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Abstract

Real-time hybrid testing is a technology which allows the coupling of simulations and compo-
nent tests in order to simulate complex system dynamics. Delays and time lags caused by actuator
dynamics and signal processing deteriorate the stability of the tests in many cases. The application
of adaptive feedforward filters to hybrid testing enables circumventing this problem. The stability
of the filter itself, however, can be affected by the choice of the algorithm parameters or changes in
dynamics of the system being tested. Test safety requirements and practical considerations require
a failsafe implementation. In this paper, we propose a method for adjusting the parameters of the
adaptive feedforward filter based on power-flows in the test setup. The objective is to maintain a
passive behavior of the actuation and control system. The stabilization acts on the leakage factor and
the adaptation gain of a least-mean-squares adaptation law. A simple numerical system is used to
investigate the effect of the algorithm parameters on the stabilization. The method was applied to an
experimental setup including a nonlinear stiffness. Several originally unstable configurations were
stabilized, the adaptation process could be continued and interface synchronization was achieved in
all test cases.

1 Introduction
Real-time hybrid testing—also referred to as real-time dynamic substructuring—is a method for imple-
menting realistic dynamical tests of components of complex systems. The system is split into a virtual
system—which is simulated in real time—and an experimental component which is physically present
in the test. Applications of the method have been reported in various fields as in aerospace, automotive,
civil and mechanical engineering. In literature, a large number of use cases have been described. To
name only a few examples: Satellite tests using hybrid approaches are proposed in [5], [7] describes
air-to-air refilling scenarios and [16] proposes the tests on chassis dynamics of cars in combination
with aerodynamic simulations. The objective of any real-time hybrid testing technology is to test the
experimental component under realistic boundary conditions. To do so, the dynamics of the virtual
component are coupled to the test rig during the test, using an actuation system. Actuators apply forces
to the interface of the experimental component, while sensors measure interface forces and interface
displacements. Most test setups make time lags and delays inevitable. Frequency-dependent time lags
are caused by the dynamics of the actuators. Delays are caused by the computational and communica-
tion processes as well as by signal-processing procedures. Time lags and delays can cause instability or
inaccuracies if occurring in a test without a further compensation technique. To overcome these stability
problems, a number of methods have been proposed in hybrid-testing literature. [10] suggests using a
polynomial forward prediction scheme which compensates for delay and amplitude errors. Based on
this work, [19] introduces an additional adaptation scheme which tunes phase shifts and amplitude cor-
rections according to errors at the zero crossings. Other methods for delay compensation and interface
synchronization include the application of model reference adaptive control by [18], inverted models of
the actuation system by [6] and model predictive control by [17]. [14] applies a passivity based control
method to real-time hybrid testing.
Fig. 1 gives an example of an application of hybrid tests to a structural dynamic system: The objective
of the test is to analyze the influence of different designs of drive trains and transmission cross beams on
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Figure 1: Application case: The virtual component can be optimized with respect to its effect on the
body in white’s vibrations.

the vibration behavior of a car. The body in white is a complex structure which is hard to model, while
the transmission cross beam and the drive train are only available as models and their design frequently
changes during the design process. A hybrid testing approach allows the coupling of the physical body
in white to the model of the transmission system. Applications where structural systems are coupled
often exhibit high modal density and low damping. This fact makes the application of feedback-based
methodologies using low-order models challenging. Adaptive feedforward filters offer an alternative
in this field. Instead of closing the control loop directly, feedforward filters generate the actuator input
using the external excitation forces as an input signal. Since the structure of the filter is not known
beforehand, information on the interface tracking error is used in an update law to adapt the filter coef-
ficients such that virtual and experimental components are coupled. An approach based on feedforward
filters has been applied to the testing of piezoelectric actuators in [8]. The application to problems with
multiple degree-of-freedom interfaces has been addressed in [4].
The work in this paper is based on least-mean-square filters as it is described in [3]. Adaptation gains are
parameters which define the aggressiveness of the adaptation of the filters. Despite the fact that adaptive
feedforward-filter-based methods show more robust stability properties than their feedback counterparts,
adaptation gains have to be selected with care. High adaptation gains, insufficient plant identification
or changes in the system dynamics during the test can lead to unstable filter dynamics. We address
the problem with an approach inspired by passivity-based techniques from the fields of teleoperation,
force reflection, robotic impedance control, and haptic interfaces. These cases relate to hybrid testing,
since in all problem settings physical systems are coupled via an actuation and sensing system, and de-
lay and time lag frequently degenerate system performance. In teleoperation, the environment exhibits
unknown dynamics and the communication link can show significant delays. Many works in this field
employ passivity-based methods. The reason is that passivity is a sufficient condition for stability if all
the other components in the system are also passive.
The stability of the system can be concluded from assessing the subsystems separately. Additionally,
passivity theory is not limited to linear systems but applies to non-linear systems as well. A system
is passive if the energy inflow is higher than the energy outflow for all the time. The work of [2] and
[13] introduce passivity-based methods which utilize wave variables to make the communication line
passive. Passivity-based methods have been applied to robotic impedance control such as e.g. in [1].
[9] proposes a control scheme for haptic interfaces which uses adaptive dissipative elements to ensure
passivity. The technique presented in [14] is a passivity-based approach to hybrid testing. The method
implements a variable rate virtual damping element to the numerical substructure to ensure the passivity
of the transfer system. The damping-coefficient is controlled by the excess energy added to the hybrid
system by the actuator.
In this paper, we propose a method which uses the power flow as a measure to update the adaptation
parameters in the case of unstable behavior caused by a large adaptation gain set by the user. The tech-
nique restores filter stability and subsequently enables adaptation with accurate synchronization in all
investigated test cases. The paper is organized as follows: Section II introduces a hybrid-testing method
based on adaptive feedforward filters. The power flow supervision approach is presented in section III.
Section IV gives an overview of the influence of the algorithm parameters using an exemplary numerical
simulation. In section V, the experimental results of tests with a physical nonlinear spring arrangement
are analyzed.
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Figure 2: General control structure: Interface equilibrium is enforced by imposing the measured inter-
face forces on the virtual component. A feedforward controller reduces the interface gap ggg such that the
system meets the compatibility constraints. The arrow pointing back to the actuation system represents
the mechanical interaction of the experimental component and the actuation system.

2 Coupling Problem and Adaptive Feedforward Filters
Coupling between virtual and experimental components is achieved if the interface displacements of the
virtual and the experimental components match and if the interface forces are in equilibrium. In order to
apply adaptive feedforward filters to the problem, we make use of the control structure depicted in Fig. 2.
The equilibrium is imposed by applying the measured interface forces of the experimental component
onto the virtual component. Using a controller, the interface compatibility constraint is then enforced
by providing appropriate input to the actuation system to ensure the virtual and physical displacements
match. Eqs. (1) describe the virtual component’s dynamics with the symbols MMMV IR DDDV IR and KKKV IR for
mass, damping and stiffness matrices. The interface forces are denoted by fff V IR

b . GGGV IR is the matrix
mapping the interface forces onto the system coordinates. The external excitation forces are denoted by
fff V IR

ext and fff EXP
ext . In the state-space form the dynamic equations are written using the system matrix AAAV IR,

the input matrix for the interface forces BBBV IR
λ

, the input matrix for the external forces BBBV IR
ext and the state

vector xxxV IR. The interface displacement is yyyV IR and the output matrix is denoted by CCCV IR
y .

ẋxxV IR =

[
000 III

−MMMV IR−1KKKV IR −MMMV IR−1DDDV IR

]
︸ ︷︷ ︸

AAAV IR

xxxV IR +

[
000

MMMV IR−1GGGV IRT

]
︸ ︷︷ ︸

BBBV IR
λ

fff V IR
b +

[
000

MMMV IR−1

]
︸ ︷︷ ︸

BBBV IR
ext

fff V IR
ext

yyyV IR =CCCV IR
y xxxV IR

(1)

Being assembled in the test rig, the experimental component may influence the dynamics of the ac-
tuation system. Using the coupled dynamics of the actuation system and the experimental component
in the following accounts for this feedback. Note that the actuation system may contain an inner-loop
control with actuator-specific features such as friction compensation. Eqs. (2) describe the dynamics of
the actuation system and the experimental component in state-space form:

ẋxxEXP = AAAEXPxxxEXP +BBBEXP
u uuu+BBBEXP

ext fff EXP
ext

yyyEXP =CCCEXP
y xxxEXP

λλλ = fff EXP
b =CCCEXP

λ
xxxEXP +DDDEXP

u uuu+DDDEXP
ext fff EXP

ext

(2)

Here AAAEXP, BBBEXP
u , BBBEXP

ext , CCCEXP
y , CCCEXP

λ
, DDDEXP

u and DDDEXP
ext are the the state-space matrices, and xxxEXP is the

state vector. The inputs to the system are the actuator demand signal uuu and the external forces acting on
the experimental component. The interface displacement of the experimental component yyyEXP and the
interface forces λ = fff EXP

b , namely the inner forces between the virtual and experimental substructures,
are defined as the outputs of the system.
This state-space equations represent the general form of the experimental component. In order to make
the derivation of the adaptive filter clearer a linear dynamical system is assumed at this point.
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The open-loop dynamics—which are later controlled such that the compatibility constraint is met—are
given by Eq. (3). The interface force vector fff V IR

b is eliminated by applying the output of the actuation
system to the virtual component. In practice, this involves measuring the interface forces between the
actuator system and the experimental component. We refer to the equilibrium interface forces as λλλ .

λλλ = fff EXP
b =− fff V IR

b (3)

Actuator demand and external forces on both subcomponents are defined as system inputs, and the
interface gap ggg is defined as system output. The interface gap ggg is the difference between the virtual
component’s and the experimental component’s interface displacements.

ẋxx =
[

AAAV IR BBBV IR
λ

CCCEXP
λ

000 AAAEXP

]
︸ ︷︷ ︸

AAA

xxx+
[

BBBV IR
λ

DDDEXP
u

BBBEXP
u

]
︸ ︷︷ ︸

BBBu

uuu+
[

BBBV IR
ext BBBV IR

λ
DDDEXP

ext
000 BBBEXP

ext

]
︸ ︷︷ ︸

BBBext

fff ext

ggg =
[
CCCV IR

y −CCCEXP
y
]︸ ︷︷ ︸

CCC

xxx with xxx =
[
xxxV IRT

xxxEXPT
]T

and fff ext =
[

fff V IRT

ext fff EXPT

ext

]T
(4)

Eqs. (5) shows the time-domain solution of interface gap ggg. The solution is a combination of contri-
butions from actuator input, external forces and initial conditions. The contributions from the actuator
input and the external forces can be expressed as convolutions between the impulse responses hhhu and
hhhexp and the inputs.

ggg(t) =
∫ t

t0
CCCeAAA(t−τ)BBBu︸ ︷︷ ︸

hhhu(t−τ)

uuu(τ)dτ +
∫ t

t0
CCCeAAA(t−τ)BBBext︸ ︷︷ ︸

hhhext (t−τ)

fff ext(τ)dτ +CCCeAAAtxxx(t0) (5)

The objective of any controller is to close the interface gap. In many applications, as rotation machinery
or drive trains, harmonic excitation occurs. The harmonic excitation force fff ext(t) with the excitation
frequencies Ωi and i ∈ [1 . . .next ] is given in Eq. (6).

fff ext(t) =
next

∑
i=1

aaai cos(Ωit)+bbbi cos(Ωit) (6)

Assuming steady-state and harmonic excitation, the interface gap can be closed by applying a harmonic
signal as the actuator input. The actuator input in Eq. (7) is constructed by the multiplication of a
harmonic basis function matrix WWW (t) and the parameter vector θθθ . The matrix WWW (t) contains sinusoidal
functions using the excitation frequencies and their multiples. The total number of frequencies contained
in the basis function matrix WWW (t) is nΩ. Using multiples of the excitation frequencies in the basis
functions higher harmonics in weakly nonlinear systems can be compensated for. The parameter vector
controls amplitude and phase of the actuator input signal uuu. Note that we use the time-discrete form of
the signals which can be retrieved by setting in t = k∆t with time instance k and time-step width ∆t. The
number of the time instance is indicated with square brackets.

uuu[k] =


III cosΩ1k∆t
−III sinΩ1k∆t

...
III cosΩnΩ

k∆t
−III sinΩnΩ

k∆t


T

︸ ︷︷ ︸
WWW [k]

θθθ [k]
(7)

Using the Fourier transform F (hhhu(t)) = HHHu(ω) of the impulse response hhhu(t) and neglecting the tran-
sient terms, the interface gap ggg(t) can be written in the matrix-vector form of Eq. (8). A proof is shown
in [4]. The expression contains the basis function matrix WWW (t), the transfer function matrix PPPgu and the
parameter vector θθθ as well as the contribution of the external excitations gggext to the interface gap. The
objective of the adaptation law is now to find a parameter vector θθθ such that the interface gap ggg(t) is
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minimized.

ggg[k] =WWW [k]


Re(HHHu(Ω1)) −Im(HHHu(Ω1))
Im(HHHu(Ω1)) Re(HHHu(Ω1))

. . .
Re(HHHu(ΩnΩ

)) −Im(HHHu(ΩnΩ
))

Im(HHHu(ΩnΩ
)) Re(HHHu(ΩnΩ

))


︸ ︷︷ ︸

PPPg,u

θθθ [k]+gggext [k],

(8)

where gggext [k] is the contribution of the external excitations. Eq. (9) gives the objective function for the
adaptation law which is the sum of the squared interface gap and a regularization term. The regulariza-
tion term contains the squared parameter vector θθθ and the regularization parameter γ .

J[k] = gggT [k]ggg[k]+ γθθθ
T

θθθ (9)

The least-mean-squares (LMS) update law for the parameter vector θθθ given in Eq. (10) is basically
a gradient descent algorithm. In contrast to feedback controllers as e.g. classical LQR control, the
actuator input is generated using a sinusoidal basis function with defined frequencies and the parameter
vector. The gradient of the objective function can be calculated using the transfer matrix PPPgu, the basis
function matrix WWW (t) and the interface gap ggg. The adaptation gain µ̄ controls the convergence speed
of the adaptation process. High values of µ̄ may result in an unstable adaptation process. The leakage
factor ν stems from the regularization term in the objective function. In this paper, the leakage factor
is used to reduce the filter coefficient in the case of an unstable behavior. Besides a choice of µ̄ the
matrix PPPgu is critical to the stability and the quality of the adaptation process. Since the actual values
of matrix PPPgu are not known beforehand, the matrix has to be estimated. Usually PPPgu is identified in an
identification phase which precedes the adaptation phase. Errors in the identification or changes in the
system dynamics can lead to the instability of the adaptation process.

θθθ [k+1] := νθθθ [k]− µ̄PPPT
g,uWWW [k]T ggg[k] with ν = 1− µ̄γ (10)

In order to make the choice of the adaptation gain more practicable, we use a normalized adaptation gain
µ according to Eq. (11). The normalization makes use of the maximum eigenvalue λmax of the matrix
PPPT

g,uPPPg,u. See e.g. [12] for a derivation of the expressions. In theory, a normalized adaptation gain of
µ = 1 results in the fastest possible convergence. Changes in the system dynamics and inaccuracy in
the identification process may bring the maximum adaptation gain down to a lower value.

µ̄ = µ
1

λmax + γ
(11)

3 Power-flow Supervision
In order to overcome the aforementioned stability issues, we propose the use of a supervisor which
reduces the adaptation gain µ whenever necessary. To do so, we analyze the power-flows between
the subcomponents. Those power-flows are closely linked to passivity properties of the hybrid test.
Passive systems are defined as systems which consume energy but do not produce energy. Coupling two
arbitrary passive systems results in a passive overall system.
One can think of the control system and actuation system of a hybrid test as an interconnection device
between the virtual and the experimental component. We refer to this combination of the control system
and the actuation system as the ”transfer system” in this section. In the case that the transfer system
is passive , energy is only injected into the test setup through external forcing on the virtual or the
experimental component but not through the transfer system. The transfer system is referred to as
”passive” if the power-inflow into the system is always larger than the power-outflow. The power-
inflow PACT

in to the transfer system is the sum of the power-inflow from the experimental component and
the power-inflow from the virtual component. Both are the product of collocated interface forces and
interface velocities. As a result, the power-inflow to the transfer system in Eq. (12) is the product of
interface forces and the time derivative of the interface gap.

PACT
in = fff V IR

b ẏyyV IR + fff EXP
b ẏyyEXP =−λλλ ẏyyV IR +λλλ ẏyyEXP = λλλ ġgg (12)
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Figure 3: Parameter adjustment functions

A negative power-inflow into the transfer system—or in other words a power-outflow from the transfer
system—implies undesirable energy injection into the hybrid test. In order constrain the power-outflow
of the transfer system which deteriorates its passive nature, we introduce a limit to the power-outflow
Plim. The limit Plim < 0 is a negative value specific to the required power-outflow limit of the test. The
objective of the power-flow supervision is to constrain the power-flow according to Eq. (13).

lim
t→∞

PACT
in ≥ Plim (13)

Note that the energy inflow is defined as the time integral of the power-inflow:

EACT
in =

∫ t

0
PACT

in (τ)dτ

Following a simple heuristic approach, as a result of the violation of the passivity constraint, the two
parameters µ and γ of the adaptation algorithm are adjusted. The objective is to reduce the actuator
amplitudes, to restore passivity and to enable fast adaptation. Approaches such as [11] where the leak-
age factor is adjusted according to the algorithm’s performance have been proposed in literature. The
stability and the convergence of the least-mean-squares algorithm is controlled by the adaptation gain µ:
A high adaptation gain µ leads to a fast convergence of the filter coefficients, but high values can lead
to the unstable behavior of the algorithm. In contrast, lower values of µ cause a slower convergence
but stability is ensured if the value falls below the stability threshold. As a consequence, the adaptation
gain µ is reduced using the exponential function in Eq. (14) with the initial adaptation gain µinit , the
variable aµ and the user-defined exponent bµ ≥ 1. The reasons for using an exponential function are
to enable a faster drop of the adaptation gain µ in the initial phase, to ensure a fast restoration of pas-
sivity and a slower change in µ if it is closer to its optimal value. Fig. 3 shows the functions for some
exemplary values bµ .

µ = µinit ·a
bµ

µ ⇒ µ ∈ [0, µinit ] ∀ aµ ∈ [0, 1] (14)

The initial value is aµ = 1. If the power-inflow to the actuation system falls below the threshold
Plim—meaning that the system is not passive—the variable aµ is reduced by the user-defined step-size
parameter ∆↓aµ . The lower bound for the variable aµ is zero. As a result, the adaptation gain is
bound by zero and the initial adaptation gain µinit . The leakage factor ν results from the regularization
factor γ according to Eq. (10). A low leakage factor—or equivalently, a high regularization factor—
enforces lower filter coefficients. It is desirable to reduce the filter coefficients after a violation of
the passivity constraint is detected. After the passive state is restored by the drop in the adaptation
gain µ , the regularization should be reduced to ensure that the filter coefficients are adapted accurately
to their optimal values. The regularization parameter γ is calculated using the exponential function
in Eq. (15) with the user-defined maximum regularization factor γmax, the variable aγ and the user-
defined exponent bγ ≥ 1. Fig. 3 shows the functions for some exemplary values bγ . The nature of the
exponential function leads to a progressive behavior of the leakage: In cases of severe power-outflow,
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Table 1: System parameters used in the numerical case study

Virtual Component (VIR)

mV IR 0.1kg

dV IR 0.05 N·s
m

kV IR 1000 N
m

Experimental Component (EXP)

mEXP 0.02kg

dEXP 0.05 N·s
m

kEXP 1000 N
m

Actuator (ACT)

mACT 0.1kg

dACT 1 N·s
m

kACT 100 N
m

the filter coefficients fall faster.

γ = γmax ·a
bγ

γ ⇒ ν ∈ [1− µ̄γmax, 1] ∀ aγ ∈ [0, 1] (15)

The initial value is aγ = 0. If the power-inflow to the actuation system PACT
in falls below the threshold

Plim—meaning that the system is not passive—the variable aγ is increased by the user-defined step-size
parameter ∆↑aγ . If the power-inflow to the actuation system PACT

in rises above the threshold Plim—
meaning that the system is assumed to be passive—the variable aγ is reduced by the user-defined step-
size parameter ∆↓aγ . The lower bound for the variable aγ is zero and the upper bound is 1. As a result,
the adaptation gain is bound by one and 1− µ̄γmax. The complete procedure including the adaptation
of µ and ν is summarized in the pseudo-code of Alg. 1.

Algorithm 1 Power supervision for adaptive feedforward filters in hybrid testing
Initialize aγ := 0 and aµ := 1
while adaptation is running do

if PACT
in < Plim then
Set aγ := min(aγ +∆↑aγ ,1)
Set aµ := max(aµ −∆↓aµ ,0)

end if
if PACT

in > Plim then
aγ := max(aγ −∆↓aγ ,0)

end if
Set γ := γmax ·a

bγ

γ

Set µ := µinit ·a
bµ

µ

end while

4 Numerical Example of Choice of the Algorithm’s Parameters
In order to demonstrate the effects of changes in the adaptation parameters aµ and bµ as well as the
power-inflow limit Plim, we make use of a simple numerical test case. The overall system emulated in
the test is a lumped mass-spring-damper system as shown in Fig. 4. The system is split into a virtual
component and an experimental component. In Fig. 4 the virtual component is depicted in blue and
the experimental component is depicted in green. The experimental component is controlled via an
actuation system, which is depicted in orange in Fig. 4. The actuator and its controller are modeled
as a second order response with equivalent mechanical properties. The properties of the subsystems
are listed in Tab. 1. Since the adaptive feedforward filter acts exactly at the excitation frequencies
measurement noise can cause a drift of the interface gap. A peak filter using the excitation frequency
was applied at the actuator input in order to prevent those drift effects. The objective of the first
numerical experiment is to investigate the influence of the changes in ∆↓aµ . To do so, we varied the
parameter ∆↓aµ while keeping all other parameters constant. Tab. 2 gives an overview of the parameters.
Note that the initial adaptation-gain µinit = 10 is a high value, which causes an unstable system behavior
without the passivity-preserving mechanism. As mentioned earlier, such instabilities can be caused in
exactly the same way by an insufficient system identification process as well as by changes in the system
parameters. The simulation includes a 50 s identification phase. The identification was performed
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Figure 4: Lumped mass system used for the numerical experiment

Table 2: Parameters for the numerical experiment different adaptation-gain step-sizes ∆↓aµ

Variable Values

step-size ∆↓aµ 0.001

initial adaptation-gain µinit 10

exponent bµ 10

step-size ∆↓aγ 0.001

step-size ∆↑aγ 0.01

initial regularization factor γmax 1

exponent bγ 2

power-generation limit Plim −1W

excitation amplitude Aext 10N

excitation frequency fext 50Hz

according to the procedure which is described in [4], where the adaption algorithm was used to find the
transfer function of the system. The long duration of the identification phase is chosen to rule out as
much as possible the influences of identification errors on the simulation.
Fig. 6 shows the leakage factor ν , the power-inflow PACT

in to the actuator system, and the envelope of
the interface gap ggg. Note that the power-inflow is normalized with the peak values of the power-inflow
into the reference system PREF

in,max, the energy-inflow is normalized with the peak values of the energy
in the reference system EREF

max and the interface gap is normalized with the amplitude of displacement
of the reference system yREF

amp . It is noteworthy that the total energy outflow is highest for the lowest
step-size values ∆↓aµ . The interface gap is a measure for the synchronization of the interface between
the virtual component and the experimental component. With increasing values of the step-size ∆↓aµ ,
the interface gap gradually decreases. The reason is that lower choices for the step-size ∆↓aµ result in
higher amplitudes at the start of the adaptation phase. The higher resulting adaptation-gain µ , however,
may result in a faster convergence later in the test.

Fig. 5 shows the development of the adaptation-gain µ for variations of ∆↓aµ , ∆↓aγ and Plim. As
expected, the decay rate of the adaptation-gain is higher for higher step-sizes ∆↓aµ . The adaptation-gain
reduction is activated when the passivity constraint is violated. Depending on the reduction step-size
∆↓aµ , the adaptation-gain may overstep the optimal adaptation-gain or reach it gradually. The resulting
adaptation-gains for the passive state vary: Higher step-sizes ∆↓aµ result in a lower end value. Lower
step-sizes ∆↓aµ exhibit a slower decay of the adaptation-gain but result in µ being closer to the optimal
value.
The third graph Fig. 5 shows a variation of leakage factor step size. Higher step-sizes result in a larger
drop in the leakage-factor. Since the lower leakage-factors reduce further power-outflow, the drop in the
adaptation-gain µ is steeper and it settles faster for lower step-sizes ∆↑aγ .
The third graph Fig. 5 shows a variation of the power limit Plim. The curves for µ are shifted in time
since the different values of Plim trigger the reduction of the adaptation-gain at different points in time.
Slopes and final values of µ are not affected significantly by the choice of Plim.
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Exp Tech

Fig. 5 Leakage factor, power inflow to actuator system and learning curve for varying adaptation-gain step-sizes ∆↓aµ

and a linear lumped-mass system as a virtual subcomponent.
The test setup is depicted in Fig. 7. The cubic spring, which
performs as the experimental component, is achieved using
two linear springs with all forces acting perpendicular to
the initial spring axis. The expression for the spring force
is given by equation 16. The spring constants kEXP

3 and
kEXP were identified using a least-mean-squares fit. They
are given in Table 3.

f EXP = kEXP
3 x3 + kEXP x (16)

The virtual component is a mass-spring-damper system
and receives the external forces. A linear actuator—a
Copley ST2508S electromagnetic linear actuator—applies
the coupling forces to the experimental component. The
actuator is controlled using a cascaded control scheme
acting with a proportional term on the position demand,
and with a proportional and integral term on the velocity
demand. Friction has a significant effect on the actuator
dynamics and, due to its non-linear nature the performance
of hybrid-testing control schemes deteriorates. For that
reason, a friction compensation scheme (as described in
[19]) is implemented which acts on the input to the current
control loop (Table 4).

The actuator operates with a position saturation at 2.5 ·
10−2 m around the initial position for safety reasons. The
interface forces are measured using a custom-made force
sensor. Since the adaptive feedforward filter exactly at the
excitation frequencies measurement noise can cause a drift
of the interface gap. A peak filter using the excitation
frequency was applied at the actuator input in order to
prevent those drift effects. The position is measured using
the internal sensor of the linear actuator. The coupled
system exhibits nonlinear dynamics due to the nature of
the spring assembly and uncompensated nonlinear friction
in the actuator. If this setup is excited with one harmonic
component, the response will contain higher harmonics. The
presence of these higher harmonics, in general, requires
the enrichment of the basis function space with higher
harmonics. This means that the frequencies Ωk of the
harmonics in the basis function matrix W [k] are defined as
multiples of the periodic excitation basis frequency Ω0:

Ωk = kΩ0 with k ∈ [1, 2, ..., nΩ ]
Figure 8 shows the effect of the additional harmonics in the
basis function matrix of the simulated system. However, for
the excitation frequencies and amplitudes described in this
section, one harmonic basis function is sufficient to couple
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Figure 5: Leakage factor, power inflow to actuator system and learning curve for varying adaptation-gain
step-sizes ∆↓aµ
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and a linear lumped-mass system as a virtual subcomponent.
The test setup is depicted in Fig. 7. The cubic spring, which
performs as the experimental component, is achieved using
two linear springs with all forces acting perpendicular to
the initial spring axis. The expression for the spring force
is given by equation 16. The spring constants kEXP

3 and
kEXP were identified using a least-mean-squares fit. They
are given in Table 3.

f EXP = kEXP
3 x3 + kEXP x (16)

The virtual component is a mass-spring-damper system
and receives the external forces. A linear actuator—a
Copley ST2508S electromagnetic linear actuator—applies
the coupling forces to the experimental component. The
actuator is controlled using a cascaded control scheme
acting with a proportional term on the position demand,
and with a proportional and integral term on the velocity
demand. Friction has a significant effect on the actuator
dynamics and, due to its non-linear nature the performance
of hybrid-testing control schemes deteriorates. For that
reason, a friction compensation scheme (as described in
[19]) is implemented which acts on the input to the current
control loop (Table 4).

The actuator operates with a position saturation at 2.5 ·
10−2 m around the initial position for safety reasons. The
interface forces are measured using a custom-made force
sensor. Since the adaptive feedforward filter exactly at the
excitation frequencies measurement noise can cause a drift
of the interface gap. A peak filter using the excitation
frequency was applied at the actuator input in order to
prevent those drift effects. The position is measured using
the internal sensor of the linear actuator. The coupled
system exhibits nonlinear dynamics due to the nature of
the spring assembly and uncompensated nonlinear friction
in the actuator. If this setup is excited with one harmonic
component, the response will contain higher harmonics. The
presence of these higher harmonics, in general, requires
the enrichment of the basis function space with higher
harmonics. This means that the frequencies Ωk of the
harmonics in the basis function matrix W [k] are defined as
multiples of the periodic excitation basis frequency Ω0:

Ωk = kΩ0 with k ∈ [1, 2, ..., nΩ ]
Figure 8 shows the effect of the additional harmonics in the
basis function matrix of the simulated system. However, for
the excitation frequencies and amplitudes described in this
section, one harmonic basis function is sufficient to couple
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Figure 6: Development of the adaption gain for different parameters.

5 Experimental Validation
For the experimental validation of the approach, we use an approximation to a cubic spring as a physical
subcomponent and a linear lumped-mass system as a virtual subcomponent. The test setup is depicted
in Fig. 7. The cubic spring, which performs as the experimental component, is achieved using two linear
springs with all forces acting perpendicular to the initial spring axis. The expression for the spring force
is given by Eq. (16). The spring constants kEXP

3 and kEXP were identified using a least-mean-squares fit.
They are given in Tab. 3.

f EXP = kEXP
3 x3 + kEXPx (16)

The virtual component is a mass-spring-damper system and receives the external forces. A lin-
ear actuator—a Copley ST2508S electromagnetic linear actuator—applies the coupling forces to the
experimental component. The actuator is controlled using a cascaded control scheme acting with a
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Fig. 7 Test setup for the experimental validation of the approach

the virtual and the experimental component satisfactorily.
Note that the proposed approach is applicable to any number
of harmonics in the basis function matrix.

The test is performed keeping the parameters ∆↓aµ,
∆↓aγ ,∆↑aγ , bµ, bγ , γmax and Plim constant. As mentioned
above, one harmonic was used in the basis function
matrix W [K]. The excitation frequencies Ω0 are varied.
The excitation amplitudes were adjusted to the excitation
frequencies because the resulting response amplitudes
had to remain within the actuator workspace. The initial
adaptation-gain µinit was selected such that the resulting
adaptation process is unstable without the proposed
algorithm. Since we want to validate the performance of
the power-flow supervision, the test for each frequency was
performed in two modes: one using power-flow supervision
and one using the pure adaptive feedforward control law
without power-flow supervision.

In the first experiment the adaptive feedforward filter
approach is applied without power-flow-based stabilization.
As a result, the adaptation-gain µ and the leakage factor ν

stay constant throughout the test. Due to the selection of the
adaptation-gain µ, the dynamics of the filter are expected
to be unstable. Figure 9 shows the interface gap as well
as the time-domain synchronization plots for all excitation
frequencies. In all cases, unstable filter dynamics can be
observed. The actuator operates in a state of saturation and
the responses show distorted peaks. Figure 10 exhibits the
high power- and energy-outflow from the actuator system
caused by the instability.

The power-flow-based stabilization algorithm is acti-
vated in the second experiment. The adaptation-gains µ in
Fig. 11 correspondingly drops to a value which allows the

Table 3 System parameters of the experimental setup

Virtual Component (VIR) Experimental Component (EXP)

mVIR 1 kg kEXP 1.95 N
m

dV IR 10 N ·s
m kEXP

3 0.0014 N
m3

kV IR 1000 N
m

stable operation of the filter. The leakage factor ν also drops
to values of 0 in the phases where the power-flow con-
straint is violated. Figure 12 shows the power and energy
outflow due to the initially unstable behavior. The maxi-
mum power-outflow is constrained to approximately 3 W .
In the energy-outflow plot, a slight energy outflow can
be observed after the stabilization of the test. The reason
for this effect is stick-slip friction effects which are not
compensated for by the actuator control. The remaining
interface gap may cause the energy outflow which does
not result in a unstable behavior. Finally, learning curve
and time-domain synchronization plots in Fig. 13 show
the stabilization effect of the proposed algorithm: Despite
the fact that displacement peaks initially occur, the sys-
tem is stabilized after a timespan of less than 0.5 s. After
the stabilization, the adaptation continues and results in a
synchronization between the virtual and the experimental
component. Note that the displacement peaks can be pre-
vented in a practical application by the application of a
peak or comb filter to the actuator input. To summarize, the
proposed approach enables the stabilization of an initially
unstable test with a nonlinear spring. After stabilization,
the adaptation-gain settles and the system finally reaches
interface synchronization.

Table 4 Parameters used in the experiment

Variable Values

Step size ∆↓aµ 0.001

Initial adaptation-gain µinit 0.1

Exponent bµ 2

Step size ∆↓aγ 0.001

Step size ∆↑aγ 0.01

Initial regularization factor γmax 1

Exponent bγ 2

Power-generation limit Plim −0.3W

Excitation amplitude Aext 10N 40N 40N

Excitation frequency fext 10Hz 20Hz 30Hz

Author's personal copy

Figure 7: Test setup for the experimental validation of the approach
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Table 3: System parameters of the experimental setup

Virtual Component (VIR)

mV IR 1kg

dV IR 10 N·s
m

kV IR 1000 N
m

Experimental Component (EXP)

kEXP 1.95 N
m

kEXP
3 0.0014 N

m3

Figure 8: Exemplary interface displacements for excitation frequency 0.5 Hz and varying number of
harmonics in basis function space. The excitation frequency was chosen such that the nonlinear behav-
ior can be observed. In the first plot with one harmonic, the higher harmonic in the virtual component
are excited through the interface forces but the higher harmonic interface displacement are not synchro-
nized.

proportional term on the position demand, and with a proportional and integral term on the velocity
demand. Friction has a significant effect on the actuator dynamics and, due to its non-linear nature the
performance of hybrid-testing control schemes deteriorates. For that reason, a friction compensation
scheme (as described in [15]) is implemented which acts on the input to the current control loop.
The actuator operates with a position saturation at 2.5 · 10−2 m around the initial position for safety
reasons. The interface forces are measured using a custom-made force sensor. Since the adaptive feed-
forward filter exactly at the excitation frequencies measurement noise can cause a drift of the interface
gap. A peak filter using the excitation frequency was applied at the actuator input in order to prevent
those drift effects. The position is measured using the internal sensor of the linear actuator. The coupled
system exhibits nonlinear dynamics due to the nature of the spring assembly and uncompensated non-
linear friction in the actuator. If this setup is excited with one harmonic component, the response will
contain higher harmonics. The presence of these higher harmonics, in general, requires the enrichment
of the basis function space with higher harmonics. This means that the frequencies Ωk of the harmonics
in the basis function matrix WWW [k] are defined as multiples of the periodic excitation basis frequency Ω0:

Ωk = kΩ0 with k ∈ [1,2, ...,nΩ]

Fig. 8 shows the effect of the additional harmonics in the basis function matrix of the simulated system.
However, for the excitation frequencies and amplitudes described in this section, one harmonic basis
function is sufficient to couple the virtual and the experimental component satisfactorily. Note that the
proposed approach is applicable to any number of harmonics in the basis function matrix. The test
is performed keeping the parameters ∆↓aµ , ∆↓aγ , ∆↑aγ , bµ , bγ , γmax and Plim constant. As mentioned
above, one harmonic was used in the basis function matrix WWW [K]. The excitation frequencies Ω0 are
varied. The excitation amplitudes were adjusted to the excitation frequencies because the resulting
response amplitudes had to remain within the actuator workspace. The initial adaptation-gain µinit was
selected such that the resulting adaptation process is unstable without the proposed algorithm. Since
we want to validate the performance of the power-flow supervision, the test for each frequency was
performed in two modes: one using power-flow supervision and one using the pure adaptive feedforward
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Table 4: Parameters used in the experiment

Variable Values

step size ∆↓aµ 0.001

initial adaptation-gain µinit 0.1

exponent bµ 2

step size ∆↓aγ 0.001

step size ∆↑aγ 0.01

initial regularization factor γmax 1

exponent bγ 2

power-generation limit Plim −0.3W

excitation amplitude Aext 10N 40N 40N

excitation frequency fext 10Hz 20Hz 30Hz

Figure 9: Unstable learning curve (left) and interface synchronization (right) without power-flow super-
vision.

control law without power-flow supervision. In the first experiment the adaptive feedforward filter
approach is applied without power-flow-based stabilization. As a result, the adaptation-gain µ and the
leakage factor ν stay constant throughout the test. Due to the selection of the adaptation-gain µ , the
dynamics of the filter are expected to be unstable. Fig. 9 shows the interface gap as well as the time-
domain synchronization plots for all excitation frequencies. In all cases, unstable filter dynamics can
be observed. The actuator operates in a state of saturation and the responses show distorted peaks.
Fig. 10 exhibits the high power- and energy-outflow from the actuator system caused by the instability.
The power-flow-based stabilization algorithm is activated in the second experiment. The adaptation-

gains µ in Fig. 11 correspondingly drops to a value which allows the stable operation of the filter. The
leakage factor ν also drops to values of 0 in the phases where the power-flow constraint is violated.
Fig. 12 shows the power and energy outflow due to the initially unstable behavior. The maximum
power-outflow is constrained to approximately 3 W . In the energy-outflow plot, a slight energy outflow
can be observed after the stabilization of the test. The reason for this effect is stick-slip friction effects
which are not compensated for by the actuator control. The remaining interface gap may cause the
energy outflow which does not result in a unstable behavior. Finally, learning curve and time-domain
synchronization plots in Fig. 13 show the stabilization effect of the proposed algorithm: Despite the fact
that displacement peaks initially occur, the system is stabilized after a timespan of less than 0.5 s. After
the stabilization, the adaptation continues and results in a synchronization between the virtual and the
experimental component. Note that the displacement peaks can be prevented in a practical application
by the application of a peak or comb filter to the actuator input. To summarize, the proposed approach
enables the stabilization of an initially unstable test with a nonlinear spring. After stabilization, the
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Figure 10: Unstable power (left) and energy inflow (right) to actuator system without power-flow su-
pervision. The interface gap is normalized with the amplitude of the uncoupled interface displacement
yV IR

amp.

Figure 11: Adaptation gain (left) and leakage factor (right) with activated power-flow supervision

adaptation-gain settles and the system finally reaches interface synchronization.

6 Conclusion
In this paper, we propose a method to update the parameters of an adaptive feedforward filter in a
hybrid test based on the power-outflow from the actuator and control system. In order to investigate
the influence of the algorithm’s parameters, we make use of a simple purely numerical case. The study
leads to the following conclusions:

• Step size ∆↓aµ ∈ [0, 1] defines the convergence speed of the adaptation gain µ . High values can
lead to lower values of µ .

• Step size ∆↑aγ ∈ [0, 1] defines the convergence speed of the leakage factor ν . Higher values can
reduce the peak values of power-outflow but increase the settling time.

• The power-outflow limit Plim has only a slight influence on the final value of the adaptation gain
but higher values reduce the peak interface gap.

The method has been applied to an experimental test case which coupled a physical cubic spring with
a virtual mass-spring-damper system. The results showed that the proposed method helped to stabilize
the filter with initially unstable filter behavior. The instability is caused by the high adaptation gain. The
adaptation gain is updated as a reaction to the power-outflow from the actuator system and settles to a
positive value. This allows the filter coefficient to converge such that the interface is synchronized. In
other cases where adaptation with the chosen filter parameters is impossible such as for a high phase
error of Pgu, the passivity constraint is maintained and the adaptation gain µ is taken down to zero.
This means that the adaptation is still unable to fully mitigate the actuator dynamics but the power-flow
methods proposed in this paper are still successful in preventing damaging behavior.
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Figure 12: Power (left) and energy inflow (right) to actuator system with activated power-flow supervi-
sion.

Figure 13: Learning curve (left) and interface synchronization (right) with activated power-flow su-
pervision.The interface gap is normalized with the amplitude of the uncoupled interface displacement
yV IR

amp.
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