University of Nebraska - Lincoln [DigitalCommons@University of Nebraska - Lincoln](https://digitalcommons.unl.edu/)

[Biological Systems Engineering: Papers and](https://digitalcommons.unl.edu/biosysengfacpub)

Biological Systems Engineering

2019

Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain

Asmaa Abdella University of Sadat City & University of Nebraska-Lincoln

Fernando Segato University of São Paulo, segato@usp.br

Mark R. Wilkins University of Nebraska-Lincoln, mwilkins3@unl.edu

Follow this and additional works at: [https://digitalcommons.unl.edu/biosysengfacpub](https://digitalcommons.unl.edu/biosysengfacpub?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Bioresource and Agricultural Engineering Commons](http://network.bepress.com/hgg/discipline/1056?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages), [Environmental Engineering Commons,](http://network.bepress.com/hgg/discipline/254?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages) and the [Other Civil and Environmental Engineering Commons](http://network.bepress.com/hgg/discipline/257?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages)

Abdella, Asmaa; Segato, Fernando; and Wilkins, Mark R., "Optimization of process parameters and fermentation strategy for xylanase production in a stirred tank reactor using a mutant Aspergillus nidulans strain" (2019). Biological Systems Engineering: Papers and Publications. 668. [https://digitalcommons.unl.edu/biosysengfacpub/668](https://digitalcommons.unl.edu/biosysengfacpub/668?utm_source=digitalcommons.unl.edu%2Fbiosysengfacpub%2F668&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

[Biotechnology](https://doi.org/10.1016/j.btre.2020.e00457) Reports xxx (2019) xxx–xxx

\mathcal{B}

journal homepage: <www.elsevier.com/locate/btre>es/ \mathcal{L}

¹ Optimization of process parameters and fermentation strategy for 2 xylanase production in a stirred tank reactor using a mutant Aspergillus ³ nidulans strain

⁴ Asmaa Abdella^{a,b,c}, Fernando Segato^d, Mark R. Wilkins^{b,c,e,}*

5 a Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, PO Box 79, Sadat City, 22857
Fount ⁶ Egypt ⁷ ^bDepartment of Biological Systems Engineering, University of Nebraska-Lincoln, ³⁶⁰⁵ Fair Street, Lincoln, NE, 68583-0726 USA 8 c

Industrial Agricultural Products Center, University of Nebraska-Lincoln, 3605 Fair Street, Lincoln, NE, 68583-0730 USA

9 d Synthetic and Molecular Biology Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Estrada Municipal do
Compiletic and Molecular Biology Laboratory, Department of Biotechnol $\frac{10}{11}$ Campinho, s/n, Lorena, SP, Brazil

e Department of Food Science and Technology, 1901 N 21stSt. University of Nebraska-Lincoln, Lincoln, NE, 68588-6205 USA

A R T I C L E I N F O

Article history: Received 27 January 2020 Received in revised form 27 March 2020 Accepted 18 April 2020

Keywords: Xylanase Enzyme Fed batch Repeated batch Optimization

A B S T R A C T

The present work studied the optimization of aeration rate, agitation rate and oxygen transfer and the use of various batch fermentation strategies for xylanase production from a recombinant Aspergillus nidulans strain in a 3 L stirred tank reactor. Maximum xylanase production of 1250 U/mL with productivity of 313 U/mL/day was obtained under an aeration rate of 2 vvm and an agitation rate of 400 rpm using batch fermentation. The optimum volumetric oxygen transfer coefficient (k_ia) for efficient xylanase production was found to be 38.6 h⁻¹. Fed batch mode and repeated batch fermentation was also performed with k_{L} a was 38.6 h⁻¹. Xylanase enzyme productivity increased to 327 with fed batch fermentation and 373 U/mL/ day with repeated batch fermentation. Also, maximum xylanase activity increased to 1410 U/mL with fed batch fermentation and 1572 U/mL with repeated batch fermentation.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/)).

12 1. Introduction

13 Xylanases are a class of enzymes that catalyze hydrolysis of
14 years which is a major component of homically local 11 Yulanases ¹⁴ xylan, which is a major component of hemicellulose [\[1](#page-9-0)]. Xylanases
 $\frac{15}{15}$ have many crucial applications in industry ranging from food 15 have many crucial applications in industry ranging from food
 16 processing to biofuel production $[2, 7]$. Many operation parameters 16 processing to biofuel production $[2-7]$ $[2-7]$. Many operation param-
 17 eters, such as agitation against temperature and dissolved 17 eters, such as agitation, aeration, temperature and dissolved 18 express concentration must be investigated and optimized to oxygen concentration must be investigated and optimized to 19 maximize xylanase production from fungi, the major source of $\frac{20}{20}$ with respect to meet exists process. ²⁰ xylanases [[8\]](#page-10-0). Agitation and aeration are the most crucial process $\frac{21}{2}$ process are the visit of the magnetic set of the magnetic set of the magnetic set of the set o 21 parameters as they both affect oxygen transfer to cells, which is a
22 decisive factor in the scale up of agrebic formentation [0]. Owner 22 decisive factor in the scale up of aerobic fermentation [[9](#page-10-0)]. Oxygen
23 december is solited to appear a plubility and different into the harth 23 transfer is related to oxygen solubility and diffusion into the broth 24 ²⁴ [[10\]](#page-10-0). Aeration efficiency can be increased by increasing agitation.
²⁵ **Depart agitation results in an increase of the gas liquid interface** ²⁵ Proper agitation results in an increase of the gas liquid interface $\frac{26}{1000}$ are hundred integrating large in hubbles integranal and case. 26 area by disintegrating large air bubbles into many small ones.
 27 Agitation also broaks apart musclial aggregates and thus increases 27 Agitation also breaks apart mycelial aggregates and thus increases
 $\frac{28}{2}$ express diffusion into cells [11] oxygen diffusion into cells [[11\]](#page-10-0).

> Corresponding author at: University of Nebraska-Lincoln, 211 Chase Hall, PO Box 830726, Lincoln, NE, 68583-0726 USA.

E-mail address: mwilkins3@unl.edu (M.R. Wilkins).

Several previous reports have described production and 29
procterization of an endo-beta-1.4-yylanase from the family 30 characterization of an endo-beta-1,4-xylanase from the family 30
CH10 from Aspergillus fuminatus var niveus also referred to as GH10 from Aspergillus fumigatus var niveus, also referred to as 31
AEUMN CH10 [12, 15] by a recombinant Aspergillus ridulars strain AFUMN-GH10 [\[12](#page-10-0)–15] by a recombinant Aspergillus nidulans strain. 32
Using a recombinant enzume producing strain often results in Using a recombinant enzyme producing strain often results in 33
axier and more economical purification staps since recombinant ³⁴ easier and more economical purification steps since recombinant ³⁴
strains often only excrete a single protein [16]. Yulanase production ³⁵ strains often only excrete a single protein $[16]$ $[16]$. Xylanase production 35
by the A pidulars strain was comparable to other wilanase by the A. nidulans strain was comparable to other xylanase 36
producers [12] and the strain excreted only vylanase [12] producers [[13\]](#page-10-0), and the strain excreted only xylanase [\[12](#page-10-0)].

In the A. nidulans strain mentioned above, a maltose-induced 38 promoter was used to initiate and promote xylanase production 39
[12] Maltose is also the sarbon source the strain used for protein 40 [\[12](#page-10-0)]. Maltose is also the carbon source the strain used for protein $\frac{40}{12}$
production: thus maltose could be subject to substante inhibition $\frac{41}{12}$ production; thus, maltose could be subject to substrate inhibition. 41
One cell cultivation method developed to overcome substrate 42 One cell cultivation method developed to overcome substrate 42
inhibition is fed batch fermentation. Eed batch fermentation 43 inhibition is fed batch fermentation. Fed batch fermentation 43
involves an initial batch noried followed by addition of fresh 44 involves an initial batch period followed by addition of fresh $\frac{44}{\text{median}}$ medium to the reactor until the maximum volume of the reactor is
reached. This strategy allows putrient feeding to be controlled 46 reached. This strategy allows nutrient feeding to be controlled ⁴⁶
according to motabolic change as expressed as variation in pH_DO 47 according to metabolic change as expressed as variation in pH, DO 47
 $\%$ and substate and by products concentrations [17, 10] \AA 48 % and substrate and by-products concentrations $[17-19]$ $[17-19]$. A 48
modification of fod batch strategy repeated batch formontation 49 modification of fed batch strategy, repeated batch fermentation, $\frac{49}{100}$
involves withdrawing part of the old media and replacing it with $\frac{50}{100}$ involves withdrawing part of the old media and replacing it with 50
fresh media to replacieb used substrates while keeping the same 51 fresh media to replenish used substrates while keeping the same

<https://doi.org/10.1016/j.btre.2020.e00457>

2215-017X/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license [\(http://creativecommons.org/licenses/by-nc-nd/4.0/\)](http://creativecommons.org/licenses/by-nc-nd/4.0/).

 52 volume [\[20](#page-10-0)]. Repeated batch mode increased productivity in a
 53 provisus wilapses production study sempared with batch and fed 53 previous xylanase production study compared with batch and fed
 54 batch and text¹³⁴ 54 batch modes [[21](#page-10-0)].

⁵⁵ This study aimed to optimize and scale up xylanase production
 $\frac{56}{2}$ from a recombinant *Acnosilly pidulary* strain with a pyridovine ⁵⁶ from a recombinant Aspergillus nidulans strain with a pyridoxine
 $\frac{57}{2}$ expected 121 in a stirred tank reactor (STP). The effect of agration ⁵⁷ marker [[12](#page-10-0)] in a stirred tank reactor (STR). The effect of aeration,
 $\frac{58}{2}$ aritation, and volumetric oxygen mass transfer soefficient (k, a) on 58 agitation, and volumetric oxygen mass transfer coefficient (k_La) on xylanase production were investigated. Xylanase activities and productivities for the fed batch process and repeated batch process 60 productivities for the fed batch process and repeated batch process 61 were compared to those from batch fermentation to determine if ⁶¹ were compared to those from batch fermentation to determine if 62 these strategies could improve the amount of vylanse activity 62 these strategies could improve the amount of xylanase activity
 63 produced and vylanase productivity produced and xylanase productivity.

64 2. Materials and methods

⁶⁵ 2.1. Microbial strains, plasmids

⁶⁶ A. nidulans strain A773 (pyrG89; wA3; pyroA4) was obtained 67 from Fungal Genetic Stock Center (FGSC, Manhattan, KS, USA). This 68 strain is unable to synthesize nuridoving [32]. The strain use ⁶⁸ strain is unable to synthesize pyridoxine [\[22](#page-10-0)]. The strain was
 $\frac{69}{2}$ and $\frac{1254}{2}$ are described in [22] to suppose AFUMN GU10 69 modified as described in [[23](#page-10-0)] to express AFUMN-GH10 70 [[12,13,16](#page-10-0),[24](#page-10-0)]. The plasmid used for transformation included a 71 glucoamylase promoter induced by maltose, which allowed 72 expressions and secretive of AFUMM GU10 into the madis 72 overexpression and secretion of AFUMN-GH10 into the media,
 $73 \div 51$ followed by a tryptophan terminator (trpCt) $[23]$ $[23]$.

⁷⁴ 2.2. Inoculum preparation

75 Spores kept in fungal stock solution (20 % glycerol, 10 % lactose)
 76 at 80° C were thawed and 20 ull were distributed onto a Petri dish ⁷⁶ at -80 °C were thawed and 20 µ were distributed onto a Petri dish⁷⁷ containing potato devtrose agar, media Petri dishes were ⁷⁷ containing potato dextrose agar media. Petri dishes were
⁷⁸ incubated at 37 °C for 2 days. The spores were scraped from the ⁷⁸ incubated at 37 °C for 2 days. The spores were scraped from the 79 79 plate and added to 10 mL
80 of distilled water giving

⁸⁰ of distilled water, giving a final concentration of 4×10^8 spores/
⁸¹ m_l in the spore inequlum [25] $\frac{81}{82}$ mL in the spore inoculum [[25](#page-10-0)]

 $\frac{82}{100}$ Cell pellets were prepared by inoculating 0.5 mL spore
 $\frac{83}{100}$ suspension into 250 mL Free prepared flasks containing 50 mL of ⁸³ suspension into 250 mL Erlenmeyer flasks containing 50 mL of 84 preculture media containing glucose 10: NaNO 12: *NCL* 2: MgSO 84 preculture media containing glucose, 10; NaNO₃, 12; KCl, 2; MgSO₄, $\frac{85}{15}$ 0.5; KH₂PO₄, 1.5; 1 mL/L 1000 x trace element solution (22 g/L $\frac{86}{7}$ 7nSO, 7H, 0.11 g/L H, RO₂, 5.0 g/L MnCl, 7H, 0.5.0 g/L 86 ZnSO₄.7H₂O, 11 g/L H₃BO₃, 5.0 g/L MnCl₂.7H₂O, 5.0 g/L FeSO₄.7H₂O,
 87 1.6 g/L CoCl₂.5H₂O, 1.6 g/L CuSO, 5H₂O, 11 g/L N₃₂MoO, 4H₂O ⁸⁷ 1.6 g/L CoCl₂.5H₂O, 1.6 g/L CuSO₄.5H₂O, 1.1 g/L Na₂MoO₄.4H₂O, ⁸⁸ 50 g/L N₂ ED₃^t</sub> ED₄^t D₃^L ED₄^t D₃^L ED₄^t D₃^L ED₄^t D₃^L ED₄^t D₃^L ED₄^t D₃^L ED₄^t D ⁸⁸ 50 g/L Na₂-EDTA) and 1 mg/L pyridoxine. The inoculated flasks
 89 uses insubated in an orbital shakes at 27 °C and 225 gap for 2 days ⁸⁹ were incubated in an orbital shaker at 37 °C and 225 rpm for 2 days
90 $\frac{1121}{2}$ $[13]$ $[13]$ $[13]$.

⁹¹ 2.3. Fermentation in a STR

92 Batch fermentation kinetics were studied in a 3 L STR
93 (Eppenderf Pielle 115 Hauppage NY USA) with a 109:1 beight: 93 (Eppendorf BioFlo 115, Hauppage, NY, USA) with a 1.98:1 height:
94 diameter ratio containing 151 of fermentation medium. The ⁹⁴ diameter ratio containing 1.5 L of fermentation medium. The fermentation medium has the same composition as the preculture ⁹⁵ fermentation medium has the same composition as the preculture
⁹⁶ medium plus 120 g/L maltose. Silicone, antifoam 204 (Sigma-⁹⁶ medium plus 120 g/L maltose. Silicone antifoam 204 (Sigma-
⁹⁷ Aldrich St Louis MO USA) was added to control foaming The 97 Aldrich, St. Louis, MO, USA) was added to control foaming. The 98 initial pH was adjusted to 6.5 with 1 M NaOH before autoclaving A 98 initial pH was adjusted to 6.5 with 1 M NaOH before autoclaving. A
 99 host sterilizable pelaregraphic exugen electrode (Mettler Telede 99 heat sterilizable polarographic oxygen electrode (Mettler Toledo, 99 heat sterilizable polarographic oxygen 100 Columbus, OH, USA) was used to measure dissolved oxygen 101 concentration Media addition or removal was controlled using a ¹⁰¹ concentration. Media addition or removal was controlled using a
¹⁰² level probe (21 form/level sensor kit. Eppendorf). After autoclay. ¹⁰² level probe (2 L foam/level sensor kit, Eppendorf). After autoclav-
¹⁰³ ing the vessel containing medium at 121 °C 204.7 kPa for 30 min ¹⁰³ ing the vessel containing medium at $121 \degree$ C, 204.7 kPa for 30 min,
¹⁰⁴ the STP was inoculated with 150 mL of pre-culture medium (cell ¹⁰⁴ the STR was inoculated with 150 mL of pre-culture medium (cell
¹⁰⁵ pellets) and operated at 37 °C. To evaluate effect of aeration rate ¹⁰⁵ pellets) and operated at 37 °C. To evaluate effect of aeration rate, 106 three runs were conducted using an agitation rate of 400 rpm and 106 three runs were conducted using an agitation rate of 400 rpm and 107 an aeration rate 0.5 1.0 or 2 wm. To evaluate agitation rate three 107 an aeration rate 0.5, 1.0 or 2 vvm. To evaluate agitation rate, three
 108 gives user conduted using an aeration rate of 2 using and an ¹⁰⁸ runs were conduted using an aeration rate of 2 vvm and an $\frac{109}{2}$ exitation rate of 200, 400 or 600 runs. Samples were taken daily ¹⁰⁹ agitation rate of 200, 400 or 600 rpm. Samples were taken daily,
 $\frac{110}{2000}$ contributed at 12,000 rpm for 10 min, and used for analysis centrifuged at 13,000 rpm for 10 min, and used for analysis.

For fed batch fermentation, 500 mL of medium containing 180 g/L maltose and 5 g/L glucose was pulse-fed to 1 L media 112
where growing artistic started to degree as held 144 and 240 k when enzyme activity started to decrease at both 144 and 240 h. 113
Fig. arguested, hitch formations, 11, of an initial 151, of For repeated batch fermentation, 1 L of an initial 1.5 L of 114
formentation broth was replaced with fresh medium containing fermentation broth was replaced with fresh medium containing 115
120 α ^{[[}] maltese and 10 α ^{[[}] glucese at 144 and 264 h. These times 180 g/L maltose and 10 g/L glucose at 144 and 264 h. These times 116
were chosen because on zume concentration coased increasing at were chosen because enzyme concentration ceased increasing at 117
these times. The agitation speed was 400 rpm and the agration these times. The agitation speed was 400 rpm and the aeration 118
rate was 2 wm for both fed batch and repeated batch rate was 2 vvm for both fed batch and repeated batch 119
fermentation 120 fermentation.

2.4. Volumetric oxygen transfer coefficient (k_La) measurement 121

The unsteady-state method was used to measure k_La in cell free 122
Intervalse Different was sparted into media until dissolved 123 media $[20,26]$ $[20,26]$ $[20,26]$ $[20,26]$ $[20,26]$. Nitrogen was sparged into media until dissolved $[223]$
oxygen concentration became zero and then air was sparged until $[24]$ oxygen concentration became zero and then air was sparged until 124
modia was saturated with owner. Dissolved owner concentration 125 media was saturated with oxygen. Dissolved oxygen concentration 125
societies with time to was presented and he was relaxited 126 variation with time, t, was recorded and k_L a was calculated 126
according to the following countion according to the following equation:

$$
\ln (C^* - C_L) = \ln (C^* - C^0) - k_L a \cdot t \tag{1}
$$

where C^* was saturated dissolved oxygen concentration in liquid 129
abase (mmal(I) C, was oxygen concentration in liquid phase 131 phase (mmol/L), C_L was oxygen concentration in liquid phase 131
(mmol/L) C^0 was oxygen concentration at $t = 0$ (mmol/L) (which 132 (mmol/L), C^0 was oxygen concentration at $t = 0$ (mmol/L) (which 132
could 0 cince all oxygen was pureed from the modia) and k a was equaled 0 since all oxygen was purged from the media) and k_L a was 134 oxygen transfer coefficient (h⁻¹). The k_L a was determined by 134 plotting ln $(C^* - C)$ against time (t) and determining the slope of 135
the resulting line which equaled k a the resulting line, which equaled $-k_La$.

¹³⁷ 2.5. Analytical methods and determination of fermentation parameters

Xylanase activity was assayed using beechwood xylan (TCI 139
parisa Bortland OB USA) 0.05 mJ of a 1% (wh) what solution in America, Portland, OR, USA). 0.95 mL of a 1% (w/v) xylan solution in 140
0.05 M, citrate, buffer (pH, 5), was incubated with 0.05 mL of 0.05 M citrate buffer (pH 5) was incubated with 0.05 mL of 141
formantation modium at 50% for 15 min. The reaction was stanned 142 fermentation medium at 50 °C for 15 min. The reaction was stopped 142
by adding 0.5 mJ of DNS reagent to the assay sontonts. The sentents by adding 0.5 mL of DNS reagent to the assay contents. The contents 143
were then holled in a water hath for 5 min and cooled to ream were then boiled in a water bath for 5 min and cooled to room 144
tomporature. The absorbance of the assay contents was moasured at temperature. The absorbance of the assay contents was measured at 145
575 nm and compared to a substante control without formontation 575 nm and compared to a substrate control without fermentation 146
medium [27] to determine the amount of reducing sugar in the medium [[27](#page-10-0)] to determine the amount of reducing sugar in the 147
solution. One international unit (II) of vylanase activity corres solution. One international unit (U) of xylanase activity corre-
sponded to the amount of enzyme that catalyzed the release of sponded to the amount of enzyme that catalyzed the release of 149
1.1 mol/min of reducing sugar under the specified assay condition 1 μ mol/min of reducing sugar under the specified assay condition. $\frac{150}{\mu}$
Dry cell weight measurements were conducted by filtering a

Dry cell weight measurements were conducted by filtering a state of the parameters of the parame known volume of fermentation medium through a pre-weighed 152
filter (DS Fisherbrand, Eisher Scientific, Hampton, NH, USA), The 153 filter (P8 Fisherbrand, Fisher Scientific, Hampton, NH, USA). The 153
filter was then washed with distilled water and dried to constant 154 filter was then washed with distilled water and dried to constant 154
weight at $60\degree C$. The remaining cell mass on the filter was 155 weight at 60° C. The remaining cell mass on the filter was 155
determined using an applytical balance Total protein concentra 156 determined using an analytical balance. Total protein concentra-
tion was assayed using the method described in $[281 \text{ Maltose and}]$ $[157 \text{ Maltose}]$ tion was assayed using the method described in [\[28\]](#page-10-0). Maltose and 157
glucose were determined by HPLC (Dioney Ultimate 2000, Thermo 158 glucose were determined by HPLC (Dionex Ultimate 3000, Thermo 158
Scientific Maltham MA USA) on an HPX 87 B column 159 Scientific, Waltham, MA, USA) on an HPX-87P column 159
(200 mm \cdot 7.8 mm) The elucativize UPLC grade PL unter with a 160 (300 mm \times 7.8 mm). The eluent was HPLC grade DI-water with a 160 flow rate of 0.6 mL/min at 80 °C. Sugars were measured by a 161 refractive index detector (Shodey PL 101 Televe Japan) and the 162 refractive index detector (Shodex RI-101, Tokyo, Japan) and the 162
concentrations were quantified based on a four lavel calibration 163 concentrations were quantified based on a four-level calibration 163
gurus of known standards [20], All assays were performed in 164 curve of known standards [\[29](#page-10-0)]. All assays were performed in 164
triplicate. triplicate. The contraction of t

3. Results and discussion 166

¹⁶⁷ 3.1. Effect of different aeration rates on xylanase production

Fig. 1 shows the fermentation kinetics for batch fermentation at 168
2 nm and different seration rates (0.5, 1 and 2 nm) kereasing 169 ¹⁶⁹ 400 rpm and different aeration rates (0.5, 1 and 2 vvm). Increasing

A. Abdella et al. / Biotechnology Reports xxx (2019) e00457 33

170 aeration rate resulted in increased rates of substrate and oxygen
171 aeration and oxygential and released resolution. There were 171 consumption and protein and xylanase production. There was 172 more change in fermentation media pH during the growth phase as 173 173 aeration rates increased. At 48 h pH changed from an initial value
174 of 6.00, 5.80, 7.00 and 7.54 with aeration rates of 0.5, 1 and 2 wm 174 of 6.00–5.89, 7.00 and 7.54 with aeration rates of 0.5, 1 and 2 vvm,
175 corportively. This is explained by higher growth and higher ¹⁷⁵ respectively. This is explained by higher growth and higher $\frac{176}{20.211}$ at the end of 176 metabolism rates at higher aeration rates [\[30,31](#page-10-0)]. At the end of the recorded nH was 5.70, 6.02 and 6.50 at 0.5, 1 and 177 fermentation, the recorded pH was 5.70, 6.02 and 6.50 at 0.5, 1 and 1
178 2 wm respectively DO% at 24 b was 9.15 and 26 % at 0.5, 1 and 2 ¹⁷⁸ 2 vvm, respectively. DO% at 24 h was 9, 15 and 26 % at 0.5, 1 and 2
¹⁷⁹ www. respectively, and then decreased at 48 h to 3, 1.5 and 0.3 % at ¹⁷⁹ vvm, respectively, and then decreased at 48 h to 3, 1.5 and 0.3 % at 179 of 5.1 and 2 wm, respectively, DO% increased during the stationary ¹⁸⁰ 0.5, 1 and 2 vvm, respectively. DO% increased during the stationary
¹⁸¹ and death phases to 4.7 and 9% at 0.5.1 and 2 wm, respectively. at ¹⁸¹ and death phases to 4, 7 and 9% at 0.5, 1 and 2 vvm, respectively, at 182 the end of fermentation (Fig. 14) the end of fermentation (Fig. 1A).

Maximum xylanase activities and total protein concentra-
 $\frac{183}{184}$ tions were observed at 96 h. Xylanase activities and protein 184
separate in proceed as a continuous in proceed Marinum 185 concentrations increased as aeration rate increased. Maximum 185
unlessed as thirties of 520, 997 and 1250 What and maximum 186 xylanase activities of 520, 887 and 1250 IU/mL and maximum 186
total protoin concentrations of 120, 214 and 200 ug/mL wore 187 total protein concentrations of 120, 214 and 300 μ g/mL were
observed at 0.5, 1 and 2 year respectively (Fig. 1P). The sum of 188 observed at 0.5, 1 and 2 vvm, respectively (Fig. 1B). The sum of 188
the recidual maltese and glucese concentrations at the end of 189 the residual maltose and glucose concentrations at the end of 189
fermentation decreased as aeration rate increased and were 98 190 fermentation decreased as aeration rate increased and were 98, 190
38, and 26 g(L at 0.5, 1, and 2, wm, respectively (Fig. 1C), Ap. 191 38 and 26 g/L at 0.5, 1 and 2 vvm, respectively (Fig. 1C). An 191
increase in cention atts spaceally used appear the DO layel in 192 increase in aeration rate generally would enhance the DO level in 192
the growth phase resulting in an increase cell growth and 193 the growth phase, resulting in an increase cell growth and 193
unlarges anglusting While sell grouth was not measured began x ylanase production. While cell growth was not measured here, 194
increased wilance activities and protein concentrations were 195 increased xylanase activities and protein concentrations were

Fig. 1. Effects of aeration rate on (A) pH and dissolved oxygen (DO), (B) xylanase activity and protein concentration, and (C) maltose and glucose concentrations during fermentation of A. nidulans in a stirred-tank bioreactor inoculated with cell pellets with agitation speed at 400 rpm.

4 A. Abdella et al. / Biotechnology Reports xxx (2019) e00457

¹⁹⁶ observed when more oxygen was supplied to the fermenter. DO is $\frac{197}{2}$ one of the most important fectors in agreebig fermentation, and any ¹⁹⁷ one of the most important factors in aerobic fermentation, and any 198 shown in DQ^{α} are would in approximately shown in all ¹⁹⁸ change in DO% can result in considerable changes in cell ¹⁹⁹ physiology and metabolism [\[33](#page-10-0)]. Previous studies also stated that $\frac{200}{100}$ increasing against the significantly increased vylanges produc-²⁰⁰ increasing aeration rate significantly increased xylanase produc-
 201 tion by *Aeparaillys niger* [20.24.25] tion by Aspergillus niger [\[30](#page-10-0),[34,35](#page-10-0)].

²⁰² 3.2. Effect of different agitation rates on xylanase production

203 Agitation is considered one of the most vital parameters for
204 fermentation conducted in STRs since it controls transfer of 204 fermentation conducted in STRs since it controls transfer of 205 express heat and putrients from the medium to the micro- 205 oxygen, heat and nutrients from the medium to the micro-
 206 organism's cells fragments air into small bubbles to improve gas- 206 organism's cells, fragments air into small bubbles to improve gas-
 207 liquid contact and prevents mycelia from clumping [9.11.36] ²⁰⁷ liquid contact and prevents mycelia from clumping [\[9,11](#page-10-0),[36\]](#page-10-0).
²⁰⁸ During the first 48 h the bighest pH value of 7.54 was recorded for ²⁰⁸ During the first 48 h, the highest pH value of 7.54 was recorded for $\frac{209}{200}$ aritation of 400 rpm followed by 7.15 with 600 rpm and 6.80 for 209 agitation of 400 rpm followed by 7.15 with 600 rpm and 6.80 for 210 and 200 rpm At the and of formantation, the recepted pH values were ²¹⁰ 200 rpm. At the end of fermentation, the recorded pH values were
²¹¹ 5.02.6.50 and 6.17 for 200, 400 and 600 rpm, respectively, DO% at ²¹¹ 5.93, 6.50 and 6.17 for 200, 400 and 600 rpm, respectively. DO% at $\frac{212}{24}$ at high respected with increasing activities apped. During the first ²¹² 24 h increased with increasing agitation speed. During the first $\frac{213}{24}$ 24 h DO^o was 18, 26 and 20 $\%$ for 200, 400 and 600 rpm 213 24 h, DO% was 18, 26 and 39 % for 200, 400 and 600 rpm,
214 reconstitutive Fram 24, 48 h, DO% decreased to 4.0.2 and 2% for 200 ²¹⁴ respectively. From 24–48 h, DO% decreased to 4, 0.3 and 2% for 200,
²¹⁵ 400 and 600 gpm respectively, then from 48 h to the and of the ²¹⁵ 400 and 600 rpm respectively, then from 48 h to the end of the
²¹⁶ formantation DO^V increased to 6, 0 and 12 $\%$ for 200, 400 and ²¹⁶ fermentation, DO% increased to 6, 9 and 12 % for 200, 400 and 217 600 gas association (Fig. 24) ²¹⁷ 600 rpm, respectively [\(Fig.](#page-5-0) 2A).

²¹⁸ Maximum xylanase activities and total protein concentrations
²¹⁹ Were observed at 06 b, which was also observed in the ²¹⁹ were observed at 96 h, which was also observed in the $\frac{220}{28}$ formontations conducted to study offect of agration rate $\frac{125}{28}$ ²²⁰ fermentations conducted to study effect of aeration rate. [Fig.](#page-5-0) 2**B**
²²¹ chours that at an agitation speed of 400 rpm maximum vulanage ²²¹ shows that at an agitation speed of 400 rpm, maximum xylanase
²²² production was 1250 $\frac{U}{m}$ and maximum protein concentration ²²² production was 1250 IU/mL and maximum protein concentration
²²³ was 300 ug/mL When agitation rate was increased to 600 rpm ²²³ was 300 μ g/mL. When agitation rate was increased to 600 rpm,
²²⁴ maximum vulanase activity decreased to 995 U/mL and maximum ²²⁴ maximum xylanase activity decreased to 995 U/mL and maximum
²²⁵ motein, concentration, decreased, to 230 ug/mL. Increase, in ²²⁵ protein concentration decreased to 230μ g/mL. Increase in $\frac{226}{\mu}$ agitation speeds can cause bigh shear stress that leads to mycelial $\frac{226}{227}$ agitation speeds can cause high shear stress that leads to mycelial $\frac{227}{227}$ runture destruction of collular structures which despeces both ²²⁷ rupture destruction of cellular structures which decreases both 228 musclial groupt and on production 127 201 . The lowest ²²⁸ mycelial growth and enzyme production $[37-39]$ $[37-39]$. The lowest
²²⁹ enzyme activity of 750 U/mJ and the lowest protein concentration ²²⁹ enzyme activity of 750 U/mL and the lowest protein concentration
²³⁰ of 165 ug/mL were observed at 200 rpm. Lower agitation rates ²³⁰ of 165 μ g/mL were observed at 200 rpm. Lower agitation rates
²³¹ result in reduced mixing in the medium and lower oxygen supply ²³¹ result in reduced mixing in the medium and lower oxygen supply
²³² to the micrograpism Choshal et al. ^[22] also observed that 232 to the microorganism. Ghoshal et al. [\[32](#page-10-0)] also observed that 233 decreased agitation rate decreased both fungal growth and 233 decreased agitation rate decreased both fungal growth and 234 enzyme production Bandainhet and Prasertsan [40] observed ²³⁴ enzyme production. Bandaiphet and Prasertsan $[40]$ $[40]$ observed
 235 that degreesed exitation rate resulted in increased media viscosity. ²³⁵ that decreased agitation rate resulted in increased media viscosity
²³⁶ and decreased mass transfer. Besidual substate (maltese) glu ²³⁶ and decreased mass transfer. Residual substrate (maltose + glu-
²³⁷ associates the same of formatities were 20 σ ^{[[}] 26 σ ^{[[}] ²³⁷ cose) concentrations at the end of fermentation were 39 g/L, 26 g/L
 238 and 22 g/L, the 200, 400 and 600 gaps are a stingly subjek supported ²³⁸ and 33 g/L at 200, 400 and 600 rpm, respectively, which supported
 239 the sharmed trand in urlange estimity and protein consentration ²³⁹ the observed trend in xylanase activity and protein concentration
²⁴⁰ with lower residual substrate corresponding to higher vulanase ²⁴⁰ with lower residual substrate corresponding to higher xylanase
²⁴¹ activity and protein concentration (Fig. 2C) activity and protein concentration [\(Fig.](#page-5-0) $2C$).

²⁴² 3.3. Effects of agitation and aeration on k_1a

243 Determination of oxygen transfer inside the STR was carried out 244 by mosquement of $k \geq k$ a can be improved by increasing aeration ²⁴⁴ by measurement of k_La . k_La can be improved by increasing aeration $\frac{245}{\text{mol/s}}$ and/or agitation but only to a certain limit due to the barmful ²⁴⁵ and/or agitation, but only to a certain limit due to the harmful
²⁴⁶ effect of high shear stress [41]. The effect of different agitation ²⁴⁶ effect of high shear stress [[41](#page-10-0)]. The effect of different agitation $\frac{247}{\text{speeds}}$ and aeration rates on k.a is demonstrated in Fig. 3. The ²⁴⁷ speeds and aeration rates on k_La is demonstrated in [Fig.](#page-6-0) 3. The 248 increase of both parameters in all cases led to an increase in k_La ²⁴⁸ increase of both parameters, in all cases, led to an increase in k_La .
²⁴⁹ Eig ²⁴ bows that an aeration rate of 0.5 wm resulted in k-avalues ²⁴⁹ [Fig.](#page-6-0) 3A shows that an aeration rate of 0.5 vvm resulted in k_La values
250 of 5.35, 19.29, and 43.19.b⁻¹, at agitation rates of 200, 400, and ²⁵⁰ of 5.35, 19.29 and 43.19 h⁻¹ at agitation rates of 200, 400 and 251 600 rpm respectively. An aeration rate of 1 wm resulted in k a ²⁵¹ 600 rpm, respectively. An aeration rate of 1 vvm resulted in $k_L a$
²⁵² values 7.60, 28.93 and 50.78 h⁻¹ at agitation rates of 200, 400 and
²⁵³ 600 rpm, respectively, and an aeration rate of 2 vym resulted in ²⁵³ 600 rpm, respectively, and an aeration rate of 2 vvm resulted in k_La values 10.64, 38.55 and 65.19 h⁻¹ at agitation rates of 200, 400 and
²⁵⁵ 600 npm respectively. 255 600 rpm, respectively.

²⁵⁶ A increase in k_La due to increase of agitation speed was much 257 are atom increase in k a due to increase of againstmental thus greater than increase in k_L a due to increase of aeration rate; thus, agitation was more effective than aeration for increasing k_L a in the 258 reactor used in this study. The recorded k_La at the lowest aeration 259 rate and highest agitation speed, 43.19 h⁻¹, was greater than that 10^{260} Fecorded at the lowest agitation speed and highest aeration rate 261
10.64 k⁻¹ The reculte are similar to those reported by Fenice at 21 10.64 h⁻¹. The results are similar to those reported by Fenice et al. 262 ²⁶³ [[41](#page-10-0)].

3.4. Relationship between k_1a and production of xylanase 264

In aerobic fermentation oxygen transfer to microbial cells has a 265
 $m:$ figure of set as a modust formation, which makes has an 266 significant effect on product formation, which makes k_La an essential parameter to be evaluated in STRs [\[35\]](#page-10-0). The highest 267 wild parameter to be evaluated in STRs [35]. The highest 268 xylanase activity of 1250 U/mL was attained at k_La of 38.55 h⁻¹ ²⁶⁸ where the agitation rate was 400 rpm and the aeration rate was 2^{269}
www.lncreasing kLa from 10.64 h⁻¹ at 2 www.200 rpm to 38.55 h⁻¹ 270 vvm. Increasing kLa from 10.64 h⁻¹ at 2 vvm, 200 rpm to 38.55 h⁻¹ 270
at 400 rpm lead to an 166 $\%$ increase in vylanase activity. At 271 at 400 rpm lead to an 166 % increase in xylanase activity. At 271
200 rpm the stirrer did not load the air flow resulting in low air 272 200 rpm, the stirrer did not load the air flow resulting in low air $\frac{272}{273}$ dispersion and low dissolved oxygen concentration for fungal 273
growth and wilapses production [0.41]. Eurther, increasing $k_2 = 274$ growth and xylanase production [\[9,41](#page-10-0)]. Further, increasing k_L a
from 38.55 h⁻¹ at 400 rpm to 65.19 h⁻¹ at 600 rpm reduced ²⁷⁵
whenese activity from 1250 U/mL to 005 U/mL This gould be xylanase activity from 1250 U/mL to 995 U/mL. This could be 276
cyrelained by the bigh shear stress in axes of bigh agitation spaced 277 explained by the high shear stress in case of high agitation speed, $\frac{277}{278}$ as discussed above.

²⁷⁹ 3.5. Fed batch fermentation

Fed-batch fermentation was conducted by adding fresh 280
odium containing malters and glucose at 144 and 240 h 281 medium containing maltose and glucose at 144 and 240 h. 281
Fig. 40 shows fermentation profiles for 13 days in a STR 282 [Fig.](#page-7-0) 4A shows fermentation profiles for 13 days in a STR 282
inoculated with cell pellets. The pH increased from 5.95 initially 283 inoculated with cell pellets. The pH increased from 5.95 initially $120h$ to 7.25 at $48h$ and then decreased to 6.41 at 120 h, After addition 284 to 7.25 at 48 h and then decreased to 6.41 at 120 h. After addition 284
of fresh medium at 144 h all type 6.13 then increased to 6.29 at 285 of fresh medium at 144 h, pH was 6.12 then increased to 6.29 at 285
169 h, fter which all degreesed to 5.73 at 216 h, fter the second 286 168 h, after which pH decreased to 5.72 at 216 h. After the second 286
addition of media at 240 h, pH increased again to 6.19 and then to 287 addition of media at 240 h, pH increased again to 6.19 and then to $\frac{287}{6.32}$ at 264 h, after which nH decreased to 5.86 at the end of $\frac{288}{6.32}$ 6.32 at 264 h, after which pH decreased to 5.86 at the end of 288
fermentation. DO was not controlled and decreased from 00 $\frac{\alpha}{4}$ 289 fermentation. DO was not controlled and decreased from 99 $\%$ 289
initially to 0.5 $\%$ after 48 h, then increased to 9.3 $\%$ at 144 h, After 290 initially to 0.5 % after 48 h, then increased to 9.3 % at 144 h. After $\frac{290}{2}$
media addition at 144 h. DO decreased to 5.2 % at 168 h, then $\frac{291}{2}$ media addition at 144 h, DO decreased to 5.2 % at 168 h, then 291
increased again to 8.0 % at 240 h. After the second media addition 292 increased again to 8.0 % at 240 h. After the second media addition $\frac{292}{25}$ at 240 h. DO decreased to 6.1 % at 264 h and then increased to 7.0 $\frac{293}{25}$ at 240 h, DO decreased to 6.1 % at 264 h and then increased to 7.0 293
% at the end of fermentation. Dec Beie at al. [42] also reported 294 % at the end of fermentation. Dos Reis et al. $[42]$ $[42]$ $[42]$ also reported 294
degrees of ourgen concentration after the addition of callulate 295 decrease of oxygen concentration after the addition of cellulose 295
during fod batch production of vulnages by Popicillium schinu during fed batch production of xylanase by *Penicillium echinu-*
latum This is due to the resovery of misrographic growth after 297 *latum*. This is due to the recovery of microorganism growth after 297
fresh modia addition which increased overan consumption and 298 ²⁹⁸ fresh media addition, which increased oxygen consumption and decreased DO%. 299
From Fig. 4**P** We can conclude that wilances and protein 300

From [Fig.](#page-7-0) 4**B** we can conclude that xylanase and protein 300
oduction started after 34 h and reached maximum values of 1103 301 production started after 24 h and reached maximum values of 1193 and $\frac{301}{302}$ U/mL and 320 μ g/mL, respectively, at 96 h. Xylanase 302
productivity was 208 U/mL/d which was similar to the 303 productivity was 298 U/mL/d, which was similar to the 303
productivity observed in batch fermontation (212 U/mL/d) After 304 productivity observed in batch fermentation (313 U/mL/d). After 304
addition of fresh medium at 144 h, vylanase activity and protein 305 addition of fresh medium at 144 h, xylanase activity and protein 305
concentration decreased to 760 U/mL and 225 ug/mL respectively 306 concentration decreased to 760 U/mL and 225 μ g/mL, respectively, 306
due to dilution, activity then increased to 1412 U/mL and protein due to dilution. Activity then increased to 1413 U/mL and protein 307
concentration increased to 403 u.g/mL at 192 b as fresh putrients 308 concentration increased to 403 μ g/mL at 192 h as fresh nutrients 308
were consumed, resulting in a vulanase productivity of 327 U/mL were consumed, resulting in a xylanase productivity of 327 U/mL/ 309
d, from 96 to 192 b, After the second media addition at 240 b d from 96 to 192 h. After the second media addition at 240 h, 310
sylance activity decreased to 1000 U/mL and protein concentra 311 xylanase activity decreased to 1000 U/mL and protein concentra-
tion decreased to 310 u.g/mL. Yulanase activity increased to 1300 and 312 tion decreased to 310 μ g/mL. Xylanase activity increased to 1300 312
 H/m and protein concentration increased to 300 μ g/mL at 208 b U/mL and protein concentration increased to 390 μ g/mL at 298 h,
resulting in a vylanase productivity of 150 U/mL/d from 240 to 314 resulting in a xylanase productivity of 150 U/mL/d from 240 to 314
215 ³¹⁵ 298 h.

Maltose concentration decreased from the initial $120.0 g/L$ to 316
 $9 g/L$ at 120 b. After addition of fresh modium at 144 b. maltose 317 15.0 g/L at 120 h. After addition of fresh medium at 144 h, maltose 317
increased to 70.0 g/L, and then decreased to 14.1 g/L at 216 h, After 318 increased to 70.0 g/L, and then decreased to 14.1 g/L at 216 h. After $\frac{318}{12}$
the second addition of media at 240 h, maltose concentration $\frac{319}{12}$ the second addition of media at 240 h, maltose concentration

A. Abdella et al. / Biotechnology Reports xxx (2019) e00457 55

Fig. 2. Effects of agitation speed on (A) pH and dissolved oxygen (DO), (B) xylanase activity and protein concentration, and (C) maltose and glucose concentrations during fermentation of A. nidulans in a stirred-tank bioreactor inoculated with cell pellets with aeration rate at 2 vvm.

³²⁰ increased to 69.0 g/L, and then decreased to 13.8 g/L at the end of
³²¹ fermontation Clusses concentration increased from 0.0 g/L at the ³²¹ fermentation. Glucose concentration increased from $9.0 g/L$ at the
³²² beginning of formortation to 18.2 g/L at 48 b due to hydrolygic of ³²² beginning of fermentation to 18.2 g/L at 48 h due to hydrolysis of
³²³ maltose by the fungus, then decreased to 8.0 g/L at 120 b [42]. After $\frac{323}{324}$ maltose by the fungus, then decreased to 8.0 g/L at 120 h [\[43\]](#page-10-0). After $\frac{324}{3}$ addition of fresh media at 144 h glucose increased to 9.6 g/L ³²⁴ addition of fresh media at 144 h, glucose increased to $9.6 g/L$,
325 increased further to 181 g/L at 102 h, then decreased to 12.0 g/L at ³²⁵ increased further to 18.1 g/L at 192 h, then decreased to 13.0 g/L at $\frac{326}{216}$ at $\frac{326}{2$ ³²⁶ 216 h. After the second addition of media at 240 h, glucose
³²⁷ increased to 14.8 g/L and then increased to 18.8 g/L at 26.4 h $\frac{327}{28}$ increased to $\frac{14.8 \text{ g}}{L}$ and then increased to $\frac{18.8 \text{ g}}{L}$ at 264 h, reaching a value of 12.0 g/L at the end of fermentation [\(Fig.](#page-7-0) 4C).

³²⁹ 3.6. Repeated batch fermentation

 330 An increase in cell density and enzyme productivity has been
 331 shown previously in repeated batch fermentation [21] This shown previously in repeated batch fermentation $[21]$ $[21]$ $[21]$. This technique is cost effective because productivity and yield can be 332
improved compared to other formantation modes [44]. To improve improved compared to other fermentation modes $[44]$ $[44]$. To improve 333
on zume production, fresh modia containing maltese and glucose enzyme production, fresh media containing maltose and glucose 334
replaced the same volume of old media at set points during batch replaced the same volume of old media at set points during batch 335
formontation (144 and 264 b) that were chosen based on cossation fermentation (144 and 264 h) that were chosen based on cessation 337
of anzume production. Fig. 5A shows the fermentation profiles of enzyme production. [Fig.](#page-8-0) 5A shows the fermentation profiles 337
over 14 days in a STB inoquiated with call pallate. The pH increased over 14 days in a STR inoculated with cell pellets. The pH increased 338
from 5.87 initially to 7.47 at 48 b, and then decreased to 6.36 at from 5.87 initially to 7.47 at 48 h and then decreased to 6.26 at 339
120 h After the first media replacement at 144 h pH was 6.00 120 h. After the first media replacement at 144 h, pH was 6.00, which increased to 6.17 at 168 h and then decreased to 5.57 at 341
240 h After the second media replacement at 264 h pH was 6.05 240 h. After the second media replacement at 264 h, pH was 6.05, 342
increased to 6.15 at 288 h and finally degreesed to 5.20 at the end of increased to 6.15 at 288 h and finally decreased to 5.39 at the end of 343
formantation. DO was not controlled and decreased maidly from fermentation. DO was not controlled and decreased rapidly from 344
100 % initially to 0.6 % at 48 h than DO increased to 0.0 % at 120 h 100% initially to 0.6 % at 48 h, then DO increased to 9.0 % at 120 h.

6 A. Abdella et al. / Biotechnology Reports xxx (2019) e00457

Fig. 3. (A) Effect of aeration rate on the volumetric mass transfer coefficient k_L at different agitation speeds and (B) effect of agitation speed on the volumetric mass transfer coefficient kLa at different aeration rates.

346 After the first media replacement at 144 h, DO decreased to 4.6 % at 347 at 8 k then increased again to 0.1 % at 240 h, After second modia ³⁴⁷ 168 h, then increased again to 9.1 % at 240 h. After second media
³⁴⁸ replacement at 264 b. DO decreased to 5.0 % at 288 h and then ³⁴⁸ replacement at 264 h, DO decreased to 5.9 % at 288 h and then
³⁴⁹ increased to 8.1 % at the end of formantation $\frac{349}{350}$ increased to 8.1 % at the end of fermentation.

 $\frac{350}{251}$ Maximum values of xylanase activity and protein concentra-
 $\frac{351}{251}$ tion were 1260 U/mL and 215 u.g/mL respectively at 06 b for a $\frac{351}{252}$ tion were 1260 U/mL and 315 μ g/mL, respectively, at 96 h for a $\frac{352}{353}$ xylanase productivity of 315 U/mL/day, which was similar to the $\frac{353}{353}$ yylanase productivities observed during batch fermentation and 353 xylanase productivities observed during batch fermentation and 354 the initial batch phase of fed batch fermentation. After the first 354 the initial batch phase of fed batch fermentation. After the first
 355 media replacement at 144 h vylanase activity and protein 355 media replacement at 144 h, xylanase activity and protein
 356 concentration decreased to 453 U/mI and 120 ug/mI respec-³⁵⁶ concentration decreased to 453 U/mL and 120 μ g/mL, respec-
³⁵⁷ tively due to dilution At 216 h xylanase activity increased to 1571 ³⁵⁷ tively, due to dilution. At 216 h xylanase activity increased to 1571
³⁵⁸ UlmL and protein concentration increased to 381 ug/mL which ³⁵⁸ U/mL and protein concentration increased to 381 μ g/mL, which
³⁵⁹ resulted in a valanase productivity of ^{272 U/mL}/day from 144 h to ³⁵⁹ resulted in a xylanase productivity of 373 U/mL/day from 144 h to
360 **116 h** After the second media replacement at 264 h wilanase $\frac{360}{216}$ 216 h. After the second media replacement at 264 h, xylanase
 $\frac{361}{2}$ activity and protein concentration decreased to 610 U/mL and $\frac{361}{120}$ activity and protein concentration decreased to 610 U/mL and $\frac{362}{120}$ and recrease its value of the system of the syst $139 \mu g/mL$, respectively. At 312 h, xylanase activity increased to 870 U/mL and protein concentration increased to $183 \mu\text{g/mL}$, $363 \text{ resulting in a}$ resulting in a xylanase productivity of 130 U/mL/d from 264 h to 364
365 ³⁶⁵ 312 h.

Maltose concentration decreased from an initial value of 366
 $32 \frac{\pi}{4}$ to $18.2 \frac{\pi}{4}$ at 120 b. After the first modia replacement 119.3 g/L to 18.3 g/L at 120 h. After the first media replacement 367
at 144 h malters concentration was 125.0 g/L which decreased to at 144 h, maltose concentration was 125.0 g/L, which decreased to 368
18.0 g/L, at 240 b, After the second modia replacement at 264 b 18.0 g/L at 240 h. After the second media replacement at 264 h, 369
maltese concentration was 120.7 g/L, which then decreased to maltose concentration was 120.7 g/L, which then decreased to 370
22.0 g/L, at the end of fermentation. Glucose concentration 22.0 g/L at the end of fermentation. Glucose concentration 371
increased from the initial 9.5 g/L to 171 g/L at 48 h due to increased from the initial $9.5 g/L$ to $17.1 g/L$ at $48 h$ due to 372
hydrolysis of maltose, and then decreased to $9.0 g/L$ at $120 h$ hydrolysis of maltose, and then decreased to 9.0 g/L at 120 h. 373
After the first media replacement at 144 h glucose was 15.0 g/L and After the first media replacement at 144 h, glucose was 15.0 g/L and 374
increased further to 22.0 g/L at 192 h, due to maltose hydrolysis increased further to 22.0 g/L at 192 h due to maltose hydrolysis, $\frac{375}{376}$
and then decreased to 14.0 g/L at 240 h, After the second media and then decreased to $14.0 g/L$ at 240 h. After the second media 376
replacement at 264 h. glucose concentration was $170 g/L$ in replacement at 264 h, glucose concentration was 17.0 g/L , in-
crossed to 22.2 g/L, it 288 h due to maltose bydrolygic and then creased to 22.2 g/L at 288 h due to maltose hydrolysis, and then $\frac{378}{379}$ decreased to 16.1 g/L at the end of fermentation [\(Fig.](#page-8-0) 5C).

A. Abdella et al. / Biotechnology Reports xxx (2019) e00457 7

Fig. 4. Fed-batch fermentation kinetics of A. nidulans in a stirred-tank bioreactor inoculated with cell pellets at 400 rpm and 2 vvm. (A) pH and dissolved oxygen (DO); (B) xylanase activity and protein concentration; (C) maltose and glucose concentrations.

³⁸⁰ 3.7. Comparison between different modes of fermentation

 381 The xylanase activity and productivity from different fermen-
 382 tation modes are displayed in Table 1. Xylanase productivities were $\frac{382}{383}$ tation modes are displayed in [Table](#page-9-0) 1. Xylanase productivities were
 $\frac{383}{383}$ similar after the first 96 h for all fermentation modes conducted $\frac{383}{384}$ similar after the first 96 h for all fermentation modes conducted
 $\frac{384}{384}$ under the same aeration rate (2 wm) and agitation speed $\frac{384}{100}$ under the same aeration rate (2 vvm) and agitation speed
 $\frac{385}{100}$ (400 rpm). The mean xylanase activity was 1233 U/mL with a $\frac{385}{36}$ (400 rpm). The mean xylanase activity was 1233 U/mL with a $\frac{386}{36}$ standard deviation of 33 U/mL for the first 96 b of batch standard deviation of 33 U/mL for the first 96 h of batch fermentation at 2 vvm and 400 rpm, fed batch fermentation and 387
repeated batch fermentation. The mean vylanase productivity for 388 repeated batch fermentation. The mean xylanase productivity for 388
these three fermentations was 309 U/mL/d with a standard 389 these three fermentations was 309 U/mL/d with a standard 389
deviation of 9 U/mL/d. No additional vylanase activity or protein 390 deviation of 9 U/mL/d. No additional xylanase activity or protein $\frac{390}{391}$
was produced after 96 h in any of the fermentations. During the $\frac{391}{391}$ was produced after 96 h in any of the fermentations. During the $\frac{391}{392}$ second phase of fed batch fermentation, which started when 392
additional media was added at 144 h a xylanase productivity of 393 additional media was added at 144 h, a xylanase productivity of 393
227 Um I d was observed which was a 5% increase compared to 394 327 U/mL/d was observed, which was a 6% increase compared to

8 A. Abdella et al. / Biotechnology Reports xxx (2019) e00457

Fig. 5. Repeated-batch fermentation kinetics of A. nidulans in a stirred-tank bioreactor inoculated with cell pellets at 400 rpm and 2 vvm. (A) pH and dissolved oxygen (DO); (B) xylanase activity and protein concentration; (C) maltose and glucose concentrations.

 395 the initial batch period productivity. During the second phase of 396 fod, batch formontation, which started when modia was $\frac{396}{397}$ fed batch fermentation, which started when media was
 $\frac{397}{397}$ replaced at 168 h a wilapace productivity of 272 U/mL/d was ³⁹⁷ replaced at 168 h, a xylanase productivity of 373 U/mL/d was
³⁹⁸ observed which was a 21 % increase compared to the initial ³⁹⁸ observed, which was a 21 % increase compared to the initial
³⁹⁹ batch period productivity and a 14 % increase compared to the ³⁹⁹ batch period productivity and a 14 % increase compared to the $\frac{400}{2}$ second, phase of fed batch fermentation. Shang et al. [19] $\frac{400}{401}$ second phase of fed batch fermentation. Shang et al. [[19](#page-10-0)] $\frac{401}{401}$ reported that fed batch fermentation increased productivity of 401 reported that fed batch fermentation increased productivity of 402 vylanase production by *Pichia nastoris*. Dos Reis et al. [42] also 402 xylanase production by Pichia pastoris. Dos Reis et al. [[42](#page-10-0)] also
 403 reported that the maximum activity of a vulanase from Penicillium 403 reported that the maximum activity of a xylanase from *Penicillium*
 404 echinulatum was obtained under fed batch mode. Techanup et al. $\frac{404}{405}$ echinulatum was obtained under fed batch mode. Techapun et al. $\frac{405}{406}$ [[45](#page-10-0)] reported that repeated batch fermentation mode increased
 $\frac{406}{406}$ productivity of a vylance from by Streptomyces Ab 106. In future 406 productivity of a xylanase from by *Streptomyces* Ab 106. In future 407 such with the 4 midulane AEUMN GU10 strain, the second phase work with the A. nidulans AFUMN-GH10 strain, the second phase

of either fed batch or repeated batch fermentation should be 408
started at 06 b since no additional vulnages activity was produced started at 96 h since no additional xylanase activity was produced 409
ofter the first 06 h, Also, a second modia addition or replacement after the first 96 h. Also, a second media addition or replacement 410
should not be done for either repeated batch or fed batch should not be done for either repeated batch or fed batch 411
fermentation as productivity decreased greatly after the second fermentation as productivity decreased greatly after the second 412
media addition in fed batch and the second media replacement in media addition in fed batch and the second media replacement in 413
and the second media replacement in repeated batch ([Table](#page-9-0) 2). 414
Many bacteria yearsts and filamentous fungi can produce 415

Many bacteria, yeasts and filamentous fungi can produce 415
|anases $119.46.471$ Among the filamentous fungi the xylanases $[19,46,47]$ $[19,46,47]$ $[19,46,47]$ $[19,46,47]$. Among the filamentous fungi, the 416
converted the same density of the best for wilances production genus Aspergillus is considered the best for xylanase production 417
 $125,48,401$ In this study a vulanase was produced by resemblant [[35,48,49](#page-10-0)]. In this study, a xylanase was produced by recombinant 418
A nidulary in a STP under repeated batch mode changes a high 419 A. nidulans in a STR under repeated batch mode showing a high 419
whenever activity 1571 v/ml and preductivity of 272 U/ml (d when xylanase activity 1571 u/mL and productivity of 373 U/mL/d when

A. Abdella et al. / Biotechnology Reports xxx (2019) e00457 9

Table 1

Comparison of xylanase production by A. nidulans in a STR operated in different modes.

Table 2

Comparison of xylanase enzyme production in different bioreactors by Aspergillus and other microorganisms under different modes of fermentation.

421 compared with other studies in literature (Table 2). In addition, 422 critics a recombinent engines are distinguished after results in $\frac{422}{423}$ using a recombinant enzyme producing strain often results in $\frac{423}{423}$ excient and more economical purification stans since recombinant $\frac{423}{424}$ easier and more economical purification steps since recombinant $\frac{424}{424}$ strains often only excrete a single protein $[16]$ $[16]$.

⁴²⁵ 4. Conclusion

426 This work aimed to study the optimum conditions for xylanase
427 and usting in a STP using a recombinant A pidular setting Outcom 427 production in a STR using a recombinant A. nidulans strain. Oxygen
 428 ⁴²⁸ transfer into microbial cells during aerobic bioprocesses strongly
⁴²⁹ effects graduat formation by influencing matchelia gate. In a STD 429 affects product formation by influencing metabolic rate. In a STR
 430 $\frac{430}{431}$ there are two main factors, aeration and agitation, that influence 431 oxygen transfer rate. It was therefore important to consider the 432 implication of these fectors of the volumetric curves transfer 432 implication of these factors of the volumetric oxygen transfer ⁴³³ coefficient (k_La). It was shown that high k_La was preferred for $\frac{434}{2}$ continuous production but an agitation rate of 600 rpm had a harmful 434 enzyme production, but an agitation rate of 600 rpm had a harmful
 435 effect an enzyme production due to high charge stress on the ⁴³⁵ effect on enzyme production due to high shear stress on the $\frac{436}{436}$ exclusion organism A nidulary. The conditions that resulted in 436 production organism, A. nidulans. The conditions that resulted in 437 the greatest vulnase activity produced were 400 rpm agitation 2 ⁴³⁷ the greatest xylanase activity produced were 400 rpm agitation, 2
⁴³⁸ www.agration.rate.and ka of 38.6 h⁻¹ Using fed batch and repeated 438 vvm aeration rate, and k $_{\rm L}$ a of 38.6 h $^{-1}$. Using fed batch and repeated 439 batch cell cultivation strategies to limit substrate inhibition
440 increased with an enductivity compared to batch sultivation 440 increased xylanase productivity compared to batch cultivation.
 441 Yylanase productivity increased from 200 U/mJ/day with batch 441 Xylanase productivity increased from 309 U/mL/day with batch
442 cultivation to 327 U/mL/day with fed batch and 373 U/mL/day with 442 cultivation to 327 U/mL/day with fed batch and 373 U/mL/day with 443 repeated batch. This work showed that enhanced aeration and 443 repeated batch. This work showed that enhanced aeration and 444 aritation combined with a repeated batch cell cultivation mode $\frac{444}{445}$ agitation combined with a repeated batch cell cultivation mode
 $\frac{445}{445}$ improved vylanase production from this recombinant Aspergillus $\frac{445}{446}$ improved xylanase production from this recombinant Aspergillus $\frac{446}{446}$ nidulans strain.

447 5. Declaration of interests

448 The authors declare that they have no known competing
449 Geographic theoretic arguments and the first could have $\frac{449}{450}$ financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of interest 451

The authors do not have any conflict of interest. 452

⁴⁵³ CRediT authorship contribution statement

Asmaa Abdella: Conceptualization, Formal analysis, Investiga-
B. Writing original draft **Fernando Segato:** Conceptualization 455 tion, Writing - original draft. **Fernando Segato:** Conceptualization, 455
Eunding acquisition, Pesources Writing, review & editing **Mark P** 456 Funding acquisition, Resources, Writing - review & editing. **Mark R.** 456
Wilking: Concentualization, Supervision, Funding, acquisition, 457 **Wilkins:** Conceptualization, Supervision, Funding acquisition, 457 Project administration Writing a review & editing 458 Project administration, Writing - review & editing.

Acknowledgements and the state of the state o

The authors would like to acknowledge the Egyptian Cultural & 460 Educational Bureau for, the University of Nebraska Agricultural 461
Basearsh Division (536, Davis Bessarsh Foundation SPPINT, are 462 Research Division/São Paulo Research Foundation SPRINT pro-

Trans the São Paulo Research Foundation under process numbers 463 gram, the São Paulo Research Foundation under process numbers 463
2014/06022.6.2014/18714.2.and 2015/50025.0.and the Nebraska 464 $2014/06923-6$, $2014/18714-2$ and $2015/50025-0$ and the Nebraska 464
Corp. Checkoff, Presidential, Chair, Endowment, for previding 465 Corn Checkoff Presidential Chair Endowment for providing 465
funding for the work described in this manuscript funding for the work described in this manuscript.

References **Additional Additional A**

- [1] E. Topakas, P. Katapodis, D. Kekos, B.J. Macris, P. Christakopoulos, Production $\frac{1}{2}$ and partial characterization of xylanase by Sporotrichum thermophile under $\frac{468}{2}$ and partial characterization of xylanase by Sporotrichum thermophile under $\frac{468}{2}$ solid-state fermentation, World J. Microbiol. Biotechnol. 19 (2003) 195–198.
[2] K.S. Kumar, A. Manimaran, K. Permaul, S. Singh, Production of β-xylanase by a
- [2] K.S. Kumar, A. Manimaran, K. Permaul, S. Singh, Production of ^β-xylanase by ^a ⁴⁷⁰ Thermomyces lanuginosus MC ¹³⁴ mutant on corn cobs and its application in biobleaching of bagasse pulp, J. Biosci. Bioeng. 107 (2009) 494–498, doi:[http://](http://dx.doi.org/10.1016/j.jbiosc.2008.12.020) 472
dx.doi.org/10.1016/j.jbiosc.2008.12.020.
[3] M.L.T.M. Polizeli, A.C.S. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, D.S. Amorim,
- M.L.T.M. Polizeli, A.C.S. Rizzatti, R. Monti, H.F. Terenzi, J.A. Jorge, D.S. Amorini, 473
Xylanases from fungi: properties and industrial applications, Appl. Microbiol. 474
Ristasheel C7 (2005) 577 501 Biotechnol. 67 (2005) 577-591.
- [4] M. Azin, R. Moravej, D. Zareh, Production of xylanase by Trichoderma $\frac{1}{2}$ longibrachiatum on a mixture of wheat bran and wheat straw: optimization of $\frac{475}{2}$ or the straight of wheat bran and wheat straw: optimization of $\frac{475}{2}$ culture condition by Taguchi method, Enzyme Microb. Technol. 40 (2007) 475
801–805, doi:<http://dx.doi.org/10.1016/j.enzmictec.2006.06.013>. 477

10 A. Abdella et al. / Biotechnology Reports xxx (2019) e00457

- [5] S. Nagar, A. Mittal, V.K. Gupta, Enzymatic clarification of fruit juices (apple, ⁴⁷⁸ pineapple, and tomato) using purified Bacillus pumilus SV-85S xylanase, ⁴⁷⁹ Biotechnol. Bioprocess Eng. ¹⁷ (2012) ¹¹⁶⁵–1175.
- [6] T. Periasamy, K. Aiyasamy, M.R.F.M. George, M.R.F.M. George, T. Rathinavel, M. 480 Ramasamy, Optimization of xylanase production from Aspergillus flavus in
481 481 solid state fermentation using agricultural waste as a substrate, Int. J. Adv.
482 482 Interdiscip. Res. 4 (2017) 29, doi:<http://dx.doi.org/10.29191/ijaidr.2017.4.3.06>.
- [7] H.Y. Wang, B.Q. Fan, C.H. Li, S. Liu, M. Li, Effects of rhamnolipid on the cellulase 483

484 and xylanase in hydrolysis of wheat straw, Bioresour. Technol. 102 (2011)

484 6515–6521.
- [8] F. Garcia-Ochoa, E. Gomez, Bioreactor scale-up and oxygen transfer rate in ⁴⁸⁵ microbial processes: An overview, Biotechnol. Adv. ²⁷ (2009) ¹⁵³–176.
- [9] Y. Zhou, L.R. Han, H.W. He, B. Sang, D.L. Yu, J.T. Feng, X. Zhang, Effects of 486 agitation, aeration and temperature on production of a novel glycoprotein GP-
at the Character on production of a novel glycoprotein GP-
AB7 ⁴⁸⁷ ¹ by Streptomyces kanasenisi ZX01 and scale-Up based on volumetric oxygen ⁴⁸⁸ transfer coefficient, Molecules. ²³ (2018) 125.
- [10] D. Cașcaval, A.-I. Galaction, M. Turnea, Comparative analysis of oxygen transfer 10 490 broths, J. Ind. Microbiol. Biotechnol. 38 (2011) 1449–1466, doi[:http://dx.doi.](http://dx.doi.org/10.1007/s10295-010-0930-3)
491 [org/10.1007/s10295-010-0930-3.](http://dx.doi.org/10.1007/s10295-010-0930-3)
- [11] F. Mantzouridou, T. Roukas, P. Kotzekidou, Effect of the aeration rate and 492 agitation speed on β-carotene production and morphology of Blakeslea
493 agitation speed on β-carotene production and morphology of Blakeslea
493 between the morphology of Blakesleam Eng 493
trispora in a stirred tank reactor: mathematical modeling, Biochem. Eng. J. 10
494 (2003) 122-125-dei-http://dv.dei.erg/10.1016/51260-702X/01200166-0 (2002) 123-135, doi[:http://dx.doi.org/10.1016/S1369-703X\(01\)00166-8.](http://dx.doi.org/10.1016/S1369-703X(01)00166-8)
[12] J. Velasco, B. Oliva, E.J. Mulinari, L.P. Quintero, A. da Silva Lima, A.L. Gonçalves,
- [12] J. Velasco, B. Oliva, E.J. Mulinari, L.P. Quintero, A. da Silva Lima, A.L. Gonçalves, ⁴⁹⁵ T.A. Gonçalves, A. Damasio, F.M. Squina, A.M. Ferreira Milagres, A. Abdella, M.R. 496 Wilkins, F. Segato, Heterologous expression and functional characterization of
497 a GH10 endoxylanase from Aspergillus fumigatus var. Niveus with potential 498 a GH10 chuoxylanase from Aspergillus fumigatus var. Niveus with potential biotechnological application, Biotechnol. Rep. Amst. (Amst) 24 (2019) e00382, 499 doi:<http://dx.doi.org/10.1016/j.btre.2019.e00382>.
- [13] A. Abdella, F. Segato, M.R. Wilkins, Optimization of nutrient medium 500
 $\frac{1}{2}$
 $\frac{1}{2$
- [14] A.R. De Lima, T.M. Silva, B. Fausto, R. Almeida, F.M. Squina, D.A. Ribeiro, A.F. $[14]$ A.K. De Linia, I.M. Silva, B. Fausto, K. Alliedia, F.M. Squina, D.A. Kibelio, A.F.

Paes, F. Segato, R.A. Prade, J.A. Jorge, H.F. Terenzi, M. De Lourdes, T.M. Polizeli,

Heterologous expression of an Aspergillus ni
- [15] M.S. Lima, A.R.D.L. Damasio, P.M. Crnkovic, M.R. Pinto, A.M. Silva, J.C.R. Silva, F. 508 Segato, R.C. De Lucas, J.A. Demissio, P. M. Polizeli, Co-cultivation of Segato, R.C. De Lucas, J.A. Jorge, M.D.L.T.D.M. Polizeli, Co-cultivation of Segato, R. De Lucas, J.A. Despite the procession of the procession of 509 Aspergillus nidulans recombinant strains produces an enzymatic cocktail as
510 alternative to alkaline sugarcane bagasse pretreatment, Front Microbiol. 7
600 alternative to alternative to alternative pretreatment, Fron ⁵¹¹ (2016) ¹–9, doi:<http://dx.doi.org/10.3389/fmicb.2016.00583>.
- [16] N. Arifin, A. Lan, A.R.M. Yahya, R. Noordin, Purification of BmR1 recombinant 512 protein, Protein J. 29 (2010), doi[:http://dx.doi.org/10.1007/s10930-010-9281-](http://dx.doi.org/10.1007/s10930-010-9281-1)
 [1.](http://dx.doi.org/10.1007/s10930-010-9281-1) [17] protein J. 29 (2010), doi:http://dx.doi.org/10.1007/s10930-010-9281-

1. [17] pring, M.J. Gao, G.L. Hou, K.X. Liang, R.S. Yu, Z. Li
- $\begin{bmatrix} 11 \\ 17 \end{bmatrix}$, Ding, M.J. Gao, G.L. Hou, K.X. Lang, R.S. Yu, Z. Li, Z.I. Shi, Stabilizing portion by Pichia pastoris with an ethanol on-line
515 interferon-alpha production by Pichia pastoris with an ethanol on-li 515 measurement based DO-Stat glycerol feeding strategy, J. Chem. Technol.
516 metashad 80.(2014) 1048-1052 ⁵¹⁶ Biotechnol. ⁸⁹ (2014) ¹⁹⁴⁸–1953.
- [18] K. Markošová, L. Weignerová, M. Rosenberg, V. Křen, M. Rebroš, Upscale of ⁵¹⁷ recombinant ^α-L-rhamnosidase production by Pichia pastoris Mut(S) strain, ⁵¹⁸ Front. Microbiol. ⁶ (2015) 1140, doi[:http://dx.doi.org/10.3389/](http://dx.doi.org/10.3389/fmicb.2015.01140) ⁵¹⁹ [fmicb.2015.01140.](http://dx.doi.org/10.3389/fmicb.2015.01140)
- [19] T.T. Shang, D.Y. Si, D.Y. Zhang, X.H. Liu, L.M. Zhao, C. Hu, Y. Fu, R.J. Zhang,

520 Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris

through novel fed-batch strategy in high cell-density ferm 522 Biotechnol. 17 (2017) 55.
- [20] M.L. Shuler, F. Kargi, M. DeLisa, Bioprocess Engineering: Basic Concepts, 3rd 523 edition, Prentice Hall, Boston, 2017.
- [21] A. Abdella, T.E. Mazeed, A.F. El-Baz, S.T. Yang, Production of beta-glucosidase
from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating
fibrous bed bioreactors, Process Biochem. 51 (2016) 1331–1
- [22] F. Segato, A.R.L. Damasio, T.A. Goncalves, R.C. de Lucas, F.M. Squina, S.R. Decker, ⁵²⁶ R.A. Prade, High-yield secretion of multiple client proteins in Aspergillus, ⁵²⁷ Enzyme Microb. Technol. ⁵¹ (2012) ¹⁰⁰–106.
- [23] B. Couger, T. Weirick, A.R.L. Damasio, F. Segato, M.D.T.D. Polizeli, R.S.C. de ⁵²⁸ Almeida, G.H. Goldman, R.A. Prade, The genome of ^a thermo tolerant, ⁵²⁹ pathogenic albino Aspergillus fumigatus, Front. Microbiol. ⁹ (2018) 1827.
	- [24] A. Ricardo, D.L. Damasio, M.V. Rubio, T.A. Gonçalves, G.F. Persinoti, F. Segato, R.
- ⁵³⁰ A. Prade, F.J. Contesini, A.P. De Souza, M.S. Buckeridge, F.M. Squina, Xyloglucan ⁵³¹ Breakdown by Endo-xyloglucanase Family ⁷⁴ From Aspergillus fumigatus, ⁵³² Appl. Mirobiol. Biotechnol. ⁹⁸ (2017) ²⁸⁹³–2903.
- [25] A. Abdella, T.E.-S. Mazeed, S.-T. Yang, A.F. El-Baz, Production of β-glucosidase by

aspergillus niger on wheat bran and glycerol in submerged culture: factorial

534 aspergillus niger on wheat bran and glycerol in experimental design and process optimization, Curr. Biotechnol. 3 (2014) 197–206.
- [26] A. Ferreira, G. Pereira, J.A. Teixeira, F. Rocha, Statistical tool combined with $\frac{120 \text{ J}}{100 \text{ s}}$ analysis to characterize hydrodynamics and mass transfer in a bubble
state in a bubble
column Chem For $\frac{130(2012) \text{ J}}{100 \text{ s}}$ ⁵³⁶ column, Chem. Eng. J. ¹⁸⁰ (2012) ²¹⁶–228.
- [27] G.L. Miller, Use of dinitrosalicylic acid reagent for determination of reducing ⁵³⁷ sugar, Anal. Chem. ³¹ (1959) ⁴²⁶–428.
- [28] M.M. Bradford, Rapid and sensitive method for quantitation of microgram
538 quantities of protein utilizing principle of protein-dye binding, Anal. Biochem.
539 and the protein-dye of protein-dye binding, Anal. Bioche ⁵³⁹ ⁷² (1976) ²⁴⁸–254.
- [29] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination 540 of sugars, byproducts, and degradation products in liquid fraction process 540 of sugars, byproducts, and degradation products in liquid fraction process 541 samples, Golden Natl. Renew. Energy Lab. 11 (2006). 541 A.
- [30] A. Abdella, T.E.-S. Mazeed, S.-T. Yang, A.F. El-Baz, Production of ^β-glucosidase ⁵⁴² by Aspergillus niger on wheat bran and glycerol in submerged culture: factorial experimental design and process optimization, Curr. Biotechnol. 3 $\frac{543}{544}$ (2014) 197–206.
J. Gomes, H. Purkarthofer, M. Hayn, J. Kapplmüller, M. Sinner, W. Steiner,
- [31] J. Gomes, H. Purkarthofer, M. Hayn, J. Kapplmüller, M. Sinner, W. Steiner,
Production of a high level of cellulase-free xylanase by the thermophilic
fungus Thermomyces lanuginosus in laboratory and pilot scales using
 548 [http://dx.doi.org/10.1007/bf00164453.](http://dx.doi.org/10.1007/bf00164453)
- [32] G. Ghoshal, U.C. Banerjee, U.S. Shivhare, Xylanase production by Penicillium 549 citrinum in laboratory-scale stirred tank reactor, Chem. Biochem. Eng. Q. 28 ⁵⁵⁰ (2014) ³⁹⁹–408.
- [33] J. Sinha, J.T. Bae, J.P. Park, K.H. Kim, C.H. Song, J.W. Yun, Changes in morphology
of Paecilomyces japonica and their effect on broth rheology during production
of exo-biopolymers, Appl. Microbiol. Biotechnol. 56 (20
- [34] H. El Enshasy, E. Abuoul, Y. Helmy, Azaly, optimization of the industrial 553 production of alkaline protease by Bacillus licheniformis in different 553
production of alkaline protease by Bacillus licheniformis in different 554 production scales, Aust. J. Basic Appl. Sci. 2 (2008) 583-593
- [35] M. Michelin, A.M. de Oliveira Mota, M. de L.T. de M. Polizeli, D.P. da Silva, A.A. For Vicente, J.A. Teixeira, Influence of volumetric oxygen transfer coefficient (kLa)
Uicente, J.A. Teixeira, Influence of volumetric oxygen transfer coefficient (kLa)
556
the start production by Aspergillus niger van Tie tank and internal-loop airlift bioreactors, Biochem. Eng. J. 80 (2013) 19–26, doi:<http://dx.doi.org/10.1016/j.bej.2013.09.002>. 558 [36] R. Potumarthi, S. Ch, A. Jetty, Alkaline protease production by submerged
- Formentation in stirred tank reactor using Bacillus licheniformis NCIM-2042:

fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042:

560 650 effect of aeration and agitation regimes, Biochem. Eng. J. 34 (2007) 185–192, 561 doi:<http://dx.doi.org/10.1016/j.bej.2006.12.003>.
- [37] M.S. Bhattacharyya, A. Singh, U.C. Banerjee, Production of carbonyl reductase 6.5. biatracharyya, A. Shigh, O.C. bancijec, Froduction of carbonyi reductase
by Geotrichum candidum in a laboratory scale bioreactor, Bioresour. Technol.
563 ⁵⁶³ ⁹⁹ (2008) ⁸⁷⁶⁵–8770.
- [38] R.R. Singhania, R.K. Sukumaran, K.P. Rajasree, A. Mathew, L. Gottumukkala, A. Fandey, Properties of a major beta-glucosidase-BGL1 from Aspergillus niger
Pandey, Properties of a major beta-glucosidase-BGL1 from Aspergillus niger
NII-08121 expressed differentially in response to carbon sources, Proces ⁵⁶⁶ Biochem. ⁴⁶ (2011) ¹⁵²¹–1524.
- [39] J.F. de Burkert, R.R. Maldonado, F. Maugeri Filho, M.I. Rodrigues, Comparison of 567 chem. Technol. Biotechnol. 80 (2005) 61–67, doi[:http://dx.doi.org/10.1002/](http://dx.doi.org/10.1002/jctb.1157)
Chem. Technol. Biotechnol. 80 (2005) 61–67, doi:http://dx.doi.org/10.1002/
169 sictb.1157.
169 sictb.1157.
- [40] C. Bandaiphet, P. Prasertsan, Effect of aeration and agitation rates and scale-up ⁵⁷⁰ on oxygen transfer coefficient, k(L)a in exopolysaccharide production from Enterobacter cloacae WD7, Carbohydr. Polym. 66 (2006) 216–228.
[41] M. Fenice, P. Barghini, L. Selbmann, F. Federici, Combined effects of agitation
- M. Fence, F. Barginin, E. Selbmann, F. Federici, Combined effects of agrication of the chitrinolytic enzymes production by the Antarctic fungus 572
and aeration on the chitrinolytic enzymes production by the Antarctic fung
- [42] L. Dos Reis, R.C. Fontana, P. da Silva Delabona, D.J. da Silva Lima, M. Camassola,
J.G. da Cruz Pradella, A.J.P. Dillon, Increased production of cellulases and
xylanases by Penicillium echinulatum S1M29 in batch and f 576 Bioresour. Technol. 146 (2013) 597–603, doi:[http://dx.doi.org/10.1016/j.](http://dx.doi.org/10.1016/j.biortech.2013.07.124)
Bioresour. Technol. 146 (2013) 597–603, doi:http://dx.doi.org/10.1016/j. 577
[43] M. Muller, F. Segato, R.A. Prade, M.R. Wilkins, High-yield reco
- [43] M. Muller, F. Segato, R.A. Prade, M.R. Wilkins, High-yield recombinant xylanase ⁵⁷⁸ production by Aspergillus nidulans under pyridoxine limitation, J. Ind.
- Microbiol. Biotechnol. 41 (2014) 1563–1570.
R.S.S. Teixeira, F.G. Siqueira, M.V. de Souza, E.X. Ferreira Filho, E.P. da Silva Bon, [44] R.S.S. Teixeira, F.G. Siqueira, M.V. de Souza, E.X. Ferreira Filho, E.P. da Silva Bon, ⁵⁸⁰ Purification and characterization studies of ^a thermostable ^β-xylanase from ⁵⁸¹ Aspergillus awamori, J. Ind. Microbiol. Biotechnol. ³⁷ (2010) ¹⁰⁴¹–1051.
- [45] C. Techapun, N. Poosaran, M. Watanabe, K. Sasaki, Optimization of aeration and E. Fechapun, N. Poosaran, M. Vadanabe, N. Sasaki, Ophilization of actation and
agitation rates to improve cellulase-free xylanase production by
thermotolerant Streptomyces sp. Ab106 and repeated fed-batch cultivation
584
5 ⁵⁸⁴ using agricultural waste, J. Biosci. Bioeng. ⁹⁵ (2003) ²⁹⁸–301, doi[:http://dx.](http://dx.doi.org/10.1016/S1389-1723(03)80033-6) ⁵⁸⁵ [doi.org/10.1016/S1389-1723\(03\)80033-6](http://dx.doi.org/10.1016/S1389-1723(03)80033-6).
- [46] R. Bandikari, U. Katike, N.S. Seelam, V.S.R. Obulam, Valorization of de-oiled 586 cakes for xylanase production and optimization using central composite 586
design by Trichoderma koeningi isolate, Turkish J. Biochem. Biyokim. Derg. 42 ⁵⁸⁸ (2017) ³¹⁷–328.
- [47] H. Moteshafi, S.M. Mousavi, M. Hashemi, Enhancement of xylanase
productivity using industrial by-products under solid suspended
fermentation in a stirred tank bioreactor, with a dissolved oxygen constant
control stra
- [48] Y. Bakri, M. Al-Jazairi, G. Al-Kayat, Xylanase production by a newly isolated ⁵⁹³ Aspergillus niger SS7 in submerged culture, Polish J. Microbiol. ⁵⁷ (2008) ²⁴⁹– ⁵⁹⁴ 251.
- [49] Y. Cao, D.J. Meng, J. Lu, J. Long, Statistical optimization of xylanase production
by Aspergillus niger AN-13 under submerged fermentation using response
surface methodology, African J. Biotechnol. 7 (2008) 631–638. 5
- [50] Y. Bakri, A. Mekaeel, A. Koreih, Influence of agitation speeds and aeration rates ⁵⁹⁷ on the Xylanase activity of Aspergillus niger SS7, Braz. Arch. Biol. Technol. ⁵⁴ ⁵⁹⁸ (2011) ⁶⁵⁹–664, doi:<http://dx.doi.org/10.1590/s1516-89132011000400003>.
- [51] S.W. Kim, S.W. Kang, J.S. Lee, Cellulase and xylanase production by Aspergillus ⁵⁹⁹ niger KKS in various bioreactors, Bioresour. Technol. ⁵⁹ (1997) ⁶³–67, doi: [http://dx.doi.org/10.1016/S0960-8524\(96\)00127-7.](http://dx.doi.org/10.1016/S0960-8524(96)00127-7)