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Abstract

Solar energy is an integral part of the renewable energy industry. Advanced solar farms actively
track solar movement and update solar panel angles to maximize the system’s output power. Cal
Poly boasts its own Solar Farm that features a single-axis tracking system. Single-axis tracking
aims to get panels as close to perpendicular as possible given the panel arrangements and given
the time of year. Single-axis tracking is a more robust measurement and tracking option.
Single-axis tracking systems usually only have East-West panel arc movement, following the
sun’s rotation. Dual-axis trackers have both East-West and North-South panel arc movements.
Dual-axis systems have the ability to shift their North-South angle to better face the sun as the
seasons change, based on GPS location. Solar panels generate the most power when receiving
the highest light intensity. Single-axis systems generally cost less than Dual-axis. One less axis
of motion translates to fewer mechanical parts, fewer motor controllers, and ultimately a more
durable system. To account for the inability to directly face the sun year round, students will
study how to eliminate inter-row shading between panels to maximize power production.

To observe and improve the single-axis tracking system, a laboratory model of the solar farm
will be created. Identical solar panels to the Cal Poly panels will be integrated with a solar
tracking embedded system. The system will be tested on available test panels in conjunction with
a specialized angle tracking measurement network. Students will alter and study the system,
accommodating for variables that are not accounted for in the current static algorithm. The new
testing system will allow students to study the issues present in the farm and to develop a
proposal to improve the power production performance at the farm. In addition, students will
learn the fundamentals of single-axis tracking. The laboratory model will be adaptable regardless
of the location and terrain of the solar farm, and will tilt the panels in the most optimal angle for
the network of arrays in a typical farm.



Chapter 1: Introduction

The introduction describes the purpose of the Single-Axis PV Module Tracker and the
motivation behind the controller. There are current systems in place to account for geographical
factors in solar panel shading, but very few systems properly account for the edge cases
presented throughout the day [1].

This senior project focuses on the design, implementation, and testing of a Laboratory
Single-Axis PV Tracker that tests for inter-row shading. As mentioned in the Abstract, inter-row
shading presents a significant issue for the energy production of a solar farm [2]. Therefore, this
project implements a system that allows users to orient a test panel to specific angles and view
the effects of shading at each input.

Array Length =L
Row Pitch =R
GCR=(L/R)

Figure 1.1: Physical Realization of Inter-row Shading

As shown in Figure 1.1, the panel in front of another panel can shade the other panel’s bottom
portion if the angles of each are not controlled properly. Shading occurs most during the hours of
early morning and late afternoon when the sun is closest to the horizon. Many farms, specifically
those in the Gold Tree Solar Farm near Cal Poly, use traditional single-axis solar panels.
Unfortunately, the series configuration operates in such a way that if any cells are shaded, a large
restriction is put on power output [3].

Like many other solar farm management systems, the current system takes into account the
specific characteristics of the solar panel and the neighboring panels [4]. For example, the
current algorithm takes into account the ‘L’ and ‘R’ shown in Figure 1.1 and modifies a general
solar tracking algorithm based on those inputs to calculate the angle of maximum power output.
As aresult, investigating students will be able to use the existing algorithm and expand. The goal
is to create a system that determines the best angle and produce it on a laboratory level tracker.
The system will be able to determine the desired angle to send to the actuator in multiple ways in
order for future users to develop new algorithms. On top of that, users will have the ability to
control two trackers independently. This will help for comparing a variety of algorithms as well
as give students a clear example of various single-axis tracking algorithms.



After students calculate the desired angle, they use a simple control system to set the panel to the
desired angle using the same microcontroller and specific power amplifying units that drive a
motor [2]. Finally, to communicate the results in a matter conducive to its laboratory setting,
students use an LCD to output the current angle and other key characteristics of the panel. In
addition, the user has the ability to choose between three distinct settings: a manual angle input
setting, an automatic solar tracking setting, and a time-lapsed demonstration setting. This
flexibility can illustrate the difference in power output from various angles.

All in all, this new system, in a laboratory setting, will be used to compare and contrast solar
tracking algorithms while educating future students on critical attributes of single-axis solar
tracking implementations. The following section expands on customer needs, requirements, and
specifications assessed to design the algorithm and corresponding control system.



Chapter 2: Customer Needs, Requirements, and Specifications

This section explains the techniques used to determine the customer needs, marketing
requirements, and engineering specifications. There should be ongoing meetings with the
customer to discuss the status of the project and ensure that all needs are being met.

Customer Needs Assessment

The customer for this proof of concept project is the Cal Poly. This encompasses educating
students on different single-axis tracking algorithms as well as providing students and faculty a
method to quickly and easily test a variety of ways to track the sun to maximize solar power
output. The customers will use this project to find a low-cost, low-maintenance engineering
solution to test for maximum power output in a laboratory setting — specifically to address issues
like inter-row shading. This kind of shading causes massive decreases in output power
generation. Shading often terminates entire bottom rows of cells, which drastically minimizes
power output in series-connected panels. Inter-row shading is currently one of the largest causes
of reduced power output at the Cal Poly Solar Farm and many solar farms nationwide [3].

It is paramount to create and implement a testing solution to observe an array of solar tracking
options, with the ultimate goal of reducing power losses as much as possible. The laboratory
testing system helps users find the best ways to reduce or, ideally, eliminate inter-row shading
[4]. With project success, the test system helps find the most efficient angles for the tracking
system to operate at. The tracking system has independent control inputs for each of three
tracking modes. The project focuses on determining the best inputs or best algorithm to produce
a desired angle. This project provides a low-cost and flexible testing solution to finding optimal
angle inputs for a set of solar panel trackers.

Requirements and Specifications

The goal of the system is to create a laboratory single-axis tracking test system that can
investigate the current issues associated with inter-row shading and determine an efficient way to
implement a desired tracking angle. This will ultimately improve an entire solar farm’s power
efficiency. The test system will use two single-axis movement panels to track the sun based on a
user input (1 and 3 in Table 2.1). The user will interact with an LCD to select and control the
solar panels [See Appendix F]. The test interface will be controlled with a microprocessor
requiring a 9 Volt supply. After the system calculates a new angle or is told to move at a specific
angle from the user, the MCU communicates with a motor relay to physically tilt the test panels
to that angle (6 in Table 2.1) [5]. The external housing for the measurement system must be
weather resistant and durable to support multiple iterations of testing in different conditions.
Therefore, the system must have a portable, hassle-free, and durable (2 in Table 2.1). The system
will also need to be cost effective to warrant adopting this new technology (4 in Table 2.1).
Ideally, the testing system will work for any solar farms (5 in Table 2.1). To find a protocol with
maximum efficiency, students must test with an actuator protocol that takes significantly less
power than the power generated from the farm. Based on the mechanical motor system, the
algorithm will be adjustable to produce the most accurate angle displacement. These
requirements result from a case study of Cal Poly’s solar farm, representing common concerns



and obstacles of many other solar farms nationwide. Further descriptions of Requirements and
Specifications are found in Table 2.1 below. Following, a brief list of senior project course
deadlines is listed in Table. 2.2 below.

Table 2.1: Laboratory single-axis PV Module Tracker Requirements & Specifications

from baseline single-axis tracking to
algorithm single-axis tracking

Marketing Engineering Specifications Justification

Requirements

3,4,5 Able to observe the effects of | The system should provide a way to test optimal
shading in flat terrain. power output dependent on the time of day.

3 Adjust the angle based on the user | Ex. If a user implements 32° then the solar panels
selected modes within +/- 1%. should tilt at an angle of 32°.

3,5 Adjust the angle based on optimal | Algorithm should be able to determine the optimal
power power output and tilt the panels to the desired angle.

2,4,5 Takes less than 1 hour to transfer | Algorithm will work to optimize output of entire
algorithm to new panel configuration | system with easy installation and little to no
regardless of MCU implementation. | maintenance on system.

2,4 $600 (max) external device cost | The needed devices to implement will be
(sensors, mcu, etc.) inexpensive.

1,4,6 Implement the least amount of | Minimum daily movements significantly decreases
movements possible for minimum | the power needed to drive the system and creates a
power input more efficient power generation system.

6 9V supply to power the system and | Need a power supply to power the microprocessor
actuator and the actuator.

1,3,4,5 Implement a test system on a durable | Two panels needed for inter-row shading observation
and contained test housing with 2 test | and testing. Two panels provided by Cal Poly EE
panels. [See Appendix F] Department is a low cost way to test and confirm

testing configurations in a proof of concept. Durable

housing for testing ensures safe and consistent

testing. Also provides a way for users to interface.
1,3,4,6 Show an increase of power efficiency | The differences in power efficiency of shaded panels

with the project’s algorithm validates the proof of
concept model for large scale implementation.

AN ANl

Marketing Requirements
1. Effectively tracks the sun using a single-axis movement system.

External system will be durable and easy to maintain.

Adjust the angle based on the user selected modes

Cost effective.

Scalable and flexible regardless of physical solar panel constraints.

Relatively low power.




Table 2.2: Design and Development of Laboratory single-axis PV Module Tracker Deliverables

Delivery Date

Deliverable Description

Dec. 6, 2019

Design Review

March 6, 2020

EE 461 Demo

March 13, 2020

EE 461 Report

May 26, 2020 EE 462 Demo
Nov. 4, 2020 ABET Sr. Project Analysis
June 5, 2020 EE 462 Report




Chapter 3 - Functional Decomposition (Level 0 and Level 1)

This chapter explains the inputs and outputs of the Level 0, shown in Figure 3.1, and Level 1,
shown in Figure 3.2, block diagrams. The Level 1 block diagram delves into the next level of
design compared to the Level 0 diagram. The inputs are solar position, inter-row shading, and 9V
power supply. From the solar position input, the algorithm will take into consideration the
month, day, time, and location to produce a desired tilt output. The desired tilt angle will then be
fed into the MSP432, and the algorithm will work to control the motor relays to respond
accordingly. The MPS432 will need a 9V power supply in order to supply enough current to
move the motors [5].

The Level 0 block diagram in Figure 3.1 below illustrates the base level inputs and outputs of the
single-axis Tracker. In addition, Table 3.1 explains these inputs, outputs, and functionality.

Level 0 Block Diagram
Solar Position——» ——2Tilt Angle
Single-Axis PV :
Algorithm Selection— 3| Module Tracker | > Display Screen
9V Power Supply ——» =3 Motor Relay

Figure 3.1: Test Module Level 0 Block Diagram

Table 3.1: Test Module Level 0 Block Diagram 1/0O Description
Module Single-Axis PV Module Tracker

Inputs -Solar Position: based on time, day, latitude, longitude

-Algorithm Selection: The user will interact with our system and
select/input a solar tracking algorithm for one or both of the laboratory
panels to follow.

-9V power supply

Outputs -Tilt angle: Desired angle after algorithm calculation/user input
-Display Screen: Displays the simulated and actual angle as
-Motor relay: Needed to rotate the panels

Functionality Improve output power production based on an algorithm that accounts for
inter-row shading. Output power for all rows should be optimized as a
system instead of at the individual panel level.

The Level 1 block diagram below in Figure 3.2 below illustrates the next hierarchy level of
inputs, outputs, and process flow of the single-axis testing system. In addition, Table 3.1 explains
these inputs, outputs, and functionality.
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Level 1 Block Diagram

Solar Position

Algorithm
Selection

» Month —>» Day —»Time —>» Location —|

9V Power Supply

—» Tilt Angle
Distance Height
» Between —>» of
Panels Panels

—>» Display Screen

MSP432 —>» LCD
| « Motor
" Relay

Figure 3.2: Test Module Level 1 Block Diagram

Table 3.2: Test Module Level 1 Block Diagram 1/0O Description

Inputs

-Solar position: based on time, day, latitude, longitude to estimate the desired
tilt angle

-Algorithm Selection: The user will interact with our system and select/input a
solar tracking algorithm for one or both of the laboratory panels to follow.
-9V power supply: The MSP432 will be powered by 9V to control the LCD
display and the motor relay

Outputs

-Tilt angle: Desired angle after algorithm calculation/user input
-Display Screen: Displays the simulated and actual angle
-Motor relay: Needed to rotate the panels

Functionality

Improve output power production based on an algorithm that accounts for
inter-row shading. Output power for all rows should be optimized as a system
instead of at the individual panel level.
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Chapter 4 - Project Planning (Gantt Chart and Cost Estimates

The project planning section depicts the project schedule and cost estimates for the duration of
the project. The project is broken down into three sections: EE460, EE461, and EE462, all
during the 2019-2020 Cal Poly school year. The most time is allotted for the algorithm design
since it is the most complex. There are two design tests scheduled, and the final project should be
completed by the twenty-second of May.

The Gantt chart shown in Figure 4.1 demonstrates the estimated planning for the year.

September| October [ November|December| January |February [ March | April May June
Start Finish Duration| 1 2 3 4|1 2 3 4 ‘_|_‘_:|4 1|_’|_:|4 1|_'|_4‘4 ‘_|_‘ 5|4 1|_f‘_~'|4 1|.‘|5‘4 1|:|3|4 1[;|5|4
1. Project Organization and Preparation 9/23/19 12/9/19 77 days
1.1 Abstract, Requirements, and Specs 9/23/19 10/7/19 14 days
1.2 Block Diagram and Literature Search 10/7/19 10/14/19 7 days
1.3 Gantt Chart and Cost Estimates 10/14/19 10/28/19 7 days
1.4 ABET Senior Project Analysis 10/28/19 11/4/19 7 days
1.5 Report V1 / Report V1 Presentation 11/18/19 12/2/19 14 days
1.6 Report V2 12/2/19 12/9/19 7 days
2. Understand Customer Needs 10/28/19 1/6/20 71 days
2.1 Meeting with Dolan 10/28/19 11/01/19 5 days
2.2 Visit Solar Farm 11/16/19 11/16/19 1 day
2.3 Define inputs to solar tracking model 11/17/19 01/06/20 50 days
3. Interface Circuitry 01/07/20 01/21/20 14 days
3.1 Order Microcontroller 01/07/20 01/07/20 1 day
3.2 Realize Power Integration with Motors 01/07/20 01/21/20 14 days
3.3 Order Power Circuitry 1/7/20 1/21/20 14 days
3.4 Order Angle Measurement Components 01/07/20 1/21/20 14 days
4. Algorithm Design 1/7720 3/31/20 85 days
4.1 Develop Mathematical Model 1/7/20 03/11/20 75 days
4.2 Set Up Base Software Model 1/20/20 3/21/20 61 days
4.2 Integrate Model with Software 3/21/20 3/31/20 10 days
5. First Design Test/Redesign 04/01/20 04/27/20 26 days
5.1 Test Implementation 04/01/20 04/07/20 6 days
5.2 Algortithm Redesign 04/07/20 4/27/20 20 days
5.3 Software Optimization 04/07/20 4/27/20 20 days
6. Second Design Test 4/27/20 05/22/20 26 days
6.1 Test Implementation 04/27/20 05/03/20 6 days
6.1 Algorithm Redesign 05/03/20 05/22/20 20 days
6.2 Software Optimization 05/03/20 05/22/20 20 days
7. Final Presentation 5/1/20 6/5/20 35 days
7.1 Create final presentation 5/1/20 6/5/20 35 days
7.2 Create final poster board 5/1/20 6/5/20 35 days

Figure 4.1: Gantt Chart of Full Project

Length of tasks estimated based on equation: time = (ta + 4tm + tb) / 6.

Cost Chart
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Costs are determined through the equation: cost = (costa + 4costm + costb) / 6, and item cost
research. Final item decisions and exact costs will be known once specifications are fully
decided, according to Gantt Chart. The accelerometer determines the two available test panel
positions and verifies working angle implementations. The MSP432 computes the angles and
communicates that angle to the rest of the system while aiding user interface. The weatherproof
external containment houses the entire system during long test iterations. The portable battery
must supply power during test iterations. The LCD display allows users to interface with the test
system. Labor costs account for student work time over the project working span. Total costs of
the project and for another group to replicate the project are summarized in Table 4.1 below. See
Appendix F.

Table 4.1: Cost Chart

Item Cost to Replicate Student Cost
Weatherproof Containment | $22.69 $22.69
Accelerometer $10.49 $10.49
DC 5V Relay $6.79 6.79
MSP432 $21.00 $21.00
Additional Wiring $10.00 $10.00
Professional LCD Display | $19.97 $19.97
Two Test PV Panels $210.00 x 2 =$420.00 $0.00
Keypad $70.53 $70.53
Team Labor Costs Average entry level EE pay in Nov. 2019: $0.00

$34.00 / hr

Hours estimated for project: 120

$34 /hr x 120 hr x 3 = $12,240.00
Total: $12,821.47 $161.47

Chapter 5 - Design Implementation and Considerations
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The design and development of the single-axis PV module tracker is intended for laboratory
testing. The user will be able to manually input angles for the optimal position of the solar panels
considering the location of the sun, run an algorithm that calculates the optimal angle, and view a
demonstrative panel sweep showing intended panel orientations of a single day in minutes. With
this laboratory testing device, the user can test before implementing on a wide scale solar farm.

Considerations:

While designing the single-axis PV module tracker, durability, reliability, and accuracy were
considered. For durability, it is important that the project be able to withstand rain and harsh
weather. In addition, the keypad, LCD display, accelerometer, algorithm code, real-time clock,
relay, and the user interface were carefully considered while making the final design.

Keypad:

23
24
2.5
26

~ oM =

MSP432 PLX Keypad

2.0
5.1
5.2

interrupt| 5 7 5.6
Figure 5.1: Keypad Pinout Diagram

(=20 B

The PLX16T20 is a 16 digit keypad used to make selections. The keypad has the digits 0, 1, 2, 3,
4,5,6,7,8,9,A,B,C,.,* and #. All of these digits allow the user to input numerical values
for an angle and make selections. For more information on the dimensions and pins used for the
keypad reference the product’s datasheet [8] and Appendix F respectively.

The letters on the keypad are used to select the three different modes the tracker has. Since there
is no “Home” or “Enter” key, the “.” key is used for “Home” and the “#” key is used for “Enter”.
It was important to consider the shortage of keys available, so no two keys would cause
confusion for the user.

The keypad is connected in parallel with the MSP432 microcontroller and is interrupt driven.
The code is interrupt based rather than poll based to save memory and time of the

microcontroller. Once any key on the keypad is pressed, the microcontroller will save it into
memory and perform the next steps regarding the specific key value.

LCD:

14



3.3V 2
|— 15
35 4 7-10 NC
3.6 5
3.7 6
MSP432 4.4 11 NHD LCD
4.5 12
4.6 13 1
4.7 14 3
16
N

Figure 5.2: LCD Pin Diagram

The LCD display used is a 4x20 character display. To see the LCD in more detail reference the
product’s datasheet[9] or view the physical device in the User Manual Appendix E. The LCD is
used so the user can interface with, choose between the options and see the outputs of the code.
Upon start up, the LCD will display a screen that prompts the user to input the date and time.
Then they will be able to see the three mode options and select their option using the keypad.
The LCD will showcase the results of the code depending on the selected mode. Within the
Manual entry mode, the user will be able to see their own desired angle input as well.

Accelerometer:
33V 33V
2 — NC
1.7 SDA BOB-13926
MSP432 {Accelerometer
1.6 SCL Breakout Board)
11 — NC
GHND GMD

Figure 5.3: Accelerometer Pin Diagram

The MMAS8452 Accelerometer is used to measure and return the current angle of the solar panel.
For information about the specifics and intricacies of the module, reference the product’s
datasheet [10]. Accelerometers are often used to measure static angles in embedded system
applications. This specific accelerometer communicated to the MSP432 through an 12C
interface. The output of the system follows a semi-sinusoidal curve which can be used to convert
the digital output to a decimal angle.

Our accelerometer code has one main task: report the angle of the solar panel in both a double

and string data type. Many considerations had to be made to have this system work exactly as
desired. This came in two distinct phases: initialization and output conversion.
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By dissecting the datasheet, we set the accelerometer to sample in 12 bits at 800 Hz in a 2g
range. Using 12 bits provides the highest resolution, 800 Hz is the quickest sample time, and 2g
is the smallest range that we need as we are only measuring from -1g to 1g (g corresponds to
9.8m/s? or the acceleration due to gravity).

Next, we need to convert the digital 12 bit output to an actual angle in the most efficient,
accurate, and repeatable manner. Through a series of testing described in Chapter 6, we
concluded that a fourth-order polynomial function was the best to convert the value: y =
3.07E-11x*+3.97E-08x>-3.32E-05x*+4.64E-02x-3.410E-04. These coefficients were found using
Excel’s Line of Best Fit tool. Now that we can report a single angle value, we must make sure
the output is precise. To accomplish this, we took 27 measurements (the minimum number of
measurements to get very accurate and precise data) and sorted the values using an inplace
sorting function. Then, we selected the three median values and found their average. This
average value was returned to be used by the rest of the system. Finally, the resulting angle was
converted to a string to be used to print to the LCD.

It is absolutely paramount that the user mount the accelerometer in the proper manner. When the
solar panel is completely flat, the angle measurements should be 0°. To achieve the 180° range
while also preserving this constant, the accelerometer would actually be vertical when the solar
panel is completely flat. View Figure 6.3 to observe the intended orientations with the
corresponding assigned angle.

User Modes:

The three different modes the module runs are: Manual, and Algorithm, and Demo. Manual
allows the user to input a specific angle. Demo will tilt the panels as a timelapse-style motion
from -60° to +60° as a demonstration. The algorithm mode is more complex and takes into
account the date, time, and location to calculate the desired angle for the solar rays to be
perpendicular to the solar panels.

For our purposes, the location is preprogrammed to have the longitude and latitude for San Luis
Obispo, CA. Upon start up, the user will input the current date and time, and the algorithm will
calculate the expected angle at which the solar panels would be perpendicular to the sun rays.

First, the program will convert the date to the day number, and the time to solar time. In order to
find the desired angle(beta), the declination, hour angle, altitude, and azimuth are needed. The
equations are shown below to find each parameter.

Declination = 23.45 = sin(% * (day number — 80))

Hour Angle = 15 % (12 — solar time)
Altitude = Arcsin[(sin(Declination) * sin(Latitude)) + (cos(Declination) % cos(Latitude) * cos(HourAngle))]

Azimuth = [sin(Altitude)  sin(Latitude)] — [ rmoatan o1

Finally the desired angle, beta, is found by using the following equation.

16



sin(Azimuth)
tan(Altitude)

0.598 ' +\B5*—(0.598 2~ 1)
1+b*

beta = arccos( ), where b =

Once the desired angle is calculated, the program will run until the accelerometer has reached
that angle. This code will run once every minute. We decided to run it once a minute because the
sun’s position does not change dramatically over a minute, and it is easier for the microcontroller
to run that code than handle code with arrays. Running once a minute rather than any sooner also
ensures better battery performance over a single day test time frame.

RTC:

The RTC or Real-Time Clock is a built-in module to the MSP432. For details on configuration
and initialization, please refer to the MSP432 reference manual [7]. The RTC conveniently keeps
track of the time where it sends an interrupt every minute that passes. It also updates the
corresponding registers to reflect the current time. On the system initialization, the user enters
the current time. From there, the module will keep track of time (also adjusting for leap years)
until the system is powered down. Using this, we can access all times throughout the day. This
then becomes the only input necessary to calculate angles for solar tracking specifically in the
Algorithm mode.

Relay:

The 2 Channel 5V Relay acts as an intermediary device between the MSP432 and the 12V
Actuator. The actuator and relay are the two devices that also interface our smaller system with a
full size single axis solar panel. When the MSP receives a desired input angle, whether from the
user, algorithm, or demonstration predefinition, it checks if the current position of the
accelerometer is equivalent. If the accelerometer position is not at the desired angle, it sets either
Pin 6.6 or Pin 6.7 to 5V, as shown in Figure 5.4, depending on which direction the actuator needs
to move. If Pin 6.6/IN1 is 5V, the actuator moves “out”, and if Pin 6.7/IN2 is set to 5V, the
actuator moves “in.” The relay operates by toggling the COM switch to either OV or 12V
depending on the MSP motion logic according to the datasheet[11].

oV NC| 2 VCC 5V
Black COM
Actuator Red 1oV NO
Relay MSP432

ov NC 1

ik IN1 6.6

NO :
ey IN2 6.7
Figure 5.4: Relay Pin Diagram
User Interface:

17



To preface the following four software flowcharts, we want to emphasize that these are all very
high-level descriptions. For example, blocks containing the phrase “get user input” consist of
dozens of lines of code and integration between various peripherals. Additionally, software
flowcharts look inherently linear. However, to build a robust User Interface, much of this
linearity is actually more circular. As the system enters the super loop presented in Figure 5.5,
the system acts more similarly to a finite state machine than any linear flow. The system
continually cycles, checks for, and handles system updates while presenting the user an easy to

and informative interface.
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The primary function of the code highlighted in Figure 5.5 is to initialize all peripherals and
prepare to launch the primary super loop where the system will spend the majority of its life.
This preparation includes configuring the peripherals to work ideally for our solar tracking
application and populating RTC registers with user time and date input.
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Figure 5.6: Software Flowchart for Home Mode

Once the user enters the primary super loop, it will start with and continually return to the home
mode. In the home mode, the system continuously checks for user input to dictate which mode
(Manual, Algorithm, or Demo) to enter. Once the system detects input, it prepares for that
corresponding mode.
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Figure 5.7: Software Flowchart for Manual Entry Mode

Although Figure 5.7 looks simple, the Manual Entry mode is the most programmatically
complex. The system has to keep track of every single input while being able to continuously
detect a “Home” button press. As previously mentioned in the preface to this section, to create a
robust user interface, we avoid busy-wait loops unless absolutely necessary. As a result, simple
user entry tasks often become the most cumbersome to deal with in a coding environment.
Nevertheless, the end product is a much less bug-prone and a much more responsive system.
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Figure 5.8: Software Flowchart for Algorithm Testing

Before breaking down the software flowchart shown in Figure 5.8, the end user should note the
flexibility this system provides. There is a file provided called Algorithm.c. While the system is
preloaded with an algorithm provided by Professor Dolan, anyone could simply change a single
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function (Algorithm GetAngle Double) to return a different angle. The system will work
flawlessly with any algorithm. The user simply has to change the algorithm in the Algorithm.c
file (only a single change required). This adds tremendous flexibility to this testbench as a whole
and offers future users endless ways to optimize and add to this project.

Moving forward, this portion of the code uses every single peripheral. It continues to use the
keypad and LCD as the user interface, accelerometer to measure the angle, relay to move the
panel, RTC to gather time and date information, and algorithm to calculate the new angle based
on the RTC. After every minute passes during the hard-coded active time, the system calculates
the new angle the panel should be at and moves the panel toward that angle. This continues until
the new angle is successfully achieved. All the while, the user interface displays exactly what the
system is doing. The user can exit this mode at any time by pressing the home button as long as
the solar panel is not currently moving.
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Figure 5.9: Software Flowchart for Demo Mode
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The Demo mode shown in Figure 5.9 is the simplest mode. The system continuously moves the
panel from +60° to -60°. As a result, this mode can be used to stress test the moving mechanisms
of the solar panel.
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Chapter 6 - Testing

The testing section describes system performance from early stages of system testing to final
system performance upon project completion. This project includes both software and hardware
components, and the system underwent many iterations and alterations to achieve optimal
performance.

Keypad and LCD Testing:

The first physical design implementation included integrating both the NHD Liquid Crystal
Display Module and the PLX Series Weatherproof Keypad with the TI MSP432 Microcontroller
in parallel. Individually, Keypad integration utilized the Code Composer Serial output, analyzing
key testing parameters like de-bouncing, timing, and accuracy. The LCD Display itself tested
under individual cases, writing static screens to the MSP in the code itself. Key testing
parameters include accuracy and brightness. With the MSP functioning as our central processing
unit, our team then integrated the two systems such that the keypad output interpreted, by the
MSP, functions as the LCD inputs. Because the final result of this project is based highly on user
interfacing, the solution needs to quickly, accurately, and consistently interpret keypad button
presses to both be stored as data and be displayed for the user. Physical connections for these two
components with the MSP are shown in Figure 5.1 and Figure 5.2. Images of the physical
Keypad and LCD are shown below:

Figure 6.1: Keypad and LCD

RTC Testing:

The Real Time Clock module testing included following the MSP432 Reference Manual to
check that corresponding registers update and accurately read the current time. Testing this
module included observing the MSP’s ability to accurately track time over a 24-hour period.
Because the system is expected to be powered down at the end of the solar day, the MSP
registers need to follow the solar time precisely over at least one day to ensure accurate angle
calculations for the Algorithm mode of the final result. Once initially verified and optimized, the
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RTC did not undergo design iterations, and is successfully used in the Algorithm Mode, where
current time is displayed on the LCD itself.

Accelerometer Testing:

The BOB-13926 Accelerometer testing was highly integrated with its conversion steps.
Obtaining accurate and meaningful data included finding the fastest and most accurate way to
massage raw data from the accelerometer’s 12C interface into data to be stored and later
displayed to the user via the LCD. The MSP reads a 12-bit output from the accelerometer, which
we needed to then characterize via a type of function to arrive at a corresponding angle value.

Initial research and tests tried to subject the 12-bit outputs to versions and iterations of
trigonometric functions. The accelerometer output over its range of motion follows a
semi-sinusoidal path, so we initially used sine functions to interpret the data. Manually testing
out angle readings from the accelerometer, we were able to compare exactly how well calculated
angles matched the accelerometer’s physical orientation. With both individual and stacked trig
functions, we observed high percent error calculations.

Though the panel needs the most precise angle calculations from the approximately -45° to +45°
positions to follow the sun, this system wanted to see accurate angle measurement and reading
from -90° to +90° operation to serve the test bench functionality of its future uses. The final
testing setup included taking raw data from the accelerometer from the -90° to 90° range, plotting
its path in Excel, and creating a fourth-order polynomial line of best fit. This polynomial is
included in Chapter 5, and is the truncated version of an extremely precise formula. This setup
resulted in monumentally lower percent error calculations and more consistent readings overall.

The final system needs to take multiple angle measurements over a short period of time to
account for a moving system, unlikely outlying errors in calculations, and to ultimately display
more accurate data to the user. Once the physical reading and interpreting of data was achieved,
we decided that 27 was an optimal number of readings that accounts for both accuracy and time
to display angle. More readings resulted in computation times that bordered on too long for a fast
reacting, user-based system. Less readings resulted in less accurate angle computation. The
process to obtain the accurate angle reading from the 27 readings is as follows: sort the values
from least to greatest, take the 3 median values, and average those three values. When in the
correct mode and screen, the MSP updates, stores, and displays the current angle value via the
LCD. Physical connections for the accelerometer with the MSP are shown in Figure 5.3. The
images below show the accelerometer positioned at its +90° orientation, then at its 0° orientation:
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+90° orientation 0° orientation
Figure 6.2: Accelerometer Orientation

Relay Testing:

Testing the 2 Channel 5V Relay included an initial characterization of the relay as a device. To
power the 12V actuator, we connect to a test bench power supply as shown in the pinout diagram
in Figure 5.4. The MSP puts a 5V high or OV low signal on two of its own output pins. These
pins are set by the logic described in the Relay initialization of Chapter 5. When only IN1 of the
relay receives the MSP 5V signal, the com port closes and receives the 12V signal, pushing the
actuator “out”. Alternately, when IN2 of the relay receives the 5V signal, the actuator pulls “in”.
This logic was theorized and tested in full. We also determine exhaustively that IN1 and IN2 can
either be both logic OV or both 5V to hold a constant position, which equates to holding a
constant angle when connected to a full single-axis solar panel.

Mode Testing:

The final test bench includes three operational modes of angle-panel testing described below.
Each of the modes also featured software design iterations, detailed in the following sections.
Each mode also featured minor bug fixes including updates to cursor locations, RTC clock
checks, and screen choices that are not listed below.

Manual Input:

Testing the manual input mode requires full functionality from the keypad, LCD, accelerometer,
and MSP. The user inputs their desired angle and confirms it using the # key. From this point, we
utilized the Code Composer debugger to verify the MSP was consistently checking the current
angle, updating the LCD angle displayed, and sending the relay pins high or low depending on
the current angle status. We confine the input range from -90° to +90°. These are the angles we
define both because they are easy to comprehend for the user and easy to work with in software
for any future projects when understanding the panel positioning. We chose to only fetch the
present angle once the user has input their desired angle. Once the desired angle is met, we
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choose to reset the Manual Entry mode so that a user can easily test another desired angle. We
also include access to the home button that allows the user to stop all aspects of the Manual
Entry mode and return to the home screen. This was also the primary mode where we tested the
accuracy of the accelerometer to MSP to LCD readings. This was the only mode we were able to
fully test with the 5V Relay and 12V actuator as it was the first mode we built and finalized.

Algorithm:

The algorithm mode was the last mode we finalized and tested. This mode uses a Matlab-based
system to get the RTC current time and day to determine an ideal angle for the solar panel.
Having the Matlab test code available meant that once we adapted the code for the MSP, we
could easily test the accuracy of the MSP in now calculating the desired angle. Testing for this
included both a step-by-step viewing of the calculations within the software and verifying the
final LCD display. From there, the MSP would operate in the same way as the Manual Input
Mode, checking if the accelerometer has achieved a goal angle position and moving the actuator
until it has.
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Figure 6.3: Solar Panel Angles on November 18th
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Figure 6.1 shows the optimal panel angle throughout the day on the 18th of November. The blue
line is the real time, actual angle we wish to track, the red line shows the ideal angle for solar
time, and the green line is the optimum angle if there were no shade.

Demonstration:

The demonstration mode test was simpler than the other two from a testing standpoint. The
demonstration mode doesn’t take into account any user input. The mode simply starts the angle
at -60 deg and moves at the speed of the accelerometer until it reaches +60 deg. This mode
displays the current accelerometer and panel angle at all times, and also features an exit button to
return to the home screen.
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Chapter 7 - Conclusion and Future Work

Conclusion:

Although the COVID-19 Pandemic hurt the final integration of all systems, the project still met
the majority of expectations. The final system and all peripherals could not be mounted on to a
solar panel, but all the systems work well and can be easily tested once health concerns dissipate.

On the whole, the entire system cost $161.47. This is well under budget especially for the
practicality. The overall Solar Tracker System features a robust and bug-free user interface. Of
course, this is contingent on the user actually using the system as directed in the User Manual.
The only other bugs procured during final testing were due to faulty jumper cables. Specifically,
the 12C communication between the MSP432 and the accelerometer sometimes faltered due to
shoddy jumper cables. Additionally, the system provides three distinct modes that can each help
in the development and testing of Single-Axis solar tracking. Let’s evaluate them one by one.

First, the Manual Entry mode can be used to develop new algorithms. In this mode, the user
enters an angle and the system moves the solar panel to that angle plus or minus 0.25°. As a
result, the user can move the solar panel to any angle between -90° and +90° at any time. Please
refer to the accelerometer section for how to properly mount it in correspondence to the panel.

Next, the Algorithm mode can be used to test out any algorithm the user desires. Currently, the
system is pre-loaded with a Solar Tracking algorithm provided by Professor Dolan. To change
the algorithm, simply modify the code in the Algorithm.c section. The user only needs to modify
a single function, and the new algorithm will run seamlessly.

Finally, the Demo mode can be used to stress test the mechanisms that actually move the solar
panel. This type of stress test is critical before long-term mass deployment. As a result, the
system provides a complete package in Solar Tracking Algorithm development.

Future Work:

For future implementation, the Laboratory Single-Axis PV Module Tracker, would ideally be
placed on a solar panel in order for laboratory testing. Due to unforeseen circumstances and
limited sources, the module tracker was unable to be put directly on the solar panel. However,
once implemented on the actuator of the solar panel, the device will be able to control the tilt
angle. One improvement that could be made on this project would be to solder each wire
connection to minimize I12C communication errors. Other improvements would be in the design
and build of the overall project, as well as possibly including more modes to test.

Future users of this module will benefit from being able to observe and measure the exact,
desired angle of the solar panels in a laboratory setting. By altering the part of the code that
determines the location of the panels, users can see how the panels would be angled at a given
time in any location. This benefits users that are interested in finding the optimal angle for solar
panels to be at a given time and location.
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APPENDIX A - ANALYSIS OF SENIOR PROJECT DESIGN

Project Title: Design and Development of Laboratory single-axis PV Module Tracker
Students’ Name: Delaney Berger, Avishek Maitra, Helen Rice

Students’ Signature:

Advisor’s Name: Dale Dolan

Advisor’s Initials:

Date: 12/13/219

1. Summary of Functional Requirements

The single-axis PV Module Tracker system allows users an effortless way to test various
algorithms to ultimately determine the best way to avoid inter-row shading and maximize
power output. The system will allow characterization of specific existing algorithms as well as
newly customized algorithms in order to inform students on critical solar tracking
characteristics. Additionally, the system will provide the flexibility to test algorithms before
they are deployed on a large scale.

2. Primary Constraints

Describe significant challenges or difficulties associated with your project or implementation.
The single-axis PV Module Tracker system is limited by the algorithm that takes into account
the maximum angle of the motors. The location and orientation of the solar panels combined
with the single-axis tracking motors limits the angle of rotation for each panel. The difficulties
will be in creating an algorithm that maximizes the angle of rotation while minimizing the
amount of inter-row shading. Difficulties also include finding a durable, weather-proof
material external housing structure for test equipment and angle measurement device. Finally,
students design a user interface that is easy to use while displaying important information in an
organized manner. The display and interaction with the system will provide the bulk of
complexity to the embedded system. Testing dates must be chosen in accordance with viable
weather conditions for testing.

3. Economic

The economic costs primarily consist of human capital, financial capital, manufactured capital,
and natural capital. The human capital spent on development totals to over 300 hours. In terms
of financial capital, each finished product will cost $341 to build and collect all the parts
necessary. Our manufactured capital consists of all the necessary tools to fabricate the housing
as well as properly interface the electrical components together and pair of solar panels to test
the final design. Finally, producing this product inherently consumes natural capital. First,
each finished product will have a plethora of silicon-based electronics. As a result, silicon and
all the natural resources used to convert silicon into a usable electronic will be consumed.
Additionally, the weatherproof housing will likely be some type of plastic (ABS or PETG).
The majority of plastics are petroleum-based so this product would consume a non-renewable
resource.
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When and where do costs and benefits accrue throughout the project’s lifecycle?

As mentioned previously, the costs are largely upfront with development hours. Afterwards,
the primary cost will be manufacturing the actual product. This cost will accrue as long as the
product is sold. The financial and environmental benefits will be seen as soon as the product is
finished and deployed in May 2020. Cal Poly students will immediately be able to test a
variety of solar-tracking algorithms to determine which is the best for their specific
application. This benefits the environment as more renewable energy will be produced.

What inputs does the project require? How much does the project cost? Who pays?

The inputs required in the project are development hours and specific hardware including
sensors, and MCU, and a power driver. The total cost of the project is not expected to exceed
$350. Additional equipment costs, including labor and overhead, equal $12,821.47.

How much does the project earn? Who profits?

The final project ultimately earns its worth through the additional power output. The system
will be testing and determining ways to minimize inter-row shading. It will be an interface for
users to continually test different methods to control panel movements. This project
specifically will be used in a laboratory setting to help justify the Cal Poly and other solar
farms to update their systems. As a result, the Cal Poly Solar Farm or any solar farm that is
able to update their systems designed on the test system will profit in higher energy outputs.
The project also encourages technological advancements from students and professionals in
the solar production industry.

Timing

The completed project test system will emerge at the end of May 2020, and will function as
long as the hardware and software components are still viable. Students aim to have a more
approximate estimate of the external components’ life spans, including the test PV panels. In
regards to software, as long as the C programming language is an industry level. Long term
maintenance costs of the test system will include replacing the portable battery, maintaining
external weatherproof housing, and keeping functionality of the display panel.
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Original estimated development time (as of the start of your project), as Gantt or Pert chart
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What happens after the project ends?
A successful project-end produces a unified algorithm running on a pair of solar panels that
shows the benefits in terms of additional power output in a laboratory setting.

4. If manufactured on a commercial basis:

Estimated number of devices sold per year

Estimated manufacturing cost for each device

Estimated purchase price for each device

Estimated profit per year

Estimated cost for user to operate device, per unit time (specify time interval)

The embedded system, once created, will be easy to use in a variety of two-panel test setups.
Any customer looking to test a newly developed or existing algorithm to implement on a larger
scale will find value in this product. With a viable and profitable proof of concept testing
interface model, expectations include a high demand for the full embedded system so existing
solar farms will have a way to test algorithms in a laboratory setting. Since there are about
2,500 US solar power plants, we expect to sell approximately 250 systems a year [6]. Based on
the cost of parts and components, the system would cost approximately $13,001 to
manufacture, minus the initial team labor, summing to approximately $761. In order to
compensate the engineers properly and make a sizable profit the purchase price for each test
system should cost at least $1000 for buyers. Thus, the profit per year would be $250,000.

5. Environmental

Describe any environmental impacts associated with manufacturing or use, explain where they
occur and quantify.

Which natural resources and ecosystem services does the project use directly and indirectly?
Which natural resources and ecosystem services does the project improve or harm?

How does the project impact other species?
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The negative natural impacts occur when manufacturing the parts for the overall product. This
primarily consists of fabricating the silicon components (microcontroller) and the LCD.
Secondly, the weatherproof housing will most likely be made of ABS or PETG (primary
weatherproof materials) which are both petroleum-based. The use of petroleum-based
materials as well as creating silicon-based products will contribute to climate change as both
these processes emit greenhouse gasses. However, the positive impact on the environment will
outweigh the negative impact on the environment.

The impacts of this project will benefit the environment. By providing solar plants a way to
test a variety of solar tracking algorithms before implementation on a large scale, the most
efficient algorithm (in terms of power production) can be chosen. Choosing the right algorithm
for the specific solar farm environment will drastically increase the overall power output. By
increasing the overall power output, communities can rely more heavily on solar power instead
of a nonrenewable energy source leading to lower greenhouse gas emissions.

Finally, this product may indirectly increase the proliferation of solar farms. Unfortunately,
solar farms take space to employ. If more solar farms were created in natural habitats, it would
displace the flora and fauna that currently live there. As a result, this product may indirectly
cause displacement for some animal and plant life that live in sunny, flat areas.

6. Manufacturability

Describe any issues or challenges associated with manufacturing.

The bulk of the manufacturing process exists in creating the test bench interface for users to
input their means of tracking angle. The challenges students foresee include defining the test
system algorithm. It should be able to integrate a variety of user tests, be dynamic, and run
tests independently. Once a set of algorithms has been tested, optimized, and finalized, future
possible manufacturing costs will be related to external hardware.

7. Sustainability

Describe any issues or challenges associated with maintaining the completed device or system.
Describe how the project impacts the sustainable use of resources.

Describe any upgrades that would improve the design of the project.

Describe any issues or challenges associated with upgrading the design.

The final product is a customized embedded system. Once completed, the algorithm will be
able to test user defined methods for reducing inter row shading. The goal of this project is to
allow users to easily find ways to test power improvement methods on a small scale. Along
with its limited external material usage, the project is aiming to maximize solar power
sustainability. It aims to fully maximize solar farm power production. Upgrades to the system
encourage optimization of mathematical models and new iterations of user tracker control.
Challenges here would fall on the engineers during the modeling and refining process. This
project’s sole customer base is existing solar farms. The test system promotes the possible
building of solar farms by providing an efficient and low cost means to achieve optimal
sustainable, renewable energy power outputs. Project will use a MSP432 microcontroller,
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accelerometer, LCD display, and external housing system. These components, especially the
electronics, have the capability to become e-waste. Students intend for the project to be used
by future students to test panel algorithms. Should components reach the end of their lifetime,
students will take care to properly dispose of or recycle these components at the end of the
project lifetime. In addition, students aim to utilize a recyclable material for containment of
test equipment to maintain a sustainable project.

8. Ethical

Describe ethical implications relating to the design, manufacture, use, or misuse of the
project. Analyze using one or more ethical frameworks in addition to the IEEE Code of Ethics.
The first IEEE Code of Ethics states: “to hold paramount the safety, health, and welfare of the
public, to strive to comply with ethical design and sustainable development practices, and to
disclose promptly factors that might endanger the public or the environment.”

The purpose of the system is to test different algorithms in order to minimize carbon footprint
by maximizing the power output of the corresponding solar farms. A possible misuse of this
project is if the solar farm is powering a facility that is harmful to society. To accommodate
the IEEE code of ethics, the implementation of the algorithm on solar farms will allow the
facilities utilizing the power to be more sustainable. The system is also valuable for others to
test different algorithms and understand the effects of shading and orientation of solar panels.

9. Health and Safety

Describe any health and safety concerns associated with design, manufacture, or use of the
project.

If the system is unable to correctly execute the algorithm with the desired tilt, then potential
safety risks may occur when implementing the algorithm on a physical solar farm. The lab
system may work correctly, but it could be possible that on the physical solar farm, the
algorithm responds differently. When designing, manufacturing, and using the system, it is
imperative to follow lab safety guidelines. In addition, as previously mentioned in the
Environmental section, manufacturing silicon and petroleum based products harm the
environment. More directly, they harm the workers directly involved in the production process
as they are closest to the chemical fumes these processes emit.

10. Social and Political

Describe social and political issues associated with design, manufacture, and use.

The direct stakeholders are Cal Poly’s students and faculty, specifically those who have an
interest in solar energy. This laboratory Single-Axis PV Tracker will help students learn about
common solar tracking principles as well as design and test new algorithms to track the sun.

The possible social and political issues associated with the design, manufacture, and use of the
system are among people that don’t support building solar farms on open land. The project
directly impacts the users of solar energy by decreasing their energy costs and society by
decreasing the overall carbon footprint. The indirect stakeholders are the entire San Luis
Obispo community, who would benefit from higher community use of renewable energy. This
could decrease dependencies on more expensive non-renewable energy.
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11. Development

Describe any new tools or techniques, used for either development or analysis that you
learned independently during the course of your project.

Upon the completion of this project, we expect to gain vast and intricate awareness and
knowledge about mathematical modeling of a physical space. The first steps of our process
include adapting data collection into a functional model. This model will translate directly into
algorithm inputs as panel rotation magnitude and frequency of motion. We will also become
familiar with testing methods for finding optimum frequency of rotation along with
mathematical modeling of rotational optimization based on power supply of panel motors.
These inputs surmise the algorithm’s bulk, where we will quickly become familiar with the
algorithm and its inputs to be easily adjustable.

Additionally, we will learn how to create an embedded system that implements various levels
of software. On the frontend, there will be a user interface with a variety of options to control
two panels. On the backend, we have to program complex mathematics with limited
processing power. Also, we must externally interact with an LCD screen which requires
knowledge on basic communication protocols and with a motor relay which requires strict
current requirements. As a result, the software will delve into user interface design, clever
processing simplifications, and powerful and accurate current delivery.
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APPENDIX B - LITERATURE SEARCH

Book:

K. Jager, I. Olindo, et al. Solar Energy. Delft, ND: Delft University of Technology, 2014.
This book explains the fundamentals of solar energy and solar panels. The book starts
with the theory of electromagnetic waves, jumps into semiconductor physics, and finishes
with proper implementation of solar farms. As a result, this is a very valuable reference
very almost every step of the project. The book has significant authority as it was written
and published by a world-renowned university specializing in technology and
engineering. Five different professors contributed to the textbook showing its depth and
variety of perspectives.

Patent:

Suncore Photovoltaics, Inc. (Irwindale, CA), J. Sherman, ‘Solar Tracking System’, 8946608,

2015.
This patent explains the methods used for a solar cell array to track the sun. This source
used a specific method to track the sun used a software algorithm, and it includes useful
block diagrams. The source is credible due to the publishing date being in 2015.

IEEE Journal:

V. P. Anand, O. B. Priyan, and B. Pesala, “Effect of shading losses on the performance of solar

module system using MATLAB simulation,” in [EEE 2nd International Conference on

Electrical Energy Systems (ICEES) 2014, Chennai, India, January 7-9, 2014, [Online]. DOI:

10.1109/ICEES.2014.6924142.
This IEEE conference paper clearly justifies the need for an accountability system that
reduces if not eliminates shading on solar panels. It contains important data regarding PV
characteristics and efficiency of panels under different conditions. The article also
explains the creation of a MATLAB model of a multi megaWatt farm, a perfect reference
size for Cal Poly’s 4.5 MW farm. A similar matlab model to streamline our data
collection process once in the testing phase. This source is credible due to its entrance
into an official IEEE conference and resubmission to IEEE database months later.

P. Domorand and M. Averbukh, “Partial shading problem solution for solar arrays fed by MPPT
via permanent monitoring of individual panels,” in IEEE 28th Convention of Electrical and
Electronics  Engineers  in  Israel,  December  3-5, 2014, [Online]. DOL:
10.1109/EEEL.2014.7005767.
This IEEE journal article analyzes various techniques for diminishing partial shading on
panels, of which they find panel configuration as the most promising technique. This
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encourages our group to continue research because the positive power output changes
from optimizing panel placement provides an efficient solution.

A. Bidram, A. Davoudi and R. S. Balog, “Control and circuit techniques to mitigate partial

shading effects in photovoltaic arrays,” Photovoltaics, IEEE Journal of 2(4), pp. 532-546. 2012.
This IEEE journal article does a good job at characterizing Maximum Power Point
Tracking techniques, which will be valuable when characterizing our own power tracking
systems for our test panels. This article was cited in numerous other articles surrounding
the topic of solar power maximization.

Data Sheet:

Texas Instruments, “Microcontroller LaunchPad,” MSP432P401R datasheet, March 2015

[Revised March 2018].
Datasheet for the microprocessor that will be used to implement the algorithm used for
the single axis solar tracking system. The datasheet was taken directly from Texas
Instruments’ website.

Other:
“Cal Poly Gold Tree,” greenpowermonitor.com, 2019. [Online]. Available:
https://web3.greenpowermonitor.com/application/#/adminReports/3387. [Accessed Oct. 19,
2019].
This website will be used to analyze the output power directly from Cal Poly’s Solar
farm. Students will be able to analyze the shading and landscape issues with the solar
panels.

K. Das, H. Ghosh, and M. Sengupta, “Single Axis Solar Tracking System using Microcontroller
(ATmega328) and Servo Motor,” Dept.of ECE, Sur Degree Engineering College. Kolkata, India.
June 6, 2016.
This article explains the methods and ideas used for programming an Arduino Uno for
real time monitoring solar position. Students can use this article when writing the
algorithm for the single axis tracking. The article is credible because it was featured in
the International Journal of Scientific and Research Publications, Volume 6.

D. Schneider, “Control Algorithms for Large-scale Single-axis Photovoltaic Trackers”, Institute
of Imaging and Computer Vision, Aachen University: May, 2012.
This publication from Aachen University explains how to implement an algorithm
specifically for a solar farm in comparison to a single solar panel. The author explains the
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theory behind basic solar panel tracking by using Lambert’s Law as a basis and deviates
from it using a customized algorithm with a backtracking emphasis. The publication has
authority because it explicitly uses mathematical calculations to highlight why the
algorithm deviates from previously established solar tracking methods. On top of that, it
references eleven other academic publications for peppered proof throughout the text.

F. Sadeque and Q. Ahsan, “Design and Implementation in Single-Axis Automatic Solar
Tracking System”, GUB Journal of Science and Engineering, Green University: July 2014.
This publication highlights specific C implementation of a single-axis algorithm. As
such, the work done by these two gentlemen will provide as a good launch point for our
C-based algorithm. The article has authority because the two authors sufficiently
reference and support any assumptions and design choices with various other
technically-sound publications.
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APPENDIX C - CODE COMPOSER STUDIO CODE

The code base is too large and unwieldy to simply cut and paste. The code, instead, can be found
in the GitHub link below. If you desire to make any changes, please clone the original and make
the changes. Do not change the code in the original.

GitHub Link: https://github.com/avishekmaitra/SolarTracker
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APPENDIX D - SOFTWARE FLOWCHART
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APPENDIX E - USER MANUAL
See Appendix F for the pinout diagrams and connections.

Upon start up, the user will be prompted to input the current date and time, pressing “#” to enter
and go to the next screen. Each time the module is powered back on, the user will need to input
the current date and time. The code is hard coded for the location to be San Luis Obispo, CA.

The following screen should display a “Welcome!” message.

Then a screen showing three different modes:

A: Manual

B: Algorithm

C: Demo

The user will select one of the modes using the keypad.
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The Manual mode allows the user to set their own desired angle for the solar panels. The
Algorithm mode will calculate the desired angle using the location, date, and time previously
inputted. Lastly, the Demo mode will automatically move the solar panels from -60° to +60° in
the form of a timelapse.

In order to go back to the homescreen the user can press the “.” key on the keypad, but the
running code must finish before returning to the homescreen.

If there is an I2C communication error, the program will eventually fix itself and return back to
the homescreen.

The algorithm mode is run off of the real time clock on the MSP432, and will automatically
update once a minute.

47



APPENDIX F - PINOUT DIAGRAMS
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Figure 5.3: Accelerometer Pin Diagram
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APPENDIX G - NOTES

Due to unforeseen circumstances during the Spring of 2020, we were unable to fulfill some of
the desired characteristics of the Design and Development of a Laboratory Single-Axis PV
Module Tracker. Ideally, the module would have been connected to a set of relays that controlled
the actuator to move up or down depending on the desired angle. The module as a whole would
have been placed into a weatherproof compartment and placed on the actuator to verify the angle
was correct. Although we were unable to test on the equipment, we were able to calibrate and do
ample testing of the accelerometer to verify that once attached to the actuator, the angle readings
would be accurate and precise.
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