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Abstract. Mimicry and play are fundamental learning processes by
which individuals can acquire behaviours, skills and norms. In this paper
we utilise these two processes to create new game characters by mimick-
ing and learning from actual human players. We present our approach
towards aiding the design process of game characters through the use of
genetic programming. The current state of the art in game character de-
sign relies heavily on human designers to manually create and edit scripts
and rules for game characters. Computational creativity approaches this
issue with fully autonomous character generators, replacing most of the
design process using black box solutions such as neural networks. Our
GP approach to this problem not only mimics actual human play but
creates character controllers which can be further authored and devel-
oped by a designer. This keeps the designer in the loop while reducing
repetitive labour. Our system also provides insights into how players
express themselves in games and into deriving appropriate models for
representing those insights. We present our framework and preliminary
results supporting our claim.
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1 Introduction

Designing intelligence is a sufficiently complex task that it can itself be aided by
the proper application of AI techniques. Here we present a system that mines hu-
man behaviour to create better Game AI. We utilise genetic programming (GP)
to generalise from and improve upon human game play. More importantly, the
resulting representations are amenable to further authoring and development.
We introduce a GP system for evolving game characters by utilising recorded
human play. The system uses the platformerAI toolkit, detailed in section 3,
and the Java genetic algorithm and genetic programming package (JGAP) [6].
JGAP provides a system to evolve agents when given a set of command genes,
a fitness function, a genetic selector and an interface to the target application.



Thereafter, our system generates players by creating and evolving Java pro-
gram code which is fed into the platformerAI toolkit and evaluated using our
player-based fitness function.

The rest of this paper is organised as follows. In section 2 we describe how our
system derives from and improves upon the start of the art. Section 3 describes
our system and its core components, including details of our fitness function. We
conclude our work by describing our initial results and possible future work.

2 Background & Related Work

In practice, making a good game is achieved by a good concept and long iterative
cycles in refining mechanics and visuals, a process which is resource consuming.
It requires a large number of human testers to evaluate the qualities of a game.
Thus, analysing tester feedback and incrementally adapting games to achieve
better play experience is tedious and time consuming. This is where our approach
comes into play by trying to minimise development, manual adaptation and
testing time, yet allow the developer to remain in full control.

Agent Design initially no more than creating 2D shapes on the screen, e.g.
the aliens in SpaceInvaders. Due to early hardware limitations, more complex
approaches were not feasible. With more powerful computers it became feasible
to integrate more complex approaches from science. In 2002 Isla introduced the
BehaviourTree (BT) for the game Halo, later elaborated by Champandard
[2]. BT has become the dominant approach in the industry. BTs are a combi-
nation of a decision tree (DT) with a pre-defined set of node types. A related
academic predecessor of the BT were the Posh dynamic plans of Bod [1, 3].

Generative Approaches [4, 7] build models to create better and more ap-
pealing agents. In turn, a generative agent uses machine learning techniques
to increase its capabilities. Using data derived from human interaction with a
game—referred to as human play traces—can allow the game to act on or re-
act to input created by the player. By training on such data it is possible to
derive models able to mimic certain characteristics of players. One obvious dis-
advantage of this approach is that the generated model only learns from the
behaviour exhibited in the data provided to it. Thus, interesting behaviours are
not accessible because they were never exhibited by a player.

In contrast to other generative agent approaches [9, 15, 7] our system com-
bines features which allow the generation and development of truly novel agents.
The first is the use of un-authored recorded player input as direct input into our
fitness function. This allows the specification of agents only by playing. The sec-
ond feature is that our agents are actual programs in the form of java code which
can be altered and modified after evolving into a desired state, creating a white
box solution. While Stanley and Miikkulainen [13] use neural networks (NN) to
create better agents and enhance games using Neuroevolution, we utilise genetic
programming [10] for the creation and evolution of artificial players in human
readable and modifiable form. The most comparable approach is that of Perez
et al. [9] which use grammar based evolution to derive BTs given an initial set



and structure of subtrees. In contrast, we start with a clean slate to evolve our
agents as directly executable programs.

3 Setting and Environment

Evolutionary algorithms have the potential to solve problems in vast search
spaces, especially if the problems require multi-parameter optimisation [11, p.2].
For those problems humans are generally outperformed by programs [12]. Our
GP approach uses a pool of program chromosomes P and evolves those in the
form of decision trees (DTs) exploring the possible solution space. For our experi-
ments the platformerAI toolkit (http://www.platformersai.com) was used.
It consists of a 2D platformer game, similar to existing commercial products and
contains modules for recording a player, controlling agents and modifying the
environment and rules of the game.

The Problem Space is defined by all actions an agent can perform. Within
the game, agent A has to solve the complex task of selecting the appropriate
action each given frame. The game consists of A traversing a level which is not
fully observable. A level is 256 spatial units long and A should traverse it left
to right. Each level contains objects which act in a deterministic way. Some
of those objects can alter the player’s score, e.g. coins. Those bonus objects
present a secondary objective. The goal of the game, move from start to finish,
is augmented with the objective of gaining points. A can get points by collecting
objects or jumping onto enemies. To make it comparable to the experience of
similar commercial products we use a realistic time frame in which a human
would need to solve a level, 200 time units. The level observability is limited to
a 6× 6 grid centred around the player, cf. Perez et al. [9].

Agent Control is handled through a 6-bit vector C: left, right, up, down,
jump and shoot|run. The vector is required each frame, simulating an input
device. However, some actions span more than one frame. This is a simple task
for a human but quite complex to learn for an agent. One such example, the
high jump, requires the player to press the jump button for multiple frames.
Our system has a gene for each element of C plus 14 additional genes formed
of five gene types: sensory information about the level or agent, executable ac-
tions, logical operators, numbers and structural genes. All those are combined
on creation time into a chromosome represented as a DT using the grammar
underlying the Java language. Structural genes allow the execution of n genes
in a fixed sequence, reducing the combinatorial freedom provided by Java.

Evaluation of Fitness in our system is done using the Gamalyzer-based play
trace metric which determines the fitness of individual chromosomes based on
human traces as an evaluation criterion. For finding optimal solutions to a prob-
lem statistical fitness functions offer near-optimal results when optimality can
be defined. We are interested in understanding and modelling human-like or
human-believable behaviour in games. There is no known algorithm for measur-
ing how human-like behaviour is; identifying this may even be computationally
intractable. A near-best solution for the problem space of finding the optimal



way through a level was given by Baumgarten [14] using the A∗ algorithm. This
approach produces agents which are extremely good at winning the level within
a minimum amount of time but at the same time are clearly distinguishable
from actual human players. For games and game designers a less distinguishable
approach is normally more appealing—based on our initial assumptions.

4 Fitness Function

Based on the biological concept of selection, all evolutionary systems require
some form of judgement about the quality of a specific individual—the fitness
value of the entity. Our Player Based Fitness (PBF) uses multiple traces of hu-
man, th, and agent, ta, players to derive a fitness value by judging their similarity.
For that purpose we integrate the Gamalyzer Metric—a game independent mea-
surement of the difference between two play traces. It is based on the syntactic
edit distance ddis between pairs of sequences of player inputs [8]. It takes pairs
of sequences of events gathered during a game play along with designer-provided
rules for comparing individual events and yields a numerical value in [0, 1]. Iden-
tical traces have distance ddis = 0 and incomparably different traces ddis = 1.
Gamalyzer finds the least expensive way to turn one play trace into another by
repeatedly deleting an event from the first trace, inserting an event of the second
trace into the first trace, or changing an event of the first trace into an event
of the second trace. The game designer or analyst must also provide a compar-
ison function which describes the difficulty of changing one event into another.
The other important feature of Gamalyzer, warp window ω, is a constraint that
prevents early parts of the first trace from comparing against late parts of the
second. This is important for correctness (a running leap at the beginning of the
level has a very different connotation from a running leap at the pole at the end
of each stage). For our purpose, only the input commands players use to control
the agent are encoded—the six commands introduced earlier. This allows us to
compare against direct controller input for future studies and to help designers
sitting in front of the controls analysing the resulting character program. The
PBF currently offers two parameters: the chunk size, cpf , and the warp window
size, ω. The main advantage over a pure statistical fitness function is that a de-
signer can feed our system specific play traces of human players without having
to modify implicit values of a fitness score.

To make a stronger emphasis on playing the game well, we create a multi-
objective problem using an aggregation function g to take∆d—the moved distance—
and the fitness f(a) for an agent using the playerbased metric PBF into account,
see formula (1). Using g we were able to put equal focus on the trace metric,
fptm ∈ [0 . . . 1] ⊂ R, and the advancement along the game, ∆d ∈ [0 . . . 256] ⊂ N.

f(a) = g(fptm(ta, th), ∆d) (1)
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Fig. 1. The evolved agents’ fitness using
PBF (10000 generations), in red the fittest
individuals, in black the averaged fitness
of all agents per generation.

Table 1. GP parameters used in our sys-
tem.

Parameter Value
Initial Population Size 100
Selection Weighted Roulette

Wheel
Genetic Operators Branch Typing

CrossOver and Sin-
gle Point Mutation

Initial Operator proba-
bilities

0.6 crossover, 0.2 new
chromosomes, 0.01 mu-
tation, fixed

Survival Elitism
Function Set ifelse, not, &&,

||, sub, IsCoinAt,
IsEnemyAt,
IsBreakAbleAt, . . .

Terminal Set Integers [-6,6], ←, →,
↓, IsTall, Jump, Shoot,
Run Wait, CanJump,
CanShoot, . . .

5 Preliminary Results & Future Work

Using our experimental configuration and the PBF fitness function we are now
able to execute, evaluate and compare platformerAI agents against human traces.
We are using the settings supplied in table 1. As a selection mechanism, the
weighted roulette wheel is used and we additionally preserve the fittest individual
of a generation. We use single point tree branch crossover on two selected parent
chromosomes and expose the resulting child to a single point mutation before it is
put into the new generation. Figure 1 illustrates the convergence of the program
pool against the global optimum. Good solutions are on average reached after
700 generations, when an agent finishes the given level. Our first experiments
show that our approach is able to train on and converge against raw human play
traces without stopping at local optima, visible in the two dents of the averaged
fitness (black) diverging from the fittest individual (red). A next step would be to
investigate the generated modifiable programs further and analyse their benefit
in understanding players better. However, our current solution already offers a
way to design agents for a game by simply playing it and creating learning agents
from those traces. Other possible directions could be expansion of the model
underlying Gamalyzer to model specific events within the game rather than
pure input actions. This should provide interesting feedback and offer a better
matching of expressed player behaviour and model generation. Our current agent
model consists of an unweighted tree representation containing program genes.
Currently subtrees are not taken into consideration when calculating the fitness
of an individual. By including those weights it would be possible to narrow
down the search space of good solutions for game characters dramatically, also
potentially reducing the bloat of the DT. So, to enhance the quality of our
reproduction component we believe it might be interesting to investigate the
applicability of behavior-programming for GP (BPGP) [5] into our system.
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