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Abstract This study proposes two improved gradient descent parameter estimation algorithm-
s for rational state-space models with time-delay. These two algorithms, based on intelligent
search method and momentum method, can simultaneously estimate the time-delay and param-
eters without the matrix eigenvalue calculation in each iteration. Compared with the traditional
gradient descent algorithm, the improved algorithms come with two advantages: having quicker
convergence rates and less computational efforts, particularly meaningful for those large-scale
systems. A simulated example is selected to illustrate the efficiency of the proposed algorithms.
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1 Introduction

Nonlinear systems have various descriptive models, e.g., bilinear models [1], input nonlinear
models and rational models [2,3]. The rational model is a general class of nonlinear models which
are expressed by a ratio of two polynomials [4,5]. It has several advantages, e.g., a comprehensive
model set includes almost all the other nonlinear models, a more concise structure when compared
with the polynomial expansion, fast power to catch up large deviations quickly in the represented
dynamic systems [6,7]. This type of models widely represent dynamic systems appeared in natural
and man-made domains, such as chemical engineering, life science and economic operation [8,9].
Further, the rational model has been selected as a foundation for developing new control design
methods to deal with complex nonlinear dynamic systems, with an assumption of the parameters
of the model known a priori [10,11]. Thus, the parameter estimation plays a decisive role in such
model based controller design [12,13].

If a considered system is polynomial nonlinear, a great many methods can be applied for
identifying the models [14–16]. However, the identification of rational model is more challeng-
ing because of the denominator polynomial. Recently, least squares (LS) algorithms for rational
models have been well investigated. For example, in [17], an implicit LS algorithm is proposed for
rational models, where the nonlinear model is transformed into an implicit linear in the param-
eters model. In [18], a nonlinear LS algorithm is developed for rational models, the parameter
estimates can globally converge to the true values. Note that the LS algorithm requires the matrix
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inversion calculation in each iteration, which leads to heavy computational efforts especially for
large-scale systems [19–21]. Chen et al studied a maximum likelihood based hierarchical identi-
fication principle algorithm for rational models, by which the parameters in the numerator and
denominator are iteratively estimated, and then the computational efforts can be reduced [22].
However, it has an assumption that the noise-to-output ratio is small enough.

The gradient descent (GD) algorithms, including the stochastic gradient algorithms [23] and
the gradient-based iterative algorithms [24,25], consist of two steps: the direction devising and the
step-size calculating [26]. The gradient-based iterative algorithms perform the matrix eigenvalue
calculation instead of the matrix inversion calculation in each iteration, thus have less compu-
tational efforts when compared with the LS algorithms [27]. Unfortunately, it brings some other
issues, e.g., computing the eigenvalue of a high-dimensional matrix is challenging/impossible,
has slower convergence rates because of its zigzagging nature [28]. It is natural to put forward
such a question: can any improved GI algorithms be developed for the rational model parameter
estimation, which have less computational efforts, no matrix eigenvalue calculation and quicker
convergence rates. This is the insight and motivation of the paper.

State-space model is widely studied in research and adopted in wide ranges of applications.
Many identification methods have been developed for linear state-space models and polynomial
nonlinear state-space models [29,30]. In [31], Li proposed an on-line algorithm for a nonlinear
system, which has a linear state-space subsystem. In [32], Gu et al derived an expectation max-
imization algorithm for linear state-space systems with time-delay and missing outputs. In [33],
Xu et al developed a multi-innovation estimation algorithm for a state space system with d-step
state-delay, where the delay is known in prior. Surprisingly, to the best of our knowledge, there is
only scattered work reported in the literature on the identification of rational state-space models.
It should be noted that the rational state-space model identification is an open and promising
problem, and it is hoped that the methods proposed in this paper will provide a concise analytical
solution for the reference of future studies.

In this paper, two improved GD algorithms are proposed for time-delay rational state-space
models via the intelligent search method and momentum method. By using the intelligent search
method, no matrix eigenvalue calculation will be involved in each iteration in the GD algorithm.
Furthermore, based on the momentum method, the convergence rates can be increased. The main
contributions are summarized as follows.

1. Study two improved GD algorithms for time-delay rational state-space models, where the
parameters and the time-delay can be iteratively estimated.

2. Use the intelligent search method to avoid calculating the matrix eigenvalue, thus the proposed
algorithms can be extended to large-scale rational models.

3. Apply the momentum method to the time-delay rational state-space models, which can in-
crease the convergence rate of the traditional GD algorithm.

Briefly, for the rest of the study, Section 2 introduces the time-delay rational state-space
model. Section 3 studies the traditional GD algorithm. Section 4 proposes two improved GD
algorithms. Section 5 provides an illustrative example. Finally, Section 6 summarizes the study.

2 Rational state-space model with time-delay

Consider the following rational state-space model,

x(t) =
f(x(t− 1), u(t))

g(x(t− 1), u(t))
,

y(t) = x(t− τ) + v(t),

where x(t) is the unmeasurable state, u(t), y(t) are the input and output data and both are
measurable, v(t) is a Gaussian white noise satisfies v(t) ∼ N(0, δ2), τ is the time-delay, f(x(t −
1), u(t)) and g(x(t− 1), u(t)) are two nonlinear functions, and can be written by

f(x(t− 1), u(t)) = a1f1(x(t− 1), u(t)) + a2f2(x(t− 1), u(t)) + · · ·+ anfn(x(t− 1), u(t)),

g(x(t− 1), u(t)) = b1g1(x(t− 1), u(t)) + b2g2(x(t− 1), u(t)) + · · ·+ bmgm(x(t− 1), u(t)),
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where the structures fi, gj , i = 1, · · · , n, j = 1, · · · ,m are known in prior, while the parameters
ai and bj are unknown.

In application, the first element b1g1(x(t− 1), u(t)) is usually assumed to be equal to 1, e.g.,
in [5,7]. Then the state model can be simplified as

x(t) = a1f1(x(t− 1), u(t)) + a2f2(x(t− 1), u(t)) + · · ·+ anfn(x(t− 1), u(t))−
b2x(t)g2(x(t− 1), u(t))− · · · − bmx(t)gm(x(t− 1), u(t)).

Define the parameter vector and the information vector as

ϑ = [a1, · · · , an, b2, · · · , bm]T ∈ Rm+n−1,

ϕ(t) = [f1(x(t− 1), u(t)), · · · , fn(x(t− 1), u(t)),−x(t)g2(x(t− 1), u(t)), · · · ,
−x(t)gm(x(t− 1), u(t))]T ∈ Rm+n−1.

Then the state-space model is written by

x(t) = ϕT(t)ϑ,

y(t) = x(t− τ) + v(t),

and can be turned into the following regression model

y(t) = ϕT(t− τ)ϑ+ v(t). (1)

The true value of the time-delay τ is unknown, but its upper bound and lower bound are known.
For example, when the network using router information protocol, the data in this network may
encounter a delay between [0, 15]. Assume that the time-delay τ ∈ [0,M ] and collect L input and
output data

Y (L) = [y(L), y(L− 1), · · · , y(1)]T ∈ RL,

U(L) = [u(L), u(L− 1), · · · , u(1)]T ∈ RL,

Φ(L− τ) = [ϕ(L− τ),ϕ(L− 1− τ), · · · ,ϕ(1− τ)]T ∈ RL×(m+n−1). (2)

It follows that

Y (L) = Φ(L− τ)ϑ+ V (L), (3)

where

V (L) = [v(L), v(L− 1), · · · , v(1)]T ∈ RL.

The focus of this paper is to use the measurable input and output data to estimate the parameters
and time-delay.

3 Traditional gradient descent algorithm

In the traditional gradient descent (T-GD) algorithm, the direction and the step-size are two
decisive factors in algorithm devising [34,35]. The direction, usually termed as negative gradient
direction, is determined first, then its corresponding step-size is obtained by computing the
greatest eigenvalue of a matrix.

Define the cost function

J(ϑ) =
1

2
[Y (L)−Φ(L− τ)ϑ]T[Y (L)−Φ(L− τ)ϑ].

The negative gradient direction is computed by

−∂J(ϑ)

∂ϑ
|ϑ=ϑk−1

= ΦT(L− τ)[Y (L)−Φ(L− τ)ϑk−1],

and the parameter estimates are updated by

ϑk = ϑk−1 + γkΦ
T(L− τ)[Y (L)−Φ(L− τ)ϑk−1], (4)

where γk is the step-size, ϑk−1 is the parameter vector estimate in iteration k − 1.
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Once the direction is determined, we would compute the corresponding step-size γk. Notice
that a small step-size will lead to a slow convergence rate, while a large one may result in a
divergent algorithm. Therefore, a suitable step-size plays an important role in the T-GD algorithm
devising.

The cost function in iteration k is written by

J(ϑk) =
1

2
[Y (L)−Φ(L− τ)ϑk]

T[Y (L)−Φ(L− τ)ϑk],

and we want to find a step-size γk which can ensure

1

2
[Y (L)−Φ(L− τ)ϑk]

T[Y (L)−Φ(L− τ)ϑk] 6
1

2
[Y (L)−Φ(L− τ)ϑk−1]

T[Y (L)−Φ(L− τ)ϑk−1].

Substituting Equation (4) into the left side of the above equation yields

[Y (L)−Φ(L− τ)ϑk] = [Y (L)−Φ(L− τ)[ϑk−1 + γkΦ
T(L− τ)[Y (L)−Φ(L− τ)ϑk−1]]] =

[Y (L)−Φ(L− τ)ϑk−1]− γkΦ(L− τ)ΦT(L− τ)[Y (L)−Φ(L− τ)ϑk−1] =

[I − γkΦ(L− τ)ΦT(L− τ)][Y (L)−Φ(L− τ)ϑk−1]. (5)

To keep

∥Y (L)−Φ(L− τ)ϑk∥ 6 ∥Y (L)−Φ(L− τ)ϑk−1∥,

one should guarantee that

∥I − γkΦ(L− τ)ΦT(L− τ)∥ < 1.

It follows that the step-size should be chosen as follows

0 < γk <
2

λmax[Φ(L− τ)ΦT(L− τ)]
, (6)

where λmax[Φ(L− τ)ΦT(L− τ)] means the greatest eigenvalue of the matrix Φ(L− τ)ΦT(L− τ).
However, the T-GD algorithm is ineffective for this time-delay rational model, because the

information matrix Φ(L− τ) contains unknown variables x(t− τ), · · · , x(1) and time-delay τ . To
overcome this difficulty, we assume that the parameter vector estimate in iteration k−1 is ϑk−1.
Then the unknown variables in iteration k are replaced by

x̂k(t) = ϕT

k(t)ϑk−1, t = 1, · · · , L,

where

ϕk(t) = [f1(x̂k(t− 1), u(t)), · · · , fn(x̂k(t− 1), u(t)),−x̂k−1(t)g2(x̂k(t− 1), u(t)), · · · ,
−x̂k−1(t)gm(x̂k(t− 1), u(t))]T.

Let

ξjk = ∥Y (L)−Φk(L− τ jk)ϑk−1∥, τ jk = 0, 1, · · · ,M,

Φk(L− τ jk) = [ϕk(L− τ jk),ϕk(L− 1− τ jk), · · · ,ϕk(1− τ jk)]
T,

and

ξmk = min{ξ0k, ξ1k, · · · , ξMk },

which means that the time-delay estimate in iteration k is τk = m.
It follows that the T-GD algorithm for the time-delay rational state-space model is summa-

rized as follows

ϑk = ϑk−1 + γkΦ
T

k(L− τ)[Y (L)−Φk(L− τk)ϑk−1],

0 < γk <
2

λmax[Φk(L− τk)Φ
T

k(L− τk)]
,

x̂k(t) = ϕT

k(t)ϑk−1, t = 1, · · · , L,
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Φk(L− τ jk) = [ϕk(L− τ jk),ϕk(L− 1− τ jk), · · · ,ϕk(1− τ jk)]
T, τ jk = 0, 1, · · · ,M,

ξjk = ∥Y (L)−Φk(L− τ jk)ϑk−1∥, τ jk = 0, 1, · · · ,M,

ξmk = min{ξ0k, ξ1k, · · · , ξMk }, τk = m.

Remark 1: In the T-GD algorithm, one should perform the matrix eigenvalue calculation in
each iteration to get a suitable step-size [36,37]. It is problematic/imossible to get the greatest
eigenvalue when the order of the matrix [Φk(L− τk)Φ

T

k(L− τk)] is large.

4 Two improved gradient descent algorithms

In this section, two improved gradient descent algorithms are developed for the rational state-
space systems with time-delay. First, an intelligent search based gradient descent (IS-GD) al-
gorithm is proposed which can avoid the matrix eigenvalue calculation. Then, to increase the
convergence rate of the IS-GD algorithm, a momentum IS-GD (M-IS-GD) algorithm is derived.

4.1 Intelligent search based gradient descent algorithm

The particle swarm optimization (PSO) algorithm is an intelligent algorithm which is originally
introduced by Kennedy and Eberhart [38]. The key to the PSO algorithm is initialized with
a number of random estimates, termed as particles. Each particle is assigned its own velocity
and is iteratively moved through the problem space. Inspired by the PSO algorithm, this paper
develops an intelligent search method, in which a number of random step-sizes are involved, and
each step-size can yield a residual error between the true output and the estimated output. The
step-size with the smallest residual error is the best one in this iteration.

Assume that the step-sizes in iteration k are γ1
k, · · · , γl

k and γ1
k < γ2

k < · · · < γl
k, where l is

the number of the step-sizes in iteration k. Then we can get l corresponding parameter vector
estimates as

ϑs
k = ϑb

k−1 + γs
kΦ

T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1], s = 1, 2, · · · , l, (7)

where ϑb
k−1 means the best parameter vector estimate in iteration k − 1. The residual error of

each step-size is computed by

ϵsk = ∥Y (L)−Φk(L− τk)ϑ
s
k∥. (8)

Let

ϵmin
k = min{ϵ1k, ϵ2k, · · · , ϵlk},

and its associated estimate is ϑmin
k .

Remark 2: The parameter vector estimate ϑmin
k can ensure J(ϑmin

k ) 6 J(ϑmin
k−1). However,

its corresponding step-size γmin
k is not optimal in iteration k, for the reason that all the step-sizes

are chosen randomly.
There are two ways to obtain the best parameter vector estimate ϑb

k:
(1) ϑb

k = ϑmin
k , which means that the parameter vector estimate is determined by only one

step-size.
(2) Define

ϵmax
k = max{ϵ1k, ϵ2k, · · · , ϵlk},

and the weight of the sth step-size is computed by

ws
k =

ϵmax
k + 1− ϵsk

l∑
j=1

[ϵmax
k + 1− ϵjk]

.
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Then the best parameter vector estimate ϑb
k can be written by

ϑb
k =

l∑
j=1

ws
kϑ

s
k.

In this case, all the step-sizes are involved in updating the parameters, and the parameter vector
estimate with the smallest residual error has the largest weight.

Notice that more than one step-sizes are utilized to update the parameters in each iteration,
thus this improved GD algorithm is named as intelligent search based gradient descent (IS-GD)
algorithm, and can be listed as follows

ϑb
k = ϑmin

k , (9)

ϑs
k = ϑb

k−1 + γs
kΦ

T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1], (10)

x̂k(t) = ϕT

k(t)ϑ
b
k−1, t = 1, · · · , L, (11)

Φk(L− τ jk) = [ϕk(L− τ jk),ϕk(L− 1− τ jk), · · · ,ϕk(1− τ jk)]
T, τ jk = 0, 1, · · · ,M, (12)

ϵsk = ∥Y (L)−Φk(L− τk)ϑ
s
k∥, (13)

ϑmin
k = argmin

ϑs

k

{ϵ1k, ϵ2k, · · · , ϵlk}, (14)

γs
k = random(0, d), s = 1, · · · , l, (15)

ξjk = ∥Y (L)−Φk(L− τ jk)ϑk−1∥, τ jk = 0, 1, · · · ,M, (16)

ξmk = min{ξ0k, ξ1k, · · · , ξMk }, τk = m. (17)

The steps of computing ϑb
k and τk by the IS-GD algorithm are summarized as:

1. Initialization: Let y(i) = 0, u(i) = 0, i 6 0, and give a small positive number ε.
2. Let k = 1 and assign ϑb

k = 1/p0, where 1 is a column vector whose entries are all unity and
p0 = 106.

3. Assume the time-delay τ ∈ [0,M ] and the step-size γ ∈ [0, d], where M and d are known in
prior.

4. Collect y(1), · · · , y(L), u(1), · · · , u(L).
5. Compute x̂k(t), t = 1, · · · , L by Equation (11).
6. Form Φk(L− τ jk), τ

j
k = 0, 1, · · · ,M by (12).

7. Compute ξjk, j = 0, 1, ·,M by Equation (16), and then determine τk by (17).
8. Form γs

k, s = 1, · · · , l by (15).
9. Compute ϑs

k, s = 1 · · · , l by (10).
10. Compute ϵsk, s = 1 · · · , l by (13).
11. Determine ϑmin

k by (14).
12. Update ϑb

k by (9).
13. Compare ϑb

k and ϑb
k−1: if ∥ϑ

b
k−ϑb

k−1∥ 6 ε, then obtain ϑb
k and stop the procedure; otherwise,

increase k by 1 and go to step 5.

Remark 3: Instead of computing the matrix eigenvalue in each iteration, the IS-GD algo-
rithm chooses the step-sizes from a step-size pool, thus it can be extended to large-scale system
identification.

Remark 4: Although the IS-GD algorithm does not require the matrix eigenvalue calculation,
it brings two challenging issues: one is how to choose a suitable constant d, another is how to
determine the best number of the step-sizes in each iteration.

In application, we often choose a large upper bound d first, when the parameter estimates
converge to the true values, the step-size becomes smaller. Therefore, a changing dk is usually
utilized to obtain the step-sizes, e.g.,

dk =
k
k∑

i=1

i

d.
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Remark 5: Assume that the upper bound is dk, if the smallest step-size γ1
k cannot keep

∥Y (L)−Φk(L− τk)ϑ
1
k∥ 6 ∥Y (L)−Φk(L− τk)ϑ

b
k−1∥,

the new upper bound dnewk is assigned as dnewk = 0.5doldk . On the other hand, if the largest
step-size γl

k can guarantee that

∥Y (L)−Φk(L− τk)ϑ
l
k∥ 6 ∥Y (L)−Φk(L− τk)ϑ

b
k−1∥,

we would choose a larger dk to get a better step-size, e.g, dnewk = 1.5doldk .

4.2 Momentum based gradient descent algorithm

The above subsection is to use the random step-size to avoid the eigenvalue calculation. Notice
that the negative gradient direction is not the optimal direction in each iteration because of its
zigzagging nature, the convergence rates of the IS-GD and T-GD algorithms are slow. The con-
jugate gradient descent algorithm is an improved GD algorithm, which can get a better direction
in each iteration with the cost of more computational efforts. Based on the conjugate gradient
descent algorithm, this subsection proposes a momentum based gradient descent algorithm to
increase the convergence rates.

Rewrite the cost function as follows

J(ϑ) =
1

2
[Y (L)−Φ(L− τ)ϑ]T[Y (L)−Φ(L− τ)ϑ].

The negative gradient direction in iteration k is written by

ΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1].

According to the conjugate gradient method, the optimal direction in iteration k is a linear
combination of the negative gradient direction in iteration k and the one in iteration k− 1, that
is the best direction dbk can be computed by

dbk = αΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1] + βΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2], (18)

where α and β are the weights of the negative gradient directions in k and k − 1, respectively.
Equation (18) demonstrates that: when the neighbouring gradients have the same direction,

the new direction will increase the convergence rate because of the momentum; when the neigh-
bouring gradients have the opposite directions, the new direction will reduce vibration of the
parameter estimation errors.

Then the parameter estimates are computed by

ϑk = ϑk−1 + r̄k,1αΦ
T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1] + r̄k,2βΦ

T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2].

For simplicity, the above equation can be transformed into

ϑk = ϑk−1 + rk,1Φ
T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1] + rk,2Φ

T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2],

where rk,1 = r̄k,1α and rk,2 = r̄k,2β.
Once the direction is determined, one should compute the step-sizes. There are two ways to

calculate the step-sizes:
(1) Assume that the two gradient directions have the same step-size, that is

ϑk = ϑk−1 + rkΦ
T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1] + rkΦ

T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2].

The cost function can be written by

J(ϑk) =
1

2
[Y (L)−Φk(L− τk)ϑk]

T[Y (L)−Φk(L− τk)ϑk].

Define

dpk = ΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1],

dpk−1 = ΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2].
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Let

∂J(ϑk)

∂rk
= 0.

It gives rise to

rk =
{
[dpk + dpk−1]

TΦT

k(L− τk)Φk(L− τk)[d
p
k + dpk−1]

}−1
[dpk + dpk−1]

TΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1].

Remark 6: Although the step-size is the optimal one when both the two neighbouring neg-
ative gradients have the same step-size, its computational efforts are heavy.

Remark 7: It is noted that the two directions usually have different step-sizes (weights), the
assumption that both the two directions have the same step-size is problematic.

(2) The two gradient directions have different step-sizes, that is

ϑk = ϑk−1 + rk,1d
p
k + rk,2d

p
k−1.

In this case, taking the derivative of J(rk,1, rk,2) with respect to rk,1, rk,2 and then equating them
to zero yield
rk,1(d

p
k)

TΦT

k(L− τk)Φk(L− τk)d
p
k + rk,2(d

p
k)

TΦT

k(L− τk)Φk(L− τk)d
p
k−1 =

(dpk)
TΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1]

rk,1(d
p
k−1)

TΦT

k(L− τk)Φk(L− τk)d
p
k + rk,2(d

p
k−1)

TΦT

k(L− τk)Φk(L− τk)d
p
k−1 =

(dpk−1)
TΦT

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2].

Let

(dpk)
TΦT

k(L− τk)Φk(L− τk)d
p
k = ck

(dpk−1)
TΦT

k(L− τk)Φk(L− τk)d
p
k−1 = dk

(dpk−1)
TΦT

k(L− τk)Φk(L− τk)d
p
k = (dpk)

TΦT

k(L− τk)Φk(L− τk)d
p
k−1 = lk

Y (L)−Φk(L− τk)ϑ
b
k−1 = ek

Y (L)−Φk(L− τk)ϑ
b
k−2 = ek−1.

It follows that the two step-sizes can be computed by

rk,1 =
(dpk−1)

TΦT

k(L− τk)ek−1lk − (dpk)
TΦT

k(L− τk)ekdk

l2k − ckdk
,

rk,2 =
(dpk)

TΦT

k(L− τk)eklk − (dpk−1)
TΦT

k(L− τk)ek−1ck

l2k − ckdk
.

Remark 8: Since each direction is assigned its own step-size, the two-step-size momentum
based gradient descent (T-M-GD) algorithm has a quicker convergence rate than that of the
one-step-size momentum based gradient descent (O-M-GD) algorithm, but with the cost of more
computational efforts.

Remark 9: When the estimates converge to the true values, the values of ck, dk and lk satisfy
ck = dk = lk. It is impossible to compute the step-sizes. For this reason, we often use the T-M-GD
algorithm first and then follow the O-M-GD algorithm.

Since the T-M-GD algorithm has heavy computational efforts and sometimes may be ineffec-
tive, we can use the IS-GD method to choose the two step-sizes in each iteration. The two-step-size
momentum intelligent search based gradient descent (T-M-IS-GD) algorithm is listed as follows:

ϑb
k = ϑmin

k ,

ϑs
k = ϑb

k−1 + rskΦ
T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−1] +

rsk−1Φ
T

k(L− τk)[Y (L)−Φk(L− τk)ϑ
b
k−2],

x̂k(t) = ϕT

k(t)ϑ
b
k−1, t = 1, · · · , L,

Φk(L− τ jk) = [ϕk(L− τ jk),ϕk(L− 1− τ jk), · · · ,ϕk(1− τ jk)]
T, τ jk = 0, 1, · · · ,M,

ϵsk = ∥Y (L)−Φk(L− τk)ϑ
s
k∥,

ϑmin
k = argmin

ϑs

k

{ϵ1k, ϵ2k, · · · , ϵlk},
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rsk ∈ random(0, d), rsk−1 ∈ random(0, d), s = 1, 2, · · · , l,
ξjk = ∥Y (L)−Φk(L− τ jk)ϑk−1∥, τ jk = 0, 1, · · · ,M,

ξmk = min{ξ0k, ξ1k, · · · , ξMk }, τk = m.

As a new direction, the proposed method can combine the Newton methods [39] and the multi-
innovation methods [40] to explore the parameter identification of rational models and other
nonlinear stochastic systems [41]-[45].

The algorithm constitutes of the following steps.

T-M-IS-GD algorithm

Initialize ϑb
0 = 1/p0, get y(1), · · · , y(L), u(1), · · · , u(L)

repeat

for k = 1, 2, · · · , do
Compute x̂k(t), t = 1, · · · , L
Form Φk(L− τ jk), τ

j
k = 0, 1, · · · ,M

Compute ξjk, j = 0, 1, · · · ,M and τk
Form rsk and rsk−1, s = 1, · · · , l
Compute ϑs

k, s = 1, · · · , l
Compute ϵsk, s = 1 · · · , l and determine ϵmin

k

if ϵmin
k 6 ∥Y (L)−Φ(L− τk)ϑ

b
k−1∥, then

Let ϑb
k = ϑmin

k

else

Let d = 0.5d, ϑb
k = ϑb

k−1

end

until convergence

5 Example

Consider a rational state-space model with time-delay τ = 1,

x(t) =
a1x(t− 1) + a2x(t− 1)u(t) + a3u(t)

1 + b2x2(t− 1)
=

0.2x(t− 1) + 0.1x(t− 1)u(t) + u(t)

1 + x2(t− 1)
,

y(t) = x(t− τ) + v(t).

Then one can get

y(t) = 0.2x(t− 2) + 0.1x(t− 2)u(t− 1) + u(t− 1)− x(t− 1)x2(t− 2) + v(t).

In the simulation, the input {u(t)} is a persistent excitation signal sequence satisfies u(t) ∼
N(0, 1), and {v(t)} is a white noise sequence satisfies v(t) ∼ N(0, 0.01), the true time-delay is
τ = 1, and the upper bound of the time-delay is M = 3. The simulation data (L = 1000) are
shown in Figure 1.

Firstly, apply the T-GD (γk = 1

λmax[Φ(L−τ)ΦT
(L−τ)]

), IS-GD (l = 50), O-M-IS-GD and

T-M-IS-GD (l = 50) algorithms to estimate the parameters and time-delay of the model. The
estimation errors δ := ∥ϑk−ϑ∥/∥ϑ∥ versus k are shown in Figure 2. The parameter estimates and
the estimation errors are shown in Table 1. The time-delay estimates are illustrated in Figure 3.

Secondly, use the IS-GD algorithm with different l and d to identify the model (γ = 1

λmax[Φ(L−1)ΦT
(L−1)]

).

The estimation errors δ := ∥ϑk − ϑ∥/∥ϑ∥ versus k are shown in Figure 4.
Finally, use the T-M-IS-GD algorithm with different l and d to identify the model. The

estimation errors δ := ∥ϑk − ϑ∥/∥ϑ∥ versus k are shown in Table 2, the relative errors (δi =
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âi−ai

ai
, i = 1, 2, 3, δ4 = b̂2−b2

b2
) of each parameter element with different iterations are shown in

Figure 5.
Then, we can get the following findings:
(1) Figure 2 and Table 1 show that the M-IS-GD (T-M-IS-GD and O-M-IS-GD) algorithms

have the quickest convergence rate, then is the IS-GD algorithm, finally is the T-GD algorithm.
(2) Figure 2 and Table 1 show that the T-M-IS-GD algorithm is more effective than the

O-M-IS-GD algorithm, though they have the same computational efforts.
(3) Figure 3 shows that all the algorithms can estimate the time-delay, and the estimates of

the T-M-IS-GD algorithm can quickly converge to the true value.
(4) Figures 4, 5 and Table 2 demonstrate that a larger l or d will lead to a quicker convergence

rate. However, a larger one will also lead to heavier computational efforts.

6 Conclusions

Two improved GD algorithms are proposed for rational state-space models with time-delay in
this paper. The objective of the proposed algorithms is to use the intelligent search method
to avoid the matrix eigenvalue calculation, and to apply the momentum method to increase
the convergence rate. In addition, these two algorithms can be extended to large-scale system
identification for its simple step-size devising method, and can be applied to other literatures
[46]-[49], such as information filtering and processing and networked communication systems.

Although the proposed algorithms have several advantages over the T-GD algorithm, they
also bring some challenging questions that need to be answered. For example, how many step-
sizes should be chosen in each iteration? what is the best upper bound of the step-sizes? These
topics remain as open problems.
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Fig. 1 The simulation data
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Fig. 3 The time-delay estimates versus k

Table 1 The estimates and errors

Algorithm k a1 a2 a3 b2 δ (%)

1 0.24576 0.09987 0.00253 -0.49140 69.66419

2 0.35230 -0.06167 0.00444 -0.63782 52.06156

T-GD 10 0.66990 -0.46207 0.02719 -0.96949 13.64437

20 0.69866 -0.49734 0.05545 -0.99811 10.83780

30 0.69996 -0.49911 0.07932 -0.99951 9.04557

1 0.45421 0.18459 0.00467 -0.90822 56.86805

2 0.43857 -0.33466 0.00655 -0.71014 34.92554

IS-GD 10 0.69842 -0.50219 0.05208 -0.99677 11.09145

20 0.69918 -0.50118 0.09851 -0.99821 7.60915

30 0.69954 -0.50060 0.13000 -0.99896 5.24763

1 0.33299 0.13532 0.00343 -0.66583 62.19947

2 0.45486 0.07318 0.00512 -0.87319 49.86956

O-M-IS-GD 10 0.69103 -0.49509 0.06202 -1.00492 10.37692

20 0.70152 -0.50027 0.13440 -0.99661 4.92469

30 0.69993 -0.49950 0.15808 -1.00025 3.14252

1 0.33882 0.13769 0.00349 -0.67748 61.79626

2 0.66858 -0.55250 0.01015 -1.06881 15.81541

T-M-IS-GD 10 0.70445 -0.49546 0.08921 -1.00091 8.31802

20 0.69864 -0.49949 0.14426 -1.00140 4.18024

30 0.69969 -0.50028 0.17574 -0.99978 1.81874

True Values 0.70000 -0.50000 0.20000 -1.00000
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Fig. 4 The parameter estimation errors δ versus k (IS-GD)

Table 2 The T-M-IS-GD algorithm estimates and errors with different l and d

l, d k a1 a2 a3 b2 δ (%)

1 0.18255 0.07419 0.00188 -0.36502 76.43371

2 0.30649 0.07864 0.00334 -0.59791 62.26199

l = 5, d = γ 10 0.66368 -0.45466 0.02158 -0.96331 14.33020

20 0.69830 -0.49679 0.04640 -0.99773 11.51723

30 0.69993 -0.49899 0.06735 -0.99943 9.94270

1 0.33342 0.13550 0.00343 -0.66669 62.16915

2 0.44505 -0.09621 0.00568 -0.79979 41.45447

l = 50, d = γ 10 0.69896 -0.49467 0.03845 -0.99873 12.11605

20 0.69933 -0.50078 0.08737 -0.99841 8.44281

30 0.70048 -0.49846 0.12099 -1.00054 5.92343

1 0.05736 0.02331 0.00059 -0.11470 92.11485

2 0.79935 0.17911 0.00880 -1.55093 67.50518

l = 5, d = 10γ 10 1.08561 -0.04296 0.09898 -0.93216 45.73897

20 0.70358 -0.50228 0.13883 -0.99965 4.59598

30 0.70185 -0.49885 0.17704 -0.99907 1.73016

1 0.33882 0.13769 0.00349 -0.67748 61.79626

2 0.66858 -0.55250 0.01015 -1.06881 15.81541

l = 50, d = 10γ 10 0.70445 -0.49546 0.08921 -1.00091 8.31802

20 0.69864 -0.49949 0.14426 -1.00140 4.18024

30 0.69969 -0.50028 0.17574 -0.99978 1.81874

True Values 0.70000 -0.50000 0.20000 -1.00000
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