View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by DigitalCommons@CalPoly

Fitness Plug

Senior Project Report
CPE 461/462

Date: 6/5/2020

Author: Evan Ashley
Advisor(s): Dr. Hummel & Dr. Slivovsky

https://core.ac.uk/display/324168853?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

My parents only allowed me to play videogames or watch television for a certain number
of minutes or hours per day. By limiting screen time, they encouraged me to be active and find
other things to do outside of television or videogames. The Fitness Plug aims to do both by
converting time exercised to entertainment time; you can only watch television or play

videogames for as long as you have exercised.

Introduction 4
SEARCROIACES ... ettt ettt et e e et e e e e e e e e eeaaeee s 4
Framed Insights and OPPOTIURILIESc..ccvecuieieiiieieeieeeeeteee et et eae e ae et tesaeese e beessesbe e s e steesseesseseesseseens 4
Project Deliverables & OUICOMES...................cccouecuereeiieeieieeieeeie ettt ettt b et esbeesseebeesseessesseeseenseens 4

Background 5

Formal Project Definition 7
CUSTOMEY ROGUIFEITNEILSceeeeie ettt et et ettt ettt et e e et et e e et e et e sebeenbtesab e e steenbeeteeenbeenseesnbeeneeennes 7
ENgineering REGUITEIMIEHLSccc.cooiiiiiiiieee ettt ettt ettt ettt sttt e st et e et et eenbeebeesnbeenaaeenns 7
ERA-USCE POEFSONGS. ..ottt e eaae e e eae e enns 7

Design 8

Conclusion and Future Work 12

Reflection 13

Appendix 14
Bill Of MATETIQIS. ..ottt ettt ettt ettt et e bt e e e bt ne e et ente et e aeaneenaeaneas 14
PO SOIAS ... ettt e et e e et e e e e e et e ee——tee s e e —tee e e e aaeeeeeeaaaas 15
QO e ettt e et e e et e e e e nae e e e e e 17

10T 14 T <RSPPI 17
F23 o Lo I« WO OO OO PRSP 19
Jog0) T X OO U URUSRTRRPRP 19
(oo o TR 19
| EoTa R 20
T2 4 PSPPSRSO 22
T2 PSR 22
(<3 e ToTe Yo 1<y o« RSP 23
(<3 ToTe Yo 1<) o RS 23
POWET N .ttt b bbb b et sttt ettt et e st e bt e bt eb e bt e bt e bbbt se et e b e e enee 25
POWET.C ettt ettt ettt st ettt ettt e e e bt e e ae e e bt e e bt e sht e e a bt e e st e eabeeshbeeabeesbe e e abeeebeeeabeeebteaabeesabeeabeeshbe e bt enuteebeesaneeane 25
o) 0TS e Yo)1 o TN « WSRO PR 26
o) 0TS e Yo} 1 o KO PRRTN 27
SPP_INTEIALOT R ..ottt ettt ettt et e bt e e bt et e bt ee e e bt e et e e bt e teene e teeneenteene 30
0] I L1118 L) o OSSOSO URTU SRRSOt 30
SPP._ACCEPTOT. .ttt h ettt h et e h et e h et e a e e bt ea e bt eete e bt e beene e beeneenteene 34
SPP . ACCEPTOL.C ..uenttenteetiente ettt et e e bt eate st e eate st e et e sb e et e eb e e bt ea b e bt ea e e bt ea et eb e ea et e bt e bt e bt e bt eeteeheeatenbeeetenb e et e ebe et e ebeeteeae 34
NEEWOTK. N oot e e e et e e e e e e et e e e e et e e e e e eeaaareeeeeetaaeeeeeenaareeeeeaaaaes 37
J0S1800) 4 oK o PP RTRR 38
BIDIIOGUAPIY ...ttt b et h ettt ettt ae b re e b rt e re st e eheenbeeteenseeteens 40

Introduction
Stakeholders

The primary stakeholders of this project are parents who want their children to exercise
more; and people who generally prioritize videogames, television, or other forms of
entertainment over being active. Provided they have the Fitness Plug, people can have unlimited

screen time so long as they are active and exercising.

Framed Insights and Opportunities

During the ideation process, I identified several necessary features for such a device. The
device had to be adaptable to different types of exercise equipment, any involved devices would
have to be connected to each other wirelessly, and the consumption device could be used
independent of exercise. Supporting different types of exercise was important as this would not
constrain the user to any one kind of exercise. In other words, by supporting a variety of sensor
types, the device could identify when you were exercising and keep track of the duration,
regardless of the type of exercise. The wireless component was important as this would not
require you to be close to the outlet powering your entertainment system to be able to exercise.
Tied with the previous feature, you can do any kind of exercise without being limited to the
space itself; you could exercise outside or in a different room. Finally, the independence of the
involved devices would enable a user to exercise for a period of time, and then consume
entertainment, but not necessarily do the two at the same time. Effectively, the consumption
device could be turned off during exercise, and store the duration of exercise (called “fitness

minutes” from here forward) for use later.
Project Deliverables & Outcomes

The primary deliverable for this project is a device made of two components: a fitness
device which keeps track of the time the user spends exercising, and a consumption device which
spends the time exercised to power entertainment devices. Upon completing this project, I hope
that this technology is explored more, and children are further encouraged to be active and

exercise first, and to watch television or play videogames second.

Background

In a study by Dr. Leon Straker and Dr. Juliana Zabatiero entitled “Conflicting Guidelines
on Young Children’s Screen Time and Use of Digital Technology Create Policy and Practice
Dilemmas”, screen time in children helps in “enhancing learning, promoting children's digital
skill set, engaging in STEM..., ensuring productive workforce membership, enabling competition
in a globalized economy, and creating competence in social interaction.” However, there are also
“concerns about the effects on physical, cognitive, emotional, and social health, well-being, and
development [which] include poor and sustained postures; ... limitation of time for learning
opportunities, shortened attention spans, and fewer contexts for verbal interactions, problem-
solving, and creativity; ... addiction, depression, and access to inappropriate content and

advertising” [1].

120 1

110 1

9-y-olds

:

15-y-olds

MVPA (minutes/day)
o
3

o 2 6 8
Screen time (hours/day)
Figure 1 — Impact of screen time
on moderate-to-vigorous physical

activity (MVPA) 2]

In a study investigating the impact of sleep, screen time, school travel, and exercise on
moderate-to-vigorous physical activity (MVPA) from 2018 published in the paper “Cross-
Sectional and Prospective Associations between Sleep, Screen Time, Active School Travel,
Sports/Exercise Participation and Physical Activity in Children and Adolescents”, Knut Eirik
Dalene and the other researchers found that “in 9- and 15-y-olds, [there were] inverse
associations between screen time and MVPA, translating to 2.2 and 1.7 min/d less MVPA for
each additional hour of screen time, respectively” (2. We can see a graphical representation of

these findings in Figure 1.

0O Lean
300 ¢ W Overweight

d
200 c d
b b 2
l(X)L
il
Niies Bl |

Sit, watch Traditional EyeToy Walk, watch Dance Dance
television video game television Revolution

Percent increase above rest

Figure 2 — Impact of activity during
videogames and television on increase

above rest [3]

In a study conducted by Dr. Lanningham-Foster and their team entitled “Energy
Expenditure of Sedentary Screen Time Compared With Active Screen Time for Children”, they
found that “activity-promoting video games and treadmill television and computer use more than
doubled energy expenditure, compared with the chair-based equivalents” 3. As shown in Figure
2, even television coupled with walking on a treadmill motivated the participants in the study to

increase activity.

There are inarguably negative aspects of screen time, however, screen time cannot be
completely removed as technological competency is quite important in an increasingly digital
world. By actively increasing physical activity during television or videogames, we can prevent
the decrease in such activity generally associated with screen time. We know that television and
videogames are great motivators for physical activity, as shown in the third study, so a device
like the Fitness Plug would help to encourage such activities and associate them with the reward

of digital entertainment.

F | Proiect Definiti

Customer Requirements

Going into this project, I had two main requirements: the devices couldn’t be tethered by
a wire as this would severely limit the number of exercises supported, and you had to be able to
work out and gain fitness minutes without watching TV and consuming fitness minutes.

Engineering Requirements

Table 1 — Engineering requirements for the Fitness Plug

Spec # | Parameter Target Tolerance Compliance

1 Connectivity Bi-directional N/A 1

2 Range Devices can stay connected | Max. AT
more than 10 meters apart

3 Accuracy Fitness minutes are stored Min. I
down to the second

4 Safety Relay flips in less than a Min. T, 1
second

5 Accommodates grounding N/A IS
pins on the plugs of devices

6 Operation Devices should connect N/A T,1
quickly to one another

7 Usability New sensors must be easily | N/A A, S
adapted to by the hardware
and firmware

The options for compliance stand for: analysis, testing, inspection, and similarity.
End-User Personas

As shown in the Personas section of the Appendix, this device can be used for a number
of reasons. The device can be used to actively discourage screen time over studying, or it can be
used as a way to decrease inactivity. Considering Quinn’s use case, his use of a computer which
plugs into the wall enables the device to act as a 1:1 exercise to studying converter. In Judah’s
use case, however, using Reddit on a phone would produce a more disparate exercise to Reddit
conversion, since the phone battery would charge at a quicker rate than the energy is consumed.
In both cases the device would still limit screen time and encourage exercise, despite not both

resulting in the same exercise to entertainment conversion.

|I%HHHHHII

Rotary
oA Encoder
: |
Relay < Microcontroller ~ [«—>»| Bluetooth Module |[€------------- »| Bluetooth Module » Microcontroller
kxfn s|s 3[0| ml|iln hifn s|s 3(0| mlijn
LCD LCD

v
Entertainment Device

At the start of the project I drew a block diagram, shown in Figure 3, roughly laying out

Figure 3 — Hardware overview for the Fitness Plug

how the Fitness Plug would work. This determined the features I needed to build into the project,

and therefore what components I would have to purchase.

I knew that the devices needed to communicate wirelessly and at a relatively low range,
so I would have to purchase microcontrollers that had WiFi or Bluetooth built in or buy external
modules. Additionally, I knew the devices had to take up a small footprint, so devices like the
Arduino Mega or MSP432 were out of the question. The Arduino Teensy would fit the size and
BLE (Bluetooth Low Energy) constraint but wouldn’t enable me to develop firmware in C since
it uses the Arduino IDE. The ESP32-PICO-V4 development board, however, meets the size
constraint, has Bluetooth and WiFi support (both in firmware and in hardware), and runs

compiled C.

I was familiar with the Newhaven Displays and how to drive them so picking the LCD
was somewhat straightforward. Additionally, with a limited number of pins and a lot of
components connected to the ESP32, I wanted to make sure that a 4-bit mode of communication

with the LCD was also supported in addition to the 8-bit mode.

Finally, I knew that I wanted to have some sort of control over the time stored on the
devices, but I didn’t want to buy an exercise bike. Using a Hall-effect sensor would not work
since this would require mounting it along with magnets to some kind of rotating platform or
crank. Whatever component I chose needed to be able to indicate rotation direction, so a
quadrature encoder seemed to be a great option. I didn’t need a particularly high resolution, so I

was able to quickly acquire a cheap encoder from Amazon.

NHD-0216HZ-FSW-FBW-33V3C LCD

POWER: ON
TIME: 2' 03"

[1]2]3]4]s5]6]7]8]9 [10]11]12]13]14]15]16]

\\——
Ics] 1]
Ino| i3]
ID2| CLK
Ive| [21] KY-040 Encoder Module
IVN| [22]
125 [19]
T =
Bluetooth {32 - 18
Ingicator LEDs —® 3§ [s] éng bvd [o] Fiq
: : 7| 2 o
i 5 W& [s]
T : 12| &% Rxd
: : L I R i
: o 13 Td
--------- 2 | [34]
4| [30]
o] [37]
E K Relay Driver
l5v| T
= L G2R-1-T DCS5 Relay
= O
Bl
& | P
110VAC 110VAC !
(Device) (Wall)
| BS170

Button Debouncer : &

Figure 4 — Hardware schematic for the Fitness Plug devices

As shown in Figure 4, both the fitness and consumption devices support several
peripherals, though only some of these are hooked up to each device, depending on what they are
responsible for. The LCD shows the power state of the device, and the number of fitness minutes
left in minutes and seconds. The relay driver circuit enables the ESP32 to control a relay with
only 3.3V; this relay enables and disables the entertainment device (television, videogame
console, phone charger, etc.). The button debouncer circuit prevents the microcontroller from
picking up more than one edge when the button is pressed. Finally, the encoder controls the
fitness minutes stored on the microcontroller in place of a sensor on an exercise bike or other

exercise mechanism.

Figure 5 — Fitness Device CAD

Figure 6 — Consumption Device CAD

10

The CAD models shown in Figures 5 and 6 were created primarily to remove visual
clutter from the components, and not as part of an initial requirement for the project. Most of
hardware and software development wrapped up in the first quarter, and while having

breadboarded circuits for demo would enable me to quickly point at components and circuits

involved, creating circuit boards and enclosures for the electronics seemed more professional.

Additionally, having these boxes made it a bit easier to explain what each of the devices did,

without the distraction of wires and scattered components on the breadboard.

11

Conclusion and Future Work

If development were to continue on this project, I would want to address a couple of
outstanding issues. First, when the devices get disconnected, nothing restarts the connection
sequence. Having some means of restarting the connection would make using the devices a lot
easier as you would not have to worry about them becoming disconnected and consequently out
of sync. Second, having mounts for Bluetooth connection lights would help to further debug any
connection issues. Third, there is nothing to store the fitness minutes permanently across power
cycles, so losing power on the consumption device would cause you to lose your fitness minutes.
Fourth, the relay response time is not ideal; the relay flips state on the second, and not as soon as
the consumption device is flipped from on to off, or off to on. As mentioned in the Engineering
Requirements table (Table 1), this could be a safety hazard. Finally, having USB cables to power
the microcontrollers is unideal for at least the fitness device. Having a battery for the fitness
device would make it truly wireless and remove the need for a USB cable to power it. Powering
the consumption device directly off of the wall plug would remove the need for two outlets to be

used to power the consumption device.

12

Reflection

This project enabled me to take advantage of all of my knowledge and experience from
my college career; it incorporated some circuits design and manufacturing, CAD modeling,
software development and best practices, version control, and research and development. There
were points in the project where I didn’t think I was going to be able to get it working, but with a

little bit of extra time spent, [was able to work through them.

The most notable challenge in this project was Bluetooth; I didn’t know a lot about
Bluetooth when this project began, and it was quite challenging to use anything other than the
Bluetooth stack built into the Espressif toolchain. Throughout the whole project, it was quite
apparent that they pushed for reliance on their API functions over manipulating registers to
configure various communication peripherals, like Bluetooth, as everything from GPIO (General
Purpose Input/Output) to the RTC (Real Time Clock) was configured via functions calls. While
they had numerous examples for the Bluetooth functionality in particular, it was quite hard to
determine which example I should base my code off of. It took several weeks for me to find one
that was promising, and even longer to read through the code and determine if it was worth
pursuing. Over spring break, one of them seemed quite appealing (the SPP Acceptor & SPP
Initiator example), and I moved forward with it. Using this example over other ones enabled me
to build out a networking module which could handle communications in either direction,

making all of the wireless code much easier to develop.

The only other challenge I can think of was finding contiguous time in my schedule to
work on the project; I found myself taking advantage of free time to make a ton of progress in
anticipation of a loss of time later while working on projects in my other classes. Due to changes
to my Spring Break plans, I was able to make up a lot of lost time on Bluetooth over Spring

Break, eventually arriving at the solution I had at the end of the project.

13

Appendix

Bill of Materials

Table 2 — Bill of Materials for the Fitness Plug project
Material Store |Quantity |Cost |Total Cost
ESP32-PICO-KIT Digikey 21$10.00 $20.00
G2R-1 DC3 (Relay) Digikey 1| $5.22 $5.22
AKS500/16-OE-5-0.5 (Male Plug) Digikey 1| $2.52 $2.52
04530.73.01 (Female Plug) Digikey 1| $5.53 $5.53
NHD-0216HZ-FSW-FBW-33V3C |Digikey 21$12.15 $24.30
KY-040 (Rotary Encoder) Amazon 1| $6.59 $6.59
Assorted Female Pin Headers Amazon 11$14.99 $14.99
Solderless Breadboard Jumper Wires | Amazon 2|$10.76 $21.52

Total:| $100.67

As shown in Table 2, the total cost for this device came out to around $100. Considering
spare parts and parts | had on hand already, the development of this senior project probably came
to around $200 in total. If this device were to be marketed, I have no doubt in my mind that
components could be purchased in bulk, and circuit boards could be designed removing a lot of
unnecessary peripherals on the ESP32-PICO-KIT board to substantially reduce the price to

something more affordable.

14

https://www.digikey.com/product-detail/en/espressif-systems/ESP32-PICO-KIT/1904-1030-ND/9381703
https://www.digikey.com/product-detail/en/omron-electronics-inc-emc-div/G2R-1-DC3/Z11723-ND/2755170
https://www.digikey.com/product-detail/en/assmann-wsw-components/AK500-16-OE-5-0.5/AE10673-ND/2504514
https://www.digikey.com/product-detail/en/general-cable-carol-brand/04530.73.01/42-1037-ND/2758004
https://www.digikey.com/product-detail/en/newhaven-display-intl/NHD-0216HZ-FSW-FBW-33V3C/NHD-0216HZ-FSW-FBW-33V3C-ND/2773591
https://www.amazon.com/Maxmoral-Encoder-Degrees-Compatible-Development/dp/B07M631J1Q/ref=sr_1_7?keywords=quadrature+encoder&qid=1579736345&refinements=p_85:2470955011&rnid=2470954011&rps=1&sr=8-7%23customerReviews
https://www.amazon.com/2-54mm-Straight-Connector-Assortment-Arduino/dp/B0785SP8PB/ref=sr_1_3?dchild=1&keywords=20+pin+female+header+single+row&qid=1586667772&sr=8-3
https://www.amazon.com/Solderless-Flexible-Breadboard-Jumper-Arduino/dp/B083DYQBVV

Personas

Figure 7 — Judah

Judah spends a lot of time on Reddit, but not a lot of time reading books. Since she has a
lot of classes which require textbooks, her understanding of the material has departed from that
of the class. Her parents and teachers want her to spend more time focusing on the material in the
book, and less time on Reddit. Her parents thought that if there existed a device which limited

her Reddit consumption, she would spend more time reading her textbooks.

MFigure 8- Quinﬁ

Quinn spends most of his time studying trivia for his quiz bowl competitions. He doesn’t,
however, spend much time exercising. Since the trivia he does is on the tower computer which
has a wall power supply, his parents saw the opportunity to reward his exercise with trivia

studying. They couldn’t, however, find a device that did just this, until now.

15

Figure 9 — Jay

Jay is quite active on Twitch, spending numerous hours per day streaming the
videogames they play. However, they have neglected a lot of schoolwork, and don’t spend a lot
of time exercising. Since Jay’s parents believe staying active is important for the brain, they

decided that they needed some kind of device that would encourage exercising before

videogames.

16

Code
main.c

#include <stdio.h>
#include <string.h>

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "lcd.h"

finclude "relay.h"

#include "encoder.h"

#include "power.h"

#include "bluetooth.h"
#include "network.h"

#define FITNESS DEVICE
// #define CONSUMPTION DEVICE

#ifdef CONSUMPTION DEVICE

static void IRAM ATTR flipRelay(void *args);
#endif
void bt data callback(uint8 t *data, int len);

uint32 t timePeriod = 2 * 60;
void app _main(void) {

configureLCD() ;
configureRelay () ;
configureEncoder () ;
configurePower () ;
setPowered (0) ;

resetDisplay () ;
writeString ("Power: OFF\n");
writeString ("Time: ");

tifdef FITNESS DEVICE
configureBluetooth (INITIATOR, bt data callback);
tendif
#ifdef CONSUMPTION DEVICE
configureBluetooth (ACCEPTOR, bt data callback);
xTaskCreate (flipRelay, "flipRelay", 2048, NULL, 10, NULL);
Aendif

char datal[l6] = {0};

int32 t count;

int powered = 0;

while (1) {
setCount (0) ;

if (powered != isPowered()) {
powered = isPowered() ;
if (isConnected()) {
writeConfigPacket (isPowered()) ;
}

moveCursor (8, 1);

writeString (" "); /* clear screen after "Power:
moveCursor (8, 1);
sprintf (data, isPowered() ? "ON\n" : "OFF\n");

writeString(data);

moveCursor (7, 2);
}
writeString (" "y; /* clear screen after "Time: " */
moveCursor (7, 2);
sprintf (data, "%2d' %02d\"", timePeriod / 60, timePeriod %
writeString(data) ;

if (isConnected()) {
count = getCount();
if (count) {
timePeriod += count;
writeDeltaPacket (count) ;

if (!isPowered()) {
switchRelay (0) ;

void bt data callback(uint8 t *data, int len) {
Header header;
DeltaPacket deltaPacket;
SetPacket setPacket;
ConfigPacket configPacket;

stripHeader (data, len, &header);

switch (header.flag) {

case DELTA PACKET:
stripPacket (data, header.len, &deltaPacket);
timePeriod += deltaPacket.delta;
break;

case SET PACKET:
stripPacket (data, header.len, &setPacket);
timePeriod = setPacket.timePeriod;
break;

case CONFIG PACKET:
stripPacket (data, header.len, &configPacket);
setPowered (configPacket.powered) ;
break;

18

" */

60) ;

static void IRAM ATTR flipRelay(void *args) {

const TickType t xDelay = 1000 / portTICK PERIOD MS;

while (1) {
vTaskDelay (xDelay) ;
if (isPowered()) {
switchRelay (timePeriod) ;
timePeriod = (timePeriod) ? timePeriod - 1
if (isConnected()) {

writeSetPacket (timePeriod) ;

}
} else {
switchRelay (0) ;

gpio.h

#ifndef GPIO H
#define GPIO_H

void setGPIO(gpio num_t gpio num, uint32 t level);

#endif

gpio.c

#include "driver/gpio.h"
#include "gpio.h"

void setGPIO(gpio num t gpio num, uint32 t level) {
if (gpio_set level(gpio num, level) != ESP OK) {
printf ("Could not set GPIO[%d]\n", gpio num);

}

led.h

#ifndef LCD H
#define LCD H

#include <stdint.h>

#define RS OUTPUT PIN 25
#define RW OUTPUT PIN 26
#define E OUTPUT PIN 32

#define DBO OUTPUT PIN 21
#define DB1 OUTPUT PIN 22
#define DB2 OUTPUT PIN 19

timePeriod;

19

#define
#define
#define
#define
#define
#define

void con

void res
void

void

#endif

#include

#include
#include
#include
#include

DB3_OUTPUT PIN
DB4_ OUTPUT PIN
DB5 OUTPUT PIN
DB6_OUTPUT PIN
DB7_ OUTPUT PIN

GPIO OUTPUT PIN SEL LCD (

23

18

5

10

9
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL
(1ULL

figureLCD (void) ;
etDisplay (void) ;

moveCursor (uint8 t column,
writeString (char *str);

<stdio.h>

"driver/gpio.h
"esp timer.h"
"lcd.h"
"gpio.h"

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

led.c

"

void delay us(uint32 t us) {

inte64d

while

/* pass db4-db8 in the lower nibble */

setGP
setGP
setGP
setGP
setGP
setGP
setGP

t now

esp timer get time();
(esp timer get

time ()

void writeToBus (uint8 t db) {
setGPIO(DBO OUTPUT PIN, (db & 0x01)
IO (DBl OUTPUT PIN, (db & 0x02)
I0(DB2_OUTPUT PIN, (db & 0x04)
I0(DB3_OUTPUT PIN, (db & 0x08)
I0(DB4 OUTPUT PIN, (db & 0x10)
I0(DB5 OUTPUT PIN, (db & 0x20)
I0(DB6_OUTPUT PIN, (db & 0x40)
I0(DB7_OUTPUT PIN, (db & 0x80)

void sen
setGP

20

d(void) {

IO (E_OUTPUT PIN,

1);

RS _OUTPUT PIN)
RW_OUTPUT PIN)
E_OUTPUT PIN)
DBO_ OUTPUT PIN)
DB1 OUTPUT PIN)
DB2 OUTPUT PIN)
DB3_ OUTPUT PIN)
DB4 OUTPUT PIN)
DB5_ OUTPUT PIN)
DB6_OUTPUT PIN)
)

DB7 OUTPUT PIN))

uint8 t row);

- now < us);

~e N

. N

~e

~e

~ o U W N
~

~.

I\
I\
I\
I\
I\
I\
I\
I\
I\
I\

delay us(1);
SsetGPIO(E OUTPUT PIN, 0);

void data(uint8 t data) {
writeToBus (data) ;
setGPIO (RS OUTPUT PIN, 1); /* data */
setGPIO(RW OUTPUT PIN, 0); /* write */
delay us (40);
send(); /* send data */

void command (uint8 t command) {
writeToBus (command) ;
setGPIO (RS _OUTPUT PIN, O0); /* instruction */
setGPIO (RW _OUTPUT PIN, 0); /* write */
delay us(40);
send(); /* send command */

void configureLCD (void) {
gpio config t io conf;
//disable interrupt
io_conf.intr type = GPIO PIN INTR DISABLE;
//set as output mode
io conf.mode = GPIO MODE OUTPUT;
//set output pins
io conf.pin bit mask = GPIO OUTPUT PIN SEL LCD;
//disable pull-down mode

io conf.pull down en = O;
//disable pull-down mode
io conf.pull up en = 0;

//configure GPIO
gpio config(&io conf);

/* wakeup */
setGPIO(RS_OUTPUT PIN, 0); /* instruction */
setGPIO (RW_OUTPUT PIN, 0); /* write */
setGPIO(E OUTPUT PIN, 0);

delay us(50000);

command (0x30) ;

delay us(5000);

command (0x30) ;

delay us(160);

command (0x30) ;

delay us(160)

’

/* configure display */
command (0x38 /* 8-bit, 2-line, 5x8 font */

I3

)
command (0x10) ; /* move cursor, move right */
command (0x0C) ; /* display on, cursor off, blinking off */
command (0x06); /* increment cursor, don't shift */

void resetDisplay(void) {
/* clear and home */
command (0x01) ;
delay us(1500);
command (0x02) ;
delay us(1500);

void writeString(char *str) {
uint32 t index = 0;
while (str[index] != "\0") {
if (str[index] == '\n') {

command (0xCO0); /* move down a line */

} else {
data (str[index]) ;
}

index++;

void moveCursor (uint8 t column, uint8 t row) {

command (0x80 + (0x40* (row - 1)

}

#ifndef RELAY H
#define RELAY H

#include <stdint.h>

#define RELAY OUTPUT PIN 33
#define GPIO OUTPUT PIN SEL RELAY

void configureRelay (void) ;
void switchRelay (uint32 t state);

#endif

#include "driver/gpio.h"
#include "relay.h"

void configureRelay (void) {
gpio _config t io conf;
//disable interrupt

+ (column - 1)));

relay.h

(1IULL << RELAY OUTPUT PIN)

relay.c

io _conf.intr type = GPIO PIN INTR DISABLE;

//set as output mode

io _conf.mode = GPIO _MODE OUTPUT;

//set output pins

22

io conf.pin bit mask = GPIO OUTPUT PIN SEL RELAY;
//disable pull-down mode

io conf.pull down en = 0;

//disable pull-down mode

io conf.pull up en = 0;

//configure GPIO

gpio config(&io conf);

void switchRelay (uint32 t state) {
uint32 t level = state 2 1 : 0;
if (gpio_set level (RELAY OUTPUT PIN, level) != ESP OK) {
printf ("Couldn't set GPIO[%d]\n", RELAY OUTPUT PIN);
}

encoder.h

#ifndef ENCODER H
#define ENCODER H

#include <stdint.h>

#define PIN A INPUT GPIO PIN 35 (CLK)

#define PIN B INPUT GPIO PIN 34 (D)

#define GPIO INPUT PIN SEL _ENCODER ((lULL << PIN A INPUT GPIO_ PIN) |\
(lULL << PIN B _INPUT GPIO_PIN))

void configureEncoder (void) ;
int32 t getCount (void);
void setCount (int32 t newCount) ;

#endif

encoder.c

#include "encoder.h"

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/gpio.h"

static int32 t count = 0;
static xQueueHandle gpio_evt queue = NULL;

static void IRAM ATTR gpio_ isr handler (void* arg) {

uint32 t gpio num = (uint32 t) arg;
xQueueSendFromISR (gpio_evt queue, &gpio _num, NULL);

static void IRAM ATTR handleGPIOInterrupt (void *arg) {
static uint32 t prevA = 0, pinA = 0, pinB = 0O;

23

int32 t direction;
int io_num;

while (1) {
xQueueReceive (gpio_evt queue, &io num, portMAX DELAY);
direction = 0;
pinA = gpio get level (PIN A INPUT GPIO PIN);
if (pinA != prevA) { /* check if something has changed */
pinB = gpio_get level (PIN B INPUT GPIO_ PIN);
if (pinB != pinA) { /* 'a' moved first, rotating clockwise */
direction = 1;
} else { /* 'b' moved first, rotating counter-clockwise */
direction = -1;

prevA = pinA;
count = count + direction;

void configureEncoder (void) {
gpio config t io conf;

//interrupt of rising edge

io conf.intr type = GPIO INTR DISABLE;
//bit mask of the pins, use GPIO4/5 here
io_conf.pin bit mask = GPIO INPUT PIN SEL ENCODER;
//set as input mode

io conf.mode = GPIO MODE INPUT;
//disable pull-up mode

io conf.pull up en = 0;

//enable pull-down mode

io conf.pull down en = 1;

gpio config(&io conf);

gpio_set intr type(PIN A INPUT GPIO PIN, GPIO INTR NEGEDGE) ;

//create a queue to handle gpio event from isr

gpio_evt queue = xQueueCreate (10, sizeof (uint32 t));

xTaskCreate (handleGPIOInterrupt, "handleGPIOInterrupt", 2048, NULL, 10,
NULL) ;

//install gpio isr service

gpio_install isr service(0);

gpio isr handler add(PIN A INPUT GPIO PIN, gpio isr handler, (void*)
PIN A INPUT GPIO PIN);
}

void setCount (int32 t newCount) {
count = newCount;

int32 t getCount (void) {

24

return count;

power.h

#ifndef POWER H
#define POWER H

#define POWER PIN 2
#define GPIO INPUT PIN SEL POWER (lULL << POWER_PIN)

void configurePower (void) ;
int isPowered(void);
void setPowered(int powered) ;

#endif

power.c
#include <stdio.h>

#include "power.h"

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "driver/gpio.h"

int powered = 0;
static xQueueHandle gpio_evt queue = NULL;

static void IRAM ATTR power gpio isr handler (void* arg) {
uint32 t gpio num = (uint32 t) arg;
xQueueSendFromISR (gpio _evt queue, &gpio num, NULL);

static void IRAM ATTR handlePowerGPIOInterrupt (void *arg) {
int io num;
while (1) {
xQueueReceive (gpio _evt queue, &io num, portMAX DELAY);
powered "= gpio get level (POWER PIN) ;
printf (powered ? "True\n" : "False\n");
xQueueReset (gpio_evt queue);

void configurePower (void) {
gpio config t io conf;
//interrupt of rising edge

io _conf.intr type = GPIO INTR DISABLE;
//bit mask of the pins, use GPIO4/5 here

25

io _conf.pin bit mask = GPIO_ INPUT PIN SEL POWER;
//set as input mode

io conf.mode = GPIO MODE INPUT;

//disable pull-up mode

io conf.pull up en = 0;

//enable pull-down mode

io conf.pull down en = 1;

gpio config(&io conf);

gpio set intr type (POWER PIN, GPIO INTR POSEDGE) ;

//create a queue to handle gpio event from 1sr

gpio_evt queue = xQueueCreate (10, sizeof (uint32 t));

xTaskCreate (handlePowerGPIOInterrupt, "handlePowerGPIOInterrupt",
NULL, 10, NULL);

//install gpio isr service

// gpio install isr service (0);

gpio_isr handler add(POWER PIN, power gpio isr handler, (void*)
POWER PIN) ;
}

void setPowered(int powered) {
powered = powered ;

int isPowered (void) {
return powered;

bluetooth.h

#ifndef BT COMMON H
#define BT COMMON H

#include "esp spp api.h"
#include "esp gap bt api.h"

#define SPP_DATA LEN ESP_ SPP MAX MTU
#define CONNECTED PIN 27

#define CONNECTION FAILURE PIN 14
#define GPIO OUTPUT PIN SEL BT ((1ULL << CONNECTED PIN) |\

(1ULL << CONNECTION FAILURE PIN))

typedef void (*spp data rcv cb t) (uint8 t *data, int len);

extern int handle;
extern spp data rcv cb t dataCallback;

typedef enum ({

26

2048,

INITIATOR,
ACCEPTOR

} spp_t;

void configureBluetooth(spp t type, spp data rcv _cb t cb);

void writeData (uint8 t *data, int len);

int isConnected(void);

void success (void) ;

void failure(void);

void translateGAPEvent (const char* tag, esp bt gap cb event t event);
void translateSPPEvent (const char* tag, esp spp cb event t event);

#endif

bluetooth.c

#include <stdio.h>

#include "esp spp api.h"
#include "esp gap bt api.h"
#include "esp log.h"
#include "driver/gpio.h"

#include "gpio.h"

#include "bluetooth.h"
#include "spp acceptor.h"
#include "spp initiator.h"

int handle; // externally available
spp_data rcv cb t dataCallback; // externally available

int connected;
void configureBluetooth(spp t type, spp data rcv cb t cb) {

gpio config t io conf;

//disable interrupt

io conf.intr type = GPIO PIN INTR DISABLE;
//set as output mode

io _conf.mode = GPIO MODE OUTPUT;

//set output pins

io _conf.pin bit mask = GPIO OUTPUT PIN SEL BT;
//disable pull-down mode

io _conf.pull down en = 0;
//disable pull-down mode
io _conf.pull up en = 0;

//configure GPIO
gpio config(&io_conf);

failure () ;

dataCallback = cb;

switch (type) {
case INITIATOR:
initSppInitiator();
break;
case ACCEPTOR:
initSppAcceptor () ;
break;

void success (void) {
connected = 1;
setGPIO (CONNECTED PIN, 1);
setGPIO (CONNECTION FAILURE PIN, 0);

void failure (void) {
connected = 0;
SetGPIO(CONNECTED_PIN, 0);
SetGPIO(CONNECTION_FAILURE_PIN, 1)

int isConnected (void) {
return connected;

void writeData (uint8 t *data, int len) {
if (len > SPP DATA LEN) {
printf ("Cannot write %d bytes via SPP\n", len);
return;

if (esp spp write (handle, len, data) != ESP OK) {
printf ("esp spp write() failed.");

void translateGAPEvent (const char* tag, esp bt gap cb event t event) {

switch (event) {

case ESP BT GAP DISC RES EVT:
ESP_LOGI (tag, "ESP BT GAP DISC RES EVT");
break;

case ESP BT GAP DISC STATE CHANGED EVT:
ESP_LOGI (tag, "ESP BT GAP DISC STATE CHANGED EVT");
break;

case ESP BT GAP RMT SRVCS EVT:
ESP_LOGI (tag, "ESP BT GAP RMT SRVCS EVT");
break;

case ESP BT GAP RMT SRVC REC EVT:
ESP LOGI (tag, "ESP BT GAP RMT SRVC REC EVT");
break;

case ESP BT GAP AUTH CMPL EVT:

28

case

case

case

case

case

case

case

case

ESP _LOGI (tag, "ESP BT GAP AUTH CMPL EVT");
break;

ESP BT GAP PIN REQ EVT:
ESP_LOGI (tag, "ESP BT GAP PIN REQ EVT");
break;

ESP BT GAP_CFM REQ EVT:
ESP_LOGI (tag, "ESP BT GAP CFM REQ EVT");
break;

ESP BT GAP _KEY NOTIF EVT:
ESP_LOGI (tag, "ESP BT GAP KEY NOTIF EVT");
break;
break;

ESP_BT GAP READ RSSI DELTA EVT:
ESP_LOGI (tag, "ESP BT GAP READ RSSI DELTA EVT");
break;

ESP_BT GAP_CONFIG EIR DATA EVT:
ESP_LOGI (tag, "ESP BT GAP CONFIG EIR DATA EVT");
break;

ESP BT GAP SET AFH CHANNELS EVT:
ESP _LOGI (tag, "ESP BT GAP SET AFH CHANNELS EVT");
break;

ESP BT GAP READ REMOTE NAME EVT:
ESP _LOGI (tag, "ESP BT GAP READ REMOTE NAME EVT");
break;

ESP BT GAP_EVT MAX:
ESP LOGI (tag, "ESP BT GAP EVT MAX");
break;

default:

break;

void translateSPPEvent (const char* tag, esp spp cb event t event) ({
switch (event) {

case

case

case

case

case

case

case

ESP _SPP_INIT EVT:
ESP_LOGI (tag, "ESP_SPP INIT EVT");
break;

ESP_SPP DISCOVERY COMP EVT:
ESP_LOGI (tag, "ESP_SPP DISCOVERY COMP EVT");
break;

ESP_SPP_OPEN EVT:
ESP_LOGI (tag, "ESP_SPP OPEN EVT");
break;

ESP_SPP CLOSE EVT:
ESP_LOGI (tag, "ESP SPP CLOSE EVTI");
break;

ESP_SPP_START EVT:
ESP_LOGI (tag, "ESP SPP START EVTI");
break;

ESP SPP CL INIT EVT:
ESP_LOGI (tag, "ESP_SPP CL INIT EVT");
break;

ESP SPP DATA IND EVT:

29

ESP_LOGI (tag, "ESP SPP DATA IND EVT");
break;

case ESP SPP CONG_EVT:
ESP LOGI (tag, "ESP_SPP_CONG_EVT");
break;

case ESP_SPP WRITE EVT:
ESP_LOGI (tag, "ESP SPP WRITE EVT");
break;

case ESP SPP SRV OPEN EVT:
ESP_LOGI (tag, "ESP _SPP SRV OPEN EVT");
break;

default:
break;

spp_initiator.h

#ifndef SPP_INITIATOR H
#define SPP INITIATOR H

void initSpplInitiator (void);

#endif

spp_initiator.c

#include <stdint.h>
#include <string.h>
#include <stdbool.h>
#include <stdio.h>

#include "nvs.h"

#include "nvs flash.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp log.h"
#include "esp bt.h"
#include "esp bt main.h"
#include "esp gap bt api.h"
#include "esp bt device.h"
#include "esp spp api.h"
#include "time.h"

#include "sys/time.h"

#include "bluetooth.h"

#define SPP_TAG "SPP_INITIATOR"
#define DEVICE NAME "ESP_SPP_INITIATOR"

#define SPP_DATA LEN ESP_SPP_MAX MTU

30

static const esp spp mode t esp spp mode = ESP_SPP MODE CB;

static const esp spp sec t sec mask = ESP SPP SEC AUTHENTICATE;
static const esp spp role t role master = ESP_SPP ROLE MASTER;

static esp bd addr t peer bd addr;

static uint8 t peer bdname len;

static char peer bdname[ESP BT GAP MAX BDNAME LEN + 1];

static const char remote device name[] = "ESP SPP ACCEPTOR";

static const esp bt ing mode t ing mode = ESP_BT INQ MODE GENERAL INQUIRY;
static const uint8 t ing len = 30;

static const uint8 t ing num rsps = 0;

int handle; // provided by bluetooth.h
spp_data rcv_cb t dataCallback; // provided by bluetooth.h

static bool get name from eir(uint8 t *eir, char *bdname, uint8 t
*bdname_ len) {

uint8 t *rmt bdname = NULL;

uint8 t rmt bdname len = 0;

if (leir) {
return false;

rmt bdname = esp bt gap resolve eir data(eir,
ESP_BT EIR TYPE CMPL LOCAL NAME, &rmt bdname len);
if (!rmt bdname) {
rmt bdname = esp bt gap resolve eir data(eir,
ESP BT EIR TYPE SHORT LOCAL NAME, &rmt bdname len);
}

if (rmt bdname) {
if (rmt bdname len > ESP BT GAP MAX BDNAME LEN) ({
rmt_bdname len = ESP_BT GAP MAX BDNAME LEN;

if (bdname) {
memcpy (bdname, rmt bdname, rmt bdname len);
bdname [rmt bdname len] = '\0';

}

if (bdname len) {
*bdname len = rmt bdname len;

}

return true;

return false;

static void esp spp cb(esp spp cb event t event, esp spp cb param t *param)
switch (event) {
case ESP _SPP INIT EVI: // SPP is initiated

31

ESP LOGI (SPP_TAG, "ESP SPP INIT EVT");
esp bt dev set device name (DEVICE NAME) ;
esp bt gap set scan mode (ESP_BT CONNECTABLE,
ESP BT GENERAL DISCOVERABLE) ;
esp bt gap start discovery(ing mode, ing len, ing num rsps);
break;
case ESP SPP OPEN EVT: // SPP client connection open
ESP_LOGI (SPP_TAG, "ESP SPP_OPEN EVT");
memcpy (&handle, ¶m->srv_open.handle, sizeof (handle));
success () ;
break;
case ESP SPP CLOSE EVT: // SPP client connection open
ESP_LOGI (SPP_TAG, "ESP SPP CLOSE EVT");
failure();
break;
case ESP SPP DISCOVERY COMP EVT: // SPP discovery complete
ESP_LOGI (SPP_TAG, "ESP SPP DISCOVERY COMP EVT status=%d
scn num=%d", param->disc comp.status, param->disc comp.scn num);
if (param->disc_comp.status == ESP_SPP_SUCCESS) {
esp_spp_connect (sec_mask, role master, param-
>disc _comp.scn[0], peer bd addr);
} else {
failure () ;
}
break;
case ESP SPP WRITE EVT: // SPP write operation completes (only for
ESP_SPP_MODE_CB)
ESP LOGI (SPP_TAG, "ESP_SPP WRITE EVT len=%d cong=%d", param-
>write.len, param->write.cong);
break;
case ESP SPP DATA IND EVT: // when SPP connection received data (only
for ESP_SPP MODE CB)
ESP_LOGI (SPP_TAG, "ESP SPP DATA IND EVT len=%d", param-
>data_ind.len);
dataCallback (param->data ind.data, param->data ind.len);
// received data, store in queue
// data = param->data ind.data
// len = param->data_ind.len
break;
default:
translateSPPEvent (SPP_TAG, event);
break;

static void esp bt gap cb(esp bt gap cb event t event, esp bt gap cb param t
*param) {
switch (event) {
case ESP BT GAP DISC RES EVT: // device discovery result event

ESP_LOGI (SPP_TAG, "ESP BT GAP DISC RES EVT");

esp log buffer hex(SPP TAG, param->disc res.bda,
ESP_BD ADDR LEN) ;

for (int i = 0; i1 < param->disc_res.num prop; i++) {

32

if (param->disc_res.prop[i].type == ESP BT GAP DEV_PROP EIR
&& get name from eir (param->disc_res.prop[i].val,
peer bdname, &peer bdname len)) {
esp log buffer char (SPP_TAG, peer bdname,
peer bdname len);
if (strlen(remote device name) == peer bdname len
&& strncmp (peer bdname, remote device name,
peer bdname len) == 0) {
memcpy (peer bd addr, param->disc_ res.bda,
ESP BD ADDR LEN) ;
esp_spp_start discovery(peer bd addr);
esp bt gap cancel discovery();

}

break;
case ESP BT GAP DISC STATE CHANGED EVT: // discovery state changed
event
ESP_LOGI (SPP_TAG, "ESP BT GAP DISC STATE CHANGED EVT");
break;
case ESP BT GAP AUTH CMPL EVT: // AUTH complete event
if (param->auth cmpl.stat == ESP_ BT STATUS SUCCESS) {

ESP_LOGI (SPP_TAG, "authentication success: %s", param-
>auth cmpl.device name);
esp_log buffer hex(SPP_TAG, param->auth cmpl.bda,
ESP_BD ADDR LEN) ;
} else {
ESP_LOGE (SPP_TAG, "authentication failed, status:%d", param-
>auth cmpl.stat);
}
break;
default:
translateGAPEvent (SPP_TAG, event);
break;

void initSpplInitiator (void) {

esp_err t ret = nvs flash init();
if (ret == ESP ERR NVS NO FREE PAGES || ret ==
ESP ERR NVS NEW VERSION FOUND) ({
ESP ERROR CHECK(nvs flash erase());
ret = nvs_flash init();
}
ESP ERROR CHECK(ret);

ESP ERROR CHECK (esp bt controller mem release (ESP BT MODE BLE));

esp bt controller config t bt cfg = BT CONTROLLER INIT CONFIG DEFAULT () ;
if ((ret = esp bt controller init (&bt cfg)) != ESP OK) {
ESP_LOGE (SPP_TAG, "%s initialize controller failed: %s\n", _ func ,
esp _err to name(ret));

33

return;

if ((ret = esp bt controller enable(ESP BT MODE BTDM)) != ESP OK) {
ESP _LOGE (SPP_TAG, "$%s enable controller failed: %s\n", _ func ,
esp _err to name(ret));
return;
}
if ((ret = esp bluedroid init()) != ESP OK) {
ESP LOGE (SPP_TAG, "%s initialize bluedroid failed: %s\n", __func__,
esp _err to name(ret));
return;
}
if ((ret = esp bluedroid enable()) != ESP OK) {
ESP_LOGE (SPP_TAG, "%s enable bluedroid failed: %s\n", func ,
esp_err to name(ret));
return;
}
if ((ret = esp bt gap register callback(esp bt gap cb)) != ESP OK) {
ESP_LOGE (SPP_TAG, "$s gap register failed: %s\n", _ func ,
esp _err to name (ret));
return;
}
if ((ret = esp spp register callback(esp spp cb)) != ESP OK) {
ESP_LOGE (SPP_TAG, "%s spp register failed: %s\n", _ func ,
esp err to name (ret));
return;
}
if ((ret = esp spp init(esp spp mode)) != ESP OK) {
ESP LOGE (SPP_TAG, "%s spp init failed: %s\n", __func__,
esp_err to name(ret));
return;

}

spp_acceptor.h

#ifndef SPP ACCEPTOR H
#define SPP ACCEPTOR H

void initSppAcceptor (void) ;

#endif

Spp_acceptor.c

34

#include <stdint.h>
#include <string.h>
#include <stdio.h>

#include "nvs.h"

#include "nvs flash.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp log.h"
#include "esp bt.h"
#include "esp bt main.h"
#include "esp gap bt api.h"
#include "esp bt device.h"
#include "esp spp api.h"
#include "time.h"

#include "sys/time.h"

#include "bluetooth.h"

#define SPP_TAG "SPP_ACCEPTOR"
#define SPP_SERVER NAME "SPP_SERVER"
#define DEVICE NAME "ESP_SPP_ACCEPTOR"

static const esp spp mode t esp spp mode = ESP_SPP MODE CB;

static const esp spp sec t sec mask = ESP SPP SEC AUTHENTICATE;
static const esp spp role t role slave = ESP_SPP ROLE SLAVE;

int handle; // provided by bluetooth.h
spp_data rcv cb t dataCallback; // provided by bluetooth.h

static void esp spp cb(esp spp cb event t event, esp spp cb param t *param)
switch (event) {
case ESP SPP INIT EVT: // when SPP is initiated
ESP_LOGI (SPP_TAG, "ESP SPP INIT EVT");
esp bt dev set device name (DEVICE NAME) ;
esp bt gap set scan mode (ESP_BT CONNECTABLE,
ESP BT GENERAL DISCOVERABLE) ;
esp_spp_start srv(sec _mask,role slave, 0, SPP_SERVER NAME);
break;
case ESP SPP WRITE EVT: // SPP write operation completes (only for
ESP SPP MODE CB)
ESP LOGI (SPP_TAG, "ESP_SPP WRITE EVT len=%d cong=%d", param-
>write.len, param->write.cong);
break;

case ESP SPP DATA IND EVT: // when SPP connection received data (only

for ESP _SPP MODE CB)
ESP_LOGI (SPP_TAG, "ESP SPP DATA IND EVT len=%d", param-
>data ind.len);
dataCallback (param->data ind.data, param->data ind.len);
// received data, store in queue
// data = param->data ind.data
// len = param->data ind.len

35

break;
case ESP _SPP SRV OPEN EVT:
ESP_LOGI (SPP_TAG, "ESP SPP SRV OPEN EVT");
memcpy (&handle, ¶m->srv_open.handle, sizeof (handle));
success () ;
break;
case ESP_SPP CLOSE EVT:
ESP_LOGI (SPP_TAG, "ESP SPP_CLOSE EVT");
failure();
break;
default:
translateSPPEvent (SPP_TAG, event);
break;

void esp bt gap cb(esp bt gap cb event t event, esp bt gap cb param t *param)
{

switch (event) {

default:
translateGAPEvent (SPP_TAG, event);
break;
}
return;

void initSppAcceptor (void) {

esp err t ret = nvs flash init();
if (ret == ESP ERR NVS NO FREE PAGES || ret ==
ESP _ERR NVS NEW VERSION FOUND) {
ESP ERROR CHECK(nvs flash erase());
ret = nvs_ flash init();
}
ESP _ERROR CHECK(ret);
ESP ERROR CHECK (esp bt controller mem release (ESP BT MODE BLE));

esp bt controller config t bt cfg = BT CONTROLLER INIT CONFIG DEFAULT () ;

if ((ret = esp bt controller init (&bt cfg)) != ESP OK) {
ESP_LOGE (SPP_TAG, "$%s initialize controller failed: %s\n", _ func ,
esp_err to name (ret));
return;

}

if ((ret = esp bt controller enable(ESP BT MODE BTDM)) != ESP OK) {
ESP_LOGE (SPP_TAG, "$%s enable controller failed: %s\n", _ func ,
esp _err to name (ret));
return;
}
if ((ret = esp bluedroid init()) != ESP OK) {
ESP_LOGE (SPP_TAG, "%s initialize bluedroid failed: %s\n", _ func ,

esp _err to name(ret));

36

return;

if ((ret = esp bluedroid enable()) != ESP OK) {
ESP _LOGE (SPP_TAG, "$s enable bluedroid failed: %$s\n", func ,
esp _err to name(ret));
return;
}
if ((ret = esp bt gap register callback(esp bt gap cb)) != ESP OK) {
ESP LOGE (SPP_TAG, "%s gap register failed: %s\n", ___func_,
esp _err to name(ret));
return;

}

if ((ret = esp spp register callback(esp spp cb)) != ESP OK) ({
ESP_LOGE (SPP_TAG, "%$s spp register failed: %s\n", _ func ,
esp_err to name (ret));
return;
}
if ((ret = esp spp init(esp spp mode)) != ESP OK) {
ESP_LOGE (SPP_TAG, "%s spp init failed: %s\n", func ,
esp _err to name (ret));
return;

network.h

#ifndef NETWORK H

#define NETWORK H

#define SET PACKET 0x01

#define DELTA PACKET 0x02

#define CONFIG PACKET 0x03

typedef struct attribute ((_ packed)) {
uint32 t len;
uint8 t flag;

} Header;

typedef struct attribute ((_ packed)) {
int32 t delta;

} DeltaPacket;

typedef struct attribute ((packed)) {
uint32 t timePeriod;

} SetPacket;

typedef struct attribute ((_ packed)) {

int powered;

} ConfigPacket;

void writeDeltaPacket (int32 t delta);

void writeSetPacket (uint32 t timePeriod);

void writeConfigPacket (int powered) ;

void stripHeader (uint8 t *data, int len, Header *header);

void stripPacket (uint8 t *data, int len, void *packet);

#endif

network.c
#include <string.h>

#include "bluetooth.h"
#include "network.h"

void sendPacket (Header *header, void *packet, int len) {
uint8 t data[SPP_DATA LEN] = {0};
int offset = 0;

memcpy (data, (uint8 t *) header, sizeof (Header));
offset += sizeof (Header);

memcpy (data+toffset, (uint8 t *) packet, len);
writeData (data, sizeof (Header) + len);
void writeDeltaPacket (int32 t delta) {
Header header;
header.len = sizeof (Header) + sizeof (DeltaPacket);

header.flag = DELTA PACKET;

DeltaPacket packet;
packet.delta = delta;

sendPacket (&header, &packet, sizeof (DeltaPacket));
void writeSetPacket (uint32 t timePeriod) {

Header header;

header.len = sizeof (Header) + sizeof (SetPacket);

header.flag = SET PACKET;

SetPacket packet;
packet.timePeriod = timePeriod;

sendPacket (&header, &packet, sizeof (SetPacket));

void writeConfigPacket (int powered) {

38

Header header;
header.len = sizeof (Header) + sizeof (ConfigPacket);

header.flag = CONFIG_ PACKET;

ConfigPacket packet;
packet.powered = powered;

sendPacket (&header, &packet, sizeof (ConfigPacket));

void stripHeader (uint8 t *data, int len, Header *header) ({
memcpy (header, (Header *) data, len);
memcpy (data, datatsizeof (Header), len-sizeof (Header));

void stripPacket (uint8 t *data, int len, void *packet) {
memcpy (packet, (void *) data, len);

}

Bibliography

[1] Straker, Leon, et al. “Conflicting Guidelines on Young Children’s Screen Time and Use of
Digital Technology Create Policy and Practice Dilemmas.” The Journal of Pediatrics, vol.

202, 2018, pp. 300-303.
[2] Dalene, Knut Eirik, et al. “Cross-Sectional and Prospective Associations between Sleep,
Screen Time, Active School Travel, Sports/Exercise Participation and Physical Activity in

Children and Adolescents.” BMC Public Health, vol. 18, no. 1, July 2018.

[3] Lanningham-Foster, L., et al. “Energy Expenditure of Sedentary Screen Time Compared
With Active Screen Time for Children.” Pediatrics, vol. 118, no. 6, 2006.

40

	Introduction
	Stakeholders
	Framed Insights and Opportunities
	Project Deliverables & Outcomes

	Background
	Formal Project Definition
	Customer Requirements
	Engineering Requirements
	End-User Personas

	Design
	Conclusion and Future Work
	Reflection
	Appendix
	Bill of Materials
	Personas
	Code
	main.c
	gpio.h
	gpio.c
	lcd.h
	lcd.c
	relay.h
	relay.c
	encoder.h
	encoder.c
	power.h
	power.c
	bluetooth.h
	bluetooth.c
	spp_initiator.h
	spp_initiator.c
	spp_acceptor.h
	spp_acceptor.c
	network.h
	network.c

	Bibliography

