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Summary

Introduction: Obesity is linked to altered activation in reward and control brain cir-

cuitry; however, the associated brain activity related to successful or unsuccessful

weight loss (WL) is unclear.

Methods: Adults with obesity (N = 75) completed a baseline functional magnetic res-

onance imaging (fMRI) scan before entering a WL intervention (ie,3-month diet and

physical activity [PA] program). We conducted an exploratory analysis to identify the

contributions of baseline brain activation, adherence behavior patterns, and the asso-

ciated connections to WL at the conclusion of a 3-month WL intervention. Food

cue-reactivity brain regions were functionally identified using fMRI to index brain

activation to food vs nonfood cues. Food consumption, PA, and class attendance

were collected weekly during the 3-month intervention.

Results: The left middle frontal gyrus (L-MFG, BA 46) and right middle frontal gyrus

(R-MFG; BA 9) were positively activated when viewing food compared with nonfood

images. Structural equation modeling with bootstrapping was used to investigate a

hypothesized path model and revealed the following significant paths: (1) attendance

to 3-month WL, (2) R-MFG to attendance, and (3) indirect effects of R-MFG through

attendance on WL.

Conclusion: Findings suggest that brain activation to appetitive food cues predicts

future WL through mediating session attendance, diet, and PA. This study contrib-

utes to the growing evidence of the importance of food cue reactivity and self-

regulation brain regions and their impact on WL outcomes.

K E YWORD S

behaviors, obesity, prefrontal cortex, weight loss

1 | INTRODUCTION

Obesity is a complex medical and behavioral problem that can be posi-

tively impacted by weight management interventions, including diet

and exercise.1-4 However, the underlying cognitive and brain function

factors associated with weight gain and loss remain poorly understood.

Neuroimaging has been used to examine the underlying neural mecha-

nisms of appetitive function5-7 and, more recently, to identify brain
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function changes associated with weight loss. Food-cue reactivity has

been used to predict various food-related outcomes including eating

patterns (ie, dieting andweight outcomes [ie, gain and loss]).8 For exam-

ple, cross-sectional research has shown that weight loss is associated

with decreases in reward system activation (eg, anterior cingulate cor-

tex and amygdala) in response to visual food cues in individuals who

retrospectively report successful loss and maintenance of body

weight.9 Longitudinal studies comparing brain activation preweight and

postweight loss from surgical and a subset of the present behavioral

weight management program have also demonstrated decreased acti-

vation to appetitive food pictures in regions of the brain previously

implicated in food cue reactivity and reward (eg, the parahippocampus,

medial prefrontal cortex, insula, and inferior frontal gyrus.10-12)

Longitudinal studies have also examined predictors of future

weight gain and weight loss7,13-15. In the context of diet, Murdaugh

and colleagues16 conducted a study including 25 individuals with obe-

sity and found greater preweight loss treatment brain activation to

high-calorie food vs control pictures (cars) in brain regions implicated

in reward-system processes including the nucleus accumbens, anterior

cingulate cortex, and insula. Similar correlations with weight loss in

brain regions identified in earlier cross-sectional studies,17-20 including

superior occipital cortex, inferior and superior parietal lobule, and pre-

frontal cortex. Thus, there is evidence that altered activation in reward

processing and cognitive control circuitry predicts weight gain 7,14,15

and failed weight loss.16 Recently, Neseliler and colleagues21 exam-

ined hormonal and brain activation correlates of weight loss at 1 and

3 months and found that weight loss was correlated with increased

activation and functional connectivity in prefrontal cortical regions.

These results highlight the importance of prefrontal activity to weight

loss. However, brain function does not directly cause weight loss;

rather, brain function regulates diet adherence behaviors such as food

intake and physical activity (PA) that lead to weight loss. To our

knowledge, no studies have yet examined how brain function is linked

to the diet adherence behaviors that actually cause weight loss, which

is the focus of the current study.

Many published reports have identified treatment adherence as

a predictor of weight management success.3,22,23 Results from a sys-

tematic review by Washburn and colleagues3 suggest that optimal

weight loss and maintenance are achieved when an intervention

consists of both diet and exercise modifications; however, the dis-

tinct dieting behaviors and PA modes or amounts associated with

success are difficult to specify. Programs that have identified behav-

iors associated with success, or lack of success, suggest that class

attendance, portion-controlled meals (PCMs, entrees, and shakes),

fruit and vegetable consumption, minutes of PA performed, and

number of steps taken each week have been associated with

successful weight loss and maintenance.3,22 Similarly, Carels and col-

leagues23 have identified poor program attendance as being signifi-

cantly associated with poor weight loss. Despite fundamental

differences among diet interventions, it is clear that adherence to a

program (ie, class attendance, diet modification, and PA) influences

the amount of weight loss and maintained during and at the conclu-

sion of weight management programs.

Research has also linked executive control to health behavior

change success and long term adherence.24 “Executive control” is

defined as the ability to regulate behavior, emotions, and thoughts. It

also includes cognitive processes such as inhibition, mental flexibility,

working memory, and the ability to plan and execute goal-oriented

actions like health behaviors.25 A review by Hall and Marteau24 pos-

ited that executive control, or behavioral self-regulation, can influence

health status directly and indirectly through health behaviors. Execu-

tive control processes, including self-regulation, are linked to the same

prefrontal cortical regions of the brain that have been associated with

responses to food cues and cognitive responses to weight

loss.10,16,17,26,27 Hall and Marteau18 propose that there are likely

reciprocal effects between executive functioning, self-regulation, and

obesity. For example, poor executive functioning may lead to consis-

tently unhealthy choices, which in turn compromises brain function

and further degrades capacity for healthy decision making.24,26,28 Sim-

ilarly, executive control (64) and prefrontal cortex volume has been

associated with exercise adherence,29 which is often a major compo-

nent of weight management treatment. This suggests that executive

control could play a crucial role in health and adherence behaviors

and thereby impact obesity management and treatment.30

To date, initial findings suggest the following: (1) Activation in

regions of the brain previously implicated in food cue reactivity and

cognitive control may predict weight loss success; (2) adherence

behaviors such as intervention attendance, diet modification, and PA

are also related directly linked to weight loss success; and (3) executive

control and its associated brain regions may be associated with behav-

ior change processes that lead to weight loss. What is unknown is the

pathway through which brain activity influences behaviors that lead

to weight loss. Therefore, the goal of the present exploratory investi-

gation was to identify the contributions of baseline brain activation

adherence behavior patterns and the associated connections to

weight loss at the conclusion of a 3-month weight loss intervention.

2 | MATERIALS AND METHODS

The present investigation is an analysis from the first 3 months

(12 weeks) of a 9-month study. A detailed description of the materials

and methods for this study can be found in Szabo-Reed et al.31 This

study consisted of a 12-week diet followed by a 6-month mainte-

nance period. Functional magnetic resonance imaging (fMRI) scans

were completed on participants with obesity (BMI 30 to 45 kg/m2)

with a visual food cue reactivity fMRI paradigm in a baseline session

before participants entered the weight management program. The

current analyses focus on fMRI data collected during the baseline

scanning session.

2.1 | Participants

Individuals with obesity (N = 82) were recruited and enrolled in the

study; N = 79 completed the 12-week weight management program;

2 SZABO-REED ET AL.



however, only N = 75 had complete data (fMRI, behavioral, and

follow-up) for analyses and were included in all analyses. Baseline

demographics and sample characteristics are included in Table 1. All

inclusion and exclusion criteria have been previously detailed else-

where.31 Briefly, participants were included in the study if they met

the following inclusion criteria: (1) age 21 to 55 years, (2) BMI of

≥30.0 to 45.0 kg/m2, and (3) clearance for participation from their pri-

mary care physician. Approval for this study was obtained from the

Human Subjects Committee at the University of Kansas Medical

Center-Kansas City.

2.2 | Assessments

During the fMRI appointment, participants completed two 1-hour

MRI scans (premeal and postmeal), consumed a 500-kcal meal, and

had anthropometric assessments taken. The order of premeal and

postmeal scans was counterbalanced.

2.3 | Anthropometrics (body weight, height, and
BMI)

Body weight was recorded at baseline and 3 months using a digital

scale accurate to ±0.1 kg (Befour Inc Model #PS6600, Saukville, WI).

All participants were weighed after arriving for MRI appointments, at

least 4-hour fasting. Participants weighed in standard hospital scrubs

after attempting to void. Height was measured using a stadiometer

(Model PE-WM-60-84, Perspective Enterprises, Portage MI), and

body mass index (BMI; kg/m2) was calculated.

2.4 | fMRI food cue reactivity paradigm

Participants viewed pictures of food, animals, and blurred low-level

baseline images after fasting at least 4 hours and after consuming a

standardized meal.31 Food and animal images were obtained from

professional stock photography and matched on brightness, resolu-

tion, and size. The paradigm used pictures of live animals as control

TABLE 1 Demographic and sample characteristics

Variable Label N Mean SD Min Max

Age 75 37.9 8.2 23 55

Sex Female 75 53 (70.6%)

Race 75

White 52 69.4%

Black 20 26.6%

Am Ind 1 1.3%

Other/unknown 2 2.7%

Ethnicity 75

Hispanic 6 8.0%

Non-Hispanic 64 85.3%

Other/unknown 5 6.7%

IQ (WASI) 75 112.4 11.1 86 132

BMI @ BSL 75 35.4 3.4 30.1 44.0

BMI @ 3 mo 75 31.6 3.4 25.3 40.6

Wt @ BSL 75 99.4 15.1 72.8 136.5

Wt @ 3 mo 75 89.4 13.1 66.4 125.8

%Wt Change 75 −9.92 5.17 +0.41 −23.7

Steps 75 9601 2291.29 3754.59 17445.16

mPA 75 30.55 11.42 12.34 80.65

Shake 75 2.61 .37 1.43 2.98

Entrees 75 1.83 .14 1.31 2.04

Fruit 75 2.71 .3 0.86 7.3

Veg 75 3 .95 1.41 7.01

L-MFG/DLPFC 75 .18 .22 −0.39 .81

R-MFG 75 .17 .23 −.42 .60

Abbreviations: BL, baseline; L-MFG/DLPFC, left middle frontal gyrus/dorsal lateral prefrontal cortex; mPA, average of weekly minutes of physical activity;

R-MFG, right middle frontal gyrus; Wt, weight in kg.
*Significant pathway at p<.05
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stimuli in order to control for general interest, familiarity, and visual

richness so that image groups can be matched for valence and

arousal.17,18,32 In addition, blurred objects were included in the para-

digm as a low-level baseline comparison. For this, the food and animal

images were blurred, so that the objects are not identifiable, by apply-

ing the fast Fourier transformation (FFT), removing the phase informa-

tion, and then applying the inverse FFT in MATLAB (The MathWorks

Inc, Natick, MA, http://homepages.inf.ed.ac.uk/rbf/HIPR2/fourier.

htm) program. All images were presented one time only to each sub-

ject. Validation procedures for these images are outlined in a previous

publication.31

The fMRI scans involved six 30-second blocks of each stimulus

condition type (ie, food and animal), alternated between 30-second

blocks of blurred images. Each block consisted of 10 images. Visual

stimuli were presented via a back-projection system. Stimulus presen-

tation time was 2.5 seconds, with an interstimulus interval (ISI) of

0.5 seconds (see figure 1). The order of category presentation was

counterbalanced across subjects using a Latin square design. Partici-

pants were instructed to remember as many food and animal images

as they could while in the scanner; no responses to stimuli were col-

lected during scanning.

Participants completed a computerized recognition memory task

outside the scanner, immediately following the scanning session to

ensure they were attentive.

2.5 | Image acquisition

Scanning was performed in a 3 Tesla head-only Siemens Allegra scan-

ner (Siemens, Erlangen, Germany) fitted with a quadrature head coil.

Participants' heads were immobilized with cushions. Following auto-

mated scout image acquisition and shimming procedures performed

to optimize field homogeneity, a structural scan was completed.

T1-weighted anatomic images were acquired with a 3D MPRAGE

sequence (repetition time/echo time [TR/TE] = 2300/3.06 ms, flip

angle = 8�, field of view [FOV] = 192 × 100 mm, matrix = 192 ×

192, slice thickness = 1 mm). This scan was used for slice localization

for the functional scans, Talairach transformation, and coregistration

with fMRI data. Following structural scans, three gradient-echo blood

oxygen level-dependent (BOLD) scans were acquired in 43 contiguous

oblique axial slices at a 40� angle (TR/TE = 3000/30 ms, flip angle =

90�, FOV = 220 mm, matrix = 64 × 64, slice thickness = 3 mm,

0.5 mm skip, in-plane resolution = 3 × 3 mm, 130 data points). To

ensure consistency across subjects and optimize BOLD signal in the

ventral and medial portions of the frontal cortex, participants were

positioned in the scanner so that the angle of the anterior

commissure-posterior commissure plane was between 17� and 22� in

scanner coordinate space.10,33 This was verified with a

localization scan.

2.6 | Intervention

Following baseline testing, participants entered the 3-month weight

loss phase of the intervention. Participants attended 60-minute in-

person, behaviorally based meetings of 5 to 15 individuals that were

conducted weekly for 3 months. All meetings used behavioral strate-

gies based on social cognitive theory to promote change in both diet

and exercise.34,35 Energy intake was reduced to ~1200 to 1500

kcal/day using a combination of commercially available PCMs, fruits

and vegetables, low-calorie shakes, and noncaloric beverages. Partici-

pants were provided with a list of selected PCMs and shakes provided

by HMR Weight Management Service Corporation (Boston, MA) to

select from, fruits and vegetables, and noncaloric beverages that were

allowed. Participants consumed a daily minimum of two PCMs

(180 to 270 kcal each, provided), at least five servings of fruits and/or

vegetables, and three shakes (~100 kcal each, provided). Noncaloric

beverages such as diet soda and coffee were allowed ad libitum.

F IGURE 1 Participants were asked to passively view images. Images were presented in a block design for 2.5 seconds each with an ISI of
0.5 second. A, Animal image; B, baseline image; F, food image
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When combined with a variety of fruits and vegetables, PCMs

(entrees + shakes) provide a diet with all necessary nutrients specified

by the Dietary Reference Intakes.36 Participants reaching a BMI of

22 kg/m2 during the weight loss phase (N = 1) were transitioned to

the prevention of weight regain/maintenance diet.

2.7 | Routine clinic data reports from group
meetings

Participants reported the number of PCMs and shakes consumed, the

number of fruits and vegetables consumed, minutes of PA completed,

and number of steps as recorded on step counters according to their

meeting schedule. Participants weighed on a scale at the clinic site at

each clinic meeting. At midpoint between meetings, the same

information except weight was also collected via toll-free phone, fax,

or email.

2.8 | Physical activity

Three hundred min/wk of moderately vigorous PA was targeted using

a progressive protocol.37,38 All exercise was unsupervised. PA was

also recorded by pedometer step counts. Participants provided a writ-

ten record of both PA minutes and steps at each clinic meeting and

data collection period. Step counts were used to reinforce and mea-

sure lifestyle PA (unplanned or unstructured activity and/or activities

of daily living).

2.9 | Data analysis

2.9.1 | General strategy

The goal of the study was to identify brain regions associated with

weight loss; thus, brain regions of interest (ROIs) previously cited in

the literature (neurosynth) as significantly associated with food cue

reactivity and self-regulation (left and right middle frontal gyrus39-42)

were identified. Then how these regions correlated with behaviors

that are known to be associated with weight loss was explored.43 This

approach could provide knowledge regarding the paths by which brain

function mediates the actual behaviors that result in weight loss.

2.10 | fMRI image analysis

2.10.1 | Preprocessing and subject-level analyses

Data preprocessing and statistical analyses were performed in AFNI

(Medical College of Wisconsin). Preprocessing steps included motion

correction, alignment, spatial smoothing, and spatial normalization.

The fMRI images were realigned to the third slice collected in each

run to correct for motion. The images were spatially smoothed with a

4-mm FWHM Gaussian blur. Anatomic images were aligned to func-

tional images and spatially normalized to Talairach stereotaxic space44

using AFNI's automated algorithm. Statistical contrasts were con-

ducted using multiple regression analysis with motion parameters

included as nuisance regressors. Regressors representing the experi-

mental conditions (ie, food and nonfood) were modeled with a stan-

dard hemodynamic response and entered into the multiple-regression

analysis using a random-effects model.

2.10.2 | Group level analysis

Following fMRI data preprocessing and subject-level analysis, cue-

reactivity ROIs were identified using a whole-brain voxelwise ANOVA

(ie, percent signal change from baseline) to identify brain regions

showing a main effect of image type using AFNI's 3dMVM.45 Correc-

tions for multiple comparisons were achieved with false discovery rate

of q < 0.05. Clusters of activation that passed FDR correction and

were in a priori regions of the middle frontal gyrus/dorsolateral pre-

frontal cortex were selected as ROIs based on the role of the dorsolat-

eral prefrontal cortex in self-regulation and executive function.

2.11 | Preprocessing behavioral variables

Data were summarized by descriptive statistics including the available

number of observations (N), mean, and standard deviation (SD) (see

Table 1). Pearson coefficients are provided in Table S1. A factor analy-

sis on the behavioral variables (ie, shakes, entrees, fruit, vegetables,

minute of PA, and steps) was conducted; results showed that there

exist two factors: PA loading on the minutes of PA (mPA) and steps

taken, diet loading on entrees, shakes, and vegetables and fruit (see

Table 2). Because variables were measured by different units and had

wide variance, we standardized the variables and generated new vari-

ables using the arithmetic means of standardized variables. The factor

model showed good fit: chi-square = 31.752, P = .201, comparative fit

index [CFI] = .951, Tucker-Lewis index [TLI] = .916, root mean square

error of approximation [RMSEA] = .054 (95% CI, 0-.111), and stan-

dardized root mean square residuals [SRMR] = .071 (Table 4).

2.12 | Structural equation model

The brain regions identified, the factors identified based on the

behavior variables, attendance, and weight loss at 3-month were

included in a structural equation model. Our hypothesis was that the

behavioral factors (PA and diet) and attendance during the 3-month

intervention period as potential mediators between the brain regions

and the 3-month percent weight loss, with the 3-month percent

weight loss being the dependent variable. The following paths were

hypothesized: (1) from brain activation to %attendance, diet, and PA;

(2) from %attendance, PA, and diet to 3-month percent weight loss;

(3) from brain activation directly to 3-month weight loss; and (4) from

SZABO-REED ET AL. 5



diet to PA. The ordering of components of the path structure was

developed based on chronology sequence (ie, baseline brain scans,

adherence behaviors measured during the intervention, and

postintervention weight loss) and the presupposition that brain modu-

lates behavior, which in turn influences weight loss response. The

path option (3) allowed partial instead of total mediation effects. Non-

parametric bootstrapping with 1000 samples was used in estimation.

Path analysis was performed with the R lavaan package, version

0.6-5.46

2.13 | Linear regression

As a final step, the proportion of variance in the path model explained

by the brain and behavioral variables, both independently and jointly,

was evaluated. To determine this, two linear regression models were

performed, with the dependent variable of percentage of weight loss

at 3 months. The independent predictors for each model were as fol-

lows: (1) %attendance, steps, mPA, PCMs, shakes, fruits, vegetables,

left middle frontal gyrus/dorsal lateral prefrontal cortex, and right mid-

dle frontal gyrus; (2) %attendance, steps, mPA, entrees, shakes, fruits,

and vegetables.

2.14 | Results

Demographic and sample characteristics are displayed in Table 1. The

sample (N = 75) was 37.9 ± 8.2 years old, 70.6% female, and primarily

white (69.4%) and non-Hispanic (85.3%). Average baseline BMI was

35.3 kg/m2 ± 3.4. During the 3-month weight management program,

participants lost an average of 22.2 ± 4.3 lbs, took 9601 ± 2291.3

steps per day, completed 30.5 ± 11.4 min/day of PA, and consumed

2.61 ± 0.37 shakes, 1.83 ± 0.14 entrees, 2.71 ± 0.3 fruits, and 3.00 ±

0.95 vegetables per day. Attendance to the weight management pro-

gram was approximately 83%.

Results of the group level analyses identified regions of the brain

that showed a main effect of image type (ie, food and nonfood) (see

Figure 2). Specifically, activation in left middle frontal gyrus/dorsal lat-

eral prefrontal cortex (x, y, z = −40, 32, 20, Brodmann area

46, 33 voxels, 8.73 mm3) and right middle frontal gyrus (x, y, z =

47, 32, 20, Brodmann area 9, 31 voxels, 8.20 mm3) were selected as

ROI for this analysis. Previous research has suggested insular activa-

tion is associated with food cue reactivity,47 while right middle frontal

gyrus activation is associated with self-regulation.39-42 For each of the

clusters surviving, this threshold (ie, left middle frontal gyrus and right

middle frontal gyrus), the average the percent signal change (food-ani-

mals) across voxels for each subject was created and used as variables

to relate to behavioral variables.

Table S1 summarizes the Pearson correlation coefficients using all

available observations. Table 3 summarizes results from the structural

equation model analysis. The model provided a good fit to the data:

chi-square = 31.752, P = .201, CFI = .951, TLI = 0.916, RMSEA =

0.054, and SRMR = .07148 (Table 4). The standardized coefficients in

the structural equation model can be interpreted as typical linear

regression coefficients, eg, for every one standard deviation increase

in right middle frontal gyrus brain activation, attendance rate

increased by 0.253 of its own standard deviation. Other coefficients

are interpreted in the same way.

The final model provides a good fit to the data (Table 4). It

(Table 3) suggests that1 the effect of brain activation on weight loss is

mediated by the behavioral variables attendance (see Figure 3). The

indirect effect from the right middle frontal gyrus to %attendance to

weight loss is significant (b = .107, P = .032). At the same time, the

direct effect from weight loss at 3 months on the left middle frontal

gyrus/dorsal lateral prefrontal cortex (b = −.125, P = .296) and right

middle frontal gyrus (b = .158, P = .129) are not significant.

TABLE 2 Confirmatory factor analysis

PA Diet

Estimate SE Z P(>|z|) Estimate SE Z P(>|z|)

Steps 1.000

mPA .348 .688 .506 .613

Shake 1.000

Entrees .847 .552 1.535 1.125

Fruit 0.220 .212 1.037 .300

Veg .483 .217 2.226 .026

Notes. Chi-square = 5.604, P = .692, CFI = 1.000, TLI = 1.000, RMSEA = .000, SRMR = .052. Results are based on 1000 bootstrap samples.

Abbreviation: mPA, minutes of physical activity.

TABLE 4 Model goodness of fit

Chi-square Test

BIC† CFI TLI

RMSEA

Statistic P Value RMSEA 95% CI P (≤.05) SRMR

31.752 .201 2020 0.951 0.916 0.054 (0, 0.111) .436 0.071

aSample-size adjusted BIC.
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F IGURE 2 L-MFG/DLPFC,
Left middle frontal gyrus/dorsal
lateral prefrontal cortex; R-MFG,
right middle frontal gyrus; BA,
Brodmann area

TABLE 3 Standardized path coefficients

1000 Bootstrap Samples

Std Err Z Value P(>|Z|)

%WL3~

%att 0.451 0.083 5.453 <.0001*

PA 0.418 0.198 2.117 .034*

Diet 0.343 0.200 1.713 .087

L-MFG/DLPFC −0.125 0.120 −1.046 .296

R-MFG 0.158 0.104 1.520 .129

%att~

L-MFG/DLPFC −0.103 0.127 −0.815 .415

R-MFG 0.237 0.106 2.246 .025*

PA~

Diet 0.287 0.224 1.279 .201

L-MFG/DLPFC 0.101 0.125 0.814 .416

R-MFG −0.198 0.121 −1.641 .101

Diet~

L-MFG/DLPFC −0.085 0.124 −0.689 .491

R-MFG 0.082 0.138 0.596 .551

Covariance

L-MFG/DLPFC~~R-MFG 0.331 0.101 3.278 .001*

Indirect effect

WL_PA_L-MFG/DLPFC 0.042 .054 0.784 .433

WL_diet_L-MFG/DLPFC −0.029 .044 −0.669 .504

WL_att_L-MFG/DLPFC −0.047 0.057 −0.825 .409

WL_PA_R-MFG −0.083 .061 −1.348 .178

WL_diet_R-MFG 0.028 .051 0.551 .582

WL_att_R-MFG 0.107 .050 2.141 .032*

PA_diet_L-MFG/DLPFC −0.029 .044 −0.669 .504

PA_diet_R-MFG 0.024 .047 0.505 .613

Abbreviations: Wt, weight in lbs; BL, baseline; PA, physical activity; L-MFG/DLPFC, left middle frontal gyrus/dorsal lateral prefrontal cortex; R-MFG, right

middle frontal gyrus.
*Significant pathway at p<.05
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The independent variance is explained by the behavior (R2 = .47),

and combined variance (R2 = .48) is explained by having both brain

and behavior included in the model. These findings suggest that 47%

of the variance in the model is uniquely explained by the behavioral

variables, and 48% is explained by both the behavioral and brain vari-

ables combined.

3 | DISCUSSION

Results from this study indicate that baseline activation to appetizing

food pictures in the left middle frontal gyrus and right middle frontal

gyrus predict future weight loss during a weight management inter-

vention. This finding is consistent with previous work implicating the

role of the prefrontal cortex in control and self-control processes

needed to regulate eating behavior39,41,42 and to lose weight.16,21,49

This research is, to our knowledge, the first to model connections

between brain activation and adherence behaviors leading to weight

loss. The path analysis indicated that activation in left middle frontal

gyrus/dorsal lateral prefrontal cortex and right middle frontal gyrus

were directly related to weight loss and impacted weight loss via

effects on intervention attendance.

Similar to previous research, positive correlations were observed

between activation to high-calorie food vs control images and subse-

quent weight change in the right middle frontal gyrus (BA 9).16,50 The

right middle frontal gyrus (BA 9) has also been linked to dietary self-

control and attention to health cues.51,52 As observed in the present

study, activation in the right middle frontal gyrus (BA 8) has also been

predictive of future weight loss.16 In summary and combined with

previous research, our observations here suggest that the right middle

frontal gyrus may play an important role in the self-regulatory pro-

cesses, which are necessary for weight loss success and adherence to

weight management interventions.

Activation in the left dorsal lateral prefrontal cortex (BA 46) has

been previously implicated as a potentially crucial component in diet

success.5,21,42 The present investigation, as well as others,11,18,32 has

found similar findings in food vs nonfood picture contrasts. This con-

sistent finding highlights the dorsal lateral prefrontal cortex's role as a

behavioral control area as is often found to be chronically activated in

overweight and obese individuals, presumably reflecting compensa-

tory processes used to regulate eating behavior53,54 and appetite hor-

mones.21 Schmidt and colleagues42 have also found that individuals

with more gray matter volume in the dorsal lateral prefrontal cortex

(BA 46) are better at exercising dietary control. Dorsal lateral prefron-

tal cortex (BA 46) also plays a role in complex cognition including

executive control, attention, and inhibitory control. This region has a

well-established role in goal-directed behavior, specifically when it

comes to conflict and self-monitoring, error detection, executive con-

trol, and decision making about risk and reward.55 Specifically,

increased activation in the dorsal lateral prefrontal cortex has been

displayed in obese as compared with healthy weight individuals when

viewing food as compared with nonfood stimuli in an fMRI.18 In this

study, the effects of dorsal lateral prefrontal cortex on weight loss

were mediated by attendance to the behavioral meetings associated

with the intervention and with PA compliance.

Executive control functions, such as self-regulation, which include

planning and decision-making that are carried out in prefrontal cortex,

have been previously linked to health behavior adherence and

change.24,25 In this study, greater activation of the right middle frontal

gyrus and left middle frontal gyrus/dorsal lateral prefrontal cortex dur-

ing the food cue reactivity paradigm was associated with attending

more intervention classes and completing more steps and minutes of

PA and resulted in a greater percentage of weight loss at the end of a

3-month weight loss intervention consisting of diet and exercise. These

findings support the theory that areas of the brain associated with

executive control (ie, anterior and dorsolateral prefrontal cortices) may

be related to health behavior change (ie, diet and PA), which in turn

leads to a change in health status (ie, weight loss).24 Obesity has long

been associated with decrements in executive control in both adults

and children.56,57 In addition, reduced executive control abilities have

also been linked to the consumption of unhealthy foods and other

food-related choices.26,27,58 This includes inhibition (ie, ability to not

F IGURE 3 L-MFG/DLPFC,
Left middle frontal gyrus/dorsal
lateral prefrontal cortex; R-MFG,
right middle frontal gyrus; mPA,
minutes of physical activity
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respond to a stimulus or ignore a palatable food) and planning goal-

oriented behaviors (ie, planning exercises sessions or healthy meals),

two behaviors that are important for weight management. Also, a

recent study conducted by Mokhtari and colleagues59 utilizing a

machine learning technique further implicated the dorsal lateral pre-

frontal cortex and other executive control areas of the brain as impor-

tant for predicting weight loss success. Similarly, executive control

(64) and prefrontal cortex volume has been associated with exercise

adherence,29 which is often a major component of weight management

treatment. Therefore, improving executive control could be one poten-

tial avenue for also improving health behavior change and adherence.

Other well-established relationships between behavior and

weight status were also present in this study in addition to the unique

brain and behavior relationships. Our model clearly shows a direct

relationship between both diet (ie, entrees and shakes consumed) and

PA (ie, number of steps and minutes). Such behaviors have also been

established to be important to success in other weight management

studies as those who “do more” (ie, consume more entrees/shakes or

take more steps) are shown to be more successful long term com-

pared with those who “do less”.3,22 Szabo-Reed and colleagues22 also

established that attendance to the behavioral intervention classes is

also associated with initial weight loss and long-term weight manage-

ment success. Therefore, the current findings are consistent with pre-

vious work and significantly extend it by providing a key baseline

measure, brain activation, which may be a useful tool in the future for

predicting weight loss and weight management success.

3.1 | Limitations

There are several limitations associated with this study. First, the

information obtained from the weekly clinic data reports regarding

diet and PA behaviors during the weight loss intervention were self-

reported by the participants. Therefore, errors or misreporting may

have occurred. Future attempts to collect such data should employ

automatic and objective data collection methods when possible (ie,

accelerometers and Fitbit). There may exist other viable path

structures/models to fit our observed data. This model was selected

for the current work because of interpretability and study time course.

The sample size in the study is small as these are results from an

exploratory analysis. This exploration was completed to provide valu-

able empirical data for future studies. Nonetheless, findings from this

study should be considered preliminary until they are validated in an

independent sample.

4 | CONCLUSIONS

The present study represents a first attempt to establish pathways

between baseline brain activation, weight management adherence,

and weight loss. These findings present exploratory outcomes that

suggest that the effects of baseline brain activation associated with

food cue reactivity related to self-regulation in the left middle frontal

gyrus/dorsal lateral prefrontal cortex and right middle frontal gyrus

are expressed directly and through effects on class attendance. Pre-

frontal cortex-mediated executive control and self-regulation have

been established as a key contributor to change and maintenance of

health behaviors, especially when it comes to planning and healthy

behavior decision-making. Although results from this study should be

considered exploratory and preliminary, findings support these con-

nections and are consistent with growing evidence of the importance

of prefrontal cortex activity on the regulation of eating behavior.21 In

conclusion, this research indicates that prefrontal cortical activation

influences health behavior change in the context of an intervention to

produce weight loss and manage obesity. More research is needed to

determine whether such brain-behavior interactions can be modified

(eg, tDCS60) to increase weight loss success and how such interven-

tions can aid in managing the current obesity epidemic.
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