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Abstract: The human operator largely relies on the perception of remote environmental conditions to
make timely and correct decisions in a prescribed task when the robot is teleoperated in a remote place.
However, due to the unknown and dynamic working environments, the manipulator’s performance
and efficiency of the human-robot interaction in the tasks may degrade significantly. In this study,
a novel method of human-centric interaction, through a physiological interface was presented to
capture the information details of the remote operation environments. Simultaneously, in order
to relieve workload of the human operator and to improve efficiency of the teleoperation system,
an updated regression method was proposed to build up a nonlinear model of demonstration for
the prescribed task. Considering that the demonstration data were of various lengths, dynamic
time warping algorithm was employed first to synchronize the data over time before proceeding
with other steps. The novelty of this method lies in the fact that both the task-specific information
and the muscle parameters from the human operator have been taken into account in a single task;
therefore, a more natural and safer interaction between the human and the robot could be achieved.
The feasibility of the proposed method was demonstrated by experimental results.

Keywords: bioinformatics interface; locally weighted regression; human muscle stiffness;
learning from demonstration; human-robot interaction

1. Introduction

With significant progress in computer science, information science, automation, and
artificial intelligence techniques, telerobots have been extensively applied in areas as diverse as
telemedicine [1,2], telerehabilitation [3], minimally invasive surgery [4], disaster rescue and relief
operation [5], maintenance and exploration in deep sea or out space [6,7], surgeon training [8],
and telemanufacture [9], etc. Telerobots provide an alternative interactive way between the human
operator and the teleoperation in order to enhance perception and motion ability of the human beings
[10,11]. It is the integration of human intelligence and the robot’s advantages under the constraint of
long distance [12,13]. The performance of teleoperation largely depends on the perception of remote
environmental conditions.

During the recent years, many achievements indicated that some related algorithms such as
impedance control, virtual fixture, and shared control, could further improve the performance of
teleoperation. According to literature [14], a switched-impedance control algorithm was presented

Appl. Sci. 2019, 9, 2099; doi:10.3390/app9102099 www.mdpi.com/journal/applsci

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/324159993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0646-743X
https://orcid.org/0000-0001-5255-5559
https://orcid.org/0000-0002-6877-6783
https://orcid.org/0000-0003-0696-3943
http://www.mdpi.com/2076-3417/9/10/2099?type=check_update&version=1
http://dx.doi.org/10.3390/app9102099
http://www.mdpi.com/journal/applsci


Appl. Sci. 2019, 9, 2099 2 of 17

and implemented for teleoperated heart surgery and two switched reference impedance models
were designed for the master and slave robots to achieve both the stabilities of motion and force
feedback. Mojtaba et al. proposed a nonlinear adaptive impedance controller with two impedance
models in Cartesian space for the master and slave robots based on the consideration of dynamic
uncertainties. Besides, the parameters of the impedance model were adjusted according to the
objectives and requirements of the applications. This proposed adaptive impedance control method has
been successfully applied in certain medical applications [3]. Furthermore, according to literature [15],
a force reflection framework based on gain force observer, was developed to acquire the force
information. By considering internal uncertainties and time-varying delay of the system, a satisfactory
performance of the system was guaranteed for the teleoperation system. Moreover, haptic assistance
method involving shared control was a choice to enhance the performance of teleoperation [16–18].
In a previous study [16], a shared-based control method was proposed for a teleoperation system
and implemented in haptic shared control (HRC) and state shared control (SSC). A decision-making
model with impedance control algorithm was presented to improve the tracking capability in partially
unstructured environments for a teleoperation system [18]. Virtual fixture-based control algorithms
were proposed to improve the performance of robot teleoperation for a cooperative task [19,20].
In our previous study, a neural network (NN) control method with wave variable was proposed to
cope with the problems of time delay and dynamics uncertainties for the teleoperation system [21].
According to literature [22], a variable gain control method with tremor attenuation was developed
to adapt to the unstructured environments and to reduce the reliance on humans’ operation skill.
The above-mentioned algorithms could successfully deal with the problems of model uncertainty.
However, they could not guarantee the improvement of efficiency of the prescribed task and release of
the work pressure of the human operator.

In order to improve the efficiency of the teleoperation and to reduce the workload of the human
operator, many researchers have focused on how to deliver humans’ skills to the robots with a short
processing time and few trials. The results indicated that robot learning method could significantly
improve the efficiency of the teleoperation and reduce the operational pressure for the human operator.
Schaal proposed a learning form demonstration (LfD) framework for the learning control method [23].
Lin et al. [24] proposed a remote lead through teaching (RLTT) with a dynamic time warping (DTW)
method to learn the task knowledge from human demonstration [24]. Moreover, a hidden semi-Markov
model (HSMM) was presented to learn a task model for the purpose of offering assistance for remote
operation tasks [25]. A probabilistic method was developed to construct a task model in the assistive
teleoperated operation. The performance of the teleoperation was improved by the method and
demonstrated by remotely operated vehicle (ROV) tasks [26,27]. In order to simplify the complexity
of the system and to cope up with the varying dynamical interaction, Huang et al. [28] developed
a hierarchical interactive learning (HIL) algorithm with dynamic movement primitives (DMPs) and
locally weighted regression (LWR) to learn the task trajectories for an exoskeleton system. Furthermore,
researchers also employed the human-in-the-loop method with shared control and LWR for robot
learning online in the non-trivial task [29,30]. Pervez et al. utilized Gaussian mixture model (GMM)
with DMP model to encode the demonstrated trajectories in peg-in-hole tasks. The experimental
results demonstrated that the developed method could cope up with the problem of teleoperation
tasks with large variabilities [31]. Ravankar et al. [32] investigated the path smoothing algorithms for
the robot navigation task. A novel human-exoskeleton interface was proposed [33] to demonstrate the
performance of cable driven arm exoskeleton (CAREX) with a cable tension planner for smooth motion.
The above-mentioned robot learning methods could successfully improve the work efficiency of the
teleoperation by learning human skills. However, these algorithms rarely consider the relationship
between remote environments and the human operator operational characteristic in the process of
human-robot interaction (HRI).

In a specific task with HRI, a human operator can adjust his stiffness of upper limb to deal with
external disturbance. For example, the human operator can increase his stiffness or force when the
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resistance force of external environment gets larger in a natural way. Inspired by this, we tend to
transfer the human stiffness to the robot in a real-time way enhance its interactive abilities. To be
specific, electromyography (EMG) signals represent the comprehensive impact of motor unit action
potentials (MAUP) of the muscle fiber both in time and in space. The EMG signals have the following
three applications: indicator of the muscle activation, representation of force generated by the human
muscle, and a viewer of the fatigue for the human muscle. As an indicator of the muscle activation,
the surface electromyography (sEMG) signal includes more information such as force and stiffness
related to human motion control information. Therefore, we extract the stiffness from the sEMG signals
and transfer it to the slave device of the teleoperation system. EMG-based technologies are widely used
for the robotics. Meattini et al. [34] proposed an sEMG-based HRI interface with pattern recognition
and factorization methods to provide a natural interaction between humans and robots. Furthermore,
a dynamic switching method [35] was presented to predict human operator’s behavior and to provide
the most effective control according to the given context or the specific task in myoelectric training tool
(MTT) platform. Antuvan et al. embedded a human as a part of the controller in the system to provide
a myoelectric interface in different control tasks. The method was verified through the experiments
involving the muscle activation of human upper limb [36]. According to literature [37], an HRI control
interface was developed by integration of EMG signals and different functionally effective muscle
(FEM) methods for a robotic wheelchair. A position-independent decoding movement intention
method based on proportional myoelectric interface was proposed for the purpose of estimation of
possibility of various arm positions [38]. It was concluded that the muscle activation could be used as
an interaction tool to capture the information details of the remote operation environments. In our
previous study [39], a hidden semi-Markov model with Gaussian mixture method was proposed to
carry out the repetitive tasks with enhanced intelligence.

Inspired by the robot learning algorithms and EMG-based control method, in this study,
a nonlinear regression model with physiological interface was constructed to relieve workload of the
human operator to improve efficiency of the teleoperation system, and to capture the information
details of the remote operation environments. First, the DTW method was employed to guarantee the
demonstration data in the same time scale before proceeding with other steps in demonstration process
(In our previous work [39], we did not consider the influence of the length of demonstration data).
Secondly, a human-centric interaction method based on muscle activation was developed to collect
the operation information and to actively capture the remote environment on-line. Besides, in order
to improve the efficiency of the teleoperation system and to reduce human operator’s workload in a
natural way, the LWR method was proposed to model the teleoperated prescribed task based on the
collected task trajectories and the human muscle stiffness. Finally, the feasibility and efficiency of the
proposed method was verified by the experimental results.

The remaining part of this study is organized as follows. Section 2 presents equipment used
for a MYO armband, Touch X and Baxter robot. In Section 3, the proposed algorithms including
physiological interface design, task demonstrations, and learning method are described. Results are
presented in Section 4. The conclusion and the future work are presented in Section 5. The main
notations are presented in Table A1 in order to facilitate reading.

2. Equipment

2.1. MYO Armband

Figure 1a shows that the MYO armband was used to detect raw sEMG signal, which consists of
eight electrodes and nine-axis inertial measurement units (IMU). The MYO armband was produced by
Thalmic Labs, Canada and it can be easily adorned in upper limbs of human with a default frequency
of 200 Hz. Figure 1b demonstrates the detection of the sEMG signals using the MYO armband with
eight channels.
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(b) Surface electromyography (sEMG) signal.

Figure 1. Detection of sEMG signal by using the MYO armband [22].

2.2. Touch X

The Touch X serves as a master device to control remote slave device (Figure 2a). The Touch X with
six degrees of freedom (DoF) was manufactured by 3D Systems, Inc. and it could capture the position
(three DoFs) and its orientations (another three DoFs) with force feedback. The Touch X is widely
applied in various areas in terms of simulation, virtual assembly, robot control, etc. (The kinematics
information of the Touch X with respect to its forward/inverse kinematics and Jacobian matrix have
been deeply studied [40,41]). In this study, Touch X was controlled via the Matlab/Simulink [42].

2.3. Baxter Robot

Figure 2b exhibits that the Baxter robot (Rethink Robotics. made) was composed of two arms
with seven DoFs, a torso and a head with a radar. Each robot arm was designed with eight links and
seven rotational joints (The mechanical structure between Baxter and Touch X is different, therefore,
a workspace matching method was developed in our previous studies [21,22]).

(a) Touch X (b) Baxter

Figure 2. The master device (a) and slave device (b) [22].

3. Method

Figure 3 shows that the developed scheme consists of the following three modules: physiological
interface module, demonstrations and robot learning module, and robot execution module.

• Physiological interface module. Physiological interface module consists of sEMG signal processing
unit and sEMG-signals-stiffness translation unit. In this module, raw sEMG signal is collected by
the MYO armband. The human stiffness can be obtained through the sEMG-signals-stiffness unit.

• Demonstrations and robot learning module. This module is the main part of the proposed
frame. The data processing unit is used to process task trajectories from the remote Baxter robot.
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The collected data contains task trajectories and human stiffness. The collected task trajectories
and collected stiffness are ready for the demonstration and learning process. DTW unit is used to
align the demonstration data in a united time scale. The robot learning model is mainly used to
obtain a generative model according to the demonstrated information related to the collected task
trajectories and collected muscle stiffness.

• Robot execution module. This module is mainly used to enable the remote Baxter robot to execute
the task according to the learned task trajectories and learned muscle stiffness.

Figure 3. Schematic illustration of the proposed algorithm.

3.1. Physiological Interface Design

In the teleoperation system, the human operator manipulates the robot remotely, and the slave
movement follows that of the master synchronously. In general, the interaction information between
the human operator and the remote environments can be reflected by variability of the muscle
activation of the human operator in the process of manipulation.

In this study, the MYO armband with 200 Hz was used to collect the raw sEMG signal with
eight channels [22]. According to the sampled sEMG signal, the sum of sEMG signal can be defined
as follows:

u =
7

∑
i=0

ûi, i = 0, 1, . . . , 7. (1)

where u indicates the amplitude of sEMG signal and ûi, i = 0, 1, . . . , 7 represents the raw signal.
The obtained sEMG signal is influenced by noise, therefore, a moving average filter is presented

as follows:

ǔ =
1
K

K

∑
k=1

u (2)

where K is the moving window size. ǔ is the filtered sEMG signals through the moving average filter.
Then, an envelope of sEMG signals can be obtained as follows:

ū =
j+M

∑
j

WM−jǔ (3)
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where WM−j indicates the weight parameter and M is an empirical parameter in the experiment.
According to literature [43,44], the relationship between the sEMG signals and the indicator of

the muscle activation can be presented as follows:

ρ =
eβū− 1
eβ − 1

(4)

where −3 ≤ β ≤ 0 in this study.
In order to achieve friendly and natural interaction between the human operator and the remote

robot, muscle stiffness of human upper limbs is taken into consideration. To this end, muscle stiffness
can be presented as a linear relationship according to literatures [22,39]

ā = {āmax − āmin}
ρ− ρmin

ρmax − ρmin
+ āmin, (5)

where ā ∈ [āmin, āmax] indicate the parameters to guarantee stability of the slave. ρ ∈ [ρmin, ρmax]

represent the muscle activation.

3.2. Task Demonstrations

In the data collection stage, the demonstration data consist of several observations of the same task.
After collecting demonstration data, a DTW method was proposed to synchronize the collected data.

3.2.1. Data Constitution

The proposed teleoperation system employed a heterogeneous master-slave structure, therefore
we utilized motion of the slave as the data source for demonstrations. Owing to the workspace
differences between the master and the slave, a workspace mapping between the master and the slave
was carried out to ensure the accuracy of tracking.

The collected demonstrated information contains the position of the slave and human muscle
stiffness. In the process of demonstration, the demonstration data can be organized as follows:

O = {P, ā}, (6)

where P = {Px, Py, Pz} and ā indicate the collected task trajectories and collected muscle
stiffness, respectively.

3.2.2. Data Preprocessing

Lengths of the demonstration data differ in time frame, thus it is impossible to train a task model
in teleoperation. Therefore, the first step of data preprocessing was to align the demonstration data
with different data lengths (if the demonstration data are not aligned in a united time scale, the task
model could change both in temporal states and spatial states).

The alignment of the demonstration data can be performed according to the entire obtained
demonstration data in comparison with a reference demonstration data. In this study, the DTW
method was employed to find the optimal alignment of the demonstration data in the time
scale [45]. The introduced DTW method could deal with the problem of the spatial distortion for the
demonstration data. By employing the DTW method, the demonstration data can be presented as
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Dopt{L(x1), L(x2)} = (x1 − x2)
2

+



0 when L(x1) = L(x2) = 1.

D{L(x1), L(x2 − 1)} when L(x1) = 1, L(x2) > 1.

D{L(x1 − 1), L(x2)} when L(x1) > 1, L(x2) = 1.

min
{

D{L(x1), L(x2 − 1)}, D{L(x1 − 1), L(x2)},

D{L(x1), L(x2)}
}

otherwise,

(7)

where L(.) indicates the length of trajectory, and x1 and x2 are the two different time lengths of
trajectories. D{L(x1), L(x2)} is the wrap path distance (Figure 4). Dopt{L(x1), L(x2)} is the optimal
wrap path distance.
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Figure 4. The cost matrix D{L(x1), L(x2)} with minimum wrap path distance.

3.3. Learning Algorithm

The demonstration data are high dimensional; therefore, it is difficult to find a function to describe
the demonstration data globally. In this study, the locally weighted regression (LWR) algorithm was
employed to explore the approximate function locally between the input and the output for the given
aligned demonstration data.

According to the demonstration data T = {(x(i), y(i)), i = 1, 2, . . . , N}N
i , the local relationship

between the output y(i) and the input x(i) can be obtained as follows:

Y =
∑N

i=1 w(i)y(i)

∑N
i=1 w(i)

, (8)

where y(i) denote the output values of the ith local model, w(i) represent the weights of the y(i).
In the learning algorithm, input xi consists of the collected task trajectories P = {Px, Py, Pz} and the
collected stiffness ā. xi are four-dimensional vectors, yi are four-dimensional vectors.
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Based on the receptive fields of the model, the weight wi can be computed by Gaussian forms
as follows:

w(i) = exp{− 1
ϑ
(x− x(i))T(x− x(i))}, (9)

where x is the fitting position. ϑ > 0 is used to adjust the Gaussian weight. ϑ = 2 is used in this study.
Equation (9) concludes that the weight value becomes larger as the input x(i) is near to the fitting
position x.

For the given input data x(i), the log likelihood for the probability p(y(i)|x(i)) between y(i) and
x(i) can be presented as

`(φ) = log{ΠN
i=1 p(y(i)|x(i))}

=
N

∑
i=1

log(
w(i)
2π

)

1
2 − 1

2

N

∑
i=1

w(i){y(i)− φx(i)}T{y(i)− φx(i)},
(10)

where φ is parameter vector of the LWR method.
With

p(y(i)|x(i) = (
w(i)
2π

)

1
2 exp(−w(i)(y(i)− φx(i))T(y(i)− φx(i))

2
). (11)

Inspired by literature reports [46,47], the maximum of `(φ) by minimizing the H(φ) can be
obtained as follows:

H(φ) =
1
2

N

∑
i=1

w(i){y(i)− φx(i)}T{y(i)− φx(i)}. (12)

On minimizing the H(φ), we have

φmin = argmin {1
2

N

∑
i=1

w(i){y(i)− φx(i)}T{y(i)− φx(i)}}. (13)

By using partial derivatives notion for Equation (13), we obtain

∂`(φ)

∂φ
=

N

∑
i=1

w(i)(φx(i)− y(i))x(i)T

= φ
N

∑
i=1

w(i)x(i)x(i)T −
N

∑
i=1

w(i)y(i)x(i)T .

(14)

To set Equation (14) to be 0, a diagonal weight matrix W can be represented as follows:

W =


w(1) 0 . . . 0

0 w(2) . . . 0
. . .

0 0 . . . w(N)

 . (15)

Based on Equations (14) and (15), the nonlinear model can be obtained as

φ = BTWA(ATWA)−1, (16)

with

A =


x(1)T

x(2)T

. . .
x(N)T

 , (17)
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with

B =


y(1)T

y(2)T

. . .
y(N)T

 . (18)

After the task is learned by using the LWR method, the slave robot was operated according to the
learned task trajectories and learned human stiffness.

4. Results and Discussion

4.1. Experimental Setup

In order to verify the performance of the proposed algorithm, a practical sweep task was
performed in this study. Figure 5 demonstrates the construction of the experimental platform as follows:

• Hardware equipment. The experiment hardware equipment consist of the Touch X, the Baxter
robot, and the MYO armband with eight channels. The left panel of Figure 5, exhibits that a red
garbage bucket and a yellow tapeline (as garbage) are placed on the testbed. A paint brush is
installed in the right arm of the Baxter robot.

• Software environment. MATLAB software and Visual Studio 2013 (VS 2013, Microsoft, US) operate
on Windows 7 in the master computer. Robot operating system (ROS) runs on the Ubuntu system
in the remote computer. The master computer communicates with the remote computer through
the User Datagram Protocol (UDP).

Local SideRemote Side

Internet

Figure 5. Experimental setup in this study.

In the sweep task, a paint brush was used as a sweeping tool, and a yellow tapeline as garbage.
Touch X was performed by the human operator to telecontrol the Baxter robot to sweep the garbage
into the red bucket. By performing the prescribed sweep task, the task trajectories and human stiffness
can be learned by using the proposed method. The slave robot was manipulated according to the
learned task model.

Figure 6 exhibits the experimental process of the proposed method. Figure 6 (left) shows
the demonstration and learning processes. The human operator directly telecontrols the slave.
The proposed approach was trained by collected prescribed task trajectories and human stiffness.
In the robot execution process, the slave executed the task based on the learned trajectories and learned
human stiffness.
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sEMG Signals Task Trajectories

DTW + LWR  LWR

(Learned)

Learned Human 

Stiffness

Learned Task 

Trajectories

Demonstrations and 

Learning Process Robot Execution Process

Figure 6. Experiment process of the proposed method.

4.2. Results

The human operator performed the sweep task three times. By collecting data in the process of
demonstration, the demonstration data are presented in Figure 7a–c. Clearly, the completion time of
the sweep task was inconsistent for each demonstration. Accordingly, the demonstrated trajectory
curves were mismatched in the time scale for demonstrations.
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(a) Demonstrated position in the x-axis.
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(b) Demonstrated position in the y-axis.
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(c) Demonstrated position in the z-axis.

Figure 7. Demonstrated observations in process of demonstrations.

The DTW algorithm was employed to normalize the demonstration data in the same time scale.
Figure 8a–d, show that the demonstration data retain its original characteristics in the same time
domain after the DTW algorithm preprocessing. Compared to the results shown in Figure 7a–c,
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the preprocessing results guaranteed the uniformity of the demonstrations and make preparations for
the next steps of robot learning task. In Figure 8d, values of demonstrated muscle stiffness in starting
point were 0.4060, 0.1340 and 0.0110.
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(a) Demonstrated data preprocessing by using dynamic time
warping (DTW) method in the x-axis.

2 4 6 8 10
Time (sec)

-0.8

-0.6

-0.4

-0.2

0

Y
 (

m
)

Demonstration 1
Demonstration 2
Demonstration 3

(b) Demonstrated data preprocessing by using DTW method
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(c) Demonstrated data preprocessing by using DTW method
in the z-axis.
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(d) Demonstrated human muscle stiffness preprocessing by
using the DTW method.

Figure 8. Preprocessing of demonstrated observations by the DTW method.

A learned task model was calculated by using the LWR algorithm involving the demonstrated task
trajectories and human muscle stiffness. The learned Cartesian trajectories are shown in Figure 9a–c.
The learned trajectories were bold with green for the convenience of inspection. Figure 9d illustrates
the learned human muscle stiffness in the process of demonstrations. Figure 9a–d demonstrate that
the model of demonstrated trajectories and human muscle stiffness can be built up by the proposed
LWR method. In Figure 9d, the value of the learned muscle stiffness in starting point is 0.1502.

Based on the learned model by using the LWR algorithm, the Baxter robot can execute the sweep
task automatically with the learned human muscle stiffness. The sweep task fully indicates the
dexterity of human arms in the process of operation. In this experiment, human muscle stiffness was
employed based on muscle activation to reflect the interaction information in demonstration phase.

Figures 10I–VI show the process of robot execution for the sweep task. By employing the proposed
LWR algorithm with physiological interface, the sweep task was performed successfully within 0–10 s.
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(a) Learned trajectory by using the locally weighted
regression (LWR) method in x-axis.
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(b) Learned trajectory by using the LWR method in y-axis.
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(c) Learned trajectory by using the LWR method in z-axis.
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(d) Learned human stiffness by using the LWR method.

Figure 9. Learning by using the LWR method.

(I) (II) (III)

(IV) (V) (VI)

Figure 10. Robot execution by employing the LWR algorithm.

In order to validate the performance of the learning model, we evaluate average value of robot in
the process of robot execution in Table 1. It can be seen that the average error for learned trajectories in
x–y–z directions and learned stiffness were 0.0130, 0.0018, 0.0346 and 0.0124, respectively.

Table 1. Average error of robot execution.

Variable X Y Z Stiffness

Error 0.0130 (m) 0.0018 (m) 0.0346 (m) 0.0124
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4.3. Discussion

First of all, the proposed LWR method constructs a nonlinear model for a specific task.
Compared to traditional robot learning methods [23,24], the proposed method combines the task
trajectories with the muscle stiffness during the demonstration process.

Moreover, the human operator can regulate the muscle stiffness according to the remote
environments in the HRI. That is to say, the variability of muscle stiffness represents the operational
characteristics of human operator. Therefore, a model to describe the relationship between the
prescribed task, task trajectories, and the muscle stiffness are very useful in the learning process. Thus,
the learned model can be used to improve the efficiency of the reproduction of the repetitive task.
In the proposed method, we transmitted the learned model, i.e., learned trajectories and learned
human stiffness, to the controller of the slave robot of the teleoperation system after robot learning.
Then, the slave robot can be executed according to the learned model.

Noteworthy, the experimental results in this work are preliminary and the experiments were
conducted mainly to show the feasibility and effectiveness of the proposed method. The stiffness of
the human operator varies from person to person. Moreover, even for the same person, the stiffness
property at different time could be different (time-varying). Therefore, it is hard to find a baseline to
compare the results under “with stiffness” and “without stiffness" conditions. Different people may
have different stiffness, and thus may show different motion model. Therefore, it is difficult to define
fair comparison criteria for different/multiple experiment subjects. There is no problem foreseen to
generalize the proposed method to different subjects as the implementation procedures will not change
and each step is not affected by the specific human subject. However, surely the obtained specific
muscle activation/stiffness pattern(s) would be different from person to person.

This work makes different contribution from our previous work [39,48], wherein a hidden
semi-Markov model with Gaussian mixture method was proposed to carry out the repetitive tasks with
enhanced intelligence. In this work, a locally weighted regression method with DTW was proposed
for a prescribed task. Moreover, in our recent study, it was found that the length of demonstration data
could significantly impact the performance of the teleoperation. To handle this problem, we employed
the DTW method to deal with the issue related to different lengths. However, in our previous work [39],
the influence of the length of demonstration data was not taken into account.

5. Conclusions and Future Work

In this study, a robot learning method with physiological interface was proposed for the
teleoperated sweep task. In order to capture the information details of the remote operation
environments in HRI, a novel method of human-centric interaction with human muscle stiffness
was first developed. On the one hand, the sEMG signal of the human operator was used to capture the
human’s muscle stiffness. On the other hand, the collected muscle stiffness represented the human
operator operational characteristic in the process of manipulation. Integration of the DTW method and
the LWR method enabled the robots to learn the task trajectories and human muscle stiffness in the
same time scale after human demonstrations in teleoperation system. The remote robot can execute
the task according to the learned task trajectories and learned stiffness. Finally, the effectiveness of the
proposed method was demonstrated by the experimental results.

Undeniably, a lot more systematic explorations are demanded to introduce the vision information
and rotation information to the perception system of the teleoperation system which will be pursued
in future. Besides, the relationship between shared control and the human stiffness in fatigue status
should be comprehensively analyzed. Moreover, the shared control strategy with respect to robot
learning method is an interesting research topic in the teleoperation system. The level of autonomy
between direct teleoperation and robot-learning-based automation is worth to exploit to explain
the cooperative strategies for HRI. Moreover, the smoothness of task trajectories and safe trajectory
generation with respect to the muscle stiffness are very important aspects for the complex task.
In order to obtain the model with smoothness of task trajectories in-depth exploration of the intelligent
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segmentation algorithm to divide the complicated task into certain subtasks which can be approximated
explicitly by locally smooth mathematical functions/polynomial will be carried out in future.
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Appendix A

In order to facilitate reading, the main notations are presented in Table A1.

Table A1. NOMENCLATURE.

û Raw sEMG signal.

u Sum of sEMG signal.

ǔ Moving average filter.

ū Envelope of sEMG signal.

ρ Indicator of the muscle activation.

ā Muscle stiffness.

O Demonstration data.

P Collected task trajectories.

x(i) Input with related to LWR.

y(i) Output with related to LWR.

w(i) Weights of the y(i).

`(φ) Log likelihood for the probability with related to LWR.

H(φ) Maximum of `(φ).

W Diagonal weight matrix of y(i).

φ Nonlinear model with related to LWR.
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