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ABSTRACT 

Temporal Bisection Dynamics 

by 

Mahdi Shafiei, Master of Science 

Utah State University, 2020 

 

Major Professor: Dr. Kerry Jordan 

Department: Psychology 

 

Temporal bisection is a long-used procedure to study the perception of time through 

a psychometric function; however, it is not fully clear how the parameters of this procedure 

collectively affect time perception.  Moreover, it is not clear why experimental results are 

often different in human and animal temporal bisection literature. In this thesis, I propose 

a computational model that uses only the scalar property of timing and Bayesian learning 

to provide researchers with a platform that helps them understand the temporal bisection 

procedure in a dynamic “learning-decision” framework.  

I specifically identify two problems in the way that the temporal bisection 

procedure is usually modeled and understood in the literature. First, a normal distribution 

is usually assumed for the perception of durations, while experimentally it is shown that 

the distribution of temporal perception is positively skewed.  I demonstrate A) this 

assumption of normality for temporal perception evidently biases our understanding of 

time perception mechanisms, and B) how a positively skewed distribution could marry the 

computational and experimental literatures. Secondly, the importance of the learning 

process in a single trial of the testing phase is usually undermined in literature on the 
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temporal bisection procedure. In this thesis, I demonstrate how such a single-trial test phase 

learning process could affect our interpretation of temporal bisection results.  

In sum, I demonstrate how computational modeling could affect our understanding 

of experimental results for the temporal bisection procedure. Thus, to further our 

understanding of cognitive and brain mechanisms, we should work to iteratively improve 

computational modeling to coevolve with experimental work.   

(60 pages) 
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PUBLIC ABSTRACT 

Temporal Bisection Dynamics 

Mahdi Shafiei 

 

Temporal bisection is a behavioral task used to study how we perceive time. 

However, it is not fully clear how time perception should be interpreted in different 

variations of this task. Moreover, it is not understood why the results of this task are often 

different for human and animal subjects. Understanding parameters of this task and making 

a connection between human and animal experiments may help researchers to understand 

how time is perceived in the brain and consequently disorders involving time perception.  

In this thesis, I propose a computational model that A) provides researchers with a 

framework to study the parameters of the temporal bisection task to design better 

experiments and B) gives researchers an insight into potential underlying reasons for 

differences between human and animal time perception in this task. This model mimics 

subjects’ learning and decision processes in making responses about the length of 

durations. By manipulating these processes, researchers should be able to verify how time 

perception is changed in different variations of the task. Additionally, this model helps 

researchers identify differences in learning and decision processes of human and animal 

subjects in temporal bisection, which could help explain more general differences in their 

time perception.      
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CHAPTER I 

INTRODUCTION 

Temporal bisection is a long-used procedure to study the perception of time through 

a psychometric function (Cowles & Finan, 1941). In the standard format of this procedure, 

subjects learn to discriminate two durations, called anchor durations, as “Short” or “Long” 

and then are tested with novel durations between (often called intermediate) or even beyond 

(often called out-of-range) the anchor durations. Two sets of parameters could be defined 

in this task: intrinsic and extrinsic. Intrinsic parameters are those not specific to the 

experimental population or setting, while extrinsic parameters can be defined only by 

considering the experimental population or setting. Range of anchor durations, spacing of 

test durations, and reinforcement policy are examples of intrinsic parameters, while 

different treatments, stimulus modality, subject populations, priming, or experimental 

settings are considered examples of extrinsic parameters. 

One of the most common measures in this procedure is the “Temporal Indifference 

Point,” (TIP) which is defined as an intermediate duration to which subjects are indifferent 

or classify as “Short” or “Long” with an equal probability. The location of TIP is a direct 

representation of subjective perception of time in subjects and is affected by both intrinsic 

and extrinsic parameters. For example, logarithmic as compared to linear spacing of test 

durations (intrinsic parameter) shifts the location of the TIP to the left (Wearden & Ferrara, 

1995), and the TIP in Parkinson's disease (PD) patients as compared to control population 

(extrinsic parameter) shifts to the right (Mioni et al., 2018).   

In recent decades, the relationship between the individual intrinsic parameters of 

this procedure and the location of the TIP has been widely investigated experimentally 
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(Reynolds & Catania, 1962; Stubbs, 1968, 1972; Church & Deluty, 1976; Platt & Davis, 

1983; Raslear, 1975, 1983, 1985; Siegel, 1986; Wearden, 1991; Allan & Gibbon, 1991; 

Wearden & Ferrara, 1995, 1996; Wearden et al., 1997; Brown et al., 2005; Droit-Volet & 

Wearden, 2001; Droit-Volet et al., 2007; Akdogan & balci, 2016). However, it is unclear 

how these intrinsic parameters collectively affect the location of the TIP. This lack of 

knowledge has a root in the infeasibility of full factorial design with many factors. 

Moreover, there is a gap between the human and animal temporal bisection literature and 

theoretical explanations about the location of the TIP. The location of the TIP in human 

participants is consistently shown to be closer to the Arithmetic Mean (AM; see Equation 

1) of anchor durations, while in animal subjects it is closer to the Geometric Mean (GM; 

see Equation 2) of anchor durations (Kopec & Brody, 2010); however, the reason for this 

discrepancy is not fully understood. On the other hand, Staddon and Higa (1999) argue that 

the scalar property of timing predicts the Harmonic Mean (HM; see Equation 3) of anchor 

durations as the location of the TIP regardless of subject species. In addition to the 

aforementioned problems, the effects of intrinsic parameters are not often consistent 

between individuals. For example, although there is a general consistency with regard to 

the influence of spacing of test durations on the location of TIP, there is considerable 

variability among subjects in the location of TIP, both within and between experiments 

(Allan, 2002). 

 𝐴𝑀(𝑥, 𝑦) =  
𝑥 + 𝑦

2
 (1) 

 

 𝐺𝑀(𝑥, 𝑦) =  √𝑥 ∗ 𝑦 
(2) 
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𝐻𝑀(𝑥, 𝑦) =  

2 ∗ (𝑥 ∗ 𝑦)

𝑥 + 𝑦
 

(3) 

 

Moreover, currently most of computational models for temporal bisection 

procedure assume a normal distribution for temporal perception of a duration (Gibbon, 

1977); while, it has been experimentally shown that the distribution for temporal perception 

is positively skewed (Buhusi & Meck, 2005). In Methods section, the problems with 

assuming a normal distribution for temporal bisection will be discussed in more details. 

Importance 

Studies that are investigating the effect of extrinsic parameters in the temporal 

bisection procedure usually have a direct application to and impact on our understanding 

of time perception in different experimental conditions and populations. For example, the 

fact that the location of the TIP in PD patients shifts to the right as compared to the control 

population indicates that PD patients perceive durations shorter as compared to the normal 

population. In other words, since normal population’s TIP is shorter than PD patients’ TIP, 

PD patients are more likely to perceive the duration to which normal population are 

indifferent as short anchor duration than long anchor duration. On the other hand, studies 

that are investigating intrinsic parameters in this task usually do not provide any direct 

application or information for our understanding of temporal disorders. For example, the 

fact that we know if the long anchor duration is no more than four times the short anchor 

duration then the TIP will fall at the GM of the anchor durations (Platt & Davis, 1983), 

does not seem to be directly applicational. However, validity of statements involving 

extrinsic parameters depends on a solid understanding of intrinsic parameters’ effects on 

the location of the TIP. Researchers need to study intrinsic parameters to design stronger 
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experiments that have appropriate controls for intrinsic parameters before making any 

statement about extrinsic parameters. For example, two studies that are identical in every 

aspect but spacing of test durations could yield totally different results about temporal 

perception of a specific population. Thus, any conclusion about time perception in 

extrinsically different experimental conditions in the temporal bisection procedure first 

requires a solid understanding of the intrinsic parameters’ effect on the location of the TIP.  

Additionally, the temporal bisection literature needs a theory that bridges the 

animal and human data and consequently gives researchers better insight about the 

mechanisms of time perception. 

Aims 

The primary aim of this study is to understand and model a 2-alternative forced 

choice temporal bisection procedure, regardless of any extrinsic parameters, in both animal 

and human subjects. In order to achieve this aim, first I review the related literature to 

organize the experimental knowledge and spot inconsistencies in the existing explanations. 

Then, I explain the dynamics of this procedure by using a model that employs only the 

scalar property of timing and Bayesian learning. Contrary to the previous literature, this 

model uses two new approaches to explain the temporal bisection procedure: A) Temporal 

perception has a positively skewed distribution instead of a normal distribution, and B) A 

learning process is implemented at the level of a single trial to account for continuous 

updating of anchor duration perception throughout the procedure. 
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CHAPTER II 

LITERATURE REVIEW 

Initially, a very simple form of the temporal bisection task was used by Cowles and 

Finan (1941) with animal subjects, and then researchers tried to modify it to better 

understand the underlying mechanisms of time perception (Stubbs, 1968). Since the TIP 

directly represents subjective temporal perception, identifying its location in relation to the 

different intrinsic parameters of the task has become the most important challenge in the 

temporal bisection literature. Researchers have been studying the effect of different 

parameters of this task to address this concern for more than half a century. But due to the 

complexity of full factorial design, each of the studies investigated a subset of these 

parameters in a single experiment, which leaves open the question of their interactive 

effect. Consequently, explanations that holistically capture the dynamics of this procedure 

have not been developed.  

In the following subsections, related temporal bisection studies are grouped by 

individual parameters to ease understanding of the current literature and generalization of 

the studies. Although the location of the TIP in animal and human literature is different, 

the effect of intrinsic parameters on the TIP is generally the same in both literatures. 

Finally, several leading theories and models of timing are reviewed and discussed in order 

to draw a better picture where the proposed model fits in the literature. 

Range and Ratio of Anchor Durations 

Platt and Davis (1983) showed that the range and ratio of anchor durations affect 

the location of the TIP and proposed conditions by which the TIP would be located at the 

GM of anchor durations for animal subjects. They experimented with a wide range of 
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anchor durations from 10 to 200 seconds and proposed that if the “Long” anchor duration 

is no more than four times the “Short” anchor duration, then the TIP will fall at the GM of 

the anchor durations. Allan (2002) has also shown that the range and ratio of anchor 

durations, together with the other intrinsic parameters, could bias researchers’ 

interpretation of the TIP; however, he found that the effect of these intrinsic parameters is 

not often consistent among individuals both within and across experiments. One of the 

most surprising phenomena in the temporal bisection task was documented by Siegel 

(1986): psychometric reversal on out-of-range durations. Siegel showed that the use of test 

durations that are out of the range of anchor durations not only could shift the location of 

the TIP, but also could cause a reversed pattern of response in rats for the out-of-range 

durations. In other words, contrary to the expectation, durations shorter than “Short” anchor 

duration and those longer than “Long” anchor duration were judged “Short” and “Long”, 

respectively, less often than anchor durations by animals. Although this psychometric 

reversal effect was later replicated by other researchers as well (Killeen & Fetterman, 1998; 

Castro et al., 2013), Siegel experimented with just two specific out-of-range durations, 

which leaves a lot of unanswered questions about the effect of the test durations range on 

the TIP location. For example, it is not clear why in the chosen durations, long out-of-range 

durations have more deviation from the anchor duration response than the short out-of-

range durations; or why out-of-range durations shift TIP to the left. 

Moreover, substantial differences in the range of durations could even engage a 

totally different neural system in the brain to process temporal information. For example, 

sub-second, interval or second-to-minute, and circadian timings are processed with 

different parts of the brain (Buhusi & Meck, 2005; Buhusi & Cordes, 2011). However, this 
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distinction is not very significant around the one-second range (Buhusi & Cordes, 2011); 

the human literature is fairly centered around the sub-second range due to the fact that this 

range is not confounded with counting. In contrast, since counting is not an issue in animal 

subjects, the animal literature is fairly centered around interval timing range. Thus, this 

range difference should be considered when comparing different studies.   

In conclusion, the range and ratio of the anchor durations are factors of enough 

importance that any comparison in the literature without controlling for them could lack 

validity.  

Spacing and Number of Test Durations 

Raslear (1983) demonstrated that different distributions of intermediate durations 

could shift the TIP either to the left or right. Specifically, logarithmic spacing of 

intermediate durations shifts the TIP leftward in comparison to linear spacing, both in 

animal and human subjects (Raslear, 1985; Wearden & Ferrara, 1995). In general, the 

skewness in the distribution of test durations shifts the TIP in the opposite direction of said 

skewness (Brown et al., 2005). In other words, if the test durations are mostly chosen from 

durations that are closer to the short duration, then the TIP will be shifted towards the short 

duration; if the test durations are mostly chosen from durations that are closer to the long 

duration, then the TIP will be shifted towards the long duration. This also indicates that 

even the test durations that are chosen linearly, but presented with a non-uniform 

frequency, should shift the TIP towards the duration of higher presentation frequency. 

Although the effect of the spacing of test durations is shown frequently in the animal and 

human literature (Raslear, 1983, 1985; Wearden & Ferrara, 1995; Allan, 2002; Brown et 

al., 2005), there is no explanation for this phenomenon that also explains the effect of other 



8 
 

 
 

parameters at the same time.  

Moreover, the number of test durations in a temporal bisection task is closely 

related to the way that test durations are distributed. Although the type of test duration 

spacing affects the location of the TIP, Siegel (1986) showed that the number of test 

durations does not affect the location of the TIP if the test durations in different conditions 

are chosen from the same distribution or spaced in the same manner. However, Siegel 

(1986) just tested 3, 5, and 7 test durations which leaves the effect of extreme cases like 1 

or more than 10 test durations still unclear.   

In conclusion, researchers should be considerate of the distribution and spacing of 

the test durations when comparing the TIP location in different studies, since information 

about the location of the TIP without these considerations can be misleading and 

incomplete. 

Type of Response Reinforcement 

In a comprehensive study of temporal properties of behavior (Catania, 1970), it is 

cogently argued that the way in which subjects respond in a behavioral task not only 

depends on the rate and temporal distribution of reinforcements, but also is heavily affected 

by the time between responses and subsequent reinforcements.  

Specific to the temporal bisection task, Raslear (1985) demonstrated that different 

probabilities of reinforcement for correct responses to the anchor durations changes the 

location of the TIP. In this study, however, similarly to most of the other temporal bisection 

tasks, the correct responses for the test durations are left without any positive 

reinforcement. Although this method of reinforcing is often used by researchers, it should 

be considered that not being reinforced for the test durations will affect the way that 



9 
 

 
 

subjects update their perception of the anchor durations. In other words, in an environment 

in which some actions are rewarding (here, correct responses to the anchor durations), the 

actions without any consequences (here, correct responses to the test durations) can be 

considered as negative feedback.  For example, assuming 2 and 8 seconds as the anchor 

durations, a “Short” response made by the subject to a 3 second duration which is not 

rewarded can cause the subject to update the perception of the short anchor duration to a 

shorter duration in order to compensate for the error. In the Methods section, for the sake 

of simplicity, any type of reinforcement that leads subjects to perceive that their response 

was or was not correct is referred to as positive or negative feedback respectively. 

Reinforcement is an important concern in temporal bisection tasks, since awarding 

the intermediate durations will also result in other complications in the process by which 

the subjects update their memory of anchor durations.  On the other hand, not rewarding at 

all will cause the extinction of learned temporal contingency. 

However, one of the main differences in animal and human literature is the way 

that subjects are reinforced. In general, human participants receive a fixed amount of 

money or credit in order to complete the experiment, while animal subjects are usually 

deprived to 80% of their weight in order to have motivation for completing the task and 

receive food rewards (Poling et al., 1990). Any mistake in the task for animal subjects may 

mean a subjectively larger loss as compared to human participants. Thus, any differential 

motivation to learn from errors across species may lead to different learning rates in 

temporal bisection procedure, which will be discussed in the Methods section in more 

detail. 

Thus, in conclusion, researchers should be considerate of the reinforcement policy 
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when designing an experiment, since it has a substantial impact on the way that subjects 

update their temporal perception. Furthermore, any theory or model that explains any 

mechanism in the temporal bisection task must consider each individual trial and the way 

that it affects the decision made in the next trials; therefore, theories that are not framed 

considering learning at the level of a single trial level lack validity 

Leading Theories of Timing  

Scalar Expectancy Theory (SET; Gibbon, 1977) and theory of Learning to Time 

(LeT; Machado, 1977) are two of primary and dominating theories in timing literature. 

SET that utilizes the Information Processing model of timing (Triesman, 1963), in learning 

phase of timing tasks, develops a normal distribution centered on to-be-learned duration 

and uses that fixed distribution in the test phase of the timing tasks. However, instead of 

continuous learning, SET introduces dynamicity to the model by adding noise in several 

ways such as implementing noisy Pacemaker and noisy Reference Memory access. On the 

other hand, LeT which is a more detailed version of Behavioral Theory of timing (BeT; 

Killeen & Fetterman, 1988), uses more behaviorally feasible process than SET in order to 

describe timing mechanism. In learning phase, LeT utilizes associative learning to link 

Behavioral States and Instrumental Responses and uses this association in the test phase to 

make appropriate responses. In essence, LeT and several other models of timing such as 

Multiple Time Scale (MTS; Staddon & Higga, 1999), Miall’s model (Miall, 1989), Striatal 

Beat Frequency (SBF; Matell & Meck, 2004), SBF-Morris-Lecar (Oprisan & Buhusi, 

2011), and Spectral Timing model (Grossberg & Schmajuk, 1989) utilize the concept of 

coincidence detection (Jeffress, 1948) with a single- or multi-layered neural network that 

tries to learn the transformation function of specific features to appropriate timing 
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responses. However, in the originally described version of all these models learning stops 

in the test phase of timing tasks or is not described in the test trials. Most of these models 

utilize random noise in the model in various ways to make it more dynamic. 

In conclusion, the significance of dynamic temporal learning in the test phase and 

in particular test trials of timing tasks are undermined in the literature. Moreover, most of 

the timing models adjusts for the dynamic learning with introducing random noise.  

Summary 

In sum, the GM and AM of anchor durations are widely accepted and 

experimentally supported locations for the TIP in animal and human literatures, 

respectively, controlling for the range and ratio of the anchor durations and spacing of the 

test durations (Reynolds & Catania, 1962; Stubbs, 1976, 1968; Church & Deluty, 1977). 

Moreover, the range and ratio of the anchor durations, spacing of the test durations, and 

policy of reinforcement for the correct or incorrect responses play a key role in determining 

the location of the TIP and subjective perception of the time. 

Finally, although models in the timing literature have a learning element or process, 

most of them lack a learning process in the test phase of the timing tasks.    
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CHAPTER III 

METHODS 

In the following subsections, I first discuss the problems with assuming a normal 

distribution for temporal perception. Then, using the scalar property of timing, I obtain a 

positively skewed distribution for temporal perception, which agrees with experimental 

results better than a normal distribution. Second, using this distribution, I propose a model 

that uses only Bayesian learning to explain the discrepancy between the human and animal 

temporal bisection literature. In the proposed model, all the effects of intrinsic parameters 

on TIP location agree with experimental results. The structure of the proposed model can 

be understood through two stages: learning and decision. Explanation of the model includes 

the architecture of each stage and the dynamics by which these pieces work together. 

Normal Distribution for Temporal Perception 

One of the major assumptions, or at least modeling tool, in the time perception 

literature is the normality of temporal perception (Gibbon, 1977). In other words, when a 

subject learns a duration, a normal probability distribution centered on that duration is 

assumed for how probable it is that the subject perceives other durations as the learned 

duration. Width of this distribution depends on the subjective error of temporal perception, 

which can be estimated experimentally. For example, Figure 1 shows three normal 

distributions with different standard deviations for temporal perception of one second 

duration. Temporal perception distributions are max-normalized in order to have maximum 

probability for the perception of learned duration, and width is scaled by the magnitude of 

learned duration. Equation 4 shows the max-normalized normal distribution for duration 

with magnitude of μ and error of σ. 
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𝑁(𝑥, 𝜇, 𝜎) =  𝑒

−(𝑥−𝜇)2

2 𝜎2  (4) 

 
 
 

 

Figure 1. Three normal distributions for temporal perception of a one second 

duration with different perceptual errors.  

Y-axis shows the probability that a subject perceives a specific duration as a one 

second duration. 

 

A normal distribution for temporal perception might seem the most parsimonious 

assumption, but it is one of the least feasible assumptions because of the following two 

reasons. First, since zero or negative durations are not defined perceptually, temporal 

perception should have a positive distribution, while normal distributions cover zero and 

negative durations as well. In other words, it assumes a non-zero probability for zero or 

negative durations to be perceived as a specific duration. Secondly, it has been shown 
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experimentally that temporal perception has a positively skewed distribution (Buhusi & 

Meck, 2005), while the normal distribution is a symmetric distribution. These 

infeasibilities of assuming a normal distribution for temporal perception may cause 

misunderstanding in the temporal bisection literature by affecting the location of the TIP. 

Moreover, considering the fact that the perceptual distributions’ cross-point is the 

duration that subjects perceive as the short anchor duration as equally as the long anchor 

duration, Staddon and Higa (1999) argue that assuming a normal distribution for temporal 

bisection locates the TIP in the HM of the anchor durations (see Figure 2). Later in this 

thesis, I will demonstrate how any change in the shape of perceptual distributions will 

change the location of the TIP. 

 

 

Figure 2. Assuming normal distributions for the perception of anchor durations 

locates the TIP in the HM of the anchor durations.  

The cross-point of the perceptual distributions for anchor durations is the duration 
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that is perceived by subjects equally as the short and long anchor duration. The HM, 

GM and AM of the anchor durations are shown with vertical lines in different colors 

for the sake of comparison. 

 

Positively Skewed and Scalar Distribution for Temporal Perception 

In order to discuss the location of the TIP in the temporal bisection task, it is 

necessary to clarify the perceptual distributions for the short and long durations. This will 

help to find the initial location of the TIP before attempting to model the procedure. 

Although intensive experimental data are needed to obtain the precise distributions of 

perceptions, we can use well-established results from the available literature as heuristics 

to improve these distributions. Currently, normal distributions with scalar standard 

deviations are assumed for temporal perception of the anchor durations.   

I improved these distributions by using the scalar property of timing to obtain 

positively skewed distributions. For the purpose of simplicity, I discuss mainly the 

perceptual distribution for one second duration here; however, perceptual distribution for 

other durations is simply a scaled version of the perceptual distribution for one second 

duration.  

In order to find the perceptual distribution of one second duration, the probability 

by which a duration is judged as one second should be computed for all durations. This 

probability is computed as the probability by which one second is judged to be a specific 

duration. Thus, the cross point of one second duration and scaled normal distributions 

centered on different durations were used to find these probabilities (see Figure 3). Then, 

these cross-points or probabilities were used to build the perceptual distribution of one 
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second duration (see Figure 4, top panel).    

The width of these normal distributions are computed based on Scalar property of 

timing. With the assumption that ε is the standard deviation of the normal distribution 

centered on one second (referred to as absolute error hereafter), the scalar property of 

timing entails that the standard deviation of a distribution centered on t to be t * ε. 
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Figure 3. Cross-point of one second duration and 20 scaled normal distributions. 

These cross-points are the probabilities by which one second duration is perceived 

as the center of normal distributions. Horizontal axis shows time in seconds and 

vertical access shows the probability. 
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Figure 4. Positively skewed and scalar distributions for temporal perception of one 

second duration.  

Top panel is the concatenation of cross-points form Figure 3 in order to demonstrate 

the process of obtaining a positively skewed and scalar distribution for temporal 
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perception of one second duration. Bottom panel shows three positively skewed 

and scalar continuous distributions with different absolute errors. 

 

In general, in order to find the scalar perceptual distribution for T seconds duration 

(see Equation 6), values in Equation 5 should be plugged in the max-normalized normal 

distribution (see Equation 4). 

 𝜇 = 𝑡, 𝜎 = 𝜀 ∗ 𝑡, 𝑥 = 𝑇  (5) 

 

 
𝑃(𝑡, 𝑇, 𝜀) =  𝑒

−(𝑇−𝑡)2

2(𝜀𝑡)2  (6) 

 
 

Although this distribution might not exactly match the real distribution of temporal 

perception, I used it because of the following reasons: A) it is a more reasonable and 

feasible assumption than normal distribution in modeling temporal perception, B) it  

demonstrates how the shape of a distribution for temporal perception could affect 

conclusions of a model concerning the location of the TIP,  C) it explains the location of 

the TIP in both human and animal subjects if a learning process is added to the model.  

Considering the fact that temporal perception distribution is positively skewed, 

Figure 5 shows that if instead of normal distribution, the obtained perceptual distribution 

is used for anchor durations, the TIP shifts to the AM of the anchor durations. However, in 

general, any change in the shape of perceptual distributions could change the location of 

the TIP. 
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Figure 5. Assuming the obtained positively skewed distribution for the perception 

of anchor durations locates the TIP in the AM of the anchor durations. 

The cross-point of the perceptual distributions for the anchor durations is the 

duration that is perceived by the subject equally as the short and long anchor 

duration. The HM, GM and AM of the anchor durations are shown with vertical 

lines in different colors for the sake of comparison.  

 

Architecture of the Model 

If we assume that subjects develop perceptual distributions for anchor durations in 

the learning phase of the temporal bisection task and keep them until the end of the task, 

the location of the TIP should be just the cross-point of perceptual distributions. The 

position of this thesis is that this assumption is valid for human participants but not for 

animal subjects. In order to train animal subjects for temporal bisection, researchers often 
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gradually deprive them of food until they reach approximately 80% of their free-feeding 

weight (Poling et al., 1990; Stubbs, 1968). On the other hand, human participants are 

usually received a set amount of money or credit for completing the task. Thus, 

comparatively, animal subjects have a greater subjective loss in any mistake in the task as 

compared to human participants. In other words, any single mistake in the task is critical 

for animals and can cause them to update their temporal perceptions to compensate for the 

error. 

Having this argument in mind and using positively skewed perceptual distributions, 

I developed a model that learns from any single trial. This learning process is parametrized 

with learning rates such that no learning locates the TIP in the AM of the anchor durations, 

while a non-zero learning rate shifts the TIP to the left towards the GM of the anchor 

durations.  

This model departs from the previous computational modeling of time perception 

because of the following reasons: A) it has a single-trial level learning process in all stages 

of the task, and B) it uses a positively skewed distribution for temporal perception of anchor 

durations for which the benefits have already been discussed. 

Learning 

 Bayesian learning is one of the most common methods of learning that is widely 

used to explain behavior and actions (Clark, 2013). Using Bayesian learning, the proposed 

model continuously updates the perception of the learned anchor durations by any exposure 

to a duration which is to be judged. In a general sense, if the response made by the model 

has positive feedback, the model updates the perception of the related anchor duration to a 

perception closer to that of the presented duration; if the response made by the model has 
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negative feedback, the model updates the perception of the anchor durations to perceptions 

that in the future trials it is less likely that the model makes the same response for the same 

duration. For example, assuming 2 and 8 seconds as the anchor durations, a “short” 

response made by the model to a 3 second duration that has no positive feedback will cause 

the model to update the perception of the anchor durations to shorter durations in order to 

compensate for the error. In other words, it will be less probable to make the same choice 

for the presented duration in the future trials.  

The learning process in the model is implemented by weighted averaging of the 

prior perception and current estimation of anchor durations. Specifically, two learning rates 

are considered for the model: positive learning rate (referred to as α hereafter) and negative 

learning rate (referred to as β hereafter). α is used when the model makes a response that 

has positive feedback, and β is used when the model makes a response that has negative 

feedback. Two learning rates are implemented in order to have the possibility of modeling 

conditions in which absolute values of reward and loss are not the same. 

 In case of positive feedback, the test duration (𝑡) is considered as the current 

estimation of the anchor duration; and the updated perception is the weighted average of 

prior and current perception with the weight of 1-𝛼 and 𝛼 respectively. See Equation 7 for 

if the response made by the model is "Short" and 𝑡 is equal to the short anchor duration and 

Equation 8 for if the response made by the model is "Long" and 𝑡 is equal to the long 

anchor duration.  

 �̂� = (1 − 𝛼) ∗ �̂� +  𝛼 ∗ 𝑡  (7) 

 

 𝑙 = (1 − 𝛼) ∗ 𝑙 +  𝛼 ∗ 𝑡 (8) 
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Where 𝑡 denotes the presented duration and �̂�, 𝑙 denote perception of short and long anchor 

durations. 

The same logic applies to negative feedback, but the 1-𝛽  and 𝛽  are used for 

weighted averaging and the current estimation of the anchor durations is computed based 

on the certainty of the made response. The certainty of the response is computed as the 

ratio of the test duration’s distance to the anchor duration over half the distance between 

the anchor durations (see Equation 9). This ratio is zero when the duration is exactly in the 

middle of the anchor durations, meaning that the made response is an outcome of a 50-50 

probability; and it increases proportionally towards one as the test duration becomes closer 

to the related anchor duration.  

 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
(𝑡 − �̂�)

0.5 ∗  ( 𝑙 − �̂�)
 (9) 

 

See Equation 10 for update rules if the response made by the model is "Short" and 

𝑡 is not equal to the short anchor duration and see Equation 11 for update rules if the made 

response by the model is “Long” and 𝑡 is not equal to the long anchor duration. 

 

 
�̂� = (1 − 𝛽) ∗  �̂� +  𝛽 ∗ (�̂� − �̂� ∗ 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦),   

 

𝑙 = (1 − 𝛽) ∗  𝑙 +  𝛽 ∗ (𝑙 − 𝑙 ∗ 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) 

(10) 

 

 
�̂� = (1 − 𝛽) ∗  �̂� +  𝛽 ∗ (�̂� + �̂� ∗ 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦), 

 

𝑙 = (1 − 𝛽) ∗ 𝑙 +  𝛽 ∗ (𝑙 + 𝑙 ∗ 𝐶𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦) 

(11) 

 

However, the model has such structural flexibility that any other policy for updating 

the perception could be implemented and used.  For example, different methods can be 
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used to compute the certainty of the made response and current estimation of the anchor 

durations.  

Additionally, there is a decay rate parameterized as λ for the learning rates that can 

be set to anything between zero to one. In each trial, the current learning rates are multiplied 

by 1 – λ (see Equation 12). If the decay rate is set to zero, the learning rates would stay the 

same for all the trials, but if it is set to a number more than zero, the model learns relatively 

more from the first trials than the last trials.  

 𝛼 =  𝛼 ∗ (1 −  λ), 𝛽 =  𝛽 ∗ (1 − λ) (12) 

 
 This continuously updated perception for the anchor durations will be used in the 

decision stage. In other words, crucially, in each point in time the model has a new 

perception of the anchor durations, and any presented duration will be compared to these 

current perceptions rather than the fixed and initial perceptions. The proposed model 

implemented on a single trial basis is capable of employing any type of update rules 

considering different types of reinforcements or different given instructions and trainings.  

In this model, the initial prior perceptions of anchor durations are assumed to be 

centered on the anchor durations. In other words, model assumes that the subjects perfectly 

have learned the anchor durations by the end of learning phase of the task.  Although the 

prior perceptions of the anchor durations are initialized by the values of anchor durations, 

this model could be independently extended to the learning phase of temporal bisection as 

well. In order to describe the dynamic of learning phase, the prior perceptions of the anchor 

durations should be initialized to reasonably random values and get tuned gradually over 

the training trials.      
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Decision 

Using the continuously updated perception of the anchor durations, the model 

makes a probabilistic response to the presented durations to be judged. In other words, if 

the presented duration is more probable to be perceived as the short than the long anchor 

duration, then it is more probable that the model makes a “Short” response than a “Long” 

response. However, the structural flexibility of the model allows researchers to implement 

different decision rules to investigate other possibilities. 

The response of the model for any test duration shorter than the short anchor 

duration or longer than the long anchor duration is “Short” and “Long”, respectively. 

However, experimentally this is not the case, and the subjects have a reversed response for 

such out-of-range durations (Siegel, 1986). In other words, subjects have a threshold after 

which they begin to change their decision about the length of out-of-range durations. Since 

the decision process in the out-of-range durations is not experimentally explored and 

studied, it is not implemented in this model and only the regular conditions are used to 

verify the results of the model. Future studies could improve the model for the out-of-range 

durations based on understanding of the decision process for these durations. 

Dynamics of the Model 

After the initial learning phase of the temporal bisection procedure, the model 

develops two perceptual distributions centered on the anchor durations with scalar errors 

(see Figure 5). In the testing phase of the procedure, on any individual trial, prior 

perceptions of the anchor durations are used to make a response as explained in the decision 

stage of the model. After the response has been made, based on the received feedback, the 

model updates the distributions’ center for the perception of the anchor durations as 
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explained in the learning stage. In summary, the model always keeps updated perceptions 

of anchor durations that help to bisect the presented durations in any trial and updates them 

based on the received feedback (see Figure 6).     

After all the trials are presented and responses are recorded, a psychometric 

function of responses can be generated. Although the sequence of trials affects responses 

made by the model, it does not statistically affect the psychometric function or the location 

of the TIP. 

 

 

Figure 6. Diagram of a Bayesian model. 

Prior knowledge of the world is constantly updated based on received feedback 

from the world, and a response is made based on the current knowledge of the world 

and presented duration. 
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CHAPTER IV 

RESULTS 

Using the data from Siegel (1986), the model is run through different conditions 

and the results are reported in the following subsections. Similar to most temporal bisection 

experiments, only the correct responses to the anchor durations are positively reinforced (a 

positive feedback is given to the model). However, as already has been discussed, 

responses made for test durations between the anchor durations are considered to have 

perceived any lack of positive feedback as negative feedback, since it is crucial for animal 

subjects not to miss a food reward. Moreover, learning rates are set to values from the 

results of the model in the first experimental condition and are kept the same for the rest of 

the conditions. 

Learning vs No Learning 

To the best of my knowledge, the computational models set forth in the literature 

on temporal bisection ignore the learning dynamics on a single trial basis, specifically in 

testing phase. Here, the model is run with and without the learning process to demonstrate 

how continuous learning affects the location of the TIP. As demonstrated in Figure 7, when 

there is no learning process, the perception of the anchor durations remains the same 

through all the trials; however, it is constantly updated when a learning process is applied. 

In the absence of any learning process, the TIP falls in the AM of anchor durations, while 

a learning process with specific learning rates shifts the TIP from the AM to the GM of 

anchor durations (see Figure 8). As reported in Table 1, Task parameters are chosen from 

Siegel (1986), and free parameters are chosen in a way that the results of the model match 

with the first experimental condition and are kept the same for the rest of the conditions.  
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Table 1 

Parameters that are used in “Learning” vs “No Learning” conditions 

Task Parameters:  

Short Duration 2 secs 

Long Duration 8 secs 

Test Durations [2   2.4  2.8   3.3   4   4.8   5.7   6.8   8] 

Number of Trials for Test Durations [70   20   20   20   20   20   20   20   70] 

Runs 100 

Free Parameters:  

Absolute Perception Error (ε) 0.2 secs 

Positive Learning Rate (α) 0.1 (zero for “No Learning” condition) 

Negative Learning Rate (β) 0.25 (zero for “No Learning” condition) 

Learning Decay Rate (λ) 0.02 (zero for “No Learning” condition) 
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Figure 7. Center of the perceptual distributions for anchor durations over trials.  

In the top panel the learning rates of the model are set to zero and consequently the 

center of perceptual distributions are remained the same over the trails. In bottom 

panel, the learning rates of the model are set to non-zero values and consequently 

the center of perceptual distributions varies over the trials. Different lines in the 

bottom panel represent different runs of the model. 
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Figure 8. Psychometric function of responses with learning (top panel) and without 

learning (bottom panel). 

 

Why Geometric Mean? 

The fact that the learning rates are free parameters in the model explains the 

variance of the TIP among different individuals. In other words, individuals with a greater 

learning rate have a lower TIP as compared to subjects with a lesser learning rate; Figure 

9 and Figure 10 show the relationship between positive and negative learning rates and 
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location of the TIP (all the parameters other than learning rates are kept the same as in 

Table 1).  

 

 

Figure 9. The relationship between positive and negative learning rates and the 

location of the TIP in a 3D plot. 
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Figure 10. The relationship between positive and negative learning rates and the 

location of the TIP in a 2D plot. 

 

However, if the positive and negative learning rates are kept roughly the same (see 

diagonal line in Figure 10), the TIP always falls on the GM of anchor durations. The reason 

for this is that the GM of anchor durations is the median of logarithmic test durations. 

Equation 13 shows 𝑛 points spaced logarithmically between tow arbitrary numbers 𝑥 and 

𝑦: 

 

𝑒log 𝑥, 𝑒log 𝑎+1𝛽 , 𝑒log 𝑎+2𝛽 , … , 𝑒log 𝑎+𝑖𝛽 , … , 𝑒log 𝑦  
 

𝑤ℎ𝑒𝑟𝑒 𝛽 =
(log 𝑦 − log 𝑥) 

𝑛
 

(13) 
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Equation 14 shows that the median of these 𝑛 points is equal to the geometric mean 
of 𝑥 and 𝑦: 
 

 

𝑀𝑒𝑑𝑖𝑎𝑛(𝑥, 𝑦) =  𝑒log 𝑥+
𝑛
2

𝛽 =  𝑒log 𝑥 ∗  𝑒
𝑛
2

 ∗ 
(log 𝑦−log 𝑥) 

𝑛
  

 

= 𝑥 ∗  𝑒  
(log 𝑦−log 𝑥) 

2
 = 𝑥 ∗  √ 𝑒  (log 𝑦−log 𝑥)   

= 𝑥 ∗ √
𝑒log 𝑦

𝑒log 𝑥
= 𝑥 ∗  √

𝑦

𝑥
 

 

= √𝑥 ∗ 𝑦 = 𝐺𝑀(𝑥, 𝑦) 

(14) 

 
 

Through the learning process, testing with any duration closer to the short anchor 

duration shifts the perception of anchor durations to the left, and testing with any duration 

closer to the long anchor duration shifts the perception of anchor durations to the right. The 

mid-point of anchor durations is the point by which left- and right-moving updates of 

anchor durations’ perception are equal. Thus, perceptions of anchor durations shift until 

the TIP is located at the GM of anchor durations. 

Logarithmic vs Linear Spacing 

As it is widely shown in the literature, logarithmic spacing of test durations shifts 

the TIP to the left or, in other words, linear spacing of test durations moves the TIP to the 

right. Here, both linear and logarithmic spacing of test durations (see Table 2; all the 

parameters other than test durations are kept the same as in Table 1) were used to 

demonstrate this phenomenon (see Figure 11). This phenomenon happens because of the 

distribution of test durations; in linear spacing there are an equal number of test durations 

shorter and longer than the AM of anchor durations, and thus the AM of anchor durations 

is a stable point for the TIP in the learning process. On the other hand, in logarithmic 
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spacing, the GM of anchor durations has this mid-point property. In other words, when test 

durations spaced logarithmically, there are an equal number of test durations that are 

shorter and longer than the GM of anchor durations.  
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Table 2 

Durations and number of trials for linear and logarithmic spacing of test durations 

Linear Test Durations [2 3 4 5 6 7 8] 

Number of Trials for Linear Test Durations [50 20 20 20 20 20 50] 

Logarithmic Test Durations [2 2.52 3.18 4 5.04 6.35 8] 

Number of Trials for Logarithmic Test Durations [50 20 20 20 20 20 50] 
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Figure 11. Psychometric function of responses using linear (top panel) and 

logarithmic (bottom panel) spacing of test durations.  

 

Number of Intermediate Durations 

Siegel (1986) showed that the number of test durations does not significantly affect 

the location of the TIP as long as durations are chosen from the same distribution. Here, 
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the same parameters from Siegel (1986) are used to demonstrate the effect of number of 

test durations on the TIP (see Figure 12 and Table 3; all the parameters other than number 

of test durations are kept the same as in Table 1). Interestingly, similar to the experimental 

results, there is a 0.2 secs difference in the location of TIPs. 

 

Table 3 

Durations and number of trials for three and seven test durations conditions. 

Test Durations - 3 Pints Condition [2 2.8 4 5.7 8] 

Number of Trials for 3 Test Durations [30 20 20 20 30] 

Test Durations - 7 Points Condition [2 2.4 2.8 3.3 4 4.8 5.7 6.8 8] 

Number of Trials for 7 Test Durations [70 20 20 20 20 20 20 20 70] 
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Figure 12. Psychometric function of responses using 3 (top panel) and 7 (bottom 

panel) test durations. 
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CHAPTER V 

DISCUSSION 

In this thesis, I identified two problems in the way that the temporal bisection 

procedure is modeled and understood in the literature. First, a normal distribution is usually 

assumed for the perception of anchor durations, while experimentally it is shown that the 

distribution of temporal perception is positively skewed. I demonstrated that this 

assumption of normality for temporal perception biases our understanding of the TIP and 

how a positively skewed distribution could help marry the computational and experimental 

literatures. Secondly, the importance of a learning process at the single-trial level, 

specifically in the testing phase of the temporal bisection procedure, is usually undermined 

in the literature. I demonstrated how a learning process could affect the location of the TIP. 

By helping solve these two problems, the proposed model better merges the animal and 

human literatures, which have often remained divorced for decades. 

I used experimental parameters from Siegel (1986) to run the proposed model in 

different conditions of the task. First, the free parameters of the model were tuned in a way 

that the results of the model matched the experimental results in only one condition; and 

then, the free parameters were kept the same for the rest of the conditions. In general, the 

results of the model were similar to the experimental results. I believe that this similarity 

between the results of the model and experimental studies can serve as a validation process 

for the specification of the model’s parameters, but not for the structure of the model. In 

other words, the model itself is a general and widely accepted Bayesian learning framework 

that needs to be explored by using different parameters set in order to understand different 

conditions of temporal bisection. Indeed, any set of parameters that is used to specify the 
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model is a hypothesis about subjects’ learning and decision processes. For example, if a 

researcher wants to test the hypothesis that “human participants have a higher decay rate 

as compared to animal subjects” could use different decay rates in the model to verify this 

hypothesis.   

Limitations and Future Directions  

The proposed model helps to reconcile discrepancy between the human and animal 

temporal bisection literatures, which have remained divorced for decades, and gives new 

insight into the modeling of temporal perception. However, it is possible that the ecological 

validity of this model remains limited, as it is a computational explanation for existing 

experimental data. In the future, this model should be verified and revised by using new 

experimental designs and data. This mutual relationship between modeling and 

experimenting in science is of great importance to the co-evolution of both techniques.  

Specifically, although we ran a sensitivity analysis to verify how different learning 

rates as free parameters of the model could impact the output of the model, experimental 

data are essential to verify the validity of this impact. The position of this thesis is that the 

motivational differences between human and animal subjects is one of the main reasons 

for the split between human and animal literatures covering the temporal bisection 

procedure. Thus, I recommend future studies control for motivational differences at the 

experimental level, if feasible. However, controlling for motivational differences could be 

done at a statistical level by measuring the learning rate of the subjects in parallel 

experiments and using this measure to account for the difference in the location of the TIP 

between human and animal subjects. Future studies could also correlate individual learning 

rates and location of the TIP within an experiment to account for variance among 
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individuals.    

Moreover, now that it is shown that the assumption about the distribution of 

temporal perception is a critical factor in understanding the location of the TIP and 

consequently the interpretation of temporal bisection results, experimentalists should try to 

find the exact shape of this distribution in order to obtain more accurate output from the 

model. Currently, a theoretical and positively skewed distribution is used in the model, 

obtained by using the scalar property of timing. Although this distribution may not be the 

real distribution of temporal perception, it is better than a normal distribution in terms of 

its agreement with experimental results and data.  

The proposed model enjoys more structural flexibility rather than flexibility in free 

parameters. The components of structural flexibility within this model are: A) how the 

model learns and updates the perceptions of anchor durations, and B) how the model 

decides about durations; this provides researchers with a platform to answer their questions 

about time perception in a dynamic “learning-decision” framework. In other words, the 

learning and decision processes of the model need to be specified based on the task in order 

to understand how time is perceived by subjects. Thus, we recommend future studies to 

answer questions about learning and decision processes first, rather than finding a theory 

or model that fits to the experimental results by capturing maximum variance.  

The discussed structural flexibilities of the model could be utilized to understand 

exceptional phenomena like “Response Reversal” in the temporal bisection procedure. For 

example, future studies might answer how presenting out-of-range durations in temporal 

bisection impact the learning or decision processes of the subjects and use the model to 

verify their results by changing learning and decision processes.   
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Additionally, other models and theories developed for different types of timing 

tasks could adopt the structure of this model in order to explain the temporal perception in 

a dynamic learning-decision platform. For example, Information Processing model of 

timing originally developed by Treisman (1963) could use single trial level learning in 

order to update the Reference Memory in every trial by using the error of the response in 

Fixed and Peak Interval task which originally described by Catania (1970); all coincidence 

detection models of timing such as Miall’s model (Miall, 1989) and Striatal Beat Frequency 

model (Matell & Meck, 2004) could update the coincidence detection network even in the 

test trials in order to have a dynamic learning process. 

Conclusion   

Models, in general, could have different purposes. One might give us predictability 

in which the system is usually considered a black box (predictive models); one might give 

us a description of a system in which the attempt is to understand the system (descriptive 

models). For example, a straightforward linear model might predict individuals’ income 

based on their education level with high accuracy, but will not help us to understand the 

underlying mechanism. Although, a reasonably complex model might give us low 

predictive accuracy in the beginning, it can improve our understanding of the system and 

could gain predictability power later by iterative refinement. Modeling in science, and in 

this case the temporal bisection procedure, usually departs from understanding the 

mechanism by trying to match the results of the model to the results of experiments rather 

than matching the structure of the model to the structure of mechanisms of behavior. In 

this thesis, I focus on the structure of the model rather than predicting the results and 

implemented a framework that gives flexibility to researchers in order to verify different 
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hypotheses. Perhaps not understanding the reasons for gaps between the human and animal 

literatures on temporal bisection has a root in the purpose of modeling in this field. 
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DATA AVAILABILITY AND REPRODUCIBLE RESULTS 

The data and codes for the model and figures are available at the following 

GitHub repository: https://github.com/qiisziilbash/Temporal-Bisection. MATLAB 2019a 

was used to develop the model and generate the figures. For any questions about the 

codes, contact Mahdi Shafiei (@qiisziilbash) at GitHub. 

  

https://github.com/qiisziilbash/Temporal-Bisection
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