2β−1

l ‖Ω‖maxρn,

define M = 2β−1
l ‖Ω‖maxρn, L = 2L̄

√
ϕn(nβl)

−1 and x = c
√
ϕn, we could applying Lemma 3.8 to

ui jw
′
i j to get

Pr

(∑
i< j

w′i jui j ≥ c
√
ϕn

)
≤ exp

(
−

c2ϕn

4cL̄ϕn(nβl)
−1 + 4ρnβ

−1
l ‖Ω‖max

)
= exp

(
−

c2βln
4cL̄ + 4‖Ω‖max

)
Step2 : Bound δi j .

We consider two cases ‖γ0−γ̂‖∞ > η/
√

nρn and ‖γ0−γ̂‖∞ ≤ η/
√

nρn separately. Conditioned

on the second case, by choosing η < (pα)−1, we have

ui jδi j =ui j[Ai je
−zTijγ

0
(ezTij (γ

0−γ̂)
− 1)] < 2ui j[Ai je

−zTijγ
0
zT

i j(γ
0 − γ̂)] < 2αηpui j Ai j/(βl

√
nρn)

<2ui j Ai j/(βl
√

nρn)

The first inequality is due to |et−1| < 2|t | when |t | < 1. Define M = 2βu‖Ω‖maxρn ≥
∑

i< j u2
i jλi j =
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var(
∑

i< j ui j Ai j |Z), L = 2L̄
√
ϕn/n and x = c

√
ϕnnρn, by Lemma 3.8,

Pr

(∑
i< j

ui j(Ai j − Pi j) > c
√
ϕnnρn

)
≤ exp

(
−

c2ϕnnρn

4‖Ω‖maxβuρn + 4c
√

nρnϕn L̄/n

)
= exp

(
−

c2n
√

nρn

4‖Ω‖maxβu/
√

nρn + 4cL̄

)
≤ exp

(
−

c2n
√

nρn

4‖Ω‖maxβu + 4cL̄

)
Because

∑
i< j

ui j Pi j ≤ ρn‖Ω‖maxβu

∑
i< j

ui j ≤
√

2Nnρn‖Ω‖maxβu ≤ nρn‖Ω‖maxβu,

we have

exp

(
−

c2n
√

nρn

4‖Ω‖maxβu + 4cL̄

)
≥Pr

(∑
i< j

ui j(Ai j − Pi j) > c
√
ϕnnρn

)
≥Pr

(∑
i< j

ui j Ai j > (c + ‖Ω‖maxβu)ϕn

)
,

which is equivalent to Pr(
∑

i< j ui j Ai j > cϕn) ≤ exp(−Ccn
√
ϕn), where Cc is constant.

Thus, for η < (pα)−1,

Pr

(∑
i< j

δi jui j > c
√
ϕn

)
=Pr

(∑
i< j

δi jui j > c
√
ϕn | ‖γ

0 − γ̂‖∞ ≤
η
√

nρn

)
Pr

(
‖γ0 − γ̂‖∞ ≤

η
√

nρn

)
+ Pr

(∑
i< j

δi jui j > c
√
ϕn | ‖γ

0 − γ̂‖∞ >
η
√

nρn

)
Pr

(
‖γ0 − γ̂‖∞ >

η
√

nρn

)
≤Pr

(∑
i< j

δi jui j > c
√
ϕn | ‖γ

0 − γ̂‖∞ ≤
η
√

nρn

)
+ Cη exp(−vηn)

≤Pr

(∑
i j

ui j Ai j > cβlϕn/2

)
+ Cη exp(−vηn)

≤ exp(−Ccn
√

nρn) + Cη exp(−vηn)
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≤Cc,η exp(−vc,ηn),

where Cc,η and vc,η are two constants determined by c and η.

By a standard volume argument we have |T | ≤ en log(7/δ) (see Claim 2.9 of [58]), so the desired

result follows from the union bound.

C. Bounding the heavy pairs

By the same argument as appendix B.3 of [91], to bound supx,y∈T |
∑
(i,j)∈H(x,y) xiy jwi j |, it suf-

fices to show ∑
(i,j)∈H

xiy j A′i j = O(
√
ϕn)

with high probability. Since A′i j = Ai je
−zTijγ

0
− (Ai je

−zTijγ
0
− Ai je

−zTij γ̂) ≤ Ai j β
−1
l (1+ o(1)), we only

need to show ∑
(i,j)∈H

xiy j Ai j = O(
√
ϕn)

with high probability. Define A′′i j = max(Ai j,1), then A′′i j ∼ B(1,1 − e−λi j ) and A′′i j = Ai j(1 − (1 −

A−1
i j )+) = Ai j(1 + o(1)), so it’s sufficient to show

∑
(i,j)∈H

xiy j A′′i j = O(
√
ϕn).

Because
∑

j(1 − e−λi j ) = O(
√
ϕn), so the problem is exactly equivalent to [91]. We can directly get

the following lemma.

Lemma 3.15. (Heavy pair bound). For any given r > 0, there exists a constant Cr such that

sup
x,y∈T
|

∑
(i,j)∈H

xiy jwi j | ≤ Cr
√
ϕn

with probability at least 1 − 2n−r .
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Conclusion

In summary, we propose two extensions of vanilla SBM. One is by adding more layers with

the same community membership. By studying the asymptotic distribution of eigenvalues and

eigenvectors, we found the explicit formula for the optimal weight, and monotonic relation

between eigenvalue gap and SNR. Based on above findings, we develop two algorithms to

minimize spectral clustering error, which both outperform other state-of-art models. The other

modify the SBM by incorporating pairwise covariates into the edge generation procedure to

create more flexibility for the original model. The consistency property of MLE is proved and an

efficient algorithm SCWA is proposed specifically to estimate the model. Our algorithms show

potentials for involving pairwise covariates in both simulations and real data.

Here we list a few possible future research directions following this thesis.

• In Chapter 2, we only consider assortative matrices, which automatically results in positive

weights. If we take disassortative matrices into account, one natural idea is to use negative

weights. However, the behavior of eigenvalues and eigenvectors would change due to the

negative weights, and that would be an interesting topic to deal with.

• We focus our theorem on balanced MPPM, which is kind of limited in practice. We may

consider whether the eigenvalue gap still works under more general settings, say MSBM or

unbalanced model, or more complicated quantities should come into the picture. It also

remains to be a question whether there is an explicit formula under more general settings.

• In Chapter 3, we discussed the covariates for a fixed dimension p, it would be natural to ask
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the theoretical property when p grows with n, just like the high-dimensional regression.

• In our assumption, we require Z to be independent since some concentration inequalities

may not hold under dependent situations. If we construct pairwise covariates from nodal

covariates, the independent assumption will not hold. In this case, whether we could still

use PCABM would be an interesting research topic.

74



References

[1] E. Abbe, A. S. Bandeira, and G. Hall, “Exact recovery in the stochastic block model,” IEEE
Transactions on Information Theory, vol. 62, no. 1, pp. 471–487, 2015.

[2] E. Abbe and C. Sandon, “Achieving the ks threshold in the general stochastic block model
with linearized acyclic belief propagation,” in Advances in Neural Information Processing
Systems, 2016, pp. 1334–1342.

[3] ——, “Community detection in general stochastic block models: Fundamental limits and
efficient algorithms for recovery,” in 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, IEEE, 2015, pp. 670–688.

[4] ——, “Proof of the achievability conjectures for the general stochastic block model,” Com-
munications on Pure and Applied Mathematics, vol. 71, no. 7, pp. 1334–1406, 2018.

[5] ——, “Recovering communities in the general stochastic block model without knowing the
parameters,” in Advances in neural information processing systems, 2015, pp. 676–684.

[6] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 us election: Divided
they blog,” in Proceedings of the 3rd international workshop on Link discovery, ACM,
2005, pp. 36–43.

[7] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, “Mixed membership analysis
of high-throughput interaction studies: Relational data,” arXiv preprint arXiv:0706.0294,
2007.

[8] ——, “Mixed membership stochastic blockmodels,” Journal of machine learning research,
vol. 9, no. Sep, pp. 1981–2014, 2008.

[9] E. Airoldi, D. Blei, E. Xing, and S. Fienberg, “A latent mixed membership model for
relational data,” in Proceedings of the 3rd international workshop on Link discovery, 2005,
pp. 82–89.

[10] R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of
modern physics, vol. 74, no. 1, p. 47, 2002.

[11] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of euclidean sum-of-
squares clustering,” Machine learning, vol. 75, no. 2, pp. 245–248, 2009.

75



[12] A. A. Amini, A. Chen, P. J. Bickel, E. Levina, et al., “Pseudo-likelihood methods for
community detection in large sparse networks,” The Annals of Statistics, vol. 41, no. 4,
pp. 2097–2122, 2013.

[13] A. A. Amini, E. Levina, et al., “On semidefinite relaxations for the block model,” The
Annals of Statistics, vol. 46, no. 1, pp. 149–179, 2018.

[14] P. Arabie, S. A. Boorman, and P. R. Levitt, “Constructing blockmodels: How and why,”
Journal of mathematical psychology, vol. 17, no. 1, pp. 21–63, 1978.

[15] K. Avrachenkov, L. Cottatellucci, and A. Kadavankandy, “Spectral properties of random
matrices for stochastic block model,” in 2015 13th International Symposium on Model-
ing and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), IEEE, 2015,
pp. 537–544.

[16] S. Balakrishnan, M. Xu, A. Krishnamurthy, and A. Singh, “Noise thresholds for spectral
clustering,” in Advances in Neural Information Processing Systems, 2011, pp. 954–962.

[17] J. Banks, C. Moore, J. Neeman, and P. Netrapalli, “Information-theoretic thresholds for
community detection in sparse networks,” in Conference on Learning Theory, 2016, pp. 383–
416.

[18] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Al Wallace, “Discovering hidden
groups in communication networks,” in International Conference on Intelligence and Se-
curity Informatics, Springer, 2004, pp. 378–389.

[19] B. BBall and M. EJNewman, “Anefficientandprincipled methodfordetectingcommunitiesin-
networks,” Physical ReviewE, vol. 84, p. 036 103, 2011.

[20] J. E. Beasley, “Heuristic algorithms for the unconstrained binary quadratic programming
problem,” London, UK: Management School, Imperial College, vol. 4, 1998.

[21] F. Benaych-Georges, C. Bordenave, and A. Knowles, “Spectral radii of sparse random
matrices,” arXiv preprint arXiv:1704.02945, 2017.

[22] F. Benaych-Georges, C. Bordenave, A. Knowles, et al., “Largest eigenvalues of sparse
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