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Abstract 26 

Madagascar is known as a biodiversity hotspot, providing an ideal natural laboratory for 27 

investigating the processes of avian diversification. Yet, the phylogeography of 28 

Madagascar’s avifauna is still largely unexamined. In this study, we evaluated 29 

phylogeographic patterns and species limits within the Rufous Vanga, Schetba rufa, a 30 

monotypic genus of forest-dwelling birds endemic to the island. Using an integrative 31 

taxonomic approach, we synthesized data from over 4,000 ultra-conserved element (UCE) 32 

loci, mitochondrial DNA, multivariate morphometrics, and ecological niche modeling to 33 

uncover two reciprocally monophyletic, geographically circumscribed, and morphologically 34 

distinct clades of Schetba. The two lineages are restricted to eastern and western 35 

Madagascar, respectively, with distributions broadly consistent with previously described 36 

subspecies. Based on their genetic and morphological distinctiveness, the two subspecies 37 

merit recognition as separate species. The bioclimatic transition between the humid east 38 

and dry west of Madagascar likely promoted population subdivision and drove speciation in 39 

Schetba during the Pleistocene. Our study is the first evidence that an East-West bioclimatic 40 

transition zone played a role in the speciation of birds within Madagascar. 41 

 42 
 43 
Introduction 44 
 45 
Madagascar is a biodiversity hotspot that has been described as a model region for plant 46 

and animal diversification studies (Wilmé et al., 2006; Yoder & Heckman, 2006; Vences et 47 

al., 2009; Brown et al., 2014). The island’s long history of geographic isolation (approx. 88 48 

million years; Storey et al., 1995), coupled with its complex landscape heterogeneity, 49 

provided ample opportunities for in-situ lineage diversification resulting in a unique and 50 

largely endemic biota (de Wit, 2003; Wilmé et al., 2006). However, phylogeographic 51 

structure within the Malagasy avifauna is still largely unexamined, with no published genetic 52 

data for almost half of the island’s endemic species (Reddy, 2014). Recent discoveries of 53 

cryptic species-level diversity within Malagasy birds (Younger et al., 2018), small mammals 54 

(Everson et al., 2016; Hotaling et al., 2016; Everson et al., 2018), reptiles (Florio et al., 2012), 55 

and amphibians (Brown et al., 2014), coupled with alarming rates of deforestation 56 

(Vieilledent et al., 2018), highlight the need for further efforts to comprehend the full 57 



breadth of the biodiversity endemic to Madagascar. 58 

 59 

Bioclimatically, the forests of Madagascar can be coarsely subdivided into the humid east and 60 

the dry west (Gautier & Goodman, 2003). The eastern edge of the island is characterized by 61 

evergreen forest with high precipitation levels, and elevation increases sharply from the coast 62 

to the montane forests of the Central Highlands. The western portion of the island receives 63 

considerably less precipitation and experiences a pronounced dry season. The biome consists 64 

of dry deciduous forest throughout most of the west, spiny bush formations in the subarid 65 

southwest, and some smaller areas of subhumid forest. The Central Highlands is situated 66 

between the east and west biomes, and is thought to have historically consisted of a matrix 67 

of forest and wooded grasslands (Yoder et al., 2016), but now has little remaining native 68 

forest habit. 69 

 70 

The abrupt bioclimatic transition between eastern and western Madagascar has been 71 

hypothesized to act as a facilitator for speciation via ecogeographic isolation (Yoder & 72 

Heckman, 2006; Vences et al., 2009). According to this hypothesis, populations of a 73 

widespread, generalist ancestral species differentially adapted to conditions in the humid 74 

east versus the dry west, producing sister taxa with minimal overlap in their environmental 75 

niches. Following this initial divergence, secondary subdivision of populations may occur 76 

within the eastern and western bioclimatic zones. Vences et al., (2009) also proposed an 77 

alternative mechanism for east-west divergences without adaptation termed the ‘Western 78 

rainforest refugia mechanism’. In this scenario, an ancestral species adapted to humid forest 79 

habitat may have been widespread during warmer (wet) periods of the Pleistocene, but then 80 

became isolated in forest refugia during glacial (dry) periods, eventually speciating in allopatry 81 

without ecological divergence (Vences et al., 2009). Under this model, sister lineages in 82 

eastern and western Madagascar would be expected to occupy similar environmental niches. 83 

The east-west bioclimatic transition appears to have facilitated speciation in a range of taxa, 84 

including reptiles (Nussbaum & Raxworthy, 1994; Nussbaum & Raxworthy, 1998; Raxworthy 85 

et al., 2007; Orozco-Terwengel et al., 2008; Florio et al., 2012), amphibians (Vences et al., 86 

2000; Andreone et al., 2002; Vences & Glaw, 2002; Köhler et al., 2007), insects (Lees et al., 87 

2003), and mammals (Everson et al., 2016; Yoder et al., 2016). So far, little is known about an 88 

east-west speciation pattern in birds. A study of Malagasy Scops-owl (Otus rutilus) found a 89 



pattern of subtle genetic differentiation between east and west Madagascar, suggesting the 90 

bioclimatic transition could contribute to population divergence in birds (Fuchs et al., 2007). 91 

 92 

Schetba, or the Rufous Vanga, is a monotypic genus within an endemic Malagasy radiation 93 

of songbirds, the Vangidae (Yamagishi et al., 2001; Reddy et al., 2012; Jønsson et al., 2012). 94 

The current taxonomy of the genus comprises a single species, S. rufa, with two subspecies:  95 

S. r. rufa (Linnaeus, 1766) and S. r. occidentalis (Delacour, 1931). S. r. rufa occupies the 96 

humid and littoral forests of eastern Madagascar, whereas S. r. occidentalis is found in the 97 

deciduous forests and subhumid forests of western Madagascar (Goodman & Raherilalao, 98 

2013; Schulenberg, 2013). Given the geographic division of these subspecies in the east and 99 

west, it is possible that the bioclimatic transition between these regions played a role in the 100 

divergence of Schetba. However, the degree of divergence between these subspecies, which 101 

are based on slight differences in bill dimensions and plumage, has not been corroborated 102 

with genetic or ecological data. Previous genetic studies each included only a single 103 

representative of S. rufa (Yamagishi et al., 2001; Jønsson et al., 2012; Reddy et al., 2012). 104 

Furthermore, the distributional limits of S. r. occidentalis and S. r. rufa are somewhat ill-105 

defined and might be attributed to clinal variation (Delacour, 1932; Schulenberg, 2013). 106 

Given the dearth of conclusive information, some have suggested that S. rufa may be better 107 

regarded as monotypic (Schulenberg, 2013). 108 

 109 
Here, we aim to (1) clarify the taxonomy of Schetba in light of recent findings of cryptic 110 

species-level diversity within Madagascar (e.g. Younger et al., 2018), and (2) investigate 111 

whether the bioclimatic transition between the humid east and dry west of Madagascar 112 

may have facilitated speciation within birds. We synthesized data from over 4,000 ultra-113 

conserved element (UCE) loci, mitochondrial DNA, morphometrics, and ecological niche 114 

modeling in an integrative systematics approach to assess species limits and explore 115 

phylogeographic patterns within the genus. 116 



Materials and Methods 117 

Taxon sampling 118 

We sampled Schetba from across its geographic range in order to assess phylogeographic 119 

patterns, subspecies definitions, and subspecies distributional limits (Figure 1). Tissue 120 

samples used for genotyping are associated with vouchered specimens held at the Field 121 

Museum of Natural History (FMNH; Chicago) and the Mention Zoologie et Biologie Animale, 122 

Université d’Antananarivo (UADBA; Antananarivo, formerly Département de Biologie 123 

Animale). We genotyped 27 individuals of S. rufa, plus two outgroup species of Vangidae 124 

(Euryceros prevostii and Newtonia amphichroa). Morphometric data was collected from 20 125 

adult S. rufa study skins (five individuals of each sex for each subspecies) in the FMNH and 126 

American Museum of Natural History (AMNH; New York) collections. For detailed location 127 

information (locality, latitude, and longitude), accession numbers, and data collected from 128 

each specimen, please refer to Supplementary Table 1. 129 

Sequencing 130 

DNA was extracted using a QIAGEN DNeasy Blood and Tissue Kit following the 131 

manufacturer’s protocol. UCE libraries for 28 taxa (27 Schetba plus Euryceros outgroup) 132 

were prepared following described methods (Faircloth et al., 2012; McCormack et al., 2013) 133 

with minor modifications. Briefly, purified DNA was normalized to 10 ng/µL and fragmented 134 

via sonication (Covaris, Model #M220) to approximately 550 base pairs (bp). Samples were 135 

end-repaired, A-tailed and Illumina TruSeqHT adapters were ligated using either a TruSeq 136 

DNA HT Sample Prep Kit (Illumina) or a KAPA Hyper Prep Kit (Kapa Biosystems), following 137 

the manufacturer’s instructions. Libraries were then amplified by limited-cycle (16—18) PCR 138 

using Kapa HiFi DNA polymerase (Kapa Biosystems), normalized, and pooled into sets 139 

consisting of eight libraries each (along with taxa for other studies) with a total of 500 ng of 140 

sample. We enriched these pooled libraries for 5,060 UCE loci using MYbaits capture kits 141 

(Terapods 5K v1, MYcroarray) following the manufacturer’s instructions. Enriched libraries 142 

were quantified using qPCR (Kapa Library Quantification Kit) and a Qubit Flourometer 143 

(Invitrogen), normalized, and pair-end sequenced (2 x 250 bp) on the Illumina HiSeq2500 144 

platform. DNA sequence reads are archived on NCBI SRA (XXXXX).  145 

 146 



We amplified and sequenced the mitochondrial gene NADH dehydrogenase 3 (ND3) for 26 147 

taxa (including outgroups Euryceros and Newtonia) using standard PCR and Sanger 148 

sequencing methods with primers ND3-L10751 (5'-GACTTCCAATCTTTAAAATCTGG-3') and 149 

ND3-H11151 (5'-GATTTGTTGAGCCGAAATCAAC-3'). We used Geneious 9.0.5 for alignment 150 

and sequences were deposited in GenBank (TBA — TBA). We also extracted mitochondrial 151 

cytochrome b (CYTB) sequences from off-target contigs of the UCE protocol using the 152 

Megablast function within Geneious 9.0.5, and successfully recovered CYTB for 24 of the S. 153 

rufa individuals. 154 

 155 

Bioinformatics 156 

We used the PHYLUCE 1.5 package (Faircloth, 2015) to prepare alignments of UCE loci for 157 

phylogenetic analysis. The demultiplexed reads were trimmed to remove adapters and low-158 

quality bases using Illumiprocessor (Faircloth, 2013), then assembled into contigs using 159 

Trinity 2.0.4 (Grabherr et al., 2011). UCE loci were extracted from among the contigs using 160 

PHYLUCE and then aligned with MAFFT 7 (Katoh et al., 2002; Katoh & Standley, 2013). The 161 

alignments were trimmed using the edge-trimming algorithm available in PHYLUCE, and 162 

then a data matrix of 75% completeness was generated, where ‘completeness’ refers to the 163 

minimum number of taxa sequenced for a locus to be included in the matrix.  164 

 165 

We prepared a dataset of single nucleotide polymorphisms (SNPs) for the 27 Schetba 166 

individuals, following the methods of the seqcap_pop pipeline (Harvey et al., 2016), with 167 

some modifications. In brief, following cleaning of the reads with Illumiprocessor, we used 168 

Trinity 2.0.4 to assemble reads across all specimens into contigs de novo. Contigs matching 169 

UCE probes were then extracted using PHYLUCE and were used as a reference for SNP 170 

calling. The reads for each individual were mapped to the reference contigs using BWA (Li & 171 

Durbin, 2009), with a maximum of four mismatches allowed per read. We used SAMtools (Li 172 

et al., 2009) and Picard (http://broadinstitute.github.io/picard/) to convert sam files to bam 173 

format, soft-clip reads beyond the reference, add read groups for each sample, and then 174 

merge bam files across all samples in the dataset. We used the Genome Analysis Toolkit 175 

(GATK; McKenna et al., 2010) to realign reads and indels, call SNPs, annotate SNPs and 176 

indels, mask indels, remove SNPs with a quality score < Q30, and to conduct read-backed 177 



phasing. At this point we output a dataset of phased SNPs in vcf format for further filtering. 178 

We filtered the SNP dataset using VCFtools 0.1.15 (Danecek et al., 2011): we specified a 179 

minimum read depth of three for a genotype call; removed any SNPs with a minor allele 180 

count < 2 (these are potential sequencing errors and generally uninformative loci); 181 

restricted to biallelic SNPs; and removed any variants not genotyped in 100% of individuals. 182 

We then used a custom python script to select one SNP at random per contig to reduce 183 

linkage in the final dataset. VCFtools 0.1.15 was used to calculate mean sequencing 184 

coverage of each SNP. Because our analysis found two highly distinct groups within Schetba 185 

(East and West groups), we also prepared separate SNP datasets for each of these group to 186 

allow for separate clustering analyses within the East and West to detect fine-scale genetic 187 

structure. After the final filtering with VCFtools on the entire dataset as described, we 188 

divided the dataset into East and West datasets, then applied a minor allele count filter to 189 

remove positions that are invariant within these groups, and finally selected one SNP at 190 

random per contig. PGDSpider 2.1.0.0 (Lischer & Excoffier, 2012) was used to convert vcf 191 

files into other formats required for analysis.  192 

 193 

Phylogenetic analysis 194 

We inferred maximum likelihood (ML) phylogenies for the UCE dataset using RAxML 8.2.7 195 

(Stamatakis, 2014). We performed both unpartitioned and partitioned concatenated 196 

analyses. To find the most appropriate partitioning scheme for the UCE dataset we used the 197 

Sliding-Window Site Characteristics (SWSC) entropy based method (Tagliacollo & Lanfear, 198 

2018) to generate partitions that account for within-locus heterogeneity (e.g., the flanking 199 

regions of UCE loci are typically more variable than the ultraconserved core). These 200 

partitions were then input to PartitionFinder 2 (Lanfear et al., 2014; Lanfear et al., 2016), to 201 

estimate the optimal partitioning scheme for phylogenetic analysis by grouping together 202 

similar subsets from the SWSC output. For each RAxML analysis, we conducted rapid 203 

bootstrapping analysis and a search for the best-scoring ML tree in a single program run, 204 

using the MRE-based bootstopping criterion (Pattengale et al., 2010) to ascertain when 205 

sufficient bootstrap replicates had been generated. All searches were conducted under the 206 

GTR GAMMA site-rate substitution model. 207 

 208 



We also inferred a phylogeny under the multispecies coalescent method. Gene-tree based 209 

coalescent methods may have reduced accuracy when inadequately resolved gene trees are 210 

included, which can result from using loci with low phylogenetic signal (Gatesy & Springer, 211 

2014; Xi et al., 2015; Hosner et al., 2016; Meiklejohn et al., 2016). We therefore selected the 212 

25% of UCE loci with the greatest number of parsimony informative sites for analysis. This 213 

subset contained 1,062 loci with between five and 26 parsimony informative sites each. A 214 

gene tree was estimated for each locus with 100 ML searches under GTR GAMMA using 215 

RAxML, and these were then reconciled into a gene tree-species tree using ASTRAL 4.10.12 216 

with default settings (Mirarab & Warnow, 2015). 217 

 218 

Divergence time estimation 219 

We performed time-calibrated Bayesian phylogenetic analyses on mtDNA sequences (ND3 220 

and CYTB) using BEAST 2.4.4 (Bouckaert et al., 2014) to estimate divergence times among 221 

Schetba lineages. The mtDNA genes were used because estimates of divergence rates in 222 

birds are available for these loci (Lerner, Meyer, James, Hofreiter, & Fleischer, 2011; Weir & 223 

Schluter, 2008). Furthermore, the mtDNA gene trees resolved the same well-supported 224 

clades as the UCE dataset. The data was partitioned into ND3 and CYTB, with nucleotide 225 

substitution models specified as HKY for both genes to reflect the optimal models selected 226 

by PartitionFinder 2 (Lanfear et al., 2016). We used the Yule tree prior with a strict 227 

molecular clock. The molecular clock was calibrated using two different reference rates; (1) 228 

the divergence rate of CYTB for Passeriformes of 2.07% (± 0.20) per million years (Weir & 229 

Schluter, 2008; lognormal, mean = 0.01035, SD = 0.05); and (2) the substitution rates 230 

estimated for ND3 and CYTB for Hawaiian honeycreepers (Lerner et al., 2011; ND3: 231 

lognormal, mean = 0.024, SD = 0.09; CYTB: lognormal, mean = 0.014, SD = 0.05). Two 232 

independent analyses were performed for each to ensure reproducibility of the posterior 233 

distributions. The MCMCs were run until convergence of the posteriors, as confirmed using 234 

Tracer v1.6 (Rambaut & Drummond, 2007). We estimated maximum clade credibility trees 235 

with mean node heights from each posterior after removing the first 10% of samples as 236 

burn-in. 237 

 238 

Genetic clustering analyses and summary statistics 239 



To estimate the number of genetic clusters in the Schetba SNP dataset, we performed 240 

Discriminant Analysis of Principal Components method (DAPC; Jombart et al., 2010), and 241 

Bayesian clustering within Structure 2.3.4 (Pritchard, Stephens, & Donnelly, 2000). The 242 

DAPC method, implemented in adegenet (Jombart, 2008; Jombart & Ahmed, 2011), creates 243 

discriminant functions to maximize variance among, whilst minimizing variance within, 244 

genetic clusters. The most likely number of clusters in the dataset, and the assignment of 245 

individuals to those clusters, was estimated using successive K-means clustering, with the 246 

number of clusters selected based on minimum BIC. Then DAPC was performed, using the 247 

cross-validation method (1000 replicates) to determine the optimal number of PCs to retain. 248 

Finally, we plotted the posterior membership probability of all Schetba taxa to the genetic 249 

clusters.  250 

 251 

For a given number of clusters (K), Structure identifies genetic clusters within the dataset 252 

and estimates the corresponding membership coefficients for each. We performed 253 

Structure analyses for the entire Schetba dataset, as well as for S. r. rufa and S. r. 254 

occidentalis separately in order to detect any fine-scale genetic differentiation within the 255 

eastern and western sectors of the island. For all analyses, we used the admixture model 256 

with correlated allele frequencies and ran the model without sampling locations as priors. 257 

For each dataset, we performed an initial run of 100,000 generations, discarding the first 258 

50,000 as burn-in, with K = 1 and lambda allowed to vary in order to estimate a value for 259 

lambda (the allele frequencies prior) for the dataset. For subsequent runs, the value of 260 

lambda was set to the estimated value, and the number of clusters was allowed to vary 261 

from K = 1 to K = 10 (for the full dataset), and from K = 1 to K = 5 for the analyses on the East 262 

and West groups. Each analysis was run for 500,000 generations, discarding the first 263 

100,000 as burn-in, and repeated ten times. We used Structure Harvester Web 0.6.94 (Earl, 264 

2012) to assess convergence across replicates, to determine the most optimal value of K for 265 

the three datasets (based on the log likelihood of each value of K, and the Evanno method 266 

(Evanno et al., 2005)), and to prepare input files for CLUMPP 1.1.2 (Jakobsson & Rosenberg, 267 

2007). CLUMPP was then used to calculate average membership coefficients from across 268 

the replicates. Distruct 1.1 (Rosenberg, 2004) was used to visualize the final results for 269 

several values of K, in order to better understand the levels of genetic structure within 270 

Schetba. Previous work suggests that a “true” value of K does not usually exist (Gilbert et al., 271 



2012; Benestan et al., 2016; Janes et al., 2017), and that in order to gain insight into 272 

different levels of genetic structure it is best practice to view multiple K-values.  273 

 274 

We used Genodive 2.0b27 (Meirmans & Van Tienderen, 2004) to calculate the Weir and 275 

Cockerham unbiased weighted FST estimator (Weir & Cockerham, 1984) between the East 276 

and West clades, with significance calculated using 10,000 permutations of the data. We 277 

also used Genodive to calculate observed (HO) and expected (HS) heterozygosity. 278 

 279 

Ecological niche modeling 280 

Our occurrence dataset comprised a total of 16 spatially unique latitude/longitude 281 

combinations for S. r. occidentalis and 18 for S. r. rufa. Bioclimatic variables for Madagascar 282 

were used to summarize aspects of temperature and precipitation from the latter half of 283 

the 20th century (Hijmans et al., 2005), as well as for the Last Glacial Maximum (LGM; 284 

~21,000 years BP; under both Community Climate System Model (CCSM) and Model for 285 

Interdisciplinary Research on Climate (MIROC) scenarios). We used bioclimatic GIS layers 286 

(http://www.worldclim.org) at a spatial resolution of 2.5 arc-minutes. To account for 287 

dimensionality across environmental spaces and time scales, we used a subset of six of the 288 

19 layers that showed lowest correlation (p < 0.7): annual mean temperature (bio1), mean 289 

diurnal range (bio2), maximum temperature of warmest month (bio5), annual precipitation 290 

(bio12), precipitation of wettest month (bio13), and precipitation of driest month (bio14). 291 

We used MaxEnt v.3.4.1 (Phillips et al., 2006) to construct ecological niche models of each 292 

subspecies. Owing to the low number of unique occurrences for each subspecies, we set the 293 

algorithm to perform cross validation with five replicates and a 10% training presence 294 

threshold. The spatial extent of our model training was kept at the level of the entire island 295 

of Madagascar, while our models were run using climatic variables for the present time 296 

frame and then projected onto LGM past conditions (CCSM and MIROC scenarios). We 297 

performed an additional MaxEnt run with all occurrence points of the two taxa combined (S. 298 

rufa sensu lato; total of 34 unique points), in order to examine potential ecological and 299 

biogeographical divergences and breaks within this taxon. For this run we once again used 300 

cross validation with five replicates and a 10% training presence threshold. Niche similarity 301 

between the two taxa was assessed by calculating Schoener’s D metric using the Maxent 302 



estimates of present-day potential distributions. To evaluate statistical significance of the 303 

niche similarity measure, we generated a null distribution of D values for each of the two 304 

taxa through 100 simulated models based on the same environmental layers and 305 

background extent, and random samples of background in place of occurrence records 306 

(Warren et al., 2008). 307 

 308 

Morphological variation 309 

We measured 20 Schetba skin specimens (10 per subspecies) to examine morphological 310 

variation. One of us (TOH) took standard linear measurements of bill length from the crown 311 

to tip (BL), bill width at the anterior edge of nares (BW), bill depth at nares (BD), tarsus 312 

length (TL), hallux length (HL), tail length (Tail), and wing chord length (WL). These 313 

measurements followed the descriptions in (Baldwin et al., 1931). Wing and tail lengths 314 

were measured with a wing rule to an accuracy of 1 mm, all other measurements were 315 

taken with Mitutoyo Digital Calipers to an accuracy of 0.01 mm. All measurements were 316 

repeated three times, checked for outliers (by confirming that all measurements for an 317 

individual were within one standard deviation), and then averaged. The summary statistics 318 

of these measurements for the two clades are given in Supplementary Table 2. We first 319 

tested whether males and females exhibit significant variation by conducting an ANOVA for 320 

each variable between sexes within each clade. Next, we log-transformed and standardized 321 

all measurements and conducted principal components analysis (PCA) on all specimens to 322 

examine the morphological variation between the two genetic clades. We conducted a 323 

multivariate analysis of variance (MANOVA) to determine whether the centroids of the two 324 

clades were statistically different. There were five specimens for which wing measurements 325 

could not be made and since missing data is problematic in multivariate analyses, we 326 

removed wing length and used only the remaining six variables for these analyses. We also 327 

conducted ANOVA tests for each measured trait with clade as a factor to determine which 328 

traits differed significantly between clades. We used the R statistical package for all 329 

statistical analyses. 330 

 331 

Results 332 



Sequence capture of UCE loci 333 

After removal of adapters, low quality bases and unpaired reads, an average of 350 million 334 

bp of sequence per individual remained (46 million – 589 million bp).  These reads were 335 

assembled into an average of 15,448 contigs per individual, with a mean contig length of 336 

508 bp. An average of 4,235 UCE loci were recovered per individual (3,139–4,421), with 337 

4,951 UCE loci recovered across all taxa. The 75% complete data matrix used for analysis 338 

consisted of 4,243 loci with a mean locus length of 784 bp. The concatenated alignment was 339 

3,328,172 bp in length, and contained 15,392 parsimony informative sites. 340 

 341 

The recovered UCE loci contained a total of 56,701 SNPs. Our filtering protocols reduced this 342 

to 12,045 SNPs, and after thinning to one SNP per contig our final dataset contained 3,609 343 

SNPs for use in subsequent analyses. The mean sequencing coverage of these SNPs was 68X. 344 

The SNP datasets we prepared for S. r. rufa and S. r. occidentalis contained 2,873 and 3,044 345 

SNPs, respectively. 346 

 347 

Phylogenetic relationships 348 

Our phylogenetic analyses converged on a strongly supported topology showing a clear 349 

division of S. rufa into two reciprocally monophyletic clades (Figure 2), corresponding to 350 

eastern and western Madagascar. The ML phylogenies also indicated several well-supported 351 

clades within each of the eastern and western clades, corresponding with latitudinal 352 

subdivision (details in section on fine-scale genetic structure, below). The topology 353 

recovered from ML analysis of the 4,243 UCE loci dataset was robust to partitioning scheme 354 

(Figure 2, Supplementary Figure 1). The ASTRAL species tree constructed from the 1,062 355 

most informative UCE loci had 100% support for the eastern and western clades, and had a 356 

normalized quartet score of 0.42 (Supplementary Figure 2). The sub-clades within the 357 

eastern and western clades were less well supported in the ASTRAL tree, indicating a degree 358 

of either incomplete lineage sorting or gene flow, as expected for intraspecific comparisons. 359 

 360 

The eastern and western clades were also reciprocally monophyletic and 100% supported in 361 

the mitochondrial tree (phylogeny not shown). We estimated that the divergence of eastern 362 

and western clades of S. rufa occurred approximately 854,000 years ago (median estimate, 363 



95% HPD: 0.582 – 1.16 MYA), based on the Weir & Schluter (2008) calibration for all 364 

Passeriformes. Our estimates of divergence times based on the two calibration strategies 365 

had overlapping 95% HPDs, with a slightly younger estimate of lineage divergence based on 366 

substitution rates in Hawaiian honeycreepers (Lerner et al., 2011) of 0.536 MYA (median 367 

estimate, 95% HPD: 0.380 – 0.736 MYA). 368 

 369 

Clustering analyses and differentiation measures (eastern vs. western Schetba rufa) 370 

The optimal number of genetic clusters in our Structure analysis of the 27 S. rufa individuals 371 

was K = 2, based on both the maximum posterior log likelihood and the rate of change in log 372 

probability (deltaK, Evanno method). Assignments of individuals to these clusters was 373 

consistent with the results of our phylogenetic analyses, dividing S. rufa into two genetic 374 

groups originating in eastern and western Madagascar (Figure 3a, Figure 2). Successive K-375 

means clustering also clearly indicated K = 2 as the most likely number of clusters, and DAPC 376 

was able to differentiate between these with 100% support (root mean squared error = 0), 377 

even when only a single PC was retained for analysis (Supplementary Figure 3a). The 378 

posterior membership probabilities for all taxa were 100% to their respective clusters in 379 

both Structure and DAPC, with no evidence of admixture between the east and west groups 380 

(Figure 3a, Supplementary Figure 3b).  381 

 382 

Our estimate of FST between the east and west groups was 0.256 (95%CI: 0.235 – 0.277, p-383 

value < 0.0001), suggesting strong, statistically significant genetic differentiation between 384 

them. There were 103 fixed SNPs between the two clades (across the full SNP dataset). The 385 

expected (HS) heterozygosity for the western clade was greater than that of the eastern 386 

clade (0.143, 95%CI: 0.138 – 0.147; compared to 0.133, 95%CI: 0.128 – 0.138). 387 

 388 

Fine-scale genetic structure 389 

To investigate finer-scale divergences within the eastern and western groups of S. rufa, we 390 

conducted further Structure analyses on these two groups separately. For the S. r. rufa (the 391 

eastern clade), the posterior log likelihood was maximized at K = 3, whereas deltaK was 392 

maximized at K = 2. In the two-cluster scenario, individuals from the northeast humid forest 393 

(Masoala National Park) are clearly differentiated from those in the southeastern humid 394 



forest with minimal admixture (Figure 3b). In the three-cluster scenario, this division 395 

between northeast and southeast is still apparent, and three individuals from the 396 

northwestern sector of Masoala National Park (near Hiaraka village) are largely assigned to a 397 

third cluster, distinct from the other Masoala National Park individuals (Figure 3c). The four-398 

cluster scenario is consistent with this finding, showing no further genetic structure (Figure 399 

3d). In our phylogenetic analysis, the individuals from the southeastern forest were 400 

monophyletic with 100% bootstrap support, but the individuals from Masoala National Park 401 

were paraphyletic, with those individuals from the eastern sector (Sarahandrano Forest) 402 

appearing the most divergent (Figure 2). Based on this inconsistency regarding genetic 403 

subdivision in Masoala, we conclude that there are most likely two genetic populations of S. 404 

rufa in the eastern humid forests; in Masoala National Park and in the southeastern region.  405 

 406 

For the individuals from western Madagascar, the optimal number of clusters in our 407 

Structure analyses was four, based on both the posterior log likelihood and deltaK. In a two-408 

cluster scenario (Figure 3e), the individuals from the northwest forest (Namoroka and 409 

Ankarafantsika) were differentiated from the rest of the western clade, a split which was 410 

also supported in our phylogeny (Figure 2). When K = 3 further subdivision is apparent, with 411 

Namoroka and Ankarafantsika individuals largely assigned to distinct clusters (Figure 3f). 412 

These groups are located south and north of the Betsiboka River, respectively, and this split 413 

has 100% support in our phylogenetic analysis (Figure 2). In the four-cluster scenario, there 414 

is further divergence between individuals from the southwest and central-west regions 415 

(Figure 3g); this split has 100% support in our phylogeny (Figure 2). Therefore, it appears 416 

that there are four genetically differentiated populations in western Madagascar, separated 417 

latitudinally. Overall, our genetic data provide evidence for an initial divergence in the S. 418 

rufa complex between the east and west of Madagascar during the mid-Pleistocene, 419 

followed by more recent divergences within these two regions, which perhaps reflect the 420 

fragmented nature of Madagascar’s forest habitat and/or low levels of dispersal of Schetba. 421 

 422 

 423 

Ecological niche modeling  424 

Our ecological niche models for Schetba provided a good fit to their contemporary 425 

distribution (Goodman & Raherilalao, 2013; Schulenberg, 2013), with the caveat that the 426 



actual inhabited area is smaller than predicted in the model owing to recent deforestation 427 

(Vieilledent et al., 2018). Of the five model replicates for the separate subspecies (S. r. 428 

occidentalis and S. r. rufa) and the single taxon (S. rufa s.l.), we selected the run with the 429 

best performance (highest AUC values and lowest testing data omission error) for further 430 

interpretation. 431 

 432 

Our combined single taxon ecological niche model (pooled dataset of 34 unique points) 433 

recovered two distinct areas of suitability (Figure 4), corresponding to the eastern and 434 

western clades evident in our phylogenetic analyses. Separate MaxEnt models of each 435 

subspecies (S. r. occidentalis and S. r. rufa) produced similar geographic signatures, with the 436 

individual models showing suitable habitat in western and eastern Madagascar, 437 

respectively. Slight differences in the individual models compared to the pooled dataset (S. 438 

rufa s.l.) were observed in an apparent connection between the two subdivided habitats in 439 

western Madagascar, which correspond to the genetic break between the northwest forest 440 

(Namoroka/Ankarafantsika) and the remainder of the western clade of S. r. occidentalis 441 

(Figures 2, 3e). While this subdivision was not recovered in the present-day model of S. r. 442 

occidentalis, this separation was visible in the LGM model projections for this taxon. Models 443 

of the combined dataset also differed from the individual models for S. r. occidentalis and S. 444 

r. rufa, by rendering areas of eastern Madagascar as largely habitable by Schetba during the 445 

LGM scenarios, but omitting suitable habitats in the northwest. The individual model for S. r. 446 

occidentalis produced models with suitable areas in western Madagascar during both LGM 447 

scenarios (Figure 4). Notable for the S. r. occidentalis models is the difference between the 448 

CCSM and MIROC LGM scenarios, where under the former scenario only the southwestern 449 

region of the island is predicted as having large extents of suitable areas, while the 450 

northwestern suitable area is reduced to a smaller, isolated patch (Figure 4). The observed 451 

niche similarity between the two taxa based on Schoener’s D was 0.182. This value was 452 

outside the lower bound of the 95% confidence interval of the simulated null distributions 453 

of D values, indicating that the niches of the two taxa are significantly dissimilar.  454 

 455 

  456 



Morphological variation 457 

There was no significant difference between sexes within each clade based on our ANOVA, 458 

so we used all individuals together for subsequent analyses. Univariate ANOVA of each 459 

measurement separately showed that S. r. rufa and S. r. occidentalis were significantly 460 

different in terms of bill length, bill depth, tarsus, and tail length (Supplementary Table 2). 461 

We used all 20 individuals and six variables (removing wing length due to missing data) for 462 

the PCA, which resulted in six PCs, with the first four explaining more than 90% of the 463 

variance (see Supplementary Table 3). The two Schetba clades formed distinct clusters in 464 

morphospace (Figure 5; Supplementary Figure 4). Our MANOVA test determined that the 465 

clade centroids were significantly different (p < 0.001).  466 

 467 

Discussion 468 
 469 
Previously unrecognized species diversity within Schetba 470 

We found that the two Schetba rufa subspecies are geographically, genetically, ecologically, 471 

and morphologically distinct. The S. r. rufa and S. r. occidentalis lineages are restricted to 472 

eastern and western Madagascar, respectively, occupying distinct ecological niches 473 

separated by a large expanse of unfavorable habitat (the Central Highlands). The subspecies 474 

formed reciprocally monophyletic clades in all of our analyses. We estimate that these 475 

lineages diverged 854,000 years ago (95% HPD: 0.582 – 1.16 MYA), and have since 476 

accumulated fixed SNP differences in their nuclear genomes and diverged in their genetic 477 

diversity levels. They have also diverged in morphology, such that S. r. occidentalis has a 478 

significantly longer tail, longer tarsus, and longer and heavier bill than S. r. rufa. This result is 479 

consistent with other morphological studies (Schulenberg, 2013).  480 

 481 

The genetic and morphological differences described here suggest that the two S. rufa 482 

subspecies merit recognition as separate species. We therefore propose that within the 483 

currently defined S. rufa, the western subspecies, occidentalis, should be elevated to species 484 

level, S. occidentalis. We suggest the common name ‘Western Rufous Vanga’ for this new 485 

species, to reflect its geographic distribution. The eastern subspecies, rufa, would remain S. 486 

rufa. A full description for the S. r. occidentalis subspecies already exists (Delacour, 1931), 487 

therefore we do not include a species description for S. occidentalis here. These two species 488 



are on separate evolutionary trajectories, and their distinctiveness should be taken into 489 

consideration in future conservation plans and biodiversity studies. Only by recognizing and 490 

conserving the full spectrum of genetic and morphological variation can the adaptive 491 

potential of Schetba be maximized (Funk et al., 2012; D’Amen et al., 2013). 492 

 493 

Our discovery of unrecognized species-level diversity within Schetba, coupled with the 494 

recent discovery of other cryptic species diversity within the endemic Vangidae family 495 

(Younger et al., 2018), suggests that the avian species richness of Madagascar may still be 496 

underestimated. This is concerning given the high rates of deforestation and forest 497 

fragmentation (Vieilledent et al., 2018) that are currently threatening the island’s avifauna. 498 

Recent efforts in avian taxonomy suggest that unrecognized species may be a widespread 499 

problem, leading to substantial underestimates of avian biodiversity levels and fine-scale 500 

endemism (Barrowclough et al., 2016; Hosner et al., 2018). Given that most conservation 501 

plans rely on species-level designations (Barrowclough et al., 2016), it is crucial to continue 502 

efforts to comprehend the full breadth of avian species diversity. 503 

 504 

Phylogeography of Schetba  505 
 506 
Our genetic data indicate an initial divergence in Schetba between the east and west of 507 

Madagascar during the mid-Pleistocene. Although other studies have proposed that the 508 

bioclimatic transition between the humid east and dry west of Madagascar may promote 509 

population subdivision and speciation (Yoder & Heckman, 2006; Vences et al., 2009), this is 510 

the first evidence for this speciation mechanism in birds. Sister species pairs restricted to east 511 

and west Madagascar could form via predominantly adaptive processes (i.e. ecogeographic 512 

isolation), or via non-adaptive processes (i.e. biogeographic isolation) (Vences et al., 2009). In 513 

the case of Schetba, the two species differ in ecological niche based on our models (Figure 4), 514 

therefore adaptive processes most likely played a role in their divergence. These results fit 515 

the hypothesis for ecogeographic isolation, with sister taxa in east and west Madagascar that 516 

differ in ecological niche. The divergence of Schetba does not appear to be consistent with 517 

the ‘Western rainforest refugia’ speciation mechanism put forward by Vences et al. (2009), 518 

given that the two taxa have significantly dissimilar environmental niches. Interestingly, based 519 

on its distribution, S. occidentalis does not appear to be a strictly dry-adapted species. It 520 



occupies subhumid and deciduous forests, and is not found in the arid spiny bush habitat. For 521 

example, there is a population of S. occidentalis in the high elevation areas of the subhumid 522 

forest of Analavelona (Figure 1), and the species is not found in the non-forested area 523 

surrounding the massif. The flora of the Analavelona region shares characteristics of the mid-524 

altitude forests of the east, and has been considered a Pleistocene relict when portions of 525 

southwestern Madagascar was wetter than today (Goodman et al., 2018). 526 

 527 

Biogeographic isolation may have also played a role in the divergence of S. occidentalis and S. 528 

rufa. Our ecological niche models for Schetba recovered two distinct areas of suitable habitat 529 

in east and west Madagascar, separated by a large expanse of unfavorable habitat in central 530 

Madagascar. The natural forest habitats of the Central Highlands have been degraded over 531 

hundreds of years (Green & Sussman, 1990; Gade, 1996), but during the Pleistocene this 532 

region may have consisted of mosaic habitat of wooded savannah and closed canopy forests 533 

(Yoder et al., 2016). Whether this region has been a biogeographic barrier to Schetba dispersal 534 

over the past 854,000 years is unclear. Schetba has a broad elevational range (0 – 1829 m, 535 

(Goodman & Raherilalao, 2013)) and, hence, in principal could disperse across these 536 

highlands given the necessary ecological conditions. On the other hand, both species are 537 

strictly closed canopy forest dependent and found in large tracts of relatively undisturbed 538 

forest habitat (Schulenberg, 2013), therefore wooded savannah habitat may have acted as a 539 

biogeographic barrier to dispersal.  540 

 541 

Overall, especially given our low number of occurrence records for ecological niche modeling, 542 

we cannot say conclusively whether ecogeographic or biogeographic isolation was the 543 

predominant cause of speciation, and it may be the case that both ecological and 544 

biogeographic mechanisms played a significant role in generating and maintain these species. 545 

 546 
Concluding remarks 547 
 548 
Madagascar has been considered a model region for species diversification studies, yet the 549 

phylogeography and diversification processes of the island’s avifauna are still largely 550 

unexamined. Here we provide the first evidence that the bioclimatic transition between the 551 

humid east and dry west of Madagascar has facilitated speciation within birds. More 552 



importantly, our findings of unrecognized diversity within Schetba, and cryptic diversity 553 

within Newtonia (Younger et al., 2018), suggest there may be other species awaiting 554 

recognition in this biodiversity hotspot. Appreciating the full spectrum of diversity is likely to 555 

alter conservation priorities for Madagascar, and we urge that further studies are needed to 556 

quantify the island’s biodiversity before it is lost to deforestation. 557 

 558 
 559 
Acknowledgements 560 
 561 
This study was funded by NSF grant DEB-1457624 awarded to SR. Funding was also provided 562 

by the Pritzker Laboratory for Molecular Systematics and Evolution, operated with support 563 

from the Pritzker Foundation. We gratefully acknowledge the Field Museum of Natural 564 

History, the American Museum of Natural History, and the Mention Zoologie et Biologie 565 

Animale at the Université d’Antananarivo for access to specimens and tissue samples. We 566 

are thankful to Robert Lauer for his assistance preparing sampling maps, and to Chris 567 

Kyriazis and Dylan Maddox for their molecular laboratory work.  568 

 569 
 570 
Data Accessibility 571 
 572 
The Illumina short reads are available from the NCBI sequence read archive, link_TBA and 573 

Sanger sequences are available from GenBank link_TBA.  574 

 575 
 576 
 577 
 578 
Author Contributions 579 
 580 
JY collected, analyzed, and interpreted the data, wrote the manuscript, and participated in 581 

conceiving and designing the study. PD carried out phylogenetic analyses, AN conducted 582 

ecological niche modeling, TOH collected the morphometric data. MJR collected genetic 583 

samples. SMG collected genetic samples, and participated in interpreting the data and 584 

conceiving the study. SR conceived and designed the study, and carried out morphometric 585 

analyses.  586 

 587 



References 588 
 589 
Andreone, F., Vences, M., Guarino, F.M., Glaw, F. & Randrianirina, J.E. (2002) Natural history 590 

and larval morphology of Boophis occidentalis (Anura: Mantellidae: Boophinae) 591 
provide new insights into the phylogeny and adaptive radiation of endemic Malagasy 592 
frogs. Journal of Zoology, 257, 425-438. 593 

Baldwin, S.P., Oberholser, H.C. & Worley, L.G. (1931) Measurements of birds. Scientific 594 
Publications of the Cleveland Museum of Natural History, 2, 1-165. 595 

Barrowclough, G.F., Cracraft, J., Klicka, J. & Zink, R.M. (2016) How many kinds of birds are 596 
there and why does it matter? PLoS One, 11, e0166307. 597 

Benestan, L.M., Ferchaud, A.L., Hohenlohe, P.A., Garner, B.A., Naylor, G.J., Baums, I.B., 598 
Schwartz, M.K., Kelley, J.L. & Luikart, G. (2016) Conservation genomics of natural and 599 
managed populations: building a conceptual and practical framework. Molecular 600 
Ecology, 25, 2967–2977. 601 

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., 602 
Rambaut, A. & Drummond, A.J. (2014) BEAST 2: a software platform for Bayesian 603 
evolutionary analysis. PLoS Computational Biology, 10, e1003537. 604 

Brown, J.L., Cameron, A., Yoder, A.D. & Vences, M. (2014) A necessarily complex model to 605 
explain the biogeography of the amphibians and reptiles of Madagascar. Nature 606 
Communications, 5, 5046. 607 

D’Amen, M., Zimmermann, N.E. & Pearman, P.B. (2013) Conservation of phylogeographic 608 
lineages under climate change. Global Ecology and Biogeography, 22, 93-104. 609 

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., 610 
Lunter, G., Marth, G.T. & Sherry, S.T. (2011) The variant call format and VCFtools. 611 
Bioinformatics, 27, 2156-2158. 612 

de Wit, M.J. (2003) Madagascar: heads it's a continent, tails it's an island. Annual Review of 613 
Earth and Planetary Sciences, 31, 213-248. 614 

Delacour, J. (1931) Description de neuf oiseaux nouveax de Madagascar. Oiseau et Revue 615 
Française d'Ornithologie, pp. 473-486. Société ornithologique de France, Paris, 616 
France. 617 

Delacour, J. (1932) Les Oiseaux de la mission zoologique franco-anglo-americaine a 618 
Madagascar. L'Diseauet la Revue Francaise D'Ornithologie, 2, 1-96. 619 

Earl, D.A. (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE 620 
output and implementing the Evanno method. Conservation Genetics Resources, 4, 621 
359-361. 622 

Evanno, G., Regnaut, S. & Goudet, J. (2005) Detecting the number of clusters of individuals 623 
using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611-624 
2620. 625 

Everson, K.M., Soarimalala, V., Goodman, S.M. & Olson, L.E. (2016) Multiple loci and 626 
complete taxonomic sampling resolve the phylogeny and biogeographic history of 627 
tenrecs (Mammalia: Tenrecidae) and reveal higher speciation rates in Madagascar's 628 
humid forests. Systematic Biology, 65, 890-909. 629 

Everson, K.M., Hildebrandt, K.B., Goodman, S.M. & Olson, L.E. (2018) Caught in the act: 630 
Incipient speciation across a latitudinal gradient in a semifossorial mammal from 631 
Madagascar, the mole tenrec Oryzorictes hova (Tenrecidae). Molecular 632 
Phylogenetics and Evolution, 126, 74-84. 633 



Faircloth, B.C. (2013) illumiprocessor: a trimmomatic wrapper for parallel adapter and 634 
quality trimming. 635 

Faircloth, B.C. (2015) PHYLUCE is a software package for the analysis of conserved genomic 636 
loci. Bioinformatics, 32, 786-788. 637 

Faircloth, B.C., McCormack, J.E., Crawford, N.G., Harvey, M.G., Brumfield, R.T. & Glenn, T.C. 638 
(2012) Ultraconserved elements anchor thousands of genetic markers spanning 639 
multiple evolutionary timescales. Systematic Biology, 61, 717-726. 640 

Florio, A., Ingram, C., Rakotondravony, H., Louis, E. & Raxworthy, C. (2012) Detecting cryptic 641 
speciation in the widespread and morphologically conservative carpet chameleon 642 
(Furcifer lateralis) of Madagascar. Journal of Evolutionary Biology, 25, 1399-1414. 643 

Fuchs, J., Pons, J.-M., Pasquet, E., Raherilalao, M. J. & Goodman, S. M. (2007) Geographical 644 
structure of the genetic variation in the Malagasy Scops-owl (Otus rutilus) inferred 645 
from mitochondrial sequence data. The Condor, 109, 409-18. 646 

Funk, W.C., McKay, J.K., Hohenlohe, P.A. & Allendorf, F.W. (2012) Harnessing genomics for 647 
delineating conservation units. Trends in Ecology and Evolution, 27, 489-96. 648 

Gade, D.W. (1996) Deforestation and its effects in highland Madagascar. Mountain Research 649 
and Development, 101-116. 650 

Gatesy, J. & Springer, M.S. (2014) Phylogenetic analysis at deep timescales: unreliable gene 651 
trees, bypassed hidden support, and the coalescence/concatalescence conundrum. 652 
Molecular Phylogenetics and Evolution, 80, 231-266. 653 

Gautier, L. & Goodman, S. (2003) Introduction to the flora of Madagascar. The Natural 654 
History of Madagascar (ed. by S.M. Goodman and J.P. Benstead). University of 655 
Chicago Press, Chicago, United States. 656 

Gilbert, K.J., Andrew, R.L., Bock, D.G., Franklin, M.T., Kane, N.C., Moore, J.S., Moyers, B.T., 657 
Renaut, S., Rennison, D.J. & Veen, T. (2012) Recommendations for utilizing and 658 
reporting population genetic analyses: the reproducibility of genetic clustering using 659 
the program STRUCTURE. Molecular Ecology, 21, 4925-4930. 660 

Goodman, S.M. & Raherilalao, M.J. (2013) Birds of the class Aves. Atlas of Selected Land 661 
Vertebrates of Madagascar (ed. by S.M. Goodman and M.J. Raherilalao). Association 662 
Vahatra, Antananarivo, Madagascar. 663 

Goodman, S.M., Raherilalao, M.J. & Wohlhauser, S. (eds) (2018) The terrestrial protected 664 
areas of Madagascar: Their history, description, and biota. Association Vahatra, 665 
Antananarivo, Madagascar. 666 

Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., 667 
Fan, L., Raychowdhury, R. & Zeng, Q. (2011) Full-length transcriptome assembly from 668 
RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-652. 669 

Green, G.M. & Sussman, R.W. (1990) Deforestation history of the eastern rain forests of 670 
Madagascar from satellite images. Science, 248, 212-215. 671 

Harvey, M.G., Smith, B.T., Glenn, T.C., Faircloth, B.C. & Brumfield, R.T. (2016) Sequence 672 
capture versus restriction site associated DNA sequencing for shallow systematics. 673 
Systematic Biology, 65, 910-924. 674 

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution 675 
interpolated climate surfaces for global land areas. International Journal of 676 
Climatology, 25, 1965-1978. 677 

Hosner, P.A., Faircloth, B.C., Glenn, T.C., Braun, E.L. & Kimball, R.T. (2016) Avoiding missing 678 
data biases in phylogenomic inference: an empirical study in the landfowl (Aves: 679 
Galliformes). Molecular Biology and Evolution, 33, 1110-1125. 680 



Hosner, P.A., Campillo, L.C., Andersen, M.J., Sánchez-González, L.A., Oliveros, C.H., Urriza, 681 
R.C. & Moyle, R.G. (2018) An integrative species delimitation approach reveals fine-682 
scale endemism and substantial unrecognized avian diversity in the Philippine 683 
Archipelago. Conservation Genetics, 19, 1153-1168. 684 

Hotaling, S., Foley, M.E., Lawrence, N.M., Bocanegra, J., Blanco, M.B., Rasoloarison, R., 685 
Kappeler, P.M., Barrett, M.A., Yoder, A.D. & Weisrock, D.W. (2016) Species discovery 686 
and validation in a cryptic radiation of endangered primates: coalescent-based 687 
species delimitation in Madagascar's mouse lemurs. Molecular Ecology, 25, 2029-688 
2045. 689 

Jakobsson, M. & Rosenberg, N.A. (2007) CLUMPP: a cluster matching and permutation 690 
program for dealing with label switching and multimodality in analysis of population 691 
structure. Bioinformatics, 23, 1801-1806. 692 

Janes, J.K., Miller, J.M., Dupuis, J.R., Malenfant, R.M., Gorrell, J.C., Cullingham, C.I. & 693 
Andrew, R.L. (2017) The K= 2 conundrum. Molecular Ecology, 26, 3594-3602. 694 

Jombart, T. (2008) adegenet: a R package for the multivariate analysis of genetic markers. 695 
Bioinformatics, 24, 1403-1405. 696 

Jombart, T. & Ahmed, I. (2011) adegenet 1.3-1: new tools for the analysis of genome-wide 697 
SNP data. Bioinformatics, 27, 3070-3071. 698 

Jombart, T., Devillard, S. & Balloux, F. (2010) Discriminant analysis of principal components: 699 
a new method for the analysis of genetically structured populations. BMC Genetics, 700 
11, 94. 701 

Jønsson, K.A., Fabre, P.-H., Fritz, S.A., Etienne, R.S., Ricklefs, R.E., Jørgensen, T.B., Fjeldså, J., 702 
Rahbek, C., Ericson, P.G. & Woog, F. (2012) Ecological and evolutionary determinants 703 
for the adaptive radiation of the Madagascan vangas. Proceedings of the National 704 
Academy of Sciences, 109, 6620-6625. 705 

Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: 706 
improvements in performance and usability. Molecular Biology and Evolution, 30, 707 
772-780. 708 

Katoh, K., Misawa, K., Kuma, K.i. & Miyata, T. (2002) MAFFT: a novel method for rapid 709 
multiple sequence alignment based on fast Fourier transform. Nucleic Acids 710 
Research, 30, 3059-3066. 711 

Köhler, J., Glaw, F. & Vences, M. (2007) A new green treefrog, genus Boophis Tschudi 1838 712 
(Anura Mantellidae), from arid western Madagascar: phylogenetic relationships and 713 
biogeographic implications. Tropical Zoology, 20, 215-227. 714 

Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014) Selecting optimal 715 
partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14, 82. 716 

Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: 717 
new methods for selecting partitioned models of evolution for molecular and 718 
morphological phylogenetic analyses. Molecular Biology and Evolution, 34, 772-773. 719 

Lees, D., Kremen, C., Raharitsimba, T., Goodman, S. & Benstead, J. (2003) Classification, 720 
diversity, and endemism of the butterflies (Papilionoidea and Hesperioidea): a 721 
revised species checklist. The Natural History of Madagascar (ed. by S.M. Goodman 722 
and J.P. Benstead). University of Chicago Press, Chicago, United States. 723 

Lerner, H. R., Meyer, M., James, H. F., Hofreiter, M., & Fleischer, R. C. (2011). Multilocus 724 
resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian 725 
honeycreepers. Current Biology, 21(21), 1838-1844.  726 



Li, H. & Durbin, R. (2009) Fast and accurate short read alignment with Burrows–Wheeler 727 
transform. Bioinformatics, 25, 1754-1760. 728 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G. & 729 
Durbin, R. (2009) The sequence alignment/map format and SAMtools. 730 
Bioinformatics, 25, 2078-2079. 731 

Linnaeus, C. (1766) Systema naturæ per regna tria naturæ, secundum classes, ordines, 732 
genera, species, cum characteribus, differentiis, synonymis, locis. 12th Edition, 733 
Volume 1. Salvius, Stockholm, Sweden. 734 

Lischer, H. & Excoffier, L. (2012) PGDSpider: an automated data conversion tool for 735 
connecting population genetics and genomics programs. Bioinformatics, 28, 298-736 
299. 737 

McCormack, J.E., Harvey, M.G., Faircloth, B.C., Crawford, N.G., Glenn, T.C. & Brumfield, R.T. 738 
(2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment 739 
and high-throughput sequencing. PLoS One, 8, e54848. 740 

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., 741 
Altshuler, D., Gabriel, S. & Daly, M. (2010) The Genome Analysis Toolkit: a 742 
MapReduce framework for analyzing next-generation DNA sequencing data. Genome 743 
Research, 20, 1297-1303. 744 

Meiklejohn, K.A., Faircloth, B.C., Glenn, T.C., Kimball, R.T. & Braun, E.L. (2016) Analysis of a 745 
rapid evolutionary radiation using ultraconserved elements: evidence for a bias in 746 
some multispecies coalescent methods. Systematic Biology, 65, 612-627. 747 

Mirarab, S. & Warnow, T. (2015) ASTRAL-II: coalescent-based species tree estimation with 748 
many hundreds of taxa and thousands of genes. Bioinformatics, 31, 44-52. 749 

Nussbaum, R. & Raxworthy, C. (1994) The genus Paragehyra (Reptilia: Sauria: Gekkonidae) in 750 
southern Madagascar. Journal of Zoology, 232, 37-59. 751 

Nussbaum, R.A. & Raxworthy, C.J. (1998) Revision of the genus Ebenavia Boettger (Reptilia: 752 
Squamata: Gekkonidae). Herpetologica, 18-34. 753 

Orozco-Terwengel, P., Nagy, Z.T., Vieites, D.R., Vences, M. & Louis Jr, E. (2008) 754 
Phylogeography and phylogenetic relationships of Malagasy tree and ground boas. 755 
Biological journal of the Linnean Society, 95, 640-652. 756 

Pattengale, N.D., Alipour, M., Bininda-Emonds, O.R., Moret, B.M. & Stamatakis, A. (2010) 757 
How many bootstrap replicates are necessary? Journal of Computational Biology, 17, 758 
337-354. 759 

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species 760 
geographic distributions. Ecological Modelling, 190, 231-259. 761 

Rambaut, A. & Drummond, A.J. (2007) Tracer v1. 4. 762 
Raxworthy, C.J., Ingram, C.M., Rabibisoa, N. & Pearson, R.G. (2007) Applications of 763 

ecological niche modeling for species delimitation: a review and empirical evaluation 764 
using day geckos (Phelsuma) from Madagascar. Systematic Biology, 56, 907-923. 765 

Reddy, S. (2014) What’s missing from avian global diversification analyses? Molecular 766 
Phylogenetics and Evolution, 77, 159-165. 767 

Reddy, S., Driskell, A., Rabosky, D., Hackett, S. & Schulenberg, T. (2012) Diversification and 768 
the adaptive radiation of the vangas of Madagascar. Proceedings of the Royal Society 769 
B: Biological Sciences, 279, 2062-2071. 770 

Rosenberg, N.A. (2004) DISTRUCT: a program for the graphical display of population 771 
structure. Molecular Ecology Notes, 4, 137-138. 772 



Schulenberg, T.S. (2013) Schetba. The Birds of Africa. Volume VIII: The Malagasy Region. (ed. 773 
by R. Safford and F. Hawkins), pp. 828-830. Christopher Helm, London, UK. 774 

Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of 775 
large phylogenies. Bioinformatics, 30, 1312-1313. 776 

Storey, M., Mahoney, J.J., Saunders, A.D. & Duncan, R.A. (1995) Timing of hot spot-related 777 
volcanism and the breakup of Madagascar and India. Science, 267, 852. 778 

Tagliacollo, V.A. & Lanfear, R. (2018) Estimating improved partitioning schemes for 779 
UltraConserved Elements (UCEs). Molecular Biology and Evolution, msy069-msy069. 780 

Vences, M. & Glaw, F. (2002) Molecular phylogeography of Boophis tephraeomystax: a test 781 
case for east-west vicariance in Malagasy anurans. Spixiana, 25, 79-84. 782 

Vences, M., Glaw, F., Jesu, R. & Schimmenti, G. (2000) A new species of Heterixalus 783 
(Amphibia: Hyperoliidae) from western Madagascar. African Zoology, 35, 269-276. 784 

Vences, M., Wollenberg, K.C., Vieites, D.R. & Lees, D.C. (2009) Madagascar as a model 785 
region of species diversification. Trends in Ecology and Evolution, 24, 456-465. 786 

Vieilledent, G., Grinand, C., Rakotomalala, F.A., Ranaivosoa, R., Rakotoarijaona, J.-R., Allnutt, 787 
T.F. & Achard, F. (2018) Combining global tree cover loss data with historical national 788 
forest cover maps to look at six decades of deforestation and forest fragmentation in 789 
Madagascar. Biological Conservation, 222, 189-197. 790 

Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus 791 
conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868-2883.   792 

Weir, J.T. & Schluter, D. (2008) Calibrating the avian molecular clock. Molecular Ecology, 17, 793 
2321-2328. 794 

Wilmé, L., Goodman, S.M. & Ganzhorn, J.U. (2006) Biogeographic evolution of Madagascar's 795 
microendemic biota. Science, 312, 1063-1065. 796 

Xi, Z., Liu, L. & Davis, C.C. (2015) Genes with minimal phylogenetic information are 797 
problematic for coalescent analyses when gene tree estimation is biased. Molecular 798 
Phylogenetics and Evolution, 92, 63-71. 799 

Yamagishi, S., Honda, M., Eguchi, K. & Thorstrom, R. (2001) Extreme endemic radiation of 800 
the Malagasy Vangas (Aves: Passeriformes). Journal of Molecular Evolution, 53, 39-801 
46. 802 

Yoder, A.D. & Heckman, K.L. (2006) Mouse lemur phylogeography revises a model of 803 
ecogeographic constraint in Madagascar. Primate Biogeography: Progress and 804 
Prospects (ed. by J. Fleagle and S.M. Lehman), pp. 255-268. Kluwer Press, Dordrecht, 805 
Netherlands. 806 

Yoder, A.D., Campbell, C.R., Blanco, M.B., dos Reis, M., Ganzhorn, J.U., Goodman, S.M., 807 
Hunnicutt, K.E., Larsen, P.A., Kappeler, P.M. & Rasoloarison, R.M. (2016) Geogenetic 808 
patterns in mouse lemurs (genus Microcebus) reveal the ghosts of Madagascar's 809 
forests past. Proceedings of the National Academy of Sciences, 113, 8049-8056. 810 

Younger, J.L., Strozier, L., Maddox, J.D., Nyári, Á.S., Bonfitto, M.T., Raherilalao, M.J., 811 
Goodman, S.M. & Reddy, S. (2018) Hidden diversity of forest birds in Madagascar 812 
revealed using integrative taxonomy. Molecular phylogenetics and evolution, 124, 813 
16-26. 814 

 815 



 816 
Figure 1. Map of study sampling sites, with S. r. rufa indicated by orange icons, and S. r. 817 
occidentalis by green icons. Green star indicates western population outside the 818 
documented range of S. r. occidentalis, but confirmed as occidentalis in this study. Circles 819 
indicate genetic sampling, crosses indicate morphological sampling only. See Table S1 for 820 
latitude/longitude and accession numbers. 821 
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823 
Figure 2. Phylogenetic relationships within Schetba. Partitioned maximum-likelihood 824 
phylogeny of 4,243 concatenated UCE loci (3,328,172 bp). Support values are shown for 825 
nodes that received >70% bootstrap support. 826 
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 828 
Figure 3. Structure plot showing the membership coefficients for Schetba individuals to 829 
genetic clusters. (a) All Schetba, assigned to two genetic clusters (K = 2). All individuals from 830 
eastern Madagascar have 100% assignment to the orange cluster, whereas all western 831 
Madagascar individuals have 100% assignment to the green cluster. Panels (b) – (d); 832 
assignment of S. r. rufa and S. r. occidentalis individuals for K = 2 – K = 4. Labels refer to the 833 
area of collection of individuals. 834 
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 835 
Figure 4. Ecological niche models for Schetba, demonstrating suitable habitat in the present 836 
and at the Last Glacial Maximum based on two alternate climate scenarios (MIROC and 837 
CCSM). Top row represents the best model (AUC = 0.712; omission error = 0.286) 838 
for Schetba rufa (sensu lato) obtained from the pooled set of occurrences (N = 34). The 839 
middle row corresponds to the best model (AUC = 0.891; omission error = 0.000) for S. r. 840 
occidentalis (N = 16), while the bottom row shows the best model output (AUC = 0.925; 841 
omission error = 0.000) for S. r. rufa (N = 14). Dark blue areas represent higher occurrence 842 
probability, while light blue and turquoise indicates lower presence probability.  843 
 844 



845 
Figure 5. Principal components analysis of morphometric comparisons across Schetba. 846 
Biplot of PC1 versus PC2, which together explain ~70% of the variation. Centroids of each 847 
clade (orange = S. r. rufa; green = S. r. occidentalis) were significantly different (p < 0.001) 848 
according to a MANOVA. Circles indicate 95% confidence ellipses around the centroid of 849 
each clade; symbols indicate sex (dots = females; triangles = males). Since there was no 850 
significant difference between sex, all individuals of each clade were analyzed together. 851 
Arrowed lines show direction and magnitude of the coefficients of each variable 852 
(abbreviations in text).  853 
 854 
 855 

bill depth

bill width

bill length

tarsus

hallux

tai
l le

ng
th

−2

−1

0

1

2

−2 0 2
PC1 (49.0% explained var.)

P
C

2 
(2

0.
8%

 e
xp

la
in

ed
 v

ar
.)


