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Abstract 

Electricity supply responds to changes in demand, and changing populations alter energy demands for an 

area. This project characterizes how different population compositions affect electricity consumption 

using Commonwealth Edison (ComEd) anonymized meter-level data, which show the electricity usage at 

30-minute intervals in 2016 for the whole service area, sorted by zip code. The following tasks were 

completed:  

• Compare multi-family residences with different population densities and median incomes in 

Chicago. 

• Characterize different electricity profiles for different zip codes using mean electricity usage for 

an average day in each month for each zip code. 

• Predict multi-family electricity consumption as a function of zip-code-level socioeconomic 

predictor variables using linear regression. 

This analysis shows that median age of home, mean commute time, percent of multi-family housing units, 

median age of population, and percent female are statistically significant predictors of multi-family 

residential electricity consumption. Daily and monthly electricity profiles also vary notably across zip 

codes in Chicago. These results can inform electricity providers regarding how forecasted changes in 

population will likely affect the electricity demand of a particular area.  
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1. Introduction 

Variances in time and weather have been studied extensively to predict household electricity 

consumption, but research is much more limited on how social and economic factors affect electricity 

consumption in multi-family residential households. With the widespread installation of smart meters, 

there are more data available across a larger geographic area, supporting the study of geography and 

demographic effects on electricity consumption. 

This work examined Commonwealth Edison (ComEd) smart meter data from Chicago in conjunction 

with data collected from the U.S. Census for 2016, comparing differences across zip codes to reveal 

electricity consumption trends for multi-family housing units related to socioeconomic traits. The scope 

was restricted to zip codes in the City of Chicago because of the uniformity in local governance as well as 

the wide social variation of neighborhoods and zip codes within the study area. 

This research analyzes socioeconomic characteristics of zip codes and how they can be used to predict 

electricity consumption for multi-family homes in Chicago. The research goals were to (1) visualize and 

compare electricity demand profiles for multi-family units, and (2) predict electricity consumption in 

multi-family housing as a function of socioeconomic data.  
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2. Literature Review 

2.1 Smart Meter Data Analysis 

Previous studies have leveraged smart electricity meters to better understand predictors of 

customer consumption and acceptance of smart meter infrastructure. When using smart meter 

data to examine climate, occupant, and housing impacts on residential electricity consumption, 

Kavousian et al. [27] found that the number of occupants, high consumption appliances, weather, 

location, floor area, number of refrigerators, entertainment devices, and pet ownership had 

significant correlation with the electricity consumption profiles of the households. However, 

income, home ownership, and building age had no significant correlation [27]. Zip code variation 

explains up to 46% of electricity consumption variability [27]. A study of the willingness-to-pay 

for smart meters among household customers in Germany found that trust in data protection, 

intention to change usage behaviors, and usefulness of consumption feedback were the most 

important factors, in that order [16]. 

 

2.2 Factors Related to Residential Electricity Consumption 

The residential sector, specifically the multi-family housing sector, is a relatively under-studied 

aspect of building energy consumption. When reviewing data-driven energy consumption 

prediction studies related to buildings, Amasyali and El-Gohary found that while 81% of the 

reviewed research efforts focused on developing energy consumption prediction models for 

commercial and/or educational buildings, only 19% focused on residential buildings [4]. Energy-

efficient features are adopted much less regularly in rented units than in owned housing units, 

with rates of adoption ranging from 5.3% to 21.6%, in a study of 10 U.S. cities [23]. Chicago has 
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a comparably high rate of energy efficiency adoption in rental units, but the associated percent 

increase in rent for units with energy efficiency measures was also among the highest in the 

study [23].  Kiefer and Krentz found that while multi-family water use (which is closely related 

to electricity consumption) varies with respect to water pricing and income, it varies less than in 

single-family homes, and climate differences affect single-family use patterns more than multi-

family use patterns [28]. Residential electricity consumption patterns also show seasonality, with 

weather effects more pronounced in the winter than in the summer [20]. 

2.3 Socioeconomic Predictors of Electricity Consumption 

Various socioeconomic factors affect residential electricity consumption, with statistical 

significance depending on context. A study of 189 Dutch households found that energy use was 

related to sociodemographic variables, while changes in energy use were often related to 

psychological variables [1]. A later study of Dutch households found that households with 

children or elderly tended to consume more energy than other households [8]. Similarly, 

electricity load profiles in Europe showed strong dependence on household size, net income, age 

of reference person, and employment status [21]. Electricity consumption has also been studied 

on a U.S. zip code level to determine the impact of large-scale electric vehicle adoption [3]. 

Elnakat and Gomez found that there was an 80% higher per capita energy consumption in 

female-dominated households compared to male-dominated households, with twice the natural 

gas consumption in the former [12]. When studying the socioeconomic, demographic, and 

gendered influences on a household’s energy consumption at the zip code level in San Antonio, 

Texas, Elnakat et al. found higher energy use to be associated with zip codes that were female-

dominant, with a median age over 40, and with higher levels of income and education [13]. The 
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study also found that renters tended to use less energy than home owners [13]. Similarly, 

Karatasou et al. found that households with more occupants, living in older and less insulated 

buildings, with greater floor area and electric water heating were more likely to be high energy 

consumers [26]. 

While data available on a zip code level can be helpful for analysis, there are some potential 

issues. Zip codes can include very different geographic ranges depending on whether the area is 

rural or urban, and may also consist of two discontinuous areas. Information grouped by census 

block can be better for analysis of demographic and socioeconomic data [18]. Socioeconomic 

factors have been studied for their effect on CO2 emissions in Iran, and were evaluated using a 

multivariate statistical analysis [19]. However, Harris and Liu found that income did not have a 

statistically significant effect on U.S. residential electricity consumption for the period 1969-

1990 [20].  

2.4 Electricity Consumption Prediction Models 

Several quantitative approaches have been used to describe electricity consumption variability 

with location and time. Cluster analysis, multivariate linear regression, or support vector 

machines combined with classification based on the surveys can provide a more detailed analysis 

of household load profiles [11, 17, 22, 29, 38]. Relationships between income and energy 

consumption have been studied using regression [2], and clustering techniques have been used to 

group customers for electrical load pattern analysis [10, 36]. In one study, a hierarchical 

clustering method was used to detect resident profiles, finding statistical significance for months 

of the year, working versus weekend days, hours of the day, temperature, and baseline energy 

consumption [2]. A study of Danish households’ hourly electricity consumption predicted that 
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the peak electricity consumption for households will likely increase significantly for workdays in 

January 2030 [2]. A comparison study of neural network, conditional demand analysis, and 

engineering model approaches determined that while all three methods can be used, a neural 

network model was best for end-use energy consumption modeling [6]. Appliance, lighting, and 

cooling energy consumption reached a minimum and stayed constant as household income 

decreased, while space heating electricity consumption increased linearly, further increasing with 

additional people in the household [6]. Another end-use simulation/forecasting model combined 

load data with survey results to estimate the total residential load curve in New South Wales, 

Australia, including considerations for monthly and daily variations as well as weather 

dependencies [7]. Parti and Parti similarly obtained detailed household level data for 5,286 

households in San Diego County via a mail questionnaire, using the results to determine a 

conditional demand framework to disaggregate household demand into 16 appliance categories 

[32]. 

Traditional methods for energy demand forecasting for demand side management include time 

series, regression, and econometric modeling, while soft techniques such as fuzzy logic, genetic 

algorithms, and neural networks have also been used [34]. Upgrade options for reducing 

residential energy consumption in Canada were evaluated using an end-use electricity 

consumption model, which found that upgrading appliances would lead to significant savings 

[14]. Different statistical analysis methods have been used to estimate residential end-use load 

curves, such as conditional demand analysis, seemingly unrelated regressions, and the random 

coefficient model [15], while others use artificial intelligence for load forecast models and 

research gaps [33]. Despite these advances in modeling electricity demands and load patterns, 

the multi-family residential housing sector remains as an understudied aspect of residential 
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electricity consumption. This work aims to fill that knowledge gap for the multi-family 

residential housing sector in Chicago, Illinois, analyzing both electricity load profiles and 

socioeconomic factors related to electricity consumption. 
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3. Methodology 

3.1 Electricity Consumption Across Zip Codes 

Commonwealth Edison (ComEd) has installed smart electricity meters throughout its service 

area in northern Illinois. Through a data sharing agreement with the Environmental Defense 

Fund, this work leveraged 30-minute resolution anonymized smart meter data for 2016, within 

the ComEd service area. Each smart meter and its corresponding data were reported by zip code, 

including a unique account identifier and the delivery service type, designating multi-family or 

single-family residential and electric or non-electric space heating.  

With over 500 zip codes served by ComEd, this work focused on zip codes in the City of 

Chicago as a large, diverse city with a range of housing options and distinct neighborhoods with 

reported demographic information. Multi-family households are much less studied in terms of 

electricity consumption than single-family homes. With an increasing global population, as well 

as an increase in urbanization of city centers, the understanding of load profiles of high density 

and multi-family housing becomes even more essential. 

The analysis of ComEd smart meter data for multi-family residential electricity consumption 

used the following approach, implemented in the open-source Python programming language: 

1. Extract smart meter data for multi-family units in Chicago zip codes from a collection of 

comma separated value files with electricity consumption data organized by month and 

by zip code. 

2. Average the daily consumption profiles in each month to create a multi-family residential 

electricity consumption profile for an average day in each month.   
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3. Create a box plot for each month and zip code pair containing half-hourly average 

electricity consumption for a typical day in the month for each of the multi-family smart 

meters within the zip code for that month. 

4. For each month, plot the average half-hourly consumption for the typical day in that 

month, comparing the averages from each zip code in the same data visualization. 

5. Record the daily average multi-family residential electricity consumption profile for each 

zip code and month pair to be used for linear regression analysis.  

3.2 Socioeconomic Data for each Zip Code 

To study the real-world impact of demographic and socioeconomic variables on electricity 

consumption, it is necessary to have robust data about both electricity consumption and 

demographic variables for the same geographic location. With anonymized smart meters, it is 

impossible to determine the characteristics of the households of each individual smart meter. 

However, the American Community Survey 5-Year Estimate collects demographic information 

on a zip code level [35]. With the smart meters labeled by their respective zip codes, it is 

possible to analyze the smart meter data in conjunction with collected demographic and 

socioeconomic data to estimate correlations and create a predictive model. The following data 

from the American Community Survey 5-Year Estimates [35] were collected for each zip code in 

Chicago: 

• Demographics 

o Population 

o Median age 

o Percent 65 and over 

o Percent female 
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o Households with children under 6 

o Households with children 6 to 17 

• Income 

o Median household income 

o Mean household income 

o Percent under poverty line 

o Unemployment percent 

• Education 

o Percent with a high school degree  

o Percent with a bachelor's degree 

• Housing and Location 

o Median age of home 

o Percent of multi-family housing units 

o Percent occupancy 

o Total housing units 

o Mean commute time 

These socioeconomic data were selected as possible predictors based on previous literature [6, 8, 

12, 17, 21, 27]. 

3.3 Annual Electricity Consumption Prediction Model 

With the developed multi-family residential electricity profiles and the corresponding 

socioeconomic indicators for each zip code, a regression model was created to evaluate 

socioeconomic indicators as possible predictors of multi-family residential electricity 

consumption. Since socioeconomic data were available on an annual timestep, a multi-family 
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residential electricity profile for each zip code for an average day in the year was used with 

linear regression to reveal the best socioeconomic indicators of electricity consumption in multi-

family homes. The best-fit model was determined through ordinary least squares (OLS) 

regression using linear modeling in the open-source R statistical computing software, using the 

form listed in Equation 1.  

for multi-family residential electricity consumption Y" and socioeconomic predictor variables 𝑋". 

To verify the accuracy of the model, the model OLS assumptions of normality and constant 

variance of residuals, and independence of predictor variables and residuals were evaluated. The 

normality and constant variance of the residuals were quantified using the Shapiro-Wilk 

normality test and Tukey test, respectively. Independence of predictor variables was determined 

by evaluating multicollinearity and the Durbin-Watson test for autocorrelation. Diagnostics were 

performed on the statistical significance of coefficient estimates and the model form, including 

estimation of the goodness-of-fit R2 statistic. 

 

  

Y" = 𝛽& + 𝛽(𝑋( + 𝛽)𝑋) + 𝛽*𝑋* + 𝛽+𝑋+ + ⋯𝛽"𝑋" (1) 
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4. Results 

4.1 Electricity Profile Graphical Analysis 

Through visual analysis of monthly average daily electricity consumption for each zip code, high 

variances were observed between months within each zip code. High variances also exist 

between zip codes within each month. Figures 1(a) and 1(b) illustrate the daily averages across 

zip codes by month, showing variance both temporally and spatially. 

(a) 

 

(b) 

 
Figure 1. Multi-family residential electricity load varies with time of day across the analyzed zip codes 

for (a) May, and (b) July. The average profiles are represented as gray lines for each zip code, with the 

black line reflecting the average across zip codes.  

 During summer months, there was higher electricity consumption compared to other months. 

Winter months also had high electricity consumption, while spring and fall months had the 

lowest electricity consumption. Multi-family residential electricity load profiles for all months 

are shown in the Appendix for all zip codes analyzed, shown in Figure 2. Many of the daily 

electricity profiles had peaks in the evening, while earlier in the day electricity consumption was 

lower. Figures 3(a) and 3(b) illustrate the differences between zip codes with differing median 

age. The locations of the zip codes in Figures 3(a) and 3(b) are shaded in orange in Figure 2. 
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Figure 2. Zip codes (n = 56) in the City of Chicago were included in the analysis based on high amounts 

of multi-family residential housing. Garfield Park and The Loop neighborhoods, depicted in orange, 

represented differing load profiles, as shown in Figures 3(a) and 3(b). 

(a) 

 

(b) 

 
Figure 3. Daily load profiles vary for multi-family residential housing across zip codes, shown for 

January 2016, in (a) Garfield Park, and (b) The Loop. 
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Garfield Park had a much lower median age than The Loop, at 28.7 years compared to 44.6 

years, highlighting a potential impact of socioeconomic indicators on multi-family residential 

electricity consumption, shown in Figure 3 for these zip codes. A multiple linear regression 

model was created to further investigate the ability of socioeconomic indicators to explain 

variation in multi-family residential electricity consumption in Chicago. 

4.2 Multiple Linear Regression Analysis 

Using an ordinary least squares modeling approach, a best-fit multiple linear regression model 

was created following the form of Equation 3.1, using the socioeconomic data for Chicago zip 

codes as indicators. The OLS approach used backwards stepwise regression to create a best-fit 

model of statistically-significant predictor variables. The coefficient estimates shown in Table 1 

reflect the multiple linear regression model, rounded to two significant figures, explaining 

approximately 41% of the variability in multi-family residential electricity consumption in 

Chicago. Table 1 also includes measures of the statistical significance of each coefficient and the 

model form. 

Table 1. Socioeconomic indicators were statistically significant predictors of multi-family residential 

electricity consumption for Chicago zip codes, explaining approximately 41% of the variability. 

Factor Coefficient Estimate Standard Error t-Value Pr(>|t|) 
Constant 𝛽& 18 3.6 5.2 4.4e-6 
Median Age of Home 𝛽( 0.029 0.012 2.3 0.024 
Percent Multi-Family 𝛽) -1.9 0.86 -2.2 0.031 
Percent Female 𝛽* 0.14 0.071 1.9 0.059 
Median Age 𝛽+ -0.28 0.046 -6.1 1.4e-7 
Mean Commute Time 𝛽- -0.14 0.051 -2.8 0.0082 
Multiple R2 = 0.47; Adjusted R2 = 0.41; F-statistic = 8.8 (p-value = 4.2e-6) 
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OLS assumptions of normality and constant variance of residuals, and independence of residuals 

and predictor variables were evaluated statistically. The normality of the residuals was measured 

using the Shapiro-Wilk normality test, which is based on hypothesis tests: 

H0: Residuals are normally distributed. 

HA: Residuals are not normally distributed. 

The Shapiro-Wilk test provided a value of 0.97, with a p-value of 0.26, with the decision of fail 

to reject the null hypothesis, confirming the assumption of normally distributed residuals. 

Constant variance of the residuals was quantified using the Tukey test, based on the following 

hypotheses: 

H0: The quadratic term in a residual trend line is zero (e.g., 𝑎𝑥) + 𝑏𝑥 + 𝑐; 𝑎 = 0). 

HA: The quadratic term in a residual trend line is not zero (e.g., 𝑎 ≠ 0). 

Based on the Tukey test statistic of 0.11, with a p-value of 0.91, the hypothesis test decision is to 

fail to reject the null hypothesis, confirming the assumption of constant variance across residuals, 

shown graphically in Figure 4.  
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Figure 4. Pearson residuals of the multiple linear regression model satisfy the ordinary least squares 

regression assumptions of normality, constant variance, and independence.  

Independence assumptions were evaluated for both the residuals and the socioeconomic 

predictor variables. To assess independence of the residuals, shown in Figure 4, the Durbin-

Watson statistic was calculated to quantify autocorrelation, based on the following hypotheses: 

H0: Autocorrelation is zero. 

HA: Autocorrelation is not zero. 

For the calculated Durbin-Watson statistic of 1.95, with a p-value of 0.75, the hypothesis test 

decision is to fail to reject the null hypothesis, confirming the assumption of independence of the 
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residuals. Independence of the socioeconomic predictor variables was determined by estimating 

variance inflation factors (VIF) as a measure of multicollinearity. VIF > 10 is an indication of 

correlation between predictor variables, violating assumptions of independence. Table 2 

summarizes the VIF values for the socioeconomic indicators, confirming independence among 

the predictor variables. 

Table 2. The socioeconomic indicators did not exhibit multicollinearity as all VIF values were less than 

10. 

Predictor Variable Variance Inflation Factor 
Median Age of Home 2.32 
Percent Multi-Family 1.69 
Percent Female 1.40 
Median Age 1.43 
Mean Commute Time 2.97 

 

With OLS assumptions verified, the best-fit model of annual multi-family residential electricity 

consumption (Y"), in kilowatt-hours, was the model shown in Equation 2: 

Based on these results, higher multi-family residential electricity consumption is associated with 

older homes, lower percent multi-family housing, higher percent female populations, younger 

median age, and shorter mean commute time, based on data at a zip code level. 

Equation 2, however, only explains about 41% of the variability in multi-family residential 

electricity consumption across zip codes. Many other factors, including personal behaviors and 

seasonal effects, influence residential electricity consumption, as reported in literature [2, 7, 20]. 

Y" = 18 + 0.029(Median	age	of	home) − 1.9(Percent	multi-family)

+ 0.14(Percent	female) − 0.28(Median	age)

− 0.14(Mean	commute	time) 

(2) 
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5. Conclusion 

Data from Commonwealth Edison (ComEd) smart electricity meters in Chicago were analyzed in 

conjunction with data collected from the U.S. Census for 2016, to compare differences in multi-

family residential electricity consumption across zip codes. A statistically significant multiple 

linear regression model was created to predict annual electricity consumption in the multi-family 

housing sector using socioeconomic characteristics as indicator variables. Even for the restricted 

scope of zip codes in the City of Chicago, sufficient social variation existed across zip codes and 

multi-family electricity consumption to visualize differences in daily load profiles and create a 

statistically-relevant model. 

The results show that there are differences in electricity load profiles across zip codes and those 

differences are present with time of day and season of the year. There are also many drivers of 

multi-family residential electricity consumption in Chicago. This research demonstrates that 

socioeconomic characteristics of zip codes can be used to predict electricity consumption for 

multi-family homes in Chicago using a multiple linear regression model. This model was found 

to be robust, with the following socioeconomic variables as statistically-significant predictors: 

median age of home, percent of multi-family housing units, percent female, median age of 

population, and mean commute time. 

While using zip code-level socioeconomic data can give an estimate of the demographics of the 

data sample in aggregate, these data do not reflect individual households as the electricity meter 

data are anonymized. Socioeconomic information is also estimated on an annual scale, such that 

there are limitations in using U.S. Census data to understand sub-annual variation in multi-family 

residential electricity consumption. Smart meter data are limited to electricity consumption such 
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that additional research is needed to examine both electricity and natural gas consumption to gain 

a more holistic perspective on home energy consumption. 
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Appendix: Generated Graphs and Data 

A1. Electricity Daily Load Profiles by Zip Code  

Zip Codes with Complete Data for 2016 

   

   

   

   

Figure A1. Daily load profiles for multi-family residential electricity consumption by month: 60601.  
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Figure A2. Daily load profiles for multi-family residential electricity consumption by month: 60602. 
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Figure A3. Daily load profiles for multi-family residential electricity consumption by month: 60604. 
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Figure A4. Daily load profiles for multi-family residential electricity consumption by month: 60605. 
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Figure A5. Daily load profiles for multi-family residential electricity consumption by month: 60607. 
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Figure A6. Daily load profiles for multi-family residential electricity consumption by month: 60608. 
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Figure A7. Daily load profiles for multi-family residential electricity consumption by month: 60609. 
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Figure A8. Daily load profiles for multi-family residential electricity consumption by month: 60610. 
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Figure A9. Daily load profiles for multi-family residential electricity consumption by month: 60611. 
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Figure A10. Daily load profiles for multi-family residential electricity consumption by month: 60612. 
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Figure A11. Daily load profiles for multi-family residential electricity consumption by month: 60613. 
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Figure A12. Daily load profiles for multi-family residential electricity consumption by month: 60615. 
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Figure A13. Daily load profiles for multi-family residential electricity consumption by month: 60616. 
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Figure A14. Daily load profiles for multi-family residential electricity consumption by month: 60617. 
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Figure A15. Daily load profiles for multi-family residential electricity consumption by month: 60619. 
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Figure A16. Daily load profiles for multi-family residential electricity consumption by month: 60620. 
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Figure A17. Daily load profiles for multi-family residential electricity consumption by month: 60621. 
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Figure A18. Daily load profiles for multi-family residential electricity consumption by month: 60622. 
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Figure A19. Daily load profiles for multi-family residential electricity consumption by month: 60623. 
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Figure A20. Daily load profiles for multi-family residential electricity consumption by month: 60624. 
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Figure A21. Daily load profiles for multi-family residential electricity consumption by month: 60625. 
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Figure A22. Daily load profiles for multi-family residential electricity consumption by month: 60626. 
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Figure A23. Daily load profiles for multi-family residential electricity consumption by month: 60628. 
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Figure A24. Daily load profiles for multi-family residential electricity consumption by month: 60629. 
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Figure A25. Daily load profiles for multi-family residential electricity consumption by month: 60630. 
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Figure A26. Daily load profiles for multi-family residential electricity consumption by month: 60631. 
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Figure A27. Daily load profiles for multi-family residential electricity consumption by month: 60632. 
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Figure A28. Daily load profiles for multi-family residential electricity consumption by month: 60633. 
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Figure A29. Daily load profiles for multi-family residential electricity consumption by month: 60634. 
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Figure A30. Daily load profiles for multi-family residential electricity consumption by month: 60636. 
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Figure A31. Daily load profiles for multi-family residential electricity consumption by month: 60637. 
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Figure A32. Daily load profiles for multi-family residential electricity consumption by month: 60638. 
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Figure A33. Daily load profiles for multi-family residential electricity consumption by month: 60639. 
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Figure A34. Daily load profiles for multi-family residential electricity consumption by month: 60640. 
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Figure A35. Daily load profiles for multi-family residential electricity consumption by month: 60641. 
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Figure A36. Daily load profiles for multi-family residential electricity consumption by month: 60642. 
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Figure A37. Daily load profiles for multi-family residential electricity consumption by month: 60643. 
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Figure A38. Daily load profiles for multi-family residential electricity consumption by month: 60645. 
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Figure A39. Daily load profiles for multi-family residential electricity consumption by month: 60646. 
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Figure A40. Daily load profiles for multi-family residential electricity consumption by month: 60647. 
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Figure A41. Daily load profiles for multi-family residential electricity consumption by month: 60649. 
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Figure A42. Daily load profiles for multi-family residential electricity consumption by month: 60651. 
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Figure A43. Daily load profiles for multi-family residential electricity consumption by month: 60652. 
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Figure A44. Daily load profiles for multi-family residential electricity consumption by month: 60653. 
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Figure A45. Daily load profiles for multi-family residential electricity consumption by month: 60654. 
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Figure A46. Daily load profiles for multi-family residential electricity consumption by month: 60655. 
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Figure A47. Daily load profiles for multi-family residential electricity consumption by month: 60656. 
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Figure A48. Daily load profiles for multi-family residential electricity consumption by month: 60657. 
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Figure A49. Daily load profiles for multi-family residential electricity consumption by month: 60659. 
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Figure A50. Daily load profiles for multi-family residential electricity consumption by month: 60660. 
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Figure A51. Daily load profiles for multi-family residential electricity consumption by month: 60661. 
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Zip Codes with Incomplete Data for 2016 

 

  

   

   

Figure A52. Daily load profiles for multi-family residential electricity consumption by month: 60603. 
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Figure A53. Daily load profiles for multi-family residential electricity consumption by month: 60606. 
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Figure A54. Daily load profiles for multi-family residential electricity consumption by month: 60614. 
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Figure A55. Daily load profiles for multi-family residential electricity consumption by month: 60618. 
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Figure A56. Daily load profiles for multi-family residential electricity consumption by month: 60644. 
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A2. Electricity Profiles Across Zip Codes 

 

   

   

   

   

Figure A57. Average daily load profiles for multi-family residential electricity consumption by month, 
for all analyzed Chicago zip codes. 
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A3. Socioeconomic Data  

The relevant 2016 multi-family residential electricity demand and socioeconomic data for 

reproducing the multiple linear regression model are available online at 

https://stillwell.cee.illinois.edu/data/.  


