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ABSTRACT

A Bayesian Markov Chain Monte Carlo Approach to Uncertainty Quantification

by

Matthew Isaac, Master of Science

Utah State University, 2020

Major Professor: Daniel Coster, Ph.D.
Department: Mathematics and Statistics

Uncertainty quantification (UQ) is a methodological framework used frequently in en-

gineering analyses to understand how uncertainty in inputs propagate through a system and

lead to uncertainty in the output. An instability was observed in a UQ method proposed

by Roy and Oberkampf (2011) when the assignment of aleatory and epistemic uncertain-

ties was perturbed. A modification to this method is proposed. A Bayesian Markov Chain

Monte Carlo approach to UQ is offered as an alternative to the Roy and Oberkampf method.

This approach allows analysts to incorporate information from various available sources and

to update the analysis and results as more information becomes available. An illustrative

example involving a simply supported beam is provided as a platform to demonstrate the

Bayesian UQ approach and to compare it with the Roy and Oberkampf method. Several

options for visualizing the results from the Bayesian UQ approach are explored. Meth-

ods for interpreting the results are discussed. This research is expected to produce a new

approach to UQ that will be useful to engineers and other practitioners as they quantify

the uncertainty in a system, visualize the uncertainty, and interpret the results of that UQ

analysis to inform decisions.

(60 pages)
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PUBLIC ABSTRACT

A Bayesian Markov Chain Monte Carlo Approach to Uncertainty Quantification

Matthew Isaac

Uncertainty quantification (UQ) is a framework used frequently in engineering anal-

yses to understand how uncertainty in system inputs lead to uncertainty in the system

output. An instability is observed in a UQ method proposed by Roy and Oberkampf and

a Bayesian Markov Chain Monte Carlo approach to UQ is offered as an alternative. The

Bayesian approach allows analysts to incorporate information from various available sources

including observed measurements and expert opinion and to update the analysis and results

as more information becomes available. An illustrative engineering example is provided as

a platform to demonstrate the Bayesian UQ approach and to compare it with the Roy and

Oberkampf method. Methods for visualizing and interpreting the results from the Bayesian

UQ approach are explored. This research is expected to produce a new approach to UQ

that will be useful to engineers and other practitioners as they quantify the uncertainty in

a system, visualize the uncertainty, and interpret the results to inform decisions.
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CHAPTER 1

INTRODUCTION

Within the field of engineering, more and more emphasis is being placed on uncertainty

quantification (UQ). It is used frequently to help engineers and decision makers understand

how uncertainty in the inputs of a system will propagate through that system and produce

uncertainty in the output of the system. The understanding gained from UQ analyses can

give insight to the system’s reliability, risk, need for redesign, and various other consid-

erations. UQ is particularly useful in fields where full-scale prototypes, testing, and data

collection are difficult, dangerous, or otherwise prohibitive. This has led the design and

development phases to be more dependent on analysis (Ewing et al., 2018).

One method for performing UQ, introduced by Roy and Oberkampf (2011), has been

observed to have issues with stability and reproducibility (section 3.1.1). Because decisions

based on UQ analyses may have high-stakes consequences regarding expenses and safety

(particularly in the aerospace industry), we wish to suggest a stabilizing modification to

the Roy and Oberkampf (2011) method as well as an alternative Bayesian approach to

UQ (sections 3.1.2 and 3.2). The modification to the Roy and Oberkampf (2011) method

involves adding a third loop around the existing double-loop structure in which a weighted

coin toss determines the aleatory and epistemic uncertainty assignments. However, the new

Bayesian UQ approach is preferred over modifying the unstable method. The proposed

Bayesian approach uses Markov Chain Monte Carlo (MCMC) methods to incorporate all

available information into the analysis. As was previously noted, experimental data may

be limited due to the expensive or otherwise difficult nature of data collection. The small

amount of available data renders a frequentist approach unfeasible. In cases like this, it

becomes important to incorporate all other sources of information into the analysis. Some

information may come in the form of observed data; other information may come in the

form of expert opinion. A Bayesian approach can naturally incorporate both observed data
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and prior beliefs or expert opinion. In addition, previously obtained results can be updated

as newly acquired data becomes available; as the available information matures, so does

the prediction. Techniques for visualizing and interpreting the results are also explored

(section 3.4).

The Bayesian UQ approach described herein is demonstrated with an applied engineer-

ing example involving a simply supported beam (chapter 4). This example is not meant

to be a rigorous engineering analysis but rather to illustrate the proposed method. Data

was collected and used in the analysis to make this more realistic than simply using com-

puter generated data. Following the analysis with the Bayesian UQ approach, an analogous

UQ analysis is performed for this same example using the original Roy and Oberkampf

(2011) method. The results from these two methods are compared and discussed in chap-

ter 5.1. Lastly, further work and useful extensions relating to the Bayesian UQ approach

are discussed (section 5.2).

We hope that this research will provide engineers with a flexible framework to apply a

Bayesian approach to UQ to a variety of problems.



CHAPTER 2

LITERATURE REVIEW

2.1 Uncertainty Quantification

Uncertainty quantification (UQ) has been defined as “the science of identifying, quan-

tifying, and reducing uncertainties associated with models, numerical algorithms, experi-

ments, and predicted outcomes or quantities of interest” (Smith, 2013). UQ methods are

used to propagate input uncertainty through a system to determine output uncertainty.

UQ is a broad field that has applications in many disciplines, including computational fluid

dynamics (Maitre and Knio, 2010), hydrology (Anagnostou and Krajewski, 1999), chemical

engineering (Najm et al., 2009), structural engineering, (Sankararaman et al., 2011), and

aerospace engineering (Ewing et al., 2018; Zhang, 2013). Uncertainty quantification is a

field that is under development and is an active area of research (Sullivan, 2015). The de-

mand for further advances in UQ methodology continues to grow due to the increasing use

of UQ in analyzing physical systems to ensure proper function, safety, and reliability. UQ

has proved to be particularly valuable when experimental data is not available due to the

difficult, expensive, or impractical nature of data collection (Jiang and Mahadevan, 2009).

Several types of problems can be undertaken with UQ. Methods to solve inverse prob-

lems (Malinverno and Briggs, 2004; Nagel and Sudret, 2015) as well as classical forward

problems (Ewing et al., 2018; Roy and Oberkampf, 2011) have been developed.

2.2 Uncertainty

Roy and Oberkampf (2011) state that uncertainty can come from various sources

throughout a problem, including:

1. Uncertainty in model input values (material properties, loads, environmental condi-

tions, etc.)
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2. Uncertainty of the underlying mathematical model (model form uncertainty)

3. Uncertainty from numerical approximation

Uncertainty has been divided into two main categories: aleatory and epistemic (Der Ki-

ureghian and Ditlevsen, 2009; Ewing et al., 2018; Wang et al., 2009). The word “aleatory”

is derived from the Latin word alea meaning “game of chance” or “die” (Dezfuli et al.,

2009). Thus, aleatory uncertainty relates to uncertainty associated with random events.

Aleatory uncertainty has been described as “inherent random behavior” (Ewing et al.,

2018) and “the intrinsic randomness of a phenomenon” (Der Kiureghian and Ditlevsen,

2009). The outcomes of aleatory events are generally described using probabilities (Dezfuli

et al., 2009). Because aleatory uncertainty is inherent to the system in question, it can-

not be reduced through further experimentation or data collection. Epistemic uncertainty

has been described as uncertainty that arises from “a lack of knowledge (or data)” and “a

lack of knowledge about the system that is conceptually resolvable” (Wang et al., 2009).

The word “epistemic” is derived from the Greek word “episteme”, meaning “knowledge”.

Accordingly, epistemic uncertainty relates to “the degree of knowledge of models and their

parameters” (Dezfuli et al., 2009). Epistemic uncertainty can be reduced (or eventually

eliminated) if more information is acquired (e.g. future experimentation, data collection, or

improved modeling). Theoretically, if an infinite amount of data were available, there would

be no epistemic uncertainty. In other words, if an infinite amount of data were available

parameters could be determined exactly.

It is not always obvious whether a certain source of uncertainty should be categorized

as aleatory or epistemic. One variable may be classified correctly as aleatory in one context

and epistemic in another (Der Kiureghian and Ditlevsen, 2009; Roy and Oberkampf, 2011).

Aleatory uncertainties are generally characterized using a probability distribution, while

epistemic uncertainties have historically been characterized with an interval (Ewing et al.,

2018; Lockwood et al., 2012). When taking a Bayesian approach, epistemic uncertainty has

been characterized as a probability density function that “represents the degree of belief of

the true value on the part of the analyst”(Roy and Oberkampf, 2011).
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2.3 Probability Elicitation

Probability elicitation is “the practice and methods of encoding the judgments of ex-

perts into probabilities or probability distributions” (Hora, 2016). There is a large amount

of literature available on the subject of probability elicitation (Cooke, 1991; Hora, 2016;

O’Hagan, 2019; Spetzler and Stael Von Holstein, 1975). Having a structured and sys-

tematic way to extract expert opinion is an important aspect of conducting uncertainty

quantification analyses, particularly in situations where data sets are limited or expensive

to obtain. It allows analysts to extract expert knowledge and represent it as a probability

distribution. The information obtained from the expert can then be used to improve the

quality and relevance of the analysis, thus fully leveraging all available sources of informa-

tion. This is a particularly useful step when generating informative prior distributions for

a Bayesian analysis (O’Hagan, 2019).

Wang et al. (2009) recommends conducting “probability encoding interviews” with

subject matter experts. Interview questions are framed in such a way that responses to the

questions are essentially points on a cumulative probability distribution. As described in

Wang et al. (2009), there are three main methods of conducting the probability encoding

interviews:

1. P-methods ask the subject to specify points on the probability scale while the values

are fixed.

2. V-methods ask the subject to specify points on the value scale while the probabilities

remain fixed.

3. PV-methods ask questions that must be answered on both scales jointly; the subject

essentially describes points on the cumulative distribution.

O’Hagan (2019) discusses the importance of specific “protocols” that have been developed

to avoid introducing biases (e.g. anchoring, availability, range-frequency, overconfidence)

in the elicitation process, and recommends three leading elicitation protocols for extracting

opinions from multiple experts. The recommended protocols include the Cooke protocol
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(Cooke, 1991), the SHELF protocol (Oakley and O’Hagan, 2019), and the Delphi protocol

(Rowe and Wright, 1999).

The Cooke protocol (Cooke, 1991) employs a facilitator to obtain judgements from

multiple experts. Some of these judgements relate to the uncertain variables of interest,

while other judgements relate to “seed variables”. These seed variables are similar to the

actual variables, but the true quantity is known to the researcher. If an expert makes good

judgements on the seed variables, it is assumed that he will also make good judgements

on the variables of interest. Multiple expert opinions are pooled together and are weighted

according to the quality of predictions made on the seed variables. This is referred to as

“mathematical aggregation”, where opinions are collected separately and combined via a

mathematical pooling rule (O’Hagan, 2019).

The Sheffield Elicitation Framework, or SHELF, (Oakley, 2019) is designed for use

with multiple experts but can be adapted for use with a single expert. Experts first make

judgements in private about the variables of interest. After individual private judgements

have been made, the experts are gathered and are then shown all individual judgements.

The group of experts must then come to an agreement on one “consensus judgement”. This

type of protocol is referred to as “behavioral aggregation”, where a group of experts are

asked to come to an agreement (O’Hagan, 2019). According to the SHELF protocol, a

facilitator is required for this group discussion. Documentation and an e-learning course

exist to train facilitators to conduct effective elicitation (Oakley and O’Hagan, 2019). In

addition, a software package implementing SHELF has been created in the R programming

language (Oakley, 2019).

Lastly, the Delphi method (Rowe and Wright, 1999) is a combination of the previous

two methods, incorporating both mathematical and behavioral aggregation. Experts make

individual repeated judgements, with opinions aggregated and shown to experts between

rounds. After the last round of expert judgement collection, the final judgements are

aggregated mathematically (O’Hagan, 2019).
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2.4 Bayesian Analysis

The basis for Bayesian data analysis is Bayes’ Theorem. It is stated as follows:

For two events, A and B,

p(B|A) =
p(A|B)p(B)

p(A)
. (2.1)

Bayes’ Theorem is frequently applied to “observable” random variables to calculate condi-

tional probabilities of events, as one might encounter in an introductory statistics course.

However, the Bayesian statistics framework extends Bayes’ Theorem to be used in Bayesian

inference for unknown parameters. It is at this point that frequentist and Bayesian views

differ. The frequentist approach only allows distributions on data, but the Bayesian ap-

proach considers both data and parameters to have distributions (Lunn et al., 2013). In

the formulation of Bayes’ Theorem given in Eq. (2.2), x represents observed data and θ

is a random variable (or vector of random variables) representing the parameters of the

distribution of the data.

p(θ|x) =
p(x|θ)p(θ)
p(x)

(2.2)

p(x) =

∫
p(x|θ)p(θ)dθ (2.3)

Thus, p(θ) represents the prior distribution, or the analyst’s knowledge of θ before observing

the data. On the other hand, p(θ|x) is the posterior distribution, or the analyst’s knowledge

of θ after observing the data. In other words, the prior knowledge of θ, p(θ), is updated

by the data that has been observed, resulting in the posterior distribution of θ, p(θ|x). In

addition, p(x|θ) is the sampling density for the data, proportional to the likelihood function,

and p(x) (Eq. (2.3)) is the marginal density of the data (Lynch, 2007). Lynch (2007) also

points out that since the denominator of Eq. (2.2) only scales the posterior density, Bayes’

Theorem can be represented as

Posterior ∝ Likelihood× Prior. (2.4)
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“Conjugacy” occurs when the prior distribution and the posterior distribution belong

to the same family of distributions. Under conditions of conjugacy the analysis to compute

the posterior distribution is simplified and the posterior distribution will be one that is well

understood. Any subsequent analyses based on the posterior distribution will be straight-

forward. An analytic evaluation of the posterior distribution is available under conjugacy

(Gamerman and Hedibert, 2006).

However, conjugacy is the exception rather than the rule. Gamerman and Hedibert

(2006) state that, “In general, the expression of the posterior even in simple models is

complex enough to not allow the analytic evaluation”. These authors also say that it is

usually unlikely that the conjugate prior is a sufficient characterization of the prior state of

uncertainty. In cases where conjugacy is not attainable, approximate methods of inference

may be used, some of which involve methods based on stochastic sampling. This includes

Gibbs sampling and the Metropolis-Hastings algorithm, two popular Markov Chain Monte

Carlo methods (section 2.5).

Bayesian inference, if properly performed, “uses all of the available information and

leads to better parameter estimates and to better decisions” (Dezfuli et al., 2009).

2.5 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) algorithms are comprised of a Markov Chain

component and a Monte Carlo component. MCMC algorithms were preceded by ordinary

Monte Carlo algorithms (Brooks et al., 2011). MCMC is a general algorithm structure into

which many simulations can be arranged.

A Markov chain is a sequence of random variables, X(0), X(1), X(2), ..., with the t +

1th random variable in the sequence conditional only on the random variable immediately

preceding it, X(t), and independent from X(t−1), ..., X(0) (Lunn et al., 2013). That is, the

distribution of X(t+1) is given by

X(t+1) ∼ ptrans(x|X(t) = x(t)). (2.5)
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In Eq. (2.5), ptrans is called the transition distribution and defines “the conditional prob-

ability of moving to any particular new value given the current value of the chain” (Lunn

et al., 2013). The idea of a Markov chain is that as t approaches infinity, the unconditional

distribution of X(t+1) reaches a unique stationary distribution. This stationary distribution

does not depend on the initial value of the chain, X(0) (Lunn et al., 2013).

As was explained in section 2.4, many cases arise when performing Bayesian inference

where the necessary calculations to obtain an analytical solution of the posterior distribution

are not feasible. In situations like these, stochastic simulation methods can be used. In

these cases, the X random variables in the Markov chain are replaced by θ, a random

variable representing the unknown parameter of a distribution. Although these methods

cannot find a closed-form solution for the posterior distribution, they can sample from the

posterior distribution, p(θ|x). The Gibbs sampling method (Geman and Geman, 1984) and

the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) are two popular

MCMC methods that can draw samples from the posterior distribution. The samples

from the posterior distribution can then be used to calculate credible intervals, summary

statistics, and various percentiles, all of which provide information that can be used in

decision making.

2.6 Roy and Oberkampf Method

The method implemented by Roy and Oberkampf (2011) will be reviewed in detail

in this section. This method uses a nested sampling approach to propagate uncertainties

through a mathematical model and keeps aleatory and epistemic uncertainties separated

throughout the analysis.

In this method a mathematical model is first identified. The output of this model is

termed the System Response Quantity (SRQ). The SRQ is the value for which uncertainty is

to be quantified. The uncertainty for each model input is classified as being either epistemic

or aleatory, and these uncertainties are separately propagated through the model. Aleatory

and epistemic uncertainties are defined respectively as uncertainty from inherent random-

ness and uncertainty from a lack of knowledge of models and parameters (see section 2.2
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for a detailed discussion). Roy and Oberkampf (2011) acknowledge that the classification

of input quantities as either aleatory or epistemic is not always straightforward or obvious,

and in some cases an input could be a mixture of both aleatory and epistemic uncertainty.

Within this methodology, aleatory uncertainty is characterized by a probability distribu-

tion function (PDF) or a cumulative distribution function (CDF). Epistemic uncertainty is

characterized by “an interval with no associated PDF” or by “a PDF which represents [the]

degree of belief of the analyst” (Roy and Oberkampf, 2011). Mixed aleatory and epistemic

uncertainty is characterized by a distribution where the distributional parameters are not

scalars but are described by intervals or distributions. The framework for the Roy and

Oberkampf (2011) method includes the following steps:

1. Identify all sources of uncertainty

Potential sources of uncertainty may include model inputs, numerical approximation,

and model form.

2. Characterize uncertainties

This step involves “assigning a mathematical structure to describe the uncertainty

and determining the numerical values of all the needed parameters of the structure”

(Roy and Oberkampf, 2011). Analysts need to first determine whether the source

of uncertainty will be classified as aleatory, epistemic, or a mixture of the two. The

authors note that information for determining the probability distributions or intervals

that characterize the uncertainty may come from experimental data, other models,

or expert opinion. However, it is left to the reader to research methods to actually

encode information from these sources into some mathematical structure representing

the uncertainty.

3. Estimate uncertainty due to numerical approximations

All numerical approximation uncertainty (discretization error, iterative error, round-

off error, coding mistakes) is considered epistemic. Uncertainty from unknown coding

errors is difficult to quantify, so the authors recommend minimizing errors as much

as possible by using good coding practices. Error estimates for the remaining three
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types of numerical uncertainty are characterized with intervals and added together to

obtain a single interval representing numerical approximation uncertainty.

4. Propagate input uncertainties throughout the model

In this step, if there are both aleatory and epistemic model input uncertainties present,

the epistemic and aleatory uncertainties are kept separate. This approach is called

double-loop sampling or nested sampling. The authors describe this approach as fol-

lows: “For each sample of all of the epistemic uncertainties, the aleatory uncertainties

are propagated through the model ... to produce a single CDF of the SRQ. After all of

the epistemic samples have been chosen and the resulting CDFs have been computed,

one has an ensemble of M CDFs” (Roy and Oberkampf, 2011). The widest points of

this ensemble of CDFs constitutes a probability box, or p-box. Alternatively, a certain

percentage of the largest and smallest CDFs may be discarded. For example, if the

largest 2.5% and the smallest 2.5% of the CDFs were discarded, this would leave the

95% in the center. This has been called a “95% credible p-box” (Ewing et al., 2018).

The p-box is used to visualize and interpret the uncertainty associated with the SRQ.

5. Estimate model form uncertainty through model validation

Uncertainty from model form is estimated by model validation. The authors suggest

using a validation metric. This metric is ideally computed via a validation experiment,

but it is often necessary to use pre-obtained experimental data. The model validation

process reveals how the experimental values of the SRQ differ from the model predicted

values of the SRQ. Various validation metrics can be selected, but the area validation

metric is used by the authors. This measures the area between a CDF from simulation

samples (i.e. from the predictive model) and a CDF from experimental measurements.

6. Determine total uncertainty in the system response quantity

The p-box constructed in step 4 is modified by appending the area validation metric

to each side of the p-box. This makes the p-box wider, accounting for the uncertainty
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associated with model form uncertainty. Because the epistemic and aleatory uncer-

tainty have been kept separate as they were propagated through the model, they each

contribute to different attributes of the resulting p-box. The epistemic uncertainty is

indicated by the width of the p-box and the aleatory uncertainty is indicated by the

range of SRQs that are covered by the p-box.



CHAPTER 3

METHODS

3.1 Roy and Oberkampf Method

In this section, the motivation for a new approach to UQ is given. The instability

observed in the Roy and Oberkampf (2011) approach will be demonstrated, which raises

the need to either develop a stabilizing modification to the existing method or to offer a

new method. One possible stabilization is given in section 3.1.2. The proposed alternative

method is given in section 3.2.

3.1.1 Observed Instability

The purpose of the example given here is to demonstrate an instability that has been

observed in the method described by Roy and Oberkampf (2011). This instability may not

occur in all cases, but the fact that it has been found raises a concern that an instability

may exist but remain unknown to the analyst.

A simple example, borrowed from Ewing et al. (2018), is used for this demonstration.

A mathematical model (not associated with any physical context) is given as

Q = EE2
1 A3A

A1
2 + E3, (3.1)

where Q is the system response quantity, or quantity of interest. The model inputs E1, E2,

and E3 are inputs which we will assume are subject to epistemic uncertainty. We will assume

that the remaining model inputs, A1, A2, and A3, are subject to aleatory uncertainty. The

characterizations of model input uncertainty are given below.

E1 ∼ Uniform(0.5, 0.7)

E2 ∼ Uniform(0.5, 0.7)
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E3 ∼ Uniform(0.5, 0.7)

A1 ∼ Normal(2.0, 0.13)

A2 ∼ Normal(7.0, 0.55)

A3 ∼ Normal(50, 1.2)

Note that a and b represent the lower and upper bounds of a Uniform(a, b) distribution

and µ and σ2 represent the mean and variance of a Normal(µ, σ2) distribution.

The double loop or nested sampling approach described in section 2.6 was performed to

propagate the uncertainty of the model inputs through the model to quantify the uncertainty

of Q. Roy and Oberkampf (2011) note that determining whether a model input should be

classified as having aleatory or epistemic uncertainty is not always an obvious choice. In

other words, there is some ambiguity in these uncertainty class assignments, and different

analysts may make different assignments if performing the same analysis independently. In

this simulation, the original Uniform or Normal distribution assignments remained the same

while epistemic and aleatory assignments were switched one input at a time. As can be seen

in Fig. 3.1, changing A1 or A2 to epistemic uncertainties widened the p-boxes considerably,

while changing E1 to be an aleatory uncertainty led to a much narrower p-box. Note that

the p-boxes resulting from changing A3 to epistemic and E2 and E3 to aleatory aren’t

shown on the plot as they resulted in essentially the same p-box as the original uncertainty

assignments. Because results from UQ analyses are frequently used to make decisions that

may have a large impact on the financial well-being of a company or the physical well-

being of employees and product users, this instability is an undesirable characteristic of this

method.

3.1.2 Proposed Modification

The instability demonstrated in section 3.1.1 occurs when the classification of the

uncertainty associated with a model input changes from aleatory to epistemic or vice versa.

If there is no disagreement between analysts on the correct classification this may not be
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an issue. However, this modification may help if there is difficulty determining whether

a model input should be classified as having aleatory or epistemic uncertainty. Instead of

framing this classification as binary, analysts might determine a degree of membership, or a

weighted membership, to both uncertainty classes. These membership weights should sum

to 1. For example, a model input θi might be determined to have an aleatory membership

weight of 0.7 and an epistemic membership weight of 0.3. A third outer loop could be added

around the existing double loop in the Roy and Oberkampf (2011) method (section 2.6). In

this third loop, a “weighted coin toss” (may be referred to statistically as a Bernoulli trial)

is performed for each model input that has been assigned weighted memberships to each

uncertainty class. For a model input, θi, with an aleatory membership weight of p and an

epistemic weight of q, P (aleatory) = p and P (epistemic) = 1− p = q. If the weighted coin

toss results in aleatory, the model input is treated as aleatory for the subsequent nested

loops. Otherwise, it is treated as epistemic. After the two inner loops are completed, the

next iteration of the third outer loop begins, and uncertainty classifications are reassigned

given the new outcomes of the weighted coin tosses. If the original method proposed by Roy

and Oberkampf is termed “2D” UQ (Ewing et al., 2018), this modification can reasonably

be called “3D” UQ.
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Fig. 3.1: Results from the Roy and Oberkampf method when perturbing the aleatory and
epistemic assignments of the model inputs. Changing A1 and A2 to epistemic uncertain-
ties resulted in a large change in the resulting p-box, as did changing E1 to an aleatory
uncertainty.
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To demonstrate this modification, the example from section 3.1.1 is used. As we saw

an instability in the results when changing the uncertainty classification of input A1 to

epistemic and input E1 to aleatory, we assign membership weights to these inputs. A1

is given an aleatory membership of p = 0.7 and an epistemic membership assignment of

q = 1−p = 0.3. In a separate simulation, E1 is given an aleatory membership of p = 0.4 and

an epistemic membership assignment of q = 1− p = 0.6. The results are shown in Fig. 3.2.

The orange (dashed) trace on the left plot shows the p-box when changing A1 completely

to epistemic uncertainty, resulting in a drastically different p-box from the original aleatory

and epistemic assignments. The blue (dash-dotted) trace on the left plot shows that a

middle ground is reached when A1 is given a degree of membership to both the aleatory

and epistemic uncertainty classes. While not as dramatic, we see on the right plot that the

magenta (dash-dotted) trace finds a middle ground between the original uncertainty class

assignments and changing E1 completely to aleatory.

If the Roy and Oberkampf (2011) method must be used, a modification like this may

help to stabilize the results. In the next section, however, we offer a Bayesian approach to

UQ as a preferred alternative.
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Fig. 3.2: Modification to the Roy and Oberkampf method (3D UQ). The result of the
modification (the dash-dotted blue trace and the dash-dotted magenta trace) yields a middle
ground between the original aleatory and epistemic uncertainty classifications and changing
the uncertainty classification of A1 or E1 completely.
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3.2 A Bayesian Approach to Uncertainty Quantification

The proposed algorithm for a Bayesian approach to UQ is outlined below. A diagram

of the algorithm is given in Fig. 3.3.

1. Specify the engineering model and quantity of interest

The engineering model, f , mathematically relates a vector of system inputs, Θ =[
θ1 θ2 · · · θk

]T
(geometry, material properties, loads, environmental conditions,

etc.), to the to the quantity of interest, Q. Note that Q here is analogous to the

SRQ in the Roy and Oberkampf (2011) method. We wish to learn something of the

uncertainty associated with Q. Thus, the engineering model is of the form

f(Θ) = Q. (3.2)

2. Determine a distribution family for each model input

For each input, θi ∈ Θ, i = 1, ..., k, specify a distribution family, Di. That is,

θ1 ∼ D1(β1, η1)

θ2 ∼ D2(β2, η2)

...

θi ∼ Di(βi, ηi)

...

θk ∼ Dk(βk, ηk).

Without loss of generality, the notation above assumes that each distribution has two

parameters. In practice the distributions that are used need not have exactly two

parameters. The parameters βi and ηi are not directly specified in this approach.

3. For each distribution specified in step 2 determine prior distributions of

the distributional parameters
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Each distributional parameter, βi and ηi, i = 1, ..., k should be given a prior distribu-

tion. This prior may be uninformative if necessary, but if possible should be informed

by expert opinion or legacy data. Thus, for the parameters of the distribution of θi,

i = 1, ..., k,

βi ∼ Ai(hi, gi) (3.3)

ηi ∼ Bi(si, ti). (3.4)

The values hi, gi, si, and ti are parameters of the prior distributions. In Bayesian

inference they would be called hyperparameters; parameters for the distributions of

parameters. All hyperparameters must be specified in this step.

4. Draw samples from the posterior distributions of βi and ηi using MCMC

methods

Given some observed data, xi, where xi is a vector of realized observations corre-

sponding to θi, use Bayesian MCMC methods (e.g. Metropolis-Hastings) to estimate

and sample from the posterior distributions of parameters. Because determining the

distribution p(βi, ηi|xi) is often not analytically tractable, MCMC methods are used

to sample from this distribution. From the MCMC sampling, j = 1, ...,m samples

are obtained from posterior distributions of βi and ηi. Note that the m samples do

not include the burn-in period for the MCMC simulation. The number of MCMC

iterations, m, should be large enough to ensure convergence. Convergence can be as-

sessed using trace plots and other convergence diagnostics. We denote these posterior

distribution samples as

β∗
i =



β
(1)∗
i

β
(2)∗
i

...

β
(m)∗
i


, η∗

i =



η
(1)∗
i

η
(2)∗
i

...

η
(m)∗
i


. (3.5)
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In other words, we obtain β
(j)∗
i and η

(j)∗
i for j = 1, ...,m and i = 1, ..., k.

5. Sample values from the distributions comprised of pairs of parameters from

MCMC simulation

Next, r = 1, ..., n samples are taken from the distribution Di(β
(j)∗
i , η

(j)∗
i ), for j =

1, ...,m and i = 1, ..., k. The value θ
(r,j)∗
i is the rth sample from distributionDi(β

(j)∗
i , η

(j)∗
i ).

If this is performed for each θi, i = 1, ..., k, we can represent the k samples for each

unique (r, j) in a vector:

Θ(r,j)∗ =

[
θ
(r,j)∗
1 · · · θ

(r,j)∗
i · · · θ

(r,j)∗
k

]T
. (3.6)

6. Evaluate engineering model over each vector obtained in step 5

Because each Θ(r,j)∗ contains a value for each of the k model inputs, f(Θ(r,j)∗) =

Q(r,j)∗ can be evaluated. This should be done for all Θ(r,j)∗, r = 1, ..., n and j =

1, ...,m. The resulting Q(r,j)∗ values can be compiled into an n ×m matrix like the

one shown in Eq. (3.7)

Q∗ =



Q(1,1)∗ Q(1,2)∗ · · · Q(1,j)∗ · · · Q(1,m)∗

Q(2,1)∗ Q(2,2)∗ · · · Q(2,j)∗ · · · Q(2,m)∗

...
...

. . .
... · · ·

...

Q(r,1)∗ Q(r,2)∗ · · · Q(r,j)∗ · · · Q(r,m)∗

...
... · · ·

...
. . .

...

Q(n,1)∗ Q(n,2)∗ · · · Q(n,j)∗ · · · Q(n,m)∗


(3.7)

7. Visualize and interpret results

The m columns of Q∗ correspond to the m samples from the posterior distributions

of βi and ηi for i = 1, ..., k. Stated another way, each column of Q∗ represents

samples from a different set of potential parameters for distributions Di, i = 1, ..., k.

Empirical CDFs can be calculated for each column in Q∗, and p-boxes constructed
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and plotted. A more detailed discussion about visualizing and interpreting results is

given in section 3.4.

8. Update analysis as more data becomes available: As more data becomes avail-

able, the new information that this data contains should be incorporated into the UQ

analysis. This can be done by rerunning the MCMC simulations with both the newly

available data, xi(new), and the previously available data, xi. Note that if new data

is only available for one model input, it is only necessary to re-run the MCMC simu-

lation for that model input. In other words, new samples only need to be taken from

posterior distributions of the model inputs for which new data has been incorporated.

After new samples are obtained from the posterior distribution, p(βi, ηi|xi(new),xi),

perform step 5, inserting newly obtained samples into the Θ(r,j)∗ vectors. Next, per-

form step 6 again, resulting in an updated Q∗. Visualizations can then be recreated

and interpretations revised.

3.3 Accounting for Aleatory and Epistemic Uncertainties

First, we define three terms: deterministic, epistemic, and aleatory. Epistemic and

aleatory uncertainties are also discussed in section 2.2, but are briefly revisited here due to

their importance in this section. After definitions are given, the role of these three terms in

the Bayesian UQ method will be explained.

Deterministic is defined as, “pertaining to exactly predictable (or precise) events, the

outcome of which is known with certainty if the inputs are known with certainty” (Dezfuli

et al., 2009). Models such as F = ma or E = mc2 would be classified as deterministic

models. Next, aleatory is defined as, “pertaining to stochastic (non-deterministic) events,

the outcome of which is described by a probability” (Dezfuli et al., 2009). Anything that is

inherently random contains aleatory uncertainty. Lastly, epistemic is defined as, “pertaining

to the degree of knowledge of models and their parameters” (Dezfuli et al., 2009). Imprecise

knowledge of model parameters is epistemic uncertainty.
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Fig. 3.3: Diagram of the Bayesian UQ algorithm. This diagram supplements the written
description of the Bayesian UQ method. It emphasizes how the algorithm starts at the level
of the quantity of interest and works up to the hyperparameter level and back down again.
The algorithm begins in the bottom left corner at START.

We assume that the model relating the model inputs to the quantity of interest is

deterministic. However, we usually do not know the precise values of all model inputs.

Thus, even though our model is deterministic, we are uncertain of the precise value of the

model output (quantity of interest). The uncertainty must be characterized for each model

input, θi. A distribution family, Di, is placed on each θi. This probability distribution

represents the aleatory uncertainty associated with model input θi. However, a probability

distribution is not complete without specifying the distributional parameters. Without

loss of generality, we assume that distribution Di has two parameters, βi and ηi. As was



22

noted previously in this section, epistemic uncertainty stems from a lack of knowledge

of parameters. Thus, if the distributional parameters are not known precisely, epistemic

uncertainty is introduced and needs to be accounted for. This is done by placing prior

distributions on the distributional parameters, allowing them to vary according to our

prior beliefs. As new data is obtained and incorporated, the Bayesian framework updates

these prior distributions, thus reducing the epistemic uncertainty. In this way, uncertainty

for a model input with some amount of both aleatory and epistemic uncertainty may be

characterized.

Much of the time, model inputs may have both epistemic and aleatory uncertainty asso-

ciated with them. However, there may be instances where a model input can be determined

to have purely aleatory or purely epistemic uncertainty. A purely aleatory model input

would still have a distributional family assigned. However, since no epistemic uncertainty is

present, constants would be used for βi and ηi, and no prior distributions used for these dis-

tributional parameters. Consequently, observed data would not impact the uncertainty of

this model input since aleatory uncertainty is not reducible. A purely epistemic model input

would involve setting the distribution family, Di to a single parameter, βi. This parameter

would have a prior distribution placed on it. The prior distribution would be updated with

observed data in the Bayesian framework, thus reducing the epistemic uncertainty.

3.4 Visualizing and Interpreting Results

Useful and informative visualizations are at the core of interpreting results from this

Bayesian approach to UQ. Although the underlying methods that generate Q∗ are different

than the Roy and Oberkampf (2011) method, the results of both methods have similar

structures. The resulting matrices from both methods contain columns from which empirical

CDFs can be constructed. The resulting ensemble of empirical CDFs can be visualized with

a p-box (section 2.6). The p-boxes used in this and following sections are 95% p-boxes. That

is, the p-box contains the middle 95% of the ensemble of CDFs.
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3.4.1 Visualizations

Here, we suggest several possible ways to enhance the p-box plots described by Roy and

Oberkampf (2011) and Ewing et al. (2018). Plotting the p-box alone can be informative, but

further insight may be gained by visualizing the underlying ensemble of CDFs. However,

simply plotting each CDF in the ensemble is not a satisfactory solution. First, as the

number of CDFs (the number of columns, m, in Q∗) increases, the plotting area quickly

becomes over-saturated with plot traces, resulting in a solid band of CDFs, which gives no

insight about how the CDF density varies over the plotting area. In data visualization, this

is referred to as overplotting. Usually, overplotting can be handled by using narrower lines

and allowing the lines to be semi-transparent. This would allow the CDFs to “stack” on

top of each other and areas with a higher density of CDFs will appear darker than areas of

the plot with a lighter density. This may help initially, but will still be inadequate if there

is a large number of CDFs to be plotted. In addition, as the dimensions of the Q∗ matrix

increase (as n and m increase), plotting each empirical CDF in the ensemble becomes quite

computationally expensive and generating a single plot can take a significant amount of

time.

There are ways that the density of the CDFs can be visualized without plotting each

individual CDF. Two possible visualization techniques are heatmap plots and hexagon-

binning plots. Both of these plots map the density of points over the plotting area to a color

scale. A challenge is encountered when using these kinds of plots to visualize the ensemble of

CDFs. Because every CDF in the ensemble begins at a cumulative probability of 0 and ends

at a probability of 1, there is an extremely high point density at the bottom left and top right

corners of the plot. These high density areas wash out much of the structure throughout

the rest of the plot. In order to better visualize the density over the entire plot, it is helpful

to use a transformation on the density color scale. A square root transformation, log2

transformation, and log10 transformation are all effective in improving the plot. Examples

of both the heatmap and the hexagon-binning plots are shown in Fig. 3.4 along with the

impact of a square root transformation. These plots, along with all subsequent plots, were
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generated using the ggplot2 package (Wickham, 2016). The p-box may also be overlaid
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Fig. 3.4: Heatmap and hexagon-binning plots. These plots demonstrate the use of heatmap
and hexagon-binning plots to visualize the underlying ensemble of CDFs that are obtained
from the Bayesian UQ method.

on the heatmap or hexagon-binning plot to assist in interpretability. An example of this

is given in Fig. 3.5. Incorporating both the CDF density (through a heatmap or hexagon-

binning plot) and a p-box on the same graphic results in a more informative visualization

than either plot on its own. Another possible method for visualizing the density of CDFs

is to plot the p-box on one plot and then, on an accompanying plot, show a histogram of

the probability values at a given value of Q. The ensemble of CDFs is essentially “sliced”

vertically, and the distribution of the probabilities at that value are shown in the histogram.

An example of this is given in Fig. 3.6.
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Fig. 3.5: Heatmap and hexagon-binning plots with an overlaid p-box. This plot demon-
strates how a combination of a heatmap or hexagon-binning plot with an overlaid p-box is
more informative than either plot on its own.
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Fig. 3.6: P -box and accompanying histogram. The distribution shown in the histogram
(right) corresponds to the values in the CDF ensemble at the vertical solid line shown on
the p-box (left). The histogram helps visualize the distribution of probabilities at a selected
value of Q.

Both the heatmap and the hexagon-binning plots yield similar visualizations, but the

hexagon-binning plots had a render time that was about one-third that of the heatmap

plots (Fig. 3.7). It was observed that randomly sampling a certain number of columns from

Q∗ and plotting only those resulted in a heatmap with a similar relative density as would
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Fig. 3.7: Render times of heatmap and hexagon-binning plots. The hexagon-binning plots
had a render time that was about one-third that of the heatmap plots.

be obtained when plotting all the CDFs in an ensemble. Figure 3.8 shows a heatmap plot

where 1,000 CDFs were randomly sampled and used to generate the plot and a plot where

all 10,000 CDFs were used. When the number of CDFs was changed from 10,000 to 1,000,

the plot rendering time dropped from 68.53 seconds to 6.62 seconds (a difference of almost

62 seconds). The differences between the two plots are subtle, and it is likely that similar

interpretations would result from both plots. However, if time and computing power permit,

it is recommended to plot all the data.

3.4.2 Interpretation

The visualizations described in the section above will aid greatly in understanding and

interpreting results of the UQ analysis. The p-box, heatmap, or hexagon-binning plots

alone give a rough picture of the UQ results. It allows the analyst to see approximately

where the body of CDFs lie in relation to a value of Q that is of particular interest for the

current application. It will also allow the analyst to get a feel for how much uncertainty

is present in the quantity of interest. High uncertainty corresponds to a horizontally wide

p-box, while low uncertainty corresponds to a narrow p-box.

In order to get a more detailed understanding of the UQ results, the visualization
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approximately the same between the two plots, but the rendering time decreases from 68.53
seconds to 6.62 seconds when m = 1, 000, a difference of almost 62 seconds.

technique using an accompanying histogram (Fig. 3.6) will be more useful than a heatmap

or p-box plot alone. The analyst should “slice” the p-box vertically at the value(s) of Q

that is of particular interest for the current application. The values at which the vertical

line intersects the p-box should be reported. This interval can be interpreted as a credible

interval. For example, if Q is desired to be greater than some value Q0, and the interval

resulting from slicing the p-box vertically at Q = Q0 is (0, 0.005), we could say that, with

95% credibility, the probability that Q is less than Q0 is between 0 and 0.005 (between 0

and 0.5%). Those not familiar with statistics and UQ (oftentimes the decision makers) may

find that this approach does not immediately make clear the correct decision or course of

action. The 95% credible interval of probabilities may be confusing and not as explicit and

straightforward as desired. Thus, more research and work remain to develop methods for

creating detailed interpretations for results from the Bayesian UQ approach. This is further

discussed in section 5.2.1.



CHAPTER 4

APPLICATION

An illustrative example will now be given to demonstrate the Bayesian approach to UQ

as described in section 3. Note that the example given in this section is not meant to be a

rigorous engineering analysis. Rather, it is meant to demonstrate the utility of the Bayesian

UQ approach and to provide a platform for comparison between this approach and the Roy

and Oberkampf (2011) method. The calculations for this example were performed in the R

(R Core Team, 2019) and Python (PYT, 2018) programming languages, and visualizations

created with the ggplot2 (Wickham, 2016) package.

4.1 Simply Supported Beam - Engineering Background

A simply supported beam, as shown in Fig. 4.1, has a pin support at one end and a

roller support at the other. Simply supported beams with point loads are used in various

applications, such as beams in bridges, buildings, and beds of machine tools (Bird and

Chivers, 1993).

Fig. 4.1: Diagram of a simply supported beam. This diagram shows a simply supported
beam with a midspan point load.

An assessment of the design of a simply supported beam might include an evaluation

of the safety factor, SF . As shown in Eq. 4.1, the safety factor is a ratio of the strength of
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the beam, S, to the burden of the beam, B.

SF =
S

B
(4.1)

A safety factor greater than 1 indicates that the strength is greater than the burden, and

the beam will be capable of supporting the burden. A safety factor less than 1 indicates

that the burden surpasses the strength of the beam and the beam will fail under the burden.

For a wooden beam, the strength, S, is given by the modulus of rupture, MOR. The

burden is given by

B =
My

I
, (4.2)

where M is the maximum moment, y is the distance from neutral axis to the extreme tensile

fiber, and I is the moment of inertia. This gives a safety factor of

SF =
S

B
=

S
My
I

. (4.3)

L, b, and h represent the length, width, and height of the beam respectively, and P is the

point load applied to the midspan of the beam. For a simply supported beam experiencing

three point flexure (simply supported beam with a center point load) and a rectangular

cross section, we have Eq. (4.4) - (4.6).

M =
PL

4
(4.4)

y =
h

2
(4.5)

I =
bh3

12
(4.6)

Substituting these into the safety factor equation gives us the following:

SF =
S
My
I
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SF = S
I

My

SF = S
bh3

12
PL
4

h
2

SF = S
8bh3

12PLh

SF = S
2bh2

3PL
.

Thus, the engineering model is

SF = f(Θ) = S
2bh2

3PL
, (4.7)

where Θ =

[
h b L S P

]T
.

For this illustrative example, assume that a simply supported beam needs to be designed

and installed in predetermined locations to support existing fixtures. The beams are to be

constructed from Douglas Fir Larch lumber that is approximately 1.5 inches (3.81 cm) in

height and 3.5 inches (8.89 cm) wide (commonly referred to as a “2 × 4”). The beam will

need to span approximately 15 inches (50.8 cm). For standard grade Douglas Fir-Larch

lumber, the modulus of rupture is tabulated by the American Wood Council (NDS, 2015)

to be 575 psi (3964.49 kPa). The engineers have determined that a beam with a span of

15 inches should be able to support the expected load of about 150 lbs (68.04 kg). The

calculations below support this conclusion.

SF = S
2bh2

3PL

SF = 575
2(3.5)(1.5)2

3(150)(15)

SF = 575
15.75

6750

SF = 1.34
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Thus, with a safety factor of 1.34 > 1, the burden does not exceed the strength.

4.2 Data Collection

Computer-generated data could have been used to demonstrate the use of the Bayesian

UQ method. For demonstration purposes measurements were taken on physical beams to

give a realistic example of how these methods might be used in engineering applications.

Nine 2 ft (60.96 cm) Doug Fir-Larch 2 × 4 beams were obtained from a local lumber

distributor. They were marked as “std & btr” or “standard and better” grade lumber,

meaning that all lumber was guaranteed to be at least standard grade and some percentage

of the lumber may be a higher grade (e.g. No. 2 or No. 1 grades).

Measurements of height (h) and width (b) were taken on these 9 specimens (Fig. 4.2)

with digital calipers.

Fig. 4.2: Taking height and width measurements. Measurements were taken for height (left)
and width (right) using digital calipers.

The strength (modulus of rupture) was measured on all 9 specimens. This was done
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Fig. 4.3: Compression-tension universal testing machine. This machine was used to apply
a midspan point load to measure the modulus of rupture.

by using a tension-compression universal testing machine (Fig. 4.3). Each specimen was

placed on supports with a 20 inch (50.8 cm) span and a monotonically increasing point

load was applied at midspan. The load was increased at a rate of 0.1 inches (2.54 mm)

per minute until the beam ruptured (Fig. 4.5 and 4.6). Figure 4.4 shows four examples of

strength tests results. The plot traces indicate the increasing load over time, and the sharp

drop in load indicates when the beam ruptured. The peak load was recorded and the MOR

was calculated with Eq. (4.8) and recorded.

MOR =
3PL

2bh2
(4.8)

Although the beam is being designed to span specific gaps in existing locations and to

bear the weight of existing fixtures, we assume that in this scenario no measurements have

been obtained for either the gap span or the weight of the fixtures. This will allow us to
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demonstrate the use of posterior predictive distributions in the Bayesian UQ approach to

handle situations where no measurements have been observed for one or more parameters.
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Fig. 4.4: Plot of the load over time during strength testing. The sharp drop in load indicates
the time and load at which the beam ruptured. The point on each trace shows the maximum
load.

4.3 UQ Analysis

In the next two sections, a UQ analysis will be performed using both the Bayesian

UQ approach and the original Roy and Oberkampf (2011) approach. Results from these

approaches will be compared in chapter 5.

4.3.1 Roy and Oberkampf Method

Only model input uncertainty is considered for this application of the Roy and Oberkampf

(2011) method because the Bayesian UQ method has only been developed to the point of
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(a) Start of strength test (b) Partially completed strength test

(c) End of strength test (beam has ruptured)

Fig. 4.5: Taking strength measurements for the simply supported beam. These pictures
show the beam before a load has been applied (a), the beam flexing under the applied load
(b), and the beam after it has ruptured (c).

accounting for these uncertainties. Model form and numerical approximation uncertainty

will not be considered here. In order to keep the analyses performed by the two methods

as comparable as possible, the same probability distribution families were assigned to the

model inputs for both this method and the Bayesian UQ method. Distribution parameters

were informed by the available experimental data. Note that when applying the Roy and

Oberkampf method, observed data does not have as natural of a place to feed into the

method as it does with the Bayesian approach. The authors state that “information for

characterizing input uncertainties typically derives from experimentally measured data from

the actual system or similar systems of interest” (Roy and Oberkampf, 2011). Thus, after

fitting the respective distributions to the available data, the uncertainty characterizations

shown below were constructed.

b ∼ Normal(3.5, 0.02)

h ∼ Normal(1.5, 0.01)
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Fig. 4.6: Ruptured beams after strength testing. Four of the nine tested beams are shown
after they ruptured during the strength testing. The beams are shown from bottom (left)
and from the side (right).

L ∼ Normal(15, 0.3)

S ∼ LogNormal(9, 0.19)

P ∼ Uniform(147.9, 152.1)

Uncertainties relating to b, h, and S were characterized as aleatory. In other words, the

width and height of the 2×4’s used to construct a beam have naturally occurring variability.

Additionally, the strength varies randomly from beam to beam. Additional data collection

may help us better understand the probability distributions of these variables, but will

not decrease our uncertainty. Uncertainties relating to L and P were characterized as

epistemic uncertainties. In this scenario the beams are being designed to be installed in

predetermined locations implying that there are predetermined spanning distances. In

addition, one of several existing fixtures may be supported by the beam. The approximate

spanning distances and fixture weight (corresponding to inputs L and P ) have not been
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Fig. 4.7: Resulting p-boxes from the UQ analyses on the simply supported beam example.
Results are shown from both the Roy and Oberkampf method (left) and results from the
Bayesian UQ approach (right).

measured yet, but if or when they are measured, uncertainty regarding these variables can

be reduced. Roy and Oberkampf (2011) characterize epistemic uncertainty by assigning an

interval with no associated probability. They also state that “the Bayesian approach to

uncertainty quantification characterizes epistemic uncertainty as a PDF that represents the

degree of belief of the true value on the part of the analyst.” For this application to the

simply supported beam example, we allow some flexibility to the method described by Roy

and Oberkampf (2011) and assign a PDF to each of the epistemic uncertainties.

The Roy and Oberkampf (2011) double-loop method (described in section 2.6) is used

to propagate the uncertainty through the engineering model given in Eq. (4.7). 15,000

outer and 500 inner loops are performed. Empirical CDFs are then constructed from the

results and summarized using a p-pox containing the middle 95% of the resulting CDFs.

Figure 4.7 shows the p-box overlaid on a hexagon-binning plot. Similar to the results from

the Bayesian UQ approach, all simulated safety factor values are much greater than 1. In

this case, no safety factors less than 7 were calculated. A more detailed interpretation and

discussion is given in chapter 5.
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4.3.2 Bayesian UQ

Figure 4.8 outlines the Bayesian UQ approach as pertaining to this example. It is a

diagram of the same form as Fig. 3.3, but has been applied to the simply supported beam

application.

𝜇 , 𝜎 , … , 𝑎, 𝑏

𝜇 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(1.5, 0.09) 

𝜎 ∼ 𝐺𝑎𝑚𝑚𝑎(0.0001, 0.0001) 

⋮ 

 𝑎 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(148, 0.1) 

𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(152, 0.1) 
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Fig. 4.8: Diagram of the Bayesian UQ algorithm applied to the simply supported beam
example. The algorithm begins in the bottom left corner at START.

Step 1 of the algorithm is to specify the engineering model and value of interest. The

engineering model, shown in Eq. (4.7), has been specified, and the safety factor, SF , is our
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value of interest. In other words, we wish to learn about the uncertainty associated with

SF .

Next, each model input must be given a distribution (step 2). The following distribution

families are assigned to each of the model inputs:

h ∼ Normal(µh, σ2h)

b ∼ Normal(µb, σ2b )

L ∼ Normal(µL, σ2L)

S ∼ LogNormal(µS , σ2S)

P ∼ Uniform(a, b)

Prior distributions are next assigned to each parameter in the above distributions (step 3).

Expert opinion elicitation was not performed to inform these priors, but ideally some of the

methods described in section 2.3 would be used to generate the values used in these prior

distributions. Some of these prior distributions were chosen based on some well-known

values (e.g. average height and width of a 2 × 4, expected point load) and were made

uninformative otherwise (e.g. variance of beam strength).

µh ∼ Normal(1.5, 0.09)

σh ∼ Gamma(0.0001, 0.0001)

µb ∼ Normal(3.5, 0.09)

σb ∼ Gamma(0.0001, 0.0001)

µL ∼ Normal(15, 0.01)

σL ∼ Gamma(0.0001, 0.0001)

µS ∼ Normal(7.2, 0.01)

σ2S ∼ Gamma(0.0001, 0.0001)
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a ∼ Normal(148, 0.1)

b ∼ Normal(152, 0.1)

Given the measurements taken on the height, width, and strength (xh,xb, and xS

respectively), Bayesian MCMC methods are employed to sample from the following posterior

distributions (step 4):

p(µh, σ
2
h|xh) =

f(xh|µh, σ2h)p(µh, σ
2
h)∫∫

f(xh|µh, σ2h)p(µh, σ
2
h)dµhdσ

2
h

,

p(µb, σ
2
b |xb) =

f(xb|µb, σ2b )p(µb, σ
2
b )∫∫

f(xb|µb, σ2b )p(µb, σ
2
b )dµbdσ

2
b

,

p(µS , σS |xS) =
f(xS |µS , σS)p(µS , σS)∫∫

f(xS |µS , σS)p(µS , σS)dµSdσS
.

The Bayesian MCMC sampling was performed via the OpenBUGS software, run in R

through the R2OpenBUGS package (Lunn et al., 2009; R Core Team, 2019; Sturtz et al.,

2017). 10,000 iterations were run over 3 chains for a total of t = 30, 000 iterations. The

“burn-in” length (number of iterations to discard from the beginning) is t/2 = 15, 000. This

leaves us with m = 15, 000 samples from each posterior distribution (above).

Convergence is confirmed via trace plots, shown in Fig. 4.9. We now have samples from

the posterior distributions of our model input parameters.

Recall that data were not available for P or L. This is a scenario that is likely to be

encountered in practice when certain measurements are difficult or expensive to obtain. A

prior predictive distribution is used to obtain values of these model inputs to be used in

this analysis. This involves making m = 15, 000 draws from the prior distributions of a and

b (the parameters of P ) and the prior distributions of µL and σL (the parameters of L). We

add the draws from these prior distributions to the posterior distribution draws obtained

from the MCMC simulation.

Step 5 is performed next. r = 1, ..., 500 draws are sampled from the distributions

created by each pair of parameters, j = 1, ..., 15, 000. These values are compiled into
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Fig. 4.9: Trace plots from the MCMC simulation for the simply supported beam example.
These plots are used to determine if the MCMC algorithm has converged to the posterior
distribution.

vectors of the following form:

Θ(r,j)∗ =

[
h(r,j)∗ b(r,j)∗ L(r,j)∗ S(r,j)∗ P (r,j)∗

]T
, (4.9)

for r = 1, ..., 500 and j = 1, ..., 15, 000. (4.10)
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Finally, step 6 consists of calculating f(θ(r,j)∗) = SF (r,j)∗ for r = 1, ..., 500 and j =

1, ..., 15, 000. The results are compiled into a 500× 15, 000 matrix, SF∗:

SF∗ =



SF (1,1)∗ SF (1,2)∗ · · · SF (1,j)∗ · · · SF (1,15000)∗

SF (2,1)∗ SF (2,2)∗ · · · SF (2,j)∗ · · · SF (2,15000)∗

...
...

. . .
... · · ·

...

SF (r,1)∗ SF (r,2)∗ · · · SF (r,j)∗ · · · SF (r,15000)∗

...
... · · ·

...
. . .

...

SF (500,1)∗ SF (500,2)∗ · · · SF (500,j)∗ · · · SF (500,15000)∗


. (4.11)

An empirical CDF was calculated for each of the 15,000 columns of SF∗. The resulting

ensemble of CDFs was used to construct a 95% p-box. The CDFs and the p-box are then

visualized according to the visualization techniques described in section 3.4 (Fig. 4.7). A

preliminary inspection of the p-box and underlying CDFs indicate that the safety factors

resulting from the UQ analysis were much greater than 1. In fact, the probability that

a safety factor less than 5 is obtained appears to be approximately 0. A more detailed

interpretation will be given in chapter 5.

Updating With New Observations

Here, we demonstrate how the UQ analysis can be updated if more measurements

for a model input become available. In practice, it is likely that as more time passes

additional data will be collected. If this data is added to the original data available for that

model input and MCMC simulations are repeated for this parameter, the remainder of the

Bayesian UQ method can be re-run using the samples from updated posterior distributions

(see step 8 in section 3.2). For the simply supported beam example, 9 new observations

of the beam strength, S, were simulated. The UQ analysis was then updated as has been

described. Visualizations of the updated results compared with the original results are

given in Fig. 4.10 and Fig. 4.11. More data results in less uncertainty about distributional

parameters, which leads to an overall decrease in uncertainty in the safety factor. This is
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seen by the decrease in spread of the ensemble of CDFs and a narrower p-box when these

9 additional strength observations were added.
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Fig. 4.10: Results from the original and updated Bayesian UQ analysis. The p-boxes
and hexagon binning plots in this figure show the impact that an additional 9 strength
observations had on the UQ analysis. The original results are shown on the left and the
updated results (after the additional 9 strength observations were incorporated) are shown
on the right.
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Fig. 4.11: Overlaid p-boxes from the original and updated Bayesian UQ analysis. The
narrow p-box from the updated analysis shows that less uncertainty exists as the amount
of available data increases.



CHAPTER 5

DISCUSSION

5.1 Comparison of Bayesian and Roy and Oberkampf Results

Comparison between the Bayesian UQ and Roy and Oberkampf (2011) results is rather

natural because the results have a similar structure and can be summarized and visualized

in similar ways. First, we inspect the resulting p-boxes, shown in Fig. 5.1. The most

striking difference between the two is that the p-box from the Roy and Oberkampf (2011)

method is much narrower than the p-box from the Bayesian UQ method. This indicates

that a lower amount of uncertainty is represented in the Roy and Oberkampf (2011) method.

In addition, the CDFs from the Roy and Oberkampf (2011) method are slightly steeper,

which also indicates less uncertainty. We also notice that the Roy and Oberkampf p-box is

centered around lower values of SF than the Bayesian UQ p-box.

We hypothesize that the increased variability in the Bayesian UQ method comes from

the prior distributions that are placed on the parameters of the distributions of the model

inputs. The Roy and Oberkampf (2011) method does not place distributions on the param-

eters of model input distributions. Instead, constants are used for model input distribution

parameters which implies that these values are known precisely. Although observed data

does inform the distributions that are used in the double-loop method used by Roy and

Oberkampf, the assumption cannot be made that we know all of these parameters precisely.

Thus, there is some uncertainty unaccounted for in the Roy and Oberkampf (2011) method.

The wider p-box generated through the Bayesian approach automatically takes into account

the uncertainty in the model input distributional parameters.

Due to the strength of the beams being much higher than anticipated, the resulting

interpretation and decisions from these two methods would likely be quite similar. Both

support the conclusion that the existing beam design is adequate for the intended use. In
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Fig. 5.1: Comparison of p-boxes from the Bayesian UQ and the Roy and Oberkampf meth-
ods. The most striking feature is the much narrower p-box resulting from the Roy and
Oberkampf method.

fact, the safety factors obtained from both methods are so high that we might consider the

proposed beam to be over designed. If it was made from expensive materials, engineers

might choose to redesign the beam so the strength of the beam is more appropriate for the

expected application.

In order to demonstrate an interpretation of these results, despite the safety factor being

much greater than 1, let us assume that the engineers designing this beam are interested in

the probability of the safety factor being less than 10. The graphics in Fig. 5.3 and Fig. 5.2

were generated to aid in this interpretation. For the Bayesian UQ approach, the vertical line

at SF = 10 intersects the p-box at a probability level of 0 and 0.014. These values define a

95% credible interval for the specified safety factor value. We might interpret this interval

by saying, “With 95% credibility, the probability that the safety factor is less than 10 is

between 0 and 0.014 (0 and 1.4%).” For the Roy and Oberkampf (2011) method, a vertical

slice of the p-box yields an interval of 0 and 0.002. This might be interpreted similarly
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by saying, “With 95% credibility, the probability that the safety factor is less than 10 is

between 0 and 0.002 (0 and 0.2%).” Given these intervals and interpretations, we again

see by the wider interval that the Bayesian UQ method predicts more uncertainty than

the Roy and Oberkampf (2011) method. We believe that the Bayesian UQ method more

accurately represents the true amount of uncertainty present by not assuming model input

distributional parameters to be known precisely and by naturally incorporating aleatory

and epistemic uncertainties in the algorithm.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
SF

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

1e+05

2e+05

3e+05

count

Simply Supported Beam − SF
(Roy & Oberkampf)

0.0000

0.0025

0.0050

0 2500 5000 7500 10000 12500
count

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

Accompanying Histogram
(Roy & Oberkampf)

Fig. 5.2: P -box and accompanying histogram from the Roy and Oberkampf method on the
simply supported beam example. The histogram shows the distribution of probabilities at
a safety factor of 10. The horizontal red dashed lines are drawn at the same probability
values on both plots. Note that the y-axis scales for cumulative probability differ between
the two plots.

5.2 Future Work

While the results from the proposed Bayesian UQ method are promising, there are still

extensions that will need to be added to improve the utility and versatility. Some of the

future developments are discussed in the following sections.

5.2.1 Interpretation
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Fig. 5.3: P -box and accompanying histogram from the Bayesian UQ approach on the simply
supported beam example. The histogram shown the distribution of probabilities at a safety
factor of 10. The horizontal red dashed lines are drawn at the same probability values on
both plots. Note that the y-axis scales for cumulative probability differ between the two
plots.

More research is needed to refine the interpretation process of the Bayesian UQ ap-

proach. If this method is to be successfully used in industry, the final results and interpre-

tation of the method must be clear and unambiguous, even to those who are not familiar

with statistical methods, Bayesian theory, or UQ techniques. Decision-makers must be able

to use the results from the UQ analysis to reach an agreement on future actions. It is not

immediately clear how to use a credible interval obtained by slicing the p-box vertically

to make decisions. Thus, future work will involve summarizing the results of Bayesian UQ

differently, condensing the results in a way that more easily informs decisions. This may

also involve a localized secondary analysis with higher resolution in a particular area of

interest. For example, if a safety factor of 10 was an important threshold, a secondary

analysis might be performed that would give a more detailed depiction of the uncertainty

in a small region around SF = 10.

5.2.2 Model Averaging

As described in section 3.2 in step 2, the analyst must assign a distribution, Di to

each model input, θi for i = 1, ..., k. Cases may arise where multiple distributions may
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fit existing data equally well and it may not be clear which distribution is best suited to

characterize a particular model input. The choice of distribution family Di, corresponding

to model input θi, introduces additional epistemic uncertainty because the analyst likely

lacks knowledge of the true distribution family. Thus, instead of using a single Di, it may

be useful to use some criteria, such as the Akaike Information Criteria (AIC) to determine

which probability distribution best fits the data. Burnham and Anderson (2002) describe

the use of AIC to calculate AIC Differences and eventually Akaike Weights for candidate

distributions. These weights can be thought of as “evidence in favor of [a model] being the

actual ... best model for the situation at hand given that one of the [candidate] models

must be the ... best model of that set of models” (Burnham and Anderson, 2002). If the

Akaike Weights indicate that one distribution is a clearly the best choice, then that single

distribution may be used to describe the data. However, if no single candidate distribution

seems adequate alone, then a model average weighted by the Akaike Weights may be used.

We believe that these concepts may be useful when integrated into the proposed Bayesian

UQ algorithm, particularly in the selection of Di for a given θi.

5.2.3 Expert Opinion Elicitation

This topic was discussed in section 2.3, and it was shown that many approaches exist

for eliciting or extracting expert opinion and representing it in a mathematical way (e.g.

a probability distribution). Thus, the future work that is required in this area is not

necessarily to produce new techniques for eliciting expert opinion, but rather to continue

researching existing methods to determine the strengths and weaknesses of the various

methods. Some methods may be more appropriate for certain circumstances, and it will

be useful to understand the advantages and disadvantages of using a particular method.

Eliciting expert opinion in a systematic way is an important component of the Bayesian

UQ method as it will assist analysts in constructing informative prior distributions that

leverage the valuable existing knowledge as much as possible. If done correctly, this will

lead to a more informative UQ analysis, resulting in more informed decisions.
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5.2.4 Theory

As noted in section 5.1, the Bayesian UQ method estimates more uncertainty than the

Roy and Oberkampf (2011) method on the simply supported beam application. This was

indicated by the much wider p-box resulting from the Bayesian UQ. However, as shown in

Fig. 4.11, after adding 9 additional strength measurements, the uncertainty was decreased

resulting in a narrower p-box. This suggests that the more data we incorporate in the

analysis, the narrower our posterior distributions become. This in turn results in more

specific distributional parameter estimates. It may be that if infinite data were available,

the posterior distributions of the distributional parameters would converge to a single value.

As more data leads to a narrower p-box, it would be interesting to perform the theoretical

work to determine if having access to infinite data would lead the Bayesian UQ results

converge to the Roy and Oberkampf (2011) results.

The 9 strength measurements collected from the simply supported beam example (sec-

tion 4.2) were obtained from 9 segments originating from 9 different boards. However,

measurements were actually obtained on 36 segments, as the 9 boards were originally 8

ft (243.84 cm) long and were cut into 4 pieces, each piece 2 ft (60.96 cm) long. Because

every 4 specimens were cut from the same board, the 36 measurements are not independent.

Dependent measurements are likely to be encountered in practice when measurements are

taken on material from the same lot or batch. It remains to be determined whether the as-

sumption of independence is necessary for the proposed Bayesian UQ method. If it is found

that the assumption of independence is needed for the proposed Bayesian approach, adjust-

ing the Bayesian UQ method to account for lot or batch dependence will be an important

extension to add in future research.
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