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University of Nebraska, 2020 

Advisor: Daniel G. Linzell 

 Visual inspection is often used to assess the condition of railway bridges at 

discrete points in time, an approach that can be subjective and possibly unsafe. 

Alternatively, certain bridges have their condition assessed via the installation of a large 

number of sensors. These sensors can be costly to place, power and maintain. Therefore, 

reducing their numbers and maximizing the extracted information is of utmost 

importance. In addition, evaluating bridge condition from measured response can be quite 

challenging due to loading and environmental variations, especially when a limited 

number of sensors are used. 

 The focus of this research is to develop an automated hybrid experimental-

numerical framework to detect and locate damage and estimate its intensity. The 

framework was developed analytically, based on Proper Orthogonal Modes (POMs) and 

Artificial Neural Networks (ANNs), and validated experimentally using 1 and 8 weeks of 

measured strains collected from a monitoring system placed onto an in-service, multi-

span, railway bridge. The analytical work involved using three sensor instrumentation 

sets and investigated structural response for two bridge spans of different type and size. 

To generate training data for the ANNs, Modeling uncertainties that could lead to 

erroneous indication or omission of damage are incorporated into framework 



 
 

 
 

development via a systematic analyses. The procedure was based on synergizing POMs 

extracted from measured structural response and POMs calculated from the numerical 

model with a robust damage feature independent of level and location of modeling 

uncertainty. A hybrid experimental-numerical approach was developed and implemented 

to estimate damage scenario POMs from field measured strains. ANNs were trained and 

tested using these POMs with DL and DI being detected. These results show the promise 

of the POD-ANN method as a robust, real-time fatigue damage detection tool for steel 

railway bridges. 
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Chapter 1 : Introduction 

1.1. Background 

 Accurate and readily available bridge health assessment is essential to ensure 

safety, irrespective of their use. Many railway bridges in the U.S. are over 100 years old 

and are subjected to increased load demands and frequencies. As a result, accurate 

monitoring of their health is important to, at the least, prevent costly traffic interruption, 

and, more importantly, eliminate potentially catastrophic safety issues.  

Current condition evaluation (i.e., health monitoring) processes for both highway 

and railway bridges are largely based on visual inspections at prescribed frequencies, 

which are subject to human error and, in the limit, may fail to reveal significant damage 

in a timely manner (1). Furthermore, mandating that these inspections occur at prescribed 

frequencies, frequently approaching 24 months, could be an inefficient use of human 

capital depending on current health (2). 

In many cases, a structural deficiency is caused by the degradation of material 

properties or changes in geometry and; therefore, a change in response typically takes 

place. Detecting and evaluating these deficiencies can occur via deployment of a 

structural health monitoring (SHM) system. A SHM needs to detect damage, determine 

its location, assess its severity and estimate residual useful life. While extensive research 

has been completed in the SHM domain, a method that effectively integrates these 

components does not yet exist (3). Vibration-based methods are commonly implemented 

for SHM systems with frequencies, mode-shapes, or strain mode-shapes being 
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investigated. However, modal parameters are generally sensitive to global damage and 

localized damage location and severity is, subsequently, difficult to detect (3-6).  

In certain circles, SHM systems are classified as being either model- or field data-

based (3). Model-based methods quantify bridge health by comparing results from a 

physical model, often a finite element model (FEM), against measured responses. A 

model updating strategy may be used to reduce discrepancies between measured and 

predicted responses (3). Model-based methods are very common when assessing bridge 

health; however, they may not be suitable for real-time applications. Developing the FE 

model can: be complicated and time-consuming; require expert knowledge when 

assessing performance and updating parameters; include effects of modeling uncertainty; 

and pose a challenge when environmental variations need to be incorporated. Field data-

based bridge performance is usually solely assessed via examination of measured 

responses without the need for a physical model, which makes them suitable to real-time 

monitoring and quickly assessing bridge health (3).  

Major challenges associated with SHM damage detection exist. These can 

include: optimizing measurement systems, including sensor locations, types and 

quantities; cost; measurement noise; non-stationary loads; environmental variations; 

modeling uncertainties; addressing existing deterioration effects; maintaining data 

continuity; and site and structures access. To address these issues, researchers have 

investigated: optimal vibration sensor placement (7-9); measurement noise effects on 

damage detection (10-12); non-stationary loading effects on vibration-based health 

monitoring (13); environmental variation effects on vibration-based damage detection 
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(13-15); uncertainties associated with common damage detection methods (16); and field 

applications (13).  

To address two important challenges in the context of railway bridges, the effects 

of load uncertainty and environmental variability on SHM system effectiveness, 

researchers have investigating the use of statistical methods including Principal 

Component Analysis (PCA) (10, 17) and Singular Value Decomposition (SVD) (18) to 

eliminate or reduce those effects. However, those studies involved FE models and/or 

small-scale beam testing in a controlled environment subjected to known, dynamic 

inputs.  

One approach to detect damage and address environmental and load variations is 

the utilization of Proper Orthogonal Decomposition (POD). POD is a statistical method 

that reduces the dimensionality of a given data set where Proper Orthogonal Modes 

(POMs), created from POD, are graphical means to identify damage, load, and 

environmental variations. POD has been used by Shane et al., Eftekhar Azam et al. and 

Lanata et al. to detect damage existence and severity when environmental and load 

variations were included (19-22). Those studies involved FE models to validate proposed 

frameworks and methodologies were not applied to transportation infrastructure. 

Artificial Neural Networks (ANNs), which recognize patterns by building a non-

linear parameterized mapping between a set of inputs and a set of outputs, have been 

applied to bridge damage detection by Zang et al., Jin et al., Dworakowski et al., Gu et al. 

and Sbarufatti (23-26). They have often been utilized with various statistical methods and 

filtering techniques, such as Independent Component Analysis (ICA), Kalman filters and 
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variance analysis, to: detect damage (23-25); reduce SHM false positives; (26) and 

identify fatigue prone locations (27). They have not been used to detect damage location 

and severity in bridges using measured response due to a lack of training and testing data.  

 Modeling uncertainties have been shown to affect damage accumulation 

prediction and future damage estimates. Moaveni et al. performed shake table tests of a 

full-scale, seven story reinforced concrete building to study uncertainties in common 

damage detection methods using modal identification and FE model updating (16). It was 

concluded that modeling errors (e.g., mesh size) influenced the level of confidence in 

damage identification results (28, 29). To provide a systematic analysis and damage 

identification scheme, Papadimitriou et al. adopted transitional Markov Chain Monte 

Carlo for Bayesian damage identification (30). Model updating performance was shown 

to rely profoundly on the number of unknown parameters in the system (20), model class 

selection (i.e., complexity) (31) and user expertise. 

Environmental effects have been shown to increase uncertainties associated with 

damage identification. Moaveni et al. (32) studied a pedestrian bridge where measured 

ambient temperature variations were shown to significantly influence field-estimated 

frequencies, which then introduced uncertainties into FEM updating (32). To eliminate 

these effects, a static polynomial regression technique that represented relationships 

between identified natural frequencies and measured temperatures was adopted.  

Field data-based SHM appears more suitable for real-time monitoring to avoid 

disadvantages associated model-based methods and detect damage quickly (3). 

Additional research is needed to (1) ensure that damage existence, location and intensity 
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are accurately identified when loading, environmental variations and modeling 

uncertainties are included and (2) develop reduced sensors set schemes for various types 

of bridges.  

1.2. Problem statement 

 Ensuring the safety of railway bridges and avoiding closure or collapse is 

becoming more challenging because of the size of the network, infrastructure age and the 

absence of accurate, real-time assessment tools. Assessing the health of railway bridges 

via visual inspection at prescribed frequencies provides intermittent data that is subject to 

human interpretation and may fail to reveal significant damage. 

 

1.3. Objectives 

 Even though model-based SHM is the most common damage detection 

framework, the current research relies on the use of measured field response to eliminate 

model-based disadvantages that include:  

1. The need for sophisticated finite element models, which can be expensive and 

time consuming to develop; and 

2. The inability to incorporate environmental variations. 

 The proposed framework is based on supervised machine learning methods to 

allow for detecting damage location and intensity. Unsupervised learning methods detect 

changes in bridge behavior, however; further investigation is needed to evaluate their 

causes. 
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 The current research focuses on developing an autonomous, hybrid experimental-

numerical SHM framework that utilizes reduced sensors sets and: 

1. Accurately determines damage intensity and location; 

2. Is robust against loading uncertainties; 

3. Is robust against the effects of modeling uncertainties; and 

4. Is robust against measurement noise. 

 

1.4. Scope 

 The objectives were addressed by: 

1. Performing a detailed literature review on model- and field data-based SHM 

systems. 

2. Creating an analytical framework that: 

• Used POMs and ANNs to automate damage feature detection.  

• Allowed for damage location and intensity to be automatically varied 

using MATLAB and the SAP2000 Open Application Programming 

Interface (OAPI) to create ANN training and testing scenarios. 

3. Applying the developed analytical framework to one week of measured strains 

from a truss span to validate applicability in a hybrid experimental-numerical 

framework SHM that used: 

• Measured data preprocessed to reduce loading variation effects with data 

windowing and cleansing automatically performed; and 
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• POMs calculated from preprocessed, measured strains using ANNs trained 

and tested with data from a field deployed SHM system. 

4. Generalizing the proposed framework to include various bridge spans, 

instrumentation plans and structural response. 

5. Incorporating modeling uncertainties to allow for training the developed 

framework using damage scenarios developed from measured responses with: 

• Analytical models having various structural configurations and connection 

conditions being utilized for both base and uncertain models; and 

• Investigating development of a robust damage feature that is independent 

of modeling uncertainty. 
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Chapter 2 : Literature Review 

 Over 60% of railway bridges were constructed before 1950, with 50% of those 

structures being steel bridges that commonly used riveted connections (33). In general, 

steel bridges are subjected to a wide range of deficiencies associated with fatigue and 

corrosion (34). Specifically, common structural deficiencies in steel railway bridges 

include deterioration of stringer-to-floor beam and stringer-to-lower lateral bracing 

connections and frozen bearings (35). Bridge owners are certainly concerned about all 

these deficiencies; however, stringer-to-floor beam connection deterioration is of 

significant importance for these types of bridges as connection failure could cause 

extensive damage, traffic disruptions and possibly failure given that many are non-

redundant systems (34, 36, 37). As a result, the current study focuses on identification of 

these types of deficiencies. 

2.1. Riveted railway bridge connections 

 The behavior and integrity of riveted steel railway bridges have been examined by 

multiple investigators, with a number of studies focused on stringer to floor beam 

connections. A railway deck truss was examined and interaction between various bridge 

elements was shown to induce additional internal effects, such as stringer axial forces and 

floor beam lateral bending, due to main truss longitudinal deformations (38). 

Consequently, the fatigue life of those components and their connections might be 

compromised. Published numerical and laboratory research concluded that stringer-to-

floor beam connections are more rigid than they initially assumed and, as a result, large 

bending stress cycles and corresponding fatigue degradation in connecting angles and 
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rivets may develop (34, 36-42). An analytical study focused on stringer end fixity ratio 

effects on fatigue damage accumulation found that stringer-to-floor beam connections 

experienced more severe damage than floor beam-to-main girder connections in steel 

riveted plate girder railway bridges (40). Another study showed that, for double-track 

steel railway bridges, increased connection fatigue damage was observed when both 

tracks were loaded simultaneously (36). Stringer-to-floor beam end-fixity ratios vary 

widely and, as a result, no clearly defined relationship exists. A full-scale laboratory test 

on three panels from a demolished riveted steel railway bridge concluded that stringer 

ends could be subjected to negative end moments that were 67% of continuous stringer 

bending moments and vertical fatigue cracks developed in connecting angles under cyclic 

loading (37). Laboratory and field tests indicated a high amount of variations in end fixity 

ratios (34, 37-40, 42). Stringer-to-floor beam connection end fixity ratio was shown to 

influence stress time histories significantly and, in-turn, fatigue life predictions for 

connecting elements with fatigue crack development mainly attributed to out-of-plane 

deformation of connecting angles and stress concentrations at rivets heads (40).  

 

2.2. Bridge condition assessment and SHM 

 Current bridge monitoring practice is based on visual inspections at prescribed 

frequencies, a process that is subject to human error and, in the limit, may fail to reveal 

significant damage in a timely manner (1). Additionally, performing these inspections at 

prescribed frequencies, often approaching 24 months regardless of the state of health of 

the structure, could be inefficient (2). These concerns have motivated extensive research 

on the smart evaluation of structural condition. The process of implementing a 
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continuous and autonomous damage identification scheme for civil structures is 

commonly referred to as structural health monitoring (SHM). In many cases, a structural 

deficiency is caused by the degradation of material properties or changes in its geometry 

and, therefore, variations in the structure’s dynamic properties. It is known that structural 

deficiencies oftentimes cannot be measured directly (43) and that modal properties 

including curvature (44, 45), Eigenmodes (28, 46, 47) and modal strain energy (48, 49) 

are sensitive to these types of deficiencies. 

In certain circles, SHM systems are classified as being either model- or field data-

based (3). Model-based methods quantify bridge health by comparing results from a 

physical model, often a finite element model (FEM), against measured responses. Model-

based damage detection is executed in two stages: modal identification and model 

updating. The model updating strategy used to reduce discrepancies between measured 

and predicted responses (3). Model-based methods are very common when assessing 

bridge health; however, they may not be suitable for real-time applications since 

developing the FE model can be complicated, time-consuming and require expert 

knowledge when selecting updating parameters. One of the major disadvantages of 

model-based methods is the existence of modeling uncertainties that might affect 

predicted model responses significantly.  

Issues associated with model-based SHM, parameter identification, and 

stochasticity of excitation sources have motivated SHM research focused on statistical 

response analysis. These methods have focused on identifying deviations from normal 

structural conditions from statistical analyses of acquired sensor data (50). 
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SHM systems, which extract information via processing measured responses and 

apply damage identification methods to the data to extract important information, are 

usually data-driven and incorporate sparse sensor networks to collect desired response 

quantities such as strains, accelerations or displacements (51). In field data-based 

methods, bridge performance is usually solely assessed via examination of measured 

responses without the need for a physical model, which makes them suitable to real-time 

monitoring and assessing the health of a bridge quickly (3).  

 In data-based SHM, detection methods focus on extracting damage features that 

are “hidden” in recorded sensor data. One of the major recent research objectives in the 

SHM community has been the development of automated feature extraction algorithms 

that enable autonomous damage identification methods when structures are subjected to 

various demands. A considerable amount of research effort has been dedicated to 

investigating key aspects associated with the development of data-driven SHM systems 

that can detect damage.  

 O’Connor et al. implemented a continuous monitoring system on a highway 

bridge and used coupled Statistical Process Control (SPC) and Gaussian Process 

Regression (GPR) for centralized damage identification based on novelty detection (52). 

GPR was employed to eliminate statistical variations caused by vehicle-bridge interaction 

and environmental effects and relatively long duration time series were used to determine 

the SPC threshold. Research has focused on using numerical techniques to identify the 

damage, such as one study that implemented Principle Component Analysis (PCA) to 

utilize frequency variations as damage indicators independent of site conditions (10). 

Laboratory tests of a short, base-excited cantilevered beam were completed at twelve 
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temperatures with “damage” represented as changes in mass. PCA was shown to detect 

these “damage” levels successfully. Analytical studies were also performed and showed 

that frequencies were influenced by moving load mass and speed, damage location and 

intensity (10). 

 Recently, some researchers have focused on developing a damage localization 

framework utilizing Proper Orthogonal Decomposition (POD) (53). In one study, an 

algorithm that produced PODs based on a structure’s Frequency Response Function 

(FRF) was used to detect simulated beam damage, with that damage being effectively 

detected over a specific frequency range (54). Variations in Proper Orthogonal Modes 

(POMs) from an array of sensors were adopted as damage features. POMs are directly 

extracted from the structural response and are theoretically sensitive to both changes in 

system parameters and external excitation. Ruotolo et al. completed one of the first 

investigations of POD-based damage detection (55). They proposed a damage index 

based on structure accelerations and successfully detected stiffness reductions in a truss 

member under different operational conditions.  

 Vanlanduit et al. proposed using robust Singular Value Decomposition (SVD) to 

detect damage from changes in velocity spectra subspaces when the damaged structure 

was subjected to different non-structural surface treatments (18). Galvanetto et al. 

performed a similar study, but adopted variations in Proper Orthogonal Values (POVs) as 

damage indices (56). More recently, Shane et al. employed POD to detect damage 

severity and location in a composite beam numerical model (19). Eftekhar Azam et al. 

studied damage detection in a building subjected to base shear excitations using 

variations in an SVD subspace (20, 21). Bellino et al. proposed a PCA-based method for 
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detecting damage in linear time-varying systems (10). Lanata et al. developed a method 

for static damage detection in beams via simulated experiments using POD (22). Xia et 

al. completed an investigation of damage detection using Principal Component Analysis 

(PCA) of dynamic strain data from a simulated bridge (57). 

 To date, all damage detection efforts utilizing POD-based feature extraction have 

focused on either broadband or stationary structure excitations. Those assumptions are 

often violated in real-life situations. To evaluate the effects of non-stationarity input on 

POD-based reduced-order models subject to various seismic excitations, Eftekhar Azam 

et al. trained a POD subspace of structural response of the Pirelli Tower in Milan 

subjected to El Centro earthquake time-histories (58). They verified the accuracy of the 

trained model when Kobe and Friuli time-histories were used to excite the structure. 

 Research focusing on using multiple numerical methods, including Artificial 

Neural Networks (ANNs), PCA and Radial Basis Functions, to detect wind turbine blade 

fatigue damage has shown promising results when compared against experimental studies 

that induced fatigue cracks (59). Another study on a prototype wind turbine compared 

SHM schemes based on statistical damage features against those based on modal 

parameters. It was concluded that statistically-based methods outperformed model-based 

methods and succeeded in identifying induced damage (60). 

 ANNs furnish a generic, non-linear parameterized mapping between an ensemble 

of inputs and a set of outputs. Once an ANN is trained on available sample data, it can 

recognize patterns; therefore, ANNs are suitable tools for signature analysis (24). 

Recently Jin et al. used an extended Kalman filter for estimating weights of a regression 
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neural network for damage detection of a highway bridge under severe temperature 

changes (23). Dworakowski et al. proposed a classification neural network for fatigue 

damage detection in aircraft (25). Gu et al. proposed a framework based on ANNs for 

removing false-positive SHM alarms stemming from temperature variations (26). 

Sbarufatti proposed a framework for optimizing ANN hyperparameters based on analysis 

of variance and used the optimized ANN for fatigue damage identification (27).  

 

2.3. Modeling Uncertainties (MU) 

 While data-driven methods have been shown to be an efficient tool to detect 

damage, current literature lacks data from actual, in-service structures needed to further 

train associated SHM frameworks. Even if a bridge owner allows for the exploration of 

several damage scenarios in-situ, sufficient data would not be produced to train the 

framework. To address this issue, the work presented herein implements a hybrid 

experimental-numerical, output-only approach to develop damage training scenarios 

under non-stationary excitations. Classical output-only damage detection methods are 

usually based on the operational modal analysis under stationary excitations and require 

low noise-to-signal ratios. To include non-stationary loading conditions, a damage 

detection methodology based on POD and ANNs that integrated analytical and 

experimental data was developed (61, 62). Supervised learning was used to classify 

output-only response, reduce Proper Orthogonal Mode (POM) variations from load 

variability and directly associate detected changes in Damage Intensity (DI) and Damage 

Location (DL). Several aforementioned damage identification methods rely on 
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computational models for identification of structural damage; therefore, MU can affect 

their damage identification precision and robustness.  

 MUs that influence damage detection effectiveness have been addressed using 

three SHM frameworks: offline; online; and machine learning (16, 29, 63-67). Offline 

framework applications have been examined by multiple researchers, with one study 

investigating modeling error effects on a model-based framework using a numerical 

process that involved optimal selection of modes and modal residual weights to define 

multiple model updating classes (63). Bayesian model class selection and model 

averaging techniques were implemented to detect damage for selected classes and 

structural damage was detected with high accuracy when performed analytically. Another 

study involved examined modeling error effects on a damage detection framework based 

on wavelet coefficients developed using finite element (FE) analyses of two-dimensional 

(2D) frames under sinusoidal excitation (64). Simulated errors included excitation force, 

mass, support stiffness, member bending stiffness and damping ratios and the framework 

was minimally influenced by the errors.  

 Dynamic tests on a full-scale, seven-story, reinforced concrete building were 

conducted to further examine uncertainty effects on the accuracy of well-established 

damage detection methods in an offline framework (16, 29). Certain modal parameter 

uncertainties, including modeling errors stemming by mesh density, influenced the level 

of confidence associated with detected damage. Effects arising from modeling errors 

associated with nonlinear FE model updating have also been examined, with an 

Unscented Kalman Filter (UKF) used to estimate examined model parameters and data 

from dynamically tested buildings, one a two-dimensional steel frame and the other a 
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three-dimensional concrete frame, investigating uncertainty influence on damage 

detection accuracy (65). Results showed that MUs had a significant impact on damage 

detection using updated FE models.  

 A companion study incorporated a UKF to estimate FE model parameters and a 

Linear Kalman Filter (LKF) to estimate simulation errors (68). A 2D steel frame model 

was employed to validate the approach and MUs included gravity loads, structure 

geometry, damping ratios and member inertia and results illustrated that using the 

proposed framework for model updating allowed for more accurate damage detection. 

The accuracy of online damage detection frameworks of nonlinear systems having 

unknown parameters and ill-defined numerical models have been investigated using a 

Bayesian approach and UKFs (66). Model complexity and parameterization effects that 

introduced uncertainties were examined via comparison against laboratory tests of a 

nonlinear joint setup and the effectiveness of the proposed method was demonstrated. 

 One study of machine learning damage detection frameworks looked at modal 

property based damage detection and implemented neural-networks to investigate 

modeling errors (67). The study found that mode-shapes component ratios or differences 

between those ratios, which are considered to be robust damage features, showed 

minimal sensitivity to modeling errors. Applicability of the framework was validated via 

numerical analyses, laboratory tests of a simple beam and field tests of a multi-beam 

bridge.  It is recognized that using an integrated approach introduces inherent MUs 

largely related to model complexity. 
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2.4. Environmental variations and SHM 

 Environmental effects have been shown to increase uncertainties associated with 

damage identification and may drastically affect modal identification results. In some 

cases, variations in modal properties from environmental conditions could overshadow 

changes from structural deficiencies. Moaveni et al. (32) studied a pedestrian bridge 

where measured ambient temperature variations were shown to significantly influence 

field-estimated frequencies, which then introduced uncertainties into FEM updating (32). 

To eliminate these effects, a static polynomial regression technique that represented 

relationships between identified natural frequencies and measured temperatures was 

adopted.  

Hu et al. (69) compared the effectiveness of different statistical approaches to 

remove environmental and/or operational effects using a large, continuously collected 

dynamic and environmental response data set from two pedestrian bridges. The study 

concluded that measured temperature variations had a significant impact on frequencies 

with a nonlinear relationship being observed. Statistical approaches that were examined 

included multiple linear regression and principal component regression, with both 

successfully removed the influence of environmental variations where damage scenarios 

being clearly detected (69).  

Kim et al. (13) developed a Bayesian framework to account for temperature and 

traffic loads for a long-term monitoring system that examined a highway simply 

supported bridge and focused on its dynamic responses. Three combinations of recorded 

data were used in conjunction with the proposed Bayesian framework to examine the 

effect of temperature and vehicle loads as environmental and operational factors. The 
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combinations included: (i) frequencies, temperature and traffic loads; (ii) frequencies and 

temperature; and (iii) frequencies only. The study concluded that considering temperature 

and traffic load variations yielded more accurate bridge health assessments when 

compared with the other two scenarios (13).  

Silva et al. (70) used Deep Principal Component Analysis (DPCA), which was 

developed to address PCA limitations, to account for environmental variations on 

estimated frequencies from acceleration measured continuously from the Z-24 and 

Tamara bridges. DPCA was shown to effectively reduce environmental effects on modal 

properties and improved the accuracy of damage detection. The relationship between 

measured frequencies and environmental variations was shown to be nonlinear for the Z-

24 bridge and linear for Tamara bridge. 

 In many cases, traffic loads or seismic excitations are classified as environmental 

variations and/or operational factors (13). Most operational modal analysis (OMA) 

algorithms equate ambient excitations to stationary, white noise. In many cases, such 

assumptions could be violated and consequently, modal properties would not be 

consistently identified. Research to address issues caused by non-stationary external 

inputs on the modal identification process was completed by Ghahari et al. and Abazarsa 

et al. (71, 72).  Ghahari et al. developed a modal identification method to account for 

non-stationary (i.e., seismic) excitations that was analytically validated against a 5-story 

shear building. The proposed method, which utilized blind modal identification, 

accurately detected frequencies and mode-shapes. Abazarsa et al. verified the method 

using data extracted from shake table testing. 
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2.5. POD-ANN method for damage identification 

2.5.1. POD for feature extraction 

 POD of a data set is accomplished by obtaining a set of ordered, orthonormal 

bases and collecting detailed information concerning relevant energy contents. As a 

result, POD addresses feature extraction by discovering underlying, hidden information 

in the data and dimensionality reduction by appropriately capturing dynamic system 

features in the smallest corresponding subspace. The concept of POD was central to the 

development of various techniques, such as Principal Component Analysis (PCA); 

Karhunen–Loève decomposition (KLD), and Singular Value Decomposition (SVD) (73-

75). A detailed discussion of PCA, KLD and SVD commonalities can be found elsewhere 

(76).  

2.5.1.1. Physical interpretations of POD 

 Close connections between POMs and natural Eigenmodes of mechanistic 

systems have been established (77, 78). Theoretical and experimental research has also 

attempted to link POMs to linear and nonlinear mechanical system Eigenmodes (79, 80). 

Free vibrations of an undamped linear system having a mass matrix proportional to the 

identity matrix were shown to provide POMs that asymptotically converged to its 

Eigenmodes (78). POMs of a lightly damped similar system were, in turn, shown to 

closely estimate its Eigenmodes, except for forced harmonic vibrations. Findings also 

showed that independent of system mass, POMs could coincide with Eigenmodes for 
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certain resonant frequencies (81). North established a general criterion relating POMs to 

Eigenmodes for mechanical systems excited by noise (82). 

2.5.1.2. PCA and SVD as POD methods 

 PCA looks for the subspace that features maximum data series variability when 

attempting to discover core dependency structures within that data. This can be 

interpreted as, in a state-space domain, directions in which data variability is important. 

When dealing with a structural system, those directions are akin to its Eigenvectors, 

which depend only on system properties. In this case, the principal subspace is purely 

statistical and is a function of external excitations and mechanistic properties of the 

system.  

 The current study uses data sets comprised of samples taken from time histories 

of in-situ bridge response to a train passage, with data from each train passage being 

stored in snapshot matrices. SVD of the snapshot matrix helps to extract damage features 

(75): 

܃ =  ୘.      (1)܀	઱	ۺ

Where: ܃ ∈ ℝ௡೘×௡ೞ is the snapshot matrix from ݊௠ measurements and ݊௦ samples; ۺ ∈ℝ௡೘×௡೘ is an orthonormal matrix whose columns are the left singular vectors of ܃; ઱ ∈ℝ௡೘×௡ೞ	 is a diagonal semi-matrix whose components Σ௜௜ are singular values of ܃; and ܀ ∈ ℝ௡ೞ×௡ೞ is an orthonormal matrix whose columns are the right singular vectors of ܃.   

 It is known that the left singular vectors are POMs of the snapshot matrix. It was 

shown that first bridge response POMs to train passages (i.e., the first left singular vector 

of the corresponding snapshot matrices) contain information on intensity and location of 
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damage at the stringer to floor-beam connections. It should be noted that, unlike linear 

vibration modes, structural response POMs could vary as excitation source changes. 

Therefore, when POMs are used as damage features, a machine learning algorithm is 

needed to differentiate variations induced by damage from ones caused by load 

variations. 

2.5.2. ANN for damage identification 

 Feedforward ANNs have been extensively studied for structural damage 

identification. To facilitate autonomous damage identification, a two-layer, feedforward 

ANN was adopted by several authors for creating nonlinear mapping between damage 

indices and features extracted from the structural response (25, 26, 83). Based on these 

studies, ANN feedforward damage identification models have been constructed based on 

a linear combination of predetermined nonlinear basis functions ߦ௝(࣐) (84): 

(܅,࣐)ࢊ = ݂൫∑ ௝(࣐)ெ௝ୀଵߦ	௝ݓ ൯.    (2) 

Where: ࢊ is the vector of damage indices; ࣐ is the damage feature; ܅ is the matrix of 

ANN weights; and ݂(∎) is the identity for regression problems and is a nonlinear 

activation function (i.e., softmax). It was proven that this architecture approximated 

arbitrary nonlinear functions well (85, 86). The relationship between input and the ݆௧௛ 

component of the output for this type of ANN is given by (84): 

݀௞(࣐,܅) = ߪ ቀ∑ W௞௝(ଶ)	ℎቀ∑ W௝௜(ଵ)	߮௜ + W௝଴(ଵ)஽௜ୀଵ ቁெ௝ୀଵ +W௞଴(ଶ)ቁ.   (3) 

Where: ࢊ ∈ ℝ௡೏ is the vector whose rows feature damage indices; ࣐ ∈ ℝ௡ೞ are damage 

feature vectors; ܯ denotes the number of neurons in the hidden layer; W௞௝(ଶ) and W௞଴(ଶ) 
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represent weights and biases of the output layer; and W௝௜(ଵ) and W௝଴(ଵ) represent the weights 

and biases of the hidden layer. In this study a hyperbolic tangent sigmoid activation 

function,	ℎ(∎), is employed for the hidden layer. The activation function for the 

regression output layer ߪ(∎) is represented by the identity matrix. In a supervised 

learning-based damage identification scheme, ANN weights ܅ need to be obtained using 

a set of damage features and corresponding damage indices. 

 

2.5.3. Overview of POD-ANN for damage identification  

 The authors developed a supervised Machine Learning scheme for detecting, 

locating, and quantifying the intensity of fatigue-induced damage in railway bridges 

using POMs and ANNs (62). A neural classifier was trained to categorize response to 

different load patterns, and a regression ANN was subsequently trained using an 

ensemble of applied loads to detect possible damage from resulting, categorized POMs. 

In doing so, the average strain time-history root mean square (RMS) for each train 

passage was used as a feature weight classification and the first snapshot matrix POM 

was used as the damage feature. Since damage feature and, subsequently, damage 

detection accuracy could be sensitive to variations in train load under operational 

conditions, the ANN needed to be robust to address damage scenarios and train axle 

loads not used for training.  

 It is known that Bayesian regularized ANNs are more robust than standard back-

propagation ANNs and can decrease the need for cross-validation. Bayesian regularized 

ANNs are difficult to over-train since evidence procedures provide an objective Bayesian 
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criterion for stopping training using early cessation. Moreover, the regularization term 

added to their objective function also makes them robust to overfitting. To improve ANN 

generalization capabilities for damage identification under operational conditions, 

Bayesian regularization was adopted for optimally finding ANN weights (85, 87). The 

following objective function needed to be minimized to find the optimal weights: 

E = Eௗ	ߚ +  E୵     (4)	ߙ

in which: 

E୵ = ∑ w௝ଶே౭௝ୀଵ       (5) 

and: 

Eௗ = ∑ ୩ܜ‖ − y୩(ܠ୩,ܟ)‖ଶ୒୩ୀଵ .     (6) 

 In Equations 4-5, ܟ is a vector that includes all network weights; ߙ and ߚ are 

objective function parameters; and ܠ୩ and ܜ୩ respectively denote the training input 

vectors and their corresponding target values for ݇ = 1,2, … ,ܰ. The ratio of objective 

function parameters determines training emphasis, with larger ߙ ⁄ߚ  pushing the network 

towards generalization and smaller ratios driving the network towards error minimization 

(88).  

 For the previous study, the first POM ࣐ ∈ ℝ௡೘ of bridge strain response to train 

passage was used as a damage feature (61, 62). Therefore, when using ௧ܰ train passage 

scenarios and ௗܰ damage scenarios, the following input matrix can be used for training 

the ANN: 
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ሾሾ࣐ଵ,ଵ ⋯ ࣐ே೏,ଵሿ ⋯ ሾ࣐ଵ,ே೟ ⋯ ࣐ே೏,ே೟ሿሿ௡೘×(ே೟×ே೏)  (7) 

Where superscripts for ࣐ respectively denote the damage and the training scenario. 

 The current research work proposed a hybrid experimental-numerical damage 

detection framework based on POD-ANN to detect damages in a real-world bridge 

system. MU effects on the developed framework were also examined and addressed.  

Model-based SHM systems were not adopted for the current research because they can be 

time-consuming to construct and environmental variations can be challenging to 

incorporate. It is also important to mention that supervised learning was used to allow for 

direct detection of damage location and intensity as opposed to unsupervised learning 

methods that detect general behavioral changes only.
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Chapter 3 : Investigated Bridge and Analytical Models 

3.1. Bridge description 

The bridge under study is located in central Nebraska and is an open deck, 

double-track structure consisting of five, single span, steel Warren trusses and six, single 

span, steel, through girder systems (Fig. 1). The total length of the bridge is 381.0 m. The 

bridge spans are simply supported and composed of rolled and riveted built-up steel 

elements. Each span supports two tracks spaced laterally at 3.95 m center-to-center. The 

rails rest on wood ties that are supported by stringers spaced laterally at 2.15 m on center. 

 

Fig. 1 Bridge elevation looking north, studied span circled. 

  

The truss span is 44.7 m long and contains six panels with stringers connected to 

floor beams that are spaced 7.45 m on-center longitudinally. A lateral wind bracing 

system is provided using top and bottom laterals. Truss diagonals, end-posts, verticals, 

top chords and end bottom chords are riveted built-up members while midspan diagonals 

and bottom chords are eyebars of varying thickness. Floor beams and stringers are 

riveted, built-up I-sections with the floor beams composed of a web plate, flange angles 

and cover plates while the stringers use  web plate and flange angles. Lower lateral 

bracing members are single angles of varying dimensions, while upper lateral bracing is 
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laced angles. Stringer lateral bracing is also provided using single angles located close to 

the top flange. An elevation and plan view of the examined truss span is shown in Fig. 2.  

 Through girder spans are 22.0 m long and divided into 7 panels with floor beams 

longitudinally spaced at 3.14 m. Through girders and floor beams are riveted, built-up-I-

sections having a web plate and flanges constructed using angles and cover plates of 

varying number and thickness. Stringers are rolled, S 24x80, I-beams. Bottom lateral 

bracing is composed of single angles of varying dimensions. A girder elevation and span 

framing plan are shown in Fig. 3. More details about cross-sectional dimensions can be 

found in (35). 

 

 

Fig. 2 Truss span elevation and plan view. 
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Fig. 3 Through girder span elevation and plan view. 

3.2. Analytical models 

 Three-dimensional frame finite-element models were developed in SAP2000 for 

the bridge spans under study. The constructed models contained the trusses and plate 

girders, stringers, floor beams and bracing systems. Developed models were calibrated 

against measured response under routine train passages. Acceptable agreement existed 

between measured and predicted responses (35). Train loads were applied via a set of 

moving point loads. Riveted truss elements and floor beams were modeled as rigidly 

connected at their ends while truss eyebars and bracing members were pinned. Stiff 

rotational springs were used at the ends of each stringer span to facilitate simulating 

connection damage via reduction of their stiffness. Isometric views of the developed 

models are shown in Fig. 4. More details about constructed models are provided in (35). 

 The bridge models were excited using actual train loads that traversed the 

structures. Weigh-In-Motion (WIM) recorded loading configurations for 81 trains having 
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varying axle loads, spacings and overall lengths were selected. The numerical analyses 

and extraction of significant results for each of the studied damage scenarios were 

automatically performed using MATLAB (89) and SAP2000 Open Application 

Programming Interface (OAPI) for the 81 trains with strains extracted at the stringer ends 

(62). Extracted strains at the instrumented locations were placed into matrices with each 

matrix contained time histories for one train passage “snapshot.” Means of the RMSs of 

the snapshot matrices were used to sort train events. 

 

 

 (a)   (b)  

 

 

 

Fig. 4 SAP2000 isometric view: (a) truss span; and (b) plate girder span. 

 

3.3. Analytical stringer-to-floor beam connection damage simulation 

 As mentioned earlier, stringer-to-floor beam connections were modeled using 

rotational springs to facilitate simulating damage via reduction in rotational stiffness. 
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Published fatigue laboratory tests of two panels systems containing stringers with riveted 

end connections showed a gradual decrease in rotational stiffness associated with the 

crack growth (37). As a result, a semi-rigid connection would ultimately become a pinned 

connection. It was reported that the developed crack vertical projection depth at which 

pinned behavior was observed was at approximately 40% of the angle leg length. Fig. 5 

depicts typically developed fatigue cracks in the angle legs and Fig. 6 shows the 

corresponding decreases in rotational stiffness (37).  

 Continuously reducing connection rotational stiffness could be used to simulate 

crack propagation and associated reduction in stringer end strains. For the current 

research work, the damage was simulated at the 20 stringer ends by reducing end spring 

rotational stiffness between 0% and 100% (i.e., DI = 0% to DI = 100%) in increments of 

10%. Stiffness reductions were applied to one stringer end at a time, with other 

connections being undamaged. Connection damage was simulated at one side of the 

floor-beam because either side would affect stringer continuity, resulting bending 

moments and stresses. 

 
 

 

Fig. 5 Depiction of fatigue cracks in stringer-to-floor beam connecting angles (37). 
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Fig. 6 Rotational stiffness reductions associated with crack propagation (37). 

 

  

R
ot

at
io

na
l s

ti
ff

ne
ss

 (
kN

.m
)



31 
 

 
 

 

Chapter 4 : POD-ANN Strain Based Damage Detection 

Framework Development  

Published: the Journal of Structural Control and Health Monitoring, https://doi.org/10.1002/stc.2288 

Eftekhar Azam, S., Rageh, A., & Linzell, D. 

4.1. Abstract 

 In this Chapter, a supervised learning scheme is proposed for detecting, locating 

and quantifying the intensity of damage in structures using Artificial Neural Networks 

(ANNs) and Proper Orthogonal Decomposition (POD). For structural systems, such as 

buildings and bridges, Proper Orthogonal Modes (POMs), denoted as ࣐, associated with 

their response are functions of:  

(i) Applied external loads. 

(ii)  Mechanistic properties. 

 To detect damage location and intensity, a supervised learning strategy was 

adopted to help discriminate POM (࣐) variations due to damage from those that were 

caused by applied load variations. A neural classifier was trained to categorize response 

to different load patterns and a regression ANN was subsequently trained using an 

ensemble of applied loads to detect possible damage from the categorized ࣐. To 

demonstrate the effectiveness of the proposed approach, simulated experiments were 

performed with the intent of identifying damage indices in the truss span of the 

investigated bridge, see Fig. 2. The validated, three-dimensional (3D) finite element (FE) 
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model of the span shown in Fig. 4 (a) was used to generate strain time histories under 

train loads measured from Weigh-In-Motion (WIM) stations near the bridge.  

 
 Due to the relatively short duration of each loading event, it is assumed that 

environmental variabilities are negligible within the time interval of each train passage. 

However, for different time intervals or under different loading conditions, it is 

understood that environmental variability may need to be included.  

 
4.2. ANNs for snapshot matrix classification, POM regression and damage identification  

 As stated earlier, ANNs have been extensively studied in association with 

structural damage identification. The current study explores the use of two-stage 

supervised ANNs for structural damage identification, as outlined in Fig. 7. In the first 

stage, a classification ANN is employed to assign the snapshot matrix to a certain 

response category. In the second stage, an ANN is trained for nonlinear regression to a 

set of POMs and their associated damage indexes. The resulting ࣐ are subsequently used 

to identify damage. MATLAB Neural Network Toolbox was used for data analysis and 

constructing the classification and regression networks (90). 

4.3. Coupled POM and ANN output-only damage detection  

 As presented in Chapter 3Chapter 3, the proposed, coupled POD-ANN 

framework was validated using simulated experiments analyzing response of the truss 

span using FE models subjected to recorded train loads from WIM stations near the 

bridge site. Measured train axle loads traversed the model and structural response to those 

loads was examined by studying strain time-histories.  
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Fig. 7 Proposed Nonlinear, Two-Layer, ANN technique for POD-based damage 
detection. 

 

 A numerical sensitivity analysis was completed by Rageh (35) on the bridge 

considered span (Fig. 2) to quantify change in strains time histories due to deficiencies at 

a set of instrumented locations. The study concluded that using 20 sensors at locations 

selected for this study would be the smallest set of sensors needed for detecting stringer-

to-floor beam connection damage. See Section 3.1 for further details on the bridge 

structure. 

 A parametric study using the analytical model described in Section 3.2 was 

completed to examine ࣐ variations as a function of changes in: 
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(i) Non-stationary excitations caused by moving trains.  

(ii) Structural damage locations (DL) and Damage Intensity (DI).  

 WIM data for 81 trains was used for the FE simulations, with this data being 

assumed to statistically represent the distribution of train loads under operational 

conditions. Strain sensors were used because they provide a more direct means of 

monitoring certain deficiencies, such as fatigue damage. Moreover, strain measurements 

can provide more sensitivity to local changes in structural response. Strains were 

extracted from the analytical models at the instrumented locations (IL) shown in Fig. 8. It 

is important to reiterate that damage locations (DLs) were at instrument locations that 

could detect damage on either side of the floor-beam. 

 

 

Fig. 8 Instrument locations. 

 

4.3.1. Non-stationary excitation influence on POMs 

 Non-stationary excitation sensitivity was initially examined by looking at the 

effect of train speed on POMs (࣐), with ࣐ developed based on strain time-history 

information as detailed below (“output”). A representative surface plot, one that shows 
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changes in values for components of the first POM of each snapshot matrix at different 

ILs (FEM nodes reporting strain time-histories) for a healthy bridge and reference train 

speed is shown in Fig. 9. For this case, 50 mph was chosen as the reference train speed 

and surface plots are presented as the algebraic difference between ࣐ components at 25 

mph and 75 mph speeds. The figure shows surface plots for ࣐૛૞ − ࣐૞૙ and ࣐૛૞ − ࣐ૠ૞ 

intervals with observed values that deviate from zero indicating ࣐ changes as a function 

of train speed.  

 To reduce changes in ࣐ when dealing with snapshot matrices associated with 

trains with different speeds, samples in the snapshot matrix were chosen so that they 

featured the same number of IL strain peaks during train passage which resulted in 

unequal-length of snapshot matrices. This was accomplished using an automated peak-

picking algorithm in MATLAB (89). As evidenced by plots in Fig. 10, including the 

same number of peaks could visibly reduce the variability of ࣐ caused by changes in 

train speed. 

 

Fig. 9 Train speed influence on ࣐, equal-length snapshot matrices: (a) ࣐૛૞ − ࣐૞૙; and 
(b) ࣐૛૞ − ࣐ૠ૞. 
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Fig. 10 Train speed influence on  : (a) equal; and (b) unequal-length snapshot matrices. 

   

 After peak picking, the 81 trains involved in the study were sorted using strain 

time history root mean squares (RMS) extracted at the ILs shown in Fig. 2. The resulting, 

sorted, train RMS data is shown in numerical order by sensor number in Fig. 11 along 

with accompanying statically equivalent uniform loads. Results are nondimensionalized 

with respect to maximum RMS and statically equivalent loads for the 81 trains.  
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Fig. 11 Trains sorted by nondimensionalized strain time-history RMS with corresponding 
nondimensionalized statically equivalent uniform load. 

 

 To examine ࣐ variability in snapshot matrices having relatively close RMS 

values, trains were arbitrarily divided into four groups based on RMS as denoted by the 

vertical black dashed lines in Fig. 11. Group 1 (lowest RMS) included 16 trains, Group 2 

24 trains, Group 3 25 trains and Group 4 16 trains. ࣐  for each group are shown in the 2D 

plots in Fig. 12, with Group 4 having the best correlation.  

 Group 4 allowed for efficient training of a regression-based ANN, with the ANN 

being used to link the first ࣐ of the snapshot matrices to damage indices. ANN training 

used 70% of the available samples, 15% for validation, and 15% for testing.  
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Fig. 12 ࣐ plotted by grouped train passages: (a) Group 1; (b) Group 2; (c) Group 3; (d) 
Group 4; and (e) all groups. 

  

4.3.2. Measurement noise influence on POMs 

 One of the most important features in any SHM framework is robustness to noise. 

In this section, the effect of measurement noise intensity and spatial correlation on ࣐  

(i.e., correlation between ࣐s in a spatial domain) was studied. Fig. 13 depicts strain 
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snapshot matrices obtained from 4 loading scenarios. Uncorrelated noise was considered 

using 10% and 15% RMS noise to signal ratios and extracted ࣐ were compared against 

reference signals. In Fig. 14, the noise was spatially correlated. As seen in Fig. 13 and 

Fig. 14, POMs were shown to be robust against both elevated noise levels and spatial 

correlation. 

 

Fig. 13 Spatially uncorrelated ࣐ at various noise intensities: (a) Train 67; (b) Train 70; 
(c) Train 73; and (d) Train 76.  
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Fig. 14 Spatially correlated ࣐ at various noise intensities: (a) Train 67; (b) Train 70; (c) 
Train 73; and (d) Train 76.  

4.3.3. Structural deficiency influence on POMs 

 Structural deficiency influence on ࣐ was initially investigated by reducing 

stringer-to-floor-beam rotational stiffness to mimic development of fatigue cracks at their 

connections. POMs for the healthy bridge subjected to ten heavy train passes were 

compared to those for a bridge having deficient connections under the same train loads 

(Fig. 15). For stiffness reductions of 20, 40 and 60%, minimal changes to resulting ࣐ 

were observed. At 80% stiffness reduction, a significant change was observed for ࣐ at 

the simulated damage locations. This indicates that critical levels of damage could be 

intuitively detected from ࣐; however, small deficiencies could be overlooked. 

4.4. ANNs for damage detection  

 To further investigate ࣐ sensitivity to damage, particularly for damage intensities 

lower than 20%, ANN-based regression of damage indices to ࣐ was completed. A set of 

9 heavy trains were randomly selected from Group #4 (see Fig. 11) and were used to 
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generate strain time-histories for 10% to 100% reductions in rotational stiffness in the 

vicinity of all individual DLs shown in Fig. 2. This approach produced 200 damage 

scenario POMs for a given train load, with ࣐ for the healthy structure also included in the 

training dataset. To determine a suitable number of internal training neurons, various 

numbers were explored (25, 50, 100 and 200). Training with 100 internal neurons 

provided optimal results and were used throughout the study. A flowchart of the 

procedure is shown in Fig. 16. 

 

Fig. 15  ࣐ of a healthy under Train 72 to Train 81 passages compared to (a) DI 20% at 
DL 8; (b) DI 40% at DL 8; (c) DI 60% at DL 8; and (d) DI 80% at DL 8. Red lines 

represent deficient cases; black lines healthy cases. 
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Fig. 16 Process for selecting train loads and training and testing ANNs. 

 

 Remaining train loads in Group #4 were not used to develop the regression 

function and were adopted for further testing the accuracy of the proposed damage 

detection technique. Fig. 17 depicts results for this case, plotting nondimensionalized 

damage estimates for stiffness reductions of 10, 40 and 80% at DLs 3 and 15 in Fig. 2. 

The figure shows that, for the three damage intensities, negligible estimation error existed 

with error levels decreasing at higher damage levels.  
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Fig. 17 ANN-regression Nondimensionalized DI: (a) DI 10% at DL 3; (b) DI 10% at DL 
15; (c) DI 40% at DL 3; and (d) DI 80% at DL 15. 

 

 A more intuitive tool was developed to help end-users determine where damage 

was predicted on the bridge floor system. Examples are shown in Fig. 18 for DIs ranging 

from 50 to 100%. This “heat map” overlays identified damage index vectors onto a plane 

representing the floor system and, ultimately, DLs, and provided another way to confirm 

if ANN regression accurately identified damage for various DLs and DIs. 

 N
on

di
m

en
si

on
al

 D
I

 N
on

di
m

en
si

on
al

 D
I



44 
 

 
 

  

 

Fig. 18 Damage contour maps obtained by ANN-regression: (a) DI 50% at DL 8; and (b) 
DI 100% at DL 18. 

  

 Results from a study investigating the effect of a number various loading 

scenarios on the accuracy of ANN damage identification are shown in Fig. 19, Fig. 20 

and Fig. 21. Three cases were considered. The first case, shown in Fig. 19, used six 

randomly selected train loads in Group #4 for training and the remaining loads for testing 

ANN. The second and the third cases, reported in Fig. 20 and Fig. 21, used 8 and 9 trains 

for training and remaining loads for testing. It was observed that when the number of 

training loading scenarios reduced, damage identification error increased. These 

observations confirmed the expectation that, given a sufficient number of train load 

scenarios ANNs could be generalized to address future unknown loadings. 
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Fig. 19 Detected DI from ANN-regression for (a) DI 50% at DL 8; and (b) DI 80% at 

DL 13. 6 train loads for training, 10 for testing. 

 

  
Fig. 20 Detected DI from ANN-regression for (a) DI 50% at DL 8; and (b) DI 80% at 

DL 13. 8 train loads for training, 8 for testing. 

-25

0

1

25

3

50

5

75

(a)

81

100

7 789

DL

7111 70

Train ID

13 6915 6817 6719 66



46 
 

 
 

  
Fig. 21 Detected DI from ANN-regression for (a) DI 50% at DL 8; and (b) DI 80% at 

DL 13. 9 train loads for training, and 6 for testing. 

  

 Finally, to study the effect of categorizing loading scenarios on the damage 

detection performance of ANNs trained using Group #4 loads, ࣐ of bridge responses to 

trains in Groups #1, #2, and #3, which not used for training, were used as ANN input. ࣐ 

of the healthy structure was considered to assess the potential of ANNs to provide false 

positives. In Fig. 22 DIs for the healthy structure are shown when loading scenarios were 

selected from Groups #1 to #4. It was observed that, as the train axle loads become 

lighter and unlike the category of trains used for ANN training, DI prediction error 

increased.  
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Fig. 22 ANN testing for DI of 0% with Group #4 trains were used for training and 
ANN testing trains from: (a) Group #1; (b) Group #2; (c) Group #3; (d) Group #4. 

 

4.5. Conclusions  

 This chapter presents a framework for automated structural damage detection 

using Proper Orthogonal Decomposition and Artificial Neural Networks (POD-ANNs). 

Structural response POMs (࣐) were adopted as damage features since structures 

subjected to non-stationary excitations rendered ࣐ dependent on more than damage. The 

proposed framework was applied to damage detection of a truss span in the considered, 
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in-service, railway bridge, where inputs are highly non-stationary for each train passage 

loading scenario.  

 To complete the study, the 3D FE model from Chapter 3Chapter 3 was used to 

generate pseudo-experimental data (i.e. damage scenarios) and measured WIM data 

obtained was used to supply the input loads. Subsequently, ANN was used for training 

classification and to develop a regression function that categorized structural response 

and damage indexes (DIs) using ࣐ developed from strain snapshot matrixes of each train 

passage. 

It was concluded that: 

• variations in train speed and train axle load can have marginal effects on ࣐ but 

relatively small changes could affect damage detection accuracy when other 

sources of ࣐ variability are present; 

• automated peak picking mitigated discrepancies associated with speed variations 

and was the preferred method for selecting snapshot matrix data used to calculate ࣐; 

• categorizing the ࣐ based on average RMS for all sensors could decrease variability 

due to train axle loads;  

• numerical analyses verified that the regression network could accurately generalize 

damage detection under train load scenarios not used for training; and 

• the method can effectively identify damage at relatively low intensities, 

(approaching a 10% reduction in connection stiffness). 
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Chapter 5 : POD-ANN Framework Application to Field Measured 

Truss Response 

Published: The Journal of Civil Structural Health Monitoring, https://doi.org/10.1007/s13349-018-0311-6 

Rageh, A., Linzell, D. G., & Azam, S. E. 

 

5.1. Abstract 

 This chapter presents a framework for automated damage detection using a 

continuous stream of structural health monitoring data. The study utilized measured 

strains from an optimized sensor set deployed on the truss span of the investigated bridge 

described in Chapter 3. Stringer-to-floor beam connection deterioration was the focus of 

this chapter; however, the proposed methodology could be used to assess the condition of 

a wide range of structural elements and details. This chapter utilized the POD-ANN 

framework developed in Chapter 4 with POMs (࣐) used as a damage features and the 

Artificial Neural Networks (ANNs) used as an automated approach to infer Damage 

Location (DL) and Damage Intensity (DI) from ࣐. ࣐ variations, which are traditionally 

input (load) dependent, were ultimately utilized as damage indicators. Input variability 

necessitated implementing ANNs to help decouple POM changes due to load variations 

from those caused by deficiencies, which render the proposed framework input 

independent. To develop an automated and efficient output only damage detection 

framework, data cleansing and preparation was conducted prior to ANN training. 

Damage “scenarios” were artificially introduced into select output (strain) datasets 

recorded while monitoring train passes across the selected bridge. This information, in 
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turn, was used to train ANNs using the MATLAB Neural Net Toolbox. Trained ANNs 

were tested against monitored loading events and artificial damage scenarios.  

 The applicability of the proposed, output-only framework was investigated via 

studies of the bridge under operational conditions. To account for the effects of potential 

deficiencies at the stringer-to-floor beam connections, measured signal amplitudes were 

artificially decreased at select locations. It was concluded that the proposed framework 

could successfully detect artificial connection deficiencies imposed on measured signals 

under operational conditions.  

 

5.2. Monitoring system 

 To explore the efficacy of the coupled POD-ANN methodology, the truss span of 

the investigated bridge detailed in Fig. 2 was instrumented using strain transducers. 

Measured responses were continuously transferred to a data acquisition system that was 

accessed remotely.  

 In general, steel bridges can be subjected to a wide variety of deficiencies caused 

by corrosion, fatigue cracks, scour and other items (34). For the bridge under study, main 

structural deficiencies included stringer-to-floor beam connection deterioration, 

deterioration of the stringer and bottom lateral connections and members, and frozen 

roller supports (35). While all of these deficiencies can be of concern to the bridge owner, 

as stated earlier, fatigue of stringer-to-floor beam connections is of primary concern for 

many riveted, steel, truss railway bridges as connection failure can lead to collapse, 

potential safety concerns for employees and citizens and expensive traffic disruptions 
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(34, 36, 37). Therefore, while other SHM configurations could be utilized on the selected 

bridge, the SHM system reported herein was designed to focus on potential deficiencies 

at the stringer-to-floor beam connections. It should be noted that the proposed method 

can be used to detect other deficiencies using differing sensor configurations (35).  

 A total of 24 strain transducers, manufactured by Bridge Diagnostics, Inc. (BDI), 

were deployed on the bridge to measure structural response under train passage and 20 of 

those instruments were installed at stringer ends, as shown in Fig. 8. Sensors were 

installed on the stringer bottom flanges. Selected instrument locations were based on 

recommendations by the bridge owner and preliminary FEM models.  

 The monitoring system consists of a BDI data logger, a wireless base station and 

wireless nodes, with each node being connected to 4 strain sensors using cables, as shown 

in Fig. 23. The system was powered using six 24-volt batteries that were charged by two 

solar panels, also shown in Fig. 23. Example sensor installations on stringer bottom 

flanges near floor beam connections are shown in Fig. 24. Data was collected remotely 

with the system set to activate and record strains at a sampling rate of 50 Hz when a train 

crossed the bridge.  
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(a) (b) 
Fig. 23 Deployed monitoring system: (a) BDI node; (b) solar panels. 

 

 

 
Fig. 24 Installed strain sensors (circled). 

 
5.3. Feature extraction and data cleansing 

 The current study considered one week of train “events,” which totaled 363 

recorded passages. Live loads associated with these datasets were unknown and varied 

with respect to speed, number of axles, and axle load magnitudes. The proposed 

methodology is described in the flow chart in Fig. 25. 
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Fig. 25 Feature extraction and data cleansing methodology.  
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 ࣐ are known to contain information on structural deficiencies and have been 

widely used for model reduction (91), impact localization (92), and damage detection in 

mechanical systems (20, 93). ࣐ are used to graphically highlight data having the most 

variation for a given number of events. Therefore, for the current study, ࣐ were 

dependent on recorded strain magnitude and duration, which are a function of train 

configuration and speed. To minimize ࣐ variations, strain signals included in snapshot 

matrices used for ࣐ extraction needed to be of similar magnitude and features with data 

reduction and cleansing being necessary prior to mode extraction. Therefore, data 

windowing, load location identification and peak picking were performed. MATLAB 

algorithms were implemented or developed to render this process autonomous and 

involved steps are described in the sections that follow. 

5.3.1. Windowing recorded events 

 The first step was the elimination of time intervals having negligible live load 

strains, typically before and after train passage. The MATLAB find algorithm was 

applied to window the recorded strains at IL 3 in Fig. 8, which was selected since that 

sensor was positioned at midspan under a train rail and, as a result, would be quite 

sensitive to live load effects. Time steps involving strain changes greater than 7.5 µε were 

selected as the first filter through an offline trial and error process. Subsequently, all time 

steps having magnitudes less than 7.5 µε at the start and end of each event were 
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eliminated. Two representative recorded signals at IL 3 and 18 are shown in Fig. 26 

before and after windowing. 

5.3.2. Determining load location 

 The second step focused on developing an automated classification of recorded 

signals based on the track upon which the train crossed the bridge. Initial field testing and 

model results indicated that stringer end bottom flange strains would be in compression if 

that stringer was underneath the loaded track and in tension if the other track was loaded 

(35). Means for recorded strains at ILs 1 to 10, underneath Track 2, were calculated and 

if values exceeded zero the train was classified as being located on Track 1, with the 

opposite sign indicating the train was located on Track 2. This classification showed that 

187 of 363 trains traversed the bridge on Track 1. Windowed strain signals at ILs 3 and 

18 for a train on Track 1 and Track 2 are shown in Fig. 27.  

 

Fig. 26 Signal windowing: (a) Original; (b) Windowed. 
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Fig. 27 Load location: (a) Track 1; (b) Track 2. 
 

5.3.3. Automated peak picking 

 The third step focused on automatically selecting a constant number of peaks in 

each recorded event dataset so that ࣐ variations due to train load disparities were 

minimized. A lower bound threshold of 50 µε for recorded strain peaks was established 

based on average strains recorded at IL 3 when Track 1 was loaded or the corresponding 

location (IL 18) when Track 2 was loaded. The MATLAB findpeaks function was used to 

select the first 40 peaks having strains greater than 50 µε at IL 3 or 18, with 40 peaks 

being selected to ensure that the snapshot matrices included enough samples for stable ࣐ 

calculation.  

 The developed code excluded the first five peaks, corresponding to 4 train cars, to 

eliminate transient response developed from the locomotives. After automated peak 

peaking was performed, 74 events were filtered, 15 for trains on Track 1 and the 

remainder for trains on Track 2. Representative final strain events used to develop ࣐ for 
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trains on Tracks 1 and 2 at IL 3 and 18 are shown in Fig. 28 (a) is for a case where the 

train is located on Track 1, while Fig. 28 (b) is for the train located on Track 2. 

 

 

Fig. 28 Peak picking: (a) Track 1; (b) Track 2. 
 

5.4. ANN training 

 To mitigate the influence of variable, non-stationary, external inputs on field 

measured strain ࣐ variability, snapshot matrices for both tracks were sorted based on 

average RMS, with matrices having RMS averages between 45.4 and 47.1, a range of 

minimal variation, being selected for damage detection. In Fig. 29, average RMS 

snapshot matrices for Track 1 and 2 are shown.  Track 2 matrices were selected for 

training and testing the developed damage detection ANNs, with matrices for trains 29 to 

46 specifically being selected due to similar RMS averages. It is important to note that 

testing snapshot “events” were not included in the ANN training process. They were used 
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to investigate how accurately the proposed method detected damage under various 

loading scenarios in the same average RMS range. Snapshots for trains 29, 35, 41 and 46 

were randomly selected for ANN testing, while snapshots for trains 30 to 34, 36 to 40 and 

42 to 45 were used for ANN training.  

 Since imposing actual damage on the studied bridge was not permissible, 

measured strains were reduced by multiplying a reduction factor to account for varying 

levels of damage at stringer-to-floor beam connections. This “damage” was simulated via 

the reduction of field-measured strains at selected locations, with reductions being 

proportional to assumed DIs. These reductions were based on the assumption that 

connection deterioration would reduce rotational stiffness, and in the limit would convert 

a semi-rigid (“healthy”) connection to a pinned connection having limited to no moment 

restraint (37). Potential crack propagation through the connection depth was modeled via 

continuous decrease in connection rotational stiffness (37), resulting in smaller moments 

at the connection and, accordingly, smaller stringer end, bottom flange strains. In this 

study, induced damage at any connection was simulated using a strain reduction factor at 

that connection, with other connections being undamaged. 

5.4.1. ANN nonlinear regression for damage detection 

 To generate training data, 10 DIs, varying between 10% and 90% in 10% 

increments, were examined at each IL (see Fig. 8). The DIs were sequentially varied at 

the 20 ILs for 14 train events, which produced 2800 damage scenarios. These damage 

scenarios trained the ANNs using MATLAB Neural Net Fitting function, where various 

numbers of internal neurons were explored to ensure ANNs were accurately generalized 

for damage identification. A nonlinear regression ANN was used to establish damage 
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detection from ࣐ of examined scenarios. It was decided that 70% of the input ࣐ would be 

used for training, 15% for validation and 15% for testing during ANN regression 

analysis.  

 

Fig. 29 RMS averages: (a) Track 1; and (b) Track 2. 
 

5.5. ANN testing 

 As stated earlier, Trains 29, 35, 41 and 46 were randomly selected to test ANN 

effectiveness, with tested ANNs featuring 25, 50, 100 and 200 internal neurons, with the 

number of neurons being selected via trial and error to determine the appropriate number 

of internal neurons. A representative comparison between ANNs using 100 and 200 

neurons for a DI of 90% at DL 8 when loaded by Train 29 is shown in Fig. 30. The figure 

indicated that both ANNs predicted damage location and intensity very well; however, 

the network with 200 neurons appeared to be marginally affected by overfitting, as 

evidenced by false positives and negatives shown in Fig. 30 (b). Using 100 neurons was 

shown to be the most robust for predicting damage location and intensity.  
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Fig. 30 ANN testing, Train 29: (a) 100 neurons; and (b) 200 neurons. 
 

 To ensure the developed method was robust against false positive damage signals, ࣐ for a healthy bridge subjected to various loading events was also used to test trained 

ANNs. As shown in Fig. 31, it was observed that, for events associated with the four 

trains selected for ANN testing, the maximum false-positive DI was approximately 6%, 

which was deemed to be low when compared against the actual DI of 0%. These results 

supported the premise that the method would successfully detect damage with the caveat 

that an acceptable threshold should be established via long-term monitoring and 

corresponding statistical analyses. 
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Fig. 31 Healthy bridge ANN testing: (a) Train 29; (b) Train 35; (c) Train 41; and (d) 
Train 46. 

 

 To further ascertain the ability of the proposed methodology to detect DL and DI, 

ANN DI predictions at various DLs were studied. For the sake of brevity, the results of 

the analysis for some representative damage scenarios are reported herein. The choice of 

DL and DI were arbitrary; however, the DIs ranged from low to high and the DLs were 

chosen so that it would cover various locations on the bridge. Fig. 32 demonstrates the 
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ability of the proposed methodology for capturing the studied range of DIs at DL 8. 

Predicted DIs for Train 29 were 17, 37, 58, 79 and 89% for imposed DIs of 20, 40, 60, 80 

and 90%, respectively. Results of ANN testing at DL 11 are shown in Fig. 33 and 

indicated that DI predictions might be affected by recorded signals from certain trains, 

especially for low DIs. A DI of 20% was captured well for all testing sets except for 

Train 35, where false-positive DIs, approaching 5%, existed.   

 Conversely, Fig. 34 presents damage identification capabilities of trained ANNs 

for a DI of 60% at DL 13 under multiple train loads. Trains 29, 35, 41 and 46 were used 

with DL and DI were, again, captured accurately with predicted DIs ranging between 57 

and 60%. 

 

Fig. 32 ANN testing for DL 8 under Train 29, all DIs. 
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Fig. 33 ANN testing for DL 11 under Train 35, all DIs. 

 

Fig. 34 ANN testing for DL 13 with DI 60% under Trains 29, 35, 41 and 46. 

  

 To estimate the importance of classifying trains based on RMS, as shown in Fig. 

29, the trained ANN was tested using healthy ࣐ for 4 trains whose average RMS was 

located outside the selected range. Trains 10, 20, 50 and 55 were selected for this 

exercise. A moderate increase in false-positives was evident for three of the four selected 
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trains (Trains 10, 50 and 55), with false positives predicting DI ranges between 8 and 

25% as shown in Fig. 35. For Train 20, the predicted DI showed a significant increase in 

false-positives, with maximum value of 70% as shown in Fig. 35. These results showed 

that selecting ANN training sets based on the associated average RMS is necessary to 

reduce ࣐ variations associated with change in non-stationary loading configurations.  

 

Fig. 35 Healthy bridge ANN testing: (a) Train 10; (b) Train 20; (c) Train 50; and (d) 
Train 55. 
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 To examine the effectiveness of the proposed methodology for detecting damage 

using noisy strain signals, as is often the case with low-cost sensors, zero-mean, white 

Gaussian noise was added to measured strain time-histories. A representative example of 

noisy strain signals for Train 41 is shown in Fig. 36. ANNs were retrained and retested 

using the “noisy” data and results showed that the proposed methodology was capable of 

capturing damage from noisy signals with acceptable accuracy. “Noisy” strains at DL 15 

with a DI 80% under Trains 29, 35, 41 and 46 are shown in Fig. 37. Predicted DIs ranged 

from 78 to 81%, which showed a good match with simulated damage.  

 

 

Fig. 36 Signal with 20% simulated noise, Locations 3 and 18, Train 41; (a) peak picking; 
and (b) magnified view. 
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Fig. 37 ANN testing at DL 15 with simulated DI 80% and simulated noise 20% under 
Trains 29, 35, 41 and 46. 

 

5.6. Conclusions  

 In this chapter, the proposed POD-ANN damage detection framework discussed 

in Chapter 4 was applied to measured strain responses from the monitoring system 

deployed on the truss span shown in Chapter 3. Results demonstrated its efficacy for 

detecting deficiencies in stringer-to-floor beam connections and the approach can be 

extended to include damage detection for other structural systems, details and types of 

data. The following conclusions were drawn from the study: 

• The proposed method successfully detects damage using strain outputs induced by 

unknown, nonstationary external inputs; 

• Automated data cleansing prior to POM	(࣐) extraction was necessary to reduce 

discrepancies caused by nonstationary inputs; 
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• The developed approach could accurately capture damage represented by DIs 

greater than 20%, with clearly improved accuracy for DIs higher than 40%; and 

• The method is robust enough to predict damage supplied from highly noisy signals 

accurately. 

 It should be reiterated that the current study was performed neglecting 

environmental variability; however, due to the short amount of time required for a train to 

traverse the bridge it was assumed that environmental effects were negligible. It is 

noteworthy that existing filtering methods in the literature, even in the absence of 

modeling uncertainties and environmental effects, lead to large estimation errors when 

measurement noise is large and a relatively large number of DIs have to be identified. For 

example, hybrid particle filters systematically account for modeling and measurement 

errors but are prone to bias as the noise-to-signal ratio increases (62).
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Chapter 6 : POD-ANN Framework Application to Varying Spans, 

Responses and Instrumentations  

6.1. Abstract 

 An extended application of the POD-ANNs framework discussed in Chapter 4 and 

Chapter 5 (61, 62) is presented herein. The study presented in this chapter utilized the finite 

element models of the truss and through girder spans discussed in Chapter 3. The current 

study expanded the framework to include strains, rotations about member major axes, 

vertical displacements and accelerations for three different proposed instrumentation plans 

per span (35) to investigate applicability of the framework to other instrumentation 

schemes, response measurements and span types. Connection damage was again simulated 

by reducing rotational spring stiffness at member ends and various responses were 

extracted for each damage scenario. Instrumentation plan 1 (IP-1) was located close to 

stringer ends, while plans 2 and 3 (IP-2 and IP-3) had instruments located at midspan of 

the stringers (35). 

 As shown in the previous chapters, the methodology utilizes POMs (࣐) as the 

damage feature identification method and ANNs to automatically determine damage 

location (DL) and intensity (DI) and decouples ࣐ variations from variations in train loads. 

To train and test developed ANNs, 10 DIs were investigated at stringer connections to 

simulate stringer-to-floor beam deterioration under selected train passages. ANN testing 

results showed that DLs and DIs were detected accurately for both spans using different 

instrumentation plans that measure various response quantities.  
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6.2. Analyses and instrumentation 

 As discussed in Chapter 3, a truss and through plate girder span from the 

investigated bridge were selected as testbeds. For the description and sketches of both 

spans see Section 3.1. The current analytical study focused on applying the POD-ANN 

framework with strains, member strong-axis rotations, vertical displacements or 

accelerations measured at locations that were part of 3 analytically modeled 

“instrumentation” plans (IP). Listed responses were selected because they best reflect 

damage at stringer-to-floor beam connections, which were reported by the bridge owner to 

be prevalent locations for damage. Instrumentation and analysis results are summarized in 

the following sections. 

 

6.2.1. Analytical “instrumentation” plans and simulated damage 

 Commonly reported deficiencies for these types of railway bridges include (35):  

(i) Stringer-to-floor beam connection deterioration and damage. 

(ii) Stringers and bottom laterals connection deterioration and member failure.  

(iii) Frozen supports.  

As stated earlier, stringer-to-floor beam connection deterioration was one of the more 

prevalent and important deficiencies to identify and track and, as a result, “instruments” in 

the models were placed to detect changes of various responses due to damage at or near 

those locations.  

 Three instrumentation schemes were examined analytically and are shown in Fig. 

38 for the truss span and Fig. 39 for the through plate girder span. For the truss span, IP-1 

in Fig. 38 (a) had 20 sensors at stringer ends, IP-2 in Fig. 38 (b) had 20 sensors at midspan 
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of the stringers and IP-3 in Fig. 38 (c) had 12 sensors at midspan of the stringers. For the 

through plate girder span, IP-1 in Fig. 39 (a) had 24 sensors at stringer ends, IP-2 in Fig. 

39 (b) had 24 sensors at midspan and IP-3 in Fig. 39 (c) had 12 sensors at midspan. Selected 

instrument locations were based on sensitivity analyses and are reported elsewhere (35).  

 For each of the examined IP, the damage was simulated at 20 stringer ends in the 

truss span and 24 in the through girder span. Damage was simulated on one side of the 

floor-beam because it was assumed that damage to the connection on either side would 

have the same influence on stringer continuity. Differences between the number of 

simulated damage locations were due to the number of panels and stringers in each span 

(i.e., the truss span has 24 stringers while the through plate girder has 28 stringers). As 

discussed in Chapter 3, connection deterioration would reduce rotational stiffness and, as 

a result, a “rigid” connection would revert to semi-rigid connection and, ultimately, a 

pinned connection (37). Continuous reduction in rotational stiffness was used to simulate 

crack propagation through connecting clip angles. Simulated Damage Locations (DL) are 

shown in Fig. 40.  
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 (a) 

 
(b) 

 
(c) 

 

Fig. 38 Truss span instrumentation plans: (a) Instrumentation Plan 1 (IP-1); (b) 
Instrumentation Plan 2 (IP-2); and (c) Instrumentation Plan 3 (IP-3). 
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(a) 

 
(b) 

 
(c) 

 

Fig. 39 Through girder span instrumentation plans: (a) Instrumentation Plan 1 (IP-1); 
(b) Instrumentation Plan 2 (IP-2); and (c) Instrumentation Plan 3 (IP-3). 
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(a) 

 
(b) 

 

Fig. 40 Simulated damage locations (DL): (a) truss span; and (b) through girder span. 

  

As mentioned in Chapter 3, the bridge owner provided Weigh-In-Motion (WIM) 

data for 81 trains of varying loadings, axle spacing, lengths and travel speeds. Preliminary 

analyses, which assumed that the bridges were undamaged, subjected to the 81 trains were 

completed using MATLAB and the SAP2000 Open Application Programming Interface 

(OAPI) to extract structural responses at IP-1 locations in Fig. 38 (a). Of the 81 trains, 24 

were selected having the highest strain RMS (62) were selected for the current study, see 

Fig. 11. 

 

6.2.2. Analyses 

 Three-dimensional frame finite-element models were developed in SAP2000 for 

the bridge spans under study. Developed analytical models are described and shown in 

Section 3.2. Isometric views of developed models are shown in Fig. 4. More details about 
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constructed models are provided in (35). Train loads were applied via a set of point moving 

loads. 

 Multi-step static and time history analyses were used to obtain static and dynamic 

response for each train passage and damage scenario. Strains, strong-axis rotations and 

vertical displacements were extracted from the multi-step static analyses while vertical 

accelerations were extracted from the time-history analyses. The maximum number of 

modes defined in the modal analyses were 50 and 25 for the truss and the plate girder spans, 

respectively, and were selected based on comparing strain and displacement results from 

static analyses.  

 MATLAB and SAP2000 OAPI Open Application Programming Interface (OAPI) 

were used to automate each type of analysis. Automation was implemented to:  

(i) Model selected train loads; 

(ii) Simulate damage locations and intensities for each train passage, of which there 

were 201 scenarios for the truss and 241 for the through plate girder; and 

(iii) Extract internal effects that included strains, strong-axis rotations, vertical 

displacements and accelerations. 

 

6.3. ANN training using POMs 

 ANN training data was generated for 10 DIs between 10% and 100% in 10% 

increments at each DL, with each increment representing progressive damage at a stringer-

to-floor beam connection. A total of 4800 (truss span) and 5760 (through girder span) 

damage scenarios were analytically studied using this approach for the 24 selected train 

passages. These damage scenarios helped train ANNs using the MATLAB Neural Net 



75 
 

 
 

Fitting function, where various numbers of internal neurons were explored to ensure ANNs 

were accurately generalized for damage identification. ANNs could detect DL and DI once 

trained with the available data. A nonlinear regression ANN was selected to establish 

damage detection with ࣐ for each DI/DL scenario. As mentioned earlier, 100 internal 

training neurons were adopted for ANN training. It was decided that 70% of the input ࣐ 

would be used for training, 15% for ANN validation and 15% for testing with 18 trains 

strain ࣐  being used to train the ANNs. The number of trains selected for ANN training was 

based on a trial and error approach examining 6, 12 or 18 trains.  

 Representative comparisons under 6 train training passages and 6, 12 or 18 testing 

passages are shown in Fig. 41 for the truss span with a DI 50% at DL 8. ANNs were trained 

and tested with ࣐ from stringer end bending rotations. Fig. 41 (a) shows testing of ANNs 

trained using six train passages, Fig. 41 (b) shows testing of ANNs trained using 12 

passages and Fig. 41 (b) shows the testing of ANNs trained using 18 passages. As expected, 

the figure indicates that increasing the number of events in the training process increased 

DI/DL prediction accuracy and reduced false positives and negatives. More detail on 

selected trains can be found in (62). 
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Fig. 41 Influence of number of train events used in ANN training process, DI=50% at DL 
3, rotation ࣐, truss span: (a) Training with six trains; (b) Training with 12 trains; and (c) 

Training with 18 trains. 

 

6.4. ANN testing, truss span 

 As stated earlier, 75% of DI/DL scenarios were used for ANN training, with 

training and testing proportions being selected based on trial and error. This provided 3600 

damage scenarios for training and 1200 for testing using extracted strain, rotation, 

displacement and acceleration ࣐. Representative results that detail the effectiveness with 

which each response ࣐ detects damage are presented for IP-1 in the following section. 

More results are shown in Appendix 1. 

 

6.4.1. IP-1 

 Representative results for a single train (Train 69) at DL 3 for a DI of 40% are 

shown in Fig. 42. The figure details detected DI/DL for ANNs tested and trained with ࣐ 

extracted from various structural responses. As shown in the figures, DI/DL were detected 

with very good accuracy with ANNs trained with various response ࣐ except for 

acceleration, which showed very low DIs at all locations. Fifteen acceleration DLs 
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indicated false positives and 4 DLs indicated false negatives with a maximum predicted DI 

= 7.5%, Fig. 42 (d). 

 

Fig. 42 Truss span ANNs testing, IP 1, Train 69, DI=40% at DL 3: (a) strain; (b) rotation; 
(c) displacement; and (d) acceleration. 

  

 To investigate the efficiency and effectiveness of using POD-ANN to detect 

damage under different train loads, results from six train events at DL 13 with a DI of 80% 

are shown in Fig. 43. The results indicated that strain ࣐ accurately predicted DI and DL 

for all trains. Predicted DI ranged from 79.2 % to 81.0 % with maximum false positive and 

negative being 1.0 and 1.2 %, respectively as shown in Fig. 43 (a). Fig. 43 (b) shows 

rotation ࣐s also demonstrating reasonable accuracy. Displacements did not demonstrate 

similar accuracy levels, but were still reasonable, as shown in Fig. 43 (c). Fig. 43 (d) shows 

acceleration ࣐s were not reliable for determining DLs or DIs for any of the considered 

trains. As a result of studies that were completed, ࣐s extracted from strain or rotation 

measurements were recommended for the framework using IP-1.  
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Fig. 43 Truss span ANNs testing, IP 1, all testing trains, DI=80% at DL 13: (a) strain; 
(b) rotation; (c) displacement; and (d) acceleration. 

  

6.5. ANN testing, through girder span 

 As stated earlier, 75% of DI/DL scenarios were used for ANN training, with 

training and testing distributions selected based on trial and error. This provided 4320 

damage scenarios for training and 1440 for testing using extracted strain, rotation, 

displacement and acceleration ࣐s. Representative results that detail the effectiveness with 

which each response ࣐ detected damage are presented in the following section for IP-3. 

More results for ANNs testing are shown in Appendix 1. 



79 
 

 
 

 

6.5.1. IP-3 

 Representative results for a single train (Train 69) at DL 3 with a DI of 40% are 

shown in Fig. 44. The figure details detected DI/DL with ࣐s extracted from structural 

responses discussed previously. As shown in the figures, DI/DL were detected with very 

good accuracy except for acceleration, which again showed very low DIs at all locations 

(Fig. 44 (d)). Predicted damage for strain, rotation and displacement ࣐ at DL 3 varied 

between 37 and 40% with maximum false positives and negatives of 9 and 4.0%, 

respectively, Fig. 44 (a-c).  

 To investigate the efficiency and effectiveness of using POD-ANN to detect 

damage under different train loads, results from 6 train events at DL 15 with a DI of 80% 

are shown in Fig. 45. The results indicate that using strain, rotation and displacement ࣐s 

predicted DI and DL accurately for all trains. Predicted DI at DL 15 for strain, rotation and 

displacement ࣐s ranged between 77 and 83% with false positives and negatives being less 

than 5%, Fig. 45 (a-c). ANN testing for acceleration ࣐	detected neither DL nor DI 

accurately, Fig. 45 (d).  

 As a result of the studies that were completed, POMs extracted from strain, rotation 

and displacement were recommended for through girder span IP-3.  
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Fig. 44 Through girder span ANNs testing, IP 3, testing Train 69, DI=40% at DL 3: (a) 

strain; (b) rotation; (c) displacement; and (d) acceleration. 
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Fig. 45 Through girder span ANNs testing, IP 3, all testing trains, DI=80% at DL 15: 
(a) strain; (b) rotation; (c) displacement; and (d) acceleration. 

 

6.6. Conclusions  

 The viability of expanding an output-only, automated, strain-based damage 

detection framework that utilized the POD-ANN framework described earlier to other 

response parameters (rotations, displacements and accelerations) was studied. The 

expanded framework was examined via its application to the truss and plate girder spans 
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discussed in Chapter 3. Optimal instrumentation schemes were concurrently studied; with 

three proposed sensors schemes being examined for each bridge span (35).  

 A set of 24 routine train loading events and combinations of DLs and DIs were 

simulated using MATLAB and the SAP2000 OAPI. Results demonstrated the efficiency 

and applicability of the proposed framework for detecting stringer-to-floor beam damage 

for a wide variety of responses, train events and instrumentation plans. The proposed 

methodology could be extended further to include other structural systems or deficiencies.  

 It was concluded that: 

• DL and DI were captured accurately for studied bridge spans. 

• Damage could be accurately detected using as few as 20 sensors in the truss span 

and 12 sensors in the through girder span. 

• Strain, rotation or displacement sensors could be used to detect damage locations 

in the investigated bridge spans. 
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Chapter 7 : Mitigating Influence of Modeling Uncertainty on POD-

ANN Framework 

Published: International Journal of Fatigue, https://doi.org/10.1016/j.ijfatigue.2019.105458 

Rageh, A., Eftekhar Azam, S., & Linzell, D. 

7.1. Abstract 

 Damage detection efficiency and accuracy were shown to be significantly 

influenced by modeling uncertainties (MUs) by overshadowing damage effects. To 

investigate the applicability of the framework detailed in Chapter 4 and Chapter 5 to in-

service bridges, a systematic analysis of the effect of MUs on the proposed POD-ANN 

framework was necessary. MU influence on the performance of the POD-ANN damage 

detection method was investigated and a new procedure for generating training data for 

ANNs was proposed. The procedure was founded on synchronizing  ࣐s extracted from 

measured structural response with those calculated from a numerical model to allow for 

generating ANN training data sets based on measured responses. This chapter discusses 

how numerical and field investigations were synchronized.  

 The main objective of the numerical investigation was to identify a robust damage 

feature independent of level and location of assumed MUs. Results provided in this 

chapter showed that DL and DI were detected with high accuracy for studied uncertainty 

cases; however, as expected, damage detection accuracy reduced as MU increased. A 

hybrid experimental-numerical approach was then implemented for the field investigation 

studies. This approach applied identified damage features from the numerical 

investigation to measurements of the truss span response of the studied bridge with 

damage scenarios used to train the framework being produced. MATLAB algorithms 
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were developed that preprocessed field data and eliminated ࣐ variations resulted from 

loading uncertainties. ANNs were trained and tested using the field strain estimated ࣐ 

from the hybrid approach and DL and DI results were obtained under non-stationary, 

unknown train loads. 

7.2. Novel damage feature for POD-ANN damage identification in the presence of MU 

 Based on MU existence and assumptions made on the availability of train axle 

loads, four possible damage identification scenarios are possible: 

1. No MU, known loading configurations; 

2. No MU, unknown loading configurations; 

3. MU, known loading configurations; and 

4. MU, unknown loading configurations. 

 The first two scenarios could be effectively addressed using the framework 

described in Chapter 4 and Chapter 5 (61, 62). The two latter scenarios feature new MU 

and POD-based damage features. Proposed methodologies to address these cases are 

presented in the following two subsections. 

7.2.1. ∆POMs for training ANNs in the presence of MU, absence of load uncertainty 

 In general, it is known that structural response POMs (࣐) are a function of sensor 

network topology; sensor types; structure mechanistic and geometric properties; and 

external loads. These parameters can be represented as: 

࣐ = ێێێۏ
ۍ ߮ଵ⋮߮௝⋮߮௡೘ۑۑے

ېۑ = ݃(ࣖ௟, ࣖ௚, બ, ऐ)    (8) 



85 
 

 
 

 where:  ࣖ௟ ∈ ℝ௣೗ is the vector that includes ݌௟ parameters that affect local 

structural response; ࣖ௚ ∈ ℝ௣೒ denotes the vector that includes ݌௚ parameters that affect 

global structural response; બ ∈ ℝ௡೘×ࢊ࢔ defines coordinates of the sensor network so that ߮௝ corresponds to બ௝,ଵ:ଷ; and ऐ ∈ ℝ࢓ denotes the vector of external loads. 

 If the change in mechanical or geometric properties of a structural member affects 

the local structural response, any change in ࣐ would be predominantly local. Assume that 

different models of a certain structure were available and denoted by	ℳ௜, ݅ = 1,2, … ,݉. 

Also, assume that ࣖ௚ and Ξ for each ℳ௜ is constant. Finally, it will be assumed that the 

number of sensors is equal to the number of parameters that govern the local response, 

i.e.	݊௠ =  .બ௝,ଵ:ଷ	௝௟ affects the structure’s response at the sensor installed inߴ ௟, and that݌

As a result: 

ࣖ௟ = ێێۏ
௡௟⋮ߴ௝௟⋮ߴଵ௟ߴۍێ ۑۑے

ېۑ
.      (9) 

 and, for all models	ℳ௜: 

݃൫ࣖ௟ + ∆௝ࣖ௟, ࣖ௚, બ, ऐ൯ − ݃(ࣖ௟, ࣖ௚, બ, ऐ) ≅ ێێێۏ
ۍ 0⋮∆߮௝⋮0 ۑۑۑے

ې
   (10) 

 where: ∆௝ࣖ௟ denotes an increment of ݆௧௛ row of the vector ࣖ௟. It is shown that the 

change in the ݆௧௛ component of POM (∆߮௝) is proportional to the increment of ݆௧௛ row of 

the vector	ࣖ௟ : 
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∆߮௝ ∝ ∆௝ࣖ௟.      (11) 

 It follows that, if ∆࣐ is used as a damage feature within a POD-ANN damage 

identification framework, and ࣖ௚, બ and ऐ are constant, any of ℳ௜ models could 

effectively generate damage scenarios required for training the ANNs. Extensive 

numerical investigations in Section 7.4 support this premise and show that, while ࣐ 

globally varies by ∆௝ࣖ௟ for any ℳ௜ subjected to the same external load, ∆࣐ varies locally. 

When the damage scenario is a local phenomenon, it will produce an increment in the 

value of the parameter that changes local structural response: 

∆࣐ = ࣐ௗ − ࣐௛     (12) 

 where: ࣐ௗ denotes the first POM of the structure in a damaged state; and ࣐௛ 

stands for the first POM of healthy, baseline structure. To train the ANN for damage 

detection, the following features for ௗܰ damage scenarios are proposed: 

ሾ∆࣐ଵ ⋯ ∆࣐ே೏ሿ௡೘×ே೏    (13) 

 where the superscript for ∆࣐ indicates the damage scenario. 

 If the right model class is constructed for the actual structure, one can argue that 

∆POMs (∆࣐) obtained from response measured before and after a deficiency happens 

could be reasonably approximated by ∆࣐ from models	ℳ௜: 
∆࣐௘௫௣ ≅ ∆࣐ℳ೔     (14) 
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7.2.2. Approximating POMs for training ANNs in the presence of MU and load 

uncertainty: hybrid experimental-numerical approach 

 The premise from the previous section is used in herein for approximating 

damage scenario  . Using ࣐ of a healthy structure obtained from experimental data and ∆࣐ of damage scenarios obtained from the numerical model ℳ௜ one can deduce the 

following when considering Equation 12 and Equation 14.: 

࣐ௗ ≅ ෝ࣐ௗ = ࣐௘௫௣௛ + ∆࣐ℳ೔    (15) 

where ෝ࣐  denotes an estimate of ࣐. Estimated ࣐ then could be used as input for training 

the ANN: 

ሾሾ ෝ࣐ଵ,ଵ ⋯ ෝ࣐ே೏,ଵሿ ⋯ ሾෝ࣐ଵ,ே೟ ⋯ ෝ࣐ே೏,ே೟ሿሿ௡೘×(ே೟×ே೏).  (16) 

Extensive numerical analyses in Section 7.4 again support this premise. 

 

7.3. Studied bridge, analytical model and instrumentations 

 The investigated bridge truss span was used in this chapter as a testbed for MUs 

study. For the truss details and analytical model, see Chapter 3. A total of 20 strain 

transducers installed at stringer bottom flanges close to stringer-to-floor beam 

connections were adopted, see Fig. 8. Strains were extracted from numerical investigation 

or measured from field tests at these locations.  
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7.4. Numerical validation 

 The objective of the numerical investigation was to identify a robust damage 

feature that is largely independent of MU and could be used to identify damage scenarios 

from field measured strains. Five numerical models helped identify the feature, one being 

the base model with no MU and the rest including simulated MUs. The most consistently 

recognized damage feature was selected and applied to data produced from the numerical 

models and field tests. A flowchart describing the numerical validation procedure is 

shown in Fig. 46. 

 For details about fatigue cracks and the associated reduction in the rotation 

stiffness, see Chapter 3. In the current study, the damage was simulated at the 20 stringer 

ends by reducing end spring rotational stiffness from 0% to 100% reduction (i.e., DI = 

0% to DI = 100%) in increments of 10%. Stiffness reductions were applied to one 

stringer end at a time, with other connections being undamaged and, as stated earlier, 

Damage Locations (DLs) correspond to instrument locations (ILs) in Fig. 8.  It is also 

important to mention that damage was simulated on one side of the floor-beam because it 

was assumed damage to connections on either side would have the same influence on 

stringer continuity. 

 The bridge models were excited using real train loads. Out of the 81 trains shown 

and RMS sorted in Fig. 11, 24 trains having RMS that caused higher strains and provided ࣐ having minimal variation, were selected. This selected 24 trains being used in this 

chapter were Train 57 to Train 81 shown in Fig. 11.  

 The numerical study completed herein considered strain ࣐ variations caused by:  
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(i) Non-stationary (i.e., moving) train loads. 

(ii) DLs and DIs. 

(iii) MUs.  

 Analyses for various train loadings and DL/DI combinations were completed 

automatically using MATLAB and SAP2000 OAPI. For each simulated MU, the number 

of the associated analyses was 4824 damage scenarios, which corresponded to 24 trains, 

10 DIs and 20 DLs. 
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Fig. 46 Numerical investigation flowchart. 

 

 The authors were unable to find resources that helped couple MATLAB code to 

the SAP2000 OAPI to complete automated analyses and output extraction. As a result, 

appendices for the processes developed for the current study are provided. 0Appendix 2 

contains MATLAB code for running multi-step analyses and Appendix 3 details 
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relationships between MATLAB coding and SAP2000 OAPI windows for some of the 

crucial functions. 

7.4.1. MU cases 

 Stringer-to-floor beam end-fixity ratios vary widely and, as a result, no clearly 

defined relationship exists. Design practice assumes that these connections would transfer 

shear force only; however, laboratory and field tests indicated a high amount of end fixity 

(34, 37-40, 42). Stringer-to-floor beam connection end fixity ratio was shown to 

influence stress time histories significantly and, in-turn, fatigue life predictions for 

connecting elements with fatigue crack development mainly attributed to out-of-plane 

deformation of connecting angles and stress concentrations at rivets heads (40).  

 Because of significant variations of end fixity ratios observed from tests, higher 

discrepancies between actual and modeled ratios are expected. As a result, the end fixity 

ratio was selected as the major MU factor for the current study. As stated earlier, the base 

model had no MU (ℳ଴) and the end fixity ratio was assumed to be 67% of that for fully 

continuous stringer (37). This corresponded to a linear rotational spring coefficient of 

803435 kN-m/rad applied uniformly to all stringer ends. The first 2 MU cases (ℳଵand ℳଶ) uniformly varied all stringer end fixity ratios by + 80% and -50% of that assigned in ℳ଴, which corresponded to assigned spring coefficients of 1446183 and 401717 kN-

m/rad for ℳଵand ℳଶ, respectively. The 80% increase was based on results from model 

validation activities (35). The other 3 MU cases (ℳଷ	 to	ℳହ) used randomly modified 

end fixity ratios at +/- 25, 50, and 100% of the ℳ଴ case, which produced coefficients 

varied randomly between the assigned values at each connection. Assigned spring 
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coefficients are listed in Table 1 for each stringer. It is important to mention that ℳଵ is a 

calibrated model for the investigated bridge. The model was validated against full-scale, 

measured responses (35). 

 To demonstrate influence of selected MU cases on strain response, results were 

compared for ℳ଴ to ℳହ cases where significant change in strain time-histories was 

observed, especially for Instrumented Locations (IL) located beneath the unloaded track 

(i.e., DL 11 to DL 20). Comparison of strains are shown in Fig. 47 for selected MU cases 

having 40, 60, 80 and 100% DI at DLs 3, 8, 13 and 18. Significant change in strain from ℳ଴ was observed for  ℳଵ to ℳହ strain time-histories. 

Table 1 MU cases 

Model Assignment Normalized rotational spring 
coefficient (ℳ௜/ℳ଴) ℳ଴ Uniform 1.00 ℳଵ Uniform, increase +80% of ℳ଴ 1.80 ℳଶ Uniform, decrease -50% of ℳ଴ 0.50 ℳଷ Random, +/- 25% of ℳ଴ Between 0.76 and 1.25 ℳସ Random, +/- 50% of ℳ଴ Between 0.53 and 1.45 ℳହ Random, +/- 100% of ℳ଴ Between 0.23 and 1.92 
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Fig. 47 Strain time-history comparisons for different MU scenarios: (a) DI 40% at DL 3; 
(b) DI 60% at DL 8; (c) DI 80% at DL 13; and (d) DI 100% at DL 18. 

 

7.4.2. Robustness of ∆POMs to MUs 

 Strains were extracted at the ends highlighted in Fig. 8 and corresponding ࣐ℳ೔ 
were calculated for each of the considered ℳ௜ cases and damage scenarios. Fig. 48 (a) 

shows a comparison of ࣐ℳ೔௛ for the 24 train events for the ℳ௜ cases where significant 

change was observed due to MUs and minimal effects observed from load variations. Fig. 

48 (b) depicts the mean for ࣐ℳ೔௛  for considered ℳ௜ cases, which again highlights 

significant ࣐ℳ೔௛  changes associated with MUs. Since ࣐ℳ೔௛ varyies significantly for the 

MUs, it cannot be classified as a robust damage feature that could eliminate or reduce 

MU effects. To eliminate ࣐ℳ೔ variations attributed to examined MUs, ∆࣐ℳ೔was 

calculated for each damage scenario as: 

∆࣐ℳ೔ = ࣐ℳ೔ௗ − ࣐ℳ೔௛      (17) 
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 The resulted ∆࣐ℳ೔ showed that variations due to MUs were significantly reduced 

when compared against ࣐ℳ೔ variations. As shown in Fig. 48, DL 18 experienced the 

highest variation in ࣐ℳ೔௛ ; however, when ∆࣐ℳ೔ was used the variation was significantly 

lower and the DL accurately identified. Fig. 49 (a) shows that ∆࣐ℳ೔at DL 18 for DI 80% 

and the considered train events showed minor variation observed for examined MUs and 

train loadings. Fig. 49 (b) compares the mean of ∆࣐ℳ೔for the MUs and again shows 

minor variations. These minor variations indicate that, for the studied bridge, model and 

sceanarios, ∆࣐ℳ೔could be considered as a robust damage feature that is largely 

independent of MUs and train loads.  

 

Fig. 48 Healthy POMs variations associated with MU scenarios (࣐गࢎ࢏ ): (a) ࣐गࢎ࢏ ; and (b) ࣐गࢎ࢏  mean. 
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Fig. 49 ∆࣐ग࢏	 at DL 18 with DI 80%: (a) ∆࣐ग࢏	; and (b) ∆࣐ग࢏	mean. 

  

 Since generating damage scenarios for an in-situ bridge is largely impossible, an 

alternate way to develop damage scenarios is by implementing ∆࣐ℳ೔ as a damage 

feature. To do so, ෝ࣐ௗ was calculated to generate damage scenarios as a function of ࣐ℳభ௛ to ࣐ℳఱ௛   and ∆࣐ℳబ	as: 

ෝ࣐ℳ೔ௗ = ∆࣐ℳబ	 + ࣐ℳ೔௛      (18) 

 Since ∆࣐ℳ೔ variations due to MUs were observed to be minor, ෝ࣐ℳ೔ௗ  is expected 

to match closely ࣐ℳ೔ௗ . To ensure the applicability of ෝ࣐ℳ೔ௗ  for simulating actual damage 

scenarios, comparisons between ࣐ℳ೔௛ , ෝ࣐ℳ೔ௗ  and ࣐ℳ೔ௗ  where completed and a close 

agreement was observed between ෝ࣐ℳ೔ௗ  and ࣐ℳ೔ௗ  at different MUs. One example of those 

comparisons shown in Fig. 50 for DIs of 40, 60, 80 and 100% simulated at DLs 3, 8, 13 

and 18 for ℳଵ to ℳହ cases. The comparison showed a very close match between ෝ࣐ℳ೔ௗ  
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(i.e., estimated from ∆࣐ℳబ	 and ࣐ℳ೔௛ ) and ࣐ℳ೔ௗ  (i.e., calculated from deficient models 

strains ℳଵ to ℳହ) for various DIs, DLs and MUs. The results proved that generating 

damage scenario POMs ( ෝ࣐ℳ೔ௗ ) from ∆࣐ℳబ	 of one model and ࣐ℳ೔௛  of another model is 

possible. As a result, a similar approach could be applied to generate ෝ࣐௘௫௣ௗ  from ࣐௘௫௣௛  

from measured strains. In other words, ෝ࣐௘௫௣ௗ  can be generated from ∆࣐ℳ೔	and	࣐௘௫௣௛ . 

 

Fig. 50 ෝ࣐गࢊ࢏  accuracy comparisons: (a) DI 40% at DL 3 with ग૚; (b) DI 60% at DL 8 
with ग૛; (c) DI 80% at DL 13 with ग૝; and (d) DI 100% at DL 18 with ग૞. 

 

 It is important to note that, while inaccurately modeling stringer to floor beam 

connections is not the only source of MU, significant influence on predicted response 

accuracy is anticipated to occur when the connections are inaccurately represented. Other 

potential source of MU could include inaccurate representation of: 

1. Material properties, represented using inaccurate elastic moduli (E) 

2. Bridge support conditions.  
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 To examine the influence of these MU sources on ࣐, additional cases were 

studied. These included:  

(i) uniformly increasing or reducing E of the entire bridge by 20% (1.2E	and	0.8E) 

(ii) uniformly increasing or reducing E of the stringers by 20% (1.2E	Str	and	0.8E	Str) 
(iii) using longitudinal springs at the free (roller supported) end to account for frozen 

bearings, with spring coefficients set to 50 and 100% of the bridge 

longitudinal stiffness (K)  (0.5K	Spr	and	1.0K	Spr) 
 The longitudinal bridge stiffness was estimated as the inverse of the longitudinal 

displacement at the roller ends of the bridge under longitudinal point loads.    

 In addition, the effects of multiple MU sources on ࣐ were also examined as 

follows:  

(i)  ܯଵ +  ܧ0.8

(ii) ܯଶ +  ݎݐܵ	ܧ1.2

(iii) ܯହ +  ܧ1.2

(iv)  ܯଵ + ݎݐܵ	ܧ0.8 +  ݎ݌ܵ	ܭ0.5

(v) ܯସ + ܧ1.2 +  ݎ݌ܵ	ܭ1.0

 Fig. 51 contains representative comparisons between ࣐ℳబ and ࣐ for ܯଵ and ܯହ 

and the sources of MU outlined in the preceding paragraph. As can be seen in the figure, 

including additional MU sources or their combinations slightly influenced ࣐ when 

compared against the ܯଵ to ܯହ cases, with agreement improving when a validated 
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version of the base model was used. Fig. 52 shows additional comparisons between ∆࣐ℳ೔ at DL 13 for DI 80%. Minor variations between the ܯଵ to ܯହ cases and the 

additional cases were again observed. These findings support using MU cases ܯଵ to ܯହ 

for the current study and also support the premise that ∆࣐ℳ೔ is a robust damage feature 

largely independent of MUs. 

Comparisons between ࣐ℳ೔௛ , ෝ࣐ℳ೔݀  and ࣐ℳ೔݀ for multiple MUs were also completed with 

excellent agreement observed. An example of those comparisons is shown in Fig. 53 for 

DIs of 40, 60, 80 and 100% at DL 3, 8, 13 and 18. The results prove that generating 

damage scenario POMs ( ෝ࣐ℳ݅ௗ
) from ∆࣐ℳబ	of one model and ࣐ℳ೔௛  from another model is 

possible when multiple MUs are included. 

 

Fig. 51 Healthy POM variations for additional MU cases (࣐गࢎ࢏ ): (a) ࣐गࢎ࢏ ; and (b) ࣐गࢎ࢏  
mean. 

 

h
h
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Fig. 52 ∆࣐ग࢏	 at DL 13 with DI 80% for selected MU cases and cases with multiple MU 
sources. 

 

Fig. 53 ෝ࣐गࢊ࢏  accuracy comparisons for cases with multiple MUs: (a) DI 40% at DL 3 
with ࡹ૚ + ૙. ૡࡱ; (b) DI 60% at DL 8 with ࡹ૛ + ૚. ૛ࡱ	࢚࢘ࡿ; (c) DI 80% at DL 13 with ࡹ૚ + ૙. ૡࡱ	࢚࢘ࡿ + ૙. ૞ࡷ	࢘࢖ࡿ; and (d) DI 100% at DL 18 with ࡹ૝ + ૚. ૛ࡱ + ૚. ૙ࡷ	࢘࢖ࡿ. 
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7.4.3. ANN training and testing data sets 

 Training data generated for the 10 DIs at each DL shown in Fig. 8. A total of 

4800 damage scenarios corresponding to each MU were developed by sequentially 

varying DIs at the designated DLs for the 24 train events. ANNs were trained using 

MATLAB Neural Net Fitting toolbox, which produced a nonlinear regression that, in 

turn, helped establish damage detection effectiveness. As mentioned earlier, 100 internal 

training neurons were adopted for the ANN training. 

 Extracted ࣐ℳ೔௛  and ࣐ℳ೔ௗ values were used to train and test the ANNs. Of the 24 

trains, 18 used to train the ANNs and six to test their ability to detect DLs and DIs. More 

details about the process can be found elsewhere (62).  

 For a given MU and known loading scenario, ∆࣐ℳబ	was used to train the ANNs 

and ∆࣐ℳభ	 to ∆࣐ℳఱ		were used to test them. The training and testing data sets differed 

based on:  

(i) The presence of or absence of MUs. 

(ii) Training load events were different from those used for testing. 

 For a real-world application; however, train loading configurations should be 

known to calculate ∆࣐ (i.e., it is calculated as the difference between two ࣐  for the same 

train event). For each MU and unknown loading scenario, ෝ࣐ℳ೔ௗ  was then adopted to 

impose damage. Testing was completed for ࣐ℳ೔ௗ , which was directly calculated from 

deficient numerical models. These training and testing data sets differed because: 

(i) ෝ࣐ℳ೔ௗ 	involved MUs used to train ANNs while ࣐ℳ೔ௗ  was used to test them. 

(ii) Training train events loadings were different from testing loads. 
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 A desktop computer having a multi-core architecture and a Windows 7 64-bit 

operating system was used to perform ANN training. The computer’s Central Processing 

Unit was an Intel Xeon E5-2630 2.4 GHz processor with 8 Cores, 32 GB DDR4 of RAM 

and a 20 MB Smart Cash. Training time was between 1050 and 1300 minutes for each 

considered MU case. 

 

7.4.4. Damage identification results 

7.4.4.1. Training with MU and Known Loads  

 One of the most critical issues with any health monitoring system is avoiding 

false alarms, which are an erroneous report of damage detection. To ensure the developed 

method was robust against false alarms, ࣐ for healthy scenarios subjected to testing train 

events were used to test trained ANNs for a given MU. Fig. 54 shows testing results 

when trained using MUs and known loads for healthy scenarios. It plots ANNs testing for 

healthy scenarios under selected testing trains for ℳଵ, ℳଶ, ℳସ and ℳହ where the 

likelihood of false alarms is assumed to be low. It was observed that, for events 

associated with the six trains selected for ANN testing, the maximum false-positive DI 

was approximately less than 0.1%, which was deemed to be low when compared against 

the actual DI of 0%. These results support the premise that the method would 

successfully detect damage with the need for determining an acceptable threshold via 

long-term monitoring. 
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Fig. 54 ANN testing, all testing trains, DI 0%: (a) ग૚; (b) ग૛; (c) ग૝; and (d) ग૞. 

 

 To further evaluate the ability of the proposed methodology to detect DL and DI 

for various MUs, ANN damage detection effectiveness at instrumented locations was 

studied. The results of some of the damage scenarios are described herein for the sake of 

brevity. DLs and DIs were arbitrary with DLs of 3, 8, 13 and 18 chosen and DIs of 40, 

60, 80 and 100% used for ℳଵ, ℳଶ, ℳସ and ℳହ. Results from ANNs for all train events 

are shown in Fig. 55. DIs and DLs were detected with reasonable accuracy for the 



103 
 

 
 

considered MU cases. However, false positives and negatives were observed with 

varying magnitudes depending on the levels of MU and DL. Results presented in Fig. 55 

are summarized in Table 2. 

Table 2 MU and known loads testing results 

 
Figure Subplot MU 

case 
Simulated DI 
and DL 

Detected DI 
at simulated 
DL 

False 
positives and 
negatives 

Fig. 55 a ℳଵ 40% at DL 3 31 to 33% 3% 
b ℳଶ 60% at DL 8 66 to 67% 15 and 25% 
c ℳସ 80% at DL 13 86 to 88% 9 and 9% 
d ℳହ 100% at DL 18 91 to 95% 4 and 10% 

Fig. 56 a ℳଵ 70% at DL 15 60 to 61% 4% and 8% 
b ℳଶ 70% at DL 15 73 to 76% 10% and 

12% 
c ℳସ 70% at DL 15 67 to 71% 15% and 

18% 
d ℳହ 70% at DL 15 62 to 65% 10% and 

18% 
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Fig. 55 ANNs testing, all testing trains: (a) DI 40% at DL 3, ग૚; (b) DI 60% at DL 8, ग૛; (c) DI 80% at DL 13, ग૝; and (d) DI 100% at DL 18, ग૞. 

 

 To illustrate the effect of MU level on DL and DI detection, another comparison 

between MUs at DL 15 with a DI of 70% under all testing trains was completed, as 

shown in Fig. 56. As demonstrated in the figure, the accuracy of detecting DL and DI 

varies based on the MU level, with both false-positives and negatives being observed. A 

summary of the testing results shown in Fig. 56 are listed in Table 2.  
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Fig. 56 ANNs testing with MU and known loading, DI 70% at DL 15, all testing trains: 
(a) ग૚; (b) ग૛; (c) ग૝; and (d) ग૞. 

7.4.4.2. Training with MU and Unknown Loads 

 Fig. 57 shows testing results for MUs, unknown loads and healthy scenarios. It 

was observed that, for events associated with the six trains selected for ANN testing, the 

maximum false-positive DI was approximately less than 3%, which was considered low 

given the actual DI of 0%. As discussed previously, these results supported that the 

method would successfully detect damage with the need for determining an acceptable 

threshold via long-term monitoring since similar observations were made in the previous 

testing results. 
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Fig. 57 ANNs testing with MU and unknown loading, all testing trains, DI 0%: (a) ग૚; (b) ग૛; (c) ग૝; and (d) ग૞. 

 

 Fig. 58 shows another example of ANN testing for all included train events and 

MUs for an unknown loading data set. As shown in the figure, DIs and DLs were 

detected with acceptable accuracy for considered MU cases.  Observed false positives 

and negatives showed to have magnitudes varied with the level of the MU and DL. The 

testing results shown in Fig. 58 are summarized in Table 3. 
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 Table 3 MU and unknown loads testing results 

Figure Subplot MU 
case 

Simulated DI 
and DL 

Detected DI 
at simulated 
DL 

False 
positives and 
negatives 

Fig. 58 a ℳଵ 40% at DL 3 30 to 33% 3% 
b ℳଶ 60% at DL 8 71 to 78% 12 and 15%, 
c ℳସ 80% at DL 13 84 to 89% 3 and 5% 
d ℳହ 100% at DL 18 73 to 75% 21 and 24% 

Fig. 59 a ℳଵ 70% at DL 15 61 to 65% 7 and 10% 
b ℳଶ 70% at DL 15 72 to 82% 6% 
c ℳସ 70% at DL 15 65 to 70% 17 and 16% 
d ℳହ 70% at DL 15 35 to 58% 26 and 15% 

 
  

 The influence of MU level on DL and DI detection is illustrated via comparisons 

for DL 15 and a DI of 70% for all testing trains shown in Fig. 59. As shown in the figure, 

DL and DI detection accuracy vary based on the MU level with false positives and 

negatives were observed. Summarized results of Fig. 59 are listed in Table 3. 
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Fig. 58 ANNs testing MU and unknown loading, all testing trains: (a) DI 40% at DL 3 
with ग૚; (b) DI 60% at DL 8 with ग૛; (c) DI 80% at DL 13 with ग૝; and (d) DI 

100% at DL 18 with ग૞. 
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Fig. 59 ANNs testing with MU and unknown loading, DI 70% at DL 15, all testing 
trains: (a) ग૚; (b) ग૛; (c) ग૝; and (d) ग૞. 

 

 In this section, a numerical investigation was completed to identify a robust 

damage feature that is largely independent of MU to help generate damage scenarios 

from measured strains (࣐௘௫௣). The identified damage feature was ∆࣐ℳ೔, which is the 

difference between healthy and deficient POMs (࣐). ANNs were trained and tested based 

on ∆࣐ℳ೔ being the damage feature for various MUs and known or unknown loadings. 

Testing results showed that DL and DI were reasonably detected for different MUs. 

However, false positives and negatives were observed with magnitudes and locations that 
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varied based on MU and DL. In general, it can be concluded that MUs with stiffer 

stringer-to-floor beam end fixity ratios tended to underestimate DIs while MUs cases 

with more flexible stringer ends tended to overestimate the DI. 

 

7.5. Field investigation 

 In this section, measured strains collected are used to develop ࣐௘௫௣௛  considering 

the studied bridge is currently in a healthy state (i.e., no observed stringer-to-floor beam 

connection damage). As a result, ࣐௘௫௣௛  is dependent on recorded strain signal magnitudes 

and durations, which are a function of train load, length and speed. To reduce ࣐௘௫௣௛  

variations associated with train crossing events, data preprocessing was completed to 

ensure that snapshots used in ࣐௘௫௣௛  calculations were of similar magnitude and feature.  

 Since the identified damage feature ∆࣐ℳ೔was shown to be independent of the 

MU level largely, a similar correlation was expected between model ∆࣐ℳ೔ and field ∆࣐௘௫௣; meaning that both ∆࣐	 should be close to one another. As a result, ∆࣐ℳ೔were 

used to generate damage scenarios as a function of ࣐௘௫௣௛  so that training and testing 

ANNs using damage scenarios developed from measured strains were possible. A 

flowchart describing the field investigation procedures is shown in Fig. 60. 
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Fig. 60 Field investigation flowchart. 
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7.5.1. Monitoring system and data collection 

 Stringer end strains were measured at instrumented locations depicted in Fig. 8 

using 20 strain transducers manufactured by Bridge Diagnostics Inc. (BDI).  Strains were 

recorded when a train crossed the bridge at a sampling rate of 50 Hz. Data preprocessing 

was completed without prior knowledge of train loads, lengths, location and direction of 

travel or speed. As a result, loads were non-stationary and unknown. 

7.5.2. Data preprocessing and POM extraction 

 A total of 2951 train passage events were selected, with strains being collected 

between June 30 and August 31, 2017. The selection of data processing parameters such 

as strain magnitudes and signal length were based on trial and error approach to minimize ࣐௘௫௣௛  variations and maximize the remained number of training trains. The first 

preprocessing step involved eliminating time steps before and after the train passage. The 

second step classified signals based on which track was loaded. This yielded a total of 

1471 out of the 2951 train events that crossed the bridge on Track 2. More details about 

the first two steps can be found in Chapter 5, see (61). 

 The third step retained signals for similar trains for ࣐௘௫௣௛ 	calculations to reduce 

loading configuration effects. To reduce ࣐௘௫௣௛  variations resulting from differing railroad 

car numbers and train loads, the first 15 strain peaks from a time-history were 

automatically selected using recorded strains at location 8 when Track 1 was loaded or 

location 13 when Track 2 loaded (see Fig. 8). Locations 13 and 18 were selected to be at 

the midspan of the bridge and to present both tracks. Selected locations located toward 

the midspan of the bridge to reduce the influence of data processing on sensors located 
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toward the bridge ends because the selected signal time-window start, end and length 

should be the same for all sensors. Train events having strain magnitudes greater than 71 

µε and less than 95 µε at locations 8 or 13 were retained, which resulted in 195 and 490 

train events for Track 1 and Track 2, respectively. The MATLAB findpeaks function was 

used to select desired strain peaks within defined thresholds. The developed code 

excluded the first eight peaks out of the 15 that were eliminated to reduce additional 

transient variations from the locomotive passage. Train speed and axle spacing effects 

were reduced by selecting signals having a number of time steps greater than 210 and less 

than 225, which yielded 59 and 172 train events for Track 1 and Track 2, respectively. 

The thresholds outlined above were determined using a trial and error approach. Since the 

number of the retained train events for Track 2 was higher than those for Track 1, Track 2 

events results were presented as a larger training set could be selected.  

 The fourth step ensured that the twenty stringer ends in Fig. 8 were subjected to 

appreciable strains from selected trains. To do so, retained Track 2 strain time-histories 

were sorted based on average RMS with strain snapshots for RMS between 44.5 and 47.0 

selected that had minimal average RMS variation. After performing the fourth step, a 

total of 100 train events out of the original 1471 events for Track 2 were retained. 

 The progression of strain signal filtering steps at location 13 in Fig. 8 and 

resulting ࣐௘௫௣௛  for Track 2 are shown in Fig. 61. The description of the figure, involved 

train events and preprocessing steps are listed in Table 4.
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Table 4 Measure strain time histories and corresponding ࣐௘௫௣௛  

Figure Subplot Number of train 
events 

Preprocessing steps 

Fig. 61 a-b 1471 Trains classified to Track 2 
c-d 490 eliminating railroad car 

number,length and loading 
effects 

e-f 172 eliminating train speed and axle 
spacing effects 

g-h 100 Selected train events after 
sorting trains by RMS 
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Fig. 61 Track 2 measure strain time-histories ࣐ࢎ࢖࢞ࢋ  values at location 13: (a-b) No 
filtering, 1471 train events; (c-d) railroad cars, overall length and load magnitude filters 
applied, 490 events; (e-f) speed and axle spacing filters applied, 172 events; and (g-h) 

average RMS range filter applied, 100 events. 
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 It is observed that strains and ࣐௘௫௣௛  for the selected trains show close agreement. 

Average of Track 2 strain snapshot matrices RMS values after filtering out loading 

effects (172 trains events) are shown in Fig. 62 with selected trains highlighted. 

 It is important to note that changing data processing parameters would change the 

features and number of retained training and testing trains. However, the same criteria 

should be used for data processing when using the developed framework in assessing 

bridge health. For other bridges, new data processing parameters should be determined 

from measured responses. 

 

Fig. 62 Strain RMS for Track 2 Trains.  

 

7.5.3. ANNs training and testing data sets 

 As shown in Fig. 62, the selected 100 train IDs were from 62 to 161, with 90 

trains used for ANN training and ten trains used for testing. Testing IDs were from 112 to 

121, with average RMS located in the middle of the selected range. Imposing damage to 

the actual structure was not possible and, as a result, ࣐௘௫௣௛  was calculated for the 100 
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train event strain snapshot matrices and used to develop estimated damage scenarios 

( ෝ࣐௘௫௣ௗ ) as a function of ∆࣐ℳ೔. It is important to reiterate that ∆࣐ℳ೔ could be assumed to 

be very close to ∆࣐௘௫௣. Based on these findings, ෝ࣐௘௫௣ௗ  was calculated as: 

࣐௘௫௣ௗ ≅ ෝ࣐௘௫௣ௗ = ࣐௘௫௣௛ + ∆࣐ℳభ    (19) 

 where ∆࣐ℳభwas selected among considered MU cases because ࣐ℳభ௛ was closer to ࣐௘௫௣௛  when compared against the other MU cases, as shown in Fig. 63. A set of example 

comparisons between ෝ࣐௘௫௣ௗ  and ࣐௘௫௣௛  is shown in Fig. 64 for DIs of 40, 60, 80 and 100% 

simulated at DL 3, 8, 13 and 18 for trains 61, 86, 111 and 136. The comparison showed 

significant variation for simulated DLs in ෝ࣐௘௫௣ௗ  when compared against ࣐௘௫௣௛ , with minor 

variations being observed at other healthy DLs. The figure also shows that the magnitude 

of the variation increases as DI increases.  

 For the 100 train events included in ANN testing and training, a total of 22000 

damage scenarios were generated using ∆࣐ℳభ, with 19800 used for training the ANNs. 

CPU time used for training increased to 4800 minutes when compared against ANNs 

training completed in the previous chapters. 
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Fig. 63 ࣐ࢎ mean comparisons, measured and MU cases. 

 

Fig. 64 ෝ࣐ࢊ࢖࢞ࢋ  comparisons to ࣐ࢎ࢖࢞ࢋ  for: (a) DI 40% at DL 3, Train 61; (b) DI 60% at DL 
8, Train 86; (c) DI 80% at DL 13, Train 111; and (d) DI 100% at DL 18, Train 136. 

 

7.5.4. Damage identification results 

 As mentioned earlier, trains 112 to 121 were arbitrarily selected to validate ANN 

effectiveness. For the ten events observed, false positives were between 2 and 15%, 

h
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which was considered low when compared to the DI of 0%. See Fig. 65. ANN testing for 

DIs of 40, 60, 80 and 100% at DL 3, 8, 13 and 18 are shown in Fig. 66 for all selected 

events. DI and DL were detected with acceptable accuracy for considered damage 

scenarios and testing events; however, detected DI accuracy and numbers of false 

positives varied based on DL and DI. It was observed that false-positive existence and 

magnitudes increased with lower DI and reduced as DI increased. The results shown in 

Fig. 66 are summarized in  

Table 5. 

 

 

Fig. 65 ANNs field testing, all testing trains, DI 0%. 

 

-25

0

1

25

103

50

D
I 

(%
)

95

75

8

100

7 79

DL Testing Train ID

611 513 415 317 219 1



120 
 

 
 

  

  

Fig. 66 ANNs field testing, all testing trains: (a) DI 40% at DL 3; (b) DI 60% at DL 8; 
(c) DI 80% at DL 13; and (d) DI 100% at DL 18. 

 

Table 5 Field testing results 

Figure Subplot Simulated DI 
and DL 

Detected DI at 
simulated DL 

False 
positives and 
negatives 

Fig. 66 a 40% at DL 3 17 to 43% 32% 
b 60% at DL 8 49 to 70% 11 and 15% 
c 80% at DL 13 74 to 82% 12 and 10% 
d 100% at DL 18 100 to 102% 10 and 13% 

 

 In this section, a field investigation was completed that involved preprocessing 

measured strains to reduce ࣐௘௫௣௛  variations associated with variations in loading 

configurations, training/testing the ANNs with damage scenarios generated from ࣐௘௫௣௛  
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and ∆࣐ℳభ. The results showed that DI and DL were detected with an acceptable accuracy 

under the included field testing train events.  

 The influence of environmental variations on the proposed framework was not 

investigated in the current study; however, strains were recorded for a short time-window 

under train passages, which was believed to minimize environmental variation effects. At 

the early stages of the SHM data recordings, strains were collected continuously without 

the use of Event Recording. Fig. 67 shows continuously measured strain responses at 

DLs 3, 8, 13, and 18 for 270 hours time-window with strain cycles showing weather 

heating and cooling effects identified. The continuous measurement was not implemented 

because these strain cycles are shown to present the sensors' material behavior, not bridge 

behavior. Sensors material deform with the weather heating and cooling cycles dependent 

from the structural elements, which resulted in such high strain cycles. 

 

 

Fig. 67 Strain responses measured continuously at DLs 3, 8, 13 and 18. 
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7.6. Conclusions 

 This chapter used a hybrid experimental-numerical approach to further improve 

the POD-ANN framework so it can maintain damage detection accuracy in the presence 

of modeling uncertainties. The numerical portion of the study identified a robust damage 

feature, ∆࣐, that is largely independent of MU level.  

 The experimental portion of the study generated damage scenarios based on ∆࣐ℳభ, which represents a robust damage feature that is largely independent of MU level, 

to train ANNs under passage of 90 train events (Chapter 3) whose strain responses were 

recorded. ANNs were tested using an additional ten train passage events. Acceptable DI 

and DL detection was observed; however, DI detection accuracy increased as simulated 

DI also increased. In addition, magnitude and existence of false positives was influenced 

by both DI and DL, with higher false positives observed for lower DIs. 

 It is important to note that, when MU is considered and if measuring train loading 

configurations is possible, ∆࣐	should be used to train and test the developed POD-ANN 

framework to improve damage detection accuracy. When measuring train configurations 

and loads are challenging, ෝ࣐௘௫௣ௗ  (estimated damage scenario POMs based on field 

measurements) should be used to train and test the framework. Lower damage detection 

accuracy would be expected when compared against the known loading scenario, 

however.  
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 To reduce the influence of modeling uncertainty on the damage detection 

accuracy, it is recommended that an analytical model of the monitored bridge is 

developed and that the model is calibrated against full-scale testing data.
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Chapter 8 : Conclusions  

 An automatic, hybrid experimental-numerical SHM framework was developed and 

evaluated using a combination of numerical and graphical techniques. Adopted techniques 

used Proper Orthogonal Decomposition (POD) and Proper Orthogonal Modes (POMs) in 

conjunction with Artificial Neural Network (ANNs) to locate and identify damage features. 

The framework was developed analytically and initially validated using measured strains 

from a SHM system deployed on a steel truss span.  Framework robustness was then 

examined by investigating effectiveness for a different bridge system and using different 

sensor types and arrangements. Modeling uncertainties were also examined with ∆POMs 

being identified as a robust damage feature, one that is largely independent of modeling 

uncertainty.  

 It was concluded that, for the bridge configurations that were studied: 

• The developed hybrid experimental-numerical approach for damage 

detection was robust over a range of damage locations and intensities; 

• The proposed method successfully detects damage using strain outputs 

induced by unknown, nonstationary external inputs; 

• Strain, rotation or displacement sensors could be used to locate damage; 

• Automated data cleansing prior to POM	(࣐) extraction was necessary to 

reduce discrepancies caused by nonstationary inputs; 

• Automated peak picking reduced ࣐ discrepancy associated with speed 

variations when selecting data for the snapshot matrix used to calculate ࣐; 
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• The method is robust enough to predict damage supplied from highly noisy 

signals; and 

• ∆࣐	is largely independent of MU and can be used as a robust damage feature. 

 

 Environmental variation influence was not included in the current research work; 

however, since the framework implements measured responses, environmental effects 

could be easily incorporated in training procedures when data are available. It is also 

important to mention that strain signals were recorded during a short time-window during 

train passage, which was believed to reduce environmental variations effects. 

 To further enhance study findings, environmental variation effects on the 

developed POD-ANN framework should be investigated. In addition, the developed 

hybrid experimental-analytical framework should be further validated by imposing 

damage to in-service bridges.  

 The framework was developed with the ultimate goal of detecting riveted steel 

railway bridge fatigue damage. Conclusions are limited to the truss and plate girder spans 

with damage was simulated one location at a time. If fatigue damage is expected to 

happen at multiple locations simultaneously, the training set should include multiple 

damage location scenarios. It is also important to note that, for unstable fatigue crack 

growth where the structure does not show significant change in its stiffness prior to 

fracture, the framework may not be capable of detecting damage with sufficient advance 

warning.  
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 The proposed framework is believed to be applicable to other bridges by 

following the steps outlined in Fig. 60 with the following additional recommendations 

being: 

1. Developing a calibrated model for the investigated bridge under routine loading. 

2. Proposing an optimal instrumentation plan that uses robust sensors near suspected 

damage prone locations. 

3. Determining a suitable strain threshold for data processing and RMS range for the 

investigated bridge to provide a reliable ANN training set.
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Appendix 1: POD-ANN Framework Application to Varying Spans, 

Responses and Instrumentations  

 

 In this appendix, more damage detection results of the research completed in 

Chapter 6 are shown. The appendix contains results for: 

(i) The truss and plate girder spans. 

(ii) The proposed instrumentation plans in Chapter 6. 

(iii) Various structural responses including strains, rotation, acceleration and 

displacement. 

 The appendix also includes other analyses completed to show the effect on 

changing the span-length on the developed damage detection framework. 
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1. Truss span: 

1.1 Instrumentation plan 1 

Damage detection with Strain responses and DI 50% 
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Damage detection with Strain responses and DI 80% 
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Damage detection with Rotation responses and DI 50% 
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Damage detection with Rotation responses and DI 80% 
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Damage detection with Displacement responses and DI 50% 
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Damage detection with Displacement responses and DI 80% 
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Damage detection with Acceleration responses and DI 50% 
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Damage detection with Acceleration responses and DI 80% 
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1.2 Instrumentation plan 2 

Damage detection with Strain responses and DI 50% 
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Damage detection with Strain responses and DI 80% 
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Damage detection with Rotation responses and DI 50% 
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Damage detection with Rotation responses and DI 80% 
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Damage detection with Displacement responses and DI 50% 
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Damage detection with Displacement responses and DI 80% 
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Damage detection with Acceleration responses 
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1.3 Instrumentation plan 3 

Damage detection with Strain responses and DI 50% 
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Damage detection with Strain responses and DI 80% 
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Damage detection with Rotation responses and DI 50% 
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Damage detection with Rotation responses and DI 80% 

 

 

 
 

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)

D
I 

(%
)



155 
 

 
 

Damage detection with Displacement responses and DI 50% 
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Damage detection with Displacement responses and DI 80% 
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Damage detection with Acceleration responses  
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2. Plate girder span: 

2.1 Instrumentation plan 1 

Damage detection with Strain responses and DI 50% 
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Damage detection with Strain responses and DI 80% 
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Damage detection with Rotation responses and DI 50% 
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Damage detection with Rotation responses and DI 80% 
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Damage detection with Displacement responses and DI 50% 
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Damage detection with Displacement responses and DI 80% 
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Damage detection with Acceleration responses and DI 50% 
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Damage detection with Acceleration responses and DI 80% 
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2.2 Instrumentation plan 2 

Damage detection with Strain responses and DI 50% 
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Damage detection with Strain responses and DI 80% 
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Damage detection with Rotation responses and DI 50% 
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Damage detection with Rotation responses and DI 80% 
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Damage detection with Displacement responses and DI 50% 
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Damage detection with Displacement responses and DI 80% 
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Damage detection with Acceleration responses 
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2.3 Instrumentation plan 3 

Damage detection with Strain responses and DI 50% 
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Damage detection with Strain responses and DI 80% 
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Damage detection with Rotation responses and DI 50% 
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Damage detection with Rotation responses and DI 80% 
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Damage detection with Displacement responses and DI 50% 
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Damage detection with Displacement responses and DI 80% 
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Damage detection with Acceleration responses  
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Appendix 2: MATLAB Coding Used to Simulate Trains, Damage 

and Extracting Internal Forces 

 In this appendix, MATLAB  and SAP2000 OAPI connection MATLAB  code is 

shown. This MATLAB  code used in simulating trains, damage and extracting internal 

forces at the selected locations. 
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Clean-up the workspace & command window 

clear all; 

close all; 

Definging Files Paths and Names 

Excel file for Reading and summarizing loads [Type the Excel file name and extension] 

ExcelFileName = ('HBD_WILD data for Br. 86.49 Columbus (8-8-16).xlsx'); 

 

% SAP2000, $2k file path and file name [% Insert the SAp model location and 

% Name] 

 

FilePath = 'E:\PHD\Reading And Modelling Trains Automatically\Modelling WILD Trains, Sorted RMS, 

Getting Results and POMS'; 

ModelName = 'TRUSS (146 C-C)_Model (3)_WILD 81 Trains'; 

Starting time 

tic 

Required Input Fields  

% Fixed end ratio for healthy state condition 

EFR_H = 7111000; %kip-in @ end fixity ratio of 67% of continuous 

 

% Desired damage intensities 

DI = 10:10:100;         % as percentage of Healthy State - Change each iteration 

EFR_D = ((100-DI)/100)*EFR_H; %kip-in 

 

Nsensors = 20;               %Number of sensors or monitored locations 

N_Axle_Model = 50;        %Type the number of axles to be used in the Model 

N_TRN_sorted_RMS = 10; %N trains to used in modeling when TRNS sorted by RMS 

LoadDurationSAP = 12; % defined loading duration in SAP seconds 

LoadDisSAP = 0.005;   % Defined time step in SAP seconds 

Nrows = LoadDurationSAP/LoadDisSAP+1;% Number of rows in each load case output 

Section Prop for stringers 
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Area=46.438;    %in^2   Stringer cross sectional area 

Sbot=735.67;    %in^3   Stringer section bottom modulus 

Loading the Excel File 

WheelLoads=readtable(ExcelFileName); 

Extracting Unique trains ID, and Count 

[TRN_ID_Unique,ia,idx] = unique(WheelLoads.PSNG_SMRY_ID,'stable'); 

 

%Number of trains by [(counting the AXLE distance of 0.000)/2] 

TRN_Count =(nnz(WheelLoads.AXLE_DIST==0))/2; 

SnapShotMatrix, POMs_1 and Damage Intensities empty matrices 

POMs zeros matrix having dimensions [Nsensors*(Ntrains*Nsensors)] 

POMs_1_RMS=zeros(Nsensors,N_TRN_sorted_RMS*((length(DI)*Nsensors)+1));%matrix 

[Ndamage*Nsensors+1] 

 

% SnapShotMatrix empty matrix 

SnapShotMatrix_Initial=zeros(int16(Nrows),Nsensors,N_TRN_sorted_RMS*((length(DI)*Nsensors)+1)); 

 

% Damage intensity matrix 

D_Vectors = zeros(Nsensors,N_TRN_sorted_RMS*((length(DI)*Nsensors)+1));%matrix 

[Ndamage*Nsensors+1] 

Creating a Matrix of Zeros - Filled Later - to Summarize Trains Data 

Trains_Summary=zeros(length(TRN_ID_Unique),9); 

Dividing the Whole Excel table into Different Unique Trains 

This provides a matrix containing train data for each unique train Trains sequence in the list are 

sorted based on time 
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for TR=1:length(TRN_ID_Unique) 

    TRN_DATA_ByTime{TR}=WheelLoads(WheelLoads.PSNG_SMRY_ID==TRN_ID_Unique(TR),:); 

end 

Extracting Important Statistics 

for TR=1:length(TRN_ID_Unique) 

    %Train Axle vertical load = Wheel 1 load + Wheel 2 load 

    TRN_AXLE_VLoad{TR}=(TRN_DATA_ByTime{TR}.WHL_VERT_AVG_WGT(TRN_DATA_ByTime{TR}.WHL_ID==1))+... 

        (TRN_DATA_ByTime{TR}.WHL_VERT_AVG_WGT(TRN_DATA_ByTime{TR}.WHL_ID==2)); 

    %Train Maximum axle vertical load 

    TRN_AXLE_max_VLoad{TR}=max(TRN_AXLE_VLoad{TR}); 

    %Train minimum axle vertical load 

    TRN_AXLE_min_VLoad{TR}=min(TRN_AXLE_VLoad{TR}); 

    %Train mean / average axle vertical load 

    TRN_AXLE_mean_VLoad{TR}=mean(TRN_AXLE_VLoad{TR}); 

    %Train axle equivalent uniform load (Sum axle loads / Train length) 

    TRN_AXLE_EQ_ULoad{TR}=(sum(TRN_AXLE_VLoad{TR}))/(sum(TRN_DATA_ByTime{TR}.AXLE_DIST)/12)*2; 

    %Train average axle distance 

    TRN_AXLE_mean_DIST{TR}= (sum(TRN_DATA_ByTime{TR}.AXLE_DIST)/2/12)/... 

        (max(TRN_DATA_ByTime{TR}.AXLE_ON_TRN_SEQ)); 

    %Car Average length 

    Car_mean_Length{TR}= (sum(TRN_DATA_ByTime{TR}.AXLE_DIST)/2/12)/... 

        (max(TRN_DATA_ByTime{TR}.EQMT_ON_TRN_SEQ)); 

    %Train Symbol 

    TRN_SYMBB{TR}= TRN_DATA_ByTime{TR}.TRN_SYMB(1,1); 

end 

Filling in the train summary as a matrix (numbers) 

for TR=1:length(TRN_ID_Unique) 

    %Filling in trains PSNG_SMRY_ID 

    Trains_Summary(:,1)=TRN_ID_Unique; 

    %Filling in trains ID 

    Trains_Summary(TR,2)=TRN_DATA_ByTime{TR}.TRN_ID(1,1); 

    %Filling in number of cars for each train 

    Trains_Summary(TR,3)=max(TRN_DATA_ByTime{TR}.EQMT_ON_TRN_SEQ); 

    %Filling in Train Maximum axle vertical load 

    Trains_Summary(TR,4)=TRN_AXLE_max_VLoad{TR}; 

    %Filling in Train Minimum axle vertical load 

    Trains_Summary(TR,5)=TRN_AXLE_min_VLoad{TR}; 

    %Filling in Train MEAN axle vertical load 

    Trains_Summary(TR,6)=TRN_AXLE_mean_VLoad{TR}; 

    %Filling in Train axle equivalent uniform load vertical load 

    Trains_Summary(TR,7)=TRN_AXLE_EQ_ULoad{TR}; 

    %Filling in Train average axle distance 

    Trains_Summary(TR,8)=TRN_AXLE_mean_DIST{TR}; 

    %Filling in Train average car length 
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    Trains_Summary(TR,9)=Car_mean_Length{TR}; 

    %Extracting trains symbols as string, not numbers 

    TRN_SYMB(TR,1) = TRN_SYMBB{TR}(1,1); 

end 

Extracting Trains Sorted by Equivalent Uniform Load 

Sorting Trains_Summary by the equivalent uniform load to get index 

[~,Original_index] = sortrows(Trains_Summary,7); 

 

% Sorting Data using the above-extracted index vector 

for TR=1:length(TRN_ID_Unique) 

    % Sorting Trains from Lowest EqUniform to Highest EqUniform 

    TRN_DATA_ByUniform{TR}=TRN_DATA_ByTime{Original_index(TR,1)}; 

end 

Extracting modeling trains based on the defined number of axles 

Then modeling EQ Uniform Load sorts trains for the defined No of axels (i.e., Sum of axle 

loads/length of the modeled train) 

for TR=1:length(TRN_ID_Unique) 

    % Extracting trains with a reduced number of axles for modeling 

    TRN_MOD1{TR}=TRN_DATA_ByUniform{TR}(TRN_DATA_ByUniform{TR}.AXLE_ON_TRN_SEQ <= 

N_Axle_Model,:); 

 

    % Extracting modeling trains axle loads (Wheel 1 + Wheel 2) 

    TRN_MOD_AXL_LOD{TR}=(TRN_MOD1{TR}.WHL_VERT_AVG_WGT(TRN_MOD1{TR}.WHL_ID==1))+... 

        (TRN_MOD1{TR}.WHL_VERT_AVG_WGT(TRN_MOD1{TR}.WHL_ID==2)); 

    % Modelling trains axle equivalent uniform load (Sum axle loads / Train length) 

    TRN_MOD_EqULoad{TR}=(sum(TRN_MOD_AXL_LOD{TR}))/(sum(TRN_MOD1{TR}.AXLE_DIST)/12)*2; 

 

    % Converting the TRN_MOD_EqULoad{i} to a vertical column to be sorted 

    % easier 

    TRN_MOD_EqULoad_Vector(TR,1)=(TRN_MOD_EqULoad{TR}); 

end 

 

% Getting modeled trains index vector when sorting by EQ Uniform load 

[~,MOD_index]=sortrows(TRN_MOD_EqULoad_Vector); 

 

for TR=1:length(TRN_ID_Unique) 

    % Final modeling trains tables sorted by EQ Uniform load (low to high) 

    TRN_MOD{TR}=TRN_MOD1{MOD_index(TR,1)}; 

    % Extracting Wheel 1 loading, trains sorted by EQ Uniform load 

    TRN_MOD_WHL1{TR}=TRN_MOD{TR}(TRN_MOD{TR}.WHL_ID == 1,:); 
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    % Extracting Wheel 2 loading, trains sorted by EQ Uniform load 

    TRN_MOD_WHL2{TR}=TRN_MOD{TR}(TRN_MOD{TR}.WHL_ID == 2,:); 

    %Summarized Tables for Model Loading Configurations only (Distance, 

    %load) sorted by EQ Uniform load (low to high) 

    LODG_CONF_MOD{TR}=[(TRN_MOD_WHL1{TR}.AXLE_DIST),(TRN_MOD_WHL1{TR}.WHL_VERT_AVG_WGT),... 

       (TRN_MOD_WHL2{TR}.WHL_VERT_AVG_WGT)]; 

end 

Sorting modeling trains by RMS of stress matrix generated from former code 

Then modeling trains sorted by EQ Uniform Load will be sorted again based on the RMS of 

stress matrix 

% Loading Trains ID sorted based on RMS of stresses 

load('ID_RMS_Sorted'); 

ID_SortedBy_RMS = ID_rms; 

 

for TR=1:length(TRN_ID_Unique) 

    % Final modeling trains tables sorted by EQ Uniform load (low to high) 

    TRN_MOD_RMS{TR}=TRN_MOD{ID_SortedBy_RMS(1,TR)}; 

    % Extracting Wheel 1 loading, trains sorted by EQ Uniform load 

    TRN_MOD_RMS_WHL1{TR}=TRN_MOD_RMS{TR}(TRN_MOD_RMS{TR}.WHL_ID == 1,:); 

    % Extracting Wheel 2 loading, trains sorted by EQ Uniform load 

    TRN_MOD_RMS_WHL2{TR}=TRN_MOD_RMS{TR}(TRN_MOD_RMS{TR}.WHL_ID == 2,:); 

    %Summarized Tables for Model Loading Configurations only (Distance, 

    %load) sorted by EQ Uniform load (low to high) 

    

LODG_CONF_MOD{TR}=[(TRN_MOD_RMS_WHL1{TR}.AXLE_DIST),(TRN_MOD_RMS_WHL1{TR}.WHL_VERT_AVG_WGT),... 

       (TRN_MOD_RMS_WHL2{TR}.WHL_VERT_AVG_WGT)]; 

end 

Selecting the highest stresses RMS Trains to be modelled 

Number of trains is predefined above (N_TRN_sorted_RMS) 

LODG_CONF_RMS_MOD = LODG_CONF_MOD((length(LODG_CONF_MOD)-

N_TRN_sorted_RMS)+1:length(LODG_CONF_MOD)); 

Creating a Summary TABLE as strings to include the TRN SYMB 

PSNG_SMRY_ID = Trains_Summary(:,1); %PSNG SMRY ID 

TRN_ID = Trains_Summary(:,2); %TRN ID 

TRN_SYMB = TRN_SYMB(:,1); %TRN SYMB 
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CARS_COUNT = Trains_Summary(:,3); %CARS COUNT 

TRN_AXLE_maxVL = Trains_Summary(:,4); %AXLE MAXIMUM VERICAL LOAD 

TRN_AXLE_minVL = Trains_Summary(:,5); %AXLE MINIMUM VERICAL LOAD 

TRN_AXLE_meanVL = Trains_Summary(:,6); %AXLE MEAN VERICAL LOAD 

TRN_AXLE_EqUniVL = Trains_Summary(:,7); %AXLE EQ UNIFORM LOAD 

TRN_AXLE_meanDIST = Trains_Summary(:,8); %AXLE EQ UNIFORM LOAD 

TRN_CAR_meanLENGTH = Trains_Summary(:,9); %AXLE EQ UNIFORM LOAD 

 

%%%%Writing the above data into a TABLE 

Trains_Summary_Table = table(PSNG_SMRY_ID,TRN_ID,TRN_SYMB,CARS_COUNT,... 

    TRN_AXLE_maxVL, TRN_AXLE_minVL, TRN_AXLE_meanVL, TRN_AXLE_EqUniVL,... 

   TRN_AXLE_meanDIST,TRN_CAR_meanLENGTH); 

 

%%%%Sorting the table by the axle equivalent uniform load 

Trains_Summary_Table = sortrows(Trains_Summary_Table,8); 

Trains set Short Summary 

Developing a short Summary for the whole trains set 

Cars_Count_max = max(Trains_Summary(:,3));%max car counts 

Cars_Count_min = min(Trains_Summary(:,3));%min car counts 

TRN_AXLE_VL_max_kip = max(Trains_Summary(:,4));%maximum axle load (of maximum) 

TRN_AXLE_VL_min_kip = min(Trains_Summary(:,5));%minimum axle load (of minimum) 

TRN_AXLE_VL_Mean_max_kip = max(Trains_Summary(:,6));%maximum axle mean 

TRN_AXLE_VL_Mean_min_kip = min(Trains_Summary(:,6));%minimum axle mean 

TRN_AXLE_Uniform_max_kip_ft = max(Trains_Summary(:,7));%maximum uniform load 

TRN_AXLE_Uniform_min_kip_ft = min(Trains_Summary(:,7));%minimum uniform load 

 

%%%% Writing summary table 

Train_Data_ShortSummary = table(Cars_Count_max, Cars_Count_min,... 

    TRN_AXLE_VL_max_kip, TRN_AXLE_VL_min_kip, TRN_AXLE_VL_Mean_max_kip,... 

    TRN_AXLE_VL_Mean_min_kip, TRN_AXLE_Uniform_max_kip_ft,... 

    TRN_AXLE_Uniform_min_kip_ft); 

Saving Results 

save('Trains_Data_Summary','Trains_Summary_Table', 'Train_Data_ShortSummary',... 

    'TRN_DATA_ByTime','TRN_DATA_ByUniform','TRN_MOD','TRN_MOD_WHL1',... 

    'TRN_MOD_WHL2','LODG_CONF_MOD'); 

Opening SAP2000 

Set the following flag to true to manually specify the path to SAP2000.exe 
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%%this allows for a connection to a version of SAP2000 other than the latest installation 

%%otherwise the latest installed version of SAP2000 will be launched 

SpecifyPath = false; 

If the above flag is set to true, specify the path to ETABS below 

ProgramPath = 'C:\Program Files\Computers and Structures\SAP2000 19\SAP2000.exe'; 

Full path to API dll 

%%set it to the installation folder 

APIDLLPath = 'C:\Program Files\Computers and Structures\SAP2000 19\SAP2000v19.dll'; 

Create API helper object 

a = NET.addAssembly(APIDLLPath); 

 

helper = SAP2000v19.Helper; 

 

helper = NET.explicitCast(helper,'SAP2000v19.cHelper'); 

 

if SpecifyPath 

 

    %%create an instance of the SapObject from the specified path 

 

    SapObject = helper.CreateObject(ProgramPath); 

 

else 

 

    %%create an instance of the SapObject from the latest installed ETABS 

 

    SapObject = helper.CreateObjectProgID('CSI.SAP2000.API.SapObject'); 

 

end 

SapObject = NET.explicitCast(SapObject,'SAP2000v19.cOAPI'); 

 

helper = 0; 

Start Sap2000 application 

SapObject.ApplicationStart; 

Create Sap Model object 
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SapModel = NET.explicitCast(SapObject.SapModel,'SAP2000v19.cSapModel'); 

%% 

for TR=1:length(LODG_CONF_RMS_MOD) 

Writing Results as Text.$2k file to be imported by SAP 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% Writing TABLE:  "VEHICLES 3 - GENERAL VEHICLES 2 - LOADS" 

fileID=fopen('text1.$2k','w'); 

% The heading of the table 

Txt_Veh_Loads = 'TABLE:  "VEHICLES 3 - GENERAL VEHICLES 2 - LOADS"\r\n'; 

fprintf(fileID,Txt_Veh_Loads); 

% The content of the table 

 

    % Counting the number of wheels 

    No_of_Wheels = length(LODG_CONF_RMS_MOD{TR}); 

    % Creating a zeros matrix of size (No of Wheels, one column) 

    I = zeros(No_of_Wheels,1); 

    % Filling in the all of the I matrix cells by the value of (i) 

    I(:,1)=TR; 

 

    % Writing the loading configurations for a vehicle presenting (Wheel 1) 

    Txt0_WHL1 ='    VehName="Train#%1.0f-WHL1"   LoadType="Fixed Length"   UnifLoad=0   

AxleLoad=%4.2f\r\n'; 

    Txt1_WHL1 = '    VehName="Train#%1.0f-WHL1"   LoadType="Fixed Length"   UnifLoad=0   

AxleLoad=%4.2f   MinDist=%4.2f\r\n'; 

    A0_WHL1=[I(1,1),LODG_CONF_RMS_MOD{TR}(1,2)]; 

    

A1_WHL1=[I(2:No_of_Wheels,1),LODG_CONF_RMS_MOD{TR}(2:No_of_Wheels,2),LODG_CONF_RMS_MOD{TR}(2:No_o

f_Wheels,1)]; 

 

    % Writing into the text file 

    fprintf(fileID,Txt0_WHL1, A0_WHL1'); 

    fprintf(fileID,Txt1_WHL1, A1_WHL1'); 

 

    % Writing the loading configurations for a vehicle presenting (Wheel 2) 

    Txt0_WHL2 ='    VehName="Train#%1.0f-WHL2"   LoadType="Fixed Length"   UnifLoad=0   

AxleLoad=%4.2f\r\n'; 

    Txt1_WHL2 = '    VehName="Train#%1.0f-WHL2"   LoadType="Fixed Length"   UnifLoad=0   

AxleLoad=%4.2f   MinDist=%4.2f\r\n'; 

    A0_WHL2=[I(1,1),LODG_CONF_RMS_MOD{TR}(1,3)]; 

    

A1_WHL2=[I(2:No_of_Wheels,1),LODG_CONF_RMS_MOD{TR}(2:No_of_Wheels,3),LODG_CONF_RMS_MOD{TR}(2:No_o

f_Wheels,1)]; 

 

    % Writing into the text file 



189 
 

 
 

    fprintf(fileID,Txt0_WHL2, A0_WHL2'); 

    fprintf(fileID,Txt1_WHL2, A1_WHL2'); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fileID=fopen('text2.$2k','w'); 

%%%% Writing TABLE:  "VEHICLES 4 - VEHICLE CLASSES" 

% The heading of the table 

Txt_Veh_Class = 'TABLE:  "VEHICLES 4 - VEHICLE CLASSES"\r\n'; 

fprintf(fileID,Txt_Veh_Class); 

 

% The content of the table 

    % Writing VehClass for vehicles presenting (Wheel 1) 

    VehClass_WHL1 ='   VehClass="Train#%1.0f-WHL1"   VehName="Train#%1.0f-WHL1"   

ScaleFactor=1\r\n'; 

    % Writing VehClass for vehicles presenting (Wheel 2) 

    VehClass_WHL2 ='   VehClass="Train#%1.0f-WHL2"   VehName="Train#%1.0f-WHL2"   

ScaleFactor=1\r\n'; 

 

    % Writing into the text file 

    fprintf(fileID,VehClass_WHL1, [TR,TR]); 

    fprintf(fileID,VehClass_WHL2, [TR,TR]); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fileID=fopen('text3.$2k','w'); 

%%%% Writing TABLE:  "LOAD PATTERN DEFINITIONS" 

% The heading of the table 

Txt_LoadPtrn = 'TABLE:  "LOAD PATTERN DEFINITIONS"\r\n'; 

fprintf(fileID,Txt_LoadPtrn); 

 

% The content of the table 

    LoadPtrnDead ='   LoadPat=DEAD   DesignType=Dead   SelfWtMult=1   GUID=33df69bc-8efe-4379-

ae17-2740fe6a5463\r\n'; 

    LoadPtrn ='   LoadPat="Train#%1.0f-Tr#1"   DesignType="Vehicle Live"   SelfWtMult=0   

GUID=%1.0fe1581a-522c-44f5-b02e-a18bee0731af\r\n'; 

 

    % Writing into the text file 

    fprintf(fileID,LoadPtrnDead); 

    fprintf(fileID,LoadPtrn, [TR,TR]); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fileID=fopen('text4.$2k','w'); 

%%%% Writing TABLE:  "CASE - MULTISTEP STATIC 1 - LOAD ASSIGNMENTS" 

% The heading of the table 

Txt_MultiStatic1 = 'TABLE:  "CASE - MULTISTEP STATIC 1 - LOAD ASSIGNMENTS"\r\n'; 

fprintf(fileID,Txt_MultiStatic1); 

 

% The content of the table 

    MultiStep1 ='   Case="Train#%1.0f-Tr#1"   LoadType="Load pattern"   LoadName="Train#%1.0f-

Tr#1"   LoadSF=1\r\n'; 

 

    % Writing into the text file 

    fprintf(fileID,MultiStep1, [TR,TR]); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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fileID=fopen('text5.$2k','w'); 

%%%% Writing TABLE:  "LOAD CASE DEFINITIONS" 

% The heading of the table 

Txt_Loadcase = 'TABLE:  "LOAD CASE DEFINITIONS"\r\n'; 

fprintf(fileID,Txt_Loadcase); 

 

% The content of the table 

    DeadLoadcase ='   Case=DEAD   Type=LinStatic   InitialCond=Zero   DesTypeOpt="Prog Det"   

DesignType=Dead   DesActOpt="Prog Det"   DesignAct=Non-Composite   AutoType=None   

RunCase=Yes\r\n'; 

    ModalLoadcase ='   Case=MODAL   Type=LinModal   InitialCond=Zero   DesTypeOpt="Prog Det"   

DesignType=Other   DesActOpt="Prog Det"   DesignAct=Other   AutoType=None   RunCase=No\r\n'; 

    VehLoadcase ='   Case="Train#%1.0f-Tr#1"   Type=LinMSStat   InitialCond=Zero   

DesTypeOpt="Prog Det"   DesignType="Vehicle Live"   DesActOpt="Prog Det"   DesignAct="Short-Term 

Composite"   AutoType=None   RunCase=Yes\r\n'; 

    % Writing into the text file 

    fprintf(fileID,DeadLoadcase); 

    fprintf(fileID,ModalLoadcase); 

    fprintf(fileID,VehLoadcase, TR); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fileID=fopen('text6.$2k','w'); 

%%%% Writing TABLE:  "MULTI-STEP MOVING LOAD 1 - GENERAL" 

% The heading of the table 

Txt_MultiStepMoving = 'TABLE:  "MULTI-STEP MOVING LOAD 1 - GENERAL"\r\n'; 

fprintf(fileID,Txt_MultiStepMoving); 

 

% The content of the table 

    MultiStepMoving ='   LoadPat="Train#%1.0f-Tr#1"   LoadDur=12   LoadDisc=0.005\r\n'; 

 

    % Writing into the text file 

    fprintf(fileID,MultiStepMoving, TR); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

fileID=fopen('text7.$2k','w'); 

%%%% Writing TABLE:  "MULTI-STEP MOVING LOAD 2 - VEHICLE DATA" 

%%%% Defining the Multi-Static load pattern factors {Vehicle, lane,speed..} 

% The heading of the table 

Txt_Veh_LoadPat = 'TABLE:  "MULTI-STEP MOVING LOAD 2 - VEHICLE DATA"\r\n'; 

fprintf(fileID,Txt_Veh_LoadPat); 

 

% The content of the table 

    % Load pattern factors for vehicle presenting (Wheel 1) 

    VehLoadPat_WHL1 ='   LoadPat="Train#%1.0f-Tr#1"   Vehicle="Train#%1.0f-WHL1"   Lane=LANE(2)-

STR(3)   Station=0   StartTime=0   Direction=Forward   Speed=739.2\r\n'; 

    % Load pattern factors for vehicle presenting (Wheel 2) 

    VehLoadPat_WHL2 ='   LoadPat="Train#%1.0f-Tr#1"   Vehicle="Train#%1.0f-WHL2"   Lane=LANE(2)-

STR(4)   Station=0   StartTime=0   Direction=Forward   Speed=739.2\r\n'; 

 

    % Writing into the text file 

    fprintf(fileID,VehLoadPat_WHL1, [TR,TR]); 

    fprintf(fileID,VehLoadPat_WHL2, [TR,TR]); 

fclose(fileID); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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fileID=fopen('text8.$2k','w'); 

%%%% Writing TABLE:  "VEHICLES 2 - GENERAL VEHICLES 1 - GENERAL" 

Txt_Veh_General = 'TABLE:  "VEHICLES 2 - GENERAL VEHICLES 1 - GENERAL"\r\n'; 

fprintf(fileID,Txt_Veh_General); 

 

% The content of the table 

    % Vehicle presenting (Wheel 1) 

    VehGeneral_WHL1 ='   VehName="Train#%1.0f-WHL1"   StayInLane=No\r\n'; 

    % Vehicle presenting (Wheel 2) 

    VehGeneral_WHL2 ='   VehName="Train#%1.0f-WHL2"   StayInLane=No\r\n'; 

 

    % Writing into the text file 

    fprintf(fileID,VehGeneral_WHL1, TR); 

    fprintf(fileID,VehGeneral_WHL2, TR); 

% Closing the text file 

fclose(fileID); 

Replacing the above Tables in The Original SAP2000 $2k file with the 

Above written tables From WILD DATA - Extract table name from replacement file. 

 Content1 = fileread( 'text1.$2k' ) ; 

 Content2 = fileread( 'text2.$2k' ) ; 

 Content3 = fileread( 'text3.$2k' ) ; 

 Content4 = fileread( 'text4.$2k' ) ; 

 Content5 = fileread( 'text5.$2k' ) ; 

 Content6 = fileread( 'text6.$2k' ) ; 

 Content7 = fileread( 'text7.$2k' ) ; 

 Content8 = fileread( 'text8.$2k' ) ; 

 

 VehLoads = regexp( Content1, '(?<=TABLE:\s+")[^"]+', 'match', 'once' ) ; 

 VehClass = regexp( Content2, '(?<=TABLE:  "VEHICLES 4 - VEHICLE CLASSES")[^"]+', 'match', 'once' 

) ; 

 LoadPattern = regexp( Content3, '(?<=TABLE:  "LOAD PATTERN DEFINITIONS")[^"]+', 'match', 'once' 

) ; 

 CaseMultistep = regexp( Content4, '(?<=TABLE:  "CASE - MULTISTEP STATIC 1 - LOAD 

ASSIGNMENTS")[^"]+', 'match', 'once' ) ; 

 LoadCase = regexp( Content5, '(?<=TABLE:  "LOAD CASE DEFINITIONS")[^"]+', 'match', 'once' ) ; 

 MultiStepMoving1 = regexp( Content6, '(?<=TABLE:  "MULTI-STEP MOVING LOAD 1 - GENERAL")[^"]+', 

'match', 'once' ) ; 

 MultiStepMoving2 = regexp( Content7, '(?<=TABLE:  "MULTI-STEP MOVING LOAD 2 - VEHICLE 

DATA")[^"]+', 'match', 'once' ) ; 

 GeneralVehicle = regexp( Content8, '(?<=TABLE:  "VEHICLES 2 - GENERAL VEHICLES 1 - 

GENERAL")[^"]+', 'match', 'once' ) ; 

 

 % - Build a pattern for matching what to replace, based on the table name. 

 pattern1 = sprintf( 'TABLE:\\s+"%s.*?(?=[\\r\\n]TABLE)', VehLoads) ; 

 pattern2 = sprintf( 'TABLE:  "VEHICLES 4 - VEHICLE CLASSES"%s.*?(?=[\\r\\n]END TABLE DATA)', 

VehClass) ; 

 pattern3 = sprintf( 'TABLE:  "LOAD PATTERN DEFINITIONS"%s.*?(?=[\\r\\n]TABLE)', LoadPattern) ; 
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 pattern4 = sprintf( 'TABLE:  "CASE - MULTISTEP STATIC 1 - LOAD 

ASSIGNMENTS"%s.*?(?=[\\r\\n]TABLE)', CaseMultistep ) ; 

 pattern5 = sprintf( 'TABLE:  "LOAD CASE DEFINITIONS"%s.*?(?=[\\r\\n]TABLE)', LoadCase ) ; 

 pattern6 = sprintf( 'TABLE:  "MULTI-STEP MOVING LOAD 1 - GENERAL"%s.*?(?=[\\r\\n]TABLE)', 

MultiStepMoving1 ) ; 

 pattern7 = sprintf( 'TABLE:  "MULTI-STEP MOVING LOAD 2 - VEHICLE DATA"%s.*?(?=[\\r\\n]TABLE)', 

MultiStepMoving2 ) ; 

 pattern8 = sprintf( 'TABLE:  "VEHICLES 2 - GENERAL VEHICLES 1 - GENERAL"%s.*?(?=[\\r\\n]TABLE)', 

GeneralVehicle ) ; 

 

 % - Replace in original content. 

 originalSAP_s2k = fileread( [ModelName,'.$2k']) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern1, Content1) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern2, Content2) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern3, Content3) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern4, Content4) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern5, Content5) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern6, Content6) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern7, Content7) ; 

 originalSAP_s2k = regexprep( originalSAP_s2k, pattern8, Content8) ; 

 

 % - Export updated content. 

 fId = fopen( [ModelName,'.$2k'], 'w'); 

 fwrite( fId, originalSAP_s2k ) ; 

 fclose( fId ) ; 

%% 

Starting SAP model and Analysis 

Initialize model 

ret = SapModel.InitializeNewModel; 

Open an Existing model 

File = NET.explicitCast(SapModel.File,'SAP2000v19.cFile'); 

 

ret = File.OpenFile([FilePath, '\',ModelName,'.$2k']); 

Hide Application, Hide = Unhide 

SapObject.Hide; 
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%% 

Getting POMs and SnapShot Matrices for Healthy Model, first 

Unlock the model 

ret = SapModel.SetModelIsLocked(false); 

Switch to k-in units 

ret = SapModel.SetPresentUnits(SAP2000v19.eUnits.kip_in_F); 

Assigning Frame Releases Assuming 76% fixity ratio Defined above 

FrameObj = NET.explicitCast(SapModel.FrameObj,'SAP2000v19.cFrameObj'); 

Start = NET.createArray('System.Boolean',12);%% From VBA Function 

End = NET.createArray('System.Boolean',12);%% From VBA Function 

 

% Release for stringers left side 

 

Start_Releases_1 = NET.createArray('System.Double',6);%% From VBA Function 

End_Releases_1 = NET.createArray('System.Double',6);%% From VBA Function 

 

for ii = 5 : 6 

 

    Start(ii) = true(); %% Activate Releases in Y and X Directions at start 

 

end 

 

Start_Releases_1(5) = 0; %%Frame Partial Fixity in Y-direction at start 

Start_Releases_1(6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for jj = 5 : 6 

 

    End(jj) = false();%% Activate Releases in Y and X Directions at start 

 

end 

 

End_Releases_1 (5) = 0; %%Frame Partial Fixity in Y-direction at End 

End_Releases_1 (6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for iii=1:20 

    SetReleases = FrameObj.SetReleases(['STR-L-

',num2str(iii)],Start,End,Start_Releases_1,End_Releases_1); 

end 
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for iii=1:4 

    SetReleases = FrameObj.SetReleases(['STR-LL-

',num2str(iii)],Start,End,Start_Releases_1,End_Releases_1); 

end 

 

% Release for stringers right side 

 

Start_Releases_2 = NET.createArray('System.Double',6);%% From VBA Function 

End_Releases_2 = NET.createArray('System.Double',6);%% From VBA Function 

 

for ii = 5 : 6 

 

    Start(ii) = false(); %% Activate Releases in Y and X Directions at start 

 

end 

 

Start_Releases_2(5) = 0; %%Frame Partial Fixity in Y-direction at start 

Start_Releases_2(6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for jj = 5 : 6 

 

    End(jj) = true();%% Activate Releases in Y and X Directions at start 

 

end 

 

End_Releases_2 (5) = 0; %%Frame Partial Fixity in Y-direction at End 

End_Releases_2 (6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

 

for iiii=1:24 

    SetReleases = FrameObj.SetReleases(['STR-R-

',num2str(iiii)],Start,End,Start_Releases_2,End_Releases_2); 

end 

Refresh view, update (initialize) zoom 

View = NET.explicitCast(SapModel.View,'SAP2000v19.cView'); 

ret = View.RefreshView(0, false()); 

Save model, write the model path 

ret = File.Save([FilePath, '\',ModelName,'.sdb']); 

Run model (this will create the analysis model) 
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Analyze = NET.explicitCast(SapModel.Analyze,'SAP2000v19.cAnalyze'); 

% Select model case to run 

ret = Analyze.SetRunCaseFlag('DEAD',true);%%might be removed 

ret = Analyze.SetRunCaseFlag('MODAL',false);%%might be removed 

ret = Analyze.SetRunCaseFlag(['Train#',num2str(TR),'-Tr#1'],true);%%The code main purpose 

ret = Analyze.RunAnalysis(); 

Getting Modal Analysis Parameters 

Switch to k-ft units 

ret = SapModel.SetPresentUnits(SAP2000v19.eUnits.kip_ft_F); 

 

% Creating results file 

AnalysisResults = NET.explicitCast(SapModel.Results,'SAP2000v19.cAnalysisResults'); 

AnalysisResultsSetup = 

NET.explicitCast(AnalysisResults.Setup,'SAP2000v19.cAnalysisResultsSetup'); 

 

% Select results cases 

AnalysisResultsSetup.DeselectAllCasesAndCombosForOutput; 

AnalysisResultsSetup.SetCaseSelectedForOutput(['Train#',num2str(TR),'-Tr#1']); 

 

% Extracting results step by step (2) 

AnalysisResultsSetup.SetOptionMultiStepStatic(2) 

 

 

%Getting Internal Forces 

NumberResults = 0; 

 

Obj = NET.createArray('System.String',2); 

ObjSta = NET.createArray('System.Double',2); 

Elm = NET.createArray('System.String',2); 

ElmSta = NET.createArray('System.Double',2); 

ACase = NET.createArray('System.String',2); 

StepType = NET.createArray('System.String',2); 

StepNum = NET.createArray('System.Double',2); 

P= NET.createArray('System.Double',2); 

V2 = NET.createArray('System.Double',2); 

V3 = NET.createArray('System.Double',2); 

T = NET.createArray('System.Double',2); 

M2 = NET.createArray('System.Double',2); 

M3 = NET.createArray('System.Double',2); 

 

[~, NumberResults, Obj,ObjSta, Elm,ElmSta, ACase, StepType, StepNum,... 

    P, V2, V3, T, M2, M3] = AnalysisResults.FrameForce('STR_ENDS',... 

    SAP2000v19.eItemTypeElm.GroupElm, NumberResults, Obj,ObjSta,... 

    Elm,ElmSta, ACase, StepType, StepNum, P, V2, V3, T, M2, M3); 

 

%Converting results into a readable MATLAB format 
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PP_H1(:,1)=(P.double); 

VV2_H1(:,1)=(V2.double); 

VV3_H1(:,1)=(V3.double); 

TT_H1(:,1)=(T.double); 

MM2_H1(:,1)=(M2.double); 

MM3_H1(:,1)=(M3.double); 

OObjSta_H1(:,1)= (ObjSta.double); 

EElmSta_H1(:,1)= (ElmSta.double); 

SStepNum_H1(:,1)= (StepNum.double); 

 

OObj_H1(:,1)= cell(Obj.Length,1); 

for j = 1:Obj.Length 

    OObj_H1{j,1} = char(Obj(j)); 

end 

 

EElm_H1= cell(Elm.Length,1); 

for j = 1:Elm.Length 

    EElm_H1{j,1} = char(Elm(j)); 

end 

 

AACase_H1= cell(ACase.Length,1); 

for j = 1:ACase.Length 

    AACase_H1{j,1} = char(ACase(j)); 

end 

 

SStepType_H1=cell(StepType.Length,1); 

for j = 1:StepType.Length 

    SStepType_H1{j,1} = char(StepType(j)); 

end 

 

% Extracting numerical results into a Matrix 

 

 sapResults_H=[EElmSta_H1, SStepNum_H1, PP_H1,VV2_H1,VV3_H1,MM2_H1,MM3_H1]; 

 

 % Extracting all results into a Matrix 

 sapResults_Table_H=[array2table(OObj_H1),array2table(OObjSta_H1), array2table(EElm_H1),... 

 array2table(EElmSta_H1),array2table(AACase_H1),array2table(SStepType_H1),... 

 array2table(SStepNum_H1),array2table(PP_H1),array2table(VV2_H1),... 

 array2table(VV3_H1),array2table(TT_H1),array2table(MM2_H1),array2table(MM3_H1)]; 

 

% Filtering tables by a station 

SapResults_Filtered_H=sapResults_Table_H(sapResults_Table_H.OObjSta_H1==0,:); 

 

% Sort and Extract final tables 

D_Str_Ends_H=sortrows(SapResults_Filtered_H,1); 

Damage Internal Forces and Bottom Stresses 

M3_H=table2array(D_Str_Ends_H(:,13)); % Bending moment 

P_H = table2array(D_Str_Ends_H(:,8)); % Axial force 

BotStr_H=((P_H)/Area+(M3_H)*12/Sbot); % Bottom stresses 
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TimeStep_H =table2array(D_Str_Ends_H(:,7)); %Time step Number 

Nrows_H =(length(BotStr_H))/Nsensors;   %number of steps ot dt/train 

 

% Snapshot matrix using stresses 

SnapShot_Model_Str_End_H = [BotStr_H(1:(Nrows_H),:),... 

    BotStr_H((Nrows_H+1):(2*Nrows_H),:),... 

    BotStr_H((2*Nrows_H+1):(3*Nrows_H),:),... 

    BotStr_H((3*Nrows_H+1):(4*Nrows_H),:),... 

    BotStr_H((4*Nrows_H+1):(5*Nrows_H),:),... 

    BotStr_H((5*Nrows_H+1):(6*Nrows_H),:),... 

    BotStr_H((6*Nrows_H+1):(7*Nrows_H),:),... 

    BotStr_H((7*Nrows_H+1):(8*Nrows_H),:),... 

    BotStr_H((8*Nrows_H+1):(9*Nrows_H),:),... 

    BotStr_H((9*Nrows_H+1):(10*Nrows_H),:),... 

    BotStr_H((10*Nrows_H+1):(11*Nrows_H),:),... 

    BotStr_H((11*Nrows_H+1):(12*Nrows_H),:),... 

    BotStr_H((12*Nrows_H+1):(13*Nrows_H),:),... 

    BotStr_H((13*Nrows_H+1):(14*Nrows_H),:),... 

    BotStr_H((14*Nrows_H+1):(15*Nrows_H),:),... 

    BotStr_H((15*Nrows_H+1):(16*Nrows_H),:),... 

    BotStr_H((16*Nrows_H+1):(17*Nrows_H),:),... 

    BotStr_H((17*Nrows_H+1):(18*Nrows_H),:),... 

    BotStr_H((18*Nrows_H+1):(19*Nrows_H),:),... 

    BotStr_H((19*Nrows_H+1):(20*Nrows_H),:)]; 

Extracting POMs, Healthy Model 

[POM_Str_End_H, SVD_Str_End_H,~] = svd((SnapShot_Model_Str_End_H(100:2100,:))'); 

 

% Getting POMs#1 alone 

POM1_H=POM_Str_End_H(:,1); 

Writing SnapShot matrix, POMs and for Health Cases 

%Healthy models 

Loc_H =(TR-1)*Nsensors*length(DI)+TR; 

SnapShotMatrix_Initial(:,:,Loc_H)=SnapShot_Model_Str_End_H;%snapshot matrix 

POMs_1_RMS(:,Loc_H)=POM1_H; % Writing Healthy Models POMS into POMs_1 matrix 

%% 

Getting POMs and SnapShot Matrices for Damaged Cases, Iterative process 

Iteration Loops for each damage intensity 
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for kk=1:length(DI) 

for k=1:Nsensors     % Number of stringer ends, Assumed to be instrumented 

Unlock the model 

ret = SapModel.SetModelIsLocked(false); 

switch to k-in units 

ret = SapModel.SetPresentUnits(SAP2000v19.eUnits.kip_in_F); 

Asigning Frame Releases for Healthy Model As 76% of Rigid 

FrameObj = NET.explicitCast(SapModel.FrameObj,'SAP2000v19.cFrameObj'); 

Start = NET.createArray('System.Boolean',12);%% From VBA Function 

End = NET.createArray('System.Boolean',12);%% From VBA Function 

 

% Release for stringers left side 

 

Start_Releases_1 = NET.createArray('System.Double',6);%% From VBA Function 

End_Releases_1 = NET.createArray('System.Double',6);%% From VBA Function 

 

for ii = 5 : 6 

 

    Start(ii) = true(); %% Activate Releases in Y and X Directions at start 

 

end 

 

Start_Releases_1(5) = 0; %%Frame Partial Fixity in Y-direction at start 

Start_Releases_1(6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for jj = 5 : 6 

 

    End(jj) = false();%% Activate Releases in Y and X Directions at start 

 

end 

 

End_Releases_1 (5) = 0; %%Frame Partial Fixity in Y-direction at End 

End_Releases_1 (6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for iii=1:20 

    SetReleases = FrameObj.SetReleases(['STR-L-

',num2str(iii)],Start,End,Start_Releases_1,End_Releases_1); 

end 

for iii=1:4 

    SetReleases = FrameObj.SetReleases(['STR-LL-
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',num2str(iii)],Start,End,Start_Releases_1,End_Releases_1); 

end 

 

% Release for stringers right side 

 

Start_Releases_2 = NET.createArray('System.Double',6);%% From VBA Function 

End_Releases_2 = NET.createArray('System.Double',6);%% From VBA Function 

 

for ii = 5 : 6 

 

    Start(ii) = false(); %% Activate Releases in Y and X Directions at start 

 

end 

 

Start_Releases_2(5) = 0; %%Frame Partial Fixity in Y-direction at start 

Start_Releases_2(6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for jj = 5 : 6 

 

    End(jj) = true();%% Activate Releases in Y and X Directions at start 

 

end 

 

End_Releases_2 (5) = 0; %%Frame Partial Fixity in Y-direction at End 

End_Releases_2 (6) = EFR_H; %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

 

for iiii=1:24 

    SetReleases = FrameObj.SetReleases(['STR-R-

',num2str(iiii)],Start,End,Start_Releases_2,End_Releases_2); 

end 

Assigning DAMAGE EFFECTS as RELEASES 

Release for stringers left side 

Start_Releases_D = NET.createArray('System.Double',6);%% From VBA Function 

End_Releases_D = NET.createArray('System.Double',6);%% From VBA Function 

 

for ii = 5 : 6 

 

    Start(ii) = true(); %% Activate Releases in Y and X Directions at start 

 

end 

 

Start_Releases_D(5) = 0; %%Frame Partial Fixity in Y-direction at start 

Start_Releases_D(6) = EFR_D(kk); %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

for jj = 5 : 6 
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    End(jj) = false();%% Activate Releases in Y and X Directions at start 

 

end 

 

End_Releases_D (5) = 0; %%Frame Partial Fixity in Y-direction at End 

End_Releases_D (6) = EFR_D(kk); %%Frame Partial Fixity in X-direction at End @ 67% of continuous 

 

SetReleases(k) = FrameObj.SetReleases(['STR-L-

',num2str(k)],Start,End,Start_Releases_D,End_Releases_D); 

Refresh view, update (initialize) zoom 

View = NET.explicitCast(SapModel.View,'SAP2000v19.cView'); 

ret = View.RefreshView(0, false()); 

Save model, write the model path 

ret = File.Save([FilePath, '\',ModelName,'.sdb']); 

Run model (this will create the analysis model) 

Analyze = NET.explicitCast(SapModel.Analyze,'SAP2000v19.cAnalyze'); 

% Select model case to run 

ret = Analyze.SetRunCaseFlag('DEAD',true);%%might be removed 

ret = Analyze.SetRunCaseFlag('MODAL',false);%%might be removed 

ret = Analyze.SetRunCaseFlag(['Train#',num2str(TR),'-Tr#1'],true);%%The code main purpose 

ret = Analyze.RunAnalysis(); 

Getting Internal Forces 

switch to k-ft units 

ret = SapModel.SetPresentUnits(SAP2000v19.eUnits.kip_ft_F); 

 

% Creating results file 

AnalysisResults = NET.explicitCast(SapModel.Results,'SAP2000v19.cAnalysisResults'); 

AnalysisResultsSetup = 

NET.explicitCast(AnalysisResults.Setup,'SAP2000v19.cAnalysisResultsSetup'); 

 

% Select results cases 

AnalysisResultsSetup.DeselectAllCasesAndCombosForOutput; 

AnalysisResultsSetup.SetCaseSelectedForOutput(['Train#',num2str(TR),'-Tr#1']); 
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% Extracting results step by step (2) 

AnalysisResultsSetup.SetOptionMultiStepStatic(2) 

 

 

%Getting Internal Forces 

NumberResults = 0; 

 

Obj = NET.createArray('System.String',2); 

ObjSta = NET.createArray('System.Double',2); 

Elm = NET.createArray('System.String',2); 

ElmSta = NET.createArray('System.Double',2); 

ACase = NET.createArray('System.String',2); 

StepType = NET.createArray('System.String',2); 

StepNum = NET.createArray('System.Double',2); 

P= NET.createArray('System.Double',2); 

V2 = NET.createArray('System.Double',2); 

V3 = NET.createArray('System.Double',2); 

T = NET.createArray('System.Double',2); 

M2 = NET.createArray('System.Double',2); 

M3 = NET.createArray('System.Double',2); 

 

[~, NumberResults, Obj,ObjSta, Elm,ElmSta, ACase, StepType, StepNum,... 

    P, V2, V3, T, M2, M3] = AnalysisResults.FrameForce('STR_ENDS',... 

    SAP2000v19.eItemTypeElm.GroupElm, NumberResults, Obj,ObjSta,... 

    Elm,ElmSta, ACase, StepType, StepNum, P, V2, V3, T, M2, M3); 

 

%Converting results into a readable MATLAB format 

PP_D1(:,1)=(P.double); 

VV2_D1(:,1)=(V2.double); 

VV3_D1(:,1)=(V3.double); 

TT_D1(:,1)=(T.double); 

MM2_D1(:,1)=(M2.double); 

MM3_D1(:,1)=(M3.double); 

OObjSta_D1(:,1)= (ObjSta.double); 

EElmSta_D1(:,1)= (ElmSta.double); 

SStepNum_D1(:,1)= (StepNum.double); 

 

OObj_D1(:,1)= cell(Obj.Length,1); 

for j = 1:Obj.Length 

    OObj_D1{j,1} = char(Obj(j)); 

end 

 

EElm_D1= cell(Elm.Length,1); 

for j = 1:Elm.Length 

    EElm_D1{j,1} = char(Elm(j)); 

end 

 

AACase_D1= cell(ACase.Length,1); 

for j = 1:ACase.Length 

    AACase_D1{j,1} = char(ACase(j)); 

end 

 

SStepType_D1=cell(StepType.Length,1); 

for j = 1:StepType.Length 
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    SStepType_D1{j,1} = char(StepType(j)); 

end 

 

% Extracting numerical results into a Matrix 

 

 sapResults=[EElmSta_D1, SStepNum_D1, PP_D1,VV2_D1,VV3_D1,MM2_D1,MM3_D1]; 

 

 % Extracting all results into a Matrix 

 sapResults_Table=[array2table(OObj_D1),array2table(OObjSta_D1), array2table(EElm_D1),... 

 array2table(EElmSta_D1),array2table(AACase_D1),array2table(SStepType_D1),... 

 array2table(SStepNum_D1),array2table(PP_D1),array2table(VV2_D1),... 

 array2table(VV3_D1),array2table(TT_D1),array2table(MM2_D1),array2table(MM3_D1)]; 

 

% Filtering tables by a station 

SapResults_Filtered_D=sapResults_Table(sapResults_Table.OObjSta_D1==0,:); 

 

% Sort and Extract final tables 

D_Str_Ends_D=sortrows(SapResults_Filtered_D,1); 

Damage Internal Forces and Bottom Stresses 

M3_D=table2array(D_Str_Ends_D(:,13)); % Bending moment 

P_D = table2array(D_Str_Ends_D(:,8)); % Axial force 

BotStr_D=((P_D)/Area+(M3_D)*12/Sbot); % Bottom stresses 

TimeStep_D =table2array(D_Str_Ends_D(:,7)) ;%Time step Number 

Nrows_D =(length(BotStr_D))/Nsensors  ; %number of steps ot dt/train 

 

% Snapshot matrix using stresses 

SnapShot_Model_Str_End_D = [BotStr_D(1:(Nrows_D),:),... 

    BotStr_D((Nrows_D+1):(2*Nrows_D),:),... 

    BotStr_D((2*Nrows_D+1):(3*Nrows_D),:),... 

    BotStr_D((3*Nrows_D+1):(4*Nrows_D),:),... 

    BotStr_D((4*Nrows_D+1):(5*Nrows_D),:),... 

    BotStr_D((5*Nrows_D+1):(6*Nrows_D),:),... 

    BotStr_D((6*Nrows_D+1):(7*Nrows_D),:),... 

    BotStr_D((7*Nrows_D+1):(8*Nrows_D),:),... 

    BotStr_D((8*Nrows_D+1):(9*Nrows_D),:),... 

    BotStr_D((9*Nrows_D+1):(10*Nrows_D),:),... 

    BotStr_D((10*Nrows_D+1):(11*Nrows_D),:),... 

    BotStr_D((11*Nrows_D+1):(12*Nrows_D),:),... 

    BotStr_D((12*Nrows_D+1):(13*Nrows_D),:),... 

    BotStr_D((13*Nrows_D+1):(14*Nrows_D),:),... 

    BotStr_D((14*Nrows_D+1):(15*Nrows_D),:),... 

    BotStr_D((15*Nrows_D+1):(16*Nrows_D),:),... 

    BotStr_D((16*Nrows_D+1):(17*Nrows_D),:),... 

    BotStr_D((17*Nrows_D+1):(18*Nrows_D),:),... 

    BotStr_D((18*Nrows_D+1):(19*Nrows_D),:),... 

    BotStr_D((19*Nrows_D+1):(20*Nrows_D),:)]; 

Extracting POMs, Damaged Cases 
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[POM_Str_End_D, SVD_Str_End_D,~] = svd((SnapShot_Model_Str_End_D(100:2100,:))'); 

 

% Getting POMs#1 alone 

POM1_D=POM_Str_End_D(:,1); 

Writing SnapShot matrix, POMs and Damage Intensities values in the matrix 

%Defected or Damaged models 

Loc_D=(TR-1)*Nsensors*length(DI)+TR+(((kk-1)*Nsensors)+k); 

POMs_1_RMS(:,Loc_D)=POM1_D; 

SnapShotMatrix_Initial(:,:,Loc_D)=SnapShot_Model_Str_End_D; 

%Damage Intensities Matrix 

D_Vectors(k,Loc_D)=DI(kk); 

Damage iterative process (POMs and SnapShotMatrices) 

end 

end 

End OF the Iterative Process for Defined number of Trains 

end 

Delete Unwanted Text Files 

for TR=1:8 

    delete (['text',num2str(TR),'.$2k']) 

end 

Switching SnapShotMatrix to Simple Array 

for TR=1:length(POMs_1_RMS) 

    SnapShotMatrix_RMS{TR}=SnapShotMatrix_Initial(:,:,TR); 

end 

End Time 

EndTime=toc/(60*60)     %  154.71 hours 
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Writing Output in Part 2 

POMs_1_RMS_1to5=POMs_1_RMS; 

SnapShotMatrix_RMS_1to5=SnapShotMatrix_RMS; 

Writing results for each Intensity case, for the 20 stringer 

save('Trains_Results_WILD_Higher_RMS_10Trains','POMs_1_RMS','SnapShotMatrix_RMS'); 

 

save('Trains_Results_WILD_Higher_RMS_10Trains_1to5','POMs_1_RMS_1to5','SnapShotMatrix_RMS_1to5'); 

Published with MATLAB® R2017a 
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Appendix 3: SAP2000 OAPI and MATLAB Coding Explanation 

 In this appendix, MATLAB  and SAP2000 OAPI connection MATLAB  code is 

shown. This MATLAB  code used in simulating trains, damage and extracting internal 

forces at the selected locations. 
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SAP2000 OAPI and Matlab coding explanation 

 

1. Opening an existing SAP2000 
 

 
 

2. Assigning material properties 
 

 
 

Open existing SAP2000 file 

File path on the computer 

File name 
‘$2k’ OR ‘SDB’ 
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3. Assigning frame element property modifier about Y-Direction 

 

 
 
 
 
 
 
 
 
 

1 

2 
3 
4 
5 

6 

7 
8 

Set the 8 property modifiers to 1 

Selected frame section name for 
assigning the property modifier 
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4. Assigning frame element property modifier about X-Direction 

 

 
 
 
 
 
 
 
 
 
 
 
 

1 

2 
3 
4 
5 

6 

7 
8 

Set the 8 property modifiers to 1 

Selected frame section name for 
assigning the property modifier 
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5. Assigning joint springs 

 

1 
2 
3 
4 
5 
6 
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6. Assigning frame element end releases 

 

1 

2 

3 

4 

5 

6 

No End release 

Frame elements name 
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7. Requesting modal history analysis joint accelerations step-by-step output 

 

 

 

 
 

1 
2 
3 

Selected load case 

Requested output 

Selected joints 
group name 

Requesting joint acceleration 
components (X, Y and Z) 
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8. Requesting joint displacements output 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Requested output 

Selected joints 
group name 

Requesting joint 
Displacement components 

(X, Y and Z) 
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9. Requesting multi-step-static analysis frame element forces step-by-step 
output 

 

 

 

1 
2 
3 

Selected load case 

Requested output 

Selected frame 
elements group name 

Requesting frame forces 
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10. Writing train loads related text files and placing them in the SAP2000 
original model $2k file. Train loads and names found to affect 8 different 
locations in the $2k file and as a result 8 different text files will be created 
and replaced with their corresponding locations in the $2k file automatically 

 

a) Writing train loads in a text file where Matlab read loads, axle spacing and number 
of axles from an excel sheet provided from the bridge owner automatically. 

 

 

 

 
 

Writing text file for train loads 
to be placed in SAP $2k text file 

Writing Wheel 2 loads from excel sheet 

Writing Wheel 2 loads from excel sheet 
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b) Writing load pattern and vehicle class portions, 2 text files. 
 

 

 
 
 
 

Writing text file Vehicle class 

Writing text file Load pattern 
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c) Writing multistep-step-static load assignment and load case definition portions, 2 
text files. 

 

 

Writing text file Multistep 
Static load assignment 

Writing text file Load case 
definition 
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d) Writing multi-step general and multi-step general vehicle data, 2 text files. 
 

 

 

 

 

 

 

 

 

 

 

 

Writing text file Multistep 
general 

Writing text file Multistep 
general vehicle data 
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e) Writing general vehicles 1, text files. 
 

 

 

 

 

 

 

 

 

 

 

Writing text file General 
vehicles 1 - general 
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f) Replacing text files generated automatically in (a to f) with the existing old 
corresponding portions in the SAP2000 $2k file. 
 

 

Replacing the above text files into SAP2000 $2k file 
The code will find the headings of each table and 
replace the old text with the newly written one 
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