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Abstract 

Robust Control of Burst Suppression Amid Physical and Neurological Uncertainty 

By 

Stephen Ampleman 

Master of Science in Electrical Engineering 

Washington University in St. Louis, 2020 

Research Advisor: Professor ShiNung Ching 

 

 Burst suppression is a clinical term describing a phenomenon in which the 

electroencephalogram (EEG) of a sedated patient produces behavior that switches between 

higher frequency and amplitude bursting to lower frequency and lower amplitude suppression. 

This phenomenon can be observed during general anesthesia, hypothermia, or in an otherwise 

induced coma state. In a clinical setting, this phenomenon is typically induced by sedation from a 

drug such as propofol (2,6-diisopropylphenol). The level of sedation can be quantified by 

something called the burst suppression ratio (BSR), which is defined as the amount of time that a 

patient’s EEG is in a suppressed state over the amount of time measured. One can vary this ratio 

by either increasing or decreasing the propofol infusion rate that the patient is given to bring 

them to a deeper or lighter state of sedation. By measuring the EEG data, one can form a closed 

loop feedback system where the EEG data is monitored for signs of burst suppression and the 

propofol is increased or decreased accordingly. Therefore, it becomes desirable to create models 

of this closed loop system to simulate the kind of behavior that would be expected from a clinical 

setting such as the one described. Many methods and experimental paradigms have been 

developed to address this problem including development of pharmacokinetic (PK) models that 
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describe the dynamics of drug infusion in the body as well as signal processing methods for 

computing the burst suppression estimation such as the burst suppression probability. Some of 

these paradigms have been tested in rodent experiments, though human studies remain elusive. 

In this regard, simulations and detailed physiological modeling and control design can play a key 

role. This thesis seeks to add on the rich body of work that has been done thus far by 

incorporating a Schnider PK model with the Wilson-Cowan neural mass model to form a closed 

loop model which we can use as a basis for more detailed analysis which includes real-time burst 

suppression estimation as well as uncertainty modeling in both the patient’s physical 

characteristics (such as weight, height, age and gender) in addition to neurological phenomena 

such as the recovery and consumption rates of neurons during burst suppression behavior. By 

creating a conversion from the physiological parameters that describe the PK models to the 

dimensionless and more abstract parameters which guide the Wilson-Cowan equations, and 

implementing an actuator and burst suppression ratio estimation algorithm, we have effectively 

modeled the clinical setting with which the BSR is sought to be controlled. Thus, in this study 

we wished to show that with PID control, one could control this model at a nominal condition 

(i.e., the patient and neurological parameters which the gains were designed for) as well as at 

various uncertainty conditions that include both physical and neurological uncertainty, as 

described above. Using the Zeigler-Nichols tuning method, we were able to design gains to 

sufficiently control this system at set points of 0.8, 0.5 and 0.2 BSR over a simulation time of 

roughly 18 hours in both nominal, patient varied with noise added and with reduced performance 

when including patient variation and noise as well as neurological uncertainty. This time 

duration was chosen because it was convenient for the model’s time constants but also because it 

is representative of the time a patient may be sedated. The BSR ranges were chosen so as to 
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show the closed loop system’s ability to maintain control at multiple levels of sedation. The 

reduced performance due to neurological uncertainty was due to the BSR estimation algorithm 

estimating a lower bound that was too high for the system to be controlled at a BSR of 0.2. The 

minimum BSR the system with added neurological uncertainty could be controlled to was 0.38, 

which is where the system held at during the portion of the trajectory that a BSR of 0.2 was 

commanded. During the achievable parts of the envelope, however, the control scheme worked 

with similar performance to that of the nominal case. This would suggest that an adaptive 

estimation algorithm needs to be developed to estimate the neurological deviations from the 

nominal case. Further, this suggests that if variations in the BSR of a patient due to neurological 

uncertainty is expected, then accurate estimation of these parameters are vital to reaching a 

robust solution in a real-time system. 
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Chapter 1: Introduction  

Burst suppression is a phenomenon measured by an electroencephalogram in the neuron 

dynamics of a patient when the brain is either cooled to a certain temperature (Martin, et al., 

1997), is placed under general anesthesia (Brown, Lydic, & Schiff, 2010), or otherwise reaches a 

coma state (Young, 2000). It is characterized by time intervals containing both high voltage 

activity (bursts) and low voltage activity (suppression). These alternating states of bursts and 

suppression can be further characterized by the frequency range in which they occur. When burst 

suppression occurs, the suppression intervals consist primarily of theta and delta wave signals 

(<8 Hz) while the burst consist primarily of alpha and beta wave signals (8-30 Hz) (Brown, 

Lydic, & Schiff, 2010). In addition to frequency content, the amplitudes of each of these signals 

give evidence for how suppressed the patient really is (Brown, Lydic, & Schiff, 2010). The 

following figure is Figure 1B and 1C from (Ching, Purdon, Vijayan, Kopell, & Brown, 2012). It 

shows a comparison of EEG data while the patient is under general anesthesia but has not 

displayed burst suppression (B) and a patient that has undergone deeper general anesthesia and 

has indeed achieved a state of burst suppression (C). 
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Figure 1: EEG Burst Suppression Absence and Presence 

We have chosen the Wilson Cowan equations (Wilson & Cowan 1972, 1973), 

specifically those augmented to produce a burst suppression phenomenon with a certain 

parameterization (Liu & Ching, 2017), as a mathematical basis by which we can study how the 

physiological effects of burst suppression are implemented. Further, an algorithm for calculating 

the burst suppression given the frequency content and magnitude of the signal is presented and 

analyzed in comparison to other prevalent burst suppression algorithms.  

When pharmacologically inducing a coma state with a drug such as propofol, one can 

vary the depth of burst-suppression by increasing the dosage applied to the given patient. 

Therefore, if one desires a certain BSR (measured as the length of time the neurons are 

suppressed over the total time duration) (Chemali, Wong, Solt, & Brown, 2011) it becomes 

obvious a feedback control solution is required to target certain ranges of burst suppression. 

There have been many attempts at formulating a solution to this problem (Ching, et al., 2013), 

(Chemali, Ching, Purdon, Solt, & Brown, 2013), (Schanechi, Chemali, Liberman, Solt, & 

Brown, 2013), and (Westover, Kim, Ching, Purdon, & Brown, Robust control of burst 

suppression for medical coma, 2015). Namely, we strive to further the gains made in the robust 
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control of burst suppression by introducing actuator dynamics into the closed loop anesthetic 

delivery (CLAD) system. We further strive to introduce uncertainty not only in the patient’s 

physical characteristics (such as patient height, weight, age and sex), but also in the neuron 

dynamics of the patient. Once coupled with the presence of an actuator (which would simulate an 

anesthetic pump), this allows us to study a realistic setting for which CLAD can be applied. 

Within the modified Wilson Cowan equations (Liu & Ching, 2017), there are parameters 

that describe the recovery dynamics of these neurons, which govern how quickly the neurons 

transfer from a suppressed state back to a bursting state. By varying these parameters, an internal 

neurological uncertainty can be created and used to increase the robustness of burst suppression 

feedback control algorithms. Also within these equations, there are various parameters that can 

be used to quantify the concentration of a pharmacological substance, such as propofol, present 

in the brain effect site. We can treat the concentration of propofol as the control input to increase 

the BSR to a desired state. It is crucial to note that clinically, the level of concentration in the 

effect site cannot be decreased except by a metabolic process. The control input, a 

pharmacological drug, can only be used to increase the ratio. Therefore, it is vital to both 

correctly estimate the BSR and use a control method which does not produce high overshoot or 

steady state error. Therefore, presented in this thesis is a robust control solution which correctly 

targets certain burst suppression ratios despite uncertainty in the neurological and physical 

parameters of the patient.  
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Chapter 2: Wilson Cowan Equations  

The Wilson Cowan equations serve to describe neuron dynamics across a large 

population of neurons. The primary mechanism with which they are modeled is the expression of 

their dynamics in both an excitatory and inhibitory state. Work has been done by Liu & Ching 

(2017) to modify these equations to give them a modulating input, 𝜙𝑗(𝑡), in addition to original 

fast dynamics described initially by Wilson and Cowan (1973, 1972). The equations for the 

excitatory and inhibitory states are below. 

 

𝑒𝑗̇ = 𝜔𝑒 (−𝑒𝑗 + (𝑘𝑒 − 𝑟𝑒𝑒𝑗)ℱ [𝑐1𝑒𝑗 − 𝑐2𝑖𝑗 + ∑ 𝑘𝑗
𝑓𝑒𝑒𝑘 + 𝑃 + 𝜙𝑗(𝑡)

𝑘∈ℕ𝑗

]) + 𝑊𝑗
𝑒(𝑡) 

          

Eq. 1 

 

 

𝑖𝑗̇ =  𝜔𝑖 (−𝑖𝑗 + (𝑘𝑖 − 𝑟𝑖 𝑖𝑗)ℱ[𝑐3𝑒𝑗 − 𝑐4𝑖𝑗 + ∑ 𝑘𝑗
𝑓𝑒𝑒𝑘 + 𝑄 + 𝜙𝑗(𝑡)

𝑘∈ℕ𝑗

]) + 𝑊𝑗
𝑖(𝑡) 

          

Eq. 2 

 

The subscript 𝑗 represents the column of neuron tissue that is being described. 

Additionally, the subscript 𝑘 describes a column that would be coupled with column 𝑗.This 

specific study seeks only to analyze a single column of tissue and thus the equations will be 

hereafter described without the additional subscript or summation for the interconnectivity 

between columns. Thus, the de-coupled equations for describing neuron activity are below. 

 𝑒̇ =  𝜔𝑒(−𝑒+ (𝑘𝑒 − 𝑟𝑒𝑒)ℱ[𝑐1𝑒𝑗 − 𝑐2𝑖 + 𝑃 + 𝜙(𝑡)]) + 𝑊𝑒(𝑡) Eq. 3 

 𝑖̇ =  𝜔𝑖(−𝑖 + (𝑘𝑖 − 𝑟𝑖𝑖)ℱ[𝑐3𝑒− 𝑐4𝑖+ 𝑄 + 𝜙(𝑡)]) + 𝑊𝑖(𝑡) Eq. 4 
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 The function ℱ stands for a logistic sigmoid such that is used in the original Wilson-

Cowan equations. 

 
ℱ(𝑥) =

1

1 + exp [−𝑎(𝑥 − 𝜃)]
−

1

1 + exp (𝑎𝜃)
 

     
Eq. 5 

The parameters a and 𝜃 represent tuning variables that are typically used in such 

functions to alter the slope and midpoint of the sigmoid. The modulating input mentioned above 

is described by the following equation. 

 
𝜙̇ =  −𝜇1𝜙 + (

𝜇2

1 + exp([−𝑘𝜙(𝑀 − 𝜂)])
) 

     
Eq. 6 

Where 𝜇1 is the time constant for the autonomous part of the dynamics and 𝜇2 is the time 

constants of the sigmoidal part of the dynamics. 𝑘𝜙 is a tuning variable for the sigmoid slope 

shape, 𝜂 represents the midpoint of the sigmoid when the input 𝑀 is zero. The input 𝑀 acts as a 

gating variable for 𝜙. The input 𝑀 is essential in describing the key features of this model as it 

attempts to accurately model the underlying physiological events occurring. It is a function of 

two variables, a consumption variable, 𝑔𝑐, and a recovery variable, 𝑔𝑟. 
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 𝑀̇ = 𝑔𝑟(𝑒) − 𝑔𝑐(𝑒) Eq. 7 

 
𝑔𝑐 = 𝑘𝑐 (

𝑒2

0.01 + 𝑒2
) 

Eq. 8 

 𝑔𝑟 = 𝑘𝑟𝛽 Eq. 9 

 
𝛽 ̇ = −𝜈1𝛽 + (

𝜈2

1 + exp([−𝑘𝛽(𝑒 − 𝜁)])
) 

     
Eq. 10 

 The recovery and consumption processes are primarily a function of the excitatory 

dynamics. Our main focus will be on the evolution of the variable 𝛽, and, more specifically, how 

small changes in the constants that describe its behavior are crucial in how the system as a whole 

behaves. 

 Finally, it should be noted that the main variables 𝑒 and 𝑖 should not be misunderstood as 

EEG activity, although there are fundamental similarities between the two. Liu & Ching (2017) 

made this distinction while also stating that it is a suitable variable for burst-suppression type 

studies. Therefore, in this paper, we will be analyzing the excitatory firing rate as a surrogate for 

EEG data.  

 In an attempt to succinctly summarize the equations, variables, and parameters above, the 

following tables are given below which names the variable and provides a short description. 

Units, nominal values, and initial conditions are also given. 

Table 1: Variable Definition 

Variable Description Units Initial Condition 

𝑒 Excitatory firing rate substrate

sec
 

0.3 
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𝑖 Inhibitory firing rate substrate

sec
 

0.1 

𝜙 Slow Process firing rate substrate

sec
 

0.25 

𝑀 Consumption/Recovery Gating Variable substrate

sec
 

10 

𝛽 Recovery Evolution substrate

sec
 

0.3 

 

Table 2: Parameter Definition 

Parameter Description Units Value 

𝑘𝑒 , 𝑘𝑖 Maximal value of the excitatory and inhibitory 

response functions 

substrate

sec
 

1, 1 

𝑟𝑒 , 𝑟𝑖  The absolute refractory period of the excitatory, 

inhibitory subpopulation 

Non-dimensional 1, 1 

𝜔𝑒 ,𝜔𝑖  Wilson-Cowan Time Constants 1

sec
 

500, 500 

𝑃,𝑄 Level of background excitation in the excitatory, 

inhibitory subpopulation 

substrate

sec
 

900, 0 

𝑐1, 𝑐3 Average number of excitatory synapses per cell Non-dimensional 16, 15 

𝑐2, 𝑐4 Average number of inhibitory synapses per cell Non-dimensional 12, 3 

𝜃𝑒 , 𝜃𝑖 , 𝑎𝑒 , 𝑎𝑖 Maximal slope parameters of the logistic curve 

for the excitatory, inhibitory subpopulation 

Non-dimensional 4, 3.7, 

1.3, 2 

𝜇1, 𝜇2 Modulation time constants 1

sec
 

2, 2 
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𝑘𝜙 Sensitivity to the variations of the metabolic 

substrate 

1

substrate
 

75 

𝑘𝛽 Sensitivity to the variations of the neuronal 

activity 

1

substrate
 

4.5 

𝜂, 𝜁 Average number of inhibitory synapses per cell substrate 0.25, 

0.27 

𝑘𝑟 , 𝑘𝑐 Metabolic recovery and consumption rates substrate

sec
 

900, 700 

𝜈1, 𝜈2 Homeostatic autoregulation time constants 1

sec
 

.08, .08 

 In Liu & Ching (2017), a time scale of milliseconds was used. Since we will be studying 

the model in the span of hours, we have proportionally increased the time constant and metabolic 

recovery and consumption rates in order to allow the dynamics to scale properly to a timescale of 

seconds. This time scale allows us to still view the frequency content and the underlying signal 

mechanisms while also maintaining reasonable simulation times. 

 The purpose of using this model is to take advantage of its inherent burst suppression 

qualities as the parameter 𝑐2 is varied. We can use this parameter as a way to model various 

propofol infusion rates. In a clinical setting, a patient will become more sedated as the propofol 

infusion rate is increased. Therefore, it is vital to describe bounds with which the model will 

behave properly as 𝑐2 is varied. In Liu & Ching (2017), the bounds were set by the system’s 

stability in regards to the 𝑐2 parameter. The system has a bifurcation point around the value of 

7.7 after which the system develops a stable limit cycle envelope where burst suppression 

behavior occurs until a 𝑐2 value of 69. At this value a stable steady state solution can be found 
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and the model becomes completely suppressed. Therefore, we wish to analyze how burst 

suppression emerges and changes as the value of 𝑐2 increases from 7.7 to 69. The figures below 

give an example for how the model behaves with multiple 𝑐2 values. 

 

Figure 2: Burst Amplitude Decrease with Increasing c2 

 

 
Figure 3: Loss of High Frequency Dynamics as c2 Increases 
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 The values of 𝑐2 were chosen specifically to show how the bursting amplitude changes 

with time. It is also notable within the spectrogram how when the model reaches near complete 

suppression, frequencies in the range above 8 Hz are no longer present. These differences in the 

model expression will be taken into account when the burst suppression algorithms are presented 

in Chapter 3. 

 In addition to simply running a propofol (𝑐2) increase on this model, we wish to generate 

some uncertainty for different patient types. We focused primarily on the variation of the 

recovery parameters, 𝑘𝛽, 𝜁, and 𝜈 to simulate how different patients may respond to propofol as it 

enters their system. The figures below show the same 𝑐2 values but with a change in these 

recovery parameters. The notable changes are the suppression length and burst amplitude. As 

these are both taken into account for burst suppression calculation, this will produce a different 

burst suppression ratio result throughout a range of 𝑐2.  
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The first set of figures is with a static 𝑐2 value of 30, but a varied 𝜁. The other recovery 

parameters were kept the same. There is a subtle difference between the three spectrograms 

shown above. In the first there are 8 clear bursting events with an additional one trailing off as 

Figure 4: Suppression Length Increase with Increasing zeta  
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the simulation time expired. As 𝜁 increases, the trailing bursting event becomes less visible. This 

is due to the suppression length increasing as zeta increases. 

 

Figure 5: Spectrogram with kB Variation 

 The second set of figures is with a static 𝑐2 but a varied 𝑘𝛽. The other recovery 

parameters were kept the same. A similar trend to that seen in the result with a varied 𝜁 is 

manifested when the parameter 𝑘𝛽 is varied. After exploring the effects of varying 𝜈 with the 

remaining parameters remaining constant, we will analyze the effects of coupling these 

variations. 
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Figure 6: Spectrogram with nu Variation 

The third set of figures is with a static 𝑐2 but a varied 𝜈. The other recovery parameters 

were kept the same. Perhaps unsurprisingly, the same trend that was found with varying the other 

two recovery parameters showed itself in this variation. To visualize the impact on how changing 

all three simultaneously impacts the result, the below figure analyzed a configuration with all 

parameters decreased, a configuration with one parameter increased (this was chosen to be 𝜁, but 

as the results above show us, we could have chosen any parameter to use as a point of 

comparison), and a configuration with all parameters increased. 
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Figure 7: Simultaneous Recovery Parameter Variation 

This final analysis confirms our suspicion that simultaneous changes of the recovery 

parameters results in a more drastic increase of the suppression lengths while a simultaneous 

decrease in the recovery parameters results in a decrease of the suppression lengths. We see this 

again by looking at the number of bursting events in each configuration. The first one nearly has 

a full ninth bursting event take place while the middle one has most of the ninth bursting event 

cut off due to simulation time. Finally, the case where all configuration parameters are increased 

shows a complete lack of a ninth bursting event. These recovery parameter variations will again 

be analyzed in Chapter 3 where we will quantitatively see the result of changing these 

parameters to confirm the qualitative analysis done here. 
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Chapter 3: Burst Suppression Ratio Algorithm  

As described in the introduction, the burst suppression ratio was used as a method to 

determine how suppressed the patient currently is. It is measured as the ratio between the time 

the model is suppressed over the time the data is being measured. The base set of parameters 

were taken from Liu & Ching (2017) and the algorithm was then tuned to approximate the results 

shown therein. The algorithm presented attempts to utilize the defining frequency characteristics 

of burst suppression as its method of determining the correct ratio. The time scale set for this test 

was in seconds in order to use a sample rate (512Hz) that would emulate a sampling commonly 

used for EEG processing.  

The algorithm utilized a discrete time Fourier transform (DTFT) as its method of 

determining the frequency content as the signal from the Wilson Cowan equations was sent 

through. It was desirable to get the frequency bins in integers ranging from 1Hz to 30Hz in order 

to accurately analyze the expected spectrum. Since our sampling time 512Hz, this meant the 

number of Fourier points taken needed to be equal to the sampling time. A signal overlay value 

of 1 was chosen with a window length of 32 samples. After the frequency bins had been created 

using the DTFT parameters, indices were used to get the magnitudes of the frequencies where 

suppression takes place (<8Hz) and where bursting takes place (8Hz < w < 30Hz) (Brown, 

Lydic, & Schiff, 2010), effectively filtering out unwanted frequency ranges. The mean 

magnitudes for each were taken and a ratio between these values, and pre-chosen magnitudes 

that would indicate bursting/suppression was found. These values were then put into a sigmoid 

function to model a percent suppressed based on these ratio values for the particular time step. 
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Parameter sweeps were done for this sigmoid function and the magnitudes for which the ratios 

were taken to get a burst-suppression ratio relationship with respect to 𝑐2 that mirrored 

expectations for how it would evolve as the magnitude of 𝑐2 increased. The equations below 

provide mathematical insight for the prior description. 

 
𝑒(𝑛, 𝑘) = ∑ 𝑒[𝑚] ∗ 𝑤[𝑛 − 𝑚] exp (−

𝑗2𝜋𝑘

𝑁
)

∞

𝑚= −∞
 

Eq. 11 

Where n is the current time step that the discrete time Fourier transform (DTFT) is being 

applied to and 𝑘 is the frequency “bin” out of 𝑁 frequencies being analyzed. 𝑗 represents the 

imaginary number and 𝑤 is a Blackman window which is described by the following equation 

 
𝑤[𝑘 + 1] = 0.42 − 0.5 cos(

2𝜋𝑘

𝑛 − 1
)+ 0.08 cos (

4𝜋𝑘

𝑛 − 1
) 

Eq. 12 

 After the transform is taken, the vector is split up into two separate vectors described by 

the frequencies at which they are calculated. It is desirable to look at the frequency where 

suppression takes place separate from higher frequency content so they can be analyzed 

individually. Thus, since the frequency “buckets” were taken in steps of 1 Hz, the first 8 indices 

of the vector 𝑒(𝑛, 𝑘) were taken for a certain 𝑛 to be the suppressed transform while the indices 

from 9 to 30 were taken to be the bursting transform. Since this operation effectively acts as a 

filter, choosing only those frequency ranges allows us to filter out unwanted high frequency data 

that could corrupt the burst suppression calculation. The next operation is a mean calculation of 

the magnitudes of the frequencies in the suppressed and bursting bins.  
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𝑚𝑠(𝑛) =

1

8
∑ |𝑒(𝑛, 𝑘)|

8

𝑘=1
 

Eq. 13 

 
𝑚𝑏(𝑛) =

𝑘𝑏

21
∑ |𝑒(𝑛, 𝑘)|

30

𝑘=9
 

Eq. 14 

 Where 𝑚𝑠 and 𝑚𝑏 are the mean magnitudes over that frequency spectrum. It is typical for 

the bursting magnitudes to be significantly less than the suppressed magnitudes. However, there 

are large fluctuations between small and large 𝑐2 values in the bursting magnitudes and thus vital 

to determining the burst suppression ratio. The gain 𝑘𝑏 seeks to place the bursting and 

suppressed magnitudes in a similar value range so as to make both effective inputs. These values 

are then fed into a sigmoid function and multiplied by the sample time to represent how 

suppressed the time step is from 0 to 1, where 0 indicates full bursting and 1 indicates full 

suppression.  

 
𝑆(𝑛) =

𝑑𝑡

1 + exp (−𝑘𝑠𝑏(−𝑚𝑠(𝑛)− 𝑚𝑏(𝑛)− 𝑥0𝑠𝑏
)) 

 
Eq. 15 

 The negatives of the magnitudes are taken so as to have a large negative number in the 

exponential when the bursting and suppressed magnitudes are high, thus giving a value of 𝑆(𝑛) 

closer to zero which indicates a burst event. The following table gave a parameterization that was 

well suited for a large range of 𝑐2. 
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Table 3: BSR Algorithm Tuning Parameters 

Parameter Description Value 

𝑘𝑠𝑏 Sigmoid shaping function 1 

𝑥0𝑠𝑏 Midpoint value for the sigmoid -30 

𝑘𝑏 Gain on the bursting magnitudes 500 

 

Using this method, the relationship found with burst suppression and 𝑐2  could not be 

made completely sigmoidal. The lower values of 𝑐2 would express large intervals of suppression 

before coming into a bursting regime which lasted a similar duration. Using the parameters 

described in the table, the figure below shows the BSR of each 𝑐2 value run individually. This 

algorithm calculated a higher value for the lower ranges of 𝑐2, specifically between 8 and 10. 

After a 𝑐2 value of 10, the BSR increases in a near monotonic fashion until it reaches a near 1 

BSR at a 𝑐2 value of 69.  
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Figure 8: BSR vs c2 Relationship 

Despite these limitations on the extreme lower ranges of 𝑐2, the remainder of the values 

with this parameterization produced results consistent with what would be expected for burst 

suppression as the propofol concentration is increased. Since this is the type of physiological 

behavior the model is attempting to reproduce, we can lower bound the effective value of 𝑐2  

where the BSR stops decreasing and begins its monotonic increase to 1.  

 The mean of the suppression is used as a way to calculate the actual suppression over 

time. This results in a delay before a certain confidence level in the value can be achieved. This 

is useful information from a control design perspective because these algorithms are very 

nonlinear in nature and we desire to implement a linear control method. Thus, if we can find the 

expected delay values for this algorithm to converge, our control design can account for it by 
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using a linear approximation for delay associated with time to converge to a confidence level. 

Since we desire tight control on our BSR so as to not fluctuate the patient between multiple BSR 

levels, a convergence value for the mean signal variance was chosen to be 0.0001. 

 In order to design the gains for the system, a time for this algorithm to converge had to be 

selected. Thus, the time for this algorithm to converge with nominal and varied recovery 

parameters of a limited subset to that of the range run in Chapter 2 were calculated. The results 

for these convergence times are shown below: 

 

Figure 9: BSR Convergence Times 

 This variation on convergence times shows some very sharp increases in the lower ranges 

of 𝑐2 but very quick convergences for large ranges of 𝑐2. This is likely due to the complete 

absence of higher frequency bursting data at high 𝑐2 values which make it much easier for the 
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algorithm to converge given the lower frequency data is more consistently defined and is more 

present at these points. Nonetheless, a delay for this algorithm to be implemented in linear gain 

design was chosen to be the average of the values above which came out to be approximately 72 

seconds. This is consistent for what is expected of convergent BSR values according to 

(Chemali, Wong, Solt, & Brown, 2011) which gives us further reasoning to select a value of 

similar magnitude. 
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Chapter 4: System Architecture 

Before looking at the gain design method, we will introduce the nonlinear system 

architecture which we wish to control. A system architecture was designed around the Wilson 

Cowan dynamics in order to more accurately simulate a CLAD system. Below in Figure 9 is the 

Simulink model used to represent the system as a whole. This model was used in Rapid 

Accelerator mode to be able to run 18 hours of simulation in realistic time. 

 

Figure 10: Closed Loop Simulink Model 

The plant of this model is comprised of three main pieces. The first is called the 

pharmacokinetic model (PK model). Pharmacokinetics describes how an infused drug is 

distributed and discarded from multiple compartments in the body. The model we have selected 

for this study is the Schnider model for humans (Schnider, et al., 1998), (Absalom, Mani, 

DeSmet, & Struys, 2009). It is a four state model, each of which describes a different 

compartment within the model. The main compartment, 𝑥1, describes the concentration of the 

drug in the central compartment, or the blood, of the patient. Compartments 𝑥2 and 𝑥3 describe 

the fast and slow compartments, respectively. This can be easily seen by the magnitude of the 

coefficients that describe the second order relationship between these compartments and the 

central compartment. Finally, there is 𝑥4, or the effect site compartment concentration. This 
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represents the concentration of propofol in the brain, which we can then use as an estimate for 

the variable, 𝑐2, which is an input to the Wilson Cowan equations.  

 

 

𝑥̇ =

[
 
 
 
 
 
 
 −(𝑘10 + 𝑘12 + 𝑘13)

𝑉2𝑘21

𝑉1

𝑉3𝑘31

𝑉1
0

𝑉1𝑘12

𝑉2
−𝑘21 0 0

𝑉1𝑘13

𝑉3
0 −𝑘31 0

𝑘𝑒𝑜 0 0 −𝑘𝑒𝑜]
 
 
 
 
 
 
 

𝑥 +

[
 
 
 
 

1

60𝑉1
0
0
0 ]

 
 
 
 

𝑦𝑎𝑐𝑡 

 

 

 

Eq. 16 

 𝑥𝑐𝑜𝑛𝑐𝑒𝑛 = [0 0 0 1]𝑥 Eq. 17 

 

The parameters shown in equations 19 and 20 above are functions of the patient’s height, 

weight, age and sex. Typically, these parameters are set in the time scale of 1/𝑚𝑖𝑛, however, 

since we are modeling delay and performing our control design in the timescale of seconds, the 

parameters were scaled to be in the correct time scale. The equations for non-static parameters 

are shown below and the static parameters are additionally shown in the following table. 
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𝐿𝐵𝑀𝑚𝑎𝑙𝑒 = 1.1𝑚 −

128𝑚2

ℎ2  
     
Eq. 18 

 
𝐿𝐵𝑀𝑓𝑒𝑚𝑎𝑙𝑒 = 1.07𝑚 −

148𝑚2

ℎ2  
     
Eq. 19 

 𝑉2 = 18.9 − 0.391(𝑎 − 53) Eq. 20 

 
𝑘10 = (

1

60
) (.443 + 0.0107(𝑚 − 77) − 0.0159(𝐿𝐵𝑀 − 59) + 0.0062(ℎ − 177)) 

     
Eq. 21 

 
𝑘12 = (

1

60
)(0.302 − 0.0056(𝑎 − 53)) 

     
Eq. 22 

 
𝑘21 = (

1

60
) (

1.29 − 0.024(𝑎 − 53)

𝑉2

) 
     
Eq. 23 

 

Table 4: Static PK Coefficients 

Parameter Value 

𝑘13 
(

1

60
)0.196 

𝑘31 
(

1

60
)0.0035 

𝑘𝑒𝑜 
(

1

60
)0.456 

 

Before we send the effect site concentration straight to the Wilson Cowan equations, we 

must develop a relationship to convert this parameter to the non-dimensional representation that 

the Wilson Cowan equations use. Based on the relationship established in the BSR algorithm in 

Figure 7, we can use a similar relationship described in Westover et al (2015) between effect site 
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concentration and BSP to give an approximation for this transformation. A sigmoid model was 

made to approximate the BSP vs effect site concentration shown in Westover et al (2015) using 

equation 26 below.  

 
𝐵𝑆𝑃𝑎𝑝𝑝𝑟𝑜𝑥 =

𝑥4
6.6

𝑥4
6.6 + 5.56.6 

     
Eq. 24 

Westover et al (2015) shows that this relationship holds for a certain patient 

parameterization and is also used for all later experiments run with various patients. The 

concentration to 𝑐2  values derived from this method are shown in the figure below. 

 

Figure 11: Effect Site Concentration to c2 Parameter 

These 𝑐2  values were then sent to the Wilson Cowan equations for the dynamics to be 

calculated and fed through to the BSR estimation algorithm. The BSR estimation algorithm here 
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is implemented in the same way that is shown in equations 11-15, with the exception that a reset 

line has been incorporated for when a new 𝑐2  value is being fed through to the Wilson-Cowan 

equations. This is necessary since we need to achieve a certain confidence level for each 

measured BSR. Hence, when a new value of 𝑐2  is fed through the system, the mean and signal 

variance blocks must be reset. In order to determine the 𝑐2  increments at which the delay is 

reset, we must look at the performance of the control system. If the system naturally increases 𝑐2  

so quickly that the delay caused by the algorithm cannot complete before a new 𝑐2  value is fed 

through, the system will be caught in a state of constant delay. In this state of constant delay, the 

BSR will never claim convergence at the current propofol concentration before the concentration 

changes so drastically that the estimated BSR no longer accurately reflects the state of the 

system. Hence, a control resolution can be found for BSR as a function of the 𝑐2 delay reset 

value. To coincide with the confidence level we set of .0001 BSR variance, we set a criteria for 

each new 𝑐2 value that is sent into the system as described in equation 26 below. 

 |𝑐2 − 𝑐2𝑝𝑟𝑒𝑣|
2

≤ 𝑐2𝑡ℎ𝑟𝑒𝑠ℎ
 

     
Eq. 25 

To choose the threshold value, we can take a linear fit of the sigmoid shown in Chapter 3 

where we computed the nominal relationship between 𝑐2 and BSR. Figure (blank) below shows 

the original BSR curve with the linear approximated plotted over it.  
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Figure 12: BSR vs c2 with Linear Approximation for BSR growth per c2  

This linear fit shows that for every increase of 1 𝑐2, there is an approximate increase of 

0.0143 BSR. Thus we can use a similar relationship that the BSR uses for convergence to 

calculate what the 2-norm of the difference between the next 𝑐2 value and the previous 𝑐2 should 

be to reset the delay.  

 |𝐵𝑆𝑅 − 𝐵𝑆𝑅𝑚𝑒𝑎𝑛|2 ≤ 0.0001       
Eq. 26 

 |. 0143(𝑐2 − 𝑐2𝑝𝑟𝑒𝑣)|
2

≤ 0.0001, |𝑐2 − 𝑐2𝑝𝑟𝑒𝑣|
2

≤ 0.489 
      

 

Prior to the plant model we have a second order actuator model and our controller. For 

this problem, a PID controller architecture was chosen. A specific goal of this study was to 
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minimize overshoot. Implementing derivative control in addition to a classic PI controller is an 

excellent way to minimize overshoot in a system as well as minimize steady state error. The 

equations which describe the controller and actuator are below. 

Controller: 

 

[∫𝑒

𝑒
]

̇

= [
0 0
0 0

] [∫𝑒

𝑒
] + [

−1 0 1
0 −1 0

] [

𝐵𝑆𝑅
𝐵𝑆𝑅̇

𝐵𝑆𝑅𝑟𝑒𝑓

] 

     
Eq. 27 

 

𝑢 = [𝐾𝐼 𝐾𝑝] [∫ 𝑒

𝑒
] + [0 𝐾𝑑 0] [

𝐵𝑆𝑅
𝐵𝑆𝑅̇

𝐵𝑆𝑅𝑟𝑒𝑓

] 

     
Eq. 28 

Actuator: 

 𝑥̇𝑎𝑐𝑡 = [
0 1

−𝜔𝑛
2 −2𝜁𝜔𝑛

]𝑥 + [
0
𝜔𝑛

2] 𝑢 
     
Eq. 29 

 𝑦 = [1 0]𝑥      
Eq. 30 

 

The method which was used to determine actuator and controller parameters will be 

shown in further detail in Chapter 5: Gain Selection.  

Finally, two switches were added to disallow unrealistic results to come from the 

controller or the BSR output. First, a switch was put before the PK model that limited the input 

to the system to be positive (i.e. always providing a propofol infusion rate to the system). This 

was done because the only inputs we can put into the system are a positive one or zero. However, 

a useful quality of the PK model is that it is asymptotically stable about a zero concentration 
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equilibrium point. In this way, it models the system’s ability to effectively decay its 

concentration if no additional propofol is fed into the system. Second, a max block was put at 

after the noise is added to the output of the BSR estimation algorithm. This was done so that if 

the BSR estimation algorithm is estimating a near-zero BSR, the noise will not allow a negative 

BSR to be estimated as that is not physiologically possible. 
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Chapter 5: Gain Selection 

For our PID controller and actuator, there were several goals that needed to be met in 

order to claim the gains and actuator parameters had been sufficiently designed to meet the 

system requirements. From a time domain perspective, we desired minimal overshoot, a modest 

rise time, and sufficient robustness in terms of the noise added at the input and output of the 

plant, as well as parameter uncertainty. In terms of the time domain requirements, the rise time 

was a much lower priority for these systems than the steady state error or the overshoot. This is 

due largely in part to the long periods of time that the system will need to be held at a certain 

level. Of course, it will have limits on how slow of a system response it can be, but it will not be 

a driving requirement. Overshoot and steady state error on the other hand are much more 

important requirements for our application. Overshoot is important because of our control 

system’s lack of ability to remove any propofol from the system. It cannot command a negative 

infusion rate. Therefore if a target BSR is overshot, our closed loop system must rely on the 

natural release of the propofol from the effect site compartment to get down to the desired level. 

A large steady state error is undesirable for obvious reasons that apply to any control system, but 

for our application a large steady state error could command a much higher propofol dose than 

the patient requires and thus result in patient overdose.  

We relied on frequency domain methods to determine the robustness of our system. A 

sure-fire way of determining robustness of a system is to look at the sensitivity and co-sensitivity 

equations. The co-sensitivity and sensitivity functions are uniquely defined by something known 

as the “waterbed effect”. This is due to their algebraic relationship with each other, described in 

the equation below: 
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 𝑆 + 𝑇 = 1 Eq. 31 

This equation tells us that the closed loop response, T, must be balanced with the 

sensitivity of the system, S. It is desirable for our system to respond to low frequency inputs, (i.e. 

set point values or step responses in BSR) and be robust to any high frequency oscillations that 

could occur due to noise. In this way, the magnitude of the closed loop system, T, should be 1 for 

low frequency inputs and 0 at high frequency inputs. The opposite should be true for S in order 

to be robust to noise. An easy tuning method to ensure this will be the case is to look at the loop 

gain throughout the frequency range. The loop gain should “roll off” at high frequencies which 

ensures our closed loop system is not responding to high frequency input. In order to maximize 

gain and phase margin, it is desirable to look at how quickly the loop gain of the system “rolls 

off” at the loop gain crossover frequency. Making this value near to -20dB/decade ensures that 

we are getting sufficient gain and phase margin for our closed loop system. 

In order to design gains that meet these requirements, we used a Ziegler-Nichols tuning 

method. This method was created for process control environments and has been refined through 

numerous studies. It seeks to use the natural characteristics of the process step response as a 

method to create gains for the system to be controlled (Astrom & Hagglund, 1995). The 

equations for the tuning method are below. 
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𝐾𝑝 =

1.2𝑇

𝐿
 

Eq. 32 

 
𝐾𝐼 =

𝐾𝑝

2𝐿
 

Eq. 33 

 
𝐾𝑑 =

𝐾𝑝𝐿

2
 

Eq. 34 

Where the parameters T and L may be described using the step response of the plant. As 

an example, the plant model with both the PK model and the selected delay is shown below. 

 

Figure 13: Step Response with Ziegler-Nichols Parameters 

The red line is the step response while the blue line is the tangent line at the steepest point 

in the step response. L is the time from 0 to the x-axis intersection with the tangent line and T is 

the time from the tangent line intersection with the x-axis and the tangent line intersection with 

the final value of the step response. It should be noted that the step response for this system 
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reaches steady state at nearly ten thousand seconds which is why we don’t see the step response 

reach its final value in this figure.  

While using these coefficients for design, we also swept the actuator parameters to 

determine the overall closed loop performance from a linear perspective. A range of damping 

coefficients from 0 to 1 were run as well as a logarithmic range of time constants.  

At each iteration, a linear closed loop system was formed to estimate the nonlinear closed 

loop system that will ultimately be simulated. The PK model, being linear initially, was coupled 

with a pade approximation for delay to form the plant model. A pade approximation effectively 

desires to fit a certain equation order to a delay in order to approximate it in a linear sense. In this 

way, we can linearly approximate the effects of algorithmic delay in the system. A lower order 

pade approximation is typically desirable as the higher order approximation may introduce 

undesirable effects. A third order approximation was found to be sufficient for our application. 

Since we have a variable delay in our system, the average delay expected for our system 

throughout a range of recovery parameter uncertainties was used as shown in Chapter 3. 

The actuator and controller models were then included to form the loop gain at the input. 

This is done by breaking the loop at the input and taking the preceding systems in series until a 

full loop is completed back to the original break point.  
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Figure 14: Breaking the Loop 

 𝐿𝑢𝐾𝐺 = −𝑠𝑦𝑠𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 ∗ 𝑠𝑦𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ∗ 𝑠𝑦𝑠𝑝𝑙𝑎𝑛𝑡 Eq. 35 

 
𝑆 =

1

1 + 𝐿𝑢𝐾𝐺
 

Eq. 36 

 
𝑇 = 1 − 𝑆 =

𝐿𝑢𝐾𝐺

1 + 𝐿𝑢𝐾𝐺
 

Eq. 37 

 

This was then used to form the sensitivity and co-sensitivity systems as shown in 

equations 35 through 37 above. The co-sensitivity, 𝑇, also being the closed loop response, was 

then used to get the time domain performance out of the system as well as gain and phase 

margin. The loop gain was also taken independently and the loop gain crossover frequency was 

calculated. The slope of the loop gain (dB/decade) was then determined at this point. Of course, 

if the chosen actuator and controller destabilized the system then the iteration would be 

considered a failure and the design would iterate to the next range of values. The stability of the 

system was simply determined by taking the eigenvalues of the closed loop system and ensuring 

they were all negative, which indicates all the poles of the system are on the left half plane and 

the system is stable. The various combinations of actuator time constant and damping coefficient 

yielded a variety of results. We desired to maintain a gain margin above 6dB and a phase margin 

greater than 45 degrees in addition to minimal overshoot and a roll off steepness near -20dB. To 

meet these design requirements and shape a co-sensitivity and sensitivity maximum value that 
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was relatively small as well as minimize overshoot, the following actuator specifications were 

chosen. 

Table 5: Actuator Design Parameters 

Damping Coefficient Time Constant (s) 

1 91.03 

These actuator parameters yielded excellent gain and phase margin results. With the 

Ziegler-Nichols tuning method shown above in equations 32-34, the system yielded a gain 

margin of 26.4dB and a phase margin of 160.45 degrees as well as a roll off steepness of -21dB 

at the loop gain crossover frequency. These excellent stability margins should not be altogether 

surprising due to the fact that our system was already quite stable. 

 

Figure 15: Gain Design Closed Loop System Performance 
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In addition, the figure above shows the step response and sensitivity/co-sensitivity 

functions. The figures show a steady-state overshoot with a two percent steady state error. Both 

functions show magnitudes over 1, however they are relatively small and since our system has 

excessive margin, these magnitudes should not pose any stability issues. 
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Chapter 6: Simulation Results  

 

 In order to test the model’s ability to control the BSR of a certain patient, a BSR 

trajectory was created that correlates with the values in the table below. 

Table 6: CLAD Set Point Reference Commands 

BSR 0.8 0.8 0.5 0.5 0.2 0.2 

Time 

(sec) 

0 25000 25001 45000 45001 65000 

  

  This trajectory was chosen so as to stress a large range of BSR values while also 

allowing us to view the steady state values at each of these conditions by commanding the 

system hold at that BSR for an extended period of time. The first simulation done is for the 

nominal recovery parameters shown in Table 2 with no noise added and with the patient data that 

the controller was designed to. 

 

Figure 16: Nominal System Performance 
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The results show the BSR closely tracking the step responses as they are commanded 

separately throughout the trajectory. An obvious first takeaway is that the initial BSR comes out 

to a value of roughly 0.15. This is because the minimum burst suppression ratio our algorithm 

could estimate while maintaining a relatively monotonic increase throughout the range of 𝑐2  is 

also 0.15. Due to this, our conversion from concentration in the effect site compartment was 

limited to the minimum 𝑐2 value that could be attained with near monotonic performance. These 

results show that there is a steady state error after the system is commanded to a set-point of 0.8 

as well as a small initial overshoot. This is not entirely unexpected due to the step response 

results from our gain selection and actuator design in Chapter 5.  

The second simulation run was done with a different patient than what the gains were 

designed to. In order to model what would result in less propofol infusion than what the original 

patient needed in an attempt to cause the system to overshoot, a patient type was chosen with a 

female gender, age of 65, weight of 50 kilograms, and a height of 125 centimeters. Due to the 

decreased weight and age and increased height in comparison to the original patient, this patient 

requires less propofol to reach a certain effect site concentration.  
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Figure 17: Noise and Patient Uncertainty System Performance 

 
Figure 18: Effect Site Concentration with Patient Uncertainty and Noise 

The blue line in the figure above represents the nominal patient concentration while the 

red line shows the concentration of the patient with added uncertainty. The main difference 

shown between the two is that the system with patient uncertainty does pose a faster rise time 

and higher overshoot than the original patient. However, this overshoot is quickly dissipated and 
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a steady state result similar to that of the nominal case is reached quickly. Aside from this, the 

closed loop system performance shows the evident noise that was added to the system but 

maintains a mean value around the commanded BSR. 

Finally, a simulation with a drastically different patient and the maximal increase in 

recovery parameters was run to see how the system deals with maximal uncertainty in the system 

it was designed for. The maximal increase in recovery parameters are as shown in Figure 6. The 

immediate impact of this increase is the relationship between BSR and 𝑐2 which will in turn 

result in a change in the effect site concentration required to achieve a certain BSR. This change 

also increased the effective lower bound of control due to the increased suppression that we 

witnessed in Figure 6 when the recovery parameters were all simultaneously increased. This 

increased suppression, coupled with the static lower bound set on the concentration to  𝑐2 

conversion, caused the system to be unable to both attempt a lower 𝑐2 value than 10 for the 

purpose of searching for a smaller BSR to be controlled and, therefore, unable to reach a BSR at 

the target level that we desired. The added noise to the system resulted in similar behavior to the 

model which we added patient uncertainty and noise. In addition, larger spikes than would be 

expected by noise generation occurred at high BSRs. It is likely that the algorithm had seen a 𝑐2 

value or range of 𝑐2 values that caused this jump which could be unique to the recovery 

parameter uncertainty that was imparted on the model. 
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Figure 19: Noise with Patient and Neurological Uncertainty System Performance 
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 Chapter 7: Conclusions and Future Work 

This paper presented an algorithm for detecting burst suppression in the modified 

Wilson-Cowan equations (Liu & Ching, 2017) as well as a closed loop control method for 

targeting specific BSR’s amid patient and neurological uncertainty. Design goals of this system 

were sufficiently met in the nominal case and the case with added noise and patient uncertainty 

where the maximum observed overshoot was roughly six percent and the system’s steady state 

error was roughly two percent. In addition to this, a bridge was created to convert the output of 

the 4-dimensional PK Schnider model (Schnider, et al., 1998 and Absalom, Mani, DeSmet, & 

Struys, 2009) to 𝑐2 values which are fed as inputs to the modified Wilson-Cowan equations (Liu 

& Ching, 2017). This allows the two models to be used in conjunction to model the overall 

system behavior as it relates to propofol impact on neuron firing rates.  

Future work may be done to build on these results by improving the burst suppression 

ratio estimation algorithm to track values at the lower bounds of the equations described by (Liu 

& Ching, 2017). The reduced performance due to neurological uncertainty that we witnessed in 

the large uncertainty run was due to the BSR estimation algorithm estimating a lower bound that 

was too high for the system to be controlled at a BSR of 0.2. The minimum BSR this system 

could be controlled to was 0.38, which is where the system held during the portion of the 

trajectory that a BSR of 0.2 was commanded. During the reachable parts of the envelope, 

however, the control scheme worked with similar performance to that of the nominal case. This 

would suggest that an adaptive estimation algorithm needs to be developed to estimate the 

neurological deviations from the nominal case and that the control methodology used herein is 

sufficient to accomplish our design goals for this application. This adaptive estimation algorithm 

could be similar to a bolus infusion stage where the algorithm sets itself on initialization before 
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actively controlling the patient’s BSR levels. In addition, a more robust translation between the 

effect site concentration and the 𝑐2 value could be made to include a wider range of patients and 

change in the recovery dynamics of the modified Wilson-Cowan equations (Liu & Ching, 2017). 

Other parameter changes could also be accounted for by varying consumption parameters in 

addition to the recovery to create a more diverse range of uncertainty which could account for a 

greater diversity in patient firing rates. The initial tuning done for the adaptive estimation 

algorithm during bolus could also be done concurrently for the concentration to 𝑐2 conversion to 

make a more complete robust solution. 
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