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ABSTRACT
Line mixing effects have been calculated in various parallel and perpendicular bands of self-broadened PH3 lines and compared with recent
experimental data. The theoretical approach is an extension to symmetric tops with high inversion barrier of the formalism previously devel-
oped for NH3 [Q. Ma and C. Boulet, J. Chem. Phys. 144, 224303 (2016)]. The model takes into account the non-diagonality of the scattering
operator within the line space as well as, in a correct way, the double degeneracy of the j, k levels when k ≠ 0. Transitions between such levels
should be considered as doublets whose components may be coupled by the line mixing process. It has been shown that, at low pressure,
the inversion of the experimental data will strongly depend on the splitting between the two components of a doublet. When it is significant,
one can measure independently both the width of one component and the intra-doublet coupling matrix element. Otherwise, one can only
measure the sum of these two elements. Comparisons with measurements show that the present formalism leads to accurate predictions of
the experimental line shapes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008535., s

I. INTRODUCTION

PH3 is a molecule of astrophysical interest since it has been
observed in the atmospheres of Jupiter and Saturn1,2 (mainly com-
posed of H2 and He). Accurate knowledge of the corresponding line
shape parameters is important for remote sensing of these atmo-
spheres, and PH3 has been the subject of a large number of exper-
imental investigations. In recent studies,3,4 mainly devoted to the
determination of positions and intensities of PH3 transitions in the
Pentad near 4 μm–5 μm, self-broadened widths, shifts, and line
mixing parameters were also measured. Ten years earlier, similar
measurements were made for the collisional broadenings in the ν2
and ν4 bands.5 All these data give us the opportunity to apply the
refined formalism developed for NH3

6–9 to the calculation of these
parameters for PH3.

From the theoretical point of view, purely quantum approaches
are impossible for such molecular systems. Therefore, most of the

previous calculations of the pressure broadening parameters for
such symmetric tops5 have been performed in a semi-classical frame
derived from the Anderson–Tsao–Curnutte (ATC)10 formalism,
including some improvements proposed by Robert and Bonamy
(RB in the following),11 as well as, more recently, “exact” trajecto-
ries and a more accurate description of the intermolecular poten-
tial12 (an overview of similar studies can be found in Ref. 13).
PH3 has a pyramidal shape (point group C3v) quite similar to that
of NH3, but its inversion barrier is considerably higher, leading,
therefore, to a negligible inversion splitting. As a consequence, the
rotational j, k levels with k ≠ 0 are not necessarily split in two
distinct sub-levels. As outlined by Cherkasov,14,15 most of the pre-
vious studies devoted to pressure broadening of such symmetric
tops have not correctly taken into account the consequences of that
degeneracy.

We will show that a more correct treatment may be devel-
oped, thanks to some adjustments of our previous studies.6–9 In
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Sec. II, we outline some basic elements of the spectroscopy of PH3.
In Sec. III, we recall the principles of our formalism and their adjust-
ments. Results are presented and discussed in Sec. IV. Section V
summarizes the concluding remarks and perspectives.

II. BACKGROUND
A. Radiative selection rules

States are first defined by their symmetry species Γ in the C3v
group. Let us define by lt the vibrational angular momentum asso-
ciated with a given degenerate vibration t and by K, the component
of the rotational angular momentum along the principal symmetry
axis. The K − ∑t lt = 3p levels (with p = ±1, ±2, . . .) split into A1
and A2 components, while the levels with K − ∑t lt ≠ 3p give rise
to a doubly degenerate wave functions pair of E symmetry.16,17 As
recalled in Ref. 16, the radiative transitions of symmetric tops with
inversion symmetry obey the following rules (with k = ∣K∣):
Parallel band: ∆k = 0; ∆j = 0, ±1;
Perpendicular band: ∆k = ±1; ∆j = 0, ±1;
For the symmetry species: A1 → A2, A2 → A1, and E1 → E2 or
E2 → E1.

B. Basis sets of the symmetric tops
In most of the studies of the energy levels of PH3, Wang-type

wave functions and a new definition of the symmetry species A±
introduced in Ref. 17 allow an easier diagonalization of the inter-
nal Hamiltonian. The correspondence between these two symmetry
definitions is recalled in the Appendix. As is well known, the wave
functions of real symmetric tops also have to be eigenfunctions of
the parity operator.14,19 As an example, consider the ground vibra-
tional level or any non-degenerate vibrational level. Parity adapted
wave functions are defined by

∣ jkmε⟩ = Nε[∣ jkm⟩ + ε∣ j − km⟩], (1)

where k = 0, 1, 2, . . ., j. For k = 0, Nε = 1; ε = 0. For k ≠ 0, Nε

= 1/
√

2. States are also defined by their symmetry species Γ (see the
Appendix). When k is a multiple of three (k = 3p, with p = 1, 2, 3,
. . .), Γ = A+ or A−. While for k ≠ 3p, Γ = E. Therefore, by using the
definitions of Refs. 16–19, one may rewrite Eq. (1) as follows:

∣ jkmA±⟩ = Nε[∣ jkm⟩ ± (−1)k
∣ j − km⟩]. (2)

For k = 3p, A-type splitting (also defined as A1/A2 splitting)
of the two A± levels is observed mainly for k = 3 (but also in some
cases for k = 6 and 9), which is caused by high order intra-molecular
interactions. For the degenerate representation E, there is no split-
ting, and the degeneracy is not removed. The only important point
is that one has to use basis wave functions having the symmetry of
the C3v group. Consequently, Eq. (2) can be generalized to the two
E± states.

We now consider a degenerate vibrational level (for instance,
ν±1

3 , i.e., v3 = 1 and l3 = ±1). By a similar approach (see the
Appendix), for k + l3 = 3p, the basis wave functions may be defined
by

∣v3l3jkmA±⟩ = Nε[∣v3l3jkm⟩ ± (−1)k+l3 ∣v3 − l3j − km⟩], (3)

and similar relations for the two degenerate E states (k + l3 ≠ 3p).
Of course, these wave functions are “zero order” ones since,

contrarily to the calculation of accurate positions and intensities,
it is not necessary for us to take into account the numerous intra-
molecular couplings that exist between the PH3 states. As a conse-
quence, we cannot perform calculations of the line shape parameters
of “forbidden” ∆k = 3p radiative transitions.

C. Preliminary qualitative analysis
Consider, in a parallel band, a resolved doublet where ki = kf = 3

and jf = ji + 1 [a QR(ji, 3) doublet]. When the pressure increases, the
two components of the doublet overlap leading, therefore, to a pos-
sible line mixing effect, if a significant W relaxation matrix element
couples the two transitions.

Now, consider the case of an unresolved QR(j, k) line with
k ≠ 3p. People calculating the intensity of such a line use the follow-
ing procedure to take into account the k degeneracy: they calculate
the intensity of the E1 → E2 transition (for instance) and then multi-
ply the result by two.16 Such an approach, justified in the calculation
of the intensity, is not at all valid when considering the collisional
line shape. As shown by Cherkasov,14,15 one has to think within the
Liouville line space: if the two degenerate transitions E1 → E2 and
E2 → E1 are collisionally coupled by using an off-diagonal element
of the W matrix, the resulting line profile may be significantly altered
by the line mixing of the two degenerate transitions.

III. THEORY
The formalism developed in Ref. 6 (noted as Paper I in the

following) for parallel bands and in Ref. 9 (noted as Paper II) for
perpendicular bands of NH3 can be applied to the PH3 molecule,
just by changing the definition of the parity index ε, according to
Eqs. (2) and (3).

A. Potential model
In the present work, the interaction between two PH3

molecules [see Eq. (4) of Paper I6] has been represented by the sum
of the dipole–dipole (L1 = L2 = 1; K1 = K2 = 0), dipole–quadrupole
(L1 = 1; L2 = 2; K1 = K2 = 0), quadrupole–dipole (L1 = 2; L2 = 1; K1
= K2 = 0), and quadrupole–quadrupole (L1 = L2 = 2; K1 = K2 = 0)
electrostatic components. All the corresponding parameters are
given in Table I. We have used the parameters given in the study
of Ref. 5, based on the RB formalism (i.e., ignoring the line cou-
pling process). Note that we have neglected the weak vibrational
dependence of the average vibrational value of all these parame-
ters (⟨ν|X|ν⟩). With respect to the isotropic part, driving the exact
trajectory calculations, it is represented by a Lennard-Jones model
whose parameters ε and σ have been determined from the viscosity
data.20

TABLE I. Molecular parameters used in the calculations (from Ref. 5).

μ (D) θ (DÅ) ε (K) σ (Å) Molar mass (gr)

0.574 2.6 251.5 3.981 34
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B. Ro-vibrational energy levels
The ro-vibrational energy levels and the transition wave num-

bers have been obtained from the HITRAN 2012 database21 and
from data bases kindly provided by I. Kleiner.4

C. Construction of the line subspaces
The size of the whole line space is determined by a cutoff defin-

ing the upper limits of the initial and final quantum numbers for
the lines taken into account. In practice, in order to reduce an edge
effect on the lines of interest, the cutoff has to be high enough. In
the present study, we have included in the calculation all the lines
contained in the HITRAN 2012 database. Meanwhile, based on our
experiences in studying line mixing effects, we know that inter-
branch coupling is much weaker than intra-branch coupling. There-
fore, we have assumed that lines belonging to different branches
are not coupled. In addition, all the components of the electrostatic
potential obey the collisional selection rule ∆k = 0, which coincides
exactly with the radiative dipolar selection rule for parallel bands.
Consequently, the whole line space can be divided into uncoupled
subspaces, each corresponding to a given value of k and a given
branch.

For perpendicular bands where the radiative and collisional
selection rules differ, the construction of the sub-blocks is more
complex and detailed in Paper II.9

D. A brief summary of the formalism
The matrix element of the relaxation operator can be expressed

in terms of the average of the Liouville scattering operator over the
internal degrees of the bath molecules, expressed via a second order
cumulant expansion [see Eq. (3) of Paper I6],

Wf ′i′fi =
nbv̄
2πc ∫

∞

rc,min

drc2πb(
db
drc
)[δf ′f δi′i − ⟨ f ′i′∣e−S2(rc)∣fi⟩]. (4)

We neglect here the vibrational dependence of the isotropic
potential so that S1 is zero and does not appear in Eq. (4); nb is the
number density of the perturber, v̄ is the average velocity, b is the
impact parameter, and rc is the distance of closest approach. Note
that calculations have been restricted to the mean velocity without
performing an average over the kinetic energy.

The general expressions of the various contributions to S2,
S2,outer,i, S2,outer,f, and S2,middle are given in Papers I6 and II.9 As is now
well known, the non-diagonality of S2 within the line space solely
results from the S2,middle term. Its non-diagonal part, coupling tran-
sitions i→ f and i′ → f′, is given by Eq. (11) of Paper I.6 As detailed
in Papers I6 and II,9 the magnitude of the off-diagonal elements of
S2,middle depends on three factors:

● The first one is a coupling strength factor defined by [see Eq.
(13) of Paper I6]

(−1)L1

√

(2ji + 1)(2j′i + 1)(2jf + 1)(2j′f + 1)W(j′f j′i jf ji, 1L1)

×Dp
(ε′f j′f k′f εf jf kf ; L10)Dp

(εijikiε′i j
′

i k
′

i ; L10), (5)

where the collisional transition matrix elements Dp are
defined by Eq. (A3) of Paper I.6

● The two others are the arguments of the two dimensional
(2D) potential correlation functions FL100L200 (defined in
Appendix C of Paper I6): the frequency detuning between
the two coupled lines, ωf ′i′ −ωfi, and the energy gap,

ωi′ i+ωf ′ f

2
+ ωi′2i2 , which takes into account the more or less resonant
efficiency of the corresponding virtual transition. As shown
in Paper I6 (see Fig. 3), beyond its central region, the magni-
tude of FL100L200 decreases very quickly as its two arguments
increase. In other words, the smaller these two gaps are, the
stronger is the line coupling.

IV. RESULTS AND DISCUSSION
For parallel bands, calculation of the relaxation matrix W has

been performed for the ν2 band, while for perpendicular ones, we
have considered the ν3 band. In the NH3 case, we have demonstrated
a very important vibrational dependence of the W matrix.8 It was a
consequence of the very strong vibrational dependence of the inver-
sion splitting, which may vary from about 0.8 cm−1 in the vibrational
ground state up to 284 cm−1 in the ν2 = 2 state. As a consequence, the
various arguments driving the amplitude of the various correlation
functions (1-D: ωi′i + ωi′2i2 or ωf ′f + ωi′2i2 ; 2-D: ωf ′i′ − ωfi and

ωi′ i+ωf ′ f

2
+ ωi′2i2 ) strongly vary when going from a given band to another one.
This is not the case for the PH3 bands under consideration: The A-
splitting remains smaller than 0.1 cm−1 in any case and is zero for
E–E transitions. Moreover, the vibrational dependence of the rota-
tional constants is also too small to induce any significant vibrational
effect. Therefore, the W matrix calculated for the ν2 band is also valid
for the other parallel bands, while that calculated for the ν3 band can
be used for the other perpendicular bands. Note that this explains
why the widths observed in the ν2 and ν1 bands agree within 2%–
4%, as shown in Table 5 of Ref. 4. However, as will be shown later
on, if the W matrix elements are independent of vibration, calcula-
tion of the spectral profile will primarily depend on the frequency
detuning.

FIG. 1. Overestimation of calculated diagonal elements of W [i.e., 100 × ([Wno LC
−Wwith LC]/Wwith LC)] for QR(j, k) lines in the ν2 band (LC means line coupling).
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TABLE II. Some examples of the overestimation of the diagonal W ll (in 10−3 cm–1 atm–1) when compared to the experimental
widths.

Transition ν1 band expt. Ref. 4 ν2 band expt. Ref. 5 γl without LC γl with LC

QR(2,1) 110 110.3 125.2 122.7
QR(7,5) 105.2 95.5 140 131.3
QR(8,7) . . . 97.8 146.8 135.4
QR(9,4) 102.2 101.4 122.7 115
QR(9,9) . . . 93.7 151.1 134.8
QR(10,7) 104.7 96.9 135.1 124.4
QR(12,9) 88.2 92.3 134 120.9

Transition ν3 band expt. Ref. 4 ν4 band expt. Ref. 5 γl without LC γl with LC

PP(7,4) 107.1 106.3 133.5 127.6
PP(8,5) 106 107.3 136 129

A. Overestimation of the W diagonal elements
without line coupling

As will be shown later on, they do not necessarily correspond
to the observed line widths, as opposed to the isolated line approxi-
mation, which neglects the non-diagonality of S2 (no line coupling).
This is, for instance, the case of the RB formalism. As it appears
from Fig. 1 (where LC means line coupling), and in agreement
with our previous studies, taking into account that non-diagonality
slightly reduces the diagonal elements, W ll ≡ γl (where l is a short-
hand notation for the set of quantum numbers of line l), which
remains, however, significantly overestimated when compared to the
experimental widths as it appears from Table II.

B. Calculated relaxation matrix
The off-diagonality of S2,middle reduces the diagonal elements

and at the same time induces the off-diagonality of the W matrix.
As expected, a given line is mainly coupled to its nearest neighbors
as it appears from Table III and Fig. 2. As expected too, the intra-
doublet elements have the largest amplitudes. This is a consequence

of the very small frequency detuning between the two components
of a doublet (when a significant A-splitting exists) and which falls to
zero for E→ E transitions, leading, in every case, to large magnitudes
of the 2D correlation functions.

C. Calculation of the spectral line shape
This subsection is devoted to comparison between measured

spectra and predictions of the present model and justifies the lim-
itation of line mixing to intra-doublet coupling. As is well known,
the purely collisional spectral profile, after eliminating Doppler as
well as speed dependent effects and instrumental distortions, is given
by22

F(ω) =
1
π

Im∑
n,l

dl⟨l∣
1

ω − L0 − iW
∣n⟩dnρn. (6)

For an optical transition n, dn is the dipole reduced ele-
ment, ρn is its relative population, and ωn is its frequency. L0 is
diagonal and contains all these frequencies, and ω is the current
frequency.

TABLE III. W matrix elements (in 10−3 cm–1 atm–1) coupling a given line to its closest neighbors (recall that the collisional selection rule is Δk = 0, so that the k quantum
number of the neighbor is not specified).

QQ(4, 3, A−) Neighbors QQ(j, symmetry) 3, A− 3, A+ 4, A− 4, A+ 5, A− 5, A+ 6, A− 6, A+ 7, A− 7, A+
W matrix element −7.68 −7.65 132.8 −28.5 −8.6 −9.8 −4.9 −6 −3.3 −3.3

QQ(7, 3, A+) Neighbors QQ(j, symmetry) 5, A− 5, A+ 6, A− 6, A+ 7, A− 7, A+ 8, A− 8, A+ 9, A− 9, A+
W matrix element −6.3 −5.2 −12.7 −9.1 −16.3 120.9 −9. −13.7 −5 −6

QP(7, 6, A+) Neighbors QP(j, symmetry) . . . 7, A− 7, A+ 8, A− 8, A+ 9, A− 9, A+ 10, A− 10, A+ . . .
W matrix element . . . −43.7 141.6 −7.3 −6.9 −3.4 −3.5 −1.7 −1.7 . . .

QP(8, 6, A+) Neighbors QP(j, symmetry) . . . 7, A− 7, A+ 8, A− 8, A+ 9, A− 9, A+ 10, A− 10, A+ . . .
W matrix element . . . −7.3 −6.9 −35.4 137.5 −7.8 −7.4 −3.7 −3.8 . . .

QR(9, 9, A+) Neighbors QR(j, symmetry) . . . 9, A− 9, A+ 10, A− 10, A+ 11, A− 11, A+ 12, A− 12, A+ . . .
W matrix element . . . −54.1 134.8 −10.6 −10.9 −4.3 −4.3 −1.6 −1.6 . . .
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FIG. 2. Absolute values of the off-diagonal relaxation matrix elements |Wl,n| (in
10−3 cm−1 atm−1) for QR(j, k) lines in the k = 6 subspace. It contains 28 lines
ordered as QR(6, 6, A+), QR(6, 6, A−), QR(7, 6, A+), QR(7, 6, A−), . . ., QR(19, 6,
A+), QR(19, 6, A−). With this choice, the intra-doublet couplings are located at the
super-diagonal elements (i.e., Wl,l+1 and Wl+1,l) (recall that l and n are short-hand
notations for the set of quantum numbers of the lines).

As will be now demonstrated, the inversion of the ω − L0 − iW
matrix will mainly depend on both the intra-doublet frequency
detuning and the pressure range of the experiments. In the mea-
surements of Devi et al.,4 the pressure varies between 2.048 Torr and
50.11 Torr, while it varies from 17 Torr to 50 Torr in the experiments
of Salem et al.5 Two situations must be distinguished:

(i) A significant A-splitting exists between the two components
of the A–A doublet under consideration.

(ii) There is no splitting, which corresponds to the degenerate
E–E doublets (and also when the A-splitting is negligible for
A–A doublets).

Before considering these two cases, let us show that the inter-
doublet couplings may be neglected in the ranges of pressure of the
available experiments. As it appears from the two examples given in
Table IV, a given doublet is always relatively well isolated from the
other ones.

Therefore, if we forget, in a first step, the intra-doublet cou-
pling, line mixing between the different doublets can be treated

TABLE V. Experimental and theoretical parameters for resolved doublets (in
10−3 cm–1 atm–1).

Doublet γexpt. Ref. 4 γcalc. ξexpt. Ref. 4 ξCalc.

ν1 QP(14, 3) 100.4 79.3 −7.4 −9.6
2ν0

4 QQ(4, 3) 128.8 132.5 −25.8 −28.5
2ν2

4 PP(10, 9) 138.5 133 −46.9 −49.3
2ν2

4 PP(11, 9) 131.1 130 −39.5 −42
2ν2

4 PP(13, 9) 123.6 119 −29.1 −35.5
2ν2

4 PP(7, 6) 137.2 136.5 −36.2 −39.8
ν3 RP(11, 3) 108.9 107.3 −7.1 −12.9
ν3 PP(4, 3) 131.9 131.6 −26 −24.4
ν3 PP(5, 3) 123.5 127.5 −16.9 −17.5
ν3 PP(6, 3) 120.5 124.8 −12.2 −13.7

within the first order Rozenkranz approximation.22 For a given line,

Fn(ω) =
1
π
γn + Yn(ω − ωn)

γ2
n + (ω − ωn)

2 , (7a)

Yn = 2∑
′

l≠n
dl

dn
×

Wln

ωn − ωl
. (7b)

The prime in Eq. (7b) indicates that we exclude the intra-
doublet contributions. The order of magnitude of the Yn parameters
can be estimated from our calculations. One obtains, for instance,
Yn ≈ −0.2 × 10−2 atm–1 for QP(14, 3) and Yn ≈ 0.8 × 10−2 atm–1 for
QQ(4, 3), since the QQ lines are more closely spaced. From Eq. (7a),
the ratio of the dispersion to the Lorentzian component is given
by |Yn(ω − ωn)|/γn|, which is equal for the worst above-mentioned
case to about 0.07 × |ω − ωn|. In other words, the dispersive com-
ponent will be of the order of 1% of the Lorentzian for detuning
around 0.14 cm−1, i.e., at least 17 times the line width, well outside
the spectral range occupied by the line (recall that, at 50.11 Torr,
γn ≅ 8 × 10−3 cm–1). Then, in the following, we will only consider
the intra-doublet coupling.

1. First case: a significant A-splitting exists between the two
components of a doublet.

In the following, the two components of the doublet are sim-
ply denoted by |1⟩ and |2⟩. Meanwhile, the diagonal elements of
W are γ (=⟨1|W|1⟩ = ⟨2|W|2⟩), and the off-diagonal elements are ξ
(=⟨1|W|2⟩ = ⟨2|W|1⟩). The frequency detuning isω2 −ω1 = 2Δω > 0.
A doublet belongs to that category of resolved doublet if 2Δω ≥ γ in
all the pressure ranges. As is known from the work of Ben Reuven,23

the inversion of Eq. (6) in the 2 × 2 line space can be performed

TABLE IV. Average distance between adjacent doublets (recall that, at 50.11 Torr, the width of each component is less than
10 × 10−3 cm–1).

QQ(4, 3) ν2 band QQ(3, 3) QQ(4, 3) QQ(5, 3) QQ(6, 3) QQ(7, 3)
(ω2 − ω1) cm–1 +1.402 . . . −1.7 −3.694 −5.935
QP(14, 3) ν2 band QP(12, 3) QP(13, 3) QP(14, 3) QP(15, 3) QP(16, 3)
(ω2 − ω1) cm–1 23.69 11.885 . . . −11.934 −23.949
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TABLE VI. Comparison of the observed widths with the present calculations (in 10−3 cm–1 atm–1).

Transition ν1 band expt. Ref. 4 ν2 band expt. Ref. 5 γ ξ γ + ξ

QR(2, 0) 110.5 112.1 112 . . . 112
QR(2, 1) 110 110.3 122.7 −8.3 114.4
QR(7, 0) 108.5 110.2 103.6 . . . 110.2
QR(7, 1) 105.7 105.8 107.1 −3.2 103.9
QR(7, 2) 107.3 103.8 113.7 −9.1 104.6
QR(7, 5) 105.2 95.5 131.3 −28.1 103.2
QR(8, 7) . . . 97.8 135.4 −40.1 95.3
QR(9, 4) 102.2 101.4 115 −17.7 97.3
QR(9, 9) . . . 93.7 134.8 −54.1 80.7
QR(10, 2) 100.9 100.4 95.4 −7.1 88.3
QR(10, 7) 104.7 96.9 124.4 −32 92.4
QR(12, 2) 96.5 94 79.1 −5.9 73.2
QR(12, 9) 88.2 92.3 120.9 −38.9 82

Transition ν3 band expt. Ref. 4 ν4 band expt. Ref. 5 γ ξ γ + ξ

PP(7, 4) 107.1 106.3 127.6 −18.8 108.8
PP(8, 5) 106 107.3 129 −23.2 105.8

analytically. Assuming equal intensities for the two components and
setting the origin of the current frequency ω at the mid-point of the
spacing between the two components leads to

F(ω) =
2
π
(γ + ξ)ω2 + (γ − ξ)(Δω2 + γ2

− ξ2
)

(ω2 − Δω2 + ξ2 − γ2)
2 + 4γ2ω2

. (8)

Of course, in the weak overlapping regime, Eq. (8) can be
approximated by

F(ω) =
1
π
[
γ + Y1(ω − ω1)

γ2 + (ω − ω1)
2 +

γ + Y2(ω − ω2)

γ2 + (ω − ω2)
2 ], (9a)

with Y2 = −Y1 =
ξ
Δω

. (9b)

FIG. 3. Diagonal element γ and intra-doublet coupling ξ for some QR(j, k) doublets.

In other words, for such a doublet, it will be possible through a
multi-spectrum fit to measure both γ and ξ independently. Table V
gives the comparison of the measurements of Ref. 4 with our the-
oretical predictions. Most of the theoretical results agree acceptably
well with the experimental data.

2. Second case: there is no splitting between the two components
of a doublet.

When there is a significant coupling of the two components of
a doublet (ξ ≠ 0) but without splitting (Δω = 0), setting Δω → 0 in

FIG. 4. The coupling strength factor [cf. Eq. (5)] associated with the intra-doublet
coupling for some QR(j, k) doublets.
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FIG. 5. Reduction in the line widths due
to line mixing for degenerate doublets.
Comparison of the HITRAN 2012 data
with the theoretical predictions of γ + ξ.

Eq. (8) leads to the following profile for the degenerate line:

F(ω) =
2
π

γ + ξ
ω2 + (γ + ξ)2 . (10)

Hence, due to line mixing, the two components of such a degen-
erate doublet merge into a single Lorentzian line whose half-width
equals to γexpt. = γ + ξ, the sum of the width of one of the com-
ponent and of the coupling element. In other words, in that case,
it is not possible to independently measure γ and ξ. The only
parameter that can be obtained from any treatment of the experi-
mental spectra is the sum of γ + ξ. Since ξ is negative, one begins
to understand why the observed values as given in Table II were
systematically smaller than γ. We present in Table VI a compari-
son between our calculated values of γ + ξ with the observed line
widths.

As can be seen, the agreement between theory and experi-
ment in now good with a few exceptions for the highest j val-
ues. This was not unexpected: when the rotational quantum num-
bers of the active molecule differ significantly from those of the
most populated levels of the perturbers (here, k2,max = 0; j2,max
= 4 at 296 K), most of the virtual transitions in the various S2
components become less and less resonant. The magnitudes of
the 1D and 2D correlation functions decrease quickly since their
arguments increase. It is known that, under such conditions, it is
not possible to limit the anisotropic potential to its longer range
electrostatic part, which has to be completed by shorter range
components.

The intra-doublet coupling reduces the observed widths by a
very important amount, up to 40%, depending strongly on j, k val-
ues. Figures 3–5 give an illustration of the j, k dependences of γ, ξ,
and γ + ξ, as well as a comparison with the experimental data from
the HITRAN 2012 database.21 For QR doublets, Fig. 3 gives γ and ξ
as functions of k for three values of j. As may be seen, the amplitude
of ξ reaches its maximum as j = k.

This can be easily understood by analyzing the amplitudes of
the corresponding off-diagonal elements of S2,middle. They are gov-
erned by the coupling strength factor [cf. Eq. (5)] plotted in Fig. 4.
The strong resemblance between the j and k variation patterns of
these coupling factors and the ξ matrix elements of Fig. 3 is clearly
evidenced.

Figure 5 shows a comparison of the calculated values of γ + ξ
with some observed widths. For j = 4 and 7, the theoretical values
agree with the experimental ones within 2%. For j = 9, the agree-
ment in not so good (10%). However, in any case, the general trends
for the observed γexpt(j, k) are well predicted: for a given j value,

FIG. 6. Line profile of the PP(10, 9) doublet in the ν3 and 2ν2
4 bands. The frequency

detuning between the two components of the doublet is 8.6× 10−3 cm–1 in the 2ν2
4

and zero in the ν3 band.
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TABLE VII. The PP(10, 9) doublet measured in different vibrational bands (in
10−3 cm–1 atm–1). Experimental results from Ref. 4. The frequency detuning between
the two components of the doublet is 8.6 × 10−3 cm–1 in the 2ν2

4 band and allows
the measurement of both the width of a component (γexpt) and the coupling element
(ξexpt). In the ν3 band, the detuning is zero and only (γ + ξ)expt can be measured.

2ν2
4 γexpt = 138.5 ξexpt = −46.9 γexpt + ξexpt = 91.6

ν3 . . . . . . (γ + ξ)expt = 92
Theory γ = 133 ξ = −49.3 γ + ξ = 83.7

TABLE VIII. The QQ(4, 3) doublet measured in different vibrational bands. Experi-
mental results for the 2ν0

4 band come from Ref. 4 and from the HITRAN 2012 for the
ν1 and ν2 bands. The frequency detuning between the two components of the doublet
is 19.6 × 10−3 cm–1 in the 2ν0

4 band and allows the measurement of both the width
of a component (γexpt) and the coupling element (ξexpt). In the ν1 and ν2 bands, the
detuning is zero and only (γ + ξ)expt can be measured.

2ν0
4 γexpt = 128.8 ξexpt = −25.8 γexpt + ξexpt = 103

ν1 and ν2 . . . . . . (γ + ξ)expt = 109
Theory γ = 132.5 ξ = −28.5 γ + ξ = 104

γexpt(j, k) increases slightly with k, to its maximum, then decreases
to rather low values for k approaching j. Previous studies24,25 were
not able to explain that dependence and referred to various quali-
tative explanations. Here, the j, k dependence is just a consequence
of the line mixing process between degenerate components. On that
basis, it is easy to understand why there is no significant reduction
in the widths when ki = 0 because these lines do not have a doublet
partner.

Finally, the PP(10, 9) and QQ(4, 3) doublets deserve a com-
ment. PP(10, 9) has been measured in both the 2ν2

4 and ν3 bands.4 As
it appears from Fig. 6, measurements in the 2ν2

4 band have allowed
the determination of both γ and ξ (cf. Table V). Meanwhile, in the ν3
band, the A-splitting is insignificant, so that only the sum γ + ξ can
be measured. As can be seen from Table VII, the measurements are
fully consistent.

Similarly, for the QQ(4, 3) doublet, measurements in the 2ν0
4

band where the doublet is resolved give γ and ξ, while for the
ν1 and ν2 bands where the A-splitting is negligible, the HITRAN
database gives only γ + ξ (cf. Table VIII). Here also, the measure-
ments (and the theory) are consistent, providing an additional test
of the formalism.

V. CONCLUSION
In the present work, we have shown that the formalism of

line mixing previously applied to NH3 can be easily extended to
symmetric tops with high inversion barrier. Following Green19 and
Cherkasov,14 the k degeneracy of the rotational transitions has been
taken into account through basis wave functions adapted to the full
symmetry of the C3v group. Then, the coupling of the two compo-
nents of the resulting doublets has been shown to play a major role
in the interpretation of the observed spectra. For E–E transitions
and when the A splitting is not significant for A–A doublets, the

line mixing process leads to an important decrease in the observed
widths, when compared to a calculation based on the isolated line
approximation. For A–A doublets with a significant splitting, it is
possible to measure independently both the width of a component
and the intra-doublet coupling element. In both situations, the the-
oretical model is in rather good agreement with all the available
data.

Of course, the model also predicts inter-doublet coupling, but
they do not influence the line shapes observed at low pressures.
Testing the remaining part of the W relaxation matrix will require
experiments at much higher pressures in order to reach a significant
overlapping of the various doublets, as previously carried out for rare
gas broadening of NH3 bands.26 Of course, the formalism can be
easily extended to the more interesting case of foreign gas broaden-
ing since PH3 has been mainly identified in the spectra of Jupiter
and Saturn. The main challenge will be the introduction in the for-
malism of an intermolecular potential not limited to long-range
components. For non-polar perturbers (H2, N2, rare gases, etc.), in
the absence of ab initio sophisticated potentials, following Ref. 27, a
solution could be the introduction of an atom–atom potential com-
plementing the long-range part. From a theoretical point of view, it
might be possible that the line mixing processes differ significantly
from the self-broadening case analyzed here, due to different colli-
sional propensity rules. However, the inversion of the experimental
data, as a function of the intra-doublet detuning and the range of
perturber pressure, as described in Sec. IV, will remain valid: when
there is no splitting, one can only measure γ + ξ. When the splitting is
significant, γ and ξ can be measured independently. Moreover, if the
doublet can be analyzed within the first order Rozenkranz approx-
imation [Eq. (9)], one should obtain Y2 = −Y1 = ξ/Δω. This is, for
instance, what has been observed in Ref. 28 (Fig. 5) for the PH3–H2
system.
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APPENDIX: SYMMETRY PROPERTIES OF THE WAVE
FUNCTIONS

As recalled in Ref. 16, all the dipolar transitions must strictly
obey the selection rules (A1 → A2); (A2 → A1); and (E1 → E2) or
(E2 → E1), where A1, A2, and E correspond to the three irreducible
representations of the C3v group. In this appendix, we consider only
wave functions of A1 and A2 symmetry.

As already mentioned [see Eqs. (2) and (3)], in most of the
studies of the energy levels of PH3, Wang-type wave functions
are used, and a new definition of the symmetry species (A±)
are used.17 Let us define by lt the vibrational angular momen-
tum associated with a given degenerate vibration t. The usual
symmetry species A1or2 are related to the symmetries A± as
follows:16–18
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k +∑t lt even k +∑t lt odd

j even j odd j even j odd

ψ+ A1 = A+ A2 = A+ A2 = A− A1 = A−
ψ− A2 = A− A1 = A− A1 = A+ A2 = A+

For a vibrational level with no excited angular momentum (i.e.,
the ground level), set ∑t lt = 0. For the vibrational level v3 = 1;
l3 = ±1, set∑t lt = l3, etc.
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