

CREATING A NATIVE SWIFT JPEG CODEC

By Kelvin Ma

Senior Thesis in Computer Engineering

University of Illinois at Urbana-Champaign

Advisor: Dr. Zbigniew T Kalbarczyk

May 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/324164941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Swift is one of the world’s most popular systems programming languages,

however for many applications, such as image decoding and encoding,

Apple’s proprietary frameworks are the only options available to users.

This project, an open-source, pure-swift implementation of the ITU-T81

JPEG standard, is motivated by that gap in the language ecosystem.

Written as an open source project contributor’s guide, we begin by

detailing the problems and considerations inherent to codec design, and

how the Swift language allows for highly expressive and safe APIs beyond

what older C and C++ frameworks can provide. We continue with an

overview of the components of our fully-featured JPEG library, including

ways in which various performance and safety issues have been

addressed. We overview the packaging and encapsulation required to vend

a usable framework, as well as the unit, integration, and regression tests

essential for its long-term maintenance.

Keywords: JPEG, codecs, Swift, frameworks

Acknowledgements

The author would like to acknowledge the valuable support and advice of

Dr. Zbigniew Kalbarczyk, who oversaw this project from start to completion

over the course of approximately one year.

Table of contents

�. Project motivation … Page 1

i. Problem … Page 1

ii. Proposed solution … Page 2

iii. Prior art (literature review) … Page 2

�. Project goals … Page 4

i. The JPEG standard … Page 4

ii. Color formats … Page 5

iii. Color targets … Page 6

iv. Levels of abstraction … Page 7

�. Concepts … Page 8

i. JPEG segmented structure … Page 8

ii. Header segments … Page 9

iii. Table segments … Page 12

iv. Blocks, planes, and MCUs … Page 13

v. Contextual state … Page 17

�. User model … Page 20

i. Segmentation API … Page 21

ii. Decoding/encoding API … Page 22

�. Library architecture … Page 29

i. common.swift … Page 29

ii. decode.swift … Page 31

iii. encode.swift … Page 41

iv. debug.swift … Page 44

v. os.swift … Page 45

�. Test architecture … Page 46

i. Unit tests … Page 46

ii. Integration tests … Page 47

iii. Regression tests … Page 47

iv. Fuzz tests … Page 48

�. Conclusion … Page 50

�. References … Page 51

Swift JPEG: Contributor’s Guide

Swift JPEG is a cross-platform pure Swift framework which provides a full-

featured JPEG encoding and decoding API. The core framework has no

external dependencies, including Foundation, and should compile and

provide consistent behavior on all Swift platforms. The framework

supports additional features, such as file system support, on Linux and

MacOS. Swift JPEG is available under the GPL3 open source license.

1. Project motivation

Summary: Unlike UIImage, Swift JPEG is cross-platform and open-

source. It provides a rich, idiomatic set of APIs for the Swift language,

beyond what wrappers around C frameworks such as libjpeg can

emulate, and unlike libjpeg, guarantees safe and consistent behavior

across different platforms and hardware. As a standalone SPM

package, it is also significantly easier to install and use in a Swift

project.

1.1. Problem

Today, almost all Swift users rely on two popular system frameworks for

encoding and decoding the JPEG file format. The first of these system

frameworks is UIKit, which is available on Apple platforms and includes a

multi-format image codec, UIImage.1 However, this codec is proprietary

and unavailable on Linux platforms, making tools and applications that

depend on UIImage non-portable.

The second popular system framework is the C library libjpeg2 which

comes pre-installed with most Linux distributions. The libjpeg codec,

which has existed since 1991, has the advantage of having a large user

base, and unlike UIImage, is free and open source software.

The libjpeg codec however, has a number of drawbacks which make it

unsuitable for use in Swift projects. Despite Swift’s excellent C-interop,

installing and importing libjpeg into Swift projects can be challenging for

all but advanced Swift users.

Owing to vast differences in programming paradigms and preferred design

patterns between C and Swift, APIs designed for (and constrained by) the C

language can also be extremely awkward, and needlessly verbose when

called from Swift code. Swift wrappers around C APIs can mitigate some of

these issues, but must still incur necessary overhead to bridge the gap

between a framework designed for a language without dynamic arrays,

automatic reference counting, or the concept of memory state, and a

calling language which relies on modern data structures and guarantees

for safe and efficient operation.

1

https://choosealicense.com/licenses/gpl-3.0/
https://developer.apple.com/documentation/uikit/uiimage
http://ijg.org/
https://en.wikipedia.org/wiki/Libjpeg

The libjpeg codec specifically also suffers from serious technical flaws

which preclude its safe inclusion in Swift projects. Error handling in libjpeg

relies heavily on the setjmp family of POSIX functions, which are

unsafe3 to use in Swift (and many other languages as well).4 The output

from libjpeg can also vary across different hardware due to differences in

platform rounding and SIMD architecture.

1.2. Proposed solution

A major, and in our opinion, beneficial, trend in modern language design,

has been to distribute language compilers with package managers that

can pull code from the internet to be compiled locally by a developer’s

compiler (or interpeter) toolchain. The most famous examples might be

Node and Python’s pip tool. In Swift, the equivalent is the Swift Package

Manager (SPM). While the Swift Package Manager is capable of linking to

system C libraries, this process is generally not automated and entails

some complexity on the part of users. A native-Swift framework, on the

other hand, can be automatically downloaded, versioned, installed, and

imported by the package manager, greatly streamlining its use.

This, and the previously discussed issues with existing system

frameworks, motivates the creation of a pure Swift implementation of

JPEG. A pure Swift JPEG library can vend a natural, idiomatic API. By

default, pure Swift code compiles on all Swift platforms, and the lack of

undefined/implementation-defined behavior in the language ensures

consistent behavior across those platforms. First-class language support

for concepts such as SIMD also make native-Swift codecs considerably

more portable than their C counterparts, which are often compiled as a

patchwork of macro-defined cores and extensions.

1.3. Prior art (literature review)

Currently, no production-ready JPEG codec exists for the Swift language

today.

Many language communities have “experimental” implementations of

JPEG and other image formats. Most experimental implementations begin

as personal projects, and many are non-compliant, or even not fully

functional. However, they sometimes mature into formidable local

competitors to libjpeg and other system libraries. Experimental JPEG

implementations rarely meet the threshold to qualify as a usable

framework, but the few that do serve as a proof-of-concept for the idea of

commodotizing image processing into something that can be handled by a

native-language package, as opposed to relying on system dependencies.

While this can imply additional code-size costs, the portability and

usability gains inherent in “demoting” a system dependency into a regular

package are significant.

Language communities with strong “hacker” traditions, such as the Rust

community, often sport advanced native codec libraries5 in their package

indices. In the Swift world, however, we could only locate a single,

2

https://forums.swift.org/t/on-the-road-to-swift-6/32862/149
https://internals.rust-lang.org/t/support-c-apis-designed-for-safe-unwinding/7212
https://swift.org/package-manager/
https://docs.rs/jpeg-decoder/0.1.16/jpeg_decoder/
https://github.com/sergeysmagleev/JPEGEncoder

unfinished Github project which implements JPEG in native Swift, by

Github user sergeysmagleev .6

Why does Swift have such poor support for JPEG (and other image formats)

compared to languages such as Rust which has a comparatively tiny user

base? There are in fact, no technical limitations — performance or

otherwise — inherent to the Swift language that would preclude a native

Swift implementation of JPEG, or make such an implementation inferior to

existing C implementations. The only real constraint is the fact that all

open source code (in fact, all code) has to be authored by someone, and in

the FOSS ecosystem especially, the limiting factor in producing new

libraries and frameworks has been the availability and willingness of

someone “up to the task” to write that code.

Without funding, interest and technical difficulty are the main

determinants of whether a library will arise in a particular language

community. This is true for any language community, including the Swift

community. For example, because game development is a popular

developer hobby, many algorithms and toolkits relevant to the field have

been implemented natively in most languages.

In the field of image codecs, this has meant that “easier” formats such as

GIF and, to a much lesser extent, PNG, often have high quality native-

language implementations, while more technically challenging formats

such as JPEG often remain unsupported. However, we forsee that as

libraries and frameworks become increasingly decoupled from operating

systems, the monopoly of libjpeg and proprietary system frameworks

will too be broken, in favor of portable, native implementations. As such,

developing such a resource contributes to the language community-level

goal7 of expanding the Swift library ecosystem.

3

https://github.com/sergeysmagleev
https://forums.swift.org/t/on-the-road-to-swift-6/32862

2. Project goals

Summary: Swift JPEG supports all three popular JPEG coding

processes (baseline, extended, and progressive), and comes with

built-in support for the JFIF/EXIF subset of the JPEG standard. The

framework supports decompressing images to RGB and YCbCr

targets. Lower-level APIs allow users to perform lossless operations

on the frequency-domain representation of an image, transcode

images between different coding processes, edit header fields and

tables, and insert or strip metadata. The framework also provides the

flexibility for users to extend the JPEG standard to support custom

color formats and additional coding processes.

2.1. The JPEG standard

JPEG images as commonly encountered today are actually governed by

three overlapping (and slightly contradictory) standards. The most

important is the ISO/IEC 10918-1 standard8 (also called the ITU T.81

standard), which this document will refer to simply as the JPEG standard.

The JPEG standard is color format agnostic, meaning it supports any

combination of user-defined color components (YCbCr, RGB, RGBA, and

anything else). The standard defines no fewer than thirteen different

coding processes, which are essentially distinct image formats grouped

under the umbrella of “JPEG formats”. Coding processes can be classified

by their entropy coding:

enum Coding

{

 case huffman

 case arithmetic

}

Coding processes can also either be hierarchical or non-hierarchical. A

summary of JPEG coding processes is given below:

process type entropy coding hierarchical

1. baseline huffman false

2. extended huffman false

3. extended arithmetic false

4. extended huffman true

5. extended arithmetic true

6. progressive huffman false

7. progressive arithmetic false

4

process type entropy coding hierarchical

8. progressive huffman true

9. progressive arithmetic true

10. lossless huffman false

11. lossless arithmetic false

12. lossless huffman true

13. lossless arithmetic true

Note: processes this project supports are bolded.

Among these formats, only the baseline huffman non-hierarchical process

is commonly used today, though the progressive huffman non-hierarchical

process is sometimes also seen. This is in large part due to the other two

technical standards relevant to the JPEG format, discussed shortly.

Until very recently, the arithmetic entropy coding method was patented,

which resulted in its exclusion from software implementations of the

standard. The lossless and hierarchical processes are seldom-used today,

and are considered out of scope for this project. However, the extended

(huffman, non-hierarchical) process is a relatively straightforward

derivation from the baseline process, and sees some usage in applications

such as medical imaging, so this project supports this process in addition

to processes 1 and 6.

The framework is designed to still parse and recognize the unsupported

coding processes, even if it is unable to encode or decode them. As such, it

supports, for example, editing and resaving metadata for all conforming

JPEG files regardless of the coding process used. In theory, users can use

the lexing and parsing components of the framework to implement codec

extensions implementing the unsupported processes.

2.2. Color formats

A color format for a JPEG image is a set of component identifiers and a

defined meaning for each of those components. A component identifier is

an integer from 1 to 255, denoted [ci] in this document, and the identifiers

need not be contiguous or in increasing order (or any order at all). An

example of a (non-standard) color format for RGBA might be:

{

 [5]: red,

 [6]: green,

 [8]: blue,

 [1]: alpha

}

5

JPEG color formats are defined by the two other standards besides the ISO

10918-1, which we will refer to as the JFIF/EXIF standards.9 The JFIF/EXIF

standards are subsets of the JPEG standard which define common color

format meanings for JPEG images on the web (primarily JFIF) and from

digital cameras (primarily EXIF). They “strongly recommend” use of the

baseline coding process only, though they are compatible with the other

coding processes as well. The JFIF and EXIF standards are mutually

incompatible due to differences in file structure, but most codecs tolerate

both.

Both the JFIF and EXIF standards use the YCbCr color model. The JFIF

standard allows both full YCbCr triplets, and a Y-only grayscale form. The

EXIF standard only allows YCbCr triplets. Both standards share the same

identifier–channel mapping, and in addition, the JFIF YCbCr format is

compatible with the Y format.

{

 [1]: Y (luminance),

 [2]: Cb (blueness),

 [3]: Cr (redness)

}

The framework includes built-in support for the JFIF/EXIF color formats,

which we will refer to as the common format. However it also provides

support through Swift generics for custom user-defined color formats,

which may be useful for certain applications.

2.3. Color targets

Color targets are related to but distinct from color formats. A color format

specifies how colors are represented and stored within a JPEG image,

while a color target specifies how those colors are presented to users. This

framework includes built-in support for both YCbCr and RGB as color

targets. The conversion formula from JPEG-native YCbCr colors to RGB is

defined by the JFIF/EXIF standards, and given (in matrix form) below:

┌ ┐ ┌ ┐ ┌ ┐
│ R │ │ 1.00000 0.00000 1.40200 │ │ Y │
│ G │ = │ 1.00000 -0.34414 -0.71414 │ x │ Cb - 128 │
│ B │ │ 1.00000 1.77200 0.00000 │ │ Cr - 128 │
└ ┘ └ ┘ └ ┘

The inverse formula is given below:

6

https://en.wikipedia.org/wiki/YCbCr
https://en.wikipedia.org/wiki/RGB_color_model

┌ ┐ ┌ ┐ ┌ ┐
│ Y │ │ 0.2990 0.5870 0.1140 │ │ R │
│ Cb - 128 │ = │ -0.1687 -0.3313 0.5000 │ x │ G │
│ Cr - 128 │ │ 0.5000 -0.4187 -0.0813 │ │ B │
└ ┘ └ ┘ └ ┘

The framework supports rendering to multiple color targets from the same

decoded image, without having to redecode the image for each target. As

with custom color formats, the framework also supports user-defined

color targets, which much also define an associated color format type

since the JFIF/EXIF conversion formulas assume a specific YCbCr input

format.

2.4. Levels of abstraction

Rendering to (or saving from) an RGB/YCbCr pixel array is the most

common JPEG codec use-case, but it is not the only one. As is well-known,

the full JPEG encoding–decoding pipeline is lossy, which results in both

image degradation and increased file size each time a JPEG is reencoded.

However, most of the steps in that pipeline are actually reversible, which

means many common image operations (ranging from editing metadata to

performing crops and rotations, and even color grading) can be done

losslessly. Doing so requires a codec which exposes each abstracted stage

of the coding pipeline in its API:

�. structural representation

�. spectral representation

�. dequantized representation

�. spatial representation

�. color representation

For example, metadata editing is best performed on the structural

representation, while lossless crops, reflections, and rotations can only be

performed on the spectral representation. Changing the compression level

is performed on the dequantized representation, while changing the

subsampling level is best performed on the spatial representation. As

such, the framework allows users to interact with JPEG images at all five

major levels of abstraction.

7

3. Concepts

Summary: JPEG is a frequency transform-based compressed image

format. Decompressing the file format can be roughly divided into

lexing, parsing, and decoding stages. Decoding involves assembling

multiple image scans into a single image frame. A scan may contain

one or more color components (channels). In a progressive JPEG, a

single scan may contain only a specific range of bits for a specific

frequency band. JPEG images also use huffman and quantization

tables. Huffman tables are associated with image components at the

scan level. Quantization tables are associated with image

components at the frame level. Multiple components can reference

the same huffman or quantization table. The “compression level” of a

JPEG image is almost fully determined by the quantization tables

used by the image.

This section is meant to give a concise overview of the JPEG format itself.

For the actual format details, consult the ISO 10918-1 standard.8

3.1. JPEG segmented structure

Structurally, JPEG files are sequences of marker segments and entropy-

coded segments. It is possible to segment JPEG files without having to

parse the body of each segment. Marker segments have headers, while

entropy-coded segments are “naked” byte sequences. Because entropy-

coded segments can have zero length, a JPEG file can be conceptualized as

a sequence of alternating marker and entropy-coded segments. The

terminator for an entropy-coded segment is one or more 0xFF bytes; an

entropy-coded segment together with its terminator is a prefix.

JPEG ::= <Marker Segment> (<Prefix> <Marker Segment>) *

Prefix ::= <Entropy-Coded Segment> (0xFF)+

Because the delimiter for an entropy-coded segment is an 0xFF byte,

this means that any 0xFF bytes in its payload data must be escaped with

the escape sequence 0xFF 0x00 .

Entropy-Coded Segment ::= <Escape> *

Escape ::= [0x00-0xFE]

 | 0xFF 0x00

Marker segments consist of a type, length field, and a segment body, in

that order. The type is always one byte; the JPEG standard defines which

values of this byte correspond to which marker segment types. The length

field is a big-endian 16-bit integer. The length includes the length field

8

https://www.w3.org/Graphics/JPEG/itu-t81.pdf

itself, so the length of the segment body is always two less than the value

of the length field. (Because the length of a marker segment is always

known, no escaping takes place.)

Marker Segment ::= <Type> <Length> <Body>

Type ::= [0x01-0xFE]

Length ::= [0x00-0xFF] [0x00-0xFF]

Body ::= [0x00-0xFF]{ (Length[0] << 8 | Length[1]) - 2 }

There are many different types of marker segments, but the most

important are header segments and table segments.

3.2. Header segments

There are two types of JPEG header segments: frame headers and scan

headers.

3.2.1. Frame headers

A frame header is a header segment which describes a rectangular image

as a whole. Except when the JPEG file uses a hierarchical coding process,

there is only one frame, and therefore, one frame header per image. A

frame header contains the following fields:

Bit depth (integer, usually 8 or 12)

Image width (integer, greater than zero)

Image height (integer)

Resident components (array)

Note that, as a technical detail, the height can be initialized to 0 by the

frame header segment, and set later by a separate segment called a height

redefinition segment.

The resident components array defines the color components in the

image, and includes image-global parameters for each component. A

resident component definition contains the following fields:

Component identifier (ci)

Quantization table reference (qi)

Horizontal sampling factor (integer, between 1 and 4)

Vertical sampling factor (integer, between 1 and 4)

The sampling factors determine the chroma subsampling level of the

image. All components having a sampling factor of (1, 1) corresponds to a

4�4�4 subsampling scheme. A sampling factor of (2, 2) for the Y channel,

and (1, 1) for the Cb and Cr channels corresponds to a 4�2�0 subsampling

scheme.

3.2.2. Scan headers

9

A scan header is a header segment which describes data, a scan, which

makes up a portion of a complete image. There can be one or more scans,

and therefore, scan headers, for a single frame. The decomposition of

image data into multiple scans is always done spectrally, by bit-index, and

by component, never spatially, so each scan contains data for the entire

spatial extent of the image. A scan header is always immediately followed

by an entropy-coded segment containing the scan data the header

describes.

A scan header contains the following fields:

Band range (integer range, between 0 and 63)

Bit range (integer range)

Component reference array

The band range is given in terms of discrete frequencies. The lowest

frequency, 0, is the DC frequency, all other frequencies, up to a maximum

of 63, are AC frequencies.

The bit range is given in terms of bit indices. The bit range refers to bits in

the frequency-domain representation of the image, not its spatial-domain

representation, so the bit range is not limited to the bit depth given in the

frame header.

For non-progressive coding processes, the band range is always set to

[0, 64). Likewise, the bit range is always set to [0, ∞).

For progressive coding processes, the band range can be anything within

the interval [0, 64), as long as the range doesn’t mix DC and AC

frequencies. This means that [0, 1) and [1, 6) are both valid band ranges,

but [0, 6) is not. Furthermore, when there are multiple scans for each

component, the [0, 1) scan must come first. This decomposition is called

spectral selection.

Progressively-coded images can also optionally use a decomposition

called successive approximation, in which the first scan for each

component (called an initial scan) has a bit range with an upper limit of

infinity, and later scans (called refining scans) step down one bit at a time

to zero. An example of a valid successive approximation sequence is

{ [3, ∞), [2, 3), [1, 2), [0, 1) }. The sequence { [3, ∞), [1, 3), [0, 1) } is invalid

because the second scan contains a bit range with two bits, while the

sequence { [3, ∞), [1, 2), [2, 3), [0, 1) } is invalid because bit 1 is refined

before bit 2.

The sequence of scan-specified band ranges and bit ranges for a

particular component is called a scan progression. The following is a visual

example of a possible scan progression for one component of a

progressively-coded image:

10

 a Scan 0 (band: 0 ..< 1, bits: 1 ...)

z 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞ X

 · X

 · X

 · X

 2 X

 1 X

 0

 +

 Scan 1 (band: 6 ..< 64, bits: 1 ...)

 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞ X X X ··· X X X

 · X X X ··· X X X

 · X X X ··· X X X

 · X X X ··· X X X

 2 X X X ··· X X X

 1 X X X ··· X X X

 0

 +

 Scan 2 (band: 1 ..< 6, bits: 2 ...)

 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞ X X X X X

 · X X X X X

 · X X X X X

 · X X X X X

 2 X X X X X

 1

 0

 +

 Scan 3 (band: 1 ..< 6, bits: 1 ..< 2)

 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞

 ·

 ·

 ·

 2

 1 X X X X X

 0

 +

 Scan 4 (band: 1 ..< 64, bits: 0 ..< 1)

 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞

 ·

 ·

 ·

 2

 1

 0 X X X X X X X X ··· X X X

 +

 Scan 5 (band: 0 ..< 1, bits: 0 ..< 1)

 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞

 ·

 ·

11

 ·

 2

 1

 0 X

 =

 Completed Frame

 0 1 2 3 4 5 6 7 8 ··· 61 62 63

 ∞ X X X X X X X X X ··· X X X

 · X X X X X X X X X ··· X X X

 · X X X X X X X X X ··· X X X

 · X X X X X X X X X ··· X X X

 2 X X X X X X X X X ··· X X X

 1 X X X X X X X X X ··· X X X

 0 X X X X X X X X X ··· X X X

The component reference array specifies which of the components

defined in the frame header is present within the scan. If there is more

than one component in a scan, then the scan is interleaved, otherwise it is

non-interleaved. Interleaving is not allowed for progressive scans which

define AC coefficients only, though it is allowed for non-progressive scans

which define all 64 frequencies, including the AC frequencies.

The ordering of component references within the array (if there are more

than one) is meaningful, both because it must follow the ordering of

component definitions in the frame header, and also because the ordering

specifies the ordering of the interleaved data units in the entropy-coded

segment following the scan header. A component reference contains the

following fields:

Component reference (ci, matching one of the components in the frame

header)

DC huffman table reference

AC huffman table reference

Note that quantization tables (described in the next section) are

associated with components at the frame level, while huffman tables (also

described in the next section) are associated with components at the scan

level. It is allowed (and standard practice) for the same component to use a

different huffman table in each scan.

3.3. Table segments

Table segments define resources which are referenced by the header

segments. There are two types of table segments — quantization table

definitions, and huffman table definitions — which define three types of

resources.

3.3.1. Quantization tables

A quantization table definition consists of 64 multiplier values, which

correspond to the 64 discrete frequencies, and some basic information

about the table:

12

Quantization table identifier (qi)

Table precision (8- or 16-bit)

The table precision is not necessarily the same as the image bit depth

(though it is subject to some constraints based on the image bit depth).

This field is solely used to specify the (big-endian) integer type the table

values are stored as.

Note that, as a technical detail, quantization tables do not actually identify

themselves with a qi identifier, nor do component definitions in a frame

header use those identifiers to reference them. However, table identifiers

are a useful conceptual model for understanding resource relationships

within a JPEG file. This issue will be discussed further in the contextual

state section.

3.3.2. Huffman tables

Huffman table definitions are somewhat more sophisticated than

quantization tables. There are two types of huffman tables — AC and DC —

but they are defined by the same type of marker segment, and share the

same field format.

Like a quantization table definition, a huffman table definition includes

some basic information about the table:

Huffman table identifier

Resource type (DC table or AC table)

A huffman table definition does not contain the table values verbatim.

(That would be far too space-inefficient.) Rather, it specifies the shape of

huffman tree used to generate the table, and the symbol values of the (up

to 256) leaves in the tree. The algorithm for generating the huffman table

from the huffman tree is discussed in more detail in the library

architecture section.

Unlike quantization tables, huffman tables have no direct relation to

frequency coefficient values themselves. They are only used to

decompress entropy-coded data within a single entropy-coded segment.

(It is allowed, but uncommon, for multiple entropy-coded segments to use

the same huffman table.) It is for this reason that huffman tables are

“locally” associated with scans while quantization tables are “globally”

associated with components at the frame level.

3.4. Blocks, planes, and MCUs

JPEG is a planar format, meaning each color channel is represented

independently as a monochromatic sub-image. However, interleaving is

still possible down to the granularity determined by the minimum-coded

unit (MCU) of the image. (Within a single minimum-coded unit, the format

is fully planar.) Minimum-coded units in turn are composed of constant-

size blocks, sometimes called data units, which are the smallest spatial

unit of a JPEG.

13

3.4.1. Blocks

Each JPEG block contains 64 frequency coefficients which correspond to a

block of pixels in the visual image. It is often stated that these are 8x8

pixel blocks, but the size actually depends on the component sampling

factor. (Subsampled blocks are linearly interpolated to fill in intermediate

pixels; the frequency transform is not evaluated per-pixel.)

All blocks for a particular component are the same size, even if the image

pixel width and height would indicate fractional blocks along the right and

bottom edges of the image. In these cases, the image data is padded

(when encoding) to fill an integer number of blocks, and this padding is

discarded when decoding. If different components use different sampling

factors, the block grid for one component may cover areas that the block

grid for another component does not.

The following diagram shows the block decomposition of a 35x28 pixel

image using sampling factors (2, 2), (2, 1), and (1, 1). Note that all three

block grids cover pixels that are outside the 35x28 pixel bounds (bolded

rectangle), and furthermore, the last block grid covers pixels that the other

two grids do not:

14

Image (3 components, 35x28 pixels)

╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌

 Component Y (20 blocks)

 sampling factor: (2, 2)

 0 8 16 24 32 40 48

 0 ┏━━━━┯━━━━┯━━━━┯━━━━┯━┱──┐
 ┃ │ │ │ │ ┃ │
 8 ┠────┼────┼────┼────┼─╂──┤
 ┃ │ │ │ │ ┃ │
16 ┠────┼────┼────┼────┼─╂──┤
 ┃ │ │ │ │ ┃ │
24 ┠────┼────┼────┼────┼─╂──┤
 ┡━━━━┿━━━━┿━━━━┿━━━━┿━┛ │
32 └────┴────┴────┴────┴────┘

 Component Cb (10 blocks)

 sampling factor: (2, 1)

 0 8 16 24 32 40 48

 0 ┏━━━━┯━━━━┯━━━━┯━━━━┯━┱──┐
 ┃ │ │ │ │ ┃ │
 8 ┃ │ │ │ │ ┃ │
 ┃ │ │ │ │ ┃ │
16 ┠────┼────┼────┼────┼─╂──┤
 ┃ │ │ │ │ ┃ │
24 ┃ │ │ │ │ ┃ │
 ┡━━━━┿━━━━┿━━━━┿━━━━┿━┛ │
32 └────┴────┴────┴────┴────┘

 Component Cr (6 blocks)

 sampling factor: (1, 1)

 0 8 16 24 32 40 48

 0 ┏━━━━━━━━━┯━━━━━━━━━┯━┱───────┐
 ┃ │ │ ┃ │
 8 ┃ │ │ ┃ │
 ┃ │ │ ┃ │
16 ┠─────────┼─────────┼─╂───────┤
 ┃ │ │ ┃ │
24 ┃ │ │ ┃ │
 ┡━━━━━━━━━┿━━━━━━━━━┿━┛ │
32 └─────────┴─────────┴─────────┘

It is important to remember that, even though less densely-sampled blocks

are spatially bigger, all blocks contain the same amount of information.

3.4.2. Minimum-coded units

If (and only if) a JPEG scan encodes more than one component, then the

blocks are organized into minimum-coded units. (Single-component scans

do not use the concept of a minimum-coded unit, and simply store their

blocks as a row-major rectangular array.)

The spatial size of the minimum coded unit is the size of a block with a

component sampling factor of (1, 1), even if the scan contains no such

component. The blocks are stored within the minimum-coded unit in the

same order they were declared in the scan header. For example, the

15

minimum-coded units from a scan containing the Y and Cb components

from the previous example would look like this:

 Component Y Component Cb

 (4 blocks) (2 blocks)

 0 8 16 0 8 16

 0 ┏━━━━┯━━━━┑ 0 ┏━━━━┯━━━━┑
 ┃ A0 │ B0 │ ┃ │ │
 8 ┠────┼────┤ + 8 ┃ E0 │ F0 │ +
 ┃ C0 │ D0 │ ┃ │ │
16 ┖────┴────┘ 16 ┖────┴────┘

 16 24 32 16 24 32

 0 ┍━━━━┯━━━━┑ 0 ┍━━━━┯━━━━┑
 │ A1 │ B1 │ │ │ │
 8 ├────┼────┤ + 8 │ E1 │ F1 │ +
 │ C1 │ D1 │ │ │ │
16 └────┴────┘ 16 └────┴────┘

 32 40 48 32 40 48

 0 ┍━┱──┬────┐ 0 ┍━┱──┬────┐
 │ A2 │ B2 │ │ ┃ │ │
 8 ├─╂──┼────┤ + 8 │ E2 │ F2 │ +
 │ C2 │ D2 │ │ ┃ │ │
16 └─┸──┴────┘ 16 └─┸──┴────┘

 0 8 16 0 8 16

16 ┎────┬────┐ 16 ┎────┬────┐
 ┃ A3 │ B3 │ ┃ │ │
24 ┠────┼────┤ + 24 ┃ E3 │ F3 │ +
 ┡ C3 ┿ D3 ┥ ┡━━━━┿━━━━┥
32 └────┴────┘ 32 └────┴────┘

 16 24 32 16 24 32

16 ┌────┬────┐ 16 ┌────┬────┐
 │ A4 │ B4 │ │ │ │
24 ├────┼────┤ + 24 │ E4 │ F4 │ +
 ┝ C4 ┿ D4 ┥ ┝━━━━┿━━━━┥
32 └────┴────┘ 32 └────┴────┘

 32 40 48 32 40 48

16 ┌─┰──┬────┐ 16 ┌─┰──┬────┐
 │ A5 │ B5 │ │ ┃ │ │
24 ├─╂──┼────┤ + 24 │ E5 │ F5 │
 ┝ C5 │ D5 │ ┝━┛ │ │
32 └────┴────┘ 32 └────┴────┘

 Sequential order:

[

 A0, B0, C0, D0, E0, F0,

 A1, B1, C1, D1, E1, F1,

 A2, B2, C2, D2, E2, F2,

 A3, B3, C3, D3, E3, F3,

 A4, B4, C4, D4, E4, F4,

 A5, B5, C5, D5, E5, F5

]

Note that blocks B2, D2, F2, B5, D5, and F5 have been added to complete

the minimum-coded units they appear in. They would not appear in a non-

interleaved scan.

16

3.4.3. Planes

Planes are a very simple concept — they are simply the collection of all the

blocks for a particular component. Even though blocks may be stored in an

interleaved arrangement, planes are conceptually independent. Even when

interleaved, each plane uses its own huffman and quantization tables,

which means that a single entropy-coded segment can actually contain

codewords from multiple huffman coding schemes.

Converting planes into a rectangular array of color pixels entails

expanding subsampled planes, and then clipping them to the pixel

dimensions of the image so that each plane has the same spatial width and

height. The planes are then pixel-wise interleaved to form color tuples.

3.5. Contextual state

All of the aforementioned concepts are related by the contextual state of a

JPEG file. The state is determined by the ordering of marker and entropy-

coded segments in the file.

3.5.1. Sections

All JPEG files must start with a preamble section, which begins with an

start-of-image marker segment, followed by JFIF/EXIF metadata segments,

and then any number of table segments. While huffman table definitions

can live in the preamble, usually it is only quantization table definitions

that appear here, since quantization tables are the only JPEG resources

that have a whole-frame scope.

In a non-hierarchical JPEG file, the body section comes after the preamble.

The body starts with a frame header segment, and then contains any

number of scan header + entropy-coded segment pairs and table

definitions. It is rare for quantization table definitions to appear in the

middle of this section, so most of these table definitions are huffman table

definitions. The body section, and the JPEG file as a whole, concludes with

an end-of-image marker.

3.5.2. Table slots

The JPEG format establishes relationships between table resources and

reference holders using the concept of table slots. Each type of table

(there are three: quantization, DC huffman, and AC huffman) has a fixed

number of binding points: 2 for the baseline coding process, and 4 for all

other processes. In this document, we use the Swift keypath syntax \.i

to denote a binding point i.

Whenever a table definition appears, it specifies a table destination, which

is the binding point to which the table is attached. Whenever a consumer

(such as a component definition in a frame header, which references a

quantization table, or a component reference in a scan header, which

includes references to a DC and/or AC huffman table) references a

resource, it does so by specifying a binding point, which resolves to

17

whatever table is attached to it at the time. Table bindings are stateful, so

the same slot can be overwritten multiple times within the same JPEG file.

The following is an example structure of a (sequential) JPEG from start to

finish, with the state of the table slots given on the right:

 Quantization DC Huffman AC Huffman

 tables tables tables

—— \.0 \.1 \.0 \.1 \.0 \.1

Start-of-Image

—— [|] [|] [|]

Application Segment (JFIF metadata)

 version : 1.2

 units : centimeters

 ...

—— [|] [|] [|]

Quantization Table Definition (Table A)

 destination : \.0

 precision : 8-bit

 ...

— [A |] [|] [|]

Quantization Table Definition (Table B)

 destination : \.1

 precision : 8-bit

 ...

—— [A | B] [|] [|]

Frame Header

 size : 382x479

 precision : 8-bit

 components :

 {

 [1]:

 sampling : 2x2,

 quantization table : \.0 (Table A)

 [2]:

 sampling : 1x1,

 quantization table : \.1 (Table B)

 [3]:

 sampling : 1x1,

 quantization table : \.1 (Table B)

 }

 ...

—— [A | B] [|] [|]

DC Huffman Table Definition (Table C)

 destination : \.0

 ...

— [A | B] [C |] [|]

AC Huffman Table Definition (Table D)

 destination : \.0

 ...

—— [A | B] [C |] [D |]

Scan Header

 band : [0, 64)

 bits : [0, ∞)

 components :

 [

 {

 ci : [1]

 DC huffman table: \.0 (Table C)

 AC huffman table: \.0 (Table D)

 }

]

—— [A | B] [C |] [D |]

Entropy-Coded Segment

 ...

18

—— [A | B] [C |] [D |]

DC Huffman Table Definition (Table E)

 destination : \.0

 ...

— [A | B] [E |] [D |]

AC Huffman Table Definition (Table F)

 destination : \.0

 ...

— [A | B] [E |] [F |]

DC Huffman Table Definition (Table G)

 destination : \.1

 ...

— [A | B] [E | G] [F |]

AC Huffman Table Definition (Table H)

 destination : \.1

 ...

—— [A | B] [E | G] [F | H]

Scan Header

 band : [0, 64)

 bits : [0, ∞)

 components :

 [

 {

 ci : [2]

 DC huffman table: \.0 (Table E)

 AC huffman table: \.0 (Table F)

 },

 {

 ci : [3]

 DC huffman table: \.1 (Table G)

 AC huffman table: \.1 (Table H)

 }

]

—— [A | B] [E | G] [F | H]

Entropy-Coded Segment

 ...

—— [A | B] [E | G] [F | H]

End-of-Image

——

Note how tables C and D were overwritten partway through the JPEG file.

19

4. User model

Summary: The Swift JPEG encoder provides unique abstract

component key and quantization table key identifiers. The component

keys are equivalent in value to the component idenfiers (ci) in the

JPEG standard, while the quantization table identifiers (qi) are a

library concept, which obviate the need for users to assign and refer

to quantization tables by their slot index, as slots may be overwritten

and reused within the same JPEG file. Users also specify the scan

progression by band range, bit range, and component key set. These

relationships are combined into a layout, a library concept

encapsulating relationships between table indices, component

indices, scan component references, etc. When initializing a layout,

the framework is responsible for mapping the abstract, user-

specified relationships into a sequence of JPEG scan headers and

table definitions.

JPEG layout structures also contain a mapping from abstract

component and quantization table keys to linear integer indices

which point to the actual storage for the respective resources. (The

framework notations for these indices are c and q, respectively.) The

linear indices provide fast access to JPEG resources, as using them

does not involve resolving hashtable lookups.

Layout structures are combined with actual quantization table values

to construct image data structures. All image data structures (except

the Rectangular type) are planar, and are conceptually

 Collection s of planes corresponding to a single color component.

The ordering of the planes is determined by the image format, which

is generic and can be replaced with a user-defined implementation.

The framework vends a default “common format” which corresponds

to the 8-bit Y and YCbCr color modes defined by the JFIF standard.

Plane indices range from 0 to pmax, where pmax is the number of

planes in the image. The library assigns linear component indices

such that c = p.

The JPEG format, as previously discussed, contains a great deal of

complexity meant to facilitate implementation. However, much of this

complexity is unnecessary for users, which is why this framework

attempts to abstract away most of the user-irrelevant aspects of the

format.

This framework provides two sets of top-level APIs: a segmentation API and

an decoding/encoding API. Both are top-level in that they are capable of

interpreting or outputting a JPEG file from start to finish. The

segmentation API is essentially a lexer/formatter in that it detects JPEG

segment boundaries, and classifies them by type. It does not attempt to

interpret the contents of the segments. The decoding/encoding API reads

20

or writes a JPEG file as a whole; its output/input is a complete bitmap

image. This API is essentially built atop of the segmentation API.

While the segmentation and decoding/encoding APIs roughly correspond

to the lexing/formatting and decoding/encoding stages of JPEG

interpretation, there is no such top-level API for the parsing/serializing

stage. This is because each lexed or formatted JPEG segment requires a

different parser or serializer implementation, and which implementation it

requires depends on the type of the segment. As such, a “top-level”

parsing/serializing API would not be a useful abstraction, and so this

framework does not seek to provide one.

4.1. Segmentation API

As mentioned already, the segmentation API takes a file input (or byte

stream), and divides it into its constituent segments. Its inverse API takes

raw segment buffers and concatenates them with appropriate segment

headers into an output bytestream.

┏━━━┓
┃ raw bytestream (file or file blob) ┃
┗━━━┛
 ↿⇂

┏━━━━━━┓┏━━━━━━┯━━━━━━━━━━┓┏━━━━━━┯━━━━━━━━━━┓┏━━━━━━━━━━━━━━━━┓┏━━━━━━┯━━━━━━━━━━┓┏━━━━━━┓
┃ Type ┃┃ Type │ Body ┃┃ Type │ Body ┃┃ Prefix ┃┃ Type │ Body ┃┃ Type ┃
┗━━━━━━┛┗━━━━━━┷━━━━━━━━━━┛┗━━━━━━┷━━━━━━━━━━┛┗━━━━━━━━━━━━━━━━┛┗━━━━━━┷━━━━━━━━━━┛┗━━━━━━┛
 ↑ ↑ ↑ ↑ ↑ ↑

 Marker segments Marker segment Entropy-coded segment Marker segments

Its operations can be best summarized by the pseudoswift below:

var input:Source

while true

{

 let (prefix, type, body):([UInt8], JPEG.Marker, [UInt8]) = input.segment()

 switch type

 {

 ...

 }

}

var output:Destination

let pairs:[([UInt8], JPEG.Marker, [UInt8])]

for (prefix, type, body):([UInt8], JPEG.Marker, [UInt8]) in pairs

{

 output.format(prefix: prefix)

 output.format(marker: type, tail: body)

 ...

}

Note that this is not how the segmentation API is actually spelled, as the

real API expects the user to know whether to expect an entropy-coded

segment to be present, as well as to be aware of error handling.

21

4.2. Decoding/encoding API

While the segmentation API only goes so far as to lex or format a JPEG file,

the decoding/encoding API does the heavy lifting of actually converting a

JPEG to and from its bitmap data. This this is the most common use-case

for JPEG, this set of APIs is likely to be the one most commonly used by

users.

Internally, this set of APIs handles JPEG state management, abstracting

away the confusing system of table slots, plane indices, and binding

points, and replacing it with resource identifiers (ci’s and qi’s) which are

unique over the lifetime of the JPEG. The purpose of this abstraction is not

only to present a simpler mental model for users, but also to make it harder

for users to accidentally create an invalid JPEG file (for example, switching

out a quantization table while its corresponding component is still being

encoded.)

4.2.1. Keys, indices, and binding points

To users, this framework replaces the concept of resource binding points

with keys and indices. (These terms are used in accordance to Swift

convention.) The framework also uses the system of keys and indices to

identify components, and by extension, image planes.

Keys are unique identifiers for either a color component or a quantization

table. The identifiers [qi] and [ci] are keys in this context, and we use the

same notation to refer to them. Keys are essentially integer identifiers,

and in the case of component keys, they have the same wrapped value as

the component identifiers assigned in the image frame header.

(Quantization table keys are a framework concept, they do not appear in

the JPEG standard itself.) However, the framework uses Swift’s strong type

system to distinguish them from actual indices to prevent user mixups.

Indices, as the name suggests (according to Swift convention) are

shortcuts used for efficient dereferencing of entities that would otherwise

have to go through expensive hashtable lookups. Because the storage type

is always some kind of Array , all indices have the type Int . The

library API is written to discourage direct use of keys as accessors, rather,

it nudges users towards looking up an index from a key once, and then

using the index for all subsequent accesses.

The framework uses the notation c and q for indices, corresponding to the

[qi] and [ci] notation for keys.

By library convention, the quanta key –1 is assigned to the “default” (all

zeroes) quantization table when decoding a JPEG file. This key has index 0,

so all file-defined quantization tables have indices counting up from 1.

Quanta keys are assigned by the user when encoding a JPEG file.

Component keys are completely data-defined. Component indices start

from 0, and are determined by the order that the component identifiers

22

appear in the color format. For the JFIF/EXIF common format, the key-to-

index mapping is:

{

 [1]: 0,

 [2]: 1,

 [3]: 2

}

Component indices are the same as plane indices, which use the notation

p in the framework. In the above common format, component [1] would be

plane p = 0, component [2] would be plane p = 1, and component [3] would

be plane p = 2.

While the builtin common format does not do this, custom color formats

are allowed to support more resident components (components that a

frame header can define without causing the library to emit a validation

error) than recognized components (components that the decoder

maintains pixel storage for and includes in its output). In this case, only

the recognized components have corresponding planes. An example of a

use-case for this kind of component subsetting is a custom RGB color

format, which supports an optional alpha channel. In this case, custom

RGBA JPEG images can be made compatible with another custom RGB color

format using component subsetting.

When a color format defines optional resident components, the recognized

components get assigned contiguous indices starting from 0, and the

optional components come after them.

The encoder does not allow optional resident components, since it would

not make sense to encode an image component for which no plane data

has been provided.

4.2.2. Layouts and definitions

An image layout specifies all the parametric characteristics of the image

save for the actual pixel values. It contains:

The image color format

The image coding process

The set of resident components

The list of recognized components (which is always a subset of the

residents)

The parameters for image planes (an array)

The sequence of definitions in the image (also an array)

23

Each plane in the image has its own layout parameters. (The framework, of

course, follows the same component/plane indexing scheme for this

array.) A plane layout contains:

The component sampling factor

The component quanta key ([qi])

The component quantization table binding point

The quanta key and the table binding point are always related. When a user

initializes a layout, the binding points are assigned by the library. (In some

cases, it is impossible to assign a large number of overlapping quanta keys

to a limited number of binding points, in which case the library throws an

error.) When a layout gets read from a JPEG file, the quanta keys get

assigned by the library, as discussed in the last section.

The definition sequence is a list of alternating runs of quantization table

definitions and scan definitions. The quantization table definitions say

nothing about the actual contents of the tables, they only specify that the

quantization table for a particular quanta key [qi] should appear in that

position in the sequence.

The following is a block diagram of a layout for an image with a custom

color format with four components:

 c 0 1 2 3

 ┏━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┱────────────────┐
format and components ┃ ci : [5] │ ci : [6] │ ci : [7] ┃ ci : [4] │
 ┗━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┹────────────────┘
 ┏━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┯━━━━━━━━━━━━━━━━┱────────────────┐
 ┃ factor : 2x2 │ factor : 1x2 │ factor : 1x2 ┃ factor : 1x1 │
 planes ┃ quanta : [2] │ quanta : [3] │ quanta : [3] ┃ quanta : [0] │
 ┃ selector : \.0 │ selector : \.1 │ selector : \.1 ┃ selector : \.1 │
 ┗━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┷━━━━━━━━━━━━━━━━┹────────────────┘
 ╰────────────────────────┬─────────────────────────╯
 recognized components/planes

 ╭ ┏━━┓ ╮
 quantization table │ ┃ qi : [2] ┃ │
 definitions ─┤ ┠──┨ │
 │ ┃ qi : [0] ┃ │
 ╰ ┣━━┨ │
 ╭ ┃ ┌────────────────────────┐ ┃ │
 │ ┃ │ c : 0 │ ┃ │
 │ ┃ components: │ ci : [5] │ ┃ │
 │ ┃ │ selector (DC) : \.0 │ ┃ │
 │ ┃ │ selector (AC) : \.0 │ ┃ │
 │ ┃ └────────────────────────┘ ┃ │
 │ ┃ band : [0, 64) ┃ │
 scan │ ┃ bits : [0, ∞) ┃ │
 definitions ─┤ ┠──┨ │
 │ ┃ ┌────────────────────────┐ ┃ │
 │ ┃ │ c : 3 │ ┃ │
 │ ┃ components: │ ci : [4] │ ┃ │
 │ ┃ │ selector (DC) : \.0 │ ┃ │
 │ ┃ │ selector (AC) : \.0 │ ┃ │
 │ ┃ └────────────────────────┘ ┃ │
 │ ┃ band : [0, 64) ┃ ├─ definition sequence
 │ ┃ bits : [0, ∞) ┃ │
 ╰ ┗━━┛ │

24

 ┏━━┓ │
 ┃ qi : [3] ┃ │
 ┣━━┨ │
 ┃ ┌────────────────────────┐ ┃ │
 ┃ │ c : 1 │ ┃ │
 ┃ │ ci : [6] │ ┃ │
 ┃ │ selector (DC) : \.0 │ ┃ │
 ┃ │ selector (AC) : \.0 │ ┃ │
 ┃ components: ├────────────────────────┤ ┃ │
 ┃ │ c : 2 │ ┃ │
 ┃ │ ci : [7] │ ┃ │
 ┃ │ selector (DC) : \.1 │ ┃ │
 ┃ │ selector (AC) : \.1 │ ┃ │
 ┃ └────────────────────────┘ ┃ │
 ┃ band : [0, 64) ┃ │
 ┃ bits : [0, ∞) ┃ │
 ┗━━┛ ╯

Note that in interleaved scans, the scan components are always in

ascending key order (not index order).

4.2.3. Data representations

The products of the decoder (and the inputs of the encoder) are data

representations, structures which represent an image as a whole. All data

representations contain an image layout. In fact, all data representations

contain a common descriptor “core” consisting of:

Image pixel dimensions

Image layout

Metadata (array)

There are three types of data representations, which can be thought of as

images in different stages of processing.

�. Spectral data

�. Planar data

�. Rectangular data

Spectral data is the most important type, as it is the native representation

of a JPEG image. Spectral data can be decoded and reencoded without

information loss (though the bitwise spelling may be slightly different). As

the name suggests, it stores an image in its frequency-domain

representation, grouped into 8x8-sample blocks. Spectral data is stored in

a planar format, so the concept of the minimum-coded unit is not part of

its organization. However, this data structure does store the image scale,

which specifies the number of 8x8-pixel (not sample!) blocks that

constitute a minimum-coded unit.

A spectral data structure also stores the quantization table values

separately from the quantized frequency coefficients. The dequantized

coefficients are obtained by multiplying each stored coefficient with its

corresponding quantum.

25

The addressing scheme for spectral data is first by 2D block index (x, y),

and then by zigzag coefficient index z. The z index is always between 0 and

63.

 Y Plane (p = 0) Cb Plane (p = 1) Cr Plane (p = 2)

 ╷ ╷ ╷ ╷ ╷ ╷ ╷ ╷ ╷
─ ┏━━━━━━━━━┯━━━┱─────┐ ─ ┏━━━━━━━━━┯━━━┱─────┐ ─ ┏━━━━━━━━━┯━━━┱─────┐ ─
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
─ ┠─────────┼───╂─────┤ ─ ┠─────────┼───╂─────┤ ─ ┠─────────┼───╂─────┤ ─
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
─ ┠─────────┼───╂─────┤ ─ ┠─────────┼───╂─────┤ ─ ┠─────────┼───╂─────┤ ─
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
 ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │ ┃ × × × × │ × ┃ × × │
 ┡━━━━━━━━━┿━━━┛ × × │ ┡━━━━━━━━━┿━━━┛ × × │ ┡━━━━━━━━━┿━━━┛ × × │
─ └─────────┴─────────┘ ─ └─────────┴─────────┘ ─ └─────────┴─────────┘ ─
 ╵ ╵ ╵ ╵ ╵ ╵ ╵ ╵ ╵

 Y Quanta Cb Quanta Cr Quanta

 (q = 2) (q = 1) (q = 1)

 ┏━━━━━━━━━┓ ┏━━━━━━━━━┓ ┏━━━━━━━━━┓
 ┃ × × × × ┃ ┃ × × × × ┃ ┃ × × × × ┃
 ┃ × × × × ┃ ┃ × × × × ┃ ┃ × × × × ┃
 ┃ × × × × ┃ ┃ × × × × ┃ ┃ × × × × ┃
 ┗━━━━━━━━━┛ ┗━━━━━━━━━┛ ┗━━━━━━━━━┛

Note how the same quantization table (q = 1) is shared by the Cb and Cr

components.

Spectral data is converted into planar data through the inverse discrete

cosine transform (IDCT). This transform converts each spectral block into

its spatial-domain representation. Planes in planar data have the same

size as their spectral counterparts, but they are indexed by sample (not

pixel!) rather than by block and then coefficient index. For example, the

coordinate region (x, y, z) = (1, 2, z), 0 ≤ z < 64 in the spectral representation

is equivalent to the coordinate region (8 + Δx, 16 + Δy), 0 ≤ (Δx, Δy) < 8 in

the planar representation. (The offsets Δx and Δy are not related to z, since

the inverse discrete cosine transform is applied to entire blocks at a time.)

Even though planar data is indexed by sample, and not by block, each

plane still contains whole blocks of data. It follows that the sample

dimensions are always a multiple of 8.

26

 Y Plane (p = 0) Cb Plane (p = 1) Cr Plane (p = 2)

 ╷ ╷ ╷ ╷ ╷ ╷ ╷ ╷ ╷
─ ┏━┯━┯━┯━┯━┯━┯━┱─┬─┬─┐ ─ ┏━┯━┯━┯━┯━┯━┯━┱─┬─┬─┐ ─ ┏━┯━┯━┯━┯━┯━┯━┱─┬─┬─┐ ─
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
─ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ─ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ─ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ─
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
─ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ─ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ─ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ─
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
 ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤ ┠─┼─┼─┼─┼─┼─┼─╂─┼─┼─┤
 ┡━┿━┿━┿━┿━┿━┿━╃─┼─┼─┤ ┡━┿━┿━┿━┿━┿━┿━╃─┼─┼─┤ ┡━┿━┿━┿━┿━┿━┿━╃─┼─┼─┤
─ └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ ─ └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ ─ └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ ─
 ╵ ╵ ╵ ╵ ╵ ╵ ╵ ╵ ╵

Finally, planar data can be interleaved for obtain rectangular data. If the

components of the image use different sampling factors, then the

subsampled planed are interpolated to fill in missing samples. When going

from planar to rectangular representation, plane indices turn into intra-

pixel offsets. (However, users should rarely have to access color channels

by offset directly; this is a job for the pixel accessor API.)

Because rectangular data is fully interleaved, padding samples are

discarded when converting to this representation.

 Y:Cb:Cr Image

 ╷ ╷ ╷
 ─ ┏┯┯┳┯┯┳┯┯┳┯┯┳┯┯┳┯┯┳┯┯┓ ─
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ─ ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫ ─
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ─ ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫ ─
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ┣┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿╋┿┿┫
 ┗┷┷┻┷┷┻┷┷┻┷┷┻┷┷┻┷┷┻┷┷┛
 ─ ─
 ╵ ╵ ╵

4.2.4. Pixel accessors

Rectangular data provide their pixel contents through the pixel accessor

API. The output of this API is an array of pixels in the familiar YCbCr or

RGBA (or another color type) form.

Why does the framework not simply store pixel values in the rectangular

data itself? This is because JPEG is natively a YCbCr-based image format,

therefore, converting to a form such as RGB would cause additional data

loss, and make the YCbCr image inaccessible without having to redecode

27

the image. In addition, because the conversion to the rectangular

representation often involves additional processing (such as the

upsampling operation), it is highly motivating to be able to do this step

once, and be able to read that image as multiple color targets without

having to recompute the rectangular representation.

28

5. Library architecture

Summary: The library is broadly divided into a decompressor and a

compressor. The decompressor is further subdivided into a lexer,

parser, and decoder, while the compressor is divided into an encoder,

serializer, and formatter. Accordingly, the framework distinguishes

between parseme types, returned by the parser and taken by the

serializer, and model types, used by the decoder and encoder. For

example, the parser returns a scan header, which is then “frozen”

into a scan structure.

The framework is architected for extensibility. For example, although

the decoder and encoder do not support JPEG processes beyond the

baseline, extended, and progressive processes, all JPEG processes,

including hierarchical and arithmetic processes are recognized by

the parser. Similarly, the lexer recognizes JPEG marker types that the

parser does not necessarily know how to parse.

This section is meant to be an introductory guide to the organization of the

code base, and an overview of the various type relationships the

framework establishes. It also overviews the generic customization points

the library offers users.

Broadly, the framework is divided into a decompressor and a compressor.

As an arbitrary design decision, the decompressor is positioned as

somewhat more fundamental than the compression, so many type

definitions are associated with the decompressor, with the compressor in

some ways written atop of the decompressor. The decompressor can be

further divided into a lexer, parser, and decoder; the corresponding

components of the compressor are the formatter, serializer, and encoder.

The lexer, parser, formatter, and serializer generally work with parseme

types, which get narrowed and further validated into model types used by

the encoder and decoder.

At the time of writing, contributors will find five files containing most of

the core library code:

 jpeg/common.swift

 jpeg/decode.swift

 jpeg/encode.swift

 jpeg/debug.swift

 jpeg/os.swift

5.1. common.swift

This file contains data structures and language extensions which are used

by the framework, but not conceptually related to JPEG. It defines the top-

level namespace Common , with the following type members:

 Common

29

file:///home/klossy/dev/jpeg/sources/jpeg/common.swift
file:///home/klossy/dev/jpeg/sources/jpeg/decode.swift
file:///home/klossy/dev/jpeg/sources/jpeg/encode.swift
file:///home/klossy/dev/jpeg/sources/jpeg/debug.swift
file:///home/klossy/dev/jpeg/sources/jpeg/os.swift

 struct Common.MutableStorage<I>

 struct Common.Storage<I>

 struct Common.Storage2<I>

 struct Common.Heap<Key, Value>

 struct Common.Range2<Bound>

 struct Common.Range2Iterator<Bound>

It also extends the standard library Array<UInt8> and

 ArraySlice<UInt8> types to support the following methods:

 extension Swift.ArraySlice<UInt8>

 Swift.ArraySlice<UInt8>.load<T, U>(_:)(bigEndian:as:)

 extension Swift.Array<UInt8>

 Swift.Array<UInt8>.load<T, U>(_:)(bigEndian:as:at:)

 Swift.Array<UInt8>.store<T, U>(_:asBigEndian:)

5.1.1. Storage types

 struct Common.MutableStorage<I>

 struct Common.Storage<I>

 struct Common.Storage2<I>

These types are Swift property wrappers used to store Int values with

fewer bits than a normal 64-bit integer. (This is useful because unlike in

C/C++, Int is the only canonical integer type, so a wrapper which

provides a way of accessing shorter integer types as a plain Int is

highly valuable.) The only reason it is currently necessary to have these

property wrappers is that current bugs in the compiler (as of version 5.2)

place a hard 32 byte size limit on element types that are used with read /

 modify subscripts.

The Storage<I> type implements a read-only version of

 MutableStorage<I> , while the Storage2<I> type implements the

same concept for a (x:Int, y:Int) tuple, since property wrappers

cannot be directly applied to tuple elements.

5.1.2. Heap type

 struct Common.Heap<Key, Value>

This type implements a standard heap (priority queue). This heap is a min-

heap (which sorts by Key type). It is used to assign codewords to

symbols when constructing huffman trees.

5.1.3. 2D range types

 struct Common.Range2<Bound>

 struct Common.Range2Iterator<Bound>

30

These types provide support for 2-dimensional index loops. Within the

library, they look like this:

for (x, y):(Int, Int) in (0, 0) ..< (a, b)

{

 ...

}

Which is equivalent to this:

for y:Int in 0 ..< b

{

 for x:Int in 0 ..< a

 {

 ...

 }

}

To avoid cluttering user scopes, the ..< operator is non-public, however,

2-dimensional range iterators can still be used through the various

 .indices properties on many framework types.

5.2. decode.swift

The majority of the library code lives in this file. It includes both

implementations for the decompressor, and data types common to both

the decoder and the encoder. It defines the top-level namespace JPEG ,

with the following type members:

 JPEG (color format protocols and color targets)

 protocol JPEG.Format

 protocol JPEG.Color

 associatedtype Format

 struct JPEG.YCbCr

 struct JPEG.RGB

 JPEG (model types)

 enum JPEG.Metadata

 struct JPEG.Component

 struct JPEG.Component.Key

 struct JPEG.Scan

 struct JPEG.Scan.Component

 struct JPEG.Layout<Format>

 JPEG (compound types)

 enum JPEG.Process

31

 enum JPEG.Process.Coding

 enum JPEG.Marker

 JPEG (decompression error types)

 protocol JPEG.Error

 enum JPEG.LexingError

 enum JPEG.ParsingError

 enum JPEG.DecodingError

 JPEG (stream types, and lexer)

 protocol JPEG.Bytestream.Source

 struct JPEG.Bitstream

 JPEG (parseme types, and parser)

 protocol JPEG.Bitstream.AnySymbol

 enum JPEG.Bitstream.Symbol.DC

 enum JPEG.Bitstream.Symbol.AC

 struct JPEG.JFIF

 enum JPEG.JFIF.Version

 enum JPEG.JFIF.Unit

 protocol JPEG.AnyTable

 associatedtype Delegate

 struct JPEG.Table.Huffman<Symbol>

 struct JPEG.Table.Quantization

 struct JPEG.Table.Quantization.Key

 struct JPEG.Table.Quantization.Precision

 struct JPEG.Header.HeightRedefinition

 struct JPEG.Header.Frame

 struct JPEG.Header.Scan

 JPEG (huffman decoder)

 struct JPEG.Table.Huffman<Symbol>.Decoder

 JPEG.Data (data representations)

 struct JPEG.Data.Spectral<Format>

 struct JPEG.Data.Spectral<Format>.Plane

 struct JPEG.Data.Spectral<Format>.Quanta

 struct JPEG.Data.Planar<Format>

 struct JPEG.Data.Planar<Format>.Plane

 struct JPEG.Data.Rectangular<Format>

 JPEG (decoder types and decoder)

 extension JPEG.Bitstream

 extension JPEG.Data.Spectral

 extension JPEG.Data.Spectral.Plane

32

 struct JPEG.Context<Format>

 JPEG.Data (staged APIs)

 extension JPEG.Data.Spectral

 extension JPEG.Data.Spectral.Plane

 typealias

 JPEG.Data.Spectral<Format>.Plane.Block8x8<T>

 extension JPEG.Data.Planar

 extension JPEG.Data.Planar.Plane

 extension JPEG.Data.Rectangular

 JPEG (built-in color formats and color target conformances)

 enum JPEG.Common

5.2.1. Color format protocols and color targets

 protocol JPEG.Format

 protocol JPEG.Color

 associatedtype Format

 struct JPEG.YCbCr

 struct JPEG.RGB

As the names suggest, the protocols JPEG.Format and JPEG.Color

define the requirements for a user-defined color format and color target,

respectively:

protocol JPEG.Format

{

 static

 func recognize(_ components:Set<JPEG.Component.Key>, precision:Int) -> Self?

 var components:[JPEG.Component.Key]

 {

 get

 }

 var precision:Int

 {

 get

 }

}

protocol JPEG.Color

{

 associatedtype Format:JPEG.Format

 static

 func pixels(_ interleaved:[UInt16], format:Format) -> [Self]

}

All color targets must have a specific associated format type. At first

glance, this seems restrictive, since there can only be one color format

that can produce each color target, but in practice, any meaningfully

33

distinct color format would have to define its own set of target color types

anyway.

This section of the code also declares two built-in 8-bit color targets,

 JPEG.YCbCr and JPEG.RGB , but implements no conformances.

5.2.2. Model types

 enum JPEG.Metadata

 struct JPEG.Component

 struct JPEG.Component.Key

 struct JPEG.Scan

 struct JPEG.Scan.Component

 struct JPEG.Layout<Format>

These types are the model types produced by cross-validating the

framework’s parseme types. In general, they store pre-resolved resource

indices. Most of them have already been discussed in the user model

section.

The JPEG.Metadata enumeration stores typed and untyped metadata

records. At present, JFIF segments are the only kind of metadata stored as

parsed metadata. All other application segments are stored as untyped,

raw byte buffers

5.2.3. Compound types

 enum JPEG.Process

 enum JPEG.Process.Coding

 enum JPEG.Marker

These types are effectively lexeme types, though they also have relevance

in deeper levels of the library. As the names suggest, JPEG.Process

cases represent coding processes, while JPEG.Marker cases represent

marker segment types.

5.2.4. Decompression error types

 protocol JPEG.Error

 enum JPEG.LexingError

 enum JPEG.ParsingError

 enum JPEG.DecodingError

These types form the basis of the framework’s error handling system. The

 JPEG.Error protocol refines Swift’s normal Swift.Error errors, to

add namespace, message, and detailed-message properties. This allows

errors to be printed to the terminal with a common formatting.

protocol JPEG.Error:Swift.Error

{

 static

 var namespace:String

34

 {

 get

 }

 var message:String

 {

 get

 }

 var details:String?

 {

 get

 }

}

5.2.5. Stream types and lexer implementation

 protocol JPEG.Bytestream.Source

 struct JPEG.Bitstream

These types define the data inputs to the decoder. The

 JPEG.Bytestream.Source protocol abstracts a data source, which could

be a file handle, in-memory data blob, or anything else. The

 JPEG.Bitstream type provides bit-level access to binary-coded data.

Note that the bitstreams, unlike the bytestreams, are random-access.

protocol JPEG.Bytestream.Source

{

 mutating

 func read(count:Int) -> [UInt8]?

}

The lexer is implemented atop of the JPEG.Bytestream.Source protocol

as an extension.

5.2.6. Parseme types and parser implementation

 protocol JPEG.Bitstream.AnySymbol

 enum JPEG.Bitstream.Symbol.DC

 enum JPEG.Bitstream.Symbol.AC

 struct JPEG.JFIF

 enum JPEG.JFIF.Version

 enum JPEG.JFIF.Unit

 protocol JPEG.AnyTable

 associatedtype Delegate

 struct JPEG.Table.Huffman<Symbol>

 struct JPEG.Table.Quantization

 struct JPEG.Table.Quantization.Key

 struct JPEG.Table.Quantization.Precision

 struct JPEG.Header.HeightRedefinition

 struct JPEG.Header.Frame

 struct JPEG.Header.Scan

35

These types are produced by parsing raw segment data produced by the

lexer. Some of them are generically grouped under protocols such as

 JPEG.AnyTable and JPEG.Bitstream.AnySymbol . The strong typing

that distinguishes DC and AC huffman tables provides an additional guard

against table mismatch bugs.

Most parseme types follow a common API pattern — they are constructed

from raw data through static .create(...) methods, and then

converted into cross-validated model types through .validate(...)

instance methods, to which relevant context is passed.

5.2.7. Huffman decoder implementation

 struct JPEG.Table.Huffman<Symbol>.Decoder

This type implements an efficient huffman decoder.

This implementation takes advantage of the fact that JPEG huffman tables

are defined gzip style, as sequences of leaf counts and leaf values. The

leaf counts indicate the number of leaf nodes at each level of the tree.

Combined with a rule that says that leaf nodes always occur on the

“leftmost” side of the tree, this uniquely determines a huffman tree.

level leaves tree

 0 ┏━━━━━┓ ┌──────── 0 ┴ 1 ────────┐
 ┃ 0 ┃ │ │
 1 ┠─────┨ ┌──── 0 ┴ 1 ────┐ ┌──── 0 ┴ 1 ────┐
 ┃ 3 ┃ 'a' 'b' 'c' │
 2 ┠─────┨ ┌──── 0 ┴ 1 ────┐
 ┃ 1 ┃ 'd' │
 3 ┠─────┨ ┌──── 0 ┴ 1 ────┐
 ┃ 1 ┃ 'e' <reserved>
 4 ┗━━━━━┛

Note that in a huffman tree, level 0 always contains 0 leaf nodes (why?) so

the huffman table omits level 0 in the leaf counts list.

The library could build a tree data structure, and traverse it as it reads in

the coded bits, but that would be slow and require a shift for every bit.

Instead it extends the huffman tree into a perfect tree, and assigns the

new leaf nodes the values of their parents.

 ┌──────────── 0 ┴ 1 ────────────┐
 │ │
 ┌──── 0 ┴ 1 ────┐ ┌──── 0 ┴ 1 ────┐
 (a) (b) (c) │
 ┌ 0 ┴ 1 ┐ ┌ 0 ┴ 1 ┐ ┌ 0 ┴ 1 ┐ ┌ 0 ┴ 1 ┐
 │ │ │ │ │ │ (d) │
 ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐ ┌─┴─┐
 'a' 'a' 'a' 'a' 'b' 'b' 'b' 'b' 'c' 'c' 'c' 'c' 'd' 'd' 'e' ...

36

This creates a table of huffman codes where all the codes are “padded” to

the same length. Note that codewords that occur higher up the tree occur

multiple times because they have multiple children. Of course, since the

extra bits aren’t actually part of the code, the table stores separately the

length of the original code so that the consumer knows how many bits to

advance the current bit position by once a match has been looked up.

prefix value length

 0000 'a' 2

 0001 'a' 2

 0010 'a' 2

 0011 'a' 2

 0100 'b' 2

 0101 'b' 2

 0110 'b' 2

 0111 'b' 2

 1000 'c' 2

 1001 'c' 2

 1010 'c' 2

 1011 'c' 2

 1100 'd' 3

 1101 'd' 3

 1110 'e' 4

Decoding entropy-coded data then becomes a matter of matching a fixed-

length bitstream against the table (the code works as an integer index!)

since all possible combinations of trailing “padding” bits are represented

in the table.

In JPEG, codewords can be a maximum of 16 bits long. This means in

theory a lookup table would have to be 216 entries long. That is a huge

table considering there are only 256 actual symbols, and since this is the

kind of thing that really needs to be optimized for speed, this needs to be

as cache friendly as possible.

We can reduce the table size by splitting the 16-bit table into two 8-bit

levels. This means having one 8-bit “root” tree, and k 8-bit child trees

rooted on the internal nodes at level 8 of the original tree.

So far, we’ve looked at the huffman tree as a tree. However it actually

makes more sense here to look at it as a table, just like its implementation.

37

The tree is right-heavy, so its compacted table will look something like

this:

 memory padded

 offset codeword

 0 ─ ┏━━━━━━━━━━━━━━━━━━━━━━━┓ ─ 0
 ┃ ┃ ─
 ┃ ┃ ─
 ┃ ┃ ─
 ┃ '00------' ┃ ─
 ┃ ┃ ─
 ┃ ┃ ─
 ┃ ┃ ─
 ─ ┠───────────────────────┨ ─ 16384
 ┃ ┃ ─
 ┃ '010-----' ┃ ─
 ┃ ┃ ─
 ┠───────────────────────┨ ─
 ┃ ┃ ─
 ┃ '011-----' ┃ ─
 ┃ ┃ ─
 ─ ┠───────────────────────┨ ─ 32768
 ┃ '1000----' ┃ ─
 ┠───────────────────────┨ ─
 ┃ '1001----' ┃ ─
 ┠───────────────────────┨ ─
 ┃ '1010----' ┃ ─
 ┠───────────────────────┨ ─
 ┃ '1011----' ┃ ─
 ─ ┠───────────────────────┨ ─ 49152
 ┃ '1100----' ┃ ─
 ┠───────────────────────┨ ─
 ┠───────────────────────┨ ─
 n ─ ┗━━━━━━━━━━ ↓ ━━━━━━━━━━┛ ─ 256 * n ─
 ↑ ╹ ╹ ─ ↑
 s ╹ overlap zone ╹ ─ 256 * s
 ↓ ╹ ╹ ─ ↓
 256 ─ ┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛ ─ 65536 ─
 n ─ ┏━━━━━━━━━━ ↑ ━━━━━━━━━━┓ ─ 256 * n
 ┃ ┃
 ─ ┃ n | '0-------' ┃
 ┃ ┃
 ─ ┠───────────────────────┨
 ┃ n | '10------' ┃
 ─ ┠───────────────────────┨
 ┠───────────────────────┨
 n + 256 ─ ┗━━━━━━━━━━━━━━━━━━━━━━━┛ ─ 256 * (n + 1)
 n + 256 ─ ┏━━━━━━━━━━━━━━━━━━━━━━━┓ ─ 256 * (n + 1)
 ┃ ┃
 ─ ┃ n + 1 | '0-------' ┃
 ┃ ┃
 ─ ┠───────────────────────┨
 ┃ n + 1 | '10------' ┃
 ─ ┠───────────────────────┨
 ┃ n + 1 | '11------' ┃
 n + 512 ─ ┗━━━━━━━━━━━━━━━━━━━━━━━┛ ─ 256 * (n + 2)
 ╏ ... ╏
 z - 192 ─ ┏━━━━━━━━━━━━━━━━━━━━━━━┓ ─ 65280
 ┃ ┃
 ─ ┃ '11111111 0-------' ┃
 ┃ ┃
 ─ ┠───────────────────────┨
 ┃ '11111111 10------' ┃
 z ─ ┗━━━━━━━━━━━━━━━━━━━━━━━┛ ─ 65472 (ζ)

38

 ╹ truncated zone ╹
 ─ ┗ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ━ ┛ ─ 65536 (UInt16.max)

Where n is the number of level-0 table entries, z is the size of the table in

memory, and ζ is the logical size of the table (which can be less than or

equal to 65,536).

This is convenient because we don’t need to store anything in the table

entries themselves to know if they are direct entries or indirect entries. If

the index of the entry is greater than or equal to n (the number of direct

entries), it is an indirect entry, and its indirect index is given by the first

byte of the codeword with n subtracted from it. Level-1 subtables are

always 256 entries long since they are leaf tables. This means their

positions can be computed formulaically, given n (a constant), which is

also the position of the first level-1 table.

(For computational ease, we store s = 256 – n instead.

The value s can be interpreted as the number of level-1 subtables that trail

the level-0 table in the storage buffer.)

How big can s be? Remember that there are only 256 different encoded

values which means the original tree can only have 256 leaves. Any full

binary tree with height at least 1 must contain at least 2 leaf nodes. Since

the child trees must have a height greater than 0 (otherwise they would be

0-bit trees), every child tree except possibly the rightmost one must have

at least 2 leaf nodes. The rightmost child tree is an exception because in

JPEG, the all-ones codeword does not represent any value, so the

rightmost tree can possibly only contain one “real” leaf node. We can

apply the pigeonhole principle to show that we can only have up to k ≤ 129

child trees.

In fact, we can reduce this even further to k ≤ 128 because if the rightmost

tree only contains 1 leaf, there has to be at least one other tree with an odd

number of leaves to make the total add up to 256, and that number has to

be at least 3. In reality, k is rarely bigger than 7 or 8, yielding a significant

size savings.

Because we don’t need to store pointers, each table entry can be just 2

bytes long; 1 byte for the encoded value, and 1 byte to store the length of

the codeword.

A buffer like this will never have size greater than

2 × 256 × (128 + 1) = 65,792 bytes, compared with 2 × 216 = 131,072 bytes for

the 16-bit table. In reality the two-layer table is usually on the order of 1–4

kilobytes in size.

Why not compact the child trees further, since not all of them actually have

height 8? We could do that, and get some serious worst-case memory

savings, but then we couldn’t access the child tables at constant offsets

from the buffer base. We would need to store whole ≥16-bit pointers to the

specific byte offset where the variable-length child table lives, and

39

perform a conditional bit shift to transform the input bits into an

appropriate index into the table. This would also require two table lookups,

as opposed to one.

5.2.8. Data representations

 struct JPEG.Data.Spectral<Format>

 struct JPEG.Data.Spectral<Format>.Plane

 struct JPEG.Data.Spectral<Format>.Quanta

 struct JPEG.Data.Planar<Format>

 struct JPEG.Data.Planar<Format>.Plane

 struct JPEG.Data.Rectangular<Format>

These are the data representations discussed in the user model section.

The Spectral and Planar types are RandomAccessCollection s of

planes. Each collection type (as well as the Quanta member of a

 Spectral instance) provides an index(forKey:) method used to

translate a ci or qi key into a p or q integer index. Note that for plane index

lookups, this is not exactly the same as finding the component index in the

image layout, because this method will return nil if p is greater than or

equal to the number of planes in the data representation (i.e., if the

component is a resident component, but not a recognized one). This

distinction is, however, irrelevant for the built-in common color format, as

it accepts no unrecognized components.

5.2.9 Decoder types and decoder implementation

 extension JPEG.Bitstream

 extension JPEG.Data.Spectral

 extension JPEG.Data.Spectral.Plane

 struct JPEG.Context<Format>

The extension methods on Bitstream extract composite values from an

entropy-coded bitstream. Extension methods on the Spectral type then

implement the scan-level decoding loops for interleaved scans. For non-

interleaved scans, these methods are instead defined on the

 Spectral.Plane . These scan-level decoder functions call the

composite-level methods.

In turn, frame-level decoder functions, implemented on the

 Context<Format> type, call the scan-level functions. The Context

type maintains the state of both a Spectral instance, and the state of

bound table resources.

5.2.10. Staged conversion APIs (forward)

 extension JPEG.Data.Spectral

 extension JPEG.Data.Spectral.Plane

 typealias

 JPEG.Data.Spectral<Format>.Plane.Block8x8<T>

 extension JPEG.Data.Planar

40

 extension JPEG.Data.Planar.Plane

 extension JPEG.Data.Rectangular

These extensions implement the transformations required to convert a

spectral image into a spatial-domain planar image, and a planar image to a

rectangular image. The inverse discrete cosine transform algorithm is

semantically equivalent to the floating-point algorithm used by libjpeg, so

the framework will replicate the rounding behavior of libjpeg.

5.2.11. Built-in color formats and color target conformances

 enum JPEG.Common

The JPEG.Common enumeration defines the built-in color format for

JFIF/EXIF images.

enum JPEG.Common

{

 case y8, ycc8

}

Note that y8 only occurs in JFIF images.

This section of the code also conforms the built-in RGB and YCbCr

color targets to the JPEG.Color protocol, using JPEG.Common as their

format types.

5.3. encode.swift

Code and definitions related to to the compressor lives in this file. It

extends the top-level namespace JPEG , with the following type

members:

 JPEG (compression error types)

 enum JPEG.FormattingError

 enum JPEG.SerializingError

 enum JPEG.EncodingError

 JPEG.Data (staged conversion APIs)

 extension JPEG.Data.Planar.Plane

 extension JPEG.Data.Spectral.Plane

 extension JPEG.Data.Planar

 JPEG (parseme encoders)

 extension JPEG.Data.Spectral

 extension JPEG.Layout

 JPEG.Table.Huffman (huffman tree builder)

41

 class JPEG.Table.Huffman.Subtree<Element>

 struct JPEG.Table.Huffman.Encoder

 struct JPEG.Table.Huffman.Encoder.Codeword

*

 JPEG (encoder implementation)

 extension JPEG.Bitstream

 extension JPEG.Bitstream.Composite.DC

 extension JPEG.Bitstream.Composite.AC

 extension JPEG.Data.Spectral

 extension JPEG.Data.Spectral.Plane

 JPEG (serializer implementation)

 extension JPEG.JFIF

 extension JPEG.JFIF.Version

 extension JPEG.JFIF.Unit

 extension JPEG.AnyTable

 extension JPEG.Table

 extension JPEG.Table.Huffman

 extension JPEG.Table.Quantization

 extension JPEG.Header.Frame

 extension JPEG.Header.Scan

 JPEG (stream types, and formatter)

 protocol JPEG.Bytestream.Destination

 extension JPEG.Bytestream.Destination

5.3.1. Compression error types

 enum JPEG.FormattingError

 enum JPEG.SerializingError

 enum JPEG.EncodingError

These error types are analogous to their counterparts in decode.swift .

However, because most compressor APIs are designed to fatal-error on

failure rather than throw (because the caller is usually responsible for the

data inputs), there are far fewer error cases. In fact, of the three error

types, only FormattingError has any cases at all; the others are defined

as placeholders for future framework expansion.

5.3.2. Staged conversion APIs

 extension JPEG.Data.Planar.Plane

 extension JPEG.Data.Spectral.Plane

 extension JPEG.Data.Planar

These extensions implement the forward discrete cosine transform, which

converts a planar image into a spectral one. (At present, the conversion

42

from rectangular to planar representation is unimplemented.)

5.3.3. Parseme encoders

 extension JPEG.Data.Spectral

 extension JPEG.Layout

These extensions implement methods that encode model types as their

parseme forms. Because model types support many more assumptions

than parseme types, these APIs do not return optionals nor do they throw

errors. In fact, failure can generally only occur due to serious programmer

error, for example, a broken custom color Format implementation.

5.2.4. Huffman tree builder

 class JPEG.Table.Huffman.Subtree<Element>

 struct JPEG.Table.Huffman.Encoder

 struct JPEG.Table.Huffman.Encoder.Codeword

The Subtree type is used to construct a (near-) optimal huffman tree

given a list of symbols and symbol frequencies. (This functionality is what

the Common.Heap type is for.)

The huffman Encoder table is the inverse of the huffman Decoder

table; it takes symbols as input (through a subscript interface), and

returns Codeword s as output. The efficient implementation of this

functionality is far more straightforward than for its decoder counterpart

— there are only 256 possible symbols, so the symbol-to-codeword

mapping can be accomplished with a simple 256-entry lookup table.

5.3.5. Encoder implementation

 extension JPEG.Bitstream

 extension JPEG.Bitstream.Composite.DC

 extension JPEG.Bitstream.Composite.AC

 extension JPEG.Data.Spectral

 extension JPEG.Data.Spectral.Plane

These extensions implement the inverse operations to the decoder

methods in decode.swift . The extensions on JPEG.Bitstream handle

the encoding of composite values into entropy-coded bitstreams, while

the extensions on Spectral and Spectral.Plane handle encoding at

the scan-level, for interleaved and non-interleaved scans, respectively.

(There is no need for a counterpart to the Context handler, since all

state-related parameters have already been computed when initializing

the image Layout .)

5.3.6. Serializer implementation

 extension JPEG.JFIF

 extension JPEG.JFIF.Version

43

 extension JPEG.JFIF.Unit

 extension JPEG.AnyTable

 extension JPEG.Table

 extension JPEG.Table.Huffman

 extension JPEG.Table.Quantization

 extension JPEG.Header.Frame

 extension JPEG.Header.Scan

These extensions implement the serializers for the parseme types defined

in decode.swift . In most cases, they are defined as instance methods

on parseme types, which return untyped marker segment bodies as

 [UInt8] buffers.

5.3.7. Stream types, and formatter

 protocol JPEG.Bytestream.Destination

 extension JPEG.Bytestream.Destination

These types define the data outputs for the encoder. The

 JPEG.Bytestream.Destination protocol abstracts a data destination,

which, like the data destinations, could be a file handle, in-memory data

blob, or anything else.

protocol JPEG.Bytestream.Destination

{

 mutating

 func write(_ bytes:[UInt8]) -> Void?

}

The write(_:) method should return Void on success, and nil on

failure.

Like the lexer, the formatter is implemented atop of the

 JPEG.Bytestream.Destination protocol as an extension.

5.4. debug.swift

This file is relatively simple; it only implements the various

 CustomStringConvertible conformances that pretty-print JPEG entities.

Importantly, it also provides ExpressibleByIntegerLiteral

conformances for component and quanta key types, making it easier for

users to initialize Layout and Spectral data structures.

 extension JPEG.Component.Key:ExpressibleByIntegerLiteral

 extension

 JPEG.Table.Quantization.Key:ExpressibleByIntegerLiteral

5.5. os.swift

44

This file provides system-dependent features such as file system support.

It is only compiled is the operating system is MacOS or Linux, and omitted

otherwise, so that other Swift platforms such as Android or iOS can still

use the core library features.

It extends the Common namespace with the following types, which

conform to the respective JPEG.Bytestream.Source and

 JPEG.Bytestream.Destination protocols.

 Common

 enum Common.File

 struct Common.File.Source

 struct Common.File.Destination

Both system file interfaces are exposed through the static open method,

which has the following signature:

static

func open<Result>(path:String, _ body:(inout Self) throws -> Result)

 rethrows -> Result?

This file also extends JPEG.Data.Spectral , JPEG.Data.Planar , and

 JPEG.Data.Rectangular with staged APIs that take file path names,

rather than generic streams as arguments.

 JPEG.Data

 extension JPEG.Data.Spectral

 extension JPEG.Data.Planar

 extension JPEG.Data.Rectangular

45

6. Test architecture

Summary: The Travis Continuous Integration set up for the project

repository supports four sets of tests. Unit tests verify basic

algorithmic components of the library, such as the huffman coders

and zigzag index translators. Integration tests verify that a sample

set of images with different supported coding processes and layouts

can be decoded and encoded without errors. Regression tests run the

integration tests and compare them with known outputs. Finally, fuzz

tests generate randomized test images and compare the output to

that output from third-party implementations such as the libjpeg-

based imagemagick convert tool, ensuring inter-library

compatibility.

The framework uses Travis to run four sets of automated tests:

Unit tests

Integration tests

Regression tests

Fuzz tests

All tests are compiled as executable products by the package manager, and

are invoked by bash scripts in the utils/ directory:

 utils/unit-test

 utils/integration-test

 utils/regression-test

 utils/fuzz-test

These scripts return 0 on passing.

6.1. Unit tests

These tests validate several important subcomponents of the library,

including some internal subcomponents, which is why these tests are

always compiled in debug mode (with @testable imports) rather than

 release mode. (Attempting to compile all products at once with the

package manager set to release mode will fail for this reason.)

Most unit tests consist of a few explicitly written test cases (which serve

as the root of trust), coupled with more exhaustive tests that pair certain

sets of APIs with their inverses, and attempt to feed the output of one API

as the input of the other, and vice-versa. Currently, the unit tests validate

the following library components:

zig-zag coefficient indices

amplitude coding (translating composite values into numerical values)

huffman table coding

huffman table construction

46

https://travis-ci.com/github/kelvin13/jpeg

6.2. Integration tests

These tests attempt to decode and encode various test images without

errors. Because the library features extensive internal validation, these

tests are highly valuable for enforcing internal logical consistency. They do

not attempt to match data outputs, and will succeed as long as no errors

occur in the encoding or decoding process.

Integration tests support both debug and release compilation

modes, using the -c <compilation mode> command-line option.

Currently, the decoding tests run on the following test images:

test image coding process components subsampling

 color-sequential-1.jpg baseline 3 4�2�0

 color-sequential-2.jpg baseline 3 4�2�0

 color-sequential-3.jpg baseline 3 4�4�4

 color-sequential-4.jpg baseline 3 4�4�4

 grayscale-sequential-1.jpg baseline 1 —

 grayscale-sequential-2.jpg baseline 1 —

 color-progressive-1.jpg progressive 3 4�2�0

 color-progressive-2.jpg progressive 3 4�2�0

 color-progressive-3.jpg progressive 3 4�4�4

 color-progressive-4.jpg progressive 3 4�4�4

 grayscale-progressive-1.jpg progressive 1 —

 grayscale-progressive-2.jpg progressive 1 —

The encoding tests take a predefined RGB input image, and encode it as

the following test outputs:

output image coding process components subsam

 karlie-kloss-1-color-sequential.jpg baseline 3 4�4�4

 karlie-kloss-1-grayscale-sequential.jpg baseline 1 —

 karlie-kloss-1-color-progressive.jpg progressive 3 4�4�4

 karlie-kloss-1-grayscale-progressive.jpg progressive 1 —

6.3. Regression tests

As the name suggests, the regression tests attempt to decode test images,

and compare the output to a set of “golden outputs”. The regression tests

47

run on the same JPEG test images as the integration tests, and compare

the output of both the RGB and YCbCr built-in color targets.

Like the integration tests, the regression tests support both debug and

 release compilation modes, with the same command-line syntax. The

 utils/regression-test tool can be run with the option -u (long form

 --update) to regenerate the golden outputs. (The tests will return a

failure code for that run.)

6.4. Fuzz tests

The fuzz tests are the most sophisticated automated tests, because they

don’t return a pass or fail result, but rather, are used to quantify the

difference between the framework output, and the output of a different

library, such as libjpeg. Unlike other formats, such as PNG, which has a

well-defined binary specification, the JPEG standard only specifies the

symbolic mathematical definition of its discrete cosine transform. This

means that different JPEG codecs, different versions of the same JPEG

codec (such as libjpeg), and even the same version of the same JPEG codec

(libjpeg as well) on different platforms can produce different output due to

discrepancies in floating-point and integer arithmetic spellings.

The core of the fuzz tests is, of course, the fuzzer, which generates

randomized 8x8 pixel test images. (This size is chosen because it contains

a single JPEG coefficient block.) The fuzzer uses Swift’s randomization

APIs to generate pixel values, though the ranges are limited to avoid

creating YCbCr colors that do not have equivalents in the RGB color space.

Out-of-range colors can be problematic for comparing JPEG codecs

because while the JPEG standard technically specified that clamping

should be used (and the framework conforms to this), in practice, out-of-

range color values result in implementation-defined behavior. For

example, for performance reasons, libjpeg will wrap-around out-of-range

color values if they exceed a constant “safety margin”.

The number of test images the utils/fuzz-test script will generate is

set by the -n <count> option, by default it is set to 16. The script will

use the system Imagemagick convert tool to run the reference codec;

Imagemagick is powered by libjpeg, so this effectively establishes libjpeg

as the reference implementation. (The Travis CI will install Imagemagick

with Homebrew when testing on MacOS platforms.) The script then uses a

separate execuable product called compare (built by the package

manager) to compare the convert tool output with the Swift library

output, compute statistics, and generate histograms of the output

discrepancy.

The framework’s discrete cosine transform implementation is written to

exactly emulate the floating-point behavior of libjpeg, and will match its

output exactly so long as no out-of-range pixel values occur. However,

since libjpeg is not internally consistent with respect to its other

arithmetic modes, this means that significant discrepancies (though

48

generally less than 10 gray levels) exist when using libjpeg’s “fast” mode

or its fixed-point mode.

49

7. Conclusion

As previously discussed, the ambiguous binary specification of the JPEG

standard precludes a universal “ground truth” for decoder output. As such,

the accuracy of the framework implementation was measured against the

output of existing implementations such as libjpeg. Because libjpeg (and

other 3rd-party implementations) are not themselves internally-

consistent, it is impossible for one set of library settings to conform

exactly to all libjpeg outputs. However, we were able to replicate exactly

the output of one libjpeg mode, the high-fidelity floating-point mode.

Using the same underlying optimized discrete cosine transform algorithm

also provides the framework with a significant performance boost over the

naïve frequency transform algorithm.

As the library is essentially in a production-ready state, the immediate

next steps for this project would be to complete its API documentation,

and prepare tutorials for public release to the Swift community.

Future releases of this framework may aim to support features including,

but not limited to, more (unofficial) JPEG color format extensions, greater

support for uncommon coding processes such as the hierarchical process,

and improved compression heuristics for the encoder portion of the

library.

50

8. References

[1] ‘UIImage API Reference’, Apple Developer Documentation, Apple Inc.,

<developer.apple.com/documentation/uikit/uiimage>

[2] ‘Independent JPEG Group’, Libjpeg, The Independent JPEG Group,

<ijg.org>

[3] Joe Groff, ‘On the Road to Swift 6’, Swift Developer Forums, April 2020,

<forums.swift.org/t/on-the-road-to-swift-6/32862/149>

[4] (User “kornel”), ‘Support C APIs designed for safe unwinding’, Rust

Developer Forums, April 2018, <internals.rust-lang.org/t/support-c-apis-

designed-for-safe-unwinding/7212>

[5] ‘Crate jpeg_decoder’, docs.rs, <docs.rs/jpeg-

decoder/0.1.16/jpeg_decoder/index.html>

[6] Sergey Smagleev, ‘JPEGEncoder’, sergeysmagleev’s Github,

<github.com/sergeysmagleev/JPEGEncoder>

[7] Ted Kremenek, ‘On the Road to Swift 6’, Swift Developer Forums,

January 2020 <forums.swift.org/t/on-the-road-to-swift-6/32862>

[8] ‘Information Technology – Digital Compression and Coding of

Continuous-tone Still Images – Requirements and Guidelines’, Terminal

Equipment and Protocols for Telemetric Services, International

Telecommunication Union, September 1992

[9] Eric Hamilton, ‘JPEG File Interchange Format Version 1.02’, C-Cube

Microsystems, September 1992

51

