SHORT RUN BOX MAKER

A Senior Project submitted to
the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree of

Bachelor of Science in General Engineering

by
Jesus Valdez-Ruelas

June 2020

Statement of Disclaimer: Since this project is a result of a class assignment, it has been
graded and accepted as fulfillment of the course requirements. Acceptance does not impl
y technical accuracy or reliability. Any use of information in this report is done at the risk
of the user. These risks may include catastrophic failure of the device or infringement of
patent or copyright laws. California Polytechnic State University at San Luis Obispo and
its staff cannot be held liable for any use or misuse of the project.

Abstract

Small businesses with short run product catalogs have trouble finding the right size box
that will work for multiple products. In turn, this leads most businesses to use oversized
boxes resulting in unnecessary shipping fees. The objective of this project was to develop
and test a cost-effective prototype of a box making machine that could create a short run
of custom sized boxes. A Co2 laser was found to be the best option for cutting cardboard
and a vertically standing machine was designed to feed the cardboard via rollers. To
control cardboard movement stepper motors were used and controlled using an Arduino
Uno. A User Interface (UI) was developed using Excel VBA to communicate with the
Arduino Uno and to pass on box size and type. The prototype proved to be effective in
cutting cardboard patterns. Testing revealed the prototype could be twice as fast as
manual cutting methods if an 80W laser tube or larger were used. The source code used
to build this project serves as a good reference for future needs of accurate stepper motor
movement and PC UI development.

Keywords: Cardboard, Laser, Cutting, Box, Making, Arduino, Uno, Excel, VBA, Ul

ACKNOWLEDGMENTS

Thank you, Dr. Jean Lee, and Dr. John R Ridgely for your help.

LIST OF TABLES

Table 1: Cutting method deCiSION MALIIX.........ccueeevieciieriieriierieeseeseeseeseeseeereesseeseeseesseesseesseenses 14
Table 2: Average coefficients of friction between cardboard and sandpaper.............cccccveveveennnnee. 25
Table 3: Coefficient of Friction of Cardboard and Sandpaper Test Results...........cccceeuvveeviennnnns 33
Table 4: Cutter Drag Force Test ReSUILS.......c.cccvevierierieiieriecie sttt 33
LIST OF FIGURES

Figure 1: The standard box pattern (Wybenga, 2013, p. 470) ...cccvieeiieriieeieeeieeereeeee e 6
Figure 2: Estimated number of packages to be shipped in 2019.........cccceevveeviieriiniiniieieeieeeeiens 7
Figure 3: Fishbone diagram of the problem.cccceeciiriiiriirciieiieiece et 8
Figure 4: Cardboard manufacturing process (Wybenga, 2013, p. 462)ccccvvevcrierciieeiieenieeereeenne 9
Figure 5: Most common cardboard structures (Wybenga, 2013, p. 463)cccvevververveneeneerrennenns 9
Figure 6: Sample flute types (Not to scale) (Wybenga, 2013, p. 462).......ccccveviieviieecieeeieenieenns 10
Figure 7: Most common paper types (Daggar, 0.d.)ccceevierieriienienieeie e 10
Figure 8: Sample box pattern (Wybenga, 2013, P. 407) .cccevvcvveieeiieieeiieceeeereeree e eee e 11
Figure 9: Box certificate example (Wybenga, 2013, P. 465)cooviiiiiiiiieeieeieecie et 11
Figure 10: UPS strength guidelines (ULINE)..........ccoecvieeiieriieniienienieneesiesie e eeve e see e e 12
Figure 11: Space comparison of shop floor between a gantry layout and large format printer

JAYOUL. 1.eeiieiee ettt ettt et e et e et e e s eb e e et e e e taeeebeeesbaeenbae e tae e tbaeenbaeetaeeasbeeenreeentaeensseennres 13
Figure 12: A comparison between electric and pneumatic actuators.........ccceveeeereereereeneneeeene. 15
Figure 13: Cardboard feeder design deCiSIONc.ececuiieviiierieeiiie e eree e e e eseveesvee e 16
Figure 14: Early CONCePt dESIZNSccvivvieriirieeiieiieiieieeieesieesieeseesteeseeesssessnessseenseensessseeseenseenses 17
Figure 15: Assigned pins for the SRBM Project.........ccuieviieriieiciieiiii e eeiee e eiee e esveeevee s 19
Figure 16: State Transition Diagram for the SRBMcccooviiiiiiiiiiiciececceeceeeee e 20
Figure 17: Serial Communication FOrMALtccveeieriiriinieiie e s 20
Figure 18: Excel User INtErfacecueevcuiiiiiiiciieciee ettt et e ve e sveeeseveeeane e 21
Figure 19: Diagram of cutter drag force eXperimentccceeveverveercvrerieerieeseeneeseeseeseesnesenennns 23
Figure 20: Experiment apparatus used to measure cutter drag force.........oovvvevvienieeeceeenieenneenns 23
Figure 21: Relationship between maximum angle and coefficient of friction.............ccccceveennenne 24
Figure 22: Experimental apparatus used to find the coefficients of friction............ccccecereneennne. 24
Figure 23: Proof of concept prototype used to verify proper function of design...........cccccveennenne 26
Figure 24: Bending of cutter due to eXcessive CUttiNg PreSSUIE.......ccverrerrerveereereerieerseesseenseenns 26
Figure 25: A slot that was added to raise the cardboard higher onto the blade.cccccccoece.e. 27
Figure 26: Final Machine DeSi@Ncccuiiiiiiiiiiiiiie e eciee et eieseive et e iveesveesveeeeveesesaeens 28
Figure 27: Final Design PrOtOLYPE.......c.vvvieiriieciieciieiieriiesiteseeseestesvesreeeessseeseesseesseesseesseessnessnes 29
Figure 28: Close up view of final design prototyPe........cccvierieerciieiiieeiie e ciee e esveesveeevee s 30
Figure 29: Initial Prototype Stepper Motor Driver State Transition Diagram............cccccoceeeennenee. 34

REPORT TABLE OF CONTENT

4

ProbDIem DESCTIPLION: .. .uviiiiieiiieeiie et ettt et e et e st e e ereeeteeetbeessbeessseeessaeessseessseaassaeessseessseesssens 6
LItErature REVIEW:oiiiuiiiciiieciie ettt et e e s ve e etb e e abeessbeessseeestbeessseesssaessseeesssesssseennsens 8
SOIULION DIESIGN ...vvieiiieiieiieiierierie e etesteete e et e e bt et e bt esse e seesseesseesseessesssesssesssesssesssenssenssennns 12
Test and Evaluation of Design AItEINatiVEScccveeeciiiiiireriieeieeeiie e esreeereeeieeeseveesreeseeeenes 22
Conclusions and RecOMMENAAtIONSccvvervieriieriierieiieniesie sttt eteeseeseesseesseesseesseesseessnessnens 31
FULUIE DITECHIONSeviiiiiieciiie ettt ettt ettt e et e et eeseveesabaeestaeesbeeesseeessseesseessseeasssessssessssenans 32
RETETEIICES. ... ittt ettt et e et e et e e s beeesbeeessbeessseessseeessseesssaeasseeesseesssenns 32
W 070153 T L PP 33
1. Coefficient of Friction Test RESUILSc.ccccuiiieiiiiriiiiiieeie ettt 33
2. Cutter Drag Force Test ReSUILS.......cccvevierieiieiieiie ettt 33
3. Initial Prototype Stepper MoOtOr DITVETccceviiiieiieeieeiieie et eie et 34
4. Initial Protype Hand Calculations for Linear Bearings Selection..........c.ccccceevveeeciieennnns 40
5. Initial Prototype CAD Model of Carriage ASSemDbIY........cccccveerieviierieneeneeneenieneeneeeen 41
6. EXCel VBA UL SOUICE COAECcuvviiiiiiiiieeiieeieeete ettt ettt sveeeveeeaaeesavaesveeessaeeenas 45
7. ISR Hand CalCulations.........c..ccveevieeiieniiesiierieesieeseesieeseeseeseesssesesesssesssesssesnsessseessesssesnses 46
8. SRBM Final Prototype Source Codeccvrriieriierieniieniienieriesresreeeesreeseeseesseesseensnes 48
9. FINal PrototyPe CAD ...cociiioiiieeiee ettt ettt e sttt e e sbe e st e e etae e sbaeenbaeessaeennns 66
Introduction:

As the owner of a small short run furniture manufacturing business by the name of
Central Coast Creations, I’'m constantly faced with the issue of finding the right size box
for the products I sell. As a result, many custom size boxes are hand made from large 4° x
8’ sheets using steel blades, the process is both time consuming and costly. Based on 15
sample boxes made it took an average time of 8.2 min. It’s estimated by sales that by the
end of 2019 a total of 107 hours and $2,130 (at a rate of $20/hr.) would have been spent
making boxes since the business started in 2017. However, scaling this up to a larger

business dealing with a lot of custom products the cost of making custom sized boxes can

be much more significant. In this senior project report, I document my research and
testing of a short run box machine prototype as if it was to be implemented in a business

like mine.

Problem Description:

Currently the method used to make custom sized boxes involves cutting a 4’ x 8 sheet of
cardboard using a steel blade. A pattern as shown in Figure 1 is cut out to the dimensions
of the box that is to be made. Next, the flaps are folded on an edge of a table and the box

is taped together to its final shape.

Figure 1: The standard box pattern (Wybenga, 2013, p. 470)

Due to the unpredictable shape of the products, most of them being handmade rustic
pieces, a standard box size cannot be implemented for a single product. In addition,

shipping costs for oversized boxes can become expensive if accumulated over a year.

Based on 15 sample boxes that were manually made it took an average time of 8.2 min to
create a box. Using sales data from 2018 as shown in Figure 2 a total of 322 custom

packages were made, this equates to a total of 44 hours making boxes. At a rate of $20/hr.
6

the cost of making boxes in 2018 was $880. While not very significant, by the end of
2019 an estimated total of 107 hours and $2,130 would have been spent making boxes.
By accumulating this cost over the span of 5 years with business growth, the problem can
reach a cost of over $10,000. Figure 3 shows a fishbone diagram of the causes of the

problem.

Number of Packages
450

400
350
300
250
200
150
100
50
0
2017 2018 2019

Figure 2: Estimated number of packages to be shipped in 2019

Tools are slow

Not Enough Space

Not Repeatable

Bulky Inventory /

3,

Large Cutting Equipment

Too Many Different Size Boxes

Storage Costs

Shipping Costs

Unpredictable Shape

Labor Costs

Unused Space

A

> Problem

Fragile

Unpredictable Shape

Material

Figure 3: Fishbone diagram of the problem.

Literature Review:

To design a solution capable of creating custom sized boxes it was necessary to review

both the cardboard manufacturing processes and test methods. From this knowledge the

best design decisions were made later in the project.

According to Wybenga and Roth (2013) cardboard is made from two paper faces glued to

a corrugated medium center using large glue rollers, this can be seen in Figure 4. While

the figure shows how a single wall corrugated sheet is made similarly double and triple

walled corrugated sheets are made, see Figure 5 for an example of cardboard structures.

DELIVERY
SINGLE FACER DOUBLE FACER COOLING SECTION
A = Linerboard D = Preconditioner
B = Corrugating Medium E = Corrugating Rolls
C = Preheaters F = Glue

Figure 4: Cardboard manufacturing process (Wybenga, 2013, p. 462)

Unlined Corrugated (A-flute)

Single Face Corrugated (A-flute)

/ Single Wall (Double Face) Corrugated (A-flute)

//AVAVAVAVAVAVAVAVAN

Double Wall (A- and C-flute)

Figure 5: Most common cardboard structures (Wybenga, 2013, p. 463)

Internally the corrugated medium or flutes as it’s called can vary in pitch and height
depending on the desired structure. The flutes are usually indicated by a letter see Figure

6 for common flute types. On the outside of the cardboard sheet the paper that is bonded

el

can vary depending on its use however, the most commonly used paper is virgin Kraft

paper. For other commonly used papers in the industry see Figure 7.

Figure 6: Sample flute types (Not to scale) (Wybenga, 2013, p. 462)

« KRAFT (K): Virgin Kraft paper

- TEST 2 (T2): Partly recycled liner paper

« TEST 3 (T): Fully recycled liner

« CHIP (C): Waste based liners

» FULLY BLEACHED WHITE (BW): Fully bleached Kraft liner

« WHITE TOP (WT): White coated recycled liner

+ MOTTLED KRAFT (MK): Mottled white Kraft

+ OYSTER (OY): Mottled test liner

« SEMI CHEM (SC): Virgin fibres using neutral sulphite semi-chemical process
- WASTE BASED (WB) 100% recycled fibres

Figure 7: Most common paper types (Daggar, n.d.)

Using cardboard sheets box manufacturers cut cardboard box patterns from them using
large die cutters see Figure 8 for a sample box pattern. For more information on box

patterns see Wybenga and Roth (2013).

10

T ., i i [
L 1 !
w 1 1 ']
§ (5ot : i i
FREER i g | .
5 g o End panel i Side panel] ! Vertical score
o 1
o |28 I
S |E. = 5 |
= L3N ' ' !
i T Y
Horizontal
side score Q
Box maker's certificate
Slot LENGTH WIDTH Slot

Figure 8: Sample box pattern (Wybenga, 2013, p. 467)

Usually box manufacturers attach their box certificates at the bottom of the box that
usually contains information regarding weight limits, ECT (Edge Crush Test) results, and

Burst test results. See Figure 9 for an example box certificate.

c C,
o+ THIS 4;.0
©” TRIPLEWALL
BOX MEETS ALL CONSTRUCTION
REQUIREMENTS OF APPLICABLE
CATION

FREIGHY CLASSIF !

Figure 9: Box certificate example (Wybenga, 2013, p. 465)

Box manufacturers attach max weight limits before failure however, a safer threshold is
desired to avoid shipping damages. Using UPS (United Parcel Service) strength
guidelines the maximum shipping weight can be determined using the cardboard
classification. See Figure 10 for UPS strength guidelines. Since this project is aimed
towards small business owners using the most cost-effective solution and readily

available solution only two types of corrugated sheets will be considered in this project,
11

one being a single wall of ECT 40 and a burst strength of 200 psi as well as a double wall
of ECT 48 and a burst strength of 275 psi. All other styles of cardboard are either too

expensive to be effectively implemented or not readily available and must be special

PS STRENGTH
q o GUIDELINES

AX WT.
BOX TYPE m. BOX)

- 30 Ibs.
32
Ibs.
2004 Single-Wall 4

65 Ibs.

ordered.

2754 Single-Wall
80 Ibs.

275# Double-Wall
Ibs.
\ 500# Double—WaIl 140

Figure 10: UPS strength guidelines (Uline)

While researching other custom box machines were found but none that were both cost
effective and implemented automation at a small scale. With a growing number of
custom product sellers in ecommerce there is an increasing need for a solution. If a
solution is implemented buyers can pay less for shipping, and sellers can increase profit

margins.

Solution Design:

While gathering ideas for how the design of this machine will look like two layouts were
taken into consideration, one being in the form of a gantry machine and the other being in

the form of a large format printer see Figure 11. Due to the layout of a gantry machine it

12

can be less complex to add different tools to the machine. In addition, a gantry machine
would not require a method to feed in the cardboard because most machines such as CNC
(Computer Numerically Controlled) routers use vacuum tables. However, since space is
very important because this project is geared towards small businesses a large format
printer layout is desired. Both layouts would require space for at least one cardboard
pallet and the machine. As shown in Figure 11 a large format printer layout takes
significantly less space when compared to a gantry machine. At a normal market rate of
$1 per square foot for a warehouse lease, the cost for a gantry machine would equate to
$540 a year while a large format printer layout would equate to a quarter of that cost. As
a result, a large format printer layout was decided early on. An early concept of the
design can be found in Figure 14:. However, to further reduce space the final design of the
machine resulted in a vertical layout such as to have it laid up against a wall. In practice
this reduces the amount of space that needs to be in front of the machine and creates a

smaller footprint when compared to a large format printer.

Gantry Style Large Format Printer Style

f
x v

Figure 11: Space comparison of shop floor between a gantry layout and large format
printer layout.

Cardboard Cardboard
Pallet Pallet

13

While ideating forms to cut the cardboard and researching cutting methods Mathilde
(2014) was a good source. The following decision matrix was made to compare different
methods. Higher numbers are the most desired aspects such as lowest cost, quickest
speed, highest safety, longest life, and least complexity. All aspects are equally important

and are weighted equally in this decision matrix.

Table 1: Cutting method decision matrix

Cutter Cost ‘ Speed Safety Life Least Complexity Total ‘
Laser Cutter 2 10 2 10 10 34
Steel Blade 10 2 8 2 2 24

Rotary Cutter 9 5 8 4 4 32
Die Cutting Blade 1 10 1 9 6 27

Initially it was thought that a rotary cutter would be the best option for this project but
proof of concept testing later revealed that a complex method of holding the cardboard
againts the rotary cutter would be required. As a result, rotary cutters and steel blades
were ruled out as a possible solution. Die cutting blades were considered but were also
ruled out do to the cost of blades they would be out the budget of a low cost soultion.
Additionally, the size of the machine would have to increase to move the blades in and
out of the cutting area this would be an undesirable feature. A laser cutter was found to be
the best choice for this project, because It proved to be the simplest method to cut
cardboad while being a fast solution. The fold edges could be cut using patttern lines to
ease folding while still maintaining the structure of the box. However, the downside to
laser cutting methods would be the fume extraction equiptment needed for safe operation

and the initial cost of equipment. Due to time constraints the focus of this project was

14

only on the the design of the machine, a fume extraction method was not designed as

there is many products that do this already in the market.

While idealizing ways to feed in the cardboard to the rotary cutter during the initial
concpet design two possible solutions were compared, electric and pneumatic actuators.
After reading a comparison article written by Robert Kral (2015) an engineer for
BIMBA® a major manufacturer of both electric and pneumatic actuators the pros and

cons of each was listed and compared see Figure 12.

/?*

pou
x 4

Electric Linear Actuators Pneumatic Actuators V
Pros Pros
* Precise control and positioning * Can apply large adjustable forces
* Low operating costs * Inexpensive
* Doesn’t require compressed air * Economic when the scale of deployment matches
Cons the compressor size
* Expensive Cons
¢ Can loose synchronization without closed-loop * Air leaks can be costly

control » Can’t control position incrementally, can only be
* Force is not adjustable fully open or closed

Figure 12: A comparison between electric and pneumatic actuators

Due to the need of regulating the force applied by both the rotary cutter and the cardboard
feeder into the cardboard a pneumatic actuator was chosen for the early proof of concept
prototype. Since this project is geared towards small business and shops it ws assumed
that compressed air was readily available. However, do to the project switching its course

over to a laser cutting method actuators were no longer required.

15

Furthermore, using large format printers as an inspiration large rollers were chosen to
feed the cardboard into the machine an early conecpt design is shown in Figure 13. The
anti-slip surface material was chosen to reduces the possibility of slippage and skipping
of the rollers hence letting the machine cut more accuratly. Testing later revealed
neoprene rubber would be the best material and it was added to the final design. To drive
the rollers a set of spur gears were designed to replicate the number of steps per inch
required for the other axis. As a result, a 13:6 gear reduction created approximately the

same amount of steps per revolution.

Anti-Slip

Material

Steel Core

S
@

Figure 13: Cardboard feeder design decision

16

Figure 14: Early concept designs

When choosing a laser cutter, a Co2 laser tube was preferred over a laser diode due too their high
wattage and fast cutting capability. They are commonly used to cut thin plywood sheets for arts
and crafts but can be used to cut a wide range of materials including cardboard. As a result, a 40
W laser tube was chosen for this project. A more powerful laser tube would increase cutting
speeds however for the purpose of creating a prototype a 40 W laser tube was determined
sufficient. The mirrors, focal lens, and mirror mounts required for this project were selected using
off-the-shelf components. Early on it was determined that the machine would be designed around
a 1.5” focal length the frame was designed to work with such lens. In a complete solution a fume
extractor such as those used by Co2 laser machines would have to implemented with a hood to

contain the fumes.

To control the movement of the laser lenses and the cardboard feeder Nema 23 stepper motors
were chosen for their high torque, precision step movement, and low cost. Combined with micro
stepping drivers the motors are capable of micro stepping 16 steps within their normal 200 steps
per revolution. Such feature is desired to accurately cut the cardboard patterns. In addition, its

high torque can be used to drive the cardboard feeder rollers at reasonable speeds.

17

To control stepper motor functions an Arduino Uno was chosen as its clock frequency of 16 MHz
was determined to be sufficient to perform the functions of this prototype which included
accurate stepper motor movement. Another feature that was desired was its ability to
communicate with a PC via a USB serial port. This feature would allow the creation of an easy to

use PC user interface that could send over the required box dimensions to the microcontroller.

Before coding began, the microcontroller pins were assigned for specific functions, it was also
determined that two limit switches would be required to home the machine and to find the starting
position, similar to how a CNC machine homes on startup. To have more control of the machine a
button interface was deemed necessary to be able to quickly stop and reset the machine if it ran
out of cardboard. Additionally, a push out function was desired if the machine got stuck with
cardboard it could be easily pushed out. Pins for these buttons were also determined and can be

seen in Figure 15 with the rest of the assigned pins.

18

Y-axis Limit Switch

X-axis Limit Switch

Y-axis Dir.
X-axis Dir.

b
=
=)
(=
=
=
=

Laser PWM

Start Button
Pause Button
Push-out Button
Reset Button

Y-axis PWM
X-axis PWM

L1e3] Uy OpEW - DO OUTHPIN MMM

(-MMd) TEIIDIA

a5
+ ¢
o

Figure 15: Assigned pins for the SRBM project

After assigning pins, state transition diagrams were made for the most important tasks they can be
found in Figure 16. To reduce the number of instructions that would have to be passed on through
serial communication most of the movement instructions were coded into the microcontroller.
This reduced the number of instructions required through serial communication to 7. The format
can be seen in Figure 17 commas separate the variables which then get turned into a list of

coordinates for movement within the microcontroller.

19

Stepper Motor Serial Driver

instructions_received_flag=1

State 1
Wait for
\Transmission

State 2
Home X-axis

ui_play=1 Serial.available()>0

State 2
Store
Jransmission,

State 4
Go to Exit
Position

State 3
Process
Movement

Figure 16: State Transition Diagram for the SRBM

Serial Communication Data

"LLW,H,FVJT"

L = Length [in] - Type: float
W = Width [in] - Type: float
H = Height [in] - Type: float

F = Flap Length [in] - Type: float =0 Box Pattern

V = Velocity [in/s] - Type: Integer =1 Half Box Pattern

J = Joint Tab - Type: Boolean =2 Double Flap Square
T = Box Type - Type: Integer =3 Square

Figure 17: Serial Communication Format

Using Visual Basic for Applications (VBA) within Excel an easy to use interface was designed.
The User Interface (UI) can be seen in Figure 18 a copy of the source code can be found
Appendix 6. The UI was designed so the user could quickly select a box pattern and input the
different dimensions. Four box options were designed into the system including the commonly
known box pattern, half-box pattern, double-flap square, and a square. The half-box pattern was
implemented for making boxes bigger then possible with a 4’x8’ cardboard sheet. The double-
flap square and the square pattern were implemented to help with reinforcing heavier boxes or to
separate internal box content. A joint tab option was implemented in the UI to allow easy removal

of the joint tab incase the box would not fit into a 4°x8” sheet.
20

A B c D E F G H J K L N o P Q R s T u v w X Yi

SRBM Interface

1
2
3
A
5 f port:com| 5 COM Port
6
7
8

0 Tw LW L
7 W T G W T T

13 Box Pattern Half Box Pattern ¢ 2-Flap Square @ square
O Joint Tab
17 Options:

19 L w H F
20 4 [a4 [8 | 2Jin

23 Cutting Speed| 2ins

%
27 Send To SRBM
28

Figure 18: Excel User Interface

To smooth out stepper motor operation the pulse width modulation (PWM) required for stepper
movement was controlled in an Interrupt Service Routine (ISR) which was programed to loop at
100 Khz the maximum frequency the stepper motor drivers could take according to the data sheet.
Controlling the stepper in an ISR would make sure that the PWM was accurate, and without
interruption from other controller functions. To be able to control stepper motor speed,
calculations were made for the PWM required to reach a desired speed based on micro stepping,
pulley teeth, and belt pitch configurations. These were then used in the ISR to output the PWM
required for the desired speed. They can be found in Appendix 7. Due to the complexity of the
ISR when a frequency was determined for its reoccurring calculations it was slowed down
because of the numerous operations resulting in slower motor speeds then inputted into the
system. Possible explanation of this occurrence could be improper setup of the microcontroller’s
timer counter disabling counting during an ISR. However, a quick solution was found by
measuring the ISR actual frequency required to perform operations and then correcting for it in

PWM calculations to obtain the desired speeds.

21

Furthermore, the stepper motors were found to vibrate a lot during testing as a quick solution to
the problem a 10- step linearly increasing velocity profile was used for both accelerating and
decelerating. Vibration was drastically reduced, and it allowed for smoother transitions between

movements.

Test and Evaluation of Design Alternatives

Initially rotary cutters were considered for this project and two tests were performed to
validate the proper function of them. One test similar to how a tomodynamometer is used
to measure blade cutting resistance on fabric using ASTM standards (ASTM, 2015)
measures the cutting resistance of the rotary cutter. It also provides different cutting
pressures in the pneumatic cylinder to be able to find the required cutting pressure for
both the single and double walled cardboards. See Figure 19 for a diagram of the
experiment and Figure 20 for the experiment apparatus. Appendix 2 contains the
collected experiment data. It was found that for double wall cardboard (ECT 48) the
cutter drag force peaked at an average of 5.1 1bf and for single wall cardboard (ECT 40)
the drag force peaked at 3.4 1bf. These results will be used later on to size the linear

bearings for the carriages.

22

Cutting Force (Resulting
from Pneumatic Cylinder
Pressure)

Cutter Drag Force
Smooth Surface

Figure 19: Diagram of cutter drag force experiment

Figure 20: Experiment apparatus used to measure cutter drag force

The next test that was perfomed was used on the cardboard feeder anti-slip surface
materials to find the coefficicent of friction. Using methods outlineds in ASTM standards
(ASTM, 2018) different surface materials were tested for their coefficicents of friction on
cardboard to find a sutible material for the feeder cylinder. See Figure 21 for the
relationshp between maximum angle before slippage and coefficient of friction. See

Figure 22 for experimental apparatus.

23

MN

M=Tan&

Figure 22: Experimental apparatus used to find the coefficients of friction

After experimenting with a few materials, neoprene rubber was found to have the highest
coefficient of friction, see Table 2. Appendix 1 contains results for the coefficient of
friction tests. Early on it was thought that sandpaper would have been a good option but
due to its roughness and large scratches that were left behind on the cardboard test
surface it was ruled out. From these results neoprene rubber resulted in having an

excellent coefficient of friction while not damaging the cardboard surface.

24

Table 2: Average coefficients of friction between cardboard and sandpaper

Material Omax (°) u

Neoprene Rubber 46 1.0
36 Grit Sandpaper 48 1.1
80 Grit Sandpaper 46 1.0
150 Grit Sandpaper 44 0.97
220 Grit Sandpaper 42 0.89
360 Grit Sandpaper 36 0.73

To verify that the original concept design was going to effectively cut cardboard a simple
carriage proof of concept prototype was built and tested as shown in Figure 23. Next, a
simple program was written in Python and was ran on a Pyboard microcontroller to
activate the pneumatic cylinder using a solenoid as well as to move the stepper motor.
The stepper motor driver can be found in Appendix 3. Through experimentation it was
discovered that the rotary cutter blade was too thin to hold the cutting pressure and flexed
to the point of curving the cutting line as shown in Figure 24. Through experimentation it

was found that by lowering the cutter into the cardboard and feeding it away from the

25

lowest cutting edge the cutter could make a cut with less effort. To do this a slot was

added along the cutting line as shown in Figure 25.

Figure 23: Proof of concept prototype used to verify proper function of design

Figure 24: Bending of cutter due to excessive cutting pressure

26

Figure 25: A slot that was added to raise the cardboard higher onto the blade.

After the proof of concept prototype was built using a rotary cutter it became clear that a
solution using a rotary would need complex methods of holding the cardboard down
against the cutting force. In turn, this led to the decision of using a laser cutter instead.
Such design would not require pneumatic cylinders and would use significantly fewer

moving parts.

Furthermore, the machine shown in Figure 26 was designed to feed in the cardboard
vertically into the laser cutter. The wheels laying outside the machine were designed to
feed in the cardboard sheet as straight as possible. They remain unattached to the vertical

frame for easy moving and storage.

27

Figure 26: Final Machine Design

A prototype of this design was built and can be seen in Figure 27 a close up view can be
seen of the front in Figure 28. The microcontroller was thoroughly tested for proper
functionality. The machine was found to move the cardboard accurately and all button
functions worked properly. However, due to improper concentricity of the roller ends to
the centers the cardboard was found to slip slightly. This problem was due to a build
defect and missing lathe equipment needed to make such part. The problem could be

fixed with proper machining equipment.
28

Figure 27: Final Design Prototype

Through testing it was determined that a cutting speed of .75 in/s was sufficient for
double-wall cardboard and .1 in/s was sufficient for single wall cardboard. In theory at a
cutting speed of .75 in/s a 24” x 24” x 24” box which is the largest box the machine can
make would take 8.8 min. to be cut. When comparing this to the avarage time to make a
box manually (8.2 min) it became obvious that a higher wattage laser tube would be
necessary to operate efficiently, perhaps a laser tube with twice as much wattage such as
an 80W laser tube. Then a 24” cube box could be made in less than 5 minutes. See Figure

29 for a close up view of cutting action.

29

Figure 28: Close up view of final design prototype

30

Figure 29: Close up view of cutting action

Conclusions and Recommendations

The final design of the short box maker prototype proved go be an effective solution to
cutting cardboard in a small shop were a lot of custom sized boxes would be required. Its
small footprint allows it to be placed up against a wall taking minimal space and the Ul
reduces the complexity of running the system. However, due to the number of parts
required to build this machine it is still a complex machine to build. A gantry style
machine would be recommended if the space permits due to it being the simplest design

of all the options. Additionally, the UT and the microcontroller’s programming can be
31

replaced by using existing alternatives such as the open source Arduino g-code controller
project called GRBL. Which can be fed g-code from existing pc software. A simple
program written in G-code can be made with variables that can be edited quickly to
change box dimensions. This reduces the build complexity and the programming skills
required to build such machine significantly. However, the source code used to build this
project serves as a good reference for future needs of accurate stepper motor movement

and PC UI development.

Future Directions

If the need for making custom boxes grows to the point that a full-time employee would be
needed to make boxes a fully autonomous machine could be designed. If space were not limited a
machine could be built with a crane that could lift a cardboard sheet and could lay it on a gantry
style machine. This machine could connect to an existing order database to cut boxes before they
are needed hence reducing the need of human labor. However, such solution would require much

research into API development.

References

ASTM. (2015). ASTM F2992/F2992M-15 Standard Test Method for Measuring Cut Resistance of
Materials Used in Protective Clothing with Tomodynamometer (TDM-100) Test
Equipment. Retrieved from ASTM International: https://doi-
org.ezproxy.lib.calpoly.edu/10.1520/F2992 F2992M-15

ASTM. (2018). ASTM G115-10(2018) Standard Guide for Measuring and Reporting Friction
Coefficients. Retrieved from ASTM International: https://doi-
org.ezproxy.lib.calpoly.edu/10.1520/G0115-10R 18

32

Daggar, J. (n.d.). What Are Corrugated Board Grades?” GWP Group,
www.gwp.co.uk/guides/corrugated-board-grades-explained/. Retrieved from GWP
Group: www.gwp.co.uk/guides/corrugated-board-grades-explained/

Kral, R. (2015, February 3). Electric vs. Pneumatic Actuators. ASSEMBLY.

Mathilde. (2014, November 19). How to Cut Cardboard. Retrieved from Making Society:
http://makingsociety.com/2014/1 1/how-to-cut-cardboard-prototyping/

Twede, D. e. (2014). Cartons, Crates and Corrugated Board.: Handbook of Paper and Wood
Packaging Technology. DEStech Publications.

Uline. (n.d.). box_weights. Retrieved from Uline: www.uline.ca/images/en-
US/CustomerService/box_weights.gif

Wybenga, G. L. (2013). The Packaging Designer's Book of Patterns. Wiley.

Appendix:

1. Coefficient of Friction Test Results

Table 3: Coefficient of Friction of Cardboard and Sandpaper Test Results

Material Omax (°)
Test 1 Test 2 Test 3 Average
Neoprene Rubber 45 46 46 46
36 Grit Sandpaper 45 48 50 48
80 Grit Sandpaper 47 46 45 46
150 Grit Sandpaper 44 45 43 44
220 Grit Sandpaper 41 42 42 42
360 Grit Sandpaper 36 35 37 36

2. Cutter Drag Force Test Results

Table 4: Cutter Drag Force Test Results

Test Double Wall Single Wall
Peak Force Peak Force

(Ibf) (Ibf)

33

3 7.1 3.8
4 5.1 4.1
Average 5.1 34

3. Initial Prototype Stepper Motor Driver

State 1

Wait for Run = 1/Finished = 0

Cardboard

State 2
Move Feed
Direction Carriages
To Desired
Location

Finished = 1/Run =0

Cross_Feed_Done =1

State 4
Cross Feed
Direction Cut
and Score

Done =1
State 3
Feed
Cardboard

Stop =1/
Cross_Feed_Done =0

Figure 30: Initial Prototype Stepper Motor Driver State Transition Diagram

34

...eDrive\Python\Short Run Box Maker\Stepper_motor_driver.py

-*- coding: utf-8 -*-

Jesus Valdez

Stepper Motor Driver

import pyb

import time

import array as array

———————————————— Stepper Motor Driver--------------------

pinE - Enable Pin (.high() to disable)

pinD - Direction Pin

pinP - Pulse Pin

SPR - Steps per revolution [step/rev] (Dont forget microstepping)
IPR - Inches per revolution [in/rev]

VMAX - Maximum velocity [in/s]

AMAX - Maximum acceleration [in/s”2]

MPP - Maximum Pulse Period [us] (Stepper Driver Limit)

MNPP - Minimum Pulse Width [us]

STEPS - Number of steps to take to full velocity(Step Resolution)
Hold - Power Stepper Always (May get Hot during long periods of use)
t_0 - First step pulse width

DPS - Direction Pin Switch (1 - Switch Direction)

class stepper_motor_driver:

def __init__(self,pinE,pinD,pinP,SPR,IPR,VMAX,AMAX,MPP,MNPP,STEPS,Hold,DPS=0):

self.Enable = pyb.Pin(pinE, pyb.Pin.OUT_PP)

self.Direction = pyb.Pin(pinD, pyb.Pin.OUT_PP)

self.Pulse = pyb.Pin(pinP, pyb.Pin.OUT_PP)

#---Increasing Pulse Width Calculations---

self.Steps_per_rev = SPR #[step/rev]

self.Inches_per_rev = IPR #[in/rev]

self.Max_velocity = VMAX #[in/s]

self.Max_acceleration = AMAX #[in/s2]

self.Maximum_pulse_width = MPP#[us]

self.Minimum_pulse_width = MNPP#[us]

self.Acceleration_steps = STEPS#[#]

self.Pulse_width = array.array('I',[])

self.Pulse_repeat = array.array('I',[])

self.DPS = DPS

self.state = @

self.toggle = ©

#Check if Max_velocity is attainable and create Pulse Width Array

self.Desired_Minimum_pulse_width = int(1000000*(self.Inches_per_rev/
(self.Max_velocity*self.Steps_per_rev)))

if self.Desired_Minimum_pulse_width>=self.Minimum_pulse_width:

for n in range(@, (self.Acceleration_steps+1)):

35

..eDrive\Python\Short Run Box Maker\Stepper_motor_driver.py

self.Pulse_width.append(int(self.Maximum_pulse_width-
((self.Maximum_pulse_width-self.Desired_Minimum_pulse_width)/
self.Acceleration_steps)*n))
elif self.Desired_Minimum_pulse_width<self.Minimum_pulse_width:
for n in range(@, (self.Acceleration_steps+1)):
self.Pulse_width.append(int(self.Maximum_pulse_width-
((self.Maximum_pulse_width-self.Minimum_pulse_width)/
self.Acceleration_steps)*n))
#Check if Max_acceleration is attainable and create Pulse Repeat Array
self.Max_possible_acceleration = int((1/
(self.Minimum_pulse_width*self.Minimum_pulse_width))*
(self.Inches_per_rev/self.Steps_per_rev)*1000000*1000000)
if self.Max_acceleration <= self.Max_possible_acceleration:
for m in range(len(self.Pulse_width)-1):
v_0 = (1/self.Pulse_width[m])*(self.Inches_per_rev/
self.Steps_per_rev)*1000000
v_1 = (1/self.Pulse_width[(m+1)])*(self.Inches_per_rev/
self.Steps_per_rev)*1000000
self.Pulse_repeat.append(int(((v_1-v_0)/self.Max_acceleration)/
(self.Pulse_width[m]*.000001)))
elif self.Max_acceleration > self.Max_possible_acceleration:
for m in range(len(self.Pulse_width)-1):
v_0 = (1/self.Pulse_width[m])*(self.Inches_per_rev/
self.Steps_per_rev)*1000000
v_1 = (1/self.Pulse_width[(m+1)])*(self.Inches_per_rev/
self.Steps_per_rev)*1000000
self.Pulse_repeat.append(int(((v_1-v_0)/
self.Max_possible_acceleration)/(self.Pulse_width[m]*.000001)))
self.number_of_steps = sum(self.Pulse_repeat) #Number of steps to max
acceleration
for n in range(len(self.Pulse_repeat)-1): #Convert steps to relative steps
self.Pulse_repeat[n+1l] = self.Pulse_repeat[n+1l] + self.Pulse_repeat
[n]
#Enable Stepper Motor Hold
if Hold == True:
self.Enable.low() #Motor Enable
elif Hold == False:
self.Enable.high() #Motor Disable
#Toggles Pulse Pin
def toggle_f(self):
if self.toggle ==

self.Pulse.high()
self.toggle = 1
return 1

elif self.toggle == 1:
self.Pulse.low()
self.toggle = @
return @

36

..eDrive\Python\Short Run Box Maker\Stepper_motor_driver.py

#Measured move function
Direction - "F" for Foward "R" for Reverse
inches - length to move
State - @ Zero counters and change directions
1 Move
2 Pause
Returns 3 when finished
def measured_move(self,Direction,inches,State):
#State © - Zero counters and set direction
if (self.state == @) and (State == 0):
if self.DPS ==

if Direction == "F":
self.Direction.low()
elif Direction == "R":

self.Direction.high()
elif self.DPS ==

if Direction == "F":
self.Direction.high()
elif Direction == "R":

self.Direction.low()
self.current_location_s = @
self.Pulse_width_location = @
self.Pulse_repeat_location = @
self.last_recorded_time = time.ticks_us()
self.required_number_steps = int((inches*self.Steps_per_rev)/
self.Inches_per_rev)
self.deccel_step=self.number_of_steps
self.half_of_steps = self.required_number_steps//2
self.half_step_deccel = self.half_of_steps

#Check if full Acceleration and Deccelleration is posible

if (self.number_of_steps*2) <= self.required_number_steps:
self.full_accel_deccel=1
self.state=1

elif (self.number_of_steps*2) >= self.required_number_steps:
self.full_accel_deccel=0
self.state=1

return 0

#State 1 - Move
#Full Acceleration & Decceleration
if self.state == 1 and State == 1 and self.full_accel_deccel == 1 and
self.deccel_step >= 1:
#Accelerating State
if self.current_location_s <= self.number_of_steps:

if (time.ticks_us()-self.last_recorded_time) >= self.Pulse_width

37

..eDrive\Python\Short Run Box Maker\Stepper_motor_driver.py

[self.Pulse_width_location]:
self.toggle2 = self.toggle_f()
self.last_recorded_time = time.ticks_us()
if self.current_location_s == self.Pulse_repeat
[self.Pulse_repeat_location]:
self .Pulse_width_location = self.Pulse_width_location + 1
self .Pulse_repeat_location = self.Pulse_repeat_location + 1
self.current_location_s = self.current_location_s + 1
#Not Accelerating State
elif (self.current_location_s > self.number_of_steps):
#Constant Velocity State
if (self.required_number_steps-self.number_of_steps) >
self.current_location_s:
if (time.ticks_us()-self.last_recorded_time) >=
self.Pulse_width[self.Pulse_width_location-1]:
self.toggle2 = self.toggle_f()
self.last_recorded_time = time.ticks_us()
self.current_location_s = self.current_location_s + 1
#Decceleration State
elif (self.required_number_steps-self.number_of_steps) <=
self.current_location_s and (self.current_location_s <
self.required_number_steps):
if (time.ticks_us()-self.last_recorded_time) >=
self.Pulse_width[self.Pulse_width_location-1]:
self.toggle2 = self.toggle_f()
self.last_recorded_time = time.ticks_us()
if self.deccel_step == self.Pulse_repeat
[self.Pulse_repeat_location-1]:
self .Pulse_width_location = self.Pulse_width_location -

self .Pulse_repeat_location = self.Pulse_repeat_location
-1
self.deccel_step = self.deccel_step - 1
self.current_location_s = self.current_location_s + 1
#Partial Acceleration & Decceleration
if self.state == 1 and State == 1 and self.full_accel_deccel == @ and
self.half_step_deccel >= 1:
print("right location™)
#Accelerating State
if self.current_location_s <= seif.half_of_steps:
if (time.ticks_us()-self.last_recorded_time) >= self.Pulse_width
[self.Pulse_width_location]:
self.last_recorded_time = time.ticks_us()
self.toggle2 = self.toggle_f()
if self.current_location_s == self.Pulse_repeat
[self.Pulse_repeat_location]:
self .Pulse_width_location = self.Pulse_width_location + 1
self .Pulse_repeat_location = self.Pulse_repeat_location + 1
self.current_location_s = self.current_location_s + 1

38

..eDrive\Python\Short Run Box Maker\Stepper_motor_driver.py

#Deccelerating State
elif self.current_location_s > self.half_of_steps:
if (time.ticks_us()-self.last_recorded_time) >= self.Pulse_width
[self.Pulse_width_location-1]:
self.toggle2 = self.toggle_f()
self.last_recorded_time = time.ticks_us()
if self.half_step_deccel == self.Pulse_repeat
[self.Pulse_repeat_location-1]:
self .Pulse_width_location = self.Pulse_width_location -
1
self .Pulse_repeat_location = self.Pulse_repeat_location
-1
self.half_step_deccel = self.half_step_deccel - 1
self.current_location_s = self.current_location_s + 1
#Finished Moving
if self.state == 1 and (self.deccel_step == @ or self.half_step_deccel ==
0):
self.state = @
return 3
#Still Moving
if self.state == 1 and State == 1 and (self.deccel_step >= 1 or
self.half_step_deccel >= 1):
return 1
#Pause
elif self.state == 1 and State ==
return 2

#constant_vel function
Direction - "F" for Foward "R" for Reverse
velocity - speed to move at
State - © Hub State
1 Move
def constant_vel(self,Direction,velocity,State):
#State @ - zero variables find constant velocity pulse width
if (State == 0):
if self.DPS ==

if Direction == "F":
self.Direction.low()
elif Direction == "R":

self.Direction.high()
elif self.DPS ==
if Direction == "F":
self.Direction.high()
elif Direction == "R":
self.Direction.low()
self.constant_v_pulse = int((self.Inches_per_rev*1000000)/
(velocity*self.Steps_per_rev))

39

..eDrive\Python\Short Run Box Maker\Stepper_motor_driver.py

self.last_recorded_time = time.ticks_us()
#State 1 - Begin moving at constant velocity
if (State == 1) and (self.constant_v_pulse >= self.Minimum_pulse_width):
if (time.ticks_us()-self.last_recorded_time)>=self.constant_v_pulse:
self.toggle2 = self.toggle_f()
self.last_recorded_time = time.ticks_us()
elif (State == 1) and (self.constant_v_pulse < self.Minimum_pulse_width):
if (time.ticks_us()-self.last_recorded_time)>=self.Minimum_pulse_width:
self . toggle2 = self.toggle ()

self.last_recorded_time = time.ticks_us()

#Returns location

units - "S" for steps "In" for inches
def location(self,units = "In"):
if units == "S":
return self.current_location_s
elif units == "In":

return int(self.current_location_s*(self.Inches_per_rev/
self.Steps_per_rev))

#Stepper Holding Torque

hold = 1 to hold, hold = @ to let go
def hold(self,hold = 1):
if hold ==
self.Enable.low()
return
if hold ==
self.Enable.high()
return

4. Initial Protype Hand Calculations for Linear Bearings Selection

40

SeglwrSle | L [
\)immw;? (ulm\mham o leav dir con be droson boed o

L20M

Foctor of Sek = 1.5
Xe;t £-61M) 08)=
£=745 M
\\&-@\1 w)- (5)=392 o\

5.2 %

M= (120a) (24)= 408 el

Pesgmphic: \wo frckion and hett Ynson ave
ey J.bk.

33’ B-al8xlb=225% (4019 X\J

V)
Fy 392t) _3gsaq, Cowp kNI
SV

F;ktm} 4 (Ut = O KN

Pore) on Colcolakions o, MENSC ba\r.\:) Hom Hiwin meers the Jcsav\ (ragiio,

llllll
.3

5. Initial Prototype CAD Model of Carriage Assembly

41

¥

1.378 033
©.315 [@8.00mm] 026 ——“—-—

BLADE SHAF

SCALE 2:1

= >
;

| 1 @.347 [@8.8MM] THRU
} M10X1.25 THRU

T { T
1
[
J.|J.
. ©.394 [210.00mm] 30
Bzl 1.38 sl T
NOTES: 39 4_‘1 L [501 50—~ |-

UNLESS OTHERWISE SPECIFIED:

1. ALLDIMS. IN INCHES. ROTARY CUTTER HOLDER

2. TOLERANCES:

X XX=.01 SCALE 1:2

X.XXX=.005

ANGLES= #1° CAL POLY |PRosECT: DESCRIPTION: SHEET| SIZE | REV
3. INSIDE TOOL RADIUS .01 MAX. | “Cuioeesfiminenns” | SHORT RUN BOX MAKER | CARRIAGE PARTS | 43 | A
4. BREAKSHARP EDGES .01 MAX. Tur SCALE: DATE:9/22/2019 DRWN. BY: Jesus Valdez

42

1.000

.63
’__T> 2.000 685 — "— e 2x R.25

T 2T | 1201

26 ¥
3.911
| l ~— ©.944 [@24mm]
125 (STOCK) ——|",—— - “ L - (STOIE:()z.ooo —]
MNAADDIANTC TNAD/DNATTMNAA
UVANNIAUCL 1UF/DU T 1 UIVI
SCALE: 14 BRACKET

NOTES:
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES.
2. TOLERANCES:
X.XX=.01
X.XXX=.005
ANGLES= #1°
3. INSIDE TOOL RADIUS .01 MAX.

4. BREAK SHARP EDGES .01 MAX.

SCALE: 1:2

S

1

FILLET WELD THIS SIDE

SCALE: 1:2
CAL POLY [PrRosecT: DESCRIPTION: SHEET| SIZE | REV
“anegeorngneenns | SDOIt RUN Box Maker | CARRIAGE 23 | A
"™ STEEL SCALE: | DATE:9/22/2019 | DRWN. BY: Jesus Valdez

S

43

PARTS LIST
ITEM | QTY | PART NUMBER MATERIAL

1 1 |MAL32x25
PNEUMATIC
CYLINDER

12 2 1 |BLADE HOLDER ALUMINUM
T 1 |BLADE HOLDER STEEL

SHAFT

4 2 |57485K67 SHAFT |STEEL
COLLAR

5 2 [6679K12BRONZE |BRONZE
BUSHING

6 2 |98541A116 SNAP STEEL
RING

7 1 | SOMOLUX45MM STEEL
ROTARY CUTTER

8 1 |BOTTOM BRACKET |STEEL

9 1 |TOP BRACKET STEEL

10 1 |CARRIAGE STEEL

1 2 [91938A175 M24-2.00 | STEEL
HEX NUT

12 2 [5225K722 STEEL
PUSH-TO-CONNECT
PIPE FITTING

CAL POLY PROJECT: DESCRIPTION: SHEET| SIZE | REV
“Conegeoringmeenng | ONOM RUN Box Maker | CARRIAGE ASSEMBLY | 33 | a
SCALE:1:2 | DATE:9/22/2019 | DRWN. BY: Jesus Valdez

44

6. Excel VBA Ul Source Code

Sheetl - 1

Dim Received Data As String
Dim PortCpen As Integer
Dim BoxOption As Integer
Dim glueflap As Integer

'COM Port Send Button
Private Sub COMSend Click()
SP.Output = COMTextSend. Text
COMTextSend. Text = ""
Application.Wait (Now + TimeValue ("0:00:2"))
ComTextReceive.Text = ComTextReceive.Text + SP.InputData
End Sub

'"Connect/Close Button
Private Sub ConnectButton Click()
ComTextReceive.Text = "Connecting"
'If no COM port open
If SP.PortOpen = False Then
SP.PortOpen = True
SP.CommPort = Range ("M5").Value
SP.Settings = "9600, N, 8, 1"
ConnectButton.Caption = "Close"
BABpplication.Wait (Now + TimeValue ("0:00:3"))
ComTextReceive.Text = SP.InputData
PortOpen = 1
'If COM port open
ElseIf SP.PortOpen = True Then
SE.PortOpen = False
ConnectButton.Caption = "Connect"
ComTextReceive.Text = " "
PortOpen = 0
End If
End sSub

Private Sub glueflapcheckbox Click()
End Sub

Private Sub OptionButtonl Click()
'Box Pattern Option
BoxOption = 0

End Sub

Private Sub OptionButtonZ2 Click()
'Half Box Pattern Option
BoxOption = 1

End sSub

Private Sub OptionButton3 Click()
'2-Flap Square Option
BoxOption = 2

End Sub

Private Sub OptionButton4 Click()
'Square Option -
BoxOption = 3

End Sub

'Send To SRBM Button

Private Sub SendSRBM Click()
If glueflapcheckbox.Value = True Then
glueflap = 1
ElseIf glueflapcheckbox.Value = False Then
glueflap = 0
End If
ComTextReceive.Text = ComTextReceive.Text + ("Sending Instructions..." & vbCrLf)
Application.Wait (Now + TimeValue ("0:00:1"))

ComTextReceive.Text = ComTextReceive.Text + CStr(Range ("B20").Value) + "," + CStr (Range ("C20").Val
ue}) + "," + CStr (Range ("D20").Value) + "," + CStr (Range ("E20").Value) + "," + CStr (Range("C23").Value)

+ "." 4+ CcStr{glueflap) + "," + CStr(BoxOpticn) +: {"," & vbCrLf)
SP.Output = CStr (Range ("B20").Value) + "," + CStr (Range ("C20").Value) + "," + CStr (Range('"'D20").Va
lue) + "," + CStr(Range("E20").Value) + "," + CStr(Range("C23").Value) + "," + CStr(glueflap) + "," +

CStr (BoxCption) + ", "

45

Sheetl - 2

Application.Wait (Now + TimeValue ("0:00:3™))
ComTextReceive.Text = ComTextReceive.Text + ("Instructions Succesfully Sent" & vbCrLf)
Application.Wait (Now + TimeValue ("0:00:3™))
ComTextReceive.Text = SP.InputData
End sSub

Private Sub Worksheet SelectionChange (ByVal Target As Range)
End sSub

7. ISR Hand Calculations

46

47

8. SRBM Final Prototype Source Code

Files:
SRBM.ino
Stepper.h

Stepper.cpp
Serial.h
Serial.cpp

ULh

Ulcpp

Limit Switches.h

Limit Switches.cpp

48

1#include "Stepper.h"

2 #include "Limit Switches.h"
3 #include "UI.h"

4 #include "Serial.h"

5

6

7 void setup()

8{

9 stepper_task();
10 limit_switch_init();
11 UI_init();
12 serial_task();

15void loop()

1~

16 {

17 stepper_task();
18 serial_task();
19}

20

SRBM. ino

Nasa 4

49

Stepper.h
1#ifndef STEPPER_H_
2 #define STEPPER H_
3
4 // Stepper Pulse Pin Mask
5#define pulse_mask B11110006;
6 // Stepper Direction Pin Mask
7 tdefine dir_mask B@@eee111;
8 //PortD
9 #define x_axis_pulse_mask B0e@10000;
10 #define y_axis_pulse mask Beeleeeee;
11 #define 1_pulse_mask Bleeeeeee;
12 //PortB
13 #define x_axis_dir_mask Beeeeoeeel;
14 #define y_axis_dir_mask Beeeeeele;
15
16 void stepper_task();
17 void movement_subtask();
18 extern int instructions_received_flag;
19 #endif /* STEPPER H_ */
20

Nasa 4

50

Stepper.cpp

1#include "Arduino.h"

2 #include "Stepper.h"

3 #include "Serial.h"

4 #include "UI.h"

5 #include "Limit_Switches.h"

6

7 /*Stepper Task

8

9 Controls Stepper Motor and Laser Output via an ISR (Interrupt Service Routine)

1@ Instruction are loaded into coordinates[4@][2] and mode[4@] in Serial.cpp

11 When instructions_received flag is set high the following is done

12 1. Y Axis Home (Laser Mirror Axis)

13 2. Waits for Play Button to be pressed

14 2, X Axis Home

15 3. Waits for Play Button to be pressed

16 4. Executes box instructions

17 5. return to Wait state

18

19 Additional features

2@ -While in Wait State the push out button moves the x axis to remove remaining cardboard in the
rollers

21 -If instructions have been loaded the Play button will repeat instructions

22

23 %/

24 //Shared Variables

25 int instructions_received_flag = @;//Flag Set when instructions received

26 //Movement Calculation Variables

27 //

28 volatile int Number of_acc_steps_x = 1@;//Number of Steps to Max Velocity

29 volatile int Number of_acc_steps_y = 18;//Number of Steps to Max Velocity

3@ int Number_of_acc_steps_x2;//Number of Steps to Max Velocity

31int steps_per_inch_x = 208*16%*(1/20.8)*(1/.8787);//(208 p/rev)*(16microsteps)*(1/20 Pulley
Teeth)*(1T/.0787in Belt Pitch)

32 int steps_per_inch_y = 28@*16*(1/(3.14*1.8625))*(13/6);//(200 p/rev)*(16microsteps)*(1 /
(pi*1.8625 in Roller diam.))*(13T/6T Spur Gear Teeth)

33 volatile int x_vel_rti,x_rti_array[10];

34 volatile int y_vel rti,y rti_array[10];

35 volatile int x_vel_act_rti, y vel_act_rti;

36 volatile long x_number_steps, y_number_ steps, x_location, y_location, x_last_rti, y last_rti,
1_last_rti=e;

37 volatile int xmove = @, ymove = @, lmove = @,1_pattern,l_toggle = @;

38 // Set Equal to -1 to flip direction

39 int x_flip_direction=1;

4@ int y_flip_direction=1;

41

42 //Tested Interrupt Fq.

43 unsigned long interrupt_fq = 100000;

44 volatile int const_move = @;

45 volatile int const_move_toggle = 8;

46 volatile int const_move_counter = @;

47 void stepper_task()

48 {

49 static int State = @;

50 //State @ - Init.

51 if (State == 9) {

52 //Set Outputs

53 DDRD = DDRD|pulse mask;//Pulse Pins
54 DDRB = DDRB|dir_mask;//Direction Pins
55 delay(1000);

Nama 1

51

Stepper.cpp

56 PORTD = Bleeeeeee;//All Port D Low Set Laser Output High because Low Active
57

58 //Enable Timer Compare Interrupts

59 //Clear Timer Register

60 TCCRIA = ©;

61 TCCR1B = @;

62 TCNT1 = @;

63

64 OCR1A = 5; // compare match register
65 TCCR1B |= (1<<WGM12); // CTC mode
66 TCCR1B |= (1<<CS11); // 8 prescaler
67 State = 1;

68 return;

69 }

70 //State 1 - Wait
71 if (State == 1){

72 if (instructions_received flag == 1){

73 State = 2;

74 }

75 UI_task();

76 if(ui_push_out==1){

77 const_move = 2;

78 TIMSK1 = TIMSK1 | BR@0@ee1e;//Enable Interrupts
79 PORTB = PORTB | y_axis_dir_mask;//Direction to Home
80 while(ui_push_out==1){

81 UI_task();

82 }

83 TIMSK1 = TIMSK1 ~ B@eoeeeele;//Disable Interrupts
84 const_move = @;

85 }

86 if(memory_flag==1 && ui_repeat == 1){

87 State = 2;

88 }

89 return;

% }

91 //State 2 - Home Cycle
92 if (State == 2){

93 movement_subtask();

94 State = 3;

95 return;

96 }

97 //State 3 - Process Movement
98 if (State == 3){

99 movement_subtask();

100 State = 4;

lel return;

102

1e3 //State 4 - Go To Exit Position
104 if (State == 4){

1e5 State = 1;

186 return;

107

les }

189 //Movement Subtask
110 void movement_subtask()

111 §
112 static int State = 9;
113 //State @ - Home Cycle

114 if (State == @) {

[

52

Stepper.cpp

115 //Retrieve Stepper Info from Serial Buffer

116 x_vel rti = interrupt_fq/(velocity*steps_per_inch_x);
117 y_vel_rti = interrupt_fq/(velocity*steps_per inch_y);
118

119 for(int n = @;n <= 9;n++){

120 x_rti_array[n]=(18/(1.8+n))*x_vel_rti;

121 y_rti_array[n]=(10/(1.8+n))*y _vel_rti;

122 }

123 1_pattern = ,5*steps_per_inch_x;//inches of pattern * steps per inch * rti
124 State = 1;

125 [/Homa ¥ Axlg-c-cmcmccmtnmiccatnensea s

126 const_move = 1;//Y axis

127 const_move_counter=0;

128 TIMSK1 = TIMSK1 | B@eeeee1e;//Enable Interrupt

129 PORTB = PORTB | y_axis_dir mask;//Direction to Home
13e limit_x =@;

131 while(limit_x == @){

132 limit_switch_task();//Check when limit has been hit
133

134 TIMSK1 = TIMSK1 ~ B@@@oeel1e;//Disable Interrupt

135 const_move = @;

136 return;

137 }

138 //State 1 - Process Movement

139 //

140 if (State == 1){

141 //Wait for Play Button pressed - Then Load Sheet

142 ui_play=0;

143 //Loop Stepper Motor until Limit Switch Indicates Sheet of Cardboard is loaded
144 while(ui_play==0){

145 UI_task();

146 }

147 const_move = 2;//X axis

148 const_move_counter=0;

149 f/Homa X AXlS-csmsrmorsammmassmmn s s

15e TIMSK1 = TIMSK1 | BPROORR1@;//Enable Interrupt

151 PORTB = PORTB | x_axis_dir mask;//Direction to Home

152 limit_board = @;

153 while(limit_board ==

154 limit_switch_task();//Check when limit has been hit
155

156 TIMSK1 = TIMSK1 ~ Be@eeoele;//Disable Interrupt

157 const_move = @;

158 //Wait for Play Button - Then Begin Cutting

159 ui_play=0;

160 while(ui_play==0){

161 UI_task();

162 }

163 for (int index = @;index < number_of instructions;index++){
164 x_number_steps = abs(coordinates[index][@]*steps_per_inch_x);
165 y_number_steps = abs(coordinates[index][1]*steps_per_inch_y);
166 //Check Direction pins

167 if((coordinates[index][@]*x_flip_direction)>=0){
168 PORTB = PORTB | x_axis_dir_mask;

169 }

170 else{

171 PORTB = PORTB " x_axis_dir_mask;

172 }

173

53

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

205
206
207
208
209
21e
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

228
229
230
231
232

}

Stepper.cpp
if((coordinates[index][1]*y_flip_direction)>=0){
PORTB = PORTB | y_axis_dir_mask;

}
else{
PORTB = PORTB ~ y_axis_dir_mask;
}
xmove = 1;
ymove = 1;

Imove = 8;
if(x_number_steps == 0){
xmove = @;

if(y_number steps == 8){
ymove = @;

//Enable Cut Mode
if(mode[index]==1){
PORTD = PORTD ~ 1_pulse_mask;

}
if(mode[index]==2){
Imove = 1;

x_location = @;

y_location = @;

x_vel_act_rti=x_rti_array[@];

y_vel_act_rti=y_rti_array[e];

x_last_rti = 0;

y_last_rti = @;

TIMSK1 = TIMSK1 | Beeeeeele;//Enable Timer Interrupts

while((xmove == 1) |(ymove == 1)){
//Loop while ISR moves steppers
//Wait for finished movement
//Checks for Reset Buttens

UI_task();
if(ui_reset == 1){
xmove = 0;
ymove = @;

ui_play = @;

ui_pause = @;

ui_push_out = @;

ui_reset = @;

ui_repeat=0;

limit_x = @;

limit x2 = @;

limit_board = 8;

break;

}

}
TIMSK1 = TIMSK1 ~ Beeeeeele;//Disable timer compare interrupt
PORTD = BO@10R000;
PORTD = PORTD | 1_pulse_mask;//Disable Laser Active Low
1move = @;
1 last_rti=e;
xmove = 0;
ymove = 0;

State = @;
instructions_received_flag = 0;
ui_play = @;

Neama A

54

Stepper.cpp

233 ui_pause = @;
234 ui_push_out = @;
235 ui_reset = 0;
236 ui_repeat=0;

237 limit x = @;

238 limit_x2 = @;
239 limit_board = @;
240 return;

241

242

243 }

244 //Interrupt Service Routine
245 ISR(TIMERL COMPA vect){
246 if(ui_pause == 0){

247 //X Axis Calculations

248 if(xmove == 1){

249 x_last_rti++;

250 if (x_last_rti == x_vel_act_rti){

251 1 last_rti++;

252 PORTD = PORTD | x_axis_pulse_mask;

253 x_last_rti = 8;

254 x_location++;

255 x_vel act_rti = x vel_rti;

256 if(x_location <= Number_of_acc_steps_x){
257 x_vel_act_rti =x_rti_array[x_location];
258

259 if(x_location > (x_number_steps-Number_of acc_steps x)){
260 x_vel act_rti =x_rti_array[x_number_steps-x_location];
261

262 if(x_location == x_number_steps){

263 Xmove = @;

264 }

265 }

266 //Toggle Pin off

267 if ((x_last_rti == 28)){

268 PORTD = PORTD ~ x_axis_pulse mask;

269 }

270 }

271 //Y Axis Calculations

272 if(ymove == 1){

273 y_last_rti++;

274 if (y_last_rti == y_vel_act_rti){

275 1 _last_rti++;

276 PORTD = PORTD | y axis_pulse mask;

277 y_last_rti = @;

278 y_location++;

279 y_vel act_rti = y_vel rti;

280 if(y_location <= Number_of_acc_steps_y){
281 y_vel act_rti =y rti_array[y_location];
282 }

283 if(y_location > (y_number_steps-Number_of acc_steps_y)){
284 y_vel_act_rti =y _rti_array[y_number_steps-y_location];
285

286 if(y_location == y_number_steps){

287 ymove = @;

288 }

289 }

290 //Toggle Pin off

291 if ((y_last_rti == 20)){

MAam~ ©

55

292
293
294
295
296
297
298
299
300
301
302
303

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339 };
340

Stepper.cpp
PORTD = PORTD " y axis pulse mask;

//Laser Pulse Calculation
if(lmove == 1){
if(1_last_rti == 1_pattern){
PORTD = PORTD | 1_pulse mask;

}
if(l_last rti == 1_pattern*2){
PORTD = PORTD ~ 1 _pulse_mask;
1 last rti = ©;
}
}
//Turn off laser during pause
if(ui pause == 1){
PORTD = PORTD | 1 _pulse mask;//Active Low
}

}
//Home Cycles
if(const_move == 1 || const_move == 2){
//X axis
if(const_move==2){
const_move_counter++;
if(const_move_counter == 50){
PORTD = PORTD | x_axis_pulse_mask;

if(const_move_counter == 50){
const_move_counter=e;
PORTD = PORTD ~ x_axis_pulse_mask;
}
}
//Y axis
if(const_move==1){
const_move_counter++;
if(const_move_counter == 50){
PORTD = PORTD | y_axis_pulse_mask;

if(const_move_counter == 50){
const_move_counter=e;
PORTD = PORTD " y_axis_pulse_mask;

M~

56

1

Serial.h

2 #ifndef SERIAL_H_

3 #define SERIAL_H_

4void serial_task();
5void coordinate_array();

6 extern
7 extern
8 extern
9 extern
1@ extern
11 extern
12 #endif
13

float length,width,height,flap_length;
int velocity,joint_tab,type;

float coordinates[40][2];

int mode[4@];

int number_of_instructions;

int memory_flag;

/* SERIAL_H_ */

Namna 1

57

Serial.cpp
1 #include "Arduino.h"
2 #include "Serial.h"
3 #include "Stepper.h"

4

5 /* Serial Task

6 *

7 Waits for incoming instructions from Serial which it then converts into
8 a list of instructions for the Stepper Driver

9

10 Incoming Serial format

11 * LW H,EM LT

L - length [in]

*
*
*
*
*
*
13 * W - width [in]
14 * H - height [in]
15 * F - Flap length [in]
16 * V - Velocity [in/s]
17 * J - Joint Tab [Boolean]
18 * T - Type of Box [int]
19 * @ - Box Pattern
2@ * 1 - Half Box pattern
21 * 2 - Double Flap Square
29 ¥ 3 - Square
23 ¥
24 * Additional instructions can be added to the coordinate array() function
*

/

27 //Shared Variables

28 String Serial_received;

29 float length,width,height,flap_length;

3@ int velocity,joint_tab,type;

31 float coordinates [40][2] = {};

32 int mode[4@] = {};

33 int number_of instructions;

34 int memory_flag=8;//Set to 1 f instructions buffer is loaded with instructions
35 //This allows repeat of instructions

36 void serial_task()

37 {

38 static int State = 8;

39

40 //State @ - Init.

41 if (state == 8) {

42 Serial.begin(96@0);

43 //Wait for Serial Connection
a4 while (!Serial) {

45 3

46

47 Serial.print("Short Run Box Maker Connected Successfully");
48 State = 1;

49 return;

5@

51 //State 1 - Wait for Transmission
52 if (State == 1){

53 //Set Instruction Received Flag
54 instructions_received_flag = ©;
55 //Wait for Transmission

56 if (Serial.available() > @){
5% State = 2;

58 }

59 return;

Naca 4

58

Serial.cpp

60 }

61 //State 2 - Store Transmission

62 if (State == 2){

63 Serial_received = Serial.readStringUntil(',');
64 length = Serial_received.toFloat();

65 Serial.read();

66 Serial_received = Serial.readStringUntil(',');
67 width = Serial received.toFloat();

68 Serial.read();

69 Serial_received = Serial.readStringUntil(',');
70 height = Serial_received.toFloat();

71 Serial.read();

72 Serial_received = Serial.readStringUntil(',');
73 flap_length = Serial_received.toFloat();

74 Serial.read();

75 Serial_received = Serial.readStringuntil(’,"');
76 velocity = Serial_received.toInt();

77 Serial.read();

78 Serial_received = Serial.readStringUntil(',");
79 joint_tab = Serial_received.toInt();

80 Serial.read();

81 Serial_received = Serial.readStringuntil(',');
82 type = Serial_received.toInt();

83 Serial.read();

84 coordinate_array();

85 State = 1;

86 //Set Instruction Received Flag

87 instructions_received flag = 1;

88 memory_flag = 1;

89 return;

90

91}

92

93 //Function That Stores Box Coordinates
94 void coordinate_array(){

95 //Box Pattern

96 if (type == 0) {

97 if (joint_tab == 1){

98 float coordinates2[46][2] = {{@,flap_length}\

99 ,{length,0}, {0, -flap_length}, {-1length,@}, {0, (2*flap_length+height)}, {length, 0},
{@,-flap_length},{-length,e}, {length,0}, {0, -height}\

100 ,{width,@},{e, -flap_length}, {-width,@}, {8, (2*flap_length+height)}, {width,@}, {0, -
flap_length},{-width,8},{width,8},{8, -height}\

101 ,{length,0},{0,-flap_length}, {-length,e}, {0, (2*flap_length+height)}, {length, 0},
{8,-flap_length},{-length,@}, {length,0},{@, -height}\

162 ,{width,@},{e, -flap_length},{-width,@}, {8, (2*flap_length+height)}, {width,e}, {0, -
flap_length},{-width,e},{width,8},{0, -height}\

103 »{1,8},{0,height},{-1,0}};

le4 int mode2[] = {o,2,1,0,0,1,1,2,0,2\

1e5 +2,1,0,0,1,1,2,0,2\

106 +2,1,0,0,1,1,2,08,2\

107 »2,1,0,0,1,1,2,0,2\

108 O B B

1e9 number_of_instructions = 48;

118 for(int n =@;n<=number of instructions; n++){

111 coordinates[n][@]=coordinates2[n][@];

112 coordinates[n][1]=coordinates2[n][1];

113 mode[n]=mode2[n];

114 }

faca N

59

Serial.cpp

115 }

116 if (joint_tab == @){

117 float coordinates2[37][2] = {{e,flap_length}\

118 ,{length,e},{0,-flap_length}, {-length,@}, {0, (2*flap_length+height)}, {length, @},
{@,-flap_length},{-length,@}, {length,@},{e, -height}\

119 ,{width,@},{e, -flap_length},{-width,0}, {0, (2*flap_length+height)}, {width,e},{e,-
flap_length}, {-width,@},{width,0},{0, -height}\

120 ,{length,0}, {0, -flap_length}, {-length,@}, {0, (2*flap_length+height)}, {length, 0},
{@,-flap_length},{-length,e}, {length,0}, {0, -height}\

121 ,{width,@},{e, -flap_length},{-width,@}, {0, (2*flap_length+height)}, {width,e},{@, -
flap_length}, {-width,0},{width, @}, {0, -height}};

122 int mode2[] = {e,2,1,0,0,1,1,2,0,2\

123 ,2,1,0,0,1,1,2,0,2\

124 2,1.0,0,1,1,2.0 2\

125 +2,1,0,0,4.1,2.6,2F;

126 number_of_instructions = 37;

127 for(int n =@;n<=number_of_instructions; n++){

128 coordinates[n][@]=coordinates2[n][@];

129 coordinates[n][1]=coordinates2[n][1];

138 mode[n]=mode2[n];

131 }

132 }

133 }

134 //Half Box Pattern
135 if (type == 1) {

136 if (joint_tab == 1){

137 float coordinates2[22][2] = {{@,flap_length}\

138 ,{length,8}, {0, -flap_length}, {-length,@}, {@, (2*flap_length+height)}, {length, 0},
{@,-flap_length},{-length,@}, {length,®}, {0, -height}\

139 ,{width,@},{e, -flap_length},{-width,e},{@, (2*flap_length+height)}, {width,e}, {e,-
flap_length}, {-width,@},{width,8},{8, -height}\

140 ,{1,8},{@, height},{-1,0}};

141 int mode2[] = {e,2,1,0,0,1,1,2,0,2\

142 ,2,1,0,0,1,1,2,0,2\

143 ,1,1,1};

144 number_of_instructions = 22;

145 for(int n =@;n<=number_of instructions; n++){

146 coordinates[n][@]=coordinates2[n][@];

147 coordinates[n][1]=coordinates2[n][1];

148 mode[n]=mode2[n];

149 }

150 ¥

151 if (joint_tab == @){

152 float coordinates2[19][2] = {{@,flap_length}\

153 ,{length,8},{@,-flap_length}, {-length,@}, {0, (2*flap_length+height)}, {length,@},
{@,-flap_length},{-length,@}, {length,@},{e, -height}\

154 ,{width,@},{e, -flap_length},{-width,@}, {8, (2*flap_length+height)}, {width,e}, {9, -
flap_length}, {-width,@},{width,0},{0, -height}};

155 int mode2[] = {@,2,1,0,0,1,1,2,0,2\

156 525 1,0,0,1,1,2,0,2}

157 number_of_instructions = 19;

158 for(int n =@;n<=number of instructions; n++){

159 coordinates[n][@]=coordinates2[n][@];

168 coordinates[n][1]=coordinates2[n][1];

161 mode[n]=mode2[n];

162 }

163 }

164 }

165 //2 - Flap Square

Aaca 3

60

Serial.cpp
166 if (type == 2) {

167 float coordinates2[9][2] = {{e,height}, {length,@},{@, -height}\
168 ,{@,height}, {width,e},{e, -height}\

169 ,{@,height}, {flap_length,@},{0, -height}};

170 int mode2[] = {e,1,2,0,1,2,0,1,2};

171 number_of_instructions = 9;

172 for(int n =@;n<=number of instructions; n++)}{

173 coordinates[n][@]=coordinates2[n][0];
174 coordinates[n][1]=coordinates2[n][1];
175 mode[n]=mode2[n];

176 }

177 }

178 //Square

179 if (type == 3) {

180 float coordinates2[3][2] = {{e,width},{length,8},{0,-width}};
181 int mode2[] = {@,1,1};

182 number_of_instructions = 3;

183 for(int n =@;n<=number_of instructions; n++){

184 coordinates[n][@]=coordinates2[n][0@];

185 coordinates[n][1]=coordinates2[n][1];

186 mode [n]=mode2[n];

187 }

188

189 }

190

191}

192

Maca A

61

1

2 #ifndef UI_H_

3#define UI_H_

4 // User Switch Pins
5#define UI_PINS Beeee1111l

6 extern
7 extern
8 extern
9 extern
1@ extern

int
int
int
int
int

ui_play;
ui_pause;
ui_push_out;
ui_reset;
ui_repeat;

11void UI_init();
12 void UI_task();

16 #endif /* UL H_ */

17

Nama 1

62

1#include "Arduino.h

2#include "UI.h"

3#include "Stepper.h"

4int ui_play = @;
5int ui_pause = 9;

6int ui_push_out = 08;

7 int ui_reset = 0;
8int ui_repeat=0;
9

18 /* UI Task

UI.cpp

11 * The following task checks for button states
12 * The function UI_task can be called whenever user input

13 * is expected or to control movement

if(((PINC&BOOREORO1)==B0000RE01) &&

if(((PINC&BEORAAR10)==BARAAA1D) &&

if(((PINCRBOOQOO100)==B0000O100) &&

if(((PINC&BOORO1000)==B0EEO1000) &&

14 =/

15

16 void UI_init()

17 {

18 //Set Pins as inputs
19 DDRC = DDRCAUI_PINS;
20

21}

22void UI_task()

23{

24 //Play Button - A®@
25

26 ui_play = 1;
27 ui_pause = 0;
28 ui_repeat = 1;
29 return;

30 }

31 ui_repeat = @;

32 // Pause Button - Al
33

34 ui_pause = 1;
35 ui_play = ©;
36 return;

37

38 //Push Out - A2
39

40 ui_push_out = 1;
41 return;

42

43 ui_push_out = @;
44 //Reset - A3

45

46 ui_reset = 1;
47 return;

48 }

49 ui_reset = @;

50 return;

51}

52

53

54

Pama 1

63

ui_play == @){

ui_pause == 0){

ui_push_out == 8){

ui_reset == 0){

Limit_Switches.h
1
2 #ifndef LIMIT_SWITCHES H_
3#define LIMIT_SWITCHES_H_
4 // Limit Switches Pins
5 #define LIMIT SWITCH PINS B6©111066;
6 extern int limit x;
7 extern int limit x2;
8extern int limit_board;
9void limit_switch_init();
10 void limit_switch_task();
11
12
13 #endif /* LIMIT SWITCHES H */
14

Nama 1

64

Limit_Switches.cpp
1#include "Limit_Switches.h"
2#include "Arduino.h"
3int limit_x = @;
4int limit_x2 = @;
5int limit_board = ©;

8 /% Limit Switch Task
9 * The following task checks the state of the limit switches

18 * an additional pin was coded in as x2 for an additional limit switch
11 * that may be needed for further development

12 * The function limit switch_task can be called whenever limit switch
13 * state is required

14 *

15 */

16 void limit_switch_init()

17 {

18 //Set Pins as Inputs

19 DDRB = DDRBALIMIT_SWITCH_PINS;
20}

21

22void limit_switch_task()

23{

25 //Limit Board - Pin 13
26 if((PINB&BOO100000)==B00100000){

27 limit_board = 1;
28 return;
29

30 limit_board = 8;
31 //Limit X2 - Pin 12
32 if((PINB&BOGO10000)==B0B016000){

33 limit_x2 = 1;
34 return;

35 }

36 limit_x2 = @;

37 //Limit X - Pin 11
38 if((PINBRBOORE10EO)==BRBER1008){
39 limit x = 1;
40 return;

41 }

42 limit_x = @;

43

44}

45

Pama 1

65

9. Final Prototype CAD

66

l—71.856 *‘ 67 r 55

1.856
T / | 325
a3 —9-
4X @.20 [@5.00mm] THRU
@1.54 [@39.00mm] THRU N

Part 1 - Bottom Mount

138 3.63
- .
1.38
} 3.25
13
Part 2 - Top Mount
NOTES:
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX ==+01
X XXX = £.005
ANGLES = +1°
3. INSIDE TOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.
APPROVED SIZE| CODE DWG NO TITLE REV
CHEGKED A Short Run Box Maker
SCALE 1:10 [weigHT [sHEET 1/14

DRAVWN Jesus Valdez 6/2/2020

JiN

67

156
|
4X R.10 [R2.50mm] 19 | ek
-—(G=
T
200 1125
|
-—(=
|
44| |
| 2.49 |
Part 3 - Mirror Mount
2.01
g
}
59 | —é)g
{ 30 ~— .20 [@5.00mm] THRU
f ! 1.65
Part 4 - X AXIS Pulley
Mount
NOTES:
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX = £.01
X XXX = +.005
ANGLES = £1°
3. INSIDE TOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.
APPROVED SIZE[CODE |DWG NO |TITLE REV
CHECKED A Short Run Box Maker
SCALE 1:10 [weigHT [sHEET 2/14

DRAVWN Jesus Valdez 6/2/2020

JiN

68

2.83
[=—1.856

r .25

73

.928

2.36 1.856

\ 4X @.20 [@5.00mm] THRU

928 —

| \/T\— @150 THRU

PART 5 - XMOTOR MOUNT

3.26 ‘ 8XR.13
| L L
- { T =
2.00 1 500
| S+
1 T T T
OI" 2X R.12
73 —I——-|.4 -
PART 6 - LASER FRAME BRACKET
NOTES:
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX = +.01
X XXX = +.005
ANGLES = +1°
3. INSIDE TOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.
APPROVED SIZE[CODE |DWGNO |TITLE REV
CHECKED A Short Run Box Maker
[weigHT [sHEET 3/14

DRAVWN Jesus Valdez 6/2/2020 | SCALE 1:30

JiN

69

R.20

2X .20 [@5.00mm] THRU

~—.80 @.25 THRU

@.50THRU

PART 7 - TOP ROLLER BRACKET

2.

3.
4.

NOTES:
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:

1.

ALL DIMS. IN INCHES
TOLERANCES

XXX =%.01
X XXX = £.005
ANGLES = +1°

INSIDE TOOL RADIUS .01 MAX.
BREAK SHARP EDGES .01 MAX.

APPROVED SIZE
CHECKED A

CODE

DWG NO TITLE

Snor R B aker FnlDesin Top Roler Bracke

REV

SCALE 1:1

[weigHT [sHEET 1/1

DRAVWN Jesus Valdez 6/9/2020

JiN

70

72 f I _Q #
' -2?4 [2x @20 THRU
14— L—1.03~—‘
1.42

/ 4X @.16 THRU
] I

2 4

Tl d o

—
T 1B
N 15— 2.198

]
W

PART 8 - Y LIMIT SWITCH MOUNT

NOTES:
MATERIAL:
PART 7: 14G HOT ROLLED STEEL
PART 8: PLA PLASTIC
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX =+01
XXXX = +.005
ANGLES = +1°
3. INSIDETOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.

APPROVED SIZE| CODE DWG NO TITLE REV
CHECKED A Short Run Box Maker
DRAVWN Jesus Valdez 6/2/2020 | SCALE 1:30 |WEIGHT |SHEET 4/14

Zi -

71

25
.40|~——|».84 P
R.TS___ o | | _—I I__
NG
236 1.86 |+ 2.20 250
o o |
1m0)
- _@_\
.93 i T
07 _]‘ -50 4X @.16 THRU
L 1.63 —=-|
2X @.20 THRU
PART 9 - X LIMIT SWITCH MOUNT
NOTES:
— 02 MATERIAL: PLA PLASTIC
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
I 2. TOLERANCES
591 1.10 XXX = .01
i l X.XXX = +.005
ANGLES = #1°
25 3. INSIDE TOOL RADIUS .01 MAX.
— f D —— 4. BREAK SHARP EDGES .01 MAX.
i
i R.43
__—2X@.31 THRU
f B I
~— 45.0° @D.47
92 <
WL 1 .
A !
1.00
s R.20 _é_ _é{ R.55
_L _i ':;0 ' L T~— 2X .13 THRU
|
—*I 25 | SECTION D-D
114 25 60 SCGALE A
L 1.10
D ——
PART 10 - EXIT BEARING MOUNT
APPROVED SIZE| CODE |DWGNO |TITLE REV
CHECKED A Short Run Box Maker
DRAWN JesusValdez 6/2/2020| SCALE 1:10 |WEIGHT |SHEET 5/14

72

NUMBER OF TEETH: 6
©.25 [@6.35mm] PITCH DIAMETER 0.6

DIAMETRAL PITCH 10
E 43
.068

PRESSURE ANGLE 27°
.16:|
) @.14 THRU WALL

o
>—

136 —

PART 11 -6 TEETH SPUR GEAR

I T —)=

NOTES:
MATERIAL: PLA PLASTIC
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX =+01
X XXX =+£.005
ANGLES = £1°
3. INSIDE TOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.

APPROVED

SIZE| CODE [DWG NO TITLE

CHECKED

A Short Run Box Maker

REV

DRAVWN Jesus Valdez 6/2/2020 [SCALE 1:30 |WE|GHT |SHEET 6/14

JiN

73

@.38
.69 NUMBER OF TEETH: 13
PITCH DIAMETER 1.3
@14[3.5mm] THRU DIAMETRAL PITCH 10

_L 4[.17
T

PRESSURE ANGLE 27°

PART 12 - 13 TEETH SPUR GEAR

—| |=— 200
1 "":}Qumx R.50 13
nz 1] 6x @31 THRU A ,
exs.sz——;-f‘- 1*r 12
{ ml
6X 3.62 — 2X 6 —=] =
6X 1.80 [-——— 2X 209 — 2X2 SQUARE
TUBE 16G
2X 412
, 442
PART 13 - CARDBOARD GUIDE ASSEMBLY
NCTES:
MATERIAL:
PART 12: PLA PLASTIC
PART 13: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX = +.01
X.XXX = £.005
ANGLES = £1°
3. INSIDE TOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.
APPROVED SIZE|CODE |DWGNO |TITLE REV
CHECKED A Short Run Box Maker

Jesus Valdez 6/2/2020 | SCALE 1:30 |WEIGHT

|sHEET 7/14

DRAVWN

JiN

74

@1.24 @.38
@1.00
NEOPRENE RUBBER SHELL S[(’:'ZTLE”-fz
64 —=]| 55.06 ||l=— 64
| |
i | Y
— — oy — r— UI_I
PART 14 - FRONT ROLLER 1
NEOPRENE RUBBER SHELL
@124 @.38
- @1.00
DETAIL C
SCALE 12
50 ii 55.06 i |——1.51 C
PART 15 - FRONT ROLLER 2
NOTES:
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX = +.01
XXXX = +.005
ANGLES = £1°
3. INSIDE TOOL RADIUS .01 MAX.
4 BREAK SHARP EDGES .01 MAX.
APPROVED SIZE|CODE |DWGNO |TITLE REV
CHECKED A Short Run Box Maker
SCALE 1:30 [weigHT [sHEET 8/14

DRAVWN Jesus Valdez 6/2/2020

JiN

75

| T— 2X@.25 THRU

I -0 R1.25

R1.00

-

PART 16 - LASER TUBE CLAMP 1

|em— 2 .00 —==

.25 —= 1.50

6X @.25 THRU —__|

1o -9
1.73 1.13 2.88

LI N

.30—I * —©- R1.25

1
83 — J 13—
25 == — 2X .50

.50 —=| [rm—

NOTES:
- MATERIAL: PLA PLASTIC
PART 1 7 LASER TUBE CLAMP 2 UNLESS OTHERWISE SPECIFIED:

1. ALL DIMS. IN INCHES
2. TOLERANCES

XXX =01

X XXX = £.005

ANGLES = £1°
3. INSIDE TOOL RADIUS .01 MAX.
4. BREAK SHARP EDGES .01 MAX.

APPROVED SIZE| CODE DWG NO TITLE REV
CHECKED A Short Run Box Maker
DRAVWN Jesus Valdez 6/2/2020 | SCALE 1:30 |WEIGHT |SHEET 9/14

Zi -

76

.50 THRU

2X @.20 [@5.00mm] THRU

PART 18 -

.25 THRU

BOTTOM ROLLER BRACKET

-
NOTES:
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX =01
X XXX =+.005
ANGLES = £1°
3. INSIDE TOOL RADIUS .01 MAX.
4, BREAK SHARP EDGES .01 MAX.
APPROVED SIZE| CODE DWG NO TITLE REV
GHECKED A Short Run Box Maker

SCALE 1:30 [weigHT

[sHEET 10/14

DRAVWN Jesus Valdez 6/2/2020

JiN

77

(_ﬁﬂ.
| 1120 X 4
S ANGLE IRON
— HOT ROLLED
- 8 STEEL
ANGLE IRON PaRire
HOT ROLLED
STEEL &
16G HOT ROLLED
STEEL
PART 18
110
PART 4 - — 63— PART 3
75 _—| e | ’—_/ PART 4 2X .24 —s]—
= 1- I it
_— f __ @31 THRU 1|
= * ! .
27.00 800
PART 6 —<\
_B ::
58.32 61.16
51.62
:| 19.95
255
| 4[‘7 k 1.60
1 EH M B il [17 |1 |
— } f 4 —] * 17 H g
1.130 _‘ | | 7.40
- ! — 3.26
——‘ 7.00 \—— &9 _ |.._25'_82% PART 5 o
NOTES: 5.02 — —t— 17
FILLET WELD WERE POSSIBLE [e | 6.04
MATERIAL: 14G HOT ROLLED STEEL
UNLESS OTHERWISE SPECIFIED:
1. ALL DIMS. IN INCHES
2. TOLERANCES
XXX = +.01
X XXX = + 005 FRAME ASSEMBLY
ANGLES = +1°
3. INSIDE TOOL RADIUS .01 MAX. PART1
4. BREAK SHARP EDGES .01 MAX.
APPROVED SIZE[CODE |DWGNO |TITLE REV
CHECKED A Short Run Box Maker
DRAWN JesusValdez 6/2/2020| SCALE 1:10 [weigHT [sHEET 11/14

78

PART 17

PART 13

PART 20

PART 25

PART 16

PART 19

PART 22

PART 28

PART 23

APPROVED

CHECKED

SIZE
A

CODE

DWG NO TITLE

Short Run Box Maker

REV

SCALE 1:10

[weigHT [sHEET 12/14

DRAVWN Jesus Valdez 6/2/2020

JiN

79

PART 15
PART 14
PART 19
i
PART 24)
[]
DETAIL G

PART 23

PART 12

PART 10

PART 11

DETAIL H

APPROVED SIZE| CODE DWG NO TITLE REV
CHECKED A Short Run Box Maker
SCALE 1:30 [weigHT [sHEET 13114

DRAVWN Jesus Valdez 6/2/2020

JiN

80

10. Bill of Materials

Part No. Name Qty.
1 Bottom Mount 1
2 Top Mount 1
3 Mirror Mount 1
4 X Axis Pulley Mount 2
5 X Motor Mount 1
6 Laser Frame Bracket 2
7 Top Roller Bracket 2
8 Y Limit Switch Mount 1
9 X Limit Switch Mount 1
10 Exit Bearing Mount 1
11 6 Teeth Spur Gear 1
12 13 Teeth Spur Gear 1
13 Cardboard Guide Assembly 2
14 Front Roller 1 1
15 Front Roller 2 1
16 Laser Tube Clamp 1 2
17 Laser Tube Clamp 2 2
18 Bottom Roller Bracket 1
19 Cloudray C Series Co2 Laser Head Set 1
20 Cloudray 40 W Co2 Glass Laser Tube 1
21 Cloudray 40 W Co2 Laser Power Supply 1
22 TB6600 Stepper Motor Driver 2
23 STEPPERONLINE Nema 23 2
24 HiLetgo Momentary Limit Switch 2
25 58mm Skateboard Wheels 6
26 608-2RS Bearing 6
27 Uxcell KFLO8 Pillow Block 4
28 MENZO 12V Power Supply 1
29 M8-1.25 Nylon Hex nut 9
30 M8-1.25 65mm Socket Head Cap Screw 6
31 M5-0.8 Hex Nut 22
32 M5-0.8 12mm Socket Head Cap Screw 12
33 M5-0.8 15mm Socket Head Cap Screw 8
34 M4-0.7 30mm Socket Head Cap Screw 4
35 M4-0.7 18mm Socket Head Cap Screw 4
36 M4-0.7 Hex Nut 8
37 M4-0.7 10mm Socket Head Cap Screw 4
38 1/4-20 1" Socket Head Cap Screw 4

81

39 1/4-20 Hex Nut 16
40 #14x1" Self Tapping Hex Head Screw 4
41 1/4-20 .5" Socket Head Cap Screw 2
42 GT2 Idler Pulley 1
43 GT2 20T Pulley 1
44 M8-1.25 25mm Socket Head Cap Screw 2
45 M8-1.25 35mm Socket Head Cap Screw 1

82

