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Abstract
High-throughput phenotyping systems provide abundant data for statistical analysis

through plant imaging. Before usable data can be obtained, image processing must

take place. In this study, we used supervised learning methods to segment plants

from the background in such images and compared them with commonly used

thresholding methods. Because obtaining accurate training data is a major obstacle to

using supervised learning methods for segmentation, a novel approach to producing

accurate labels was developed. We demonstrated that, with careful selection of

training data through such an approach, supervised learning methods, and neural

networks in particular, can outperform thresholding methods at segmentation.

High throughput plant phenotyping is a broad umbrella. The

field includes researchers working in the fields of plant biol-

ogy, engineering, computer science, and statistics. A com-

mon goal to make the collection of plant trait data as effi-

cient and scalable as the collection of plant genetic data unites

the field (Fahlgren, Gehan, & Baxter, 2015; Miller, Parks, &

Spalding, 2007). Engineers have made exceptional progress in

automating the collection of images and sensor data (Chéné

et al., 2012; Lin, 2015; McCormick, Truong, & Mullet, 2016;

Peñuelas & Filella, 1998; Xiong et al., 2017). Automated

systems can be deployed under both controlled environment

and field conditions. These systems can generate hundreds or

thousands of images per day. However, raw sensor data gen-

erally cannot be used directly in downstream analyses. The

data must first be processed to generate numerical measure-

ments of specific plant traits (Habier, Fernando, Kizilkaya, &

Garrick, 2011; Miao, Yang, & Schnable, 2019; Xavier, Hall,

Casteel, Muir, & Rainey, 2017).

Abbreviations: LDA, linear discriminant analysis; QDA, quadratic

discriminant analysis; RGB, red–green–blue.
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Extracting accurate quantitative measurements of plant

traits from raw sensor and image data is currently a bottle-

neck. Algorithms for measuring a range of plant traits depend

on correct image segmentation. All pixels in the images

considered here are segmented into one of two classes: plant

or background. As such, the end result of our segmentation is

a binary image. To create a binary image as in Figure 1b all

background pixels are set to 0 while all plant pixels are set to

1. This binary image may be either analyzed directly or used

to extract plant pixels from an image for downstream analysis.

A number of obstacles make the tasks of image segmentation

and evaluating the accuracy of image segmentation challeng-

ing. The first complexity is introduced by the background (the

non-plant pixels within the image). When the background

is of a single type, identifying a single metric to separate

plant and non-plant pixels can be straightforward (Figure 2c

for instance). However, even when plants are imaged under

greenhouse conditions, additional background complexity

is often unavoidable (Figure 2g for instance). In some set-

tings, reflective surfaces may mimic the plant (Figure 2e for

instance). As with the physical systems producing the images,

much work has been done to facilitate accurate, efficient plant
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segmentation. Some of the commonly used approaches are

described below.

One popular method for image segmentation is frame

differencing (Choudhury, Bashyam, Qiu, Samal, & Awada,

2018). In this approach, an image containing the background

is used as a reference. Then frame differencing identifies all

pixels in a given image that are different from the correspond-

ing pixels in the background image. One challenge of such

an approach is ensuring that all images are scaled in exactly

the same way as the reference image. A more general chal-

lenge arises in finding a usable reference image. In many high-

throughput systems, including the system that produced the

images for this study, frame differencing is possible because

the background never changes and only the scaling of the

images is of concern. However, if images are taken with dif-

ferent backgrounds, say in a field, frame differencing is a less

reasonable approach.

A different approach often used is the K-means algorithm

(Johnson & Wichern, 2002). With each pixel functioning as

an observation, the red–green–blue (RGB) pixel intensities

are the features used to distinguish between classes. In early

explorations of these maize (Zea mays L.) images, nothing

could segment the images as well as K-means with three

classes when the plants were small. However, when the plants

were large enough that dark background could be seen in

the images, K-means could no longer distinguish between the

green plant and the dark background (we tried using between

2 and 10 classes, and this was true regardless). So in this case,

K-means was not a feasible, general approach. Alternatively,

information from other color schemes such as hue–saturation–

value (HSV) or LAB could be incorporated, as is often done

(Klukas, Chen, & Pape, 2014). Such an approach was not con-

sidered for this study.

A final class of methods to consider are thresholding meth-

ods. The general idea of thresholding is that all intensities

above a certain threshold value are set to be one class while

the intensities below are set to the other class. Like K-means,

other color spaces can be used with thresholding methods, but

F I G U R E 1 (a) The original plant image and

(b) the original image segmented to a binary image by means of a

neural network

Core Ideas
• Machine learning methods can outperform tradi-

tional plant segmentation methods.

• We propose a new approach to obtaining training

data for image segmentation.

• We have obtained excellent segmentation on

greenhouse images.

the principal idea is the same regardless of space (Hartmann,

Czauderna, Hoffmann, Stein, & Schreiber, 2011). Because

RGB images have three channels containing red, green, and

blue intensities, thresholding methods typically operate on

grayscale images, which is a weighted average of the three

channels. In the most simple (although not practical) case, the

weights used are (1/3, 1/3, 1/3) so that the grayscale inten-

sity at a certain pixel is the (unweighted) average of the red,

green, and blue intensities of the corresponding pixel in the

RGB image. Because darker colors have lower intensities, val-

ues below the given threshold in the grayscale image will be

considered as the plant class, i.e., set to 1, and the pixels with

higher average intensities will be set to 0 for the binary image.

This most basic implementation of a thresholding method,

where this set of weights is used to transform the RGB image

to a grayscale image and a single threshold value is used, will

be referred to as binary thresholding. Other weights might be

more desirable for the plant segmentation. Ge, Bai, Stoerger,

and Schnable (2016) used green-contrast thresholding, which

applies the weights (−1, 2,−1)/
√

6 to obtain the intensity con-

trast between green and the average of red and blue.

Post-processing of a segmented image can take place after

using any segmentation algorithm. Unwanted background

noise can be removed by methods such as median blur, which

uses the median intensity in a small neighborhood of pixels

to potentially reassign pixel values. Opening and closing

are morphological operations that are also used to remove

unwanted background noise as well as to fill in holes in the

plant. These use the operations of erosion and dilation, which

are similar in concept to median blur (Davies, 2012). A host

of other post-processing approaches can also be applied. See,

for instance, Gehan et al. (2017), Hamuda, Glavin, and Jones

(2016), Hartmann et al. (2011), Scharr et al. (2016), and

Vibhute and Bodhe (2012).

Because thresholding methods are the most feasible

of the discussed segmentation approaches for the images

considered here, we used thresholding in the RGB color

space as a comparison with the supervised learning methods.

For thresholding methods, the choice of threshold level is

critical. Threshold levels that are too small or too large will

produce binary images with either too much background

noise or too many missing plant pixels. Much work has been
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F I G U R E 2 Raw red–green–blue (RGB) images of maize plants captured at the Nebraska Greenhouse Innovation Complex. On each day, each

plant was imaged from a number of different angles (by rotating the plant) to capture the overall morphology of that individual: (a) LH195/PHN82,

36◦ (angle), 26 May 2016; (b) LH195/PHN82, 144◦, 1 June 2016; (c) PHW52/LH185, 0◦, 3 June 2016; (d) PHW52/LH38, 108◦, 11 June 2016; (e)

PHW52/LH38, 72◦, 13 July 2016; (f) PHW52/LH185, 0◦, 13 July 2016; (g) LH195/PHN82, 72◦, 19 July 2016; and (h) PHW52/LH38, 36◦, 13 July

2016

F I G U R E 3 (a) The original image, (b) the binary image resulting from binary thresholding, (c) the binary image from mean adaptive

thresholding, and (d) the result of Otsu thresholding

done to determine how to choose a reasonable threshold

level. In this study, we considered one popular approach:

Otsu thresholding (Otsu, 1979; Sezgin & Sankur, 2004). By

comparing histograms, Otsu’s method finds the threshold that

minimizes the within-class variance. Equivalently, it finds

a threshold that maximizes the variance between the plant

and background class. Furthermore, it can provide thresholds

separately for the red, green, and blue channels.

Most thresholding methods consider only one set of

weights. Although the weights (1/3, 1/3, 1/3) can effectively

separate the pixels with low and high intensities, it is diffi-

cult to distinguish between the plant pixels and the dark back-

ground (see Figure 3b for example). This shortcoming can be

alleviated to some extent by simultaneously applying green-

contrast thresholding. Motivated by this, we also considered

an alternative thresholding approach that uses two sets of

weights with separate thresholds to help distinguish green pix-

els from other dark-colored pixels. It is also worth mentioning

that some approaches seek to reduce or eliminate noisy mis-

classification by identifying the largest connected component

of plant pixels or a minimum number of connected plant pix-

els. However, this approach can introduce its own challenges.

One example is that sometimes maize leaves photographed

edge on will be less than one pixel wide, producing orphaned

leaf segments (Figure 2d for instance, contains a leaf pho-

tographed edge on that appears very thin).

The main purpose of this study was to introduce supervised

learning for plant segmentation. Supervised learning is a

statistical method that predicts the class of the unlabeled data

based on a model constructed using a set of labeled training

data. In this study, the training data included the RGB intensi-

ties as well as the pixel labels. This creates a difficult obstacle

if supervised machine learning methods are to be used for

classifying pixels. That is, all pixels that are to be used to train

the model must first be classified as either 0 or 1. Even if the

images are scaled down from their original size (2056 by 2454

pixels) to, say, 256 by 256 pixels, more than 65,000 pixels

must be labeled. Assuming there was manpower available to

individually label this many pixels, it may not be possible for

the human eye to correctly identify the class to which a pixel
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belongs. Obtaining accurate labels for pixels makes image

segmentation a difficult problem in general. Because thresh-

olding methods work with only the pixel intensity values, the

challenge of obtaining labels makes the simple thresholding

methods attractive in practice. While the Pixel Inspector in

ImageJ (Gehan et al., 2017) and other similar tools allow

users to select just the desired pixels from the image, it is

advantageous to automate this process. In this study, we used

a method based on K-means clustering to obtain accurate

labels for the training data in a more automated fashion.

Several different classification methods were trained on the

labeled data to improve on current thresholding methods.

The approaches tested include linear discriminant analysis

(LDA), quadratic discriminant analysis (QDA), random

forest, support vector machine, and neural networks. Several

of these approaches can scale to more general problems of

image segmentation into more than two categories.

Linear and quadratic discriminant analysis are classical sta-

tistical classification methods that work best when the data

come from Gaussian distributions. In two-class classification

problems, LDA assumes that the two classes have the same

variance structure, while QDA allows for different variance

structures. Both methods can also be adjusted to account for

different proportions of class membership in the data as well

as varying costs of misclassification. (Johnson & Wichern,

2002). The random forest algorithm is an improvement on

decision trees for classification. Decision trees are prone to

high variance (Hastie, Tibshirani, & Friedman, 2009), and the

random forest alleviates this problem by combining a large

number of decision trees trained on bootstrapped samples

of the data. As with LDA and QDA, random forests can be

adjusted to account for different proportions of class mem-

bership in the data (Breiman, 2001). Support vector machines

seek to distinguish between classes by finding the hyperplane

(a line in the two-dimensional case or a plane in the three-

dimensional case) that maximizes the distance between the

closest points to that hyperplane in each class (Hsu, Chang, &

Lin, 2016; Suykens & Vandewalle, 1999; Wahba, 1999). Neu-

ral networks use a feed-forward architecture of layers contain-

ing nodes to transform the input (pixel intensities in this case)

into the output (class labels) (Hastie et al., 2009). There are

numerous methods for training neural networks and a host of

choices (e.g., number of layers, number of nodes in each layer)

that must be made to train a network. A description of the neu-

ral network that was used for segmentation is given below.

1 MATERIALS AND METHODS

1.1 Reporting of pixel intensity values

Raw images used in this analysis stored intensity values for the

red, green, and blue channel with eight bits each, correspond-

ing to integer values between 0 and 255. All values reported

here have been rescaled by dividing per pixel per channel

intensity values by 255, producing floating point numbers

between 0 and 1.

1.2 Segmentation by thresholding

We considered three common thresholding methods. The first

method used is the most basic: binary thresholding (Davies,

2012) with weights (1/3, 1/3, 1/3). After converting the image

in Figure 3a into a grayscale image, all intensities below

0.25 were classified as plant while the rest were classified

as background. Note that 0.25 was chosen as the threshold

value after a parameter search in which the binary images

produced by other possible threshold values were examined.

The threshold values compared started at 0.10 and increased

by 0.05 up to 0.90.

Because it uses one threshold for the entire image, binary

thresholding is known as a global thresholding method. Mean

adaptive thresholding (Davies, 2012; Sezgin & Sankur, 2004),

which is a local method, looks at smaller portions, or win-

dows, of the image independently to determine an appropri-

ate threshold in each smaller window. The window size has

to be determined ahead of time, and again this was done by

trial and error. Small window sizes led to poor segmentation.

Local thresholding methods are often most effective when the

images contain nonuniform lighting (Davies, 2012). Since the

light in the image does not make any part of the plant appear

lighter, it makes sense that this method performs about the

same as the other two methods considered here.

The final thresholding method seen in Figure 3 is Otsu

thresholding, which is another global method in which the

threshold is chosen to minimize the within-class variance of

the pixel intensities.

1.3 Double-criteria thresholding

The first step in double-criteria thresholding is to create a

binary image through binary thresholding with weights (1/3,

1/3, 1/3) and t1 as the threshold. Pixels with average intensi-

ties smaller than t1 are labeled as background. A relatively

small value of t1 is used to retain the plant and eliminate

the dark background. The second step is the green-contrast

thresholding with weights (−1/
√

6, 2/
√

6, −1/
√

6) on those

pixels labeled as 1 from the first step. (Note that the
√

6 in

the denominators simply makes the weights sum to 1).

In the resulting grayscale image, plant pixels appear brighter

because their green intensity is higher than the red and blue

intensities. Then, a final binary image is created using t2 as

the second threshold value. In summary, the pixels identified

as plant by the double-criteria thresholding method are those
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with an average intensity less than t1 and green-contrast inten-

sity larger than t2.

1.4 Obtaining training data by K-means
clustering

To use supervised machine learning methods for image seg-

mentation, accurate labels must first be obtained for the train-

ing data. To obtain labels for background pixels, images were

cropped to include only the background. To obtain training

examples for the plant class, the images are first cropped

to contain only the plant and white background. Once this

is done, K-means clustering (Hastie et al., 2009; Johnson &

Wichern, 2002) with K = 3 classes and Euclidean distance

metric is performed on the cropped image. All pixels in the

resulting dark color class then become training examples for

the plant class.

By cropping the background and using K-means as

described here, a set of usable, labeled training data is

obtained. This dataset contains 1,027,063 training examples.

Because the features therein contain information about one

pixel per observational unit, this will be referred to as the

single pixel (SP) dataset.

1.5 Neighborhood information

In the SP dataset, the only available features are the pixel

intensity values for the given observation. This assumes

independence of class among the pixels. Intuitively, however,

this is not the case. In the plant images under consider-

ation, it is more likely that plant pixels are next to plant

pixels and background pixels are next to background pix-

els. This dependence can be incorporated into the data.

This is done by including neighborhood information for

each observation.

For a given pixel in the neighborhood (NB) dataset, a 3 by 3

pixel box is created with the given pixel at the center. The red,

green, and blue intensities are recorded for each of the nine

pixels in the box, which results in 27 features per observation.

With this sole exception, the NB dataset was created in an

identical fashion to the SP dataset (described above).

1.6 Segmentation by classification

In total, five supervised classification methods were trained

using the datasets described above. These methods were linear

discriminant analysis, quadratic discriminant analysis, sup-

port vector machine, random forest, and neural network. The

details relating to implementing each of these methods are

provided as follows.

1.6.1 Linear and quadratic
discriminant analysis

The lda and qda functions from the MASS R package were

used to train these methods. For both linear and quadratic

discriminant analysis, equal costs of misclassification were

used. The proportions of background pixels and plant pixels

in the datasets were used as the prior probabilities of class

membership.

1.6.2 Random forest

Brieman’s random forest algorithm as contained in the ran-

domForest function of the randomForest R package was used

with 500 trees and replacement sampling (Breiman, 2001;

Hastie et al., 2009). For training on the SP datasets, one

randomly chosen feature was used at each split. On the NB

datasets, five randomly chosen features were included at each

split. The minimum terminal node size was set to one. As with

LDA and QDA, the proportions of pixels in each class were

used as prior probabilities of class membership.

1.6.3 Support vector machine

The support vector machines were trained using the ksvm

function in the kernlab R package. We used the radial basis

function kernel with its default parameter and took the cost

parameter C to be 1. This parameter C penalizes misclassi-

fication and thus aids the algorithm in training the classifier

(Hastie, et al., 2009).

1.6.4 Neural network

The Keras programming framework in R was used to train the

neural networks and obtain the relevant error rates. For both

SP and NB datasets, the same network architecture (Hastie

et al., 2009) was used. The only difference was that the input

layer for the SP network had three nodes while the NB net-

work’s input layer had 27 nodes. The first hidden layer had

1024 neurons, while the second layer had 512. A ReLU acti-

vation function (LeCun, Bengio, & Hinton, 2015) was used

between the input layer and the first hidden layer as well

as between the first and second hidden layers. The output

layer had one neuron, which corresponds with the predicted

probability of an example belonging to the plant class. The

sigmoid activation function (LeCun et al., 2015) was used

between the second hidden layer and the output layer. The

binary cross-entropy loss function was used with the Adam

optimization algorithm (Kingma & Ba, 2014) to train the net-

work. The Adam optimizer used a learning rate of α = 0.001

and the recommended values for the two exponential decay
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rates, β1 = 0.9 and β2 = 0.999. The batch size was 1024

with 20 training epochs. In each epoch, 1% of the training

data was held out as validation data. Furthermore, as a reg-

ularizing effect, dropout (Wager, Wang, & Liang, 2013) was

used at each hidden layer with drop probabilities of 0.45 and

0.35, respectively.

Finally, to increase the precision of this method, a predic-

tion threshold of 0.95 was used. That is, pixels were only clas-

sified as plant pixels if the estimated probability of belonging

to the plant class was at least 95%. This led to a decrease in

the number of misclassified background pixels without overly

increasing the number of misclassified plant pixels. This was

only observed with the neural network.

1.7 Method comparison

Because of the computationally intensive nature of the ran-

dom forest and support vector machine algorithms, these two

methods were not able to be trained on the complete dataset

on a single personal computer. Thus, to compare these classi-

fication methods, 51,353 observations (approximately 5% of

the total dataset) were randomly selected to be a smaller train-

ing dataset. An additional 10,000 observations were randomly

selected to be testing data. The same observations were drawn

from both the SP and NB datasets. Because the observations

were drawn at random, the proportions of plant pixels and

background pixels in the selected training and testing data are

approximately the same as their proportions in the full dataset,

which are 2.52 and 97.48%, respectively. For a comprehensive

comparison, more balanced training and testing sets with 60%

background pixels and 40% plant pixels, which contained the

same number of observations (51,353) as the randomly drawn

unbalanced datasets, were constructed.

To compare method performance, each of the five super-

vised learning methods was fitted on the reduced training

datasets (both SP and NB with unbalanced and balanced

data). Then these five methods along with double-criteria

thresholding were compared with respect to false positive

rates, false negative rates, and overall misclassification rates

on the training and testing sets, giving all rates as percentages.

The false positive rate is the number of background pixels

misclassified as plant pixels divided by the total number of

background pixels, and the false negative rate is the number

of plant pixels misclassified as background divided by the

total number of plant pixels. The overall misclassification rate

is the total number of misclassified pixels divided by the total

number of pixels. Note that thresholding methods use only

the single pixel information without the neighborhood inten-

sities. Thus, the training and testing errors for double-criteria

thresholding were calculated on the reduced SP datasets only.

2 RESULTS

2.1 Image segmentation by thresholding

The results of the binary thresholding with weights (1/3, 1/3,

1/3), the mean adaptive thresholding with a window size of

1000 by 1000 pixels, and the Otsu thresholding method are

reported in Figures 3b–d, respectively, on the plant image

as shown in Figure 3a For the Otsu thresholding method,

pixels in the original image that had red intensity <0.5137,

green intensity <0.5215, and blue intensity <0.4902 were

classified as plant while all others were classified as back-

ground. As can be seen in Figure 3 none of the three

thresholding methods perform well. While they can clearly

identify the plant, they are misclassifying far too many

background pixels as plant pixels. Thus none of the resulting

binary images from these methods would provide accurate

plant measurements.

The results of double-criteria thresholding with various

threshold levels are reported in Figure 4 Using t1 = 30/255,

Figure 4 shows the effect of changing t2 in green contrast for

the same plant image in Figure 3a As seen in Figure 4 our

proposed double-criteria thresholding clearly outperforms the

other three thresholding methods considered, but the segmen-

tation is still not perfect. The binary images illustrate well

the relationship between the second threshold, t2, and the two

types of errors that can prevent the image from being used for

accurate measurement of the plant. Areas where either type

of misclassification has occurred are enclosed in red. As t2
increases, there are fewer incorrectly classified background

pixels but more incorrectly classified plant pixels. The image

in Figure 4a clearly has too many background pixels classi-

fied as plant to be useful. The images in Figures 4c and 4d,

on the other hand, have too many misclassified plant pixels.

The image in Figure 4b appears to strike a balance between

the two types of errors.

2.2 Training data acquisition

Examples of cropped portions of the original images that

contain only background are seen in Figures 5a and 5b.

Classifying pixels from such cropped images as background

provided 1,001,226 examples for the background class.

Figure 5c contains a cropped image with only plant and

white background, while Figure 5d contains the corre-

sponding image after clustering by K-means. The white

pixels of this binary image then become the training

examples for the plant class. In total, 25,837 labeled train-

ing examples for the plant class were obtained through

this method.
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F I G U R E 4 Binary images obtained by double-criteria thresholding with threshold t1 = 30/255 and t2 values of (a) 0.05, (b) 0.1, (c) 0.12, and

(d) 0.15, respectively. The areas enclosed in red identify misclassified pixels. Note that the original image used is the same as in Figure 3a

F I G U R E 5 (a,b) Images cropped to contain only background; (c) an image cropped to contain only plant and white background so that

K-means can more easily segment the image; and (d) the binary version of the same image segmented by K-means

T A B L E 1 Method comparison on unbalanced reduced data. False positive (FP) is the number of background pixels misclassified as plant

pixels divided by the total number of background pixels. False negative (FN) is the number of plant pixels misclassified as background pixels divided

by the total number of plant pixels. The single pixel (SP) dataset has three features per observation (pixel): the red, green, and blue pixel intensity

values. The neighborhood (NB) dataset contains the neighborhood information: 27 features per pixel

Training Testing
Method Dataset Error FP FN Error FP FN
DCT SP 0.0188 0.0082 0.4249 0.0188 0.0076 0.4402

LDA SP 0.0073 0.0045 0.1131 0.0089 0.0060 0.1197

LDA NB 0.0039 0.0016 0.0918 0.0035 0.0008 0.0205

QDA SP 0.0026 0.0006 0.0781 0.0025 0.0007 0.0695

QDA NB 0.0119 0.0073 0.1889 0.0119 0.0070 0.1969

RF SP 0.0006 0.0001 0.0212 0.0021 0.0003 0.0695

RF NB 0 0 0 0.0006 0 0.0232

SVM SP 0.0019 0.0004 0.0584 0.0022 0.0001 0.0121

SVM NB 0.0002 0.0001 0.0038 0.0018 0 0.0695

NN SP 0.0051 0.0001 0.1942 0.0046 0.0001 0.1737

NN NB 0.0004 0.0002 0.0083 0.0006 0.0002 0.0154

Note. DCT, double-criteria thresholding; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; RF, random forest; SVM, support vector machine; NN,

neural network.

2.2.1 Method comparison on reduced
training and testing data

Using the full data containing 1,027,063 pixels, the reduced

unbalanced training set with 51,353 pixels was constructed,

consisting of 50,035 background pixels and 1,318 plant pixels.

The reduced unbalanced testing dataset consisted of 10,000

pixels with 9,741 as background and 259 as plant. We also

constructed a more balanced reduced training dataset con-

taining the same number (51,353) of pixels, with 20,542 as

plant and 30,811 as background, and a more balanced reduced

testing set with 6000 background pixels and 4000 plant pix-

els. These datasets were used to evaluate the performance

of double-criteria thresholding and the five supervised learn-

ing methods for plant vs. not-plant classification. For double-

criteria thresholding, a parameter search was conducted on the
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T A B L E 2 Method comparison on the balanced reduced datasets: the SPB dataset contains single pixel balanced data and the NBB dataset

contains neighborhood balanced data. False positive (FP) is the number of background pixels misclassified as plant pixels divided by the total number

of background pixels. False negative (FN) is the number of plant pixels misclassified as background pixels divided by the total number of plant pixels

Training Testing
Method Dataset Error FP FN Error FP FN
DCT SPB 0.0695 0.0578 0.0871 0.0678 0.0588 0.0813

LDA SPB 0.0213 0.0214 0.0212 0.0206 0.0207 0.0205

LDA NBB 0.0109 0.0094 0.0131 0.0098 0.0078 0.0128

QDA SPB 0.0288 0.0224 0.0385 0.0264 0.0195 0.0368

QDA NBB 0.0456 0.0079 0.1022 0.0462 0.0088 0.1023

RF SPB 0.0045 0 0.0112 0.0126 0.0072 0.0208

RF NBB 0 0 0 0.0016 0.0025 0.0003

SVM SPB 0.0143 0.0081 0.0235 0.0140 0.0085 0.0223

SVM NBB 0.0003 0.0004 0.0001 0.0010 0.0017 0

NN SPB 0.0296 0.0009 0.0727 0.0275 0.0010 0.0673

NN NBB 0.0007 0.0005 0.0011 0.0010 0.0007 0.0015

Note. DCT, double-criteria thresholding; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; RF, random forest; SVM, support vector machine; NN,

neural network.

training set to find the best value for the thresholds based on

minimizing the misclassification error on the reduced train-

ing datasets. On the unbalanced dataset, values of t1 = 0.2 and

t2 = 0.135 were used. For the balanced data, the threshold val-

ues were t1 = 0.1 and t2 = 0.085. Tables 1 and 2 contain the

results of this comparison with regard to error rates for the

reduced unbalanced and balanced datasets, respectively. All

error rates were rounded to four decimal places.

Note from Tables 1 and 2 that, first, using either the SP or

NB datasets, double-criteria thresholding can be significantly

improved on by all of the classification methods under

consideration.

Second, the false negative error rates from the balanced

reduced data were generally better than the corresponding

error rates from the unbalanced reduced data. However, the

results on false positive error rates were opposite. This is

because the number of plant pixels is much larger in the

balanced training data than the unbalanced training data. The

training for plant pixels was better under the balanced training

dataset. The same argument also explains that the training

for background pixels was better under the unbalanced

training dataset.

Third, for all of the classification methods except for

quadratic discriminant analysis, including neighborhood

information led to better classification as evidenced by both

the training and testing errors. The false positive and false neg-

ative rates also generally improved when including neighbor-

hood information. It is also interesting to note that even though

training and testing error rates for the support vector machine,

random forest, and neural network trained on the balanced

reduced SP set were noticeably higher than the correspond-

ing rates on the unbalanced reduced set, the rates on both the

balanced and unbalanced reduced NB sets were comparable.

Finally, the best classification was obtained by the more

sophisticated methods—support vector machine, random for-

est, and neural network. Using the testing error as the most

important criteria, the random forest and neural network

trained on the unbalanced reduced NB dataset outperform all

of the other methods. Of the 10,000 pixels in the reduced test-

ing set, both of the methods only made six misclassification

errors. On the balanced testing dataset, the performance of

neural network was better than random forest. Also notice that

the support vector machine trained on either reduced dataset

and the random forest trained on the reduced SP dataset per-

formed reasonably well.

These results show that both the random forest and the

neural network perform exceptionally well on the reduced NB

data. When attempting to fit the random forest to the full NB

dataset (all 1.02 million observations), the available hardware

did not possess enough RAM to carry out the training. In fact,

this issue was encountered when attempting to fit the random

forest and the support vector machine to both the full SP and

the full NB datasets. Fitting the neural network, however, was

accomplished via the Keras programming framework, which

is more computationally efficient than the functions used for

fitting the random forest and support vector machine. With

Keras, training of the neural network on the full NB dataset

was accomplished in less than 45 min on a laptop with 16

GB of RAM and a processor speed of 2.5 GHz. Because of

its performance on the reduced NB test data and its computa-

tional feasibility through Keras, the neural network trained on

the NB data was used for segmentation of the final images.
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F I G U R E 6 A comparison of double-criteria thresholding (in the middle row) and segmentation using a neural network (in the bottom row)

trained on the full neighborhood dataset. Areas marked in red highlight are where the neural network outperformed double-criteria thresholding

2.3 Comparison of image segmentation for
neural network and thresholding

Figure 6 contains four of the original maize images along with

the corresponding segmented images obtained from using

double-criteria thresholding and the neural network trained

on the full NB dataset. The images from double-criteria

thresholding are in the middle row and the images from the

neural network are in the bottom row. The areas enclosed in

red on the images in the middle row show where the neural

network segmentation outperformed the double-criteria

thresholding. These areas are either filled in better in the

bottom row or are background pixels misclassified as plant

pixels. Note that thresholds of t1 = 30/255 and t2 = 0.1 were

used because they appeared to yield the best resulting images

by double-criteria thresholding.

It is clear in these images that the segmentation by neu-

ral network both fills in the plants and eliminates back-

ground noise better. That is, both types of misclassifications—

background classified as plant and plant classified as

background—are reduced by using the neural network trained

on the NB dataset for segmentation.

3 DISCUSSION

Aside from its good performance on the reduced training

datasets, another factor in selecting the neural network trained

on the NB dataset as the final classification method was com-

putation time. While this method was the best one that could

be trained on the available hardware, it is possible that the ran-

dom forest or even support vector machine may yield compa-

rable results with more powerful computational resources. It

would be of interest to compare both the segmented images

from these other methods as well as the time it takes each

method to segment the image. For a 384 by 384 pixel image,

our neural network method takes around 8 s to predict each

pixel’s class. When the image is 1000 by 1000 pixels, that

time increases to approximately 1 min. The time to segment an

image may be reduced by predicting using a graphics process-

ing unit (GPU) rather than a central processing unit (CPU).

Distributed computing could also be used if speeding up the

segmentation time is of concern in a particular application.

One issue with the NB dataset is that it introduces extra

correlation. Consider a pixel around the middle of a given

image. The red, green, and blue intensity values for that

pixel will show up in nine rows of the dataset. While this

extra correlation does not violate any assumption of a neural

network, there are perhaps more elegant ways of including

neighborhood information about each pixel than what was

considered here. Alternatively, convolutional neural networks

for segmentation (Long, Shelhamer, & Darrell, 2015) may be

a fruitful approach.

Because this study has introduced a novel approach to

obtaining training labels from plant images through the use

of K-means, it would be of interest to construct a tool that

would aid researchers in the implementation of our method.

The Pixel Inspection Tool in ImageJ, for instance, returns the

pixel intensity values of user-selected regions in an image

(Gehan et al., 2017). A tool using K-means for obtaining train-

ing data would not need the user to manually select a region of



10 of 11 ADAMS ET AL.

plant pixels. All that would be needed is a plant image cropped

to contain plant and a relatively homogeneous background.

While the images shown here were all similar enough that

labeled training data could be obtained, most images that are

of interest for segmentation do not share the same background.

For instance, it may be desirable to segment similar images of

maize that are taken in a field. While numerous challenges

can arise, the neural network trained for segmentation on the

NB dataset has already been tested or deployed in a number of

applications that are notably different from the images used in

our training set. These include maize from a different green-

house with different background and lighting, maize in a field,

soybean [Glycine max (L.) Merr.] in a greenhouse, and images

taken from directly above both maize and soybean. The results

have ranged from encouraging to ready for analysis. For other

traits of interest, for example segmenting the tassel of a plant,

the proposed method can be applied as well. Training data

for the tassel can be constructed similarly to how the training

data were obtained for the rest of the plant. In more challeng-

ing cases of plant segmentation, such as the field environment,

our method serves as an excellent starting point, and its perfor-

mance could be improved by incorporating more training data.
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