

Citation for published version:
Laird, J 2020, A Curry-style Semantics of Interaction: From Untyped to Second-Order Lazy -Calculus. in J
Goubault-Larrecq & B König (eds), Foundations of Software Science and Computation Structures- 23rd
International Conference, FOSSACS 2020, held as part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Proceedings. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12077 LNCS, Springer, Cham,
Switzerland, pp. 422-441, 23rd International Conference on Foundations of Software Science and
Computational Structures, FOSSACS 2020, held as part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, 25/04/20. https://doi.org/10.1007/978-3-030-45231-5_22
DOI:
10.1007/978-3-030-45231-5_22

Publication date:
2020

Link to publication

Publisher Rights
CC BY-ND

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bath Research Portal

https://core.ac.uk/display/324166083?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-45231-5_22
https://doi.org/10.1007/978-3-030-45231-5_22
https://researchportal.bath.ac.uk/en/publications/a-currystyle-semantics-of-interaction(02eb2272-65d8-4877-9fcc-f0bd43416755).html

A Curry-style Semantics of Interaction:
From untyped to second-order lazy λµ-calculus

James Laird

Department of Computer Science, University of Bath, UK

Abstract. We propose a “Curry-style” semantics of programs in which
a nominal labelled transition system of types, characterizing observable
behaviour, is overlaid on a nominal LTS of untyped computation. This
leads to a notion of program equivalence as typed bisimulation.
Our semantics reflects the role of types as hiding operators, firstly via an
axiomatic characterization of “parallel composition with hiding” which
yields a general technique for establishing congruence results for typed
bisimulation, and secondly via an example which captures the hiding
of implementations in abstract data types: a typed bisimulation for the
(Curry-style) lazy λµ-calculus with polymorphic types. This is built on
an abstract machine for CPS evaluation of λµ-terms: we first give a
basic typing system for this LTS which characterizes acyclicity of the
environment and local control flow, and then refine this to a polymorphic
typing system which uses equational constraints on instantiated type
variables, inferred from observable interaction, to capture behaviour at
polymorphic and abstract types.

1 Introduction

“Church-style” and “Curry-style” are used to distinguish programming lan-
guages in which the type of a term is intrinsic to its definition from those in
which it is an extrinsic property. The same distinction may be applied to se-
mantics of programming languages: in many models, type-objects are essential
to the interpretation of a term — e.g. as a morphism between objects (types)
in a category — but interpreting terms independently of their types (as in e.g.
realizability interpretations) may have conceptual and practical advantages, par-
ticularly for describing Curry-style type systems. The aim of this semantic in-
vestigation of higher-order programs is to develop a Curry-style semantics of
interaction by overlaying a labelled transition system of types onto a LTS of
untyped computation, so that the observable behaviour of a typed state is re-
stricted to the actions made available by its type. Our objective is to apply this
to lazy functional programs: untyped and with Curry-style polymorphic typing
systems, and to develop a theory of program equivalence — typed bisimulation
— able to describe genericity and abstract datatypes in this setting.

Game Semantics Games models for programming languages are typically (but
not invariably) given in a Church-style: terms are interpreted as strategies on

a specified two-player game which represents their type [2,9]. This kind of se-
mantics is compositional by definition, at the cost of forgetting the internal
computational behaviour of programs, and potentially excluding system level
behaviour [6]. It uses categorical structure to describe its models and prove key
results — in particular soundness with respect to an operational semantics.

By contrast, in operational game semantics [15,12], programs are interpreted
as states in a labelled transition system based directly on their syntax and oper-
ational semantics. Internal computation is retained but can be factored out by
restricting to observable behaviour. Soundness of these models “comes for free”
— instead, the fundamental property requiring non-trivial proof is that they are
compositional — that is, the equivalence induced on programs is a congruence.
Basic structure which supports and systematizes these proofs would be useful
(techniques such as Howe’s method are not available in this intensional setting).
We aim to show that defining operational game semantics in a Curry style gives
the opportunity to formulate and apply such structure. This is complementary
to characterization of the structure of operational game semantics at a categor-
ical level [18], into which we believe our semantics can fit well. Our motivation
and general methodology bears similarities to the programme of Berger, Honda
and Yoshida [3] —- in which Curry-style types are used to characterize the π-
calculus processes corresponding to functional and polymorphic programs — and
to typing systems for process calculi such as those described in [10].

Hiding using types We will interpret (extrinsic) types as hiding operators:
windows through which terms of a given type may interact with the world, while
their internal behaviour is hidden from external observation — both passive and
active. Our goal is to show that this interpretation can be used to model infor-
mation hiding in two key areas of higher-order computation. The first, “parallel
composition with hiding” is the fundamental operation on which game semantics
is based. We axiomatize the notion of a typing system for an LTS with such an
operation, in which a type is a state which characterizes precisely the possible
interaction between a function and its argument at that type.

The second form of information hiding for which we give a Curry-style in-
terpretation is hiding of implementation details using polymorphic (existential)
types as abstract data types. Our key example of a typed labelled transition
systems is a new model of the second-order λµ-calculus: we shall now discuss
the background and significance of this contribution.

1.1 Program Equivalence and Polymorphism

Our starting point is the lazy λ-calculus — the pure, untyped λ-calculus, evalu-
ated by weak head reduction — and its extension with first-class continuations,
the corresponding version of Parigot’s λµ-calculus [21]. As argued in [1], the
lazy λ-calculus approximates well to the behaviour of lazy functional program-
ming languages such as Haskell, and is thus an appropriate setting in which to
explore properties such as program equivalence, for which there is now a rich

and well-studied theory. For instance, open or normal form bisimilarity [25] is a
coinductively defined equivalence which extends β-equivalence to infinitary be-
haviours. It gives a purely intensional characterization of program equivalence
(by contrast to e.g. applicative bisimilarity, which involves quantifying over all
possible arguments) and has a variety of alternative characterizations — for
instance two terms are open bisimilar if and only if they have the same Levy-
Longo trees [19], or their (call-by-name) translations in the π-calculus are weakly
bisimilar [25,5]. (Or, indeed, if they are normal-form bisimilar as λµ-terms.)

Normal form bisimilarity of simply-typed λ-terms is just β-equivalence. How-
ever, extending to polymorphic types, such as those of the second-order λ-
calculus (System F) [7,24] poses deeper questions. A primary motivation for in-
troducing polymorphic types is that they can express abstract data types which
hide implementation details [20] (cf. the module systems of Haskell and ML). A
useful notion of program equivalence should therefore reflect this. As a simple
example, the untyped λ-terms λf.f λx.λy.x and λf.f λx.λy.y are clearly not nor-
mal form bisimilar. But at the second-order type ∃X.X , ∀Y.(∀X.X → Y)→ Y
(which they both inhabit in a Curry-style presentation), they should be be-
haviourally equivalent — since any function of type : ∀X.(X → Y) will never call
its argument. In other words, the existential type ∃X.X “hides” the difference
between λf.f λx.λy.x and λf.f λx.λy.y. This is an observational equivalence,
but of a particularly fundamental kind, since it (and other equivalences involv-
ing abstract data types) is robust in the presence or absence of side-effects. It
can be captured by extensional methods such as applicative bisimilarity, which
was extended to a polymorphic setting in [26], but this requires quantification
over instantiating terms and types, whereas our semantics is based on unification
of instantiating types.

The problem is that comparing the evaluation trees of terms (e.g. by nor-
mal form bisimulation) does not capture the capacity of their types to restrict
interaction with the environment. Game semantics does reflect this interaction
(in various manifestations), and therefore offers a potential solution. Although
several games models for polymorphism do not capture data abstraction by ex-
istential types (including Hughes’ semantics of System F [8], which is faithful
with respect to βη-equivalence, and Curry-style models [16]) a series of related
approaches does so. These include translation into the (polymorphically typed)
π-calculus [4], and an operational form [17,27] and a traditional compositional
presentation [14,13] of game semantics.

In these semantics, values of polymorphic variable type are interpreted as
pointers to data of undisclosed type — e.g. a location where it is stored, or
a channel on which it may be received. Instantiation of universally quantified
type variables replaces this pointer-passing with copycat behaviour. This gives a
natural interpretation of polymorphism in settings such as the π-calculus, or lan-
guages with general references, where pointers are first-class objects. However, it
is closely associated with a Church-style presentation of second-order type sys-
tems — e.g. by the interpretation of type abstraction as an explicit creation of a
pointer; in the case of “typed normal form bisimulation” [17] the translation of

a term is explicitly determined by its type. This is significant because it is in the
presence of polymorphism that key differences between Church-style and Curry-
style emerge — for example, in allowing intersection types. The pointer-passing
models also exhibit behaviours which go beyond untyped functional interaction,
making their relationship to it unclear — in the game semantics [14], instantia-
tion violates the fundamental innocence and visibility conditions on strategies;
the π-calculus interpretation uses free name as well as bound name passing.

Curry-style semantics give a natural interpretation of second-order Curry-
style typing, with a simple relationship to the semantics of the untyped λµ-
calculus, by overlaying a more refined LTS of second order types on the same
underlying LTS of computations.

2 Typed Labelled Transition Systems

In this section we describe a notion of typed labelled transition system and an
associated equivalence: typed bisimulation. Based on this we axiomatize a simple
typing system for parallel composition with hiding and show that it preserves
typed bisimulation. Examples of typed LTS (in the form of models of the lazy
λµ-calculus and lazy λµ2-calculus) follow in the rest of the paper.

We work in the setting of nominal sets [23], which allows the introduction of
fresh names (for store locations, communication channels, types etc). Assume a
fixed, infinite set of atoms and a group G of permutations on them. A nominal
set X is an action of G on a set |X| such that each x ∈ |X| has a finite supporting
set of atoms such that if π(a) = a for all atoms in this set then π ·x = x. We write
sup(x) for the ⊆-least of these sets (which is the intersection of all supporting
sets for x).

Definition 1. A nominal LTS is a labelled transition system (S,Act ,→) such
that S (states) and Act (actions) are nominal sets and the transition relation →
is equivariant — i.e. for any π ∈ G, C

a−→ C ′ if and only if π · C π·a−→ π · C ′.

Similarly motivated notions of nominal LTS are developed in e.g. [22]. Our key
example — an abstract machine for direct-style CPS evaluation — is given in
the next section.

The directly observable part of a labelled transition system may be charac-
terized by defining a typing system for it. (Similar notions of typing system for
a process calculus are defined in [10], for example.)

Definition 2. A typing system for a nominal LTS (S; Act ;→) is a nominal
LTS (T ; Obs; ↪→) such that Obs ⊆ Act, with a relation, ⦂ (typing), from S to T
which satisfies the following subject reduction properties for each C ⦂ T :

– If C
a−→ C ′ and T

a
↪→ T ′ then C ′ ⦂ T ′ (we write C ⦂ T a−→ C ′ ⦂ T ′).

– If C
a−→ C ′, where a 6∈ Obs and sup(C ′) ∩ sup(T) ⊆ sup(C) ∩ sup(T), then

C ′ ⦂ T (we write C ⦂ T −→ C ′ ⦂ T).

Subject reduction requires that actions which are observable (i.e. in Obs) change
a computation and its type in a way that respects the typing relation, and that
those which are internal to a computation (i.e. in Act\Obs) maintain its type
(provided that any names fresh for the state are also fresh for its type).

Let =⇒ be the reflexive, transitive closure of the internal reduction −→, and
define C ⦂ T a

=⇒ C ′ ⦂ T ′ if C ⦂ T =⇒ D ⦂ T a−→ D ′ ⦂ T ′ =⇒ C ′ ⦂ T ′. To define
weak bisimulation between typed states based on these relations, we need to
take account of the fact that a name may be fresh for one, but already occur
internally in the other (cf. [22]). So bisimulation is defined up to the equivalence
on the states of type T which allows permutation of internal names: C 'T C ′ if
there exists a permutation π ∈ stab(T) (i.e. π · T = T) such that C ′ = π · C .

Definition 3. A typed bisimulation is a binary, symmetric, equivariant relation
R between typed states (C ⦂ S), such that if (C ⦂ S)R(D ⦂ T) then S = T and:

1. If C ⦂ T a−→ C ′ ⦂ T ′ then there exists D′ 'T D such that (D′ : T)
a

=⇒ (D′′ :
T ′), where (C ′ ⦂ T ′)R(D ′′ : T ′).

2. If C ⦂T −→ C ′⦂T then there exists D′ 'T D such that (D′ : T) =⇒ (D′′ : T),
where (C ′ ⦂ T)R(D ′′ : T).

Typed bisimilarity is the largest typed bisimulation: states C and D are bisimilar
at type T (C ∼T D) if (C ⦂ T) and (D ⦂ T) are typed bisimilar.

2.1 Parallel Composition with Hiding

Having proposed an interpretation of types as operators which hide internal
communication, we now characterize the properties of a typing system for parallel
composition with hiding which entail that it preserves typed bisimulation (i.e.
the latter is a congruence).

Definition 4. An interaction structure is a nominal LTS (S; Act ;→) such that
Act = L∪({+,−}×L) for some set of L of (unpolarized) labels, with an equivari-
ant partial binary operation | on S (parallel composition) such that if C = C1|C2

then C
a−→ C ′ if and only if C ′ = C ′1|C ′2 for some C ′1 and C ′2 such that either:

– C1
a−→ C ′1 and C ′2 = C2, where (sup(C ′1) ∪ sup(a)) ∩ sup(C2) ⊆ sup(C1) or,

– C ′1 = C1 and C2
a−→ C ′2, where (sup(C ′2) ∪ sup(a)) ∩ sup(C1) ⊆ sup(C2) or,

– C1
pa−→ C ′1 and C2

pa−→ C ′2, where p ∈ {+,−}.

The nominal side-conditions require that any names which are fresh for the
component to which they are introduced are fresh for the whole state.

Parallel composition is typed using a ternary relation between types: T1
T2

(T3
means “T2 is an arrow type from T1 to T3” — there may be several arrow types
between two types (or none).

Definition 5. A typing system for an interaction structure (Comp,L, |) is a
typing system (T ; ({+,−} × L); ↪→) for Comp with an equivariant ternary rela-

tion, (, on T such that if T1
T2

(T3 then for any C1 ⦂ T1 and C2 ⦂ T2 such that

sup(C1) ∩ sup(C2) ⊆ sup(T1), the state C1|C2 is well-defined, has type T3 and
satisfies the following interaction conditions:

1. If C1
pl−→ C ′ and C2

pl−→ C ′2 then T1
pl
↪→ T ′1 and T2

pl
↪→ T ′2 such that T ′1

T ′
2

(T3.

2. If C2
a−→ C ′2 and T3

a
↪→ T ′3 (with sup(T ′3)∩sup(T2) ⊆ sup(T3)) then T2

a
↪→ T ′2

such that T1
T ′
2

(T ′3.

3. If C1
a−→ C ′1 and T3

a′

↪→ T ′3 then a 6= a′.

Informally (1) requires that if C1 and C2 may communicate, then this is permit-
ted by T1 and T2, and (2) and (3) require that the observable actions of C1|C2

permitted by T3 correspond to actions of C2 permitted by T3. Note that for any
C1⦂T1 and C2⦂T2 there exists C ′1 'T1

C1 such that sup(C ′1)∩sup(C2) ⊆ sup(T1)
— i.e. there are no sidechannels of communication between C ′1 and C2 — and
thus C ′1|C2 is well-defined, has type T3 and satisfies the interaction conditions.
Moreover, these are sufficient to establish that typed bisimulation is a congru-
ence with respect to parallel composition with hiding: a result that we will apply
to our examples in the rest of the paper.

Proposition 1. If C1 ∼T1 D1 and C2 ∼T2 D2 (and sup(C1)∩sup(C2), sup(D1)∩
sup(D2) ⊆ sup(T1)) where T1

T2

(T3 then C1|C2 ∼T3 D1|D2.

Proof. We first establish the following renaming property: if C1 ⦂T1 −→ C ′1 ⦂T1
then there exists π ∈ stab(T1) ∩ stab(T2) ∩ stab(T3) such that C1|C2 ⦂ T3 −→
π(C ′1)|C2⦂T3 — by renaming any fresh names introduced by internal transition so
that they are also fresh for C2. Similarly, any internal reduction of C2 corresponds
to a reduction of C1|C2, up to such a renaming.

So suppose C1|C2 ⦂ T3
pl−→ C ′ ⦂ T3 (an observable transition). By definition

of an interaction structure, and conditions (2) and (3), C2 ⦂ T2
pl−→ C ′2 ⦂ T ′3 such

that T1
T ′
2

(T ′3. By assumption, there exists D ′2 'T2
D2 such that D ′2 ⦂ T2 =⇒

D ′′2
a−→ D ′′′2 ⦂ T ′2 =⇒ D ′′′′2 ⦂ T ′2 and D ′′′′2 ∼T ′

2
C ′2 and by the renaming property

we may rename any fresh names in this reduction sequence to avoid clashes with
D1 — i.e. there exists π ∈ stab(T1) ∩ stab(T2) ∩ stab(T3) such that:

D1|D ′2 ⦂ T3 =⇒ D1|π(D ′′2)
π(a)−→ D1|π(D ′′′2) ⦂ T ′3 =⇒ D1|π(D ′′′′2) ⦂ T ′3, and hence

π−1(D1)|π−1(D ′2) ⦂ T3
pl

=⇒ π−1(D1)|D′′′′2 as required (since bisimilarity is closed
under permutation of internal names).

If C1|C2 ⦂ T3 performs an internal action then this is either an internal
action of C1 ⦂ T1 or C2 ⦂ T2, which is similar to the observable case, or else

C1
pl−→ C ′1 and C2

pl−→ C ′2 — so that C1|C2 performs the internal action l. Then

by interaction condition (1), T1
pl
↪→ T ′1 and T2

pl
↪→ T ′2 such that T ′1

T ′
2

(T3. So since
C1 ∼T1

D1 and C2 ∼T2
D2, there exist D′1 ∼T1

D1 and D ′2 ∼T2
D2 such that

D ′1 ⦂ T1 =⇒ D ′′1 ⦂ T1
pl−→ D ′′′1 ⦂ T ′1 =⇒ D ′′′′1 ⦂ T ′1 and D ′2 ⦂ T2 =⇒ D ′′2 ⦂ T2

pl−→
D ′′′2 ⦂ T ′2 =⇒ D ′′′′2 ⦂ T ′1 where C ′1 ∼T ′

1
D′′′′1 and C ′2 ∼T ′

2
D ′′′′2 . So using the

renaming property we may obtain π ∈ stab(T1) ∩ stab(T2) ∩ stab(T3) such that
D ′1|D ′2 ⦂T3 =⇒ π(D ′′1)|π(D ′′2)⦂T3 −→ π(D ′′′1)|π(D ′′′2)⦂T3 =⇒ π(D ′′′′1)|π(D ′′′2)⦂T3
as required.

3 The Lazy λµ-calculus

We now define a typed interaction system giving an interpretation of the (un-
typed) lazy λµ-calculus — i.e. a direct-style CPS interpretation of lazy functional
computation — yielding a novel, direct characterization of normal form bisim-
ulation as typed bisimulation. This acts as a non-trivial example of a typed
interaction system (as defined in the previous section) and a stepping stone to
the polymorphic typing system for the same underlying language in the next sec-
tion. First, we define an abstract machine for lazy CPS evaluation, in the form
of a nominal LTS in which actions make explicit the calls made by a program
to its environment. (Cf the analysis of λµ-calculus by π-calculus translation in
[5].)

Definition 6. The unnamed and named terms of the untyped λµ-calculus [21]
are given (respectively) by the following grammars:
t ::= x | λx.t | tt | µα.M
M ::= [α]t

We equip the set of λµ-terms with a group action by assuming a set N of
distinguished identifiers, partitioned into sorts (infinite subsets) of λ-variables
(x, y, z, . . .) and µ-variables (α, β, γ . . .) and (for later use) type variables (X,Y, Z, . . .).
The group of sort-preserving permutations on N acts pointwise on expressions
(i.e. permuting elements of N and fixing symbols not in N). We form a nominal
set of λµ-terms consisting of the terms in which the free variables are all in N
and those which occur bound (by λ or µ) are not, so that the support of a term
is its set of free variables.

Based on this syntax, we define the sets of expressions (control terms) which
determine the next transition of our abstract machine.

Definition 7. Control terms are given by the grammar: A ::= M | V | K | •

– M ranges over the set of λµ programs (named terms) — i.e. M ::= [α]t.
– V ranges over the set of λµ values (λ-abstractions) — i.e. V ::= λx.t.
– K ranges over the set of λµ continuations (named contexts with a single hole

at head position) — i.e. K[•] ::= [α] • | K[•t].
– • is the empty context.

As above we form a nominal set of control terms in which the support of each
element is its set of free variables.

Definition 8. An environment is a sort-respecting finite partial function E from
N into the nominal sets of unnamed λµ-terms and continuations. The nominal
set of environments has the G-action: (π · E)(a) = π · (E(π−1 · a)).

Direct-style CPS evaluation of a program in an environment proceeds as follows:

– A variable inside a continuation (E ;K[x]) fetches the term bound to x and
names it with a fresh µ-variable which is bound to K.

– A β-redex inside a continuation (E ;K[λx.ts]) binds s to a fresh λ-variable y
and K to a fresh µ-variable α and evaluates [α]t[y/x].

– A µ-abstraction inside a continuation (E ;K[µα.M) binds K to β and eval-
uates M [β/α].

– A named value (E ; [α]V) calls the continuation bound to α with V .

These transitions are labelled with actions of the form a〈
−→
b 〉, where a is the

variable called (if any) and
−→
b are the fresh variables created (if any). Except

for µ-abstraction reduction, each of these evaluation rules decomposes into a
complementary pair of input and output rules corresponding to the behaviour
of the active (or “positive”) part of the program and, a passive (or “negative”
part). This decomposition is made precise in Definition 10 (parallel composition
for configurations).

Definition 9. The nominal labelled transition system Compλµ is defined:

– States are pairs (E ;A), where E is an environment and A is a control term.
– The set of actions is L∪ ({+,−}×L), where L is the nominal set of labels⋃

x,α∈Nλ×Nµ

{α, x〈α〉, 〈α, x〉, 〈α〉}

– The transitions are given in Table 1. By convention, a variable name men-
tioned on the right of a rule but not the left is assumed not to occur there.

The polarity of a state is positive if the control term is a program or continuation,
and negative if it is a value or the empty context (we write V• for a passive term
of either kind). Unpolarized transitions send positive states to positive states.
Except for µ-abstraction reduction, each corresponds to complementary, positive
and negative transitions, which send positive states to negative states and vice-
versa.

(E [α 7→ K]; [α]V•)
α−→ (E ;K[V•])

(E ;K[(λx.s)t])
〈y,α〉−→ (E , (y 7→ t), (α 7→ K); [α]s[y/x])

(E [x 7→ t];K[x])
x〈α〉−→ (E , (α 7→ K); [α]t)

(E ;K[µα.M])
〈β〉−→ (E , (β 7→ K);M [β/α])

(E ; [α]V•)
+α−→ (E ;V•) (E [α 7→ K];V•)

−α−→ (E ;K[V•])

(E ;K[•t]) +〈y,α〉−→ (E , (y 7→ t), (α 7→ K); •) (E ;λx.t)
−〈y,α〉−→ (E ; [α]t[y/x])

(E ;K[x])
+x〈α〉−→ (E , (α 7→ K); •) (E [x 7→ t]; •) −x〈α〉−→ (E ; [α]t)

Table 1: Abstract machine for CPS evaluation of lazy λµ-calculus

(;λf.f λx.x) (; [α] • λy.y)
−〈g,β〉
↓

+〈g,β〉
↓

(; [β]gλx.x) ((β 7→ [α]•), (g 7→ λy.y); •)
+g〈γ〉
↓

−g〈γ〉
↓

((γ 7→ [β]• λx.x); •) ((β 7→ [α]•), (g 7→ λy.y); [γ]λy.y)
−γ
↓

+γ

↓
((γ 7→ [β] • λx.x); [β]• λx.x) ((β 7→ [α]•), (g 7→ λy.y);λy.y)

+〈z,δ〉
↓

−〈z,δ〉
↓

(γ 7→ [β]• λx.x), (z 7→ λx.x), (δ 7→ [β]•); •) ((β 7→ [α]•), (g 7→ λy.y); [δ]z)
−z〈ε〉
↓

+z〈ε〉
↓

(γ 7→ [β]• λx.x), (z 7→ λx.x), (δ 7→ [β]•); [ε]λx.x) ((β 7→ [α]•), (g 7→ λy.y), (ε 7→ [δ]•); •)
+ε

↓
−ε
↓

(γ 7→ [β]• λx.x), (z 7→ λx.x), (δ 7→ [β]•);λx.x) ((β 7→ [α]•), (g 7→ λy.y), (ε 7→ [δ]•); [δ]•)
−δ
↓

+δ

↓
(γ 7→ [β]• λx.x), (z 7→ λxy.x), (δ 7→ [β]•); [β]λx.x) ((β 7→ [α]•), (g 7→ λy.y), (ε 7→ [δ]•); •)

+β

↓
−β
↓

(γ 7→ [β]• λx.x), (z 7→ λx.x), (δ 7→ [β]•);λx.x) ((β 7→ [α]•), (g 7→ λy.y), (ε 7→ [δ]•); [α]•)

Fig. 1: Example traces evaluating [α](λf.f λx.x)λy.y

To define an interaction structure on Compλµ (Definition 4) we require a
parallel composition operation on configurations.

Definition 10. [Parallel Composition] On control terms, let | be the (least) par-
tial operation such that A|• = •|A = A and K|V = V |K = K[V].
Given configurations C1 = (E1;A1) and C2 = (E2;A2) let C1|C2 , (E1 ∪
E2;A1|A2), provided dom(E)∩dom(E) = ∅ and A1|A2 is well-defined. (C1|C2 is
undefined, otherwise.)

By inspection of the transitions in Table 1, we may see that C1|C2 has precisely
the transitions of C1 or C2 (provided any fresh names are fresh for C1|C2),
together with internal transitions arising from communication between C1 and
C2. Therefore we have an interaction structure according to Definition 4. Figure
1 gives an illustrative example: the evaluation of [α](λf.f λx.x)λy.y — which is
the parallel composition (λf.f λx.x)|([α] • λy.y) — to [α]λx.x.

3.1 A Typing System

We now define a basic typing system for configurations which records minimal
information about the control term (whether it is a program, value, continuation
or empty context) but captures a more significant property of environments —
acyclicity. This has practical relevance for memory management, but its imme-
diate significance is that the second order typing in the next section relies on

the fact that an acyclic environment may be contracted into a valuation by it-
eratively replacing variables bound in the environment until none occur as free
variables.

Definition 11. Given a nominal environment E, define the binary relation on
N : a �E b if a ∈ sup(E(b)) and let �∗E be its transitive closure. Say that E is
a pre-valuation (i.e. acyclic) if this is a strict partial order — i.e. a 6�∗ a for
all a ∈ N . E is a valuation if �E=�∗E — i.e. sup(E(a)) ∩ dom(E) = ∅ for all
a ∈ dom(E).

We assume a closure operation which takes an expression e and pre-valuation
E to an expression E(e) obtained by replacing each atom a ∈ dom(E) with
E(a) in e, having the property that sup(E(e)) ∩ dom(E) =

⋃
{sup(E(a)) | a ∈

sup(e) ∩ dom(E)}.
Lemma 1. For any pre-valuation E there is a unique valuation E∗ such that
E∗(E(e)) = E∗(e) for all expressions e.

Proof. Defining E i by E i+1(a) = E i(E(a)), the E i form a chain of pre-evaluations
such that the �E downward closure of

⋃
{sup(E i(a)) ∩ dom(E) | a ∈ dom(E)}

is empty or strictly decreasing, and thus is empty for some k — i.e. Ek is a
pre-valuation and thus Ek(E(a)) = E(Ek(a)) = Ek(a) for all a ∈ dom(E), and so
E∗(E(e)) = E∗(e) for all expressions e. If E∗(e) = E∗(E(e)) for all expressions e,
then E∗(e) = E∗(Ek(e)) = Ek(e) for all e.

Definition 12. The basic types for control terms are tuples Γ ` τ ;∆ where
τ ∈ {>,⊥} and Γ,∆ are non-repeating sequences — i.e. totally ordered finite
sets — of λ and µ variables in N , respectively.

A control term A is well-typed with Γ ` τ ;∆ if FV (A) ⊆ Γ ∪∆ and τ = >
if and only if A is a value or continuation. Basic types form a nominal set with
the evident pointwise G-action.

Configurations are typed with polarized versions of these types. Given a polar-
ized context (non-repeating sequence of polarized variables) Γ = p1x1, . . . , pnxn
we write |Γ | for the unpolarized context x1, . . . , xn, Γ for the polarized con-
text p1x1, . . . , pnxn, and Γ p for the (unpolarized) restriction of Γ to p-polarized
elements.

Definition 13. The nominal LTS Tyλµ of basic λµ configuration types:

– States are polarized configuration types — triples Γ ` pτ ;∆, where pτ ∈
{+,−}×{>,⊥} and Γ and ∆ are polarized contexts of λ and µ variables in
N .

– Actions are the polarized actions of Compλµ — Obs = {+,−} × L
– Transitions are given by the rules in Table 2.

We now define a typing relation from configurations to types. Let Γ be a polar-
ized context. A pre-valuation for Γ is a pre-valuation E such that Γ+ ⊆ dom(E),
sup(E(a)) ⊆ dom(E)∪Γ− for every a ∈ dom(E), and if a, b ∈ Γ and a�∗E b then
a <Γ b. Observe that if E is a pre-valuation for Γ , then E∗ is a valuation for Γ
such that for all a ∈ Γ+, FV (E∗(a)) ⊆ Γ−.

Γ ` p>;∆
p〈x,α〉
↪→ Γ, px ` p⊥;∆, pα

Γ [px] ` p⊥;∆
px〈α〉
↪→ Γ ` p⊥;∆, pα

Γ ` p>;∆[pα]
pα
↪→ Γ ` p⊥;∆

Γ ` p⊥;∆[pα]
pα
↪→ Γ ` p>;∆

Table 2: Transitions of basic configuration types

Definition 14 (λµ Typing Relation). (E ;A) ⦂ (Γ ` pτ ;∆) if pol(E ;A) = p
and E is a pre-valuation for Γ ∪∆ such that Γ− ` E∗(A) : τ ;∆−, and for each
x ∈ Γ+, Γ− ` E∗(x) : >;∆− and each α ∈ ∆+, Γ− ` E∗(α) : >;∆−.

It is straightforward to check that this satisfies the subject reduction properties
and thus defines a type system for Compλµ.

Remark 1. We may apply a second constraint via our type system: local control
flow — that continuations are called according to a LIFO discipline and thus
may be stored on a stack (in game semantic terms, the well-bracketing condition).
Evaluation of λ-terms by internal (and positive) transitions naturally satisfies
this property — we can use types to ensure that the environment also does so.

Definition 15. A configuration type Γ ` pτ ;∆ satisfies the local control condi-
tion if the polarities of µ-variables in ∆ are alternating, and the polarity of the
last element of ∆ (if any) is p.

Transitions for local control types are given by refining the rules for calling a
continuation to enforce stack discipline:

Γ ` p>;∆, pα
pα−→ Γ ` p⊥;∆

Γ ` p⊥;∆, pα
pα−→ Γ ` p>;∆

Subject reduction holds with respect to λ-configurations (in which the con-
trol term, and all terms and continuations in the environment, contain no µ-
abstractions).

3.2 A Typed Interaction Structure

We now define an arrow relation, allowing a characterization of parallel composi-
tion with hiding for acyclic configurations. (Acyclicity is not preserved by union
of environments in general, so the typing rules give a useful way of identifying
pairs of configurations for which it does hold.)

Definition 16. The arrow relation on configurations Ti = Γi ` pτi;∆i is de-

fined pointwise — T1
T2

(T3 if Γ1

Γ2

(Γ3, ∆1

∆2

(∆3, and pτ1
pτ2
(pτ3 — where

– For any polarized contexts, Σ1

Σ2

(Σ3 if Σ1 and Σ3 have disjoint underlying
sets of elements and Σ2 is an interleaving of Σ1 and Σ3.

– pτ1
pτ2
(pτ3 iff pτ1 = −⊥ and pτ2 = pτ3 or pτ3 = +⊥ and pτ2 = pτ1.

It remains to show that this satisfies Definition 5.

Proposition 2. (Tyλµ,() is a well-defined typing system for (Compλµ, |).

Proof. Given C1 = (E1;A1) and C2 = (E2;A2), suppose C1 : T1, C2 : T2 and
sup(C1) ∩ sup(C2) ⊆ sup(T1) = |Γ1| ∪ |∆1|:

– A1|A2 is well-defined, and has type τ3, since either A1 : −⊥ (i.e. A1 = •) and
so A1|A2 : τ2, or A1 and A2 have complementary types, and so A1|A2 : +⊥
(i.e. they are a term and context which fit together to give a program).

– E1 ∪ E2 is a pre-valuation, since the directed graph (�E1 ∪ �E2) is acyclic.
(Any cycle in this graph would have to contain vertices from both �E1 and
�E2 , since both fragments are acyclic. Any path which enters and leaves one
fragment must begin and end on points which are ordered by Γ ∪∆ and so
composing such paths cannot lead to a cycle.)

Moreover, it is straightforward to verify that the interaction conditions are sat-
isfied and that we therefore have a typed interaction structure.

Thus, by Proposition 1, typed bisimilarity is preserved by parallel composition
plus hiding.

Proposition 3. If C1 ∼T1
D1, C2 ∼T2

D2 and T1
T2

(T3 then C1|C2 ∼T3
D1|D2.

It immediately follows that (for example) bisimilarity of values is preserved by
placing them inside the same continuation — i.e. if (; v) and (; v′) are bisimilar
at type Γ ` −>;∆ then (;K[v]) and (;K[v′]) are bisimilar at type Γ ` +⊥;∆.
Moreover, if typed bisimilarity is extended to an equivalence on all λµ-terms —
s ∼Γ ;∆ t if (; [α]s) ∼−Γ`+⊥;−∆,−α (; [α]t), for α 6∈ ∆ — we may use Proposition
3 to show that if s ∼Γ ;∆ t then for any compatible context, C[t] ∼Γ ;∆ C[t′].

4 A Polymorphic Type System

In this section we describe a more restrictive and informative typing system for
the interaction structure of λµ configurations. This yields a model of the lazy
λµ2-calculus — i.e. lazy λµ-calculus with polymorphic (second-order) Curry-
style typing, which we now describe.

In order to fit such a type system to a semantics of lazy evaluation to weak
head-normal form, we combine λ-abstraction and application with abstraction
and instantiation of finite sequences of type variables — i.e. function types take
the form ∀(X1 . . . Xn).σ → τ , where X1 . . . Xn is a finite, non-repeating sequence
of type variables. The judgments Θ ` τ (τ is a well-formed type over the context
of type-variables Θ) are derived according to the rules:

Θ,X,Θ′`X
Θ,X1,...,Xn`σ Θ,X1,...,Xn`τ

Θ`∀(X1...Xn).σ→τ

Typing judgments are given with respect to an equational context (finite
sequence of equations between types). These contexts play a key role in defining
states in our LTS of types — they record constraints that type-instantiations
must satisfy. For example, if a continuation K (with a hole) of type σ is called
with an argument v of type τ then the type variables in σ and τ must have been
instantiated so as to make these types equal. Formally, we define the judgment
Θ ` Ξ (Ξ is a well-formed equational context over Θ) as follows:

Θ`
Θ`Ξ Θ`σ Θ`τ

Θ`Ξ,σ=τ

Type equality judgments with respect to an equational context, of the form
Θ;Ξ ` σ = τ (where Θ ` Ξ, σ, τ) are derived according to the rules:

Θ;Ξ[σ=τ]`σ=τ Θ;Ξ`τ=τ
Θ;Ξ`ρ=τ Θ;Ξ`σ=τ

Θ;Ξ`ρ=σ

Θ;Ξ`∀
−→
X.σ→τ=∀

−→
X.σ′→τ ′

Θ,
−→
X ;Ξ`σ=σ′

Θ;Ξ`∀
−→
X.σ→τ=∀

−→
X.σ′→τ ′

Θ,
−→
X`τ=τ ′

Θ,
−→
X ;Ξ`σ=σ′ Θ,

−→
X`τ=τ ′

Θ;Ξ`∀
−→
X.σ→τ=∀

−→
X.σ′→τ ′

A valuation V for Θ satisfies an equational context Θ ` σ1 = τ1, . . . , σn = τn if
V(σi) ≡ V(τi) for each i ≤ n.

Lemma 2. Θ;Ξ ` σ = τ if and only if for all valuations V which satisfy Ξ,
V(σ) ≡ V(τ).

A λµ2 type-in-context is a tuple Θ;Ξ;Γ ` τ ;∆, where Θ is a context of type
variables and Ξ is an equational context, τ is a λµ2-type (or ⊥) and Γ and ∆
are (respectively) sequences of λ-variables and µ-variables and their types (all
over Θ). Assigning this type to a term may be understood as asserting that
“for any valuation V of the type-variables in Θ which satisfies Ξ, the judgement
V(Γ) ` t : V(τ);V(∆) is valid”. So, for example, X,Y ;Y = X → X; ` λx.x : Y ;
is derivable according to the rules in Table 3. Note that there are no rules for
introducing or discharging equational assumptions — they will be generated by
the transitions of the LTS — so the terms of type Θ; ;Γ ` t : τ ;∆ are precisely
those derivable in second-order λµ-calulus without type equality judgments.

Θ;Ξ;Γ [x:τ]`x:τ ;∆
Θ;Ξ;Γ`t:σ;∆ Θ;Ξ`σ=τ

Θ;Ξ;Γ`t:τ ;∆
Θ,X1:κ,...,Xn:κn;Ξ;Γ,x:σ`t:τ ;∆
Θ;Ξ;Γ`λx.t:∀X1...Xn.(σ→τ);∆

Θ;Ξ;Γ`t:∀X1...Xn.σ→τ ;∆ Θ`ρ1,...,ρn Θ;Ξ;Γ`s:σ[ρ1/X1...ρn/Xn];∆
Θ;Ξ;Γ`ts:τ [ρ1/X1...ρn/Xn];∆

Θ;Ξ;Γ`t:τ ;∆[α:τ]
Θ;Ξ;Γ`[α]t:⊥;∆

Θ;Ξ;Γ`M :⊥;∆,α:τ
Θ;Ξ;Γ`µx.M :τ ;∆

Table 3: Typing Judgments for the lazy λµ2-Calculus

4.1 Second-Order Configuration Types

We now define a second-order typing system for the interaction structure Compλµ
of λµ configurations. Its states (second-order configuration types) capture the
totality of information about the types of the control term and environment,
and the instantiations for type variables by both a program and its environment,
which may be inferred by an external observer of their interaction.

Definition 17. A second-order configuration type is a polarized λµ2 type-in-
context — a tuple Θ;Ξ;Γ ;` pτ ;∆, where Θ is a polarized context of type-
variables, and Ξ is a polarized equational context, Γ and ∆ are polarized contexts
of typed λ and µ variables and pτ is a polarized λµ2-type (or ⊥), all over Θ .

We place a further constraint — “polarized satisfiability” — on the configuration
types which are permitted as states. This requires that their equational contexts
can actually be satisfied by a program and environment successively instanti-
ating type variables quantified positively and negatively (respectively), without
knowing the types instantiated by the counterparty.

Definition 18. A pre-valuation V for a polarized context of type variables Θ
positively satisfies the polarized equational context Θ ` Ξ (written V �Θ Ξ)
if for any pre-valuation W for Θ, the first formula in Ξ not satisfied by the
valuation (V ∪W)∗ for |Θ| (if any) is negative. Θ ` Ξ is (polarized) satisfiable
if Ξ ` Θ and Θ ` Ξ are both positively satisfiable. Note that this implies that
the underlying context |Θ| ` |Ξ| is satisfiable.

Determining whether a polarized context is satisfiable is equivalent to a series
of conditional (first-order) unification problems: these can be solved using the
algorithm for first-order unification [11]. We place an equivalence relation on con-
figuration types (cf. structural congruence of processes), allowing the principal
type to be replaced by any of the (finitely many) types to which it is equivalent
under Ξ.

Definition 19. (Θ;Ξ;Γ ` pτ ;∆) h (Θ;Ξ;Γ ` pτ ′;∆) if Θ;Ξ ` τ = τ ′.

The (bipartite, nominal) LTS Tyλµ2 of λµ2 is defined:

– States are h-classes of satisfiable configuration types Θ;Ξ;Γ ` pτ ;∆.
– Actions are polarized actions of Compλµ: Obs = {+,−} × L.
– Transitions are given by the rules in Table 4.

To define a typing relation between configurations and λµ2-configuration
types, we first define typing judgements Θ;Ξ;Γ ` A : τ ;∆ for control terms. In
the case of programs and values, these are as derived according to the rules in
Table 3. For continuations, the rules

Θ;Ξ;Γ`[α]•:τ ;∆[α:τ]
Θ;Ξ;Γ`K:τ [ρ1/X1...ρn/Xn];∆ Θ;Ξ;Γ`s:σ[ρ1/X1...ρn/Xn]

Θ;Ξ;Γ`K[•s]:∀X1...Xn.σ→τ ;∆

are equivalent to typing Θ;Ξ;Γ ` K : τ ;∆ if Θ;Ξ;Γ, • : τ ` K[•] : ⊥;∆. The
empty context has type ⊥ in any well-formed context.

Θ;Ξ;Γ ` p∀X1 . . . Xn.σ → τ ;∆
p〈x,α〉
↪→ Θ, pX1, . . . , pXn;Ξ;Γ, px : σ ` p⊥;∆, pα : τ

Θ;Ξ;Γ [px : τ]; p⊥
px〈α〉
↪→ Θ;Ξ;Γ ` p⊥;∆, pα : τ

Θ;Xi;Γ ` p⊥;∆[pα : τ]
pα
↪→ Θ;Ξ;Γ ` pτ ;∆

Θ;Ξ;Γ ` pσ;∆[pα : τ]
pα
↪→ Θ;Ξ, p(σ = τ);Γ ` p⊥;∆

Table 4: Transitions of second-order configuration types

Definition 20 (Typing Relation). Let V be a valuation for Θ which positively
satisfies Ξ, and define V � (E ;A) ⦂ Θ;Ξ;Γ ` pτ ;∆ if E is a pre-valuation
for Γ,∆, such that Θ−;V(Ξ−);V(Γ−) ` E∗(A)) : V(τ);V(∆−) and for each
x : σ ∈ Γ+, Θ−;V(Ξ−);V(Γ−) ` E∗(x) : V(σ);V(∆−) and each α : σ ∈ ∆+,
Θ−;V(Ξ−);V(Γ−) ` E∗(α) : V(σ);V(∆−).

Let C ⦂ T if there exists a valuation V for Θ such that V � C ⦂ T .

Note that if C ⦂ T and T h T ′ then C ⦂ T ′, so typing is a well-defined relation
from configurations to equivalence classes of configuration types.

Proposition 4. (Compλµ ⦂ Tyλµ2) satisfies the subject reduction property.

Proof. For the observable transitions, this is a straightforward observation that
the typing relation is preserved. For internal transitions (specifically, β reduc-
tions), we use the corresponding subject reduction property for λµ2 substitu-
tions — i.e. if Θ;Ξ;Γ ` K[λx.ts] : ⊥;∆ then Θ;Ξ;Γ ` K[t[s/x]] : ⊥;∆ and if
Θ;Ξ;Γ ` K[µα.t] : ⊥;∆ then Θ;Ξ;Γ ` t[K/α] : ⊥;∆.

Figure 2 gives an example illustrating the role of types in constraining be-
haviour: a trace of the value λf.f v ⦂ ∃X.X, where v is an arbitrary typable
value (recall that ∃X.X , ∀Y.(∀X.X → Y) → Y). Observe that there are
no transitions from the the final state — a call to γ is not possible because
−Y,+X ` −(Y ′ = X ′) is not negatively satisfiable. In fact, the tree of transi-
tions of ∃X.X branches only on negative transitions (i.e. Opponent moves). It
follows that any configuration of this type will have the same set of transitions,
and that therefore λf.f λxy.x ∼∃X.X λf.f λxy.y as proposed in the introduction.

4.2 A Second-Order Typed Interaction Structure

It remains to prove that Tyλµ2 is a well-defined typing system for the interaction
structure on Compλµ, and that typed bisimulation is therefore a congruence. We
need to establish that the pointwise extension of the arrow relation (Definition

16) to second-order configuration types (i.e. T1
T2

(T3 if Θ1

Θ2

(Θ3, Ξ1

Ξ2

(Ξ3,

Γ1

Γ2

(Γ3, ∆1

∆2

(∆3, and pτ1
pτ2
(pτ3) satisfies the conditions of Definition 5

— that if C1 = (E1;A1) ⦂ T1 and C2 = (E2;A2) ⦂ T2, where T1
T2

(T3 and

(;λf.f v) ⦂ (; ; ` −(∀X.X → Y)→ Y ;)

−〈g,α〉
↓

(; [α]g v) ⦂ (−Y ′; ;−g : ∀X.X → Y ′ ` +⊥;−α : Y ′)

+g〈β〉
↓

((β 7→ [α] • v); •) ⦂ (−Y ′; ;−g : ∀X.X → Y ′ ` −⊥;−α : Y ′,+β : ∀X.X → Y ′

−β
↓

((β 7→ [α] • v); [α] • v) ⦂ (−Y ′; ;−g : ∀X.X → Y ′ ` +∀X.X → Y ′;−α : Y ′)

+〈z,γ〉
↓

((β 7→ [α] • v), (z 7→ v), (γ 7→ [α]•); •) ⦂ (−Y ′,+X′; ;−g : ∀X.X → Y ′,+z : X′ ` −⊥;−α : Y ′,+γ : Y ′)

−z〈δ〉
↓

((β 7→ [α] • v), (z 7→ v), (γ 7→ [α]•); [δ]v) ⦂ (−Y ′,+X′; ;−g : ∀X.X → Y ′,+z : X′ ` +⊥;−α : Y ′,+γ : Y ′,−δ : X′)
+δ

↓
((β 7→ [α] • v), (z 7→ v), (γ 7→ [α]•); v) ⦂ (−Y ′,+X′; ;−g : ∀X.X → Y ′,+z : X′ ` −X′;−α : Y ′,+γ : Y ′)

Fig. 2: Trace of λf.f v : ∃X.X

sup(C1)∩sup(C2) ⊆ sup(T1), then C1|C2 is well-defined, has type T3 and satisfies
the interaction conditions.

By Proposition 2, C1|C2 = (E1 ∪ E2;A1|A2) is a well-defined configuration,
and E , E1 ∪ E2 is a pre-valuation for Γ3 ∪∆3. By the assumption that C1 ⦂ T1
and C2 ⦂T2, there are valuations V1 � C1 ⦂T1 and V2 � C2 ⦂T2. Then V , V1∪V2
is a pre-valuation for Θ3. To show that V∗ � C1|C2 ⦂T3, we need to verify that:

Lemma 3. V positively satisfies Ξ3.

Proof. Let W be a pre-valuation for Θ3. The first formula in Ξ2 (if any) which
is not satisfied by V ∪ W = V1 ∪ V2 ∪W cannnot be positive in Ξ1 (positively
satisfied by V1) nor in Ξ2 (positively satisfied by V2), and so must be a negative
formula in Ξ3.

Lemma 4. Θ−3 ;V∗(Ξ3);V∗(Γ−3) ` E∗(A1|A2) : V(τ);V∗(∆−3)

Proof. Observe that E∗ = (E∗1 · E∗1)i and V = (V2 · V1)i for some i ≤ n. Hence,
it suffices to prove by induction on i that Θ2; (V2 · V1)i(Ξ2); (V2 · V1)i(Γ−2) `
(E∗2 · E∗1)i(A1|A2); (V2 · V1)i(∆−2).

Similarly, each term and continuation assigned to an output variable is well-
typed under closure by V∗ and E∗ and thus:

Proposition 5. C1|C2 ⦂ T3.

It remains to show that the interaction conditions of Definition 5 are satisfied.

The key is establishing condition 1 — that if C1
pl−→ C ′1 and C2

pl−→ C ′2 then

T1
pl
↪→ T ′1 and T2

pl
↪→ T ′2 such that T ′1

T ′
2

(T3. This requires some further investiga-
tion of configuration types.

The interesting cases are those where A1 ≡ λx.t and A2 ≡ K[•s] (or vice-
versa) and so they can perform the complementary actions −〈y, α〉 and +〈y, α〉.
We need to show that |Θ1|; |Ξ1| ` τ is non-atomic — that is, |Θ1|; |Ξ1| ` τ =
∀X1 . . . Xm.ρ→ σ — for some ρ, σ. Observe that this implies that |Θ2|; |Ξ2| ` τ
is also non-atomic (since Ξ2 contains the equations in Ξ1) so that T1 and T2 can
perform the complementary actions −〈y, α〉 and +〈y, α〉.

Since any derivation of a typing judgement for λx.t or K[•s] must conclude
with→-introduction followed by applications of the type-equality rule we have:

Lemma 5. If Θ;Ξ;Γ ` λx.t : τ ;∆ or Θ;Ξ;Γ ` K[•s] : τ ;∆ then Θ;Ξ ` τ is
non-atomic.

Hence, by the assumption that (E1;λx.t)⦂(Θ1;Ξ2;Γ1 ` −τ ;∆1) and (E2;K[•t])⦂
(Θ2;Ξ2;Γ2 ` +τ ;∆) we know that Θ1;V1(Ξ1) ` V1(τ) and Θ2;V∗2 (Ξ2) ` V∗2 (τ)
are non-atomic. From the latter we may infer that Θ1;V∗2 (Ξ1) ` V∗2 (τ) is non-
atomic, since Θ2 and Ξ2 are interleavings of Θ1 and Ξ1 with the disjoint contexts
Θ3 and Ξ3.

So to show that |Θ1|; |Ξ1| ` τ is non-atomic is it is sufficient to prove the
contrapositive.

Lemma 6. Suppose V+ �Θ Ξ and V− �Θ Ξ, where |Θ|; |Ξ| ` τ is atomic. Then
either Θ−;V+(Ξ) ` V+(τ) or Θ+;V−(Ξ) ` V−(τ) is atomic.

Proof. We extend the grammar of types with an unbounded set of “neutral
atoms” A,B,C, . . ., which are equal only if syntactically identical, and prove the
lemma for this extended set of types by an outer induction on the size of Θ, and
an inner induction on the sum of the lengths of the types in Ξ.

At least one of V+(τ) and V−(τ) must be atomic and so if Ξ is empty then
the hypothesis holds. Otherwise, Ξ ≡ p(σ = σ′), Ξ ′ for some types σ, σ′ and
equational context Ξ ′ over Θ, and polarity p ∈ {+,−}.

If σ and σ′ are both non-atomic, then by satisfiability σ ≡ ∀X1 . . . Xn.ρ1 →
ρ2 and σ ≡ ∀X1 . . . Xn.ρ

′
1 → ρ′2 for some ρ1, ρ2, ρ

′
1, ρ
′
2. Letting A1, . . . , An be

fresh, distinct atomic types, define ρ̂ = ρ[A1/X1, . . . , An/Xn]. The equational
context Ξ ′′ = p(ρ̂1 = ρ̂1

′), p(ρ̂2 = ρ̂2
′), Ξ ′ is equivalent to (satisfied by the

same valuations as) Ξ, and so Θ;Ξ ′′ ` τ is atomic, and positively and neg-
atively satisfied by V+ and V−. Hence, by inner induction hypothesis, one of
Θ−;V+(Ξ ′′) ` V+(τ) or Θ+;V−(Ξ ′′) ` V−(τ) is atomic.

Otherwise at least one of σ and σ′ is atomic. If σ ≡ σ′, then we may discard
the tautology σ = σ′ and apply the (inner) inductive hypothesis to Θ;Ξ ′ ` τ .
Otherwise at least one of σ, σ′ must be a type-variable with polarity p in Θ (none
of the other cases are p-satisfiable). So assume without loss of generality that
Θ ≡ Θ′, pX,Θ′′ and Ξ ≡ p(σ = X), Ξ ′. We may show that:

– Θ′, Θ′′;Ξ ′[σ/X] ` τ [σ/X] is atomic.
– Θ,Θ′′ ` Ξ ′[σ/X] is positively satisfied by V+ and negatively satisfied by V−.

So by the outer inductive hypothesis, either (Θ′, Θ′′)−;V+(Ξ[σ/X]) ` V+(τ) or
(Θ,Θ′′)+;V−(Ξ[σ/X]) ` V−(τ) is atomic, and hence either Θ−;V+(Ξ) ` V+(τ)
or Θ+;V−(Ξ) ` V−(τ) is atomic.

We have shown that the arrow relation satisfies the first interaction condition.
2 and 3 are straightforward to verify, establishing that (Compλµ2 ⦂ Tyλµ2) is
a well-defined typed interaction structure. Therefore, by Proposition 1, typed
bisimulation is preserved by parallel composition plus hiding, and thus:

Theorem 1. Typed bisimulation is a congruence for the λµ2-calculus.

5 Conclusions and Further Directions

We have described a “Curry-style” approach to game semantics, and used it to
give new models of polymorphism. Various existing models may also be framed as
typed interaction systems, such as the semantics of call-by-value in [12]. Nor are
instances restricted to operational game semantics: for example we can present
linear combinatory algebras of games and strategies in this way, and poten-
tially other models of concurrent interaction. Unlike basic Church-style game
semantics, these models give the opportunity to make finer distinctions between
programs based on internal behaviour, which we have not explored here.

The notion of typed interaction structure reflects only limited structure of our
models, but may be developed further. Having characterized parallel composition
plus hiding within this setting, a natural next step would be a notion of copycat
strategy, leading to structure for sharing and discarding information. One goal
for such a development would be to put the generalization of congruence from
configurations to terms on a systematic footing.

In another direction, our models of polymorphism may be developed further.
In particular combining and fully exploiting generic and abstract data types
often requires higher-order polymorphism, in which quantifiers range over type
operators (functions which take types as arguments and return them as values).
Whereas this is difficult to represent in game semantics, our model readily ex-
tends to a typing system based on System Fω, which allows quantification over
type-operators: the price to pay is that satisfiability of configuration types (and
thus effective presentation of the states of our LTS) requires the solution of
higher-order unification problems, which are undecidable, in general.

References

1. S. Abramsky. The lazy λ-calculus. In D. Turner, editor, Research Topics in Func-
tional Programming, pages 65–117. Addison Wesley, 1990.

2. S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. Infor-
mation and Computation, 163:409–470, 2000.

3. M. Berger, K. Honda, and N. Yoshida. Sequentiality and the π-calculus. In Proceed-
ings of TLCA 2001, volume 2044 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

4. M. Berger, K. Honda, and N. Yoshida. Genericity and the π-calculus. Acta Infor-
matica, 42, 2005.

5. M. Berger, K. Honda, and N. Yoshida. Process types as a descriptive tool for
interaction: Control and the π-calculus. In Proceedings of the Rewriting and Typed
Lambda-calculi - joint international conference, 2014.

6. D. R. Ghica and N. Tzevelekos. System level game semantics. Proceedings of
MFPS XXVIII, ENTCS volume 286, pages 191 –211. 2012.

7. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50, 1987.
8. D. Hughes. Games and definability for System F. In Proceedings of the Twelfth

International syposium on Logic in Computer Science, LICS ’97. IEEE Computer
Society Press, 1997.

9. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II and III.
Information and Computation, 163:285–408, 2000.

10. A. Igurashi and N. Kobayashi. A generic type system for the π-calculus. Theoretical
Computer Science, 311:121–163, 2004.

11. Vladimir N. Krupski. The single-conclusion proof logic and inference rules speci-
fication. Annals of Pure and Applied Logic, 113:181 – 206, 2002.

12. J. Laird. A fully abstract trace semantics for general references. In 34th ICALP,
volume 4596 of LNCS, pages 667–679. Springer, 2007.

13. J. Laird. Game semantics of call-by-value polymorphism. In Proceedings of ICALP
’10, number 6198 in LNCS. Springer-Verlag, 2010.

14. J. Laird. Game semantics for a polymorphic programming language. Journal of
the ACM, 60(4), 2013.

15. S. B. Lassen and P. B. Levy. Typed normal form bisimulation. In Proceedings 16th
EACSL Conference on Computer Science and Logic, number 4646 in LNCS, pages
283–297, 2007.

16. Joachim de Lataillade. Curry-style type isomorphisms and game semantics. MSCS,
18:647–692, 2008.

17. P. B. Levy and S. Lassen. Typed normal form bisimulation for parametric poly-
morphism. In Proceedings of LICS 2008, pages 341–552. IEEE press, 2008.

18. Paul Levy and Sam Staton. Transition systems over games. In CSL-LICS ’14.
ACM Press, 2014.

19. G. Longo. Set-theoretical models of lambda calculus: Theories, expansions and
isomorphisms. Annals of Pure and Applied Logic, 24:153188, 1983.

20. J. Mitchell and G. Plotkin. Abstract types have existential type. ACM transactions
on Programming Languages and Systems, 10(3):470–502, 1988.

21. M. Parigot. λµ calculus: an algorithmic interpretation of classical natural deduc-
tion. In Proc. International Conference on Logic Programming and Automated
Reasoning, pages 190–201. Springer, 1992.

22. Joachim Parrow, Johannes Borgström, Lars-Henrik Eriksson, Ramunas Gutkovas,
and Tjark Weber. Modal Logics for Nominal Transition Systems. In 26th Inter-
national Conference on Concurrency Theory (CONCUR 2015), volume 42, pages
198–211, 2015.

23. A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

24. J. C. Reynolds. Towards a theory of type structure. In Proceedings of the Pro-
gramming Symposium, Paris 1974, number 19 in LNCS. Springer, 1974.

25. D. Sangiorgi. The lazy λ-calculus in a concurrency scenario. Information and
Computation, 111:120 –153, 1994.

26. M. Smyth and G. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing, 11(4):761–783, 1982.

27. N. Tzevelekos and G. Jaber. Trace semantics for polymorphic references. In Proc.
LICS’16, pages 585–594. ACM, 2016.

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A Curry-style Semantics of Interaction: From untyped to second-order lazy -calculus

