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ABSTRACT 

Bacteriocins are natural antimicrobials that have been consumed via fermented 

foods for millennia and have been the focus of renewed efforts to identify novel 

bacteriocins, and their producing microorganisms, for use as food biopreservatives 

and other applications. Bioengineering bacteriocins or combining bacteriocins with 

multiple modes of action (hurdle approach) can enhance their preservative effect and 

reduces the incidence of antimicrobial resistance. In addition to their role as food 

biopreservatives, bacteriocins are gaining credibility as health modulators, due to 

their ability to regulate the gut microbiota, which is strongly associated with human 

wellbeing. Indeed the strengthening link between the gut microbiota and obesity 

make bacteriocins ideal alternatives to Antibiotic Growth Promoters (AGP) in animal 

feed also. Here we review recent advances in bacteriocin research that will 

contribute to the development of functional foods and feeds as a consequence of 

roles in food biopreservation and human/animal health.  

 

INTRODUCTION 

Fermented foods have been part of the human diet for thousands of years and 

evolved through the need to extend shelf life and improve food safety via the 

inhibition of food spoilage/pathogenic micro-organisms1,2. Lactic acid bacteria (LAB) 

are natural constituents of many fermented foods and contribute greatly to food 

biopreservation. LAB exert their preservative effects through the production of 

antimicrobial metabolites including organic acids, diacetyl, ethanol, hydrogen 

peroxide and bacteriocins. Bacteriocins are a heterogeneous group of ribosomally-

synthesised antimicrobial peptides with the ability to kill closely related (narrow 

spectrum), or a diverse range of (broad spectrum), microorganisms3. Bacteriocins 

are frequently very potent, being active at nanomolar concentrations, and exert their 

killing effect predominantly through membrane permeabilization. They are broadly 

divided into two classes with Class I containing Ribosomally synthesised and Post 

translationally modified Peptides (RiPPs) and Class II containing predominantly 

unmodified peptides4. Bacteriocins are produced by generally regarded as safe 

(GRAS) or qualitative presumption of safety (QPS) organisms and are generally 

sensitive to human proteases. Bacteriocins are now the focus of increased attention 
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due to i) consumer requirements for minimally processed foods free from chemical 

additives5 ii) their potential as natural alternatives to antibiotics due to increasing 

concerns about the emerging problem of antimicrobial resistance4,6 iii) as modulators 

of the human microbiome and, therefore, potential to address complex metabolic 

conditions such as diabetes and inflammatory bowel disease7 and iv) as bacteriocin 

producing probiotic cultures for inclusion in animal feed to promote growth, improve 

animal health and/or reduce infection8 (Figure 1). 

 

BACTERIOCINS AS FOOD BIOPRESERVATIVES 

Bacteriocins with optimal potential as biopreservatives are safe for human 

consumption, have minimal effects on the human microbiota, are effective against 

food pathogens/spoilage micro-organisms and stable in the food matrix in which they 

are employed, which may require resistance to heat, pH and food associated 

enzymes9. Bacteriocins can be added to foods in three ways; i) as a pure bacteriocin 

preparation ii) as bacteriocin containing fermentates or iii) as bacteriocin producing 

cultures4,10.  

Nisin A is a broad spectrum Class I lantibiotic, produced by Lactococcus lactis, 

characterized by five intermolecular lanthionine rings that confer inherent heat and 

protease stability. It is the most studied bacteriocin and it is the only commercially 

produced bacteriocin approved as a food additive by regulatory agencies including 

the World Health Organisation (WHO)/Food Development Authority (FDA) in the 

USA and the European Food Safety Authority (ESFA) in Europe11. It was first 

produced in England in the 1950s1  and is now available as, for example, Nisaplin 

(2.5% nisin) (www.dupontnutritionandsciences.com)11. Nisin Z, a His27Asn variant of 

nisin A, with greater solubility at higher pH, thereby extending its usefulness for food 

applications, is also commercially available as, for example, Nisin Z®P ultrapure nisin 

(>95% nisin) (www.handary.com). The ability to bioengineer nisin has led to a 

number of nisin variants with improved capabilities, perhaps the most notable of 

these being nisin V, a Met21Val variant, which has improved activity against a 

variety of foodborne pathogens, including Listeria monocytogenes and Bacillus 

cereus12. Nisin variants can be bioengineered through food grade techniques 

involving double crossover mutagenesis which do not introduce exogenous DNA or 
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antibiotic resistance markers and, when made in this way, the producing strains are 

not regarded as genetically modified micro-organisms by the EFSA under contained 

use legislation. This opens the possibility to custom design nisin for specific 

applications by increasing yield, increasing potency against specific targets or 

expanding its spectrum of inhibition thereby increasing its commercial potential as a 

food biopreservative13.  

Bacteriocin containing food-grade fermentates are also commercially available and 

widely used in the food industry. These include the FDA approved MicroGARDTM 

range from Danisco and ALTA 2431 from Quest International and both contain 

pediocin PA-1 produced by Pediococcus acidilactici5.  

Bacteriocin producing cultures used as starter cultures or as adjunct cultures serve a 

dual purpose as they can contribute to both flavour and food safety, providing 

fermentation and preservation simultaneously. This is more cost effective than using 

pure peptide and is subject to less regulatory control9. Examples include the 

BactofermTM range (www.chr-hansen.com), containing pediocin and sakacin 

producing strains, used to make fermented sausages and dry cured meat and 

HOLDBAC® protective cultures (www.dupontnutritionandsciences.com) containing a 

mix of bacteriocin producing strains used to protect seafood, meat and dairy 

products from Listeria, yeasts and moulds9. Micocin® is a specifically designed 

protective culture with potent activity against food spoilage and pathogenic micro-

organisms in ready to eat meat products and approved for use in the US and 

Canada14.  It contains Carnobacterium maltoaromaticum which produces piscicolin 

126 and carnobacterium BM1 and the circular bacteriocin, carnocyclin A, that is 

particularly potent against L. monocytogenes15. Including Micocin® as a feed additive 

in the diet of Grimaud rabbits resulted in reduced levels of L. monocytogenes in 

ground meat during storage indicating that including a protective culture in animal 

diets resulted in safer food products16.  

Recently discovered novel bacteriocins with potential as food preservatives include 

plantaricyclin A, a circular bacteriocin produced by the olive isolate Lactobacillus 

plantarum NI326, with activity against the beverage spoilage bacterium 

Alicyclobacillus acidoterrestris, which causes significant economic losses to the 

industry every year17. Enterococcus mundtii CRL35, a non-virulent, non-antibiotic 
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resistant strain, also shows promise as an adjunct culture. It reduces L. 

monocytogenes during meat fermentation, both in vitro and in a beaker sausage 

model in the presence of curing agents, due to production of enterocin CRL35, a 

class IIa bacteriocin. Bacteriocin producing strains are adversely affected by the 

presence of curing salts so the ability of E. mundtii to grow and exert a higher 

protective effect in fermented meats is particularly advantageous18. Gómez-Sala et al 

(2016) found that the use of the multi-bacteriocinogenic strain Lactobacillus curvatus 

BCS35 as a protective culture, and of its cell free supernatant used as a food 

ingredient during refrigerated storage, significantly reduced bacterial counts on fresh 

fish, thereby increasing the both the quality and commercial value of the product19. 

Another exciting development in recent years is the use of antimicrobial-containing 

edible films and coatings, composed of layers of biopolymers that protect the food 

from the environment, to improve food safety by inhibiting food pathogens during 

handling, transportation and storage of food products5,20. 

 

ANTIMICROBIAL RESISTANCE  

A recent WHO report highlights concerns about the lack of progress in the search for 

new antimicrobial classes and calls for increased investment in drug discovery to 

combat the threat of antimicrobial resistance6,21. Bacteriocins are considered 

promising alternatives due to their stability (especially in the case of modified 

peptides such as the lantibiotics), low toxicity, frequently excellent potency and 

potential for target specificity. Many bacteriocins interact electrostatically with the cell 

membrane and introduce permeabilisation through interaction with receptor or 

docking molecules. Resistance can occur due to innate mechanisms, including the 

ability to produce degradation enzymes or the presence of immunity proteins, while 

acquired resistance occurs due to horizontal gene transfer or gene mutations that 

alter the cell membrane, binding receptors or transport systems22,23. Previously 

described resistance mechanisms include specific adaptations such as the loss of a 

receptor, as seen in resistance to class IIa bacteriocins like pediocin, or non-specific 

adaptations that alter the cell envelope as seen in the case of resistance to Class I 

lantibiotics such as nisin10,22,24,25. Radical adaptations requiring high energy costs 

that reduce the fitness of the cell, may limit the ability of resistant mutants to 
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compete in established niches, possibly explaining why bacteriocin resistance is 

rarer than antibiotic resistance24,26,27. Knowledge of a bacteriocins mode of action4 

and how it acquires resistance facilitates the development of methodologies to 

minimise resistance occurrence27. Strategies successfully used to reduce resistance 

include combining bacteriocins with other bacteriocins with different modes of 

action23,28,29, other antimicrobials21,25, or phages or, generating peptides with 

increased antimicrobial resistance through bioengineering30. These hurdle 

(combinatorial) approaches have the added advantages of broadening the 

antimicrobial spectra while reducing costs and toxicity25. Indeed, Perales et al (2018) 

found that a combination of enterocin AS-48 and nisin A acted synergistically to kill 

antibiotic resistant staphylococci, a common contaminant in processed food, in fresh 

goat milk cheese, potentially improving its shelf life and safety. Using multiple 

bacteriocins reduces the bacteriocin dose and prevents the regrowth of bacteriocin 

resistant/adapted cells21. Mills et al (2017) also used a multi-bacteriocin approach to 

develop a cheese starter system producing both nisin A and lacticin 3147. The use 

of these, in combination with a Lactobacillus plantarum Class II plantaricin producer, 

reduced Listeria numbers in lab scale cheese more effectively than when individual 

bacteriocin producers were used singly. The concurrent production of nisin A and 

lacticin 3147 reduces the likelihood of incidence of bacteriocin resistance and this 

approach shows great potential for food safety applications31.  

A bioengineering approach was used to overcome the efficacy of nisin resistance 

protein (NSR), expressed by some microorganisms, that cleaves nisin between 

residue 28, involved in ring E formation, and serine 29 resulting in a truncated nisin 

1-28 with significantly reduced activity30. A screening study located a nisin Ser29Pro 

variant with 20 fold increased activity against a NSR+ strain and a similarly resistant 

nisin PV variant that was less affected by oxidation30. Recently, a survey of 182 

Lactobacillus strains revealed a high level of intrinsic antimicrobial resistance genes, 

with resistance to kanamycin, vancomycin and trimethoprim being most prevalent32. 

Eighty eight per cent of the strains surveyed would fail EFSA regulatory guidelines, 

despite them being species widely used in foods for human and animal consumption, 

as the presence of antimicrobial resistance genes impacts on their use in food 

applications. These findings led the authors to call for revision of EFSA regulatory 

guidelines for lactobacilli entering the food chain and highlight that a more thorough 
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understanding of antimicrobial resistance and its spread within microorganisms is 

required32. Overall, the general consensus is that bacteriocins, like antibiotics, should 

be used exiguously to avoid selection of resistant phenotypes that may compromise 

their potential role as biopreservatives 22,24,25.  

 

BACTERIOCIN PRODUCING PROBIOTIC STRAINS AS GUT MICROBIOME 

MODULATORS 

The role of the gut microbiota in human health is of increasing interest as the links 

between a balanced, healthy gut microbiota and disease prevention become more 

apparent23,33. Broad spectrum antibiotics indiscriminately affect the entire microbiota, 

leading to imbalances that could potentially predispose to conditions such as obesity, 

diabetes, immune disorders and neurodegenerative disease29,34,35. Bacteriocin-

producing LAB are antibiotic alternatives that have the potential to enhance gut 

health through their ability to survive the gut environment, inhibit pathogens and 

competitors, modulate the immune system and prevent inflammation and oxidative 

stress33,34,36,37. Considerable efforts are being made to understand the contribution of 

bacteriocins produced by LAB to gut modulation, pathogen inhibition and their role in 

the maintenance of host health. To this end, an in vitro faecal fermentation system 

that mimics the anaerobicity of the colon was used to assess the effect of 

bactofencin A, a class IId bacteriocin, produced by the porcine gut isolate 

Lactobacillus salivarius, on the human faecal microbiota. The study found subtle but 

positive differences in taxonomic profiles between the bactofencin A+ producing 

culture and its bactofencin A- mutant, while more drastic effects in taxonomy were 

detected in the presence of pure peptide38. Similarly, in vivo studies using mice fed 

with a L. salivarius UCC118  bacteriocin producer, Bac+, or its bacteriocin-negative, 

Bac-, derivative over 8 weeks resulted in slight changes in the gut microbiota at the 

Phylum level whereas at the genus level, the Bac+ treatment resulted in a significant 

increase in Bacteroides spp. and decrease in Bifidobacterium spp. in comparison 

with the Bac- group39.  Efforts to assess if bacteriocin production in vivo inhibits gut 

pathogens without negatively impacting beneficial populations require rigorous 

experimental methods to provide meaningful results40. Bauer et al (2017) describe a 

generic method, using compositional 16S rDNA combined with bioinformatics, to 
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compare the effect of bacteriocin producers to their isogenic non-producing 

equivalents on microbiota composition in a mouse model allowing impacts on the gut 

microbiota to be measured in a live animal model36. This model was used in a mouse 

feeding trial, where five Class II bacteriocin-producing LAB were compared with 

isogenic non-producing equivalents, and showed that while the overall diversity was 

unchanged, advantageous changes relating to pathogen inhibition and increased 

LAB levels were seen briefly, suggesting that bacteriocin production facilitated 

favourable changes without collateral damage to the gut microbiota41. These studies 

provide further evidence that bacteriocin production provides subtle positive changes 

at lower taxonomic levels that maintain a desirable gut microbiota and are beneficial 

to the host7.  

Bacteriocins, unlike antibiotics, are often very specific and can kill pathogens without 

causing detrimental imbalances to the host microbiota. Vancomycin resistant 

enterococci (VRE) are gut inhabitants that can cause fatal infections, particularly in a 

hospital environment. A recent report by Kim et al (2019) describes the ability of gut 

commensals to increase the resistance of the host to vancomycin resistant 

Enterococcus faecium (VREf). They found that one constituent of a four strain 

cocktail, Blautia producta BPSCSK, a nisin A variant producer, was responsible for 

reduced colonisation by VRE and a direct correlation was found between the amount 

of the lantibiotic gene and VRE reduction in germ free mice containing patient 

faeces, thus demonstrating the potential of bacteriocins as antibiotic alternatives42.  

The gut microbiota also enables the gastrointestinal tract and the brain to 

communicate through the gut brain axis, which is described as a neuroendocrine 

signalling system that transmits information through endocrine signals, neurons and 

the immune system34. A recent microbiota-gut-brain–axis study demonstrated that 

nisin increased duodenal levels of the neurotransmitter serotonin (5-

hydroxytryptamine, 5-HT) and dopamine (DA) in a bacterial diarrhoea mouse model 

induced by pathogenic E. coli O1. In addition, nisin increased the bacterial diversity in 

the mouse cecum samples by increasing beneficial Lactobacillus, Bacteroides 

and Bifidobacterium species while inhibiting pathogenic E. 

coli and Enterococcus spp. Taken together the results show a positive correlation 

between nisin, the gut microbiota and stress reduction triggered by E. coli induced 
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diarrhoea in mice suggesting that probiotics can both regulate the gut microbiota and 

affect the expression of neurotransmitters in the brain43.  

 

GENOME MINING STUDIES REVEAL THAT THE GUT MICROBIOTA IS A RICH 

SOURCE OF BACTERIOCIN GENES 

In silico genome mining techniques are routinely used to identify bacteriocin gene 

clusters in bacteria from numerous sources including the commensal mammalian 

microbiota. An in depth look at human commensal metagenomic sequences found 

that the number of putative bacteriocin genes varied according to body site with a 

higher proportion found in the mouth, airway and vagina and lowest in the gut44. 

However, analysis of genomes specifically from the human gut revealed that almost 

half, predominantly from LAB, encoded putative bacteriocins and are proposed to aid 

diversity through establishment of commensal relationships with the host and aid 

host defence by inhibiting pathogens45. In silico analysis of genomes from rumen 

bacteria found numerous novel sactipeptide and lanthipeptide bacteriocin gene 

clusters suggesting that the rumen is a rich source of novel antimicrobial peptides 

with potential as food preservatives and use in animal production46. A more recent 

metagenomic functional screening of the rumen metagenome identified 181 

previously unidentified antimicrobial peptides, three of which (Lynronne-1, 2 and 3) 

were shown to have activity against methicillin resistant Staphylococcus aureus 

(MRSA) and other pathogens. Interestingly, MRSA did not produce resistant mutants 

when subcultured in sub MIC levels of these peptides over 25 days47.  

Shotgun sequencing of the gut microbiome allows identification of microorganisms to 

species or strain level and even detects genes related to antibiotic resistance, 

vitamin production or short chain fatty acid production. However, advances in 

sequencing-based microbiome profiling methods such as metatranscriptomics, can 

go further to assess gene expression, thus providing an accurate method to 

determine which genes are expressed by the microbiome. This technique is capable 

of generating large scale profiles of complex microbiomes and is expected to 

improve our understanding of the role that bacteriocins play in gut ecology48  
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BACTERIOCIN PRODUCING PROBIOTIC CULTURES AS ANTIMICROBIALS IN 

ANIMAL FEED  

Since the 1930s, antibiotics have been used in animal husbandry to treat infections, 

prevent disease and improve feed efficiency49. Antibiotic use in global food 

production is increasing worldwide to meet the growing demand for animal protein 

and now surpasses human consumption. Indeed, in some countries, it has been 

reported that 80% of antibiotics important for human medicine are consumed by 

healthy animals to promote growth50,51. Concerns about increases in drug resistance 

in animal pathogens and its potential transfer from livestock to humans, leading to 

untreatable infections, has led to the WHO introducing a Global Action Plan on 

Antimicrobial Resistance highlighting the need for a concerted international approach 

from consumers, environmentalists, agriculture, human and veterinary medicine to 

combat this growing crisis51-53. In 2006, the European Union banned the use of 

animal growth promoters (AGP) in animal feed, creating a need for a new 

antimicrobial strategy. A pioneering study by Corr et al (2007) found that production 

of Abp118 by L. salivarius UCC118 protected mice in vivo from the food pathogen L. 

monocytogenes, thus confirming the antimicrobial potential of bacteriocin-producing 

probiotic cultures54. Since then there have been numerous studies, predominantly in 

vitro, providing evidence that bacteriocins are potential alternatives to antibiotics in 

animal production53. Recently, Hu et al (2018) showed that a faecal microbiota 

transplantation (FMT) from diarrhoea resistant to diarrhoea susceptible pigs 

protected against early weaning diarrhoea induced by stress, a huge problem in the 

swine industry. Further investigation revealed that the protective effect was 

attributable to the presence of Lactobacillus gasseri and Lactobacillus frumenti. More 

specifically, this effect was due to their ability to produce the circular bacteriocin, 

gassericin A, which binds to the pig’s intestinal epithelial membrane, thus preventing 

diarrhoea onset and providing further evidence that probiotic cultures have potential 

as antibiotic alternatives for diarrhoea prevention in mammals55.  

The ability of AGP to improve growth and body weight gain of animals is tentatively 

attributed to modulation of the gut microbiota as it plays an important role in 

obesity33. Direct Fed Microbials (DFM) such as probiotic LAB are associated with 

weight gain in animals8 and tentative links are being established between feed 

efficiency in pigs and the intestinal microbiota56. This makes it tempting to suggest 
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that bacteriocin-producing LAB can be used to modulate the gut microbiota in a way 

that improves feed efficiency. Nisin has been proposed as a feed supplement for 

broiler chickens as preliminary experiments suggest that it improves body weight 

gain in a dose related manner, an effect that may be due to gut microbiota 

modulation57.  

One of the challenges for bacteriocins in feed applications is the ability to pass 

through the gastrointestinal tract without digestion by proteolytic enzymes and this 

can be achieved through encapsulation, a protective technique that ensures 

successful delivery to the target site without loss of bioactivity where they can be 

released in a controlled fashion20. Both nisin A and bactofencin A were recently 

successfully encapsulated in mesoporous matrices with nisin A being protected from 

degradation by pepsin and bactofencin A from trypsin58,59.  Bioactive intact nisin and 

nisin fractions were detected in the faeces of mice pellets following feeding with nisin 

encapsulated in starch based matrices therefore achieving the aim of delivering 

intact nisin to the gut by oral means60. The amount of nisin detected in the faeces 

varied with starch matrix highlighting that optimum delivery requires examination of a 

range of substrates and conditions. These preliminary studies show that bacteriocins 

are effective in a gut environment.  

 

CONCLUSIONS 

Current research is strengthening the view of bacteriocins as being versatile 

antimicrobials with considerable potential for use as biopreservatives, antibiotic 

alternatives, health-promoting gut modulators and animal growth promoters. 

Excessive use of antibiotics, and especially of broad spectrum antibiotics, in 

medicine and food production has been recognised as a cause of microbiome 

disruption and select for accumulation and transfer of resistance genes within the 

microbial population of the human gut35. Overall, though bacteriocins are likely 

expressed at low levels in the gut, it is considered that their production by gut 

commensals enables a healthy and stable microbiome by preventing invasion by 

undesirable species44 and the establishment of desirable microbes.   
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The use of DFM as alternatives to AGP is a relatively new area of research that 

shows promise for bacteriocin-producing LAB as initial studies show that 

bacteriocins are also effective in the animal gut. While obtaining approval from FDA 

and EFSA or other agencies to utilise bacteriocins within in feed additives for animal 

nutrition is a lengthy process61 their potential to play a role beyond that of 

biopreservative is notable, with a number of studies describing them as versatile 

health promoter molecules11,26.  

The incorporation of bacteriocin-producing probiotics into foods and feeds and 

assuring their activity during processing and subsequent passage through the host’s 

gastrointestinal tract is a challenge that is being addressed through the discovery 

and development of new bacteriocin producing strains and novel encapsulation 

techniques58-60,62. Commercial scale bacteriocin production is still hampered by high 

costs and low peptide yield but cost efficiency is being improved through optimisation 

of fermentation processes and bioengineering strains for maximum production of 

bacteriocins63. It should also be noted that further studies are also required to 

establish dosage levels and to further improve effective delivery to target sites. 

Overall, the expanding potential role of bacteriocins in food preservation, gut 

modulation, antimicrobial resistance reduction and animal feed suggest that if the 

hurdles described are overcome, there are considerable opportunities for 

widespread bacteriocin- based applications in the food and feed industries.   
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Figure 1. Potential applications of i) bacteriocin producing cultures, ii) bacteriocin 

containing fermentates, iii) purified bacteriocins and iv) encapsulated bacteriocins as 

food preservatives, gut modulators, feed additives and therapeutics. Created with 

BioRender.com.  PDB ID 2A2B (10.2210/pdb2a2b/pdb), PDB ID 1OG7 (10.2210/pdb1OG7/pdb), 

PDB ID 5UKZ (10.2210/pdb5UKZ/pdb).  
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HIGHLIGHTS 

 

 Novel bacteriocins with potential as food preservatives are continuously being 

discovered 

 A hurdle approach is improving the efficacy of bacteriocins in foods and 

reducing of antimicrobial resistance 

 Bioengineering is being used to design bacteriocins with improved 

antimicrobial resistance 

 Bacteriocin producing strains may promote host health through modulation of  

the gut microbiome  

 DFM show potential as alternatives to antibiotic growth promoters in animal 

feed 

 

 


