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Abstract	

Millimeter-Wave (mmWave) radar sensors are getting more popular for their increasing sensing 

capabilities especially in automotive fields. However, no matter how ideal the radar signal processing 

stack is, radar still suffers from internal and external noises which degrades its potential sensing 

solutions. There are certainly many traditional approaches to reduce radar noises like matched filter, but 

this paper will present a novel approach of noise removal via sensor fusion and artificial neural 

networks. 
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1.	Introduction	
The increasing popularity gained by radar in recent years is driven in part by the growth of automotive 

applications that use radar sensing. Under extreme weather conditions like heavy snow and rain, radar 

shows significant advantages against other sensors like LIDAR and cameras. However, noise is a big 

factor that impairs the sensing result of a radar and could cause serious problems. There are different 

sources of noise and the two most significant ones are sensor noises and multipath reflections. The 

sensor noise is going to cause inaccuracies in measurement especially in the azimuth and elevation 

dimension and multipath reflections are going to cause ghost targets which are phantoms of actual 

targets. Ghosts are serious problems in radar detection and that will lead to radar false positives and 

mis-classifications which will seriously inhibit the detection accuracies of radar. 

As we see, since ghosts could cause serious problems in radar detections, removing ghosts should be 

solved. In this paper, I will present a novel approach which utilizes sensor fusion and machine learning. 

The classification results are based on the outputs of Extended Kalman Filter which are individual 

trackers. On top of that, an Intel depth camera is used to label the trackers as either actual detection or 

ghost. Then an LSTM is used to learn the moving patterns of ghosts and actual detections. Finally the 

radar is able to only use the trained weights to classify whether a tracker is an actual detection or a 

ghost. The results look promising and are presented in Section 4. 
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2.	Matched	Filter:	Traditional	Way	of	Noise	Reduction	

 

Figure 1. 1D model of Matched Filter.  

One of the most common state-of-the-art methods for radar noise removal is called matched filter. The 

architecture of Matched Filter is represented in Figure1. It is an optimal linear filter designed to 

maximize the signal SNR in the presence of additive stochastic noise. The input signal, denoted as x(t), 

mixed by a pulse signal g(t) and additive noise w(t), as denoted in equation 2.1. 

                                                                    	𝑥(𝑡) = 𝑔(𝑡) + 𝑤(𝑡)                                                                           2.1 

In this scenario, it is safe to assume w(t) is white noise of zero mean and power spectral density No/2. 

To achieve the goal of matched filter, the filter needs to minimize the effect of noise at the output of 

filter. Because the filter is linear time-invariant, we have filter output y(t) expressed as two components, 

as denoted in equation 2.2. 

																																																																								𝑦(𝑡) = 𝑔!(𝑡) + 𝑛(𝑡)                                                                          2.2 

For Gaussian white noise, we will have the frequency response of the filter represented by equation 2.3. 

																																																																							𝐻(𝑓) = "#
$!
𝑆∗(𝑓)𝑒&'()!                                                                      2.3 

In the specific case of white noise, we could rewrite the impulse response as equation 2.4. 

																																																																							ℎ(𝑡) = 	𝐶𝑠(𝑡! − 𝑡)                                                                              2.4 

In equation 2.4, C is an arbitrary real positive number, t0 is the time of peak signal output and s(t) is 

input signal waveshape. 
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																																																																									ℎ(𝑡) = 𝐹&*[𝐻(𝑓)]  

																																																																																		= "#
$!
7∫ 𝑆(𝑓)𝑒'"+,()!&))/∞
&∞ 𝑑𝑓:

∗
	                                            2.5 

				=
2𝐾
𝑁!

[𝑠(𝑡0 − 𝑡)]∗ 

From the above sketch of proofs, we can easily see that the impulse response is the time-reversal of the 

input signal wavelet such that when we convolve the input signal and filter impulse response we will 

effectively get a peak impulse at t0. And since this filter is applied to radar which is a digital system, the 

output of the system is essentially bit 1 and bit 0. Then we will append a decision device at the end of 

Figure 1 to compare the sampling values of the output of matched filter with a threshold set in advance. 

To measure the bit error rate, we just have to measure two kinds of errors, namely ,that when 1 is 

interpreted by the system while bit 0 was actually sent and bit 0 is interpreted by the system while bit 1 

was actually sent. 
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3.	Approach	Architecture	

 

Figure 2. Ideal Output of Noised Removed Point Cloud 

A good way to visualize the noise level of radar output is through the point cloud, which is a tuple 
consisting of [range, doppler, azimuth, elevation, SNR]. However, in TI AWR1642 radar series, elevation 
is not supported but we still want to keep elevation in because more advanced radars will certainly take 
elevation into account. An advantage of point cloud data structure is that it could be converted to 
Cartesian coordinates and then plotted in 2D. 

																																																																						𝑥 = 𝑟𝑎𝑛𝑔𝑒 ∗ 𝑠𝑖𝑛(𝑎𝑧𝑖𝑚𝑢𝑡ℎ)                                                               3.1 

																																																																						𝑦 = 𝑟𝑎𝑛𝑔𝑒 ∗ 𝑐𝑜𝑠(𝑎𝑧𝑖𝑚𝑢𝑡ℎ)                                                               3.2 

However, point cloud data in many cases doesn't make sense either because with the effect of heavily 
cluttered environment and multipath propagation, it's very hard to identify which part of the point cloud 
represents actual target and which part of represents a ghost. Any kind of clustering algorithms don't 
work well because the results of clustering depend largely on the algorithm input parameters and input 
data. And more importantly, it's hard to establish temporal relations among frames because clustering 
algorithms don't have past memories. Extended Kalman Filter is built exclusively for tracking and has 
unique track ID for each track among all frames. However, the problem is that since point cloud is noisy, 
EKF is likely to produce ghost tracks(false positives). It's hard to find an universal set of EKF parameters 
that only detect actual targets because this will make the EKF too conservative so that false negatives 
will happen. False negatives are bad because in this case, EKF is not tracking what it's supposed to track. 
The following architecture will be introduced to effectively identify those false positives. 



5 
 

3.1	OpenRadar	Basic	Digital	Signal	Processing	
At the very beginning of the pipeline, I applied 
OpenRadar(https://github.com/PreSenseRadar/OpenRadar) which is developed by a team in University 
of Illinois called PreSense(https://www.presenseradar.com)  as part of the 
Alchemy(https://www.alchemyfoundry.com) project in IBM C3SR research (https://www.c3sr.com) . 
OpenRadar serves to poll raw ADC data out of TI AWR1642 series radar, perform range, doppler and 
azimuth processing and produce point cloud [range, doppler, azimuth, elevation, SNR] for each frame. 
The DSP details won't be listed here and are all available on OpenRadar Github repository. 

3.2	Extended	Kalman	Filter	
Extended Kalman Filter is another big feature that adds on top of OpenRadar that serves to make sense 
of point cloud data. It's a tracking algorithm that works like Hidden Markov Model behavior-wise. It 
consists of following several stages. 

l Prediction:  

This stage utilizes physical law of motion to perform predictions over last updated filter state. There are 
mainly 2 models of EKF in this scenario, constant velocity model and constant acceleration model. The 
prediction is done over matrix multiplication and updated results are called predicted state and will be 
used in later stages. 

l Allocation: 

At this stage, EKF utilizes clustering algorithms to analyze point clouds to determine which part of the 
point cloud radar data should be used for the tracking purposes. This part serves to perform an initial 
filtering that filters out some obvious noises. 

l Association: 

This stage is the most troublesome one in the entire EKF. It serves to associate the previously allocated 
point clouds to each active trackers. Each point could only be associated once and a lot of research is 
still ongoing about the data association. In general, an example of naive data association algorithm is 
Nearest Neighbor. However, some advanced data association algorithms take covariance matrix and 
group dispersion matrix into account. 

l Track Management: 

This stage serves like a finite state machine that manages active trackers in the current frame. It 
manages HIT and MISS events separately and determine whether to promote the current tracker status, 
degrade the current tracker status or defer the decision for further consideration. 

l Update: 

This stage is the final stage of the pipeline. It takes kalman gain into account and balance between the 
current measurements and previous predictions. If we trust the previous predictions more, then we risk 
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accumulating the errors before we realize that they are already too big. If we trust measurement more, 
then we risk from the sensor noises. Therefore, we want to balance between the two. 

3.3	Intel	3D	Depth	Camera	labelling	
Using 3D camera's depth information to help labelling the EKF output will be a good choice since it'll 
quite difficult to align radar sensor and depth camera together to make sure they always look at the 
same region. There will always be some drifts and we need complicated trigonometries to align them. 
Rather than doing all of this, we could just place radar and camera on top of each other and use depth 
information for labelling purposes since depth information and radar range information align pretty 
well. Thus, we get labelled training data. 

3.4	LSTM	for	Training	the	Model	
Among the models for training, I used LSTM network. There are 2 reasons for this. First, since what we 
want the network to learn are the different trajectories of actual targets and ghosts over time. Thus, 
establishing temporal relationships between consecutive frames is crucial. CNN is not specialized for this 
kind of learning. Secondly, the number of tracks in one single frame is unpredictable and so we may 
need multiple output labels in one frame. CNN is also not specialized for this kind of training task. The 
original data shape of EKF output is (number of frames, number of features). To get it into correct LSTM 
shape, I transformed the data shape into (number of frames - number of lookbacks, number of 
lookbacks, number of features). 

3.5	Evaluation	and	Prediction	
At evaluation and prediction stage, I also used LSTM since it is used in the training stage. Since EKF keeps 
track of all of its active tracks within its internal data structure, whenever EKF spawns a new active track 
with a new track ID, I initialized a new LSTM with trained model to predict and deleted those LSTMs 
which correspond to a terminated track. 
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4.	Result	Analysis	

4.1	Neural	Network	Testing	Phase	Analysis	
The training environment was set up in the Alchemy Lab which is located at the 3rd floor of ECEB. The 
devices include Intel depth camera mounted with TI AWR1642 radar. The training environment is rather 
noisy with a lot of ghosts appearing on radar side. The resulting testing accuracy is given below as table 
1 with testing environment ordered by Alchemy lab, undergraduate lounge, classroom and ECEB atrium. 

Table 1. Accuracies under 4 test environments 

Testing 
Environment 

Alchemy lab undergraduate 
lounge 

classroom ECEB atrium 

Accuracy(%) 98.15 88.34 88.12 94.88 

4.2	Performance	Analysis	between	Matched	Filter	and	Neural	Network	
Approach	
There's a fundamental difference between matched filter and neural network approach which is the 
level they operate on. Matched filter works at the level when radar receives a signal which is even 
before the raw ADC data processing stack. Operating at this level often requires access to hardware like 
antenna and may cause some difficulties for commercialized products because those products usually 
don't provide interfaces for users to reach the hardware. But if we could access the hardware, then we 
will convolve the original signal with filter's impulse response so that the raw ADC data is optimized with 
maximal SNR. Then we can apply OpenRadar DSP stack on top of that to get noise-free EKF results. The 
neural network & sensor fusion approach operates at the level where all radar data has been processed 
into standard radar data format. It doesn't require any kind of access to the hardware. All of the tunable 
parameters lie in OpenRadar DSP stack and neural network itself. Users could tune the neural network 
parameters to achieve best performances of different use cases they define. 
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5.	Case	Studies	
I would like to propose multiple situations where this approach of noise identification & removal would 
help a lot. 

5.1	Autonomous	Cars	
When the radar is placed on the car as part of the autonomous driving components, tracking algorithm 
is inevitable as raw point cloud data exhibits a high probability of false alarm due to sensor 
measurement noises and multipath reflection. The noise identification pipeline showed in this paper will 
help the autonomous driving system filter only the tracks that correspond to the actual targets with a 
tolerable possibility of false alarm. This way, the autonomous driving system won't be too sensitive. 

5.2	Indoor	Tracking	
Indoor environment typically generates a lot of noises on radar side because the indoor building surface 
is not very smooth that it causes a lot of multipath propagation and corner reflection. The current 
indoor positioning system typically uses WiFi and bluetooth technology. However, since they also rely on 
EM waves, a lot of problems like channel fading and multipath propagation will happen. The system 
introduced in this paper could greatly help improve the accuracy of the currently existing indoor 
positioning technologies. 
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6.	Conclusion	
The noise identification method introduced in this paper is a novel one that doesn't leverage on 

complicated method of reconstructing the original signal. Instead, it replies on the key difference 

between trajectories of ghost targets and actual targets. If trained well enough, the neural network is 

able to filter out some of the false positives of EKF output. There could still be improvements on top of 

this method such as mixing training data from different environments, improving the architecture of the 

neural network. 
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