View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

Engineering and Applied Science Theses &

Dissertations McKelvey School of Engineering

Spring 5-15-2020

Exploring Usage of Web Resources Through a Model of API
Learning

Finn Voichick

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

b Part of the Cognitive Psychology Commons, Engineering Commons, Graphics and Human Computer
Interfaces Commons, and the Software Engineering Commons

Recommended Citation

Voichick, Finn, "Exploring Usage of Web Resources Through a Model of API Learning" (2020). Engineering
and Applied Science Theses & Dissertations. 513.

https://openscholarship.wustl.edu/eng_etds/513

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington
University Open Scholarship. It has been accepted for inclusion in Engineering and Applied Science Theses &
Dissertations by an authorized administrator of Washington University Open Scholarship. For more information,
please contact digital@wumail.wustl.edu.

https://core.ac.uk/display/324159225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng_etds
https://openscholarship.wustl.edu/eng
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/513?utm_source=openscholarship.wustl.edu%2Feng_etds%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis
School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Caitlin Kelleher, Chair
Alvitta Ottley
Dennis Cosgrove

Exploring Usage of Web Resources Through a Model of API Learning
by
Finn Voichick

A thesis presented to the McKelvey School of Engineering
of Washington University in partial fulfillment of the
requirements for the degree of

Master of Science

May 2020

Saint Louis, Missouri

Copyright (©) 2020 Finn Voichick

This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.
To view a copy of this license, visit

https://creativecommons.org/licenses/by-sa/4.0/.

https://creativecommons.org/licenses/by-sa/4.0/

Contents

List of Tablesl iv
[List of Figures| e v
[Acknowledgments| o oo vi
[Abstract]l vii
I_TIntroduction|. 1
(1.1 Backeround| 1
(1.1.1 Apr Usability] 2

(1.1.2 Information Foraging| 2

(1.1.3 Cognitive Load| 2

(1.1.4 External Memory| o 3

(.2 The ComL Modell o o 3
(1.2.1 Information Collection| 4

[1.2.2 Information Organizationl 5)

[1.2.3 Solution Testing|. L 6

(.3 Research Contributions to the Fieldl 6

2 Logging System|. e 8
.1 Motivationl. 8
[2.1.1 Screen and Audio Recordings| 8

2.1.2 Choice of Editor and Browser| 9

2.2 Architecturel 10
2.2.1 Atom Packagel 10

222 Chrome Extension| 11

2.2.3 Chromium Modificationl 0. 14

[2.2.4 Other Scripts] 15

[2.2.5 Shortcomings| 15

3 Model Study| 17
[3.1 Experimental Setup|.o 17
[3.1.1 Participants| 17

3.1.2 NASA Task load Index.o o 18

11

BIZ Task 19

[3.1.5 Pilot Study| 20

[3.2 Results and Analysis| 21
[3.2.1 Actions Performed| oL 21

[3.2.2 Types of Pages Viewed| 22

[3.2.3 Sequences of Actions| 23

(3.2.4 Tab Creation and Deletionl 24

3.2.5 Tab Retrievall oo 26

[3.2.6 Changes Made to Pasted Blocks| 26

3.2.7 Unsuccesstul Pasted 28

[3.2.8 Cognitive Load| oo 29
4__Conclusions| e 30
M1 Discussion| 30
[4.1.1 Relevance of External Memory|. 30

[4.1.2 Sources of Cognitive Load| 31

4.2 Future Workl. 32
[4.2.1 Expanded Study| 32

[4.2.2 Measures of Cognitive Load| 32

[4.2.3 External Memory Management Tools| 32
References 34

11

List of Tables

2.1 Atom Package Logged Events| 11
[2.2 Chrome Extension Background Script Logged Events| 12
[2.3 Chrome Extension Content Script Logged Events| 13
[2.4 Chromium Modification Logged Events 14

v

List of Figures

(1.1 'The COIL Model of API Learning| 4
[3.1 User Study Protocol| 18
[3.2 Page Types Viewed Over Time| 23
B.3 Common Transitions Between Actions 24
[3.4 Tabs Open Over Time| 25
3.5 Transitions Between Edit Actionsl 27
[3.6 Edit Actions Preceding Browser Actions| 28
[3.7 Ratings of Mental Effort and Frustration via the NASA-TLXx| 29

Acknowledgments

I want to thank Caitlin Kelleher for advising me in this research. Her focus, patience, and
expertise have been extremely valuable during my first couple years as a researcher, and
I'm sure they’ve had a hugely positive impact on my future research career. Her thoughtful
answers to all of my questions have helped shape the way I think about research, and for
that I am very grateful.

I would also like to thank Michelle Ichinco and Gao Gao, the other great members of our
research team. They’ve been a pleasure to collaborate with.

I’d like to thank Dennis Cosgrove for being a great mentor throughout my time at WashU.
He encouraged me early on in my undergraduate career to get involved in research, and the
enthusiasm that he brings to everything he does has made it really fun to be his teaching
assistant.

Finally, I would like to thank my parents and my fiancée Abby for their unwavering support
of me and my interests. Their encouragement has been very valuable.

Finn Voichick

Washington University in Saint Louis
May 2020

vi

ABSTRACT OF THE THESIS

Exploring Usage of Web Resources Through a Model of API Learning
by
Finn Voichick
Master of Science in Computer Science
Washington University in St. Louis, May 2020

Research Advisor: Professor Caitlin Kelleher

Application programming interfaces (APIs) are essential to modern software development,
and new APIs are frequently being produced. Consequently, software developers must regu-
larly learn new APIs, which they typically do on the job from online resources rather than in
a formal educational context. The Kelleher—Ichinco COIL model, an acronym for “Collection
and Organization of Information for Learning,” was recently developed to model the entire
API learning process, drawing from information foraging theory, cognitive load theory, and
external memory research. We ran an exploratory empirical user study in which participants
performed a programming task using the React API with the goal of validating and refining
this model. Our results support the predictions made by the COIL model, especially the role
of external memory in the API learning process. Participants extensively used browser tabs
to store web resources in external memory, but their behavior suggests some inefficiencies

that incur extraneous cognitive load.

vii

Chapter 1

Introduction

Much programming by modern software developers is achieved through the use of application
programming interfaces (APIs). These software elements abstract away the details of a
complicated underlying system, allowing developers to reuse code and interact with large
software systems relatively easily. New APIs are constantly being announced [9], and software

developers today may program almost entirely using APIs [23].

For these reasons, the ability to learn new APIs has become a valuable skill for software
developers. However, this learning is often done on the job rather than in a formal educational
setting [12]. Researchers have tried to understand and improve this learning process in
various ways. The work described in this thesis focuses on the COIL model [20] (described
in Section , which is grounded in several theoretical areas and attempts to holistically

model the API learning process.

Our research team ran an exploratory empirical lab study in an attempt to validate and
refine the COIL model. Our findings help to validate the model, especially the critical role
played by external memory resources. Results also point toward some inefficiencies in the

API learning process that future work should aim to mitigate.

1.1 Background

This work complements existing work in the fields of API usability, information foraging

theory, cognitive load theory, and external memory.

1.1.1 API Usability

The field of API usability draws from various human-computer interaction methods to make
APIs easier for developers to use. Work in this area has taken various approaches. Some
have focused on the experiences of those using existing APIs, using methods such as surveys
[28] and interviews [I7]. These studies have uncovered some common issues faced by devel-
opers, such as integrating code involving separate API components [14]. Other studies have
focused on the design of APIs, using empirical studies to develop API design guidelines [26]
or elicitation studies to guide API design [18]. Still other studies have focused on ways to
improve API documentation [22]. These studies have provided valuable insights, but have

not attempted to model the API learning process as comprehensively as the COIL model.

1.1.2 Information Foraging

Information foraging theory explains how people use the web to search for information. It
models the process on the way that animals forage for food [27]. Web users adaptively judge
the relevance of the information they see using “information scent” [13] to seek out valuable
“information patches.” This theory has been applied to several aspects of the software

engineering process, such as debugging [16] and code navigation [24], 21].

We expect information foraging theory to be readily applicable to the API learning process.
Much of API learning depends on the developer’s ability to find the relevant information

online, and the finding of this information is well-modeled by information foraging theory.

1.1.3 Cognitive Load

Cognitive load theory describes the role of working memory in learning processes. According
to cognitive load theory, working memory resources are often a bottleneck. There are three
types of cognitive load involved in a learning task: intrinsic load, extraneous load, and ger-
mane load [29]. Intrinsic load is related to the difficulty of the learning task and the learner’s
experience, and is not considered changeable. Extraneous load arises when instructional ma-

terials are inefficient, for example when information is redundantly presented or a learner

2

must mentally integrate multiple sources of information [29]. Germane load is invested by
learners when they put in extra effort to help learn the material at hand, for example by
describing the principles involved in a procedure that they are trying to learn [10]. Because
cognitive load resources are limited, a general goal for designers of instructional material is

to reduce extraneous load, allowing for investment of germane load.

1.1.4 External Memory

External memory is the use of aids external to oneself to facilitate later retention of informa-
tion [19]. For example, sticky notes and calendar reminders are external memory aids used
commonly in day-to-day life. Little work has been done around the role of external memory
in programming tasks. Some have pointed to the use of the web as an external memory
resource, where programmers don’t remember specific syntax but they remember a webpage
that had the needed information, retrieving the information from the web when needed [T1].
The CoIL model below identifies a much more common use of external memory: browser

tabs which store webpage information.

1.2 The CoIiL Model

The CoOIL model [20], an acronym for “Collection and Organization of Information for Learn-
ing,” draws from information foraging theory, cognitive load theory, and external memory
research to model the process of learning an API. It groups actions taken by API learners
into three stages: information collection, information organization, and solution testing. It
predicts that learners will take certain actions in each stage and that the entire process will
be mediated by cognitive load. Figure [I.1] shows a graphical representation of the COIL

model.

The model predicts that when a developer is working on a subgoal, they will generally
progress from the information collection stage to the information organization stage and

then to the solution testing stage. However, this order is not rigid, and developers may move

Long-term

Information Collection Stage Working

Information Context
Search

v

Result ’ . § Solution Testing Stage

Sensory| «

: Navigate |3 Code Context
v) Edit Code
Page © ~ M~

_— Retrieve

Delete Run Code

Result ~~
External Memory Context

Read Code -
Information Organization

Stage

Figure 1.1: The CoiL Model of API Learning

back and forth through stages depending on their progress. I will now discuss each stage
and its associated actions.

1.2.1 Information Collection

The information collection stage is the first stage in the model, and it describes the way that
developers gather information about the new API. Developers generally start in this stage
when working on a subtask, and may return to this stage from others if they realize a need

for additional information. This stage has four general actions:

e Perform a keyword search. This is the starting point for the gathering of information,

with keywords coming from long-term memory or from recently-found information.

e Review search results. Developers evaluate the relevance of search results from a mix

of long-term memory and recently-gathered information.

e Navigate to a new page. This can happen either from the search results page or from

a previously-found webpage.

e Search for information within the current page. The developer may scan the page for

relevant words, or may read in depth.

The behavior in the information collection stage is largely explained by information foraging
theory. Throughout, developers must make relevance judgements based on information scent,
leading them to useful webpages. There is plenty of opportunity for extraneous and germane
cognitive load throughout this stage as well. Developers may incur extraneous load if the
API uses special keywords that aren’t easily searchable, or if they read a webpage that turns
out to be redundant with information they already know. On the other hand, a developer

who reads conceptual information related to an API may be investing germane load.

1.2.2 Information Organization

The information organization stage describes how developers store and retrieve information
collected in the information collection stage. Many aspects of this stage are explained by
external memory research, as it describes how developers manipulate their external memory

resources. The information organization stage has three general actions:

e Store information to external memory. Developers will transition from the information
collection stage to the information organization stage by saving the information in an

external memory context.

e Retrieve information from external memory. This action is essentially foraging for

information that is stored in external memory.

e Delete information stored in external memory. This is done when stored information

is deemed irrelevant.

A crucial role of the information organization stage is to alleviate the cognitive cost of
keeping track of information found in the information collection stage. Additionally, the act

of organizing and judging the relevance of stored information can be a form of germane load.

1.2.3 Solution Testing

The solution testing stage describes how developers integrate information into their program.
Developers typically arrive at this stage after information organization. This stage has four

general actions:

e Read code in the current program. This step may involve program comprehension to

determine the relevant location in the code.

e Edit code to incorporate a potential solution. This step may involve code directly

copied from external memory and/or smaller modifications.
e Run code to test it.

e Observe the results of the running program. The results will determine whether
changes must be made (potentially involving a return to a previous stage) or whether

the developer can progress to a different subtask.

The cognitive load required in the solution testing stage depends largely on the “edit code”
step. This step may be a simple matter of copy-and-paste, or it may require more extensive

modifications with a high cognitive cost.

1.3 Research Contributions to the Field

The COIL model as described in Section[I.2) was developed by Kelleher and Ichinco [20]. Our
goal was to study real programmers learning a new API in order to validate and refine this

model, which required us to run a user study.

The user study required the development of a logging system that could capture all of the
relevant actions taken by our participants. I developed this logging system (described in
Chapter [2) that logs a range of actions relevant to our model across both the web browser

and code editor.

The user study provided some interesting results, described in Chapter |3l For one, partici-
pants did perform the actions predicted by the CoOIL model, providing some validation for
the model. Additionally, participants who interacted more with code that they pasted into
their program were less likely to later delete the pasted code, suggesting that investing extra
effort into program comprehension can lead to a decrease in later extraneous cognitive load.
Participants extensively used browser tabs as a key context for external memory, but some
behaviors pointed to inefficiencies in external memory retrieval, indicating a need for better

external memory management tools.

Chapter 2

Logging System

2.1 Motivation

Our study, described in depth in Chapter|3| required participants to complete a programming
task. Participants were allowed to browse the web for help in completing this task, and we
aimed to find and characterize patterns in behavior across code editing and web browsing.
This required us to collect a wide range of data related to user actions in their code editor

and in their web browser.

2.1.1 Screen and Audio Recordings

For all of our participants, we recorded the screen as they were performing the task. In addi-
tion, a microphone was used to record audio for the think-aloud protocol. These recordings

were useful; however, they were insufficient for collecting the volume of data that we needed.

Manually transcribing the required information from screen and audio recordings alone would
not have been feasible. Participants frequently performed a sequence of actions in rapid
succession (for example, switching between tabs, copying, pasting, and typing), and it was
necessary to precisely record the timing of all of these events. For this reason, we needed a

system to automatically record participant actions as they were being performed.

2.1.2 Choice of Editor and Browser

The most straightforward way to build the logging system was to take advantage of the
developer APIs provided by popular editors and browsers. These APIs vary among differ-
ent browsers and editors, so it was necessary to select a specific editor and browser for

participants to use. We settled on the Atom text editor and the Chromium browser.

We chose to require participants to use the Atom text editor [I], developed primarily by
GitHub. While it is difficult to find an unbiased listing of which editors are commonly used
with React programs, simple web searches like “best react editors” frequently result in lists
of editors that include Atom, and it is a fairly popular editor overall [7], so it is reasonable
that a React newcomer would use Atom. In addition, Atom’s package API provides all of
the needed functionality, and there are a wide range of existing free and open-source Atom
packages for reference. As an added benefit, JavaScript is the language used to develop Atom
packages, which was required for the browser extension, allowing code re-use across different

components of the logging system.

The Chromium browser [3], developed primarily by Google, was chosen primarily because it
provided a good mix of familiarity and adaptability. Google Chrome is by some measures the
most popular web browser [4], and so we expected our participants to be generally familiar
with the features provided by Google Chrome. This was beneficial because we wished to
make the setting for study to be as realistic as reasonably possible, and we didn’t wish to
confound our results with users struggling to understand the features of an unfamiliar web
browser. In addition, I found Chrome’s extension API [2] fairly well-documented and easy

to use, which made it feasible to develop part of the logging system as a Chrome extension.

Unfortunately, there were some actions that we wanted our logging system to capture, but
that were not feasible with Chrome’s extension API. For example, while Chrome’s extension
API provides a “chrome.tabs.onCreated” event that is triggered whenever a new tab is
created, there is no such event for when a user clicks the “back” button or opens the “find in
page” search bar. To capture these events, we had to make modifications to the browser itself.
This was not feasible within the proprietary and closed-source Google Chrome browser, and
so we decided to use Chromium, the free and open-source web browser upon which Google

Chrome is based. Chromium is nearly identical to Google Chrome for the typical user.

2.2 Architecture

The logging system I developed has three primary components: a GitHub Atom package, a
Google Chrome extension, and a Chromium modification. These components all intercept

participant actions and save related information for later analysis.

2.2.1 Atom Package

The Atom package was created using Atom’s package API. The API provides events to which
packages can subscribe with a callback function. When certain events are triggered, our
callback function is called, which uses Atom’s API to save a JSON file to a directory hidden
to the participant. To avoid using too much memory, each action is saved as a separate file
as it occurs. All files saved included an action identifier and a timestamp for the event, and
most logged events also included additional action-specific information. Table provides a
list of all seventeen events logged by our Atom package and the action-specific information

logged with each.

During a typical editing session, the “scroll” and “highlight” events often fire many times in
rapid succession. For example, if a user scrolls from the top of the file to the bottom, the
scrolling is internally treated as many “steps,” and the scroll event is fired at each step. For
performance reasons, the “scroll” and “highlight” events were debounced such that two scroll
events or two highlight events within 0.5 seconds of each other would be treated as a single

event, and only the final scrolled position would be logged.

In Atom, it is possible to bring up a “Find in Buffer” pop-up using either a menu or the
Ctrl+F keyboard shortcut. This functionality allows for simple searching and refactoring,
and it is possible through a “find-and-replace” package [5] that is installed by default with
Atom. However, there are no events for our package to hook into to cause our callback
function to be triggered when a participant uses this functionality. The find-and-replace
package is free and open-source, so I modified it to save files with relevant information when
performing the relevant actions, replacing the find-and-replace package on the test computer

with my modified version. Thus, the “Atom package” component of the logging system is

10

Table 2.1: Atom Package Logged Events

Logged Action Additional Logged Information
switch focus to a different file new file contents (full and visible)
change a file in any way text added and removed, location in file
stop editing for at least 300ms full file contents

move or rename file new file path

save file through Ctrl+S or menu full file contents

vertically scroll visible lines in file

read from clipboard (paste into editor) text read (pasted)

write to clipboard (copy from editor) text written (copied)

highlight or unhighlight text selected text

open “Find in Buffer” pop-up n/a

type in “Find in Buffer” pop-up typed text

“Find Next” in “Find in Buffer” pop-up searched text

“Find Previous” in “Find in Buffer” pop-up searched text

“Find All” in “Find in Buffer” pop-up searched text

“Replace Next” in “Find in Buffer” pop-up searched text, replacement text
“Replace Previous” in “Find in Buffer” pop-up | searched text, replacement text
“Replace All” in “Find in Buffer” pop-up searched text, replacement text

actually two Atom packages: the modified find-and-replace package and the package that

logs all of the other actions.

2.2.2 Chrome Extension

Most browser actions were logged with a Chrome extension, which was added to Chromium
on the test computer. The Chrome extension was built using Chrome’s extension API, and
it captures participant actions in two different ways: a “background scipt” and a “content
script,” both written in JavaScript. Together, these scripts logged twenty-four types of
actions, listed in Tables [2.2 and [2.3]

Unlike Atom’s package API, neither Chrome’s extension API nor the JavaScript language has
functionality for direct file manipulation. = Chrome’s extension API does include a
“chrome.storage” API for saving information locally on a user’s machine, but I found that

several bugs within Chrome prevented this system from storing the amount of log data

11

needed without crashing. As a workaround, I created another program that simply listened
for HTTP requests on a free port on the local machine and saved any received data as a
JsoN file. I configured Chromium to automatically run this program on startup, and then
the Chrome extension was made to send any data it wanted to save through an HTTP request

to this other program, allowing log files to be saved as desired.

The background script is designed to log the sixteen browser-level actions listed in Table
(as opposed to page-level actions). These are all events provided by Chrome’s extension
API, and involved manipulation of windows, tabs, and bookmarks. All of these logs include

an action identifier and a timestamp, as well as other action-specific information listed in

Table 2.2

Table 2.2: Chrome Extension Background Script Logged Events

Logged Action Additional Logged Information
open new window window ID, complete tab listing
close window window ID, complete tab listing
window focus change newly-focused window 1D, complete tab listing
open new tab tab 1D, complete tab listing

update tab properties (e.g. URL) | tab ID, complete tab listing

move tab within window tab ID, complete tab listing
activate (focus) tab tab ID, complete tab listing
detatch tab from window tab ID, complete tab listing

attach tab to window tab ID, complete tab listing

close tab tab ID, complete tab listing

zoom in/out in tab tab 1D, complete tab listing

create bookmark title, url, bookmark 1D, folder
remove bookmark title, url, bookmark 1D, folder
change bookmark title, url, bookmark 1D

move bookmark title, url, bookmark 1D, folder
reorder bookmarks folder 1D, new order

The content script is designed to log the eight page-level actions listed in Table 2.3] This
script was inserted into every webpage visited by participants, and so it had access to all
HTML DOM events that a webpage’s own scripts would have access to. The “highlight” and

“scroll” events are debounced in the same way as in the Atom package.

12

Table 2.3: Chrome Extension Content Script Logged Events

Logged Action Additional Logged Information

load page contents from web | all HTML on page, visible HTML on page
highlight text selected text

cut text from webpage cut text

copy text from webpage copied text

paste text into webpage pasted text

scroll within webpage visible HTML on page

click middle mouse button | n/a

React error message HTML of message

For two of these actions, “load page” and “scroll,” it was necessary to log the content that
was currently visible on the page. This was done by copying the HTML in the page and
then recursively deleting HTML elements with bounding boxes that did not overlap with the
viewport. This method usually worked, but sometimes removed visible content on pages

with more complicated Css styling.

Another issue was encountered when copying from webpages. For security reasons, Chromium
does not allow scripts on webpages (including content scripts) to read the clipboard except
when the user is pasting into the webpage, or after a warning message is shown to the user
about the page accessing their clipboard. Such a message would have been too disruptive if
it occurred every time a participant tried to copy text from a webpage. As a workaround,
when the user copies text from a page, the content script records which text is currently

highlighted in the page.

Participants tested their React application within a browser tab, so interaction related to
testing was captured by the Chrome extension (and Chromium modification). The React
testing page was set up to automatically refresh its content when a user saved edits to files.
(Section describes the development evironment that participants used.) To check for
React error messages, the Chrome extension listened for mutations made to the content in

the testing tab that looked like error messages.

13

2.2.3 Chromium Modification

Chromium source code was modified to log certain events. This was done by searching
through the Chromium codebase for methods that are called when specific actions are per-
formed, and then inserting code that logged relevant information: an action identifier, time-
stamp, and potentially action-specific information, listed in Table 2.4l As seen in the table,

most of the actions did not log additional information.

Table 2.4: Chromium Modification Logged Events

Logged Action

Additional Logged Information

show main menu n/a
show submenu name of submenu
click “Back” button n/a
click “Forward” button n/a
open back/forward dropdown n/a
restore tab from history n/a
open “Find...” bar n/a

find in page

text searched for, direction searched

read (paste) text from clipboard

read (pasted) text

enter full-screen mode n/a
save page to file n/a
zoom in on page n/a
zoom out on page n/a
reset zoom on page n/a
create website shortcut as file n/a
open “Developer tools” n/a
toggle “Developer tools” n/a
open developer console n/a
message appears in developer console | text of message
toggle developer “device toolbar” n/a
open developer “Inspect” menu n/a
open Chromium task manager n/a
show bookmarks bar n/a

Most of the Chromium source code is written in C++, so the inserted code was generally
fairly straightforward. However, for certain actions, like “message appears in console,” the
relevant code was written in JavaScript. For these actions, I re-used code from the Chrome
extension that sends the data over HTTP to the file-writing program.

14

2.2.4 Other Scripts

The components of the logging system are all designed to save files to a particular folder
on the hard drive. This made the components easier to write; for example, the Chromium
modification was just a few lines of code pasted into several parts of the Chromium codebase.
However, it makes it more difficult to organize the files by participant. To solve this problem,
I created a script that creates a symbolic link from the log-saving folder to a designated

participant-specific save folder.

As a participant uses Atom and Chromium, a log file is saved individually for each action
performed. The Atom package and Chrome extension save JSON files, while the Chromium
modification saves TXT files. For ease of file transfer and later analysis, I also created a
script that consolidates all of these separate files into a single large JSON file. In addition,
I created a version that groups the consolodated logs into consecutive browser actions and
consecutive editor actions to allow us to visually see web sessions and editor sessions when

looking through the log files.

2.2.5 Shortcomings

There were some actions that the logging system should have captured but regrettably didn’t.
Most notably, there is no logged event for when a user performs an undo or redo action. More
specifically, the logging system logs every change made to a file, but doesn’t specifically note

if the cause of that change was an undo or redo action.

In our later analysis, I had to get around this problem by implementing an “undo” and “redo”
stack and using them to infer when a change was caused by an undo or redo action. This
worked, but required more effort than it would have taken to implement undo/redo tracking

into the logging system.

Additionally, it may have been useful to have a keylogger running while participants were
working on the programming task. There were some events within Atom that could be
triggered either by a menu action or by a keyboard shortcut, and it might have been useful

to know which was used. A keylogger would have captured a lot of user input not captured by

15

the rest of the logging system, and would also have made it easier to distinguish undo/redo

actions.

16

Chapter 3

Model Study

After building the logging system discussed in Chapter[2] we conducted a user study in which

we asked React newcomers to perform a programming task using the React API.

3.1 Experimental Setup

3.1.1 Participants

Not counting pilot participants (discussed in Section , fourteen participants were re-
cruited through a computer science department mailing list, and all had some programming
experience. There was a technical issue with the logging system that prevented us from
collecting data from one participant, so we report on the other thirteen participants. Their

ages ranged from 19 to 34 years, with a mean of 21.9 and a standard deviation of 4.0 years.

All participants had experience with at least one programming language. Five partici-
pants had experience with neither React nor JavaScript, three participants had experience
with both React and JavaScript, and the remaining five participants had experience with

JavaScript but not React.

17

3.1.2 NASA Task Load Index

To measure cognitive load, we used the NASA Task Load Index [6] (NASA-TLX), a standard
measure. This questionnaire asks participants to rate six aspects of task workload: mental
demand, physical demand, temporal demand, performance, effort, and frustration. Partic-
ipants rate each aspect on an individual scale, and also rank which aspects had the most

impact on the overall workload.

Before working on the programming task, participants were familiarized with the NASA-
TLX with a five-minute warm-up task that asked them to identify several locations from
vague references that were not easily searchable. This practice task was designed to give
users practice with the rating scales. During the one-hour programming task (described
in Section , participants were interrupted three times at twenty-minute intervals to
complete the NASA-TLX, ranking their workload over the last twenty minutes. See Figure
for a graphical representation of the task timeline.

Warm-up task Programming task
(5 minutes) (60 minutes)

(20 minutes] [20 minutes] (20 minutes\y

NASA-TLX NASA-TLX NASA-TLX NASA-TLX

Figure 3.1: User Study Protocol

3.1.3 Development Environment

Participants were provided with a working React environment created using Facebook’s
“Create React App” package [I5]. This package is suggested in the official “Intro to React”
tutorial [8]. It includes a minimal single-page React application, and it is set up so that
whenever a user saves a change to one of their code files, the application is automatically

reloaded in the web browser.

Participants were provided with a computer that had two open windows (one window for

the Atom text editor and one window for the Chromium web browser) and all components

of the logging system were installed and running. In the Atom window, the sample React
18

project was open. A text file was added to the sample project that contained a description
of the programming task they were asked to complete, described in Section [3.1.4 The
Chromium window had a single tab open: the live sample application. This setup was
meant to minimize any issues with the development environment; participants generally
found it fairly straightforward to modify files within the Atom window, save their changes,

and then immediately see changes in the application tab within the Chromium window.

3.1.4 Task

Participants were given one hour to complete a task using the React API. They were asked
to follow a think-aloud protocol, verbalizing their thought processes as they worked on the
task. The task description file provided to participants was as follows:

1

2

3 Modify this React JS application so that it has two basic controls: a text

box and a button labeled "enter". The button should be disabled

initially, but should be enabled when the user types "friend" into the
text box.

4

5 http://localhost :3000/ shows the running result. Save your file to see

your changes.
This task was chosen for several reasons:

e [t is understandable. Developers tend to be familiar with text boxes and buttons, and

the behavior of the text box and button in response to user input is straightforward.

e It is simple. The whole task is two sentences and there are few moving parts, so it is

relatively easy for a participant to work on the task without forgetting their goal.

e It avoids hints. The desciption is given in plain English and doesn’t give implementa-

tion details away, like the fact that a “text box” is called an “input” in HTML.

e [t is divisible into subtasks. Participants were able to track their progress as they
completed different parts of the task, like showing a button on-screen with the correct
text.

19

e [t is nontrivial. This task takes some time to complete, and there is no code readily

available online that solves this particular problem.

e It requires integration of several resources. Participants need to consult several different
help resources for the different aspects of this task and combine them in a logical way,

something that is notoriously difficult for API newcomers.

e It is challenging but possible to complete in an hour. Most participants spent the entire
hour working on the task, giving us a sufficient amount of data, but participants were

generally able to complete at least part of the task.

3.1.5 Pilot Study

We recruited several pilot participants to complete the task. I recruited three pilot par-
ticipants in St. Louis, and our colleagues in Massachusetts recruited five. Based on our

observations of the pilot participants, we made several minor changes to the user study.

Our pilot participants helped us to refine our React programming task. We originally consid-
ered giving our participants a second task in addition to the one described in Section [3.1.4]
but that task proved challenging (and time-consuming) enough on its own, so we felt it was
sufficient. In addition, the language of the task description originally read to “Build an ap-
plication” but this may have caused some confusion about what participants were required
to do. One participant seemed not to realize that they were given template code and seemed
to be trying to build a new application from scratch, so the language was changed to “Modify

this ReactJS application.”

The pilot participants also helped us make additions to the logging system (described in
Chapter . There were several actions taken by participants that we did not originally
anticipate, but that we felt were relevant to our study. For example, one pilot participant
used the mouse wheel “middle click” button within Chromium to open a page in a new tab,

leading me to add that action to the logging system.

Finally, after the study was complete, we used data from the pilot participants to guide our

analysis. We didn’t know exactly what results would be interesting, but we didn’t want to

20

bias our search by seeing the participant data. For this reason, we used the pilot participant
data to explore trends and look for interesting results, but the results reported in Section

are from the normal participants, with pilot participants omitted.

3.2 Results and Analysis

3.2.1 Actions Performed

The CoIL model, described in Section [I.2] predicts several actions that users will perform
when learning a new API. All of our participants performed all of these actions, though they

did so in different ways.

e Search. All participants performed a search query using a search engine. One partici-
pant used only the Stack Overflow website for these searches, but all other participants

used the Google search engine, the default search engine in Chromium.

e Review search results. All participants interacted with a search results webpage in

some way, via scrolling and/or clicking on a search result.

e Navigate to a new page. All participants viewed a webpage that was neither a search

result page nor their localhost testing page. The types of pages viewed are described
in Section [3.2.2

e Search a page for target information. All participants interacted with a webpage that

was neither a search result page nor their localhost testing page.

e Store. All participants copied code snippets from webpages into their editor, either
automatically with copy-and-paste functionality, or by typing, visually copying from an
open webpage. Ten out of thirteen participants used both copy-and-paste and typing to
copy code, two participants used only typing, and one participant used only copy-and-
paste. Additionally, all participants kept multiple tabs open, storing previously-visited
webpages. See Section for more information about tab use.

21

Retrieve. All participants revisited webpages they had previously stored in an unfo-

cused tab. See Section [3.2.4] for more information.

Delete. All participants deleted stored information in some way, either by closing an

open window or tab, or by deleting a copied code snippet.
Read Code. All participants shifted focus to Atom and read their code.

Edit Code. All participants changed their code in some way, either by manually
typing or by copying and pasting.

Run Code. All participants saved changes to their code. The React environment
given to participants (described in Section was set up so that whenever a file
was saved, the localhost testing tab would refresh, in effect “running” their code. Of
the times that a file was saved, it was unclear how many times a participant intended

to “run” the code rather than simply save it.

Check results. All participants activated the localhost testing tab.

3.2.2 Types of Pages Viewed

Participants used a range of online resources when working on the task. Ignoring the localhost

testing tab, we categorized all webpages visited into six categories:

Search results: results of queries on search engines like Google and Stack Overflow.

Official documentation: information about React provided by ReactJS.org or Face-
book.

Unofficial reference: tutorials, blogs, and reference materials written by other sources,
such as W3Schools.

Q&A forum: sites like Stack Overflow where questions are posted and answered.
Emulator: interactive online editors with testable example code.

Video: video tutorials on websites like YouTube.
22

30
Il Official Documentation

= 25 A Unofficial Reference
] B Q&A Forum
2 20
£ Emulator I
E Il Video
e 15 ~ I
(O]
Q = u I
" 101 M| 1 o 0 I
(J] B u []] I
E I I I - -
S [| = — H - I

L B EL R B

0 4 I - ! | a I I H I] =

0-10 10-20 20-30 30-40 40-50 50-60 60-70

time interval (minutes)

Figure 3.2: Page Types Viewed Over Time

Figure [3.2 shows the types of non-search pages that participants viewed over the course of
the task. Each vertical bar shows the amount of time spent across all participants viewing
a page of a particular type during a given ten-minute interval, and each bar is segmented
by individual participants. “Time spent” is measured as the amount of time that a page of
a given type is in an activated tab within a focused Chromium window. As can be seen,
participants tended to rely more on official documentation early in the task, but on unofficial

references later in the task.

3.2.3 Sequences of Actions

Figure[3.3|shows the transitions that participants made between various actions. Actions are
represented as boxes, grouped by the stage in the model. Actions shown are “search” (loading
a search query page), “new page” (loading a non-search webpage that had not previously
been seen), “new tab” (opening a new tab), “close” (closing a tab), “organize” (rearrange
tabs), “return” (view a non-search webpage that had previously been seen), “back” (use the
browser’s back button or history functionality), “copy” (copy text from a webpage), “edit”
(change a file in Atom), and “test” (save and run their code). Arrows show transitions that

participants performed at least once on average, exiting the bottom of the source action and

23

entering the top of the destination action, with thicker arrows representing more actions
performed more frequently. As seen in the figure, some of the most common transitions were
from a search to a new page (within the information collection stage), between editing and
testing in both directions (within the solution testing stage), and from editing or testing
to returning to a previously-viewed page (transitioning from solution testing to information

organization).

Stages

Information Collection

Information Organization

Solution Testing

Average Frequencies

50x
10x
2Xx

Figure 3.3: Common Transitions Between Actions

When participants transitioned out of the information collection stage, it was often imme-
diately after viewing a new page. When this happened, participants typically transitioned
into the information organization stage, but occasionally skipped this stage and went straight
into the solution testing stage (represented by dashed arrows in Figure . However, these

transitions were relatively rare.

3.2.4 Tab Creation and Deletion

Participants made heavy use of browser tabs to store pages for later reference. The number
of new tabs created by participants ranged from 8 to 39, averaging 21.1 with a standard
deviation of 9.1 tabs. However, participants generally closed far fewer tabs during their
sessions. Only nine out of thirteen participants closed a tab that they had opened, and they
only closed an average of 6.7 with a standard deviation of 7.7 tabs.

24

20 A I_IJ

ml
15 .,
| r

10 -

5 ‘ "_II 9 —

0 10 20 30 40 50 60
time (minutes)

number of tabs open

Figure 3.4: Tabs Open Over Time

Figure shows each participant’s number of tabs open over the duration of the task. Each
colored line in the figure corresponds to a different participant. As can be seen, there is a
general upward progression as participants tend to open more tabs than they closed. Those
participants that did close tabs often closed multiple tabs in rapid successsion, as can be

seen for example by the vertical blue line just before 30 minutes.

This behavior may be explained by a relatively high cognitive load cost in evaluating the
relevance of a webpage. Determining the usefulness of a web resource may be challenging
and a waste of valuable cognitive resources. Participants may continue to open tabs until
the cost of organizing a large number of tabs grows unmanageable. At that point, it is
worth investing the mental effort required to determine which resources are irrelevant, and

the participant is able to judge several tabs at a time.

The reluctance to close tabs could also be explained by a high cost of retrieving a closed
tab when it later is found to be relevant. In fact, this turned out to be a fairly common
occurence; 22.6% of the times that a participant clicked on a search result, it was a page

that the participant had already viewed.

25

3.2.5 Tab Retrieval

The fact that participants created significant numbers of tabs is not in itself evidence that
tabs were being used as external memory. That evidence comes from the fact that par-
ticipants frequently returned to tabs that had previously been deactivated. The average
participant returned to 68% of all visited webpages (with a standard deviation of 14 per-
centage points), and the average viewed page was returned to an average of 4.3 times (with
a standard deviation of 5.7 times). An analysis of the time spent browsing the web across all
participants revealed that only 48% of the time was spent searching and visiting new pages.

Together, these results indicate that browser tabs served as a vital external memory context.

Figure [3.3] shows that it was relatively common for a participant to transition from viewing
a previously-viewed page to viewing a different previously-viewed page. Interestingly, when
the average participant made this transition, there was a 71.1% chance that they did so
after viewing the page for less than five seconds (with a standard deviation of 20.4 percent-
age points). This indicates that “flipping through” multiple tabs to find the desired stored

information was a common occurance.

3.2.6 Changes Made to Pasted Blocks

Most participants (ten out of thirteen) used copy-and-paste functionality to transfer at least
one full line of code from a snippet online into their editor. We were interested in what

participants did with these pasted blocks of of code after pasting them.

We categorized pasted code blocks (where a “block” is at least one full line of code) into two
categories: “whole” (where an entire code example is copied) and “partial” (where only some
of the lines are copied). We further separated these pastes by whether they were eventually
deleted or whether they remained in the code for the duration of the task. Across all 13
participants, of the 32 pasted blocks that were only partial examples, 18 (56%) were even-
tually deleted. Of the 26 pasted blocks that were whole examples, 19 (73%) were eventually
deleted.

26

Participants frequently made changes to the code blocks that were pasted in. We classified
these changes into three categories: “reformat” for changes to whitespace and other non-
alphanumeric characters, “modify” for changes that did involve alphanumeric characters,
and “undo/redo.” Figure shows the transitions that participants made between these
actions, with kept pastes on the left and deleted pastes on the right. Like in Figure [3.3]

thicker arrows represent more frequent transitions.

paste paste

partial

partial

T

Average Frequencies
delete

via undo

!

Figure 3.5: Transitions Between Edit Actions

One can see that transitioning between the various methods of editing was more common
in kept pastes rather than deleted pastes; however, it was more common to make no edits
at all in pastes that were deleted rather than pastes that were kept. Of the 33 pastes that
were edited in some way, 16 of them (48%) were eventually deleted. In contrast, of the 25
pastes that were not edited at all, 21 of them (84%) were eventually deleted, indicating a

correlation between editing a paste and keeping it.

These differences may be explained by the types of cognitive load involved. Participants
who copied only part of an example or who edited an example may have been more likely
to learn which parts of the example code were relevant, requiring an investment of germane
load and leading to the pasted block remaining in their code. Participants who did not make
this investment may have suffered from extraneous cognitive load: in this case, a code block

that was not worth keeping.

27

Intermediate unrelated actions are not shown in Figure [3.5] For example, if a participant
pasted a whole example, viewed a webpage, and then deleted the pasted block, that would
count toward the “paste whole — delete” edge. Figure shows the edits made to pasted
blocks that preceded browser actions, with browser actions separated into into the localhost
testing tab and other “web” tabs. As can be seen in the figure, if a participant performed
an intermediate browser action immediately after pasting, then the pasted block was most
often deleted, but if a participant performed a browser action immediately after modify-
ing the code, the pasted block was most often kept. Again, this points to a benefit from
increased interaction with the pasted block; participants who checked the results of their
paste immediately after pasting were less likely ultimately to keep the pasted block, when

compared with a participant who made modifications before checking.

2 2

> kept pastes deleted pastes

IS

$ 15 15

3

o

£ 1

= B |ocalhost

o

>

el = m

0 0

paste paste reformat modify undo/redo paste paste reformat modify undo/redo
whole partial whole partial

Figure 3.6: Edit Actions Preceding Browser Actions

3.2.7 Unsuccessful Pastes

As described in Section m, 37 out of 58 copy-and-pasted code blocks (64%) were ultimately
deleted. A closer look into the types of pastes that ended up getting deleted revealed some
common problems. Often, problems arose from the location of the paste, rather than the

code pasted itself.

One common mistake involved participants pasting code written in an “inheritance” style
into their starter code, which was written in a “composition” style, creating syntax errors
when methods and constructors were pasted into function bodies. Other common failed
pastes included pasting HTML code into a section of JavaScript code, and pasting a code

snippet without relevant imports. These issues typically caused error messages to appear

28

in the localhost testing tab, prompting participants to remove the pasted block rather than

make the necessary changes.

In these cases, the participants’ failures were largely ones of program comprehension. It
seemed that participants did not invest the germane load necessary to understand what
would have allowed a pasted block to function correctly, and this caused extraneous cognitive

load further down the line in the form of a failed paste.

3.2.8 Cognitive Load

The NASA-TLX includes ratings of several aspects of cognitive load. Figure [3.7] plots mental
effort (left) and frustration (right) for all participants at each of the twenty-minute time
intervals. With some exceptions, the cognitive load scores remained mostly flat for the

duration of the task, and unfortunately no clear conclusions can be drawn from this data.

Effort Frustration
500 P18, P18 P18 400 P12 P12
P9
450 350 P9,
400 300 9 P16
P10 —
350 =)
= < 250 P6 P6
© P6, 7
& 500 P19 S
° P19 PR9 B8
o B 200
% 250 =d /Er P18 5 P18 8
S P16 —~ B 150
200 FRT = PRE
P) P19 P19
100 =
150 P1§? P6 B
B ——
100 P 50 Fif————— B1E o1
i) P8 P15
o P13 P13 P13

0
first survey second survey third survey
S first survey second survey third survey

Figure 3.7: Ratings of Mental Effort and Frustration via the NASA-TLX

29

Chapter 4

Conclusions

4.1 Discussion

Our results do seem to validate the COIL model. For one thing, as described in Section [3.2.1]
all participants performed all of the actions predicted in each stage of the model. Conversely,
we noticed no action taken by participants that seemed out-of-place in the model; all actions

taken by participants fit into the actions described by the COIL model.

4.1.1 Relevance of External Memory

External memory does not frequently come up in discussions of API learning. However, it is

a vital component of the COIL model, and our results in Sections [3.2.4] and |3.2.5| show that

tabs are used extensively as external memory resources, another point of validation for the

COIL model.

Somewhat unexpectedly, browser tabs seemed to be the key external memory context for our
participants. We expected participants to make use of code comments to store potentially
useful code snippets, but this behavior was rare. Instead, as shown in Figure [3.5] deleting
unwanted code was common. However, this effect may partially be a result of the fact that
React files incorporate both HTML and JavaScript syntax, so there may have been uncer-
tainty around comment syntax and around the relevant keyboard shortcuts in Atom. Results
here may be different when developers are using a more familiar programming language and

development environment.

30

4.1.2 Sources of Cognitive Load

While external memory was used heavily by participants, our results also point to ineffi-
ciencies in this use. The “flipping-through” of tabs noted in Section suggests that
participants are using extraneous load when retrieving information from external memory.
Additionally, results from Section [3.2.4show that participants end up returning to previously-
viewed pages from search result pages fairly frequently. This behavior points to a different
source of extraneous cognitive load: participants had to re-find information that they had

previously seen in a potentially costly way.

Some of the results may indicate that an investment of germane load early in the task leads
to a decrease in extraneous load later in the task. When pasting in blocks of code, some
participants seemed to put in extra effort to understand the code that they were pasting
in, either by copying in only part of an example or by modifying the pasted block before
testing it. These behaviors may be a result of a sort of self-explanation, pointing to germane
cognitive load, and when participants behaved this way the pasted block was more likely to
remain in their code. Participants who interacted less with their pasted blocks were more

likely to later delete the pasted block, indicating extraneous cognitive load.

Because the cognitive load plots in Figure indicate that cognitive load was roughly
constant for the duration of the task, it is difficult to judge which events triggered different
levels of cognitive load. In retrospect, the three-interval approach to the NASA-TLX was
probably not the best measurement of cognitive load, as cognitive load may have varied
more on a shorter timeframe. An alternative hypothesis is that cognitive load truly was
fairly constant for the duration of the task, possibly because participants were regulating
their strategies to maintain a constant level of cognitive load. Further research is needed on
this front.

31

4.2 Future Work

4.2.1 Expanded Study

This exploratory study highlighted some key features about the API learning process. How-
ever, this is only data from thirteen participants, with a particular API. It would be useful
to conduct a similar study with a different API to determine to what degree our results

generalize.

4.2.2 Measures of Cognitive Load

Future work on this model should aim to better understand the role of cognitive load in the
API learning process. The three-stage NASA-TLX procedure ultimately did not prove very
useful in narrowing down the key sources of cognitive load, and conclusions drawn regarding

cognitive load were mostly inferred from participant behavior.

Pupillometry is a promising method to indirectly measure cognitive load. This technique
measures pupil size, which has been shown to be a good measure of cognitive load in other
scenarios, such as driving simulations [25]. This technique has several advantages over the
NAsSA-TLX; for example, it can be done without interrupting the participant, and it allows
for measurements over smaller time scales (several seconds), which would result in far more
measurements over the course of the task. This would allow for the testing of hypotheses
about which actions have a high cognitive load cost and how much cognitive load varies over

the course of an API learning task.

4.2.3 External Memory Management Tools

An additional area deserving of more research is the development of tools to assist with
external memory management. Our results show that the way that participants use tabs to
store information is likely not the most efficient system. There is an opportunity here for

new tools to be developed with the COIL model in mind, which ideally would allow users

32

to efficiently retrieve the information they’re looking for, without having to flip through

multiple tabs or perform a new search query.

33

References

[1]
2]

3]
4]

15]
[6]
7]

18]

19]

[10]

[11]

[12]

[13]

Atom. https://atom.io/.

Chrome APIs - Google Chrome. https://developer.chrome.com/extensions/api_
index!|

Chromium - the Chromium projects. https://www.chromium.org/Home.

Dashiki: ~ Simple request breakdowns. https://analytics.wikimedia.org/
dashboards/browsers/#desktop-site-by-browser/browser-family-timeseries.

Find and replace package. https://github.com/atom/find-and-replace.
NASA TLX: Task load index. https://humansystems.arc.nasa.gov/groups/TLX/.

Stack Overflow developer survey 2019. https://insights.stackoverflow.com/
survey/2019#technology-development-environments-and-tools-web-developers.

Tutorial: Intro to react. https://reactjs.org/tutorial/tutorial.html#
setup-option-2-local-development-environment.

Programmable Web: API directory. https://www.programmableweb.com/category/
all/apis, 2018.

ATKINSON, R. K., RENKL, A., AND MERRILL, M. M. Transitioning from studying
examples to solving problems: Effects of self-explanation prompts and fading worked-
out steps. Journal of Educational Psychology 95, 4 (2003), 774.

BraNDT, J., GUO, P. J., LEWENSTEIN, J., DONTCHEVA, M., AND KLEMMER, S. R.
Two studies of opportunistic programming: interleaving web foraging, learning, and
writing code. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (2009), ACM, pp. 1589-1598.

BranDT, J., GUO, P. J., LEWENSTEIN, J., AND KLEMMER, S. R. Opportunistic
programming: How rapid ideation and prototyping occur in practice. In Proceedings of
the 4th international workshop on End-user software engineering (2008), ACM, pp. 1-5.

Cui, E. H., PirorLI, P., CHEN, K., AND PiTkOW, J. Using information scent to
model user information needs and actions and the web. In Proceedings of the SIGCHI

34

https://atom.io/
https://developer.chrome.com/extensions/api_index
https://developer.chrome.com/extensions/api_index
https://www.chromium.org/Home
https://analytics.wikimedia.org/dashboards/browsers/#desktop-site-by-browser/browser-family-timeseries
https://analytics.wikimedia.org/dashboards/browsers/#desktop-site-by-browser/browser-family-timeseries
https://github.com/atom/find-and-replace
https://humansystems.arc.nasa.gov/groups/TLX/
https://insights.stackoverflow.com/survey/2019#technology-development-environments-and-tools-web-developers
https://insights.stackoverflow.com/survey/2019#technology-development-environments-and-tools-web-developers
https://reactjs.org/tutorial/tutorial.html#setup-option-2-local-development-environment
https://reactjs.org/tutorial/tutorial.html#setup-option-2-local-development-environment
https://www.programmableweb.com/category/all/apis
https://www.programmableweb.com/category/all/apis

[14]

[15]
[16]

[17]

18]

[19]

[20]

21]

22]

23]

24]

Conference on Human Factors in Computing Systems (New York, NY, USA, 2001),
CHI 01, Association for Computing Machinery, p. 490-497.

DUALA-EKOKO, E., AND ROBILLARD, M. P. Asking and answering questions about

unfamiliar APIs: An exploratory study. In 2012 34th International Conference on
Software Engineering (ICSE) (2012), IEEE, pp. 266-276.

FACEBOOK. Create react app. https://github.com/facebook/create-react-app.

FLEMING, S. D., ScArriDI, C., PIORKOWSKI, D., BURNETT, M., BELLAMY, R.,
LAWRANCE, J., AND KWAN, I. An information foraging theory perspective on tools

for debugging, refactoring, and reuse tasks. ACM Transactions on Software Engineering
and Methodology (TOSEM) 22, 2 (2013), 14.

HorvAaTH, A., GROVER, S., DONG, S., ZHou, E., VoicHICK, F., KEry, M. B,
SHINJU, S., NAM, D., NAGY, M., AND MYERS, B. The long tail: Understanding the

discoverability of api functionality. In 2019 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (2019), IEEE, pp. 157-161.

HORVATH, A., NAGY, M., VOICHICK, F., KERY, M. B., AND MYERS, B. A. Methods
for investigating mental models for learners of apis. In Eztended Abstracts of the 2019
CHI Conference on Human Factors in Computing Systems (New York, NY, USA, 2019),
CHI EA 19, Association for Computing Machinery.

INTONS-PETERSON, M. J. External memory aids and their relation to memory. In
Cognitive psychology applied. Psychology Press, 2014, pp. 145-168.

KELLEHER, C., AND ICHINCO, M. Towards a model of API learning. In 2019 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (2019),
IEEE, pp. 163-168.

LAWRANCE, J., BELLAMY, R., AND BURNETT, M. Scents in programs: Does in-
formation foraging theory apply to program maintenance? In Visual Languages and
Human-Centric Computing, 2007. VL/HCC 2007. IEEE Symposium on (2007), IEEE,
pp. 15-22.

MAALEJ, W., AND ROBILLARD, M. P. Patterns of knowledge in API reference docu-
mentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264-1282.

MYERS, B. A., AND STYLOS, J. Improving API usability. Communications of the
ACM 59, 6 (2016), 62-69.

Niu, N., MAHMOUD, A., AND BRADSHAW, G. Information foraging as a foundation

for code navigation (NIER track). In Proceedings of the 33rd International Conference
on Software Engineering (2011), ACM, pp. 816-819.

35

https://github.com/facebook/create-react-app

[25]

[26]

[27]

28]

[29]

PALINKO, O., KUN, A. L., SHYROKOV, A., AND HEEMAN, P. Estimating cognitive
load using remote eye tracking in a driving simulator. In Proceedings of the 2010 Sym-
posium on Eye-Tracking Research € Applications (New York, NY, USA, 2010), ETRA
’10, Association for Computing Machinery, p. 141-144.

Piccioni, M., FuriA, C. A., AND MEYER, B. An empirical study of API usability.
In Empirical Software Engineering and Measurement, 2018 ACM/IEEE international
symposium on (2013), IEEE, pp. 5-14.

PiroLLI, P., AND CARD, S. Information foraging in information access environ-
ments. In Proceedings of the SIGCHI conference on Human factors in computing systems
(1995), ACM Press/Addison-Wesley Publishing Co., pp. 51-58.

ROBILLARD, M. P., AND DELINE, R. A field study of API learning obstacles. Empirical
Software Engineering 16, 6 (2011), 703-732.

VAN MERRIENBOER, J. J., AND SWELLER, J. Cognitive load theory and complex

learning: Recent developments and future directions. Fducational psychology review 17,
2 (2005), 147-177.

36

Web Resources in API Learning, Voichick, M.S. 2020

	Exploring Usage of Web Resources Through a Model of API Learning
	Recommended Citation

	List of Tables
	List of Figures
	Acknowledgments
	Abstract
	Introduction
	Background
	Api Usability
	Information Foraging
	Cognitive Load
	External Memory

	The Coil Model
	Information Collection
	Information Organization
	Solution Testing

	Research Contributions to the Field

	Logging System
	Motivation
	Screen and Audio Recordings
	Choice of Editor and Browser

	Architecture
	Atom Package
	Chrome Extension
	Chromium Modification
	Other Scripts
	Shortcomings

	Model Study
	Experimental Setup
	Participants
	Nasa Task Load Index
	Development Environment
	Task
	Pilot Study

	Results and Analysis
	Actions Performed
	Types of Pages Viewed
	Sequences of Actions
	Tab Creation and Deletion
	Tab Retrieval
	Changes Made to Pasted Blocks
	Unsuccessful Pastes
	Cognitive Load

	Conclusions
	Discussion
	Relevance of External Memory
	Sources of Cognitive Load

	Future Work
	Expanded Study
	Measures of Cognitive Load
	External Memory Management Tools

	References

