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Abstract 

This study aims to quantify the density distribution, and specify the density distribution difference 

between internodes and nodes parts of Phyllostachys edulis (Moso Bamboo) in the radial, tangential 

and longitudinal directions. Due to the anatomical complexity of Moso bamboo, the measurement 

methods of bulk density are insufficient. In this work, Computed Tomography (CT) scanning has 

been selected to quantify the density distribution of Moso bamboo. Major findings from both 

anatomical analysis and CT scanning quantifications are that the Moso bamboo density of the 

internodes parts and the nodes parts reduce from the external surface to the internal surface of the 

culm wall in the radial direction. In the longitudinal direction, the internode parts of the Moso bamboo 

have relatively uniform density. Significant density fluctuation variations occur at the nodes parts of 

the Moso bamboo. The different proportions of the vascular bundles tissues and the parenchyma 

ground tissues dominate the density variation of the Moso bamboo in the radial direction. In the 

longitudinal direction, relatively uniform density of the internodes parts of the Moso bamboo is 

attributed to the straight vascular bundles. The significant density variation in the node parts is caused 

by the irregular intertwined vascular bundles.  

1. Introduction 

According to statistical analysis from UNEP (2014), at least one third of global energy use and 30 to 

40% of global greenhouse gas emissions are attributable to buildings e.g. materials, constructions, 

maintenance etc. Using natural material to minimise environmental impact has proved to be an 

effective strategy in the building industry (Bribián 2011). Among a large number of natural plants, 

bamboo has considerable potential to be utilised as a sustainable building material due to its fast 

reproductive capacity, competitive mechanical properties and ease of manufacturing bamboo 

structures (Lobovikov 2003, Van Der Lugt et al. 2006, Flander and Rovers 2009). Both thermal and 

mechanical performances are crucial aspects in evaluating the feasibility of bamboo as a building 

material. Density is not only a physical property of an object but also a basic input datum in the 

quantitative research of thermal and mechanical properties and their analysis (Steppe et al. 2004). 

Bulk density of an object is relatively easy to measure. However, simply using bulk density to 

conduct thermal and mechanical analysis is not appropriate for natural materials as their density often 

varies as a function of position and orientation. A previous study has found that the density of bamboo 

is highly variable in the radial direction (Huang et al. 2014). 

Limited research on density measurement of bamboo has been performed compared to timber. To 

accomplish the through-thickness and multi-dimensional density measurement of wood, several non-

destructive technologies have been developed. A pulsed air-coupled ultrasound (ACU) method has 

been utilised to measure the density of particleboard (Sanabria et al. 2013).  Microwave techniques 

have been found to provide an appropriate prediction of moisture content and density in Scots pine 

(Johansson et al., 2003). The dielectric properties of wood have been utilised to conduct high 
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frequency densitometry (Boden et al., 2012). Density measurements by X-Ray techniques rely on the 

principle of light absorption (Benson-Cooper 1982, Mull 1984, Davis and Wells 1992, Reeves et al. 

2012). All these methods are claimed to be sufficiently accurate to meet the requirements of density 

quantification research.   

Computer tomography (CT) scanning, based on X-Ray techniques, is widely utilised in timber 

densitometry. CT scanning has been applied in wood industry related research for more than thirty 

years (Benson-Cooper et al 1982) and the accuracy and calibration methods of CT scanning have been 

improved by many researchers (Mull 1984, Lindgren 1991). A linear relationship exists between X-

Ray attenuation and density and therefore, CT scanning results can be directly transformed into 

density values (Davis and Wells 1992). Peng’s research (2009) utilised medical Computer 

Tomography (CT) to analyse density variation in bamboo culms at different ages and the 

linear relationship between the density of Moso bamboo and its Hounsfield Unit (HU) was 

determined in this study. However, the density of nodes parts is not included. In Peng’s paper, a 

phenomenon needs to be confirmed is that very low density values appeared at the first 1mm of the 

external surface side. These values could be regarded as the CT artifact. In addition, a fact needs to be 

emphasised is that the linear relationship is not universal due to the differences in CT scanning 

equipment and their specific settings (Reeves et al. 2012).   

This study aims to quantify density distribution and specify the density distribution difference 

between internodes and node parts of Phyllostachys edulis (Moso Bamboo) in radial, tangential and 

longitudinal directions. The results of this study are prepared as the density database for the further 

work on CFD simulations for thermal performance of bamboo. In transient heat transfer studies, the 

density, thermal conductivity and specific heat capacity of the target material are three basic input 

parameters (Fourier 1878). Currently, there is insufficient density data for bamboo so researchers are 

forced to use the averaged density as the material parameter. However, the Moso bamboo is regarded 

as a non-homogenous natural material so density may vary as a function of position in the culm. The 

density variation may lead to relevant changes in other physical properties such as thermal diffusivity 

and specific strength. Better understanding of density distribution could provide more accuracy and 

clear guidance for optimum selection of certain specific parts of Moso bamboo for construction 

applications.  

2. Anatomical characteristics of Moso bamboo  

An anatomical study of Moso bamboo provides morphologic information to density distribution. 

Generally, the stem of bamboo is a hollow cylinder constituting node parts and internode parts. The 

vertical growing direction of the Moso bamboo is defined as the longitudinal direction. The radial 

direction is from the internal surface to the external surface of the bamboo culm wall. The tangential 

direction follows the perimeter of the bamboo culm (Figure 1) and may be located in radial 

increments from the inside to the outside.  
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Figure 1 Terminology for a bamboo culm  

In the transverse section, the main morphological feature of Moso bamboo is that the vascular bundle 

tissue is surrounded by the parenchymatous ground tissue. Every vascular bundle unit has two large 

vessels which are the main channels of water transportation (Grosser and Liese 1971). The edge of the 

vascular bundle vessel is surrounded by dense lignified parenchyma cells. Figure 2 shows that the 

parenchymatous ground tissue is relatively uniform in size.  

 

Figure 2 Anatomical features of Moso bamboo in the radial direction (Huang et al. 2014) 
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In the radial direction, for internode parts, the total size and the area of vascular bundles’ vessels 

become larger from the external surface to the internal surface of the culm wall of the Moso bamboo. 

The quantity of the vascular bundle and the proportion of the lignified parenchyma cells decrease. For 

node parts, besides the aforementioned features, many horizontal tubular vascular bundles form a 

spoke-shape transverse section (Figure 3).  

Longitudinally, for internode parts, parenchyma cells and lignified parenchyma cells maintain a 

remarkably straight alignment with the longitudinal axis of the culm (Liese 1985, Lo et al. 2004). The 

vascular bundle vessels are present as continuous vertical cavities in the longitudinal direction. The 

constitution of every longitudinal line is relatively homogenous.  For node parts, vertical vascular 

bundles gradually bend towards the horizontal direction (Figure 3). These interwoven bundles are 

irregularly distributed in the zone between the diaphragm and the peripheral cortex of nodes (Grosser 

and Liese 1971).  

 

Figure 3 CT-scanned images of the morphological features of the Moso bamboo (1) section away 

from internode, (2) section through internode.  
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The morphological characteristics of the Moso bamboo along the tangential direction are determined 

by the morphological characteristics of the radial and longitudinal direction. The orientation of 

vascular bundles dominates the morphological difference between the nodes and internode parts of 

Moso bamboo. For internode parts, the direction of the vascular bundles is perpendicular to the 

tangential line. For node parts, the distribution of the vascular bundles is not uniform.  

2. Methodology 

2.1 CT Scanning 

CT scanning technology is a method for quantifying the inner density variation of a Moso bamboo 

specimen as a function of orientation. This technique provides accurate visual information, an easy 

operational process and a simple method for calculating density (Mull 1984, Davis and Wells 1992). 

There are limitations in the CT scanning technique. To obtain an acceptable resolution for density 

quantification, the volume of specimen needs to be restricted to a relatively small size while the 

scanning time needs to be as long as possible (Grundberg et al.1995). The CT scanning environment 

needs to be fairly clean. Minimising the number of reference materials and avoiding the involvement 

of metals are two requirements for improving the accuracy of CT scanning (Bucur 2003). The 

scanning parameters will influence the results. Therefore, calibration needs to be conducted after 

adjusting the scanning setting (Freyburger, et al. 2009).    

In this study, a Nikon XT H 225 CT scanner is utilised to quantify the density of the Moso Bamboo 

specimen. This equipment outputs greyscale images. The scanning parameters were fixed at a voltage 

of 106kV and current of 91μA. The resolution of the captured grayscale image is 1000 dots per inch 

(DPI). Under this condition, the linear relationship between the greyscale value and the density value 

of the specimen can be described by equation 1. The greyscale value is calibrated by scanning 

distilled water and Polypropylene (PP Homopolymer). The bulk densities of these materials are 

known. However, this linear relationship is only applicable to this scanning. Calibration needs to be 

conducted in every time by scanning reference materials with known bulk density. The Avizo image 

processing software is utilised to measure the greyscale of CT scanning image. The coefficient of 

multiple determination (R
2
) of this equation is 99.992%.  

ρ=39935.791.Gs - 1.193                                              (1) 

: density (kg/m3) 

Gs：greyscale 

Therefore, the density of the Moso bamboo can be calculated by the greyscale measurement of the 

greyscale images of specimens.  

2.2 Specimen preparation 

Moso bamboo culm was ordered from UK Bamboo Supplies Limited in the United Kingdom. The 

average moisture content of the specimen was 9% determined by oven drying. The bulk density range 

of bamboo culms was from 601kg/m
3
 to 640 kg/m

3
 and the diameter of the bamboo culm varied from 

52 mm to 55 mm. The thickness of the specimen varied between 7 mm and 8 mm. Specimens were 

prepared with a height varying from 10mm to 12mm. These dimensions result in the maximum 

volume of the bamboo culm (Figure 4) to achieve an acceptable resolution in the CT scanner. Parts 

were cut from the culm section as shown in Figure 4a. The tangential length of the specimen was one 

eighth of the perimeter of the culm. The longitudinal length was set to be higher than the thickness of 

the bamboo culm wall to optimise the CT measurement Scans were made at a node and an internode 
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zone.  The density measurement of the specimens was conducted in a radial direction, tangential 

direction and longitudinal direction. Scans were made according to the notation in Figure 4 and 

identified by the ten layer numbers and the radial angle in degrees.  

 

Figure 4 (a) Orientation of culm section showing a part cut for CT scanning. (b) Definition of  radial 

elements in culm section. (c) Tangential elements in culm section. (d). Longitudinal elements in culm 

section.  

In the radial direction measurement, ten measurement lines were equally distributed in a sector area 

with the central angle of 45°. The first measurement line was set to be the 0° line. The central angle of 

two adjacent lines is 5°. The length of each measurement line was equal to the thickness of the 

bamboo culm wall. (see Figure 4(b).) In the tangential direction measurement, measurement lines 

were arcs. From the internal surface to the external surface of the bamboo culm wall, the length of 

these arcs progressively increased. (see Figure 4(c).) In the longitudinal direction measurement, all 

measurement lines with the same length were perpendicular to the cross section of the bamboo culm. 

(see Figure 4(d).) Every measurements line had 10 sample points which was also equally distributed 

along the measurement line.  
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3. Results and discussion 

The density variation of both internode and node parts were measured in this study by CT scanning. The 

results are illustrated by the waterfall charts. The left horizontal axis represents the sample points with 

measurement direction. The number is from 1 to 10. The right horizontal axis represents the serial 

number of different measurement lines. The vertical axis represents the density value. The unit of the 

density value is kilogram per cubic metre.  

 

Figure 5 Density distribution in the radial direction of internode specimen  

 

Figure 6 Density distribution in the radial direction of node specimen  
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In the radial direction (Figure 4c), the fluctuation in density of internode parts ranges from 336kg/m
3 
to 

1283kg/m
3
 Figure 5). For node parts, the trend in density variation is similar to that of internode parts 

and the density fluctuation range of node parts is from 331kg/m
3
 to 1407kg/m

3
 (Figure 6). Node parts 

have higher density on the external side. The average density value of measurement lines ranges from 

674 kg/m
3
 to 759kg/m

3
 at internode parts and 634kg/m

3
 to751kg/m

3
 at node parts. 

The standard deviation of internode density ranges from 282kg/m
3
 to 336kg/m

3
. The standard 

deviation of node parts is from 240kg/m
3
 to 362kg/m

3
.  The Coefficient of Variation (COV) ranges 

are 37.39% to 47.15% for internode parts and 33.51% to 49.46% for node parts, respectively.  

In the radial direction, all density versus distance curves undulate and increase from the internal side 

to the external side of the bamboo culm wall (see Figures 5 and 6.). These undulations are caused by 

the anatomical characteristics of the Moso bamboo. Figure 2 indicates that a high density of vascular 

bundles and limited parenchyma ground tissue can be found at the periphery of the bamboo culm wall.  

From the external side to the internal side of the bamboo culm wall, the proportion of vascular 

bundles decreases, while more space is occupied by parenchyma ground tissue. The vascular bundle 

vessel is surrounded by lignified parenchyma cells. The lignified parenchyma cell size is smaller, but 

the cell is denser than the ground tissue cells.  Therefore, the density of vascular bundle tissue is 

higher than the density of the ground tissue. A large proportion of vascular bundles signifies higher 

density. Most measurement lines show obvious fluctuation. However, the 25° measurement line at the 

node part should be noted. The density of this line tends to be steady in the middle zone because the 

line passes though a spoke-shaped radial, horizontal vascular bundle vessel. The hollow structure of 

the vessel is the main reason for the series of relatively uniform density values. At node parts, a 

remarkable feature is that vascular bundles deviate in different directions.   

In the longitudinal direction, the density range is from 323kg/m
3
 to 1334kg/m

3
 at internode parts and 

from 402kg/m
3
 to 1244kg/m

3
 at node parts. The average density value of different measurement lines 

ranges from 377kg/m
3
 to 1304kg/m

3 
at internode parts and from 520kg/m

3
 to 1125kg/m

3 
at node parts. 

For internode parts, the standard deviation and COV of each measurement line ranges from 16kg/m
3
 

to 46kg/m
3 

and 1.2% to 6.78%, respectively.  At the node parts, the standard deviation ranges from 

107kg/m
3
 to 277kg/m

3
. The COV is from 9.52% to 32.29%. 
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Figure 7 Density distribution in the longitudinal direction of internode specimen 

 

 

Figure 8 Density distribution in the longitudinal direction of node specimen 

The standard deviation and COV data indicate that density remains almost unchanged through every 

single measurement line at the internode parts (Figure 7). The linearly grown vascular bundles at the 

internode parts in the longitudinal direction are uniform in density. The density fluctuation of every 

measurement line at the node parts is much more significant compared with the internode parts 

(Figure 8). The longitudinal axis in Figure 8 includes a central portion of node material and internode 

material on either side. The density fluctuates highly in the central portion because of the complex 
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distribution of fibre bundles but is more stable on either side. There is also an underlying trend of 

increase in density passing from specimen 1 to specimen 10 in the radial direction.  

In the tangential direction, the density ranges of internode parts are from 286kg/m
3
 to 1303kg/m

3
. The 

density of node parts ranges from 237kg/m
3
 to 1412kg/m

3
. The average density value of different 

measurement lines is from 442kg/m
3
 to 1192.1kg/m

3 
at internode parts and from 479kg/m

3
 to 

1055kg/m
3 

at node parts. The standard deviation of each measurement line is from 89kg/m
3
 to 

217kg/m
3
 at internode parts. The COV range is from 10.40% to 33.23%.  At node parts, standard 

deviation is from 98kg/m
3
 to 290kg/m

3
. The COV is from 19.55% to 33.80%.  

 

 

 

Figure 9 Density distribution in the tangential direction of internode specimen 



11 

 

 

Figure 10 Density distribution in the tangential direction of node specimen 

For internode parts, the standard deviation and COV data indicate that the density fluctuation range in 

a tangential direction (Figure 9) is more extreme than in the longitudinal direction (Figure 7), but 

steadier than the range of radial direction(Figure 5). The node parts’ standard deviation and COV 

changed very little compared with the longitudinal direction. The density variation of the tangential 

measurement lines of internode parts and node parts has a similar trend to the longitudinal direction.  

(see Figures 9 and 10). The fluctuation of density could be attributed to the distribution of the vascular 

bundles. The irregular interwoven vascular bundles are the cause of the unsteady density data.  

The results of this study contributes to supplement the insufficient density data of Moso bamboo, 

albeit the data could be more universal and refined by considering the samples in different locations 

within the bamboo culm and higher resolution for CT Scanning. 

4. Conclusions 

Both anatomical observation and CT density quantification have indicated that: 

The density of both the internode parts and node parts of the Moso bamboo decrease from the external 

surface to the internal surface of the culm wall in the radial direction. The different proportions of the 

vascular bundle tissues and the parenchyma ground tissues dominate the density variation of the Moso 

bamboo in the radial direction. A high proportion of the vascular bundles’ tissues are of higher density 

than the surrounding material, while a high proportion of parenchyma ground tissues is of low density.  

In the longitudinal direction, internode parts of Moso bamboo retain relatively uniform density due to 

the straight vascular bundles. The density distribution for node parts is irregular.   

In the tangential direction, the density fluctuation of internode parts is more significant than in the 

longitudinal direction. This fluctuation is caused by the distribution of vascular bundles tissue and 

ground tissue in the transverse section.  For node parts, the density of the Moso bamboo fluctuates 

irregularly because the vascular bundles are organised in different directions at the node parts.  
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Although the bulk density of the bamboo ranges from 601kg/m
3
 to 640kg/m

3
, Moso Bamboo has a 

relatively wide density distribution at different measurement points. The maximum and minimum 

densities are 237kg/m
3
 and 1412kg/m

3
 respectively. High density parts of Moso bamboo are 

concentrated on the external side of the bamboo culm wall for both internode and node parts. Low 

density parts of Moso bamboo appear on the internal side of the bamboo culm wall of internode parts. 

The results of this study indicate that obvious variations exist in different orientations of the Moso 

bamboo culm. To enhance the reliability of the simulation models in thermal and mechanical fields, 

variation of the density must be considered.  
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