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An Automated Seepage Meter for Streams and Lakes
D. Kip Solomon1 , Eric Humphrey1 , Troy E. Gilmore2 , David P. Genereux3 ,
and Vitaly Zlotnik2

1Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA, 2Biological Systems Engineering
Department, University of Nebraska‐Lincoln, Lincoln, NE, USA, 3Department of Marine, Earth, and Atmospheric
Sciences, North Carolina State University at Raleigh, Raleigh, NC, USA

Abstract We describe a new automatic seepage meter for use in soft bottom streams and lakes. The
meter utilizes a thin‐walled tube that is inserted into the streambed or lakebed. A hole in the side
of the tube is fitted with an electric valve. Prior to the test, the valve is open and the water level inside
the tube is the same as the water level outside the tube. The test starts with closure of the valve,
and the water level inside the tube changes as it moves toward the equilibrium hydraulic head that
exists at the bottom of the tube. The time rate of change of the water level immediately after the valve
closes is a direct measure of the seepage rate (q). The meter utilizes a precision linear actuator and
a conductance circuit to sense the water level to a precision of about ±0.1 mm. The meter can also
provide an estimate of vertical hydraulic conductivity (Kv) if data are collected for a characteristic time.
The detection limit for q depends on the vertical hydraulic head gradient. For Kv = 1 m/day, q of
about 2 mm/day can be measured. Results from a laboratory sand tank show excellent agreement
between measured and true q, and results from a field site are similar to values from calculations based
on independent measurements of Kv and vertical head gradients. The meter can provide rapid
(30 min) q measurements for both gaining and losing systems and complements other methods for
quantifying surface water groundwater interactions.

1. Introduction

Quantifying groundwater seepage into or out of streams and lakes is important for both water balance and
water quality studies. A variety of methods exist for quantifying seepage rate (specific discharge) (Kalbus
et al., 2006) including seepage meters (e.g., Boyle, 1994; Cable et al., 2006; Lee, 1977; Libelo &
MacIntyre, 1994; Rosenberry, 2008; Shaw & Prepas, 1990), a piezo‐seep meter (Murdoch & Kelly, 2003),
piezomanometers and associated field permeameters (Kennedy et al., 2007, 2009, 2010), stream tracer tests
(Bencala et al., 1987; Gooseff & McGlynn, 2005; Harvey et al., 1996), and methods based on heat as a tracer
(Conant, 2004; Constantz, 1998; Constantz & Stonestrom, 2003; Vogt et al., 2010).

Solder et al. (2016) utilized the idea of Bouwer (1961) and described a tube seepage meter for use in streams
in which a thin‐walled tube is inserted into a streambed. The tube seepage meter is different than prior ver-
sions of seepage meters in at least four aspects. (1) The “footprint” of the seepage tube is comparable to
point‐scale measurement devices (7.6 cm diameter or 45 cm2). Most traditional seepage meters have larger
footprints (Kalbus et al., 2006), for example, 2,550 cm2 (Lee, 1977). (2) Tube seepage meters can make indi-
vidual seepage measurements over relatively short periods of time (minutes) for both gaining and losing sys-
tems. Many seepage meter applications rely on the collection of a volume of water over hours or days to
determine seepage rates (Kalbus et al., 2006). Exceptions are seepage devices equipped with tracer‐based
flow meters that use salt dilution (Gilmore et al., 2016; Solder, 2014), dye dilution or displacement
(Koopmans & Berg, 2011; Sholkovitz et al., 2003), heat pulse sensing (Krupa et al., 1998; Taniguchi &
Fukuo, 1993), ultrasonic meters (Paulsen et al., 2001), or electromagnetic meters (Rosenberry &
Morin, 2004). (3) The tube seepage meter relies on direct measurement of hydraulic head inside the tube,
which is different than the volumetric, tracer, ultrasonic, or electromagnetic flow meters. The piezo‐seep
meter is an exception (Kelly &Murdoch, 2003). (4) Most potential sources of error for classic seepage meters
are minimized such as disturbance of stream head or groundwater velocity fields by the meter and potential
friction losses within the meter and/or collection device (Belanger & Montgomery, 1992; Cherkauer &
McBride, 1988; Corbett et al., 2003; Koopmans & Berg, 2011; Rosenberry & Menheer, 2006).
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The objective of this paper is to describe the design and functioning of an automated tube seepage meter that
is capable of measuring changes in water level as small as 0.1 mm which is a fundamental advance over the
techniques described by Bouwer (1961) and Solder et al. (2016). The precision of the water level measure-
ments allows measurements of seepage rate (specific discharge) as small as 2 mm/day under favorable con-
ditions (see supporting information Figure S4). Typically, a single measurement can be made in less than
30 min. This allows assessment of temporal variability in q, which is difficult to measure with conventional
seepage meters (Rosenberry et al., 2013). We also expand on the hydraulic theory of the meter to include a
changing stream level and present preliminary results from the Sand Hills of Nebraska, USA.

2. Description
2.1. Meter

The seepage meter consists of a control unit (microprocessor), a moving probe driven by a linear actuator,
and a valve (Figure 1). A stainless steel rod with a fine point on one end is attached to the linear actuator
and used as a moving water level probe. A second stainless steel fixed probe is attached to electric ground
on the meter and extends into the water inside the tube. To measure the water level, the linear actuator
moves downward until the fine point of the moving probe touches the water surface, at which point a drop
in resistance in the circuit between the two probes is detected by the control unit. The electronics in this unit
are similar to a typical electric tape used for water level measurements and work well even in water of low
electrical conductivity (down to about 5 μS/cm). Once the position of the linear actuator has been recorded,
the moving probe is retracted until a rise in resistance is detected, when the fine tip leaves the water. The
meter determines the water level based on the moving probe contacting the water surface rather than

Figure 1. Photo and diagram of the seepage meter. The control unit (white box) sits on top of a sturdy thin‐walled tube
that is inserted into the streambed (typically 30 to 50 cm below the top of the streambed). A hole in the side of the
tube (located just above the sediment‐water interface) is fitted with a submersible electric valve (small gray cylinder
outside the tube). At the beginning of the test, the valve is open so that the water level inside the tube is the same as
outside the tube, in the stream. The valve then closes, and as the water level inside the tube changes (up for a gaining
stream, down for a losing stream), it is measured by a moving probe that is automatically advanced by the linear actuator
until the probe just contacts the water. Water levels and associated times are recorded by the control unit.
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being removed from the water. This results in more repeatable measure-
ments by avoiding capillarity effects associated with water sticking to
the probe upon retraction. The probe positions are adjustable to accom-
modate various stickup lengths of the thin‐walled tubing.

At the beginning of a test, the control unit opens the electric valve so that
the water level inside the tube is the same as in the stream or lake outside
of the tube. The tube acts as a stilling well to dampen high‐frequency var-
iations in the outside water level. The water level is then measured 10
times and stored in memory. The control unit then closes the electric
valve. The design of the valve is such that it does not cause a change in
the water level upon closing. The meter then measures the water level
inside the tube at regular intervals in time (typically every 30 s but pro-
grammable from 2 to 999 s) and stores the value in memory (Figure 2).
After a programmable number of measurements (typically 50 to 200),
the electric valve opens and the water level inside the tube returns to
the stream or lake level. Finally, the water level measurements inside
the tube are repeated 10 times, and all values in memory are written to
an SD card in the control unit. The meter repeats the test until it is manu-
ally switched off or the battery charge is depleted. As explained below, the

estimate of groundwater seepage rate is derived from the measurements of water level versus time collected
while the valve is closed.

The position of the actuator (and hence the water level) is determined using a variable resistor, and the ana-
log signal is digitized with a 10 bit (1,024 increments) analog to digital convertor. The actuator has a
full‐scale range of 50 mm (although 100 mm is possible), and thus, the meter's theoretical resolution for
the water level is 50 μm/1,024 ≈ 0.05 mm.

Lithium ion polymer batteries that are rechargeable using any USB charger can power the meter for up to
3 days depending on the measurement frequency. Communication with the control unit for programming,
downloading data, and real‐time monitoring (if desired) is via a USB port using an Android app installed on
a mobile device (phone, tablet, etc.) A micro SD card of up to 256 GB can store millions of tests (typical file
size for 3 hr of measurements is less than 10 KB). The control unit is housed in a water‐resistant (IP 64) case
making it suitable for use in adverse weather but not prolonged submersion.

2.2. Seepage Rate Evaluation

The seepage rate evaluation is based on combining a water balance equation with Darcy's law (Todd, 1980).
The equation for hydraulic head inside the tube as a function of time after the valve closure is (modified from
Solder et al. (2016, equation (A.4)))

h ¼ qL
Kv

1 − e−λt
� �þ hs (1a)

λ ¼ KvD2

d2L
(1b)

where h is the hydraulic head inside the tube after the valve closes (L), hs is the hydraulic head of the stream
water surrounding the seepage meter (L), q is the seepage rate (or vertical specific discharge) (L/T), and L is
the depth of insertion of the tube into the streambed (see Figure 1) (L).

Kv is the vertical hydraulic conductivity of the streambed (L/T), D is the inside diameter of the lower part of
the tube filled with sediment (L), d is the inside diameter of the upper part of the tube above the streambed
(L), and t is the time since closing the valve (T). Equation 1a is functionally similar to equation (9) of
Bouwer (1961) but explicitly shows the controls that Kv and L have on the head inside the seepage meter.
The derivation of equations 1a and 1b assumes that the head at the base of tube does not change as upward
seepage through the base is progressively slowed and diverted around the tube as the water level inside the
tube rises (see the supporting information for a discussion of this assumption.)

Figure 2. Example of seepage meter data from a test in the streambed of
Hominy Swamp Creek in Wilson, NC. The slope (blue line) of the curve
(black dots when valve is closed) at time = 0 gives the seepage rate
(0.00248 mm/s = 0.214 m/day). Variability in the water level when the
valve is open is due to turbulence in the stream stage.
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The time derivative of 1a is as follows:

dh
dt

¼ qD2e

d2

−λt

(2a)

which at time = 0 and with D = d (i.e., a tube with uniform inside diameter) becomes

dh
dt

����
t¼0

¼ q (2b)

Equation 2b indicates that the slope of a head versus time curve (e.g., Figure 2), evaluated at time = 0 (when
the head inside the tube is equal to the stream head), is a direct measure of the seepage rate and is indepen-
dent of the hydraulic conductivity of the streambed or lakebed. In principle, the estimate of seepage is the
rate of the water level change inside the tube at t= 0 (the moment when the valve in the side hole of the tube
is closed), assuming that the head inside the tube is equilibrated at hs before the valve is closed. In practice,
this estimate depends on the measurement uncertainty compared to the magnitude of the water level
change, which can be very small. For example, a seepage rate of 0.01 m/day in a streambed with
Kv = 10 m/day and a tube insertion depth of 0.5 m will have an equilibrium head inside the tube (with
the valve closed) that is only 0.5 mm different than the starting head. In order to reliably determine the slope
of the head versus time curve in this example, the error in water level measurements needs to be significantly
smaller than 0.5 mm.

Equations 1a and 1b assume that the stream stage does not change over the period of the test, which is often
not the case. The effect of a changing stream stage on the head inside the tube can be derived by applying the
falling head equations to the tube in the absence of seepage, and then by superposition, adding this to 1a to
obtain the combined effect. The head inside the tube due to a change in stream stage is

h ¼ ho − heð Þe−λt þ he (3)

where ho = head at the bottom of the tube before the stream stage changes, he = head at the bottom of the
tube after the stream stage changes, λ is the same as given in 1b, and t is the time since the change in stream
stage.

If we assume that the change in head at the base of the tube is the same as in the stream (i.e., we neglect the
short lag time required for a pressure wave to propagate to the base of the tube as discussed in the supporting
information), then

Δhs ¼ he − ho (4)

where Δhs = the change in stream stage.

By defining Δh as the change in water level inside the tube due to a change in stream stage and by combining
3 and 4, we have

Δh ¼ Δhs 1 − e−λt
� �

(5)

Equation 5 describes the change in head inside the tube due to an incremental change in the stream stage. If
the stream stage is considered to change in increments of Δhs during each time increment Δt (see supporting
information Figure S1), superposition can be applied and 5 written as follows:

Δh ¼ ∑
n

i¼1
hsi − ∑

n

i¼1
hsie

−iλΔt (6)

where n is the total number of incremental changes in stream stage over the period of a test (n = t/Δt),
Δt = uniform time increment, and Δhsi = change in stream stage over each time increment i.

Finally, 6 can be combined (using superposition) with 1a to give the combined change in head inside the
tube (Δhc) due to both seepage and to a changing stream head as follows:
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Δhc ¼ qL
Kv

1 − e−λt
� �þ ∑

n

i¼1
hsi − ∑

n

i¼1
hsie

−iλΔt (7)

Equation 7 was compared to numerical results from MODFLOW and its associated LAKE package (Merritt
& Konikow, 2000) to simulate the water level dynamics inside the tube (similar to Burnette et al., 2016); the
impermeable wall of the tube in the sediment was simulated using the Horizontal Flow Barrier package
(Hsieh & Freckleton, 1993.) Three cases were simulated: The change in stream stage was equal to 0 (constant
in time), +0.3 m/day (rising stream), and −0.1 m/day (declining stream). In all cases 7 and MODFLOW are
in excellent agreement (supporting information Figure S2).

The response of the water level inside the tube to a changing stream level depends on the combination of
seepage rate and the rate of stream stage change. The water level inside the tube can go up and then down,
down then up, change linearly with time, and so forth (supporting information Figure S3); however, in all
cases, the slope of the water level versus time curve at t = 0 gives the seepage rate. When the seepage rate
is large such that errors in water level measurements are small compared to changes in the water level over
time, only a small number of measurements are needed to accurately define the slope at time = 0 and 7 is not
needed. However, when the seepage rate is small and errors in water level measurements become signifi-
cant, measurements are needed over a longer period of time and accounting for changes in stream stage over
this time as described by 7 becomes more important. Techniques for utilizing a longer time series of water
level measurements to determine the seepage rate are described in the following section.

3. Data Analysis

The raw data from the seepage meter are the water level inside the tube as a function of time. Two general
methods for calculating the seepage rate q from these data are presented here. The most straightforward
method is to fit the data to a second‐order polynomial of the form h = At2 + Bt + C (referred to as the poly-
nomial method). The seepage is then given by (with D = d):

q ¼ dh
dt

����
t¼0

¼ B (8)

Furthermore, an estimate σqof the uncertainty in q can be made by assuming that it is equal to the uncer-
tainty σB in the polynomial coefficient B: σq ≈ σB. Thus, standard software such as the LINEST function
in Excel can be used to estimate q and its associated uncertainty by least squares fitting of the polynomial
to the data to find the coefficient B. An advantage of fitting the data to a polynomial as opposed to numeri-
cally differentiating the head versus time curve is that data beyond the first few measurements can be used
thus greatly reducing the uncertainty in the slope at time = 0 that results from noisy head measurements. A
disadvantage to the polynomial fit is that it is not functionally equivalent to 1a or 7, and thus, when used
with a longer‐time data set that approaches the equilibrium head in the seepage tube, it does not provide
the best fit to the early time data which most define the seepage. As a practical matter, the polynomial fit
can be limited to early time data, but the choice of early time is somewhat arbitrary as a polynomial cannot
fit the data at times beyond approximately one characteristic time (tc; see below), and tc is not necessarily
known a priori.

The second method for analyzing the seepage meter data is more rigorous. The method is to fit 7 to the head
versus time data by adjusting q and Kv such that the sum of squares of the residuals (SSR) betweenmodel and
observed water level data is minimized (referred to as the SSRmethod). The early time data from the seepage
meter are mostly sensitive to q, whereas the later time data are more sensitive to Kv. In order to jointly deter-

mine both q and Kv, data need to be collected for about one characteristic time tc ¼ d2L
D2K

(tc is the time to reach

63% of equilibrium). This is illustrated in Figure 3 that shows the relative standard deviation for both q and
Kv as a function of the number of characteristic times over which data were collected. Data for Figure 3 were
obtained by generating synthetic head versus time values using equations 1a and 1b and then randomly per-
turbing the head data using the NORM.INV (RAND(), mean, noise) function in Excel to introduce noise into
the data. We then fit 7 to this data set using the Solver in Excel to minimize the SSR between the synthetic
data set and 7 by adjusting q and Kv. The SolverAid (De Levie, 2004) was then used to estimate the
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uncertainty in the derived values for q and Kv. The SolverAid calculates
standard deviations by considering the change in the calculated value
with respect to changes in each of the input parameters (i.e., it calculates
a sensitivity matrix). The uncertainty is especially large for Kv when the
measurement period is less than one characteristic time (Figure 3).

When measurements are made for a time of tc or longer, the uncer-
tainty in q is a function of the vertical hydraulic gradient q

Kv
(supporting

information Figure S4). The tube seepage meter is different than other
seepage meters because the seepage rate measurement is based on
measuring changes in water level, and the total change in water level
is greatest when q

Kv
is large (either because q is large or Kv is small or

some combination of these). Since the seepage rate is the derivative of
the head with respect to time, evaluated at t = 0, and the uncertainty
in time measurements is negligible, the uncertainty in q depends
mostly on the uncertainty in measuring the head inside the tube.
Large changes in head are more precisely measured than small
changes. The relative standard deviation of q was computed using
synthetically generated data as previously described using a water level
measurement error of 0.1 mm. When Kv = 1 m/day, the seepage detec-
tion limit (defined by 100% error) is about 2 mm/day (supporting infor-
mation Figure S4); the detection limit will be smaller for smaller
values of Kv and larger for larger values of Kv.

It is clear from Figure 3 that measuring head changes for one characteristic time tc or longer is important for
the joint determination of q and Kv. However, this can lead to long measurement periods when Kv is small.
For example, for a typical insertion depth of 0.5 m and Kv of 1 m/day, tc is 0.5 days. While the meter is fully
capable of measuring for this amount of time (and much longer), this leads to coarse temporal resolution if
the objective is to examine changes in seepage through time and less replication of results even if seepage is
temporally steady. In concept, it is also possible to build a seepage tube such that the diameter of the upper
part of the tube (d in equations 1a) is smaller than the sediment‐filled portion of the tube (D in equation 1a)
(Solder et al., 2016) that will shorten tc, but we have not yet tested this possibility. A practical alternative to
measuring for one characteristic time is to combine an in situ falling head test (Chen, 2000; Genereux

et al., 2008; Landon et al., 2001) with a short‐term seepage meter measure-
ment using the same tube. If only an estimate of seepage rate is desired,
the polynomial fit to early time data can also be used (and is recom-
mended), as previously discussed. We have generally found less than a
5% difference in the seepage rate computed using the SSR versus the poly-
nomial analysis method.

4. Testing and Field Application
4.1. Laboratory Testing

Two different types of laboratory tests were conducted. We used the
meter to measure water levels in a 19 L bucket in the laboratory that
was left open to evaporation (Figure 4). The change in water level over
a 15 hr interval was about 1.7 mm, corresponding to an evaporation
rate of 2.7 mm/day. Measurements made over only the first 1.2 hr give
an evaporation rate that is within 10% of the 15 hr mean and illustrate
the ability of the meter to resolve very small temporal changes in
water levels. The repeatability of the meter's water level measurements
was assessed by removing the evaporation trend from the results
shown in Figure 4. The resulting standard deviation (n = 785) was
0.059 mm, which is similar to the resolution of the meter's analog to
digital converter.

Figure 4. Water level change measured by a seepage meter installed in a
5 gallon bucket in the laboratory. The decline in water level is due only
to evaporation. The standard deviation of the data after removal of the
evaporation trend is 0.059 mm, which is similar to the resolution of the
meter's analog to digital converter (0.050 mm). Less than 0.5% of the
measurements were removed as outliers that generally coincided with
ambient noise such as doors opening/closing and fans turning on/off.

Figure 3. Relative standard deviation in deriving q and Kv by fitting 1a to
synthetic data in which noise with a standard deviation of 0.1 mm was
randomly added or subtracted from the head, as a function of the percent of
the characteristic time over which data were collected. The uncertainty is
especially large for Kv when the measurement period is less than one
characteristic time.
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The second type of laboratory tests consisted of measuring the seepage in a 0.57 m diameter by 0.85 m high
sand tank (Figure 5). The tank was filled with medium sand, and a pump was used to circulate water
between the top and bottom of the tank such that a constant vertical head gradient was maintained in the
tank and constant vertical flow occurred through the sand. We compared the meter‐determined seepage rate
with that calculated by dividing the pumping rate by the cross‐sectional area of the sand tank. The pumpwas
run in one direction to create positive (upward) seepage and later simply reversed to produce negative see-
page that is analogous to a losing stream. There is excellent agreement between the seepage values measured
with themeter and computed as pump rate divided by tank cross‐sectional area, with no apparent bias over a
range of ±1.2 m/day.

4.2. Field Results

We simultaneously deployed nine seepage meters arranged in a 3 × 3 grid in the South Branch of the Middle
Loup River located in the Sand Hills of Nebraska, USA. The grid spacing was approximately 1.5 m across the
width of the stream and 3 m longitudinally along the stream. Individual measurements lasted for approxi-
mately 35 min starting at about 13:00 on 21 September 2018 and ending about 09:00 on 22 September
2018 (Figure 6). There was significant spatial variability in the seepage measurements with temporal
averages ranging from +0.165 ± 0.02 to −0.001 ± 0.01 m/day. From 13:00 to 21:00 on 21 September 2018,
the stream stage rose approximately 4 mm and then declined by about 8 mm from 21:00 on 21 September
2018 to 09:00 on 22 September 2018. Although this pattern is weakly followed by the seepage rate deter-
mined by some of the meters (e.g., Meters 007 and 001), the measurement uncertainty is generally as large
or larger than changes through time. The mean value of all measurements (over time and space) is
0.054 ± 0.059 m/day. However, one of the meters (004) did not reproduce the same change in stream stage
as the other eight meters and we suspect it was not functioning properly; the results from Meter 004 have
been removed from the following discussion. The mean value excluding results of Meter 004
is 0.069 ± 0.059 m/day.

Adjacent to each of the nine seepage meters, a vertical hydraulic gradient measurement in the streambed
and a falling head test for estimating the vertical Kv were performed in order to estimate seepage rate using
the Darcy's equation. Vertical gradients were measured using a light‐oil piezomanometer (Kennedy
et al., 2007) installed near each seepage tube. Adding a small amount of water to each seepage tube while
the electric valve was closed, and recording the subsequent drop in head, allowed the tube to function as
a field permeameter for a falling head test (Chen, 2004; Genereux et al., 2008; Landon et al., 2001; Song
et al., 2007). At each tube, Kv was estimated from the falling head data using the approach of Genereux

Figure 5. Comparison between seepage rate measured with the seepage meter and true seepage rate (pump rate divided by horizontal cross‐sectional area of the
tank) in a 250 L, 0.57 m diameter barrel filled with medium sand. Water was injected into the bottom of the barrel with a pump, flowed up through the sand in the
barrel, and was recirculated to maintain a constant water level above the sand; the pump was also reversed to collect data under downward (negative) seepage.
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et al. (2008). While using the seepage meters in this manner was convenient, the limited vertical
measurement range of the meters prevented us from increasing the head to the degree that is normally
done for falling head tests (Chen, 2000; Genereux et al., 2008; Landon et al., 2001) and this resulted in
relatively large uncertainty in Kv. The estimates of vertical hydraulic gradient and Kv were used in Darcy's
law to calculate the seepage rate. The mean and standard deviation from Darcy's law are 0.036 ± 0.033 m/
day (all points) or 0.041 ± 0.032 (1 point with 0 gradient removed; it is possible that the piezomanometer
was not sealed into the sediments at this point).

Comparison of the seepage rates from the meters (qmeter) and from calculations with Darcy's law (qDarcy) is
complex (supporting information Figure S5), as has often been the case with similar comparisons in past
work (Kennedy et al., 2010). For example, for linear regression of 53 paired values of qmeter and qDarcy,
Kennedy et al. (2010) found r2 of 0.27; the r2 value from our preliminary field measurements (supporting
information Figure S5) is 0.39 (1 point removed). Kennedy et al. (2010) found that the difference between
qmeter and qDarcy was statistically significant at 53% of their streambed measurement points (28 of 53); in
our work, it was 50% (four of eight). The ratio of mean seepage rates from the twomethods (using all points),
qmeter/qDarcy, was 1.5 for our data, well within the range of values found in previous studies and closer to 1
than in some, for example, 6.7 (Lee & Cherry, 1979), 4.4 (Shaw et al., 1990), 0.7 (Kennedy et al., 2010), and 0.3
(Bokuniewicz et al., 2004).

Point‐by‐point comparison of paired qmeter and qDarcy is challenging, with variability produced by such
things as small‐scale spatial variability in streambeds and lakebeds (qmeter and the head gradient and Kv

needed for qDarcy are generally measured in close proximity but not all three in the exact same location).
Our field work with the automated tube seepage meter demonstrates that the meter functions as intended
in the field; the case for the meter accuracy is made with the laboratory testing and not through the compar-
ison of qmeter and qDarcy in the field (supporting information Figure S5). Excellent agreement between the
meter seepage rate and the true seepage rate was obtained in the lab (Figure 5), without the complexities
associated with comparing qmeter and qDarcy in the field.

5. Advantages and Limitations

The new tool for estimating water fluxes between groundwater and surface water has the following
advantages:

Figure 6. Seepage rate estimates from nine seepage meters deployed in the South Branch of the Middle Loup River in the
Nebraska Sand Hills over a 20 hr period. The seepage meters were arranged in a 3 × 3 grid with a spacing of
approximately 1.5 m across the stream and 3 m along the stream.
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1. The meter can provide a measure of both q and Kv and hence the vertical hydraulic gradient, q/Kv. It can
measure both upward and downward seepage rates in the bed sediments, and the estimation of q is very
simple requiring only that the head versus time data be fit to a second‐order polynomial.

2. Seepage rate measurements can be made relatively quickly, (typically 30 min when only measurements
of q are desired) allowing the assessment of temporal variability (see Rosenberry et al., 2013 for a discus-
sion of temporal variability).

3. Determination of the direction of the vertical gradient (i.e., whether the stream is gaining or losing)
requires only a few minutes.

4. The seepage meter can operate unattended for up to 3 days allowing temporal trends in q to be measured.
The meter can also record changes in stream stage over time as small as about 0.1 mm/hr.

5. The seepage meter is capable of depth‐specific measurements. The tube is typically installed to a depth of
0.3 to 0.5 m, but vertical profiles of q as a function of depth can be made by inserting the tube to greater
depths in the bed sediments. In contrast, vertical profiling is not generally practical with larger traditional
meters due to insertion difficulties.

6. Installing the small diameter tube is easier than installing a large traditional seepagemeter, andmeasure-
ments are averaged over a smaller area (the tube's cross section is about 45 cm2). This can be an advan-
tage or limitation depending on the goals of the project (i.e., delineating small‐scale variations and
features vs. large‐scale integrated values.) Installing the small diameter tube is much easier than the
installation of large traditional seepage meters, but measurements are integrated over a small area. In
this regard, the seepage meter is well suited for mapping out streambed and lakebed variability that can-
not be assessed with lower‐resolution methods such as stream tracer tests.

7. The meter is relatively inexpensive. The components (linear actuator, electronics and connectors) can be
purchased for the price of a typical inexpensive pressure transducer. However, the various plastic parts of
the electric valve, actuator housing, and so forth require additional labor time andmachining skill. These
costs could be dramatically reduced if the parts are produced in volume.

8. Many of the problems associated with traditional seepage meters such as flow resistance within compo-
nents of the meter (Murdoch & Kelly, 2003) and velocity head (Rosenberry, 2008) are eliminated with
the tube seepage meter.

Some of the meter's limitations include the following:

1. The use of the seepage meter is limited to soft bottom and shallow streams and lakes (generally sandy
beds with some silt and clay). We have installed tubes into gravelly streambeds, but the installation
effects on natural seepage are currently unknown. In sandstone and other consolidated sediments mod-
ifications will be needed to provide an appropriate seal with the formation.

2. The seepage meter's tube must extend above to the surface of the lake or stream and can be interfered
with by floating debris, recreational boats, vandalism, and so forth.

3. In low‐K sediments, the measurement time can be long if both q and Kv are desired. This time may be
reduced by making the inner diameter of the riser portion of the tube smaller than the sediment‐filled
portion, but we have not yet evaluated this possibility.

4. The range of measurable water level changes in this specific model is limited to 50 mm. When this range
is exceeded, the meter does not function.

5. The 1‐D (vertical) flow field assumed when deriving equations 1a and 1b becomes increasingly 3‐D at the
base of the tube with time as flow is diverted around the tube. Our sand box experiments and our 3‐D
numerical simulations indicate that this effect is negligible for a 7.6 cm ID seepage tube described in this
paper; this is especially true shortly after the valve closes. However, the 3‐D flow effects should be more
significant for larger tube IDs and longer times, and these should be considered before scaling our results
to larger tubes and/or longer times.

6. Summary

We have designed, tested, and applied a new seepage meter in soft bottom streams. The device consist of a
thin‐walled tube that is inserted into the streambed, and a linear actuator, which is capable of measuring
water levels inside the tube with precision ±0.1 mm. A hole in the side of the tube is fitted with an electric
valve. Prior to the start of a test, the valve is open and the water level inside the tube is the same as the
stream/lake. When the valve closes, the water level inside the tube rises in a gaining stream (or falls in a
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losing stream) and is recorded as a function of time. The slope of the water level versus time curve just after
the valve closure is a direct measure of groundwater seepage rate (q). The water level inside the tube expo-
nentially approaches the hydraulic head at the base of the tube. The characteristic time (tc) required to reach

63% of this head is tc ¼ d2L
D2K

. If water level measurements are made for tc or longer, it is possible to estimate

both seepage rate q and Kv.

When the stream stage changes during a seepage test, the head in the streambed changes quickly, but the
water level inside the tube is lagged because water must flow through the sediments inside the tube. We have
incorporated the effects of a changing stream stage into the equation describing the water level response
inside the seepage tube and tested it numerically. In all cases, the slope of the water level versus time curve
at t = 0 gives the seepage rate, but the subsequent response of the water level is not always intuitive and
requires additional analyses.

The uncertainty in q and Kv was investigated using representative examples; it depends on duration of data
collection compared to tc and the magnitude of the vertical hydraulic gradient (q/Kv). For q/Kv = 0.01 and
measurements that last for tc, our analysis suggests that the uncertainty in q and Kv will be less than 19%
and 60%, respectively. For q/Kv ≥ 0.1, the uncertainty in q is less than 2% when measurements last for tc
or longer.

Field testing of the meter in the Sand Hills of Nebraska demonstrates the meter's ability to evaluate temporal
changes in seepage and spatial variations. Themean seepage rate obtained from eight measurements distrib-
uted over an area of 18 m2 was 0.069 ± 0.059 m/day compared to 0.041 ± 0.032 m/day computed using
Darcy's law. Differences may be due in part to spatial variability as it was not possible to make head gradient
measurements at the exact location of the seepage meter.

The meter is an effective tool for studying the surface water‐groundwater interactions at a small scale. It is
relatively inexpensive to build and can detect seepage as low as 2 mm/day under favorable conditions and
can typically provide useful measurements in less than an hour. The combination of low cost, practical accu-
racy, and rapid measurements opens the possibility to collect large data sets on water and mass fluxes across
the surface water‐groundwater interface.
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