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Abstract: Large collections of the forage and bioenergy grass Dactylis glomerata were made in
northwest (NW) Europe along east to west and north to south clines for genetic resource conservation
and to inform breeding programmes of genetic diversity, genepools, and ploidy. Leaves were sampled
for genetic analysis and seed and rhizome for ex-situ conservation. Genotyping by sequencing
(GBS) was used to assay nuclear DNA diversity and plastome single nucleotide polymorphism
(SNP) discovery was undertaken using a long-read PCR and MiSeq approach. Nuclear and plastid
SNPs were analysed by principal component analysis (PCA) to compare genotypes. Flow cytometry
revealed that all samples were tetraploid, but some genome size variation was recorded. GBS detected
an average of approximately 10,000 to 15,000 SNPs per country sampled. The highest average number
of private SNPs was recorded in Poland (median ca. 2000). Plastid DNA variation was also high
(1466 SNPs, 17 SNPs/kbp). GBS data, and to a lesser extent plastome data, also show that genetic
variation is structured geographically in NW Europe with loose clustering matching the country of
plant origin. The results reveal extensive genetic diversity and genetic structuring in this versatile
allogamous species despite lack of ploidy variation and high levels of human mediated geneflow
via planting.

Keywords: Dactylis glomerata; diversity; forage; GBS; marginal land; genetic resources; phylogeography;
plastome; SNPs

1. Introduction

Dactylis glomerata L. (cock’s foot; orchard grass) is a tufted C3 photosynthetic perennial species that
is classified within the grass tribe Poeae [1–3]. It is one of the most important forages in the world [4] and
is also under investigation for biomass and bioenergy [5]. It is outbreeding, has substantial dispersal
ability [6] and is highly variable in its morphology, reflecting natural variation and a long history of
cultivation, selection and introduction for forage [6–8]. It can form large tussocks, but individual
plants do not generally spread far laterally [9]. Dactylis glomerata has a circumpolar southern-temperate
distribution and is native to Eurasia and North Africa [10]. It is commonly found naturalized outside
of its native range and breeding material has been introduced into many areas for modern-day forage
systems [11]. It is also a significant contributor to ecosystem function [12].

Dactylis glomerata produces high biomass yields and is well adapted to a broad range of
habitats [5,13] including calcareous grasslands, Mediterranean grasslands, coastal cliffs, fixed dunes,
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meadows, open woodland, pastures, river banks and rough grassland. It also thrives in more artificial
sites such as paths, roadsides, spoil heaps, quarries and waste ground [9,14]. It occurs on a range of
soils but is particularly common on those of moderate fertility between pH of 5 and 8 [9,11]. As a result
of this wide environmental distribution, it is a good candidate species for cultivation on marginal
land that is unsuitable or unproductive for other agricultural uses. The challenge is to develop new
high-yielding genotypes suitable for growth in a range of habitats and on marginal land [15–17].

Stress tolerance and biomass yield are important traits of Dactylis glomerata [5,18]. Dactylis
generally has good abiotic stress tolerance in comparison to other biomass crops [5,19]. There is
potential to use natural genetic variation in forage breeding programmes that develop new cultivars
for sustainable agriculture in a changing global climate [20–22]. Dactylis glomerata is predominantly
tetraploid across its natural range in Eurasia but populations of diploids are not uncommon particularly
around the Mediterranean region [7,23,24]. Sometimes these diploids are taxonomically segregated as
separate species or infraspecific taxa but they intergrade with each other and the tetraploid forms, in a
polyploid complex. Triploids, pentaploids and hexaploids were reported [24–29] and genome size
varied with altitude in natural tetraploid populations [30].

Genetic diversity of Dactylis was assessed using a range of protein and DNA markers including
allozymes [27,31]; SSR [24,32–35]; RAPD/ISSR/SCoT [35–38]; AFLP [38] and SNPs [32]. Nuclear
genotyping by sequencing (GBS) was used by Bushman et al. [39], but not for genetic diversity
studies. A related high throughput sequencing SNP genotyping method called specific-locus amplified
fragment sequencing (SLAF-seq) was used by Zhao et al. [40] for the construction of a high-density
linkage map and discovery of flowering time quantitative trait loci (QTL), and also by Zeng et al. [41]
for genome wide association study of rust traits. Plastid DNA sequences were used in phylogenetic
studies of grasses including Dactylis [2]. However, few have sampled high density plastid genome SNP
data for genetic diversity analyses. Plastomes are generally highly informative for phylogeographic
studies because of their maternal inheritance that can help estimate seed mediated gene flow [42,43].

We undertook comprehensive sampling of Dactylis germplasm across northwest Europe over
latitudinal and longitudinal distances of 3000 and 2500 km, respectively (Figure 1). Plants were
collected from a broad range of habitats along east to west and north to south clines from Denmark,
Germany, Ireland, Poland, Sweden and the UK. They were assessed for nuclear and plastome variation,
ploidy and genetic/genepool structure. Seeds and living plants were also stored for ex-situ conservation.
We demonstrate the utility of GBS [44] to study nuclear DNA variation within the collections and
a long-read PCR and MiSeq DNA sequencing approach [45] to study plastome variation. The dual
GBS/plastome sequencing approach proved highly informative for defining genepools for future
breeding efforts in this versatile species.
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east to west (2500 km) and north to south (3000 km) clines.
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Figure 1. Collection locations of Dactylis glomerata in northwest Europe. Plants were sampled across
east to west (2500 km) and north to south (3000 km) clines.
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Table 1. Dactylis glomerata collected for ex-situ conservation and used in the study.

Country Accession
Number

Sample No. in
Plastome Analysis

Sample No. in
GBS Analysis

Sample No. in
Flow Cytometry Latitude Longitude Details of the Site

Poland 1–30 6 6 6 54◦40′48.11” N 17◦41′6.55” E East of Wicko, dry sandy meadow

Poland 31–60 34 34 34 54◦43′56.47” N 17◦33′16.94” E South of Leba, east of Zarnowska, edge of arable fields very
sandy, dominant vegetation

Poland 61–90 66 66 54◦33′25.28” N 18◦24′22.69” E Between Rumia and Chylonia, dry sandy waste ground, edge
of more forested region but large stand in open area.

Poland 91–120 96 96, 112 96, 112 54◦23′21.42” N 18◦28′42.18” E Near Gadansk Airport, waste sandy and gravelly soil, wet

Poland 121–150 53◦41′58.62” N 20◦5′18.30” E Near Ostroda, off the road

Poland 151–180 156 156 156 53◦50′2.83” N 21◦3′30.36” E Along road near or after Maroba, along busy road edge of
agricultural fields (wheat)

Poland 181–210 182 182 182 53◦48′7.41” N 21◦33′33.28” E Near Mikolajki Hotel, waste ground, dry sandy/gravel

Poland 211–240 216 216 216 53◦51′29.13” N 22◦30′19.52” E East of Elk, edge of agricultural land

Poland 241–270 248 248 248 53◦7′39.68” N 23◦11′13.20” E Bialystock park edge, dominant grass

Poland 271–300 282 282 282 52◦30′9.86” N 18◦22′0.04” E North of Konin, edge of agricultural fields

Germany 1–30 10 6, 10 6, 10 52◦14′35.24” N 14◦25′49.56” E Mullrose, in clearing open land near canal

Germany 31–60 52 52 52 52◦4′55.62” N 14◦9′47.04” E Ditch and edge, south of Trebatsch

Germany 61–90 66 66 66 52◦13′20.84” N 11◦42′22.21” E Edge of road and field Hohenwarthe

Germany 91–120 102 100, 102 100 52◦40′25.74” N 9◦43′45.00” E Northeast of Markendorf, forest road

Germany 121–150 130 130 130 53◦0′26.94” N 9◦50′32.28” E Edge of road near Saltau north

Germany 151–180 152 152 152 53◦25′51.60” N 9◦46′39.78” E Near Elstorf

Germany 181–210 184 184 53◦59′45.73” N 9◦7′14.21” E Sank Michaelisdorm

Germany 211–240 220 220 220 54◦8′31.15” N 8◦49′50.70” E North of Busum

Germany 241–270 54◦30′7.80” N 9◦6′39.85” E North of Husum, edge of road

Germany 271–300 276 272, 276 272, 276 54◦53′19.21” N 8◦56′16.51” E Ellhoft, on border of Germany and Denmark, large stands
clearing between maize fields and near wind generator

Denmark 1–30 2 2, 6 2 55◦21′21.06” N 8◦40′2.52” E South of Esbjerg, north of Ribe, near coast

Denmark 31–60 56◦5′41.72” N 8◦14′2.43” E Ringkobing, at edge of Phragmites

Denmark 61–90 68 62, 68 62, 68 56◦12′13.48” N 8◦9′39.07” E West of Stadil, Brunbjerg, along edge of cycle way, possibly
saline as near fjord, on dry bank

Denmark 91–120 96 92, 96 92, 96 56◦12′9.44” N 8◦15′16.51” E South of Tim Kirkeby, edge of road/farmers field
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Table 1. Cont.

Country Accession
Number

Sample No. in
Plastome Analysis

Sample No. in
GBS Analysis

Sample No. in
Flow Cytometry Latitude Longitude Details of the Site

Denmark 121–150 132 128, 132 128, 132 56◦19′4.57” N 9◦10′57.38” E Near Karup in layby, dry grassy

Denmark 151–180 156 156, 160 156, 160 56◦31′48.27” N 9◦19′6.02” E Edge of Hjarbaek Fjord, grassland and rocky fjord edge, small
and large types

Denmark 181–210 184 182, 184 182, 184 55◦53′15.64” N 9◦47′13.64” E South of Lund, edge of cycle route and dry sandy soil

Denmark 211–240 240 236, 240 236, 240 55◦23′15.67” N 10◦11′39.11” E Skallebolle, near Odense, waste ground, dry gravel and sand

Denmark 241–270 246 246 246 55◦33′53.57” N 12◦36′48.89” E On coast path, south of Sovang, near Kastrup.

Denmark 271–300 274 272, 274 272, 274 55◦51′15.77” N 12◦33′8.31” E Maglemosen, in drier grassland at edge of waterlogged region

Sweden 1–30 10 6, 10 6, 10 56◦10′47.02” N 13◦1′25.70” E Tranarp, edge of road near wet floodplain

Sweden 31–60 42 42, 54 42, 54 56◦46′57.22” N 13◦53′55.22” E North of Kanna, near recycling point, dry grassland

Sweden 61–90 82 82, 88 82, 88 57◦47′11.54” N 14◦8′57.61” E Outskirts of Jonkoping, grassland with few trees

Sweden 91–120 118 188 114, 118 58◦24′53.59” N 14◦8′27.13” E Near Tibro, waste industrial land

Sweden 121–150 140 132, 140 132, 140 59◦14′33.04” N 15◦0′34.71” E Near Vintrosa/Orebo, dry road verge and fields

Sweden 151–180 164 160, 164, 180 160, 164, 180 59◦56′24.60” N 16◦1′54.93” E South of Angelsberg, dray grassland with Phleum on south
facing well-drained slope

Sweden 181–210 184 184 184 63◦42′15.05” N 20◦21′48.01” E In Holmsund, on shallow soil above bare rock, sedum,
lichens, liverworts, etc.

Sweden 211–240 216 211, 216 211, 216 65◦59′58.04” N 21◦12′28.88” E Nedre Svartla, on edge of field, all very vigorous growing
tussocks on edge of road

Sweden 241–249 242 241, 242 241, 242 63◦50′53.06” N 20◦19′27.77” E North Umea, growing with Agrostis capillaris on grit and sand
more on hummocks and banks

Sweden 251–266 253 253, 254 253, 254 63◦48′6.04” N 20◦18′41.14” E Central Umea, near bridge, vigorous and regenerating

Ireland 1–30 4, 6 4 53◦21′13.69” N 6◦20′47.85” W Phoenix Park, Dublin

Ireland 31–60 42, 48 48 53◦21′16.87” N 6◦10′1.61” W Bull Island, Dublin, salt marsh, dunes

Ireland 181–210 196 196 196 53◦9′54.36” N 6◦13′6.18” W Crone Woods, County Wicklow, edge of woods, paths

Ireland 211–240 220 220, 226 226 53◦13′35.44” N 6◦21′5.26” W Rathgun Waterworks Reservoir, County Wicklow, grassland
edge of lake

Ireland 241–270 244, 246 244 53◦17′31.73” N 6◦19′6.09” W River Dodder, Tallaght, grassland, and hedges

Ireland 271–300 272 272, 274 272 53◦35′24.27” N 8◦3′33.69” W Loch Ree, Roscommon, hedgerow and lake marsh
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Table 1. Cont.

Country Accession
Number

Sample No. in
Plastome Analysis

Sample No. in
GBS Analysis

Sample No. in
Flow Cytometry Latitude Longitude Details of the Site

UK 1–30 30 30 30 51◦37′41.92” N 4◦55′37.00” W Bosherton Lilly Ponds, Pembroke, Lodge Park, lakeside, open
and shaded habitat

UK 31–60 59 31, 59 59 51◦37′16.23” N 3◦1′9.95” W Cwmbran, Wales, Monmothshire and Brecon Canal Bank

UK 61–90 62 62 62 52◦39′29.04” N 1◦15′4.86” W Martinshaw Woods, Groby Leicester, open woodland edge
and open fields

UK 91–120 104, 106 106 52◦40′34.31” N 1◦14′9.55” W Barn Hills, Newtown Linford, open fields upon hill

UK 121–150 146 146 146 52◦30′15.48” N 0◦58′59.99” W Grand Union Canal, Foxton Locks, Market Harborough,
canal bank and open fields

UK D151–180 160 160, 172 172 52◦59′7.16” N 1◦8′32.40” W Woodthorpe Park, Nottingham, open fields

UK D181–210 196 196, 198 53◦12′0.49” N 1◦4′11.25” W Sherwood Forest, Nottingham, edge of fields and open
woodland

UK D211–240 218 216, 218, 240 53◦16′11.03” N 2◦31′21.92” W Anderton, Cheshire, along grassland near River Weaver

UK D241–270 250 250, 270 53◦12′51.96” N 4◦7′2.38” W Bangor, North Wales, pathways, field margins,

UK D271–300 274 274, 276 54◦29′49.18” N 6◦23′1.42” W Oxford Island, Lough Neagh, Northern Ireland, lakeside
grasslands

* Sample number in the plastome analysis corresponds to the individual sampled from the corresponding sampling location in column. GBS—genotyping by sequencing.
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2. Materials and Methods

2.1. Sample Collection, Ploidy Measurement and DNA Extraction

Samples of Dactylis glomerata were collected over broad latitudinal (51◦37′41.92′′ N to 65◦59′58.04′′ N)
and longitudinal gradients (8◦3′33.69′′ W to 23◦11′13.20′′ E) in Denmark, Germany, Ireland, Poland,
Sweden and the United Kingdom (Table 1, Figure 1). Thirty accessions were collected from each of
the ten locations per country. Seed, rhizomes and herbarium voucher specimens were collected and
stored following Perderau et al. [46]. Not all plants were sequenced to determine nuclear and plastome
variation because of time and money constraints. Thus, representative subsets of 88 plants, grown from
rhizome, were sampled for GBS and 48 accessions for plastome sequencing (Table 1). DNA was extracted
and quantified from fresh or dried leaf tissue following [46,47]. Flow cytometry was undertaken to
determine ploidy using leaves from grown-up plants. Ploidy estimation involved comparison of
the new Dactylis glomerata genotypes with samples of known tetraploidy (confirmed by standard
Feulgen staining of mitotic root tip meristems following [48]) and visualisation using light microscopy
at ×1000 magnification. Flow cytometry was undertaken using 4′,6-diamidino-2-phenylindole (DAPI)
fluorochrome staining by Plant Cytometry Services, Netherlands [49] on 72 Dactylis genotypes and
two Dactylis standards. Internal Vinca major controls were included and the resulting ratios of controls
to samples used to determine ploidy in comparison to the Dactylis controls with known ploidy.

2.2. Genotyping by Sequencing (GBS)

Firstly, 100–200 ng of genomic DNA per sample were digested for 2 h at 37 ◦C with 2 units
each of MspI and PstI-HF(NEB) and 1× Cutsmart buffer in a final volume of 20 µL, followed by heat
inactivation incubation at 80 ◦C for 20 min. ddRAD library construction involved: (a) ligation: 10 µL
of each restriction digest were mixed on ice with 1.5 µL of one of the 96 inline-barcoded forward PstI
adaptors (pre-hybridized, concentration 1 pM µL−1), followed by addition of 20 µL of ligation master
mix (15 µL NEB Quick ligation buffer, 0.4 µL NEB Quick ligase, 5 pM pre-hybridized common reverse
MspI adaptor) and incubated at room temperature for 1 h with subsequent heat inactivation at 65 ◦C
for 10 min; (b) library purification: reactions were all diluted with 30 µL Tris-EDTA (TE; 50 mM EDTA,
10 mM Tris/HCl, pH 8.0) and mixed with 50 µL Agencourt XP beads, incubated for 10 min (room
temperature) and put on a magnet for 5 min to collect the beads. The supernatant was discarded,
and beads washed twice with 200 µL 80% ethanol before being air dried for 10 min. Libraries were
then eluted in 20 µL Tris buffer (5 mM Tris/HCl pH 9); (c) library amplification: 10 µL of each of the
96 libraries were separately amplified in 20 µL PCR reactions with 14 cycles using standard Illumina
TrueSeq amplification primers and MyTaq (Bioline, London, UK) polymerase.

A total of 5 µL of each of the 96 amplified libraries were then combined. Small amplicons and
PCR primer were removed by Agencourt XP bead purification using one volume of beads. The PCR
polymerase was removed during purification on Qiagen MinElute columns. The pooled library was
eluted in 20 µL of Tris buffer (5 mM TrisHCl pH 9). Normalization was done using a Trimmer Kit
(Evrogen), and 1 µg in 12 µL of the pooled ddRAD library was combined with 4 µL 4× hybridization
buffer, denatured at 98 ◦C for 3 min and incubated at 68 ◦C for 5 h to permit re-association of DNA.
Then, 20 µL of 2× duplex-specific nuclease (DSN) master buffer was added, and the samples were
incubated for 10 min at 68 ◦C. One unit of DSN enzyme (1 U µL−1) was added and the reaction
was incubated for another 30 min. Reactions were terminated by the addition of 20 µL DSN stop
solution, purified on a Qiagen MinElute column and eluted in 10 µL Tris buffer (5 mM TrisHCl pH 9).
Reamplification of normalized libraries: 10 µL of the purified normalization reaction was reamplified
in 5× 30 µL reactions using standard Illumina TrueSeq amplification primers and MyTaq (Bioline)
polymerase. Cycle number was restricted to 15. Size selection: a low melting point agarose gel was
used for size selection of the ddRAD library, removing fragments larger than 400 bp and smaller than
200 bp.



Agronomy 2019, 9, 342 7 of 16

2.3. Plastome Sequencing via Long-Read PCR

The long-read PCR protocol and the primers followed that of Uribe-Convers et al. [45] and
optimisation parameters are given in Table S1. Initially, all plastome sections (coded 1 to 16) described
in Uribe-Convers et al. [45] were amplified on four samples of Dactylis glomerata but sections 2, 5, 11
and 14 were omitted because of poor amplification. The other sections were all well-amplified, with or
without optimisation, in the 48 samples. PCR purification, quantification, Illumina Nextera XT library
preparation (Illumina, San Diego, CA, USA), multiplexing with Illumina MiSeq Reagent Nano kit v.3
and sequencing followed Perdereau et al. [46].

2.4. Data Analyses

Quality control of the raw GBS sequence reads for all samples was undertaken using BBduk [50]
and used to trim low quality bases with less than a Phred score of 20 from the 3′ end of sequence
read pairs, to remove adaptor contamination and also remove read pairs containing ambiguous bases.
Stacks [51] was used to profile genetic markers adjacent to restriction enzyme sites. Data from each
sample were grouped into loci using ustacks and polymorphic sites identified. A minimum of three
reads was used to define a cluster. Cstacks was used to generate a catalogue of variant loci across all
samples and the final allelic state at each polymorphic locus for all samples was determined using
Sstacks. SNP calls were converted to variant call format (VCF) for downstream analysis. SNPRelate [52]
was used to carry out principal component analysis (PCA) to examine relatedness between samples
collected at various sites. SNPs were filtered to exclude variants missing in >20% of study samples and
exclude variants with minor allele frequency <0.05. Linkage disequilibrium-based SNP pruning was
used to remove SNPs in approximate linkage equilibrium. PCA was carried out using the snpgdsPCA
function in SNPRelate and visualised using the ggplot2 R library [53].

The plastome MiSeq data was analysed, cleaned and assembled against a reference genome of
Lolium perenne L. (GenBank accession no. NC009950; [54]) using the Galaxy public online server [55–57]
following Perdereau et al. [46]. MPileup [58] was used to call insertions/deletions (INDELs) and
SNPs and they were visually checked on IGV v2.3 [59] and then filtered, with a minimum coverage
depth of 5, using the SnpSift filter tool [60]. Finally, the individual files were combined and re-filtered
(maximum-likelihood estimate of the first alternative allele frequency, AF1=1) before transfer to
Microsoft Excel. The software STRUCTURE v2.3.4. [61,62] was applied to investigate the genetic
structure of the samples using an admixture model following Perdereau et al. [46]. The ∆K statistic [63],
implemented in Structure Harvester [64], was used to determine the optimal value of K. An alternative
cluster number was compared but we have no a priori evidence to accept any of these. For example,
K = 5, based on rough geographical proximity of groups, did not markedly change the interpretation
(Figure S2). The principal coordinate analysis (PCA) was performed in GenAlEx version 6.5 [65].

3. Results

3.1. Ploidy of Dactylis Glomerata

All Dactylis plants subjected to flow cytometry were found to be tetraploid but some variation
existed in genome size (Table S2). The DNA content ratios for the known tetraploid plants relative to
the internal control were 1.29 and 1.32 and ranged from 1.25 to 1.45 for the other 72 Dactylis samples
included for flow cytometry analysis.

3.2. GBS Analysis

The GBS analysis generated a total of 10,744 SNPs across all genotypes (at a frequency of at least
5% in the samples). Total number of SNPs, in at least 5% of the samples, are shown in Figure 2a from a
total number of ca. 13,000 SNPs per country sample assayed (Figure 2b). Number of private SNPs per
individual ranged from ca. 200 to nearly 4000 and had a median ranging from approximately 1200
in the UK to 2000 in Poland (Figure 2c). PCA was used to assess clustering of genotypes based on
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the GBS SNPs. Genetic clusters loosely reflected geographic groupings based on country of origin
(Figure 3). Axis one represents 5.38% of the variation and axis two, 2.08% of the variation. There was
a large degree of overlap among regions, but geographic clusters can be identified, and they match
the geographic space with Ireland and the UK in the left of the PCA, Germany and Denmark in the
centre and Poland and Sweden in the right (with Poland and Sweden clearly separating on the second
axis of the PCA). Adjustment/modelling for tetraploidy was not undertaken because our GBS read
depth was not sufficient for a reliable assessment of allele copy numbers of sequence variants in
autotetraploids [66].
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Figure 3. Principal coordinate analysis (PCA) analysis of Dactylis glomerata GBS data. Samples from
different countries overlap but clustering of genotypes relative to geography is evident with Ireland
and the UK on the left, Germany and Denmark central and Poland and Sweden on the right (and also
split on axis 2).

3.3. Plastome Analysis

With as few as ten long-read PCR reactions per plant it was possible to amplify and sequence
ca. two thirds of the plastome (Table 2). A total of 8,966,825 out of 9,283,503 MiSeq reads passed the
filter. A total of 98% of the reads were assigned to an individual, for an average of 182,606 reads per
individual. An excellent level of per base sequence quality was determined in the FastQC reports and
the MiSeq reads were therefore not trimmed. Over 88% of the reads passed the high stringency filter
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(7,789,626 reads). Reads were assembled against the Lolium reference genome and on average, 62% of
the genome (83,834 bp) was aligned (ranging from 54,465 bp to 103,541 bp, Table 2). The resulting
assemblies had an average depth of coverage of 105× (minimum 23×; maximum: 193×). The sequences
were deposited in GenBank with the Bioproject SRA accession number SRP066566.

Table 2. Mapped length of Dactylis plastome sequenced.

Base Pairs (bp) % Complete Genome % Maximum

Mean length sequenced per genotype 83,834 61.97 73.60

Minimum length sequenced per genotype 54,465 40.26 47.82

Maximum length sequenced per genotype 103,541 76.54 90.91

Over 93% of the SNPs passed the filter equalling 1446 SNPs among the Dactylis plants (Table 3),
with a mean of 17 SNPs per kbp. A mean of 8.7 SNPs/kbp were found in the coding regions and
SNP content per gene was highly variable ranging from zero in ndhJ, psbN, and rrn16 to 98 in ndhA.
PCA was undertaken to examine genotype similarity, to determine plastid gene pools and investigate
phylogeographic grouping of individuals. Axes 1 and 2 (Figure 4, PC1 and PC2) explained 14.2% and
5.6% of the variation, respectively. Despite these low percentages, not discrete geographic structures
could be detected. Ireland and the UK genotypes group to the left of the plot and Sweden and
some Poland samples to the right, with genotypes from Germany and Denmark closer to the middle.
The same data was subject to structure analyses. It revealed eight clusters (Figure 5) with the ∆K
statistic [63]. Membership of the genotypes to these clusters does not correspond tightly to the country
of origin (Figure 5 and Figure S2). However, the germplasm does split into one group with strong
identity to cluster 1 (blue) that intergrades with the rest of the samples that have a diversity of
membership to the other seven clusters (Figure 5 and Figure S2).
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Figure 4. PCA of the plastome data. Axis one accounts for 14.2% of the variation and axis two for
5.6% of the variation. Some weak pattern can be seen relating to the geographical origin of samples.
For example, samples from Ireland and UK are more common in the central region of the plot and
Polish samples are only found in the lower region of the plot.
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Figure 5. Structure of Dactylis glomerata genotypes estimated using structure analysis of plastome SNPs.
Each plant is shown as a vertical bar and SNP variation is partitioned into coloured segments that
show the individual’s estimated membership fractions in each of the K = 8 clusters, determined as
optimal by the ∆K statistic [63]. Samples are arranged according to geographic location (1 = Poland,
2 = Germany, 3 = Denmark, 4 = Sweden, 5 = Ireland, 6 = UK). Alternative values of K were tested
but did not clarify groups any more than the optimal value of eight. An alternative plot with K = 5 is
shown in Figure S5 as an example.

Table 3. Plastome variation in Dactylis glomerata.

SNPs INDELs

Coding regions (CDS + tRNA + rRNA + STS) 729 6

Introns 290 19

Unknown (repeat regions + intergenic DNA) 427 88

Total 1446 113

SNP per kbp (out of the mean number of bp mapped) 17.25 -

SNPs in coding regions per kbp 8.70 -

SNP Count per Gene

atpB 5 psbB 23 rps14 11

atpE 7 psbE 4 rps15 1

atpI 10 psbH 5 rps16 51

cemA 16 psbJ 3 rps18 5

clpP 2 psbK 5 rps19 11

infA 7 psbN 0 rps2 5

matK 61 rbcL 17 rps3 19

ndhA 98 rpl14 11 rps4 21

ndhC 7 rpl16 26 rps8 7

ndhH 41 rpl2 2 rrn16 0

ndhI 6 rpl20 5 rrn23 7

ndhJ 0 rpl23 7 trnI-GAU 1

ndhK 14 rpl33 6 trnK-UUU 85

petA 10 rpoA 39 trnL-UAA 0

petB 19 rpoB 45 trnV-UAC 12

petD 26 rpoC1 19 ycf3 76

psaA 43 rpoC2 57 ycf4 6

psaB 42 rps11 15 Unknown 353

psbA 10 rps12 62
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4. Discussion

4.1. Genetic Diversity

GBS has proven to be a highly effective genotyping tool in Dactylis glomerata, detecting a high
number of SNPs (median total of 13,000 per country sample; or about 2700 SNPs per country at a
frequency of 5% or higher). There was also a high number of private SNPs per country (average of
approximately 1200 to 2000 per country sample). Poland had the greatest number of private SNPs and
the pattern could be related to sampling as Poland includes samples from both oceanic and continental
Europe. Germany had the second highest value of private SNPs and also contained a mixture of
oceanic and continental locations. The SNP markers can be easily transferred among laboratories,
unlike many of the other markers systems developed for Dactylis (see Introduction). Nuclear SNP
markers have also been used for D. glomerata by Bushman et al. [39] using GBS to discover SNPs
in autotetraploid plants and generate a genetic linkage map for QTL analysis. Zhao et al. [40] used
a related genotyping approach called SLAF-seq to generate over 440,000 markers for high-density
genetic linkage map construction and identification of flowering time QTL, and Zeng et al. [37] used it
for association mapping of rust traits. However, none of these studies assessed genome variation or
genetic variation/gene pools at a broad geographic scale like we have done here for NW Europe.

We chose to apply a long-read PCR based method of plastid DNA isolation prior to sequencing
with MiSeq with the ‘universal’ primers described in Uribe-Convers et al. [45] for dicots. A number of
other methods exist for plastome sequencing [54,67] but we have shown that the long-read PCR method
offers a highly reliable and effective way of sequencing the plastome in grasses because, for example,
our results with Phalaris arundinacea [46] and Dactylis glomerata (this study) found that over 88% of
reads passed the high stringency filter.

An average of 61.97% (83,834 bp) of the reads was aligned to the reference genome for each plant
sample (Table 2) with a range of 40.26% to 76.54%. A complete D. glomerata plastome has not been
published so we aligned our sequences to the Lolium perenne plastid genome of Diekmann et al. [54]
which is a closely related grass species of the tribe Poeae [68]. It is noteworthy that we have sequenced
up to 90.91% of the Dactylis plastome in this paper. Such plastome data will be valuable for future
comparative genomic projects and we have also provided plastome data for many genotypes across a
broad geographic range. Our results also show that it is not necessary to sequence the entire plastome
of each Dactylis glomerata individual because high variability was recorded in the partial plastomes
sequenced here (ca. 62% of the genome) from 48 sampled European plants. Each of the plastid DNA
loci would be expected to provide a similar phylogeographic signal because they are linked and found
on the same maternally inherited chromosome. However, mutation rates and selection rates vary
and we found SNP incidence to be high and heterogeneous among genes (Table 3). Sample field
collection aimed to discover maximum variation of Dactylis and included a broad range of habitats over
a latitudinal distance of 3000 km and a longitudinal distance of 2500 km including Poland, Germany,
Denmark, Sweden, Ireland and the United Kingdom (Figure 1; Table 1). The results of our plastome
analysis show that a high diversity of plastid types exist in our genetic resource collection.

High plastome diversity has also been recorded in other plants [69] and other grasses including
Lolium perenne using nuclear SSR markers by McGrath et al. [42] and Phalaris arundinacea by
Perdereau et al. [46] using plastome sequencing. Both of these forages are outbreeding, and wind
pollinated species like Dactylis but differ in their ecological niche. We discovered high variability
in genic as well as non-genic plastome regions. The adaptive significance of these variants in the
wild is unknown but it is clear that plastid genepool diversity is high in our collection and that
this variability could be of value to plant breeders. The plastomes will not always mirror patterns
of nuclear DNA variability because of lower mutation rates, uniparental inheritance and plastid
introgression [46,70–72]. However, our studies of nuclear SNPs using GBS also reveal high levels of
genetic diversity within Dactylis.
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4.2. Geographical Differentiation

The PCA analysis of the GBS data (Figure 3) showed geographic structuring of Dactylis glomerata
according to the country of origin. Groupings can be seen in the PC (principal component) 1 vs. PC2
plot (Figure 3). However, there is a large degree of overlap among country groups in this ordination
space indicating a relatively high degree of gene flow via pollen and seed. The samples from the eastern
and northeastern regions of the sample range (Poland and Sweden) are clustered to the right side of
the plot (and also separated from each other on PC2; lower and upper, respectively) and the western
samples from Ireland and the UK are positioned towards the left of the plot. Samples from Germany
and Denmark are positioned in the middle. Structuring is generally more evident across an east to
west than north to south cline. This could be due to the high proportion of more northern samples
that had an oceanic climate (Denmark, Ireland, Sweden, UK) rather than a more continental climate
(eastern Germany and Poland). This could also be partly explained by a data gap from southern to
northern Sweden.

The PCA of the plastome data (Figure 4) shows some geographic structure although it is not
clear. The lack of strong geographic structuring is also evident in the structure analysis (Figure 5 and
Figure S5). Dactylis is a wind pollinated, outbreeding species with a gametophytic self-incompatibility
system [73] and thus dilution of genetic structuring relative to geographical proximity was expected.
Dactylis also has good seed dispersal ability and is widely planted throughout Europe from seed as a
forage species [9]. Maternally inherited plastid markers are useful for tracing seed mediated geneflow
and we propose that the weak geographic structure in the plastome data could be influenced by seed
planting. It is possible that many of our genotypes have been inadvertently or intentionally moved by
human activity. We collected samples with no known history of cultivation but do not know if we
have sampled commercial cultivars or material introgressed via wild plant/cultivar hybridization. In a
different study on another potential biomass and bioenergy grass, Phalaris arundinacea, sampled across
the same geographical range, we found more genetic structure relating to geographical location in the
plastome dataset [46] possibly due to the lower level of planting and human mediated seed movement
in that forage species. However, genetic structuring by geographical location was more evident in
the nuclear GBS dataset suggesting that introgression of nuclear genes from local populations to
any planted material is helping to maintain geographical genetic structure. Plastid markers do not
introgress, but nuclear markers do, thus geneflow from native Dactylis will maintain a geographic
signal where it is lost in the plastid genome.

All samples were recorded as tetraploid (Table S2) so polyploidy does not explain the structuring
of genotypes that we determined. A range of ploidy was found in European D. glomerata but tetraploids
are the most common. Our extensive and wide sampling of northwestern European material supports
the hypothesis that tetraploidy is the dominant type. Cytologically, Dactylis is known to form a
polyploid complex. Diploid (2n = 2x = 14), tetraploid (2n = 4x = 28) and hexaploids (2n = 6x = 42)
were recorded in Europe and Africa [24,26] and triploid (2n = 3x = 21) and pentaploid cytotypes
were recorded in Israel [25]. Tetraploids have arisen via autopolyploidy and triploids/pentaploids via
autopolyploidy and allopolyploidy of diploid, triploid and tetraploid types [25]. Diploid cytotypes
are sometimes recognized as different taxa but intergrade with tetraploid forms on morphological
differences, chromosome number, ecology and geography [9]. The flow cytometry results do indicate
some variation in genome size. We do not know the cause of this variation, but previous studies indicate
it could be due to the presence of aneuploids and other meiotic irregularities [26,74] or genome size
variation with altitude [30]. Indeed, Dactylis glomerata is not cytogenetically stable and quadrivalents
are frequent at meiosis [75] leading to aneuploidy. We have not counted the chromosomes in our
material, but aneuploidy is a likely cause of the nuclear DNA content variation witnessed.

5. Conclusions

Both nuclear GBS and plastome SNP variation is high in northwestern Europe and plants show
broad scale genetic structuring corresponding to their country of origin, despite the common dispersal
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of its seed for forage and its wind pollinated allogamous breeding system. Our analyses define
groupings of Dactylis glomerata for genetic resource characterization and have characterised valuable
material for future breeding. None of the genetic variation could be explained by ploidy because all
sampled plants were found to be tetraploid. The sequence data is available for future comparisons and
analyses and it would be useful to extend the sampling to southern and eastern Europe and include
selected diploid individuals for comparison.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/7/342/s1,
Figure S1: Optimal value of K determined by the ∆K statistic using Structure Harvester. Eight clusters were
determined as optimal, Figure S2: Structure of Dactylis glomerata genotypes estimated using structure analysis of
plastome SNPs with K = 5 instead of the optimal value of K = 8. The K = 8 plot is presented in the main text. Each
plant is shown as a vertical bar and SNP variation is partitioned into coloured segments that show the individual’s
estimated membership fractions in each of the K = 5 clusters. K = 8 was determined as optimal by the ∆K statistic.
Alternative cluster numbers were compared but we have no a priori evidence to accept any of these nor do they
alter our interpretation of the results based on the optimal value of K = 8. We present K = 5 here as an example of
results with an alternative K value. K = 5 was chosen a priori, instead of other alternative K values (e.g., 2, 3,
4, 6, 7), based on the artificial but rough geographical proximity of groups (national boundaries). Samples are
arranged in the plot according to geographic location (1 = Poland, 2 = Germany, 3 = Denmark, 4 = Sweden, and
5 = Ireland, 6 = UK combined; total K = 5). Table S1: Long-read PCR parameters for each primer pair, Table S2:
Flow cytometry and ploidy determination results for Dactylis glomerate.
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