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The main purpose of information visualization is to act as a window between a user and data.

Historically, this has been accomplished via a single-agent framework: the only decision-

maker in the relationship between visualization system and analyst is the analyst herself.

Yet this framework arose not from first principles, but from necessity: prior to this decade,

computers were limited in their decision-making capabilities, especially in the face of large,

complex datasets and visualization systems. This thesis aims to present the design and

evaluation of a mixed-initiative system that aids the user in handling large, complex datasets

and dense visualization systems. We demonstrate this system with a between-groups, two-

by-two study measuring the effects of this mixed-initiative system on user interactions and

system usability. We find little to no evidence that the adaptive system designed here

has a statistically-significant effect on user interactions or system usability. We discuss the

implications of this lack of evidence, and examine how the data suggests a promising avenue

of further research.
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Chapter 1

Introduction

Thesis Goal: This thesis aims to present the design and evaluation of a mixed-initiative

system.

The main purpose of information visualization is to act as a window between a user and

data. The field of information visualization exists to examine and study the ways in which

visualizations can aid analysts, researchers, and all people who must interact with data of

all types in understanding, synthesizing, and communicating that data Historically, this has

been accomplished via a single-agent framework: the only decision-maker in the relationship

between visualization system and analyst is the analyst herself. Yet this framework arose

not from first principles, but from necessity: prior to this decade, computers were limited

in their decision-making capabilities, especially in the face of large, complex datasets and

visualization systems.

Yet these same datasets are becoming more common and more integral to the workflows

of analysts around the world. The size and complexity of these datasets poses a particular

challenge to visualization designers: as more data is packed into a visualization, it becomes

more difficult to view every visual element at the same time. In particular, in visualizations

that present individual data points (rather than showing statistics and aggregates), the

density of data points can cause them to start overlapping, partially or fully hiding some

datapoints from view. There are existing solutions to this issue. The most frequent solution

is to allow the user to zoom in and out of the visualization, allowing the analyst to see an

overview that may be partially-obscured, or see individual points in their entirety. However,

this solution not only loses the benefit of an overview — as datapoints are obscured, a fully-

zoomed out view does not give a true representation of the data — but it forces users to take
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longer on tasks [26], as gathering a full picture of the data requires more interactions. In the

context of geographic data, cartographers often carefully choose representations to highlight

certain aspects of the visualization, or vary the representation by zoom level (this can be

seen in Google or Apple maps, for example). Yet this also fails to capture a representative

overview of the data. Furthermore, both of these techniques are often determined a priori,

and the user’s tasks and interests are not taken into account.

However, the past decade has brought with it a resurgence and explosion of machine learning

techniques that have expanded the abilities of computer systems in fields such as perception,

network analysis, and speech recognition [38]. These advancements, combined with the con-

tinuation of Moore’s Law, have heralded an age of machine learning techniques permeating

fields from which they were previously absent. Although these advancements and changes

have undoubtedly touched the information visualization field, they have yet to truly challenge

the existing single-agent paradigm discussed above. With new machine learning techniques

(and greater processing power) in hand, it seems as if researchers in the field should be able

to create multi-agent systems, in which both the analyst and the visualization system work

together to guide the analytical process.

This thesis aims to contribute to that ideal by presenting an mixed-initiative information

visualization system. The novel design uses a hidden Markov model algorithm, developed by

Ottley et. al [36], to capture and predict user attention. The visualization then responds by

adaptively re-drawing datapoints, bringing datapoints that the user is likely to be interested

in to the foreground, and sending “uninteresting” datapoints to the background. In doing

so, we hope to create a system that allows for an informative overview, encourages easier

exploration, and reduces the need for visual transformations.

After completing a study on the effect of the system described in this thesis, we find only

one statistically significant difference under the adaptive system. The interpretation of the

difference is difficult, but could point to the role of datapoint density in the effectiveness of

the re-drawing technique used in this thesis. We also point to some statistically insignificant

results as encouragement that the type of mixed-initiative system described in this thesis is

promising, but may need more work or further study to be effective at aiding analysts in

their struggle with Big Data.
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1.1 Contributions

In light of the existing research, and the problems posed above, this thesis makes the following

contributions:

• The design and evaluation of a real-time mixed-initiative system: We provide the de-

sign and evaluation of a mixed-initiative approach to exploratory visual analysis. We

explore how this approach can take full advantage of existing prediction systems and

discuss the implications of this type of system.

• A real-time adaptive agent that leverages a design- and context-agnostic prediction

algorithm: As part of the experiment design, we lay out how an existing prediction

algorithm can be integrated as a real-time adaptive system to help users make sense

of large datasets. It is the first design- and context-agnostic mixed-initiative system,

to the best knowledge of the authors.

3



Chapter 2

Prior Work

This thesis builds off of work from three fields: visual analytics, human-computer interaction,

and machine learning. In particular, the study of interaction from visual analytics motivates

the design of the implementation and supports the construction of a mixed-initiative system

from the perspective of a user or analyst. The study of mixed-initiative systems, a subfield of

human-computer interaction, explores the prior work on systems similar to the one described

in this thesis and outlines their shortcomings. In doing so, we carve out a niche that we

believe can be filled by the system presented in this thesis. Lastly, we explore how the use

of machine learning allows us to fill that niche by providing real-time approximations of user

attention.

2.1 Visual Analytics and Interaction Techniques

The term “visual analytics” traces its roots to the Pacific Northwest National Laboratory,

a federally funded research and development center run by the United State Department

of Energy just after the turn of the 21st century. The term was popularized by James

J. Thomas and Kristin A. Cook in a report called “Illuminating the Path”, written for the

United States Department of Homeland Security in 2005 [46, 47]. Driven by the September

11 attacks in 2001 and the Hurricane Katrina disaster in 2005, the authors felt compelled

to draw the attention of the visualization community towards developing systems capable

of enabling analysts to comprehend “overwhelming amounts of disparate, conflicting, and

dynamic information”[46, p. 2]. The report goes on to define visual analytics as “the science

of analytical reasoning facilitated by interactive visual interfaces” [46, p. 4]. The report then

4



lays out four major research areas in visual analytics: the science of visual reasoning; visual

representations and interaction techniques; data representations and transformations; and

the production, presentation, and dissemination of visual analytics. It is with the second

item, visual representations and interaction techniques, that this thesis is concerned.

In the aforementioned seminal report, Thomas and Cook state that little theory exists about

“the science of interaction”, and suggest that researchers work to develop the field more

deeply. The authors also note that “analysis. . . is more of a dialogue between the analyst

and the data” [46, p. 73]. This “dialogue” framing will be critical to keep in mind, as it is

fundamental to the conception of visual analytics.

Some work had already been done on this “science of interaction” in adjacent fields; in

particular, Colin Ware had touched upon interaction in visualizations in a 2000 book ti-

tled “Information Visualization: Perception for Design” [54], laying a foundation for future

research. However, the suggestion to expand the “science of interaction” took a few years

to catch on in the visual analytics community. Yi et. al lament in a 2007 paper that “the

representation component [of information visualization systems] has received the vast ma-

jority of attention in Infovis research” [56]. That being said, the suggestion did catch on:

Yi et. al [56] created a taxonomy of interactions, and a number of revisions, challenges, and

refinements followed from the community in the coming years [20, 8, 24, 39, 52].

While many of the visualization taxonomies built by these researchers are still in widespread

use today, the development of a comprehensive and standard set of interaction techniques is

still an open challenge [14]. That does not mean, however, that the existing taxonomies are

not useful, or that they do not agree on some points. Most, if not all, of these taxonomies

rely on a few underlying models of how the visual analytics process is carried out. One of the

most popular and widely-used of these models is the “sensemaking loop” developed by Pirolli

and Card in 2005 [37], which describes the process by which intelligence analysts go from

the collection of data to the presentation of conclusions. Other popular frameworks, such as

those developed by van Wijk [51] and Keim et. al [27], present alternative understandings of

visualization’s role in analysis by abstracting away some of the details of the Pirolli and Card

model. However, the important thread to follow is not the fact that there exist competing

theories, but rather that all of the theories employ some form of a loop between user and
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visualization in which the user creates hypotheses, tests them against the visualization,

refines the visualization, and forms new hypotheses.

This looping structure gets at the ideal “analytic dialogue” discussed in the Thomas and

Cook report. Yet Booth et. al, in a survey of these process models [9], point out that

all of them present a flow of information directed by a single agent: the user. True, the

visualization provides the analytic platform from which the user can draw conclusions, and

the user refines that platform as she works, but at the end of the day, the user must both

form hypothesis and refine the visualization parameters.

However, this single-agent model of analysis runs against the grain of every visual analytics

paper, from the field’s inception to the most current research. As much as researchers would

like to view this back-and-forth between user and visualization as the critical “analytic

dialogue” proposed by Thomas and Cook, it is most often a monologue, not a dialogue, that

is occurring. Enter the concept of a mixed-initiative system.

2.2 Mixed-Initiative Systems

This thesis is not the first work to question the single-agent nature of the supposedly “bi-

lateral” discourse in visual analytics. Researchers, computer scientists, and hobbyists have

been discussing the idea of computer systems and humans working in harmony since the

beginning of modern computing [49]. Yet for many decades, the idea of human-computer

collaboration was dormant within the field of information visualization. However, the idea

was not dormant in the human-computer interaction community. A series of essays in the

September/October 1999 issue of “IEEE Intelligent Systems and Their Applications” sum-

marizes the developing field of mixed-initiative systems, a “flexible interaction strategy in

which each agent (human or computer) contributes what is best suited at the most appro-

priate time” [23]. Eric Horvitz, one of the essay authors, had published a paper earlier in

1999 talking about how many of his colleagues were focused either on developing automated

agents that can be accessed via conventional UIs, or on exploring new interaction methods.

Horvitz proposed the field of mixed-initiative system as a bridge or compromise between

the two sides [25]. He also offered a more detailed definition of mixed-initiative systems:

“methods that explicitly support an efficient, natural interleaving of contributions by users
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and automated services aimed at converging on solutions to problems”. In other words,

Horvitz proposes that the solution to the single-agent problem is to introduce autonomous

or semi-autonomous agents to act as the other side of the dialogue.

Horvitz’s 1999 paper, and the essays described above, ended up formalizing an existing

subfield of human-computer interaction, and great progress has been made in developing

mixed-initiative systems for a number of different applications. However, the majority of this

progress has come in the form of custom-tailored backends to domain-specific applications

that are often more focused on user interface than visualization [15, 16, 30, 35, 13, 53, 22, 44].

This context-specific development is useful for exploration of mixed-initiative systems in the

human-computer interaction community, but does not conform to any of the frameworks

provided for interaction in the visual analytics community. That is to say, these systems

do not work based off a theory of the “science of interaction” generally, but rather off the

interactions of a particular system.

Machine learning is the other major area in which mixed-initiative systems have become

prominent. The necessary semi-autonomous nature of the computer agent in mixed-initiative

systems can be facilitated by techniques from the machine learning field, especially as it has

blossomed and advanced in the past two decades. Yet these advances often come in the

form of the human helping the computer; in particular, many mixed-initiative visualization

systems have been developed that allow for humans to help train and tune machine learn-

ing systems [40, 17, 32, 44]. The critical distinction between these systems and the those

described and imagined by visual analytics researchers is that the computer is building the

models, and the human is just helping; in contrast, visual analytics is focused on leveraging

visualization to allow for humans to more effectively build models. As such, there is still need

for the development of mixed-initiative systems which leverage machine learning techniques

to aid in human-centered model-building.

2.3 Machine Learning and Visualization

How can researchers leverage machine learning to create general-purpose mixed-initiative

information visualizations? Here we turn to prior research from our own lab, the Visual

7



Data Analysis Group (VDAG) at Washington University in St. Louis1. In “Follow the

Clicks: Learning and Anticipating Mouse Interactions During Exploratory Data Analysis”,

Ottley, Garnett, and Wan lay out a critical piece to enable this mixed-initiative system we

aim to design: a predictive algorithm which uses passive observations of user interactions

to predict future interactions [36]. This prior research uses a hidden Markov model to

model user attention and, critically, constructs the model to entirely sidestep the complex

and as-of-yet unsolved issue of interaction taxonomies. Instead, the model employs visual

marks and channels [7] — descriptions of the primitive types of geometric elements used in

visualizations, and their graphical properties — to represent the hidden states of the Markov

model. The advantage of this framework is that if the hidden state is built from visual basics,

then every interaction possible in a data visualization can be mapped to the components of

the hidden state [12, 11].

Although Ottley et. al originally designed their experiment to assess the predictive ability of

their model, they do discuss the implications for mixed-initiative systems. Chief among those

implications, and the one this thesis has been building to, is that the existence of a system

that models users’ attention and predicts their future actions based on passive observations

of low-level visual building blocks should allow a computer agent in a mixed-initiative system

to guide a user’s attention towards visual elements of future interest.

The question remains: how is this helpful? If the algorithm is only proven (and designed) to

capture the future attention of the user, then won’t the user visit or investigate a visual mark

whether the algorithm can predict it or not? While this may be true in systems with small

datasets, all too often there remain complaints of “too much data”. This abundance of data

available to the analyst then poses a challenge to visualization designers: how to effectively

show or highlight relevant data while temporarily (or permanently) hiding or deemphasizing

irrelevant data. Techniques certainly exist for highlighting or emphasizing relevant data,

but the question of what is relevant is often left to the analyst; if the visualization system

itself can help determine that, it may allow the analyst to more easily make sense of large

or unwieldy datasets.

1visualdata.wustl.edu
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Chapter 3

Mixed-Initiative System Design

The introduction of this thesis aimed to build a foundation for the work that follows in a

bottom-up manner: by reviewing the concepts and ideals of the fields that form the basis for

this thesis, and working towards the problems, issues, and goals this experiment design tries

to address. With that groundwork lain, the remainder of this thesis will try to separate the

design of a visual system that could benefit from a mixed-initiative agent from the design of

the mixed-initiative agent itself. The purpose behind this approach is that by building the

two components separately, the reader will be more effectively persuaded that the type of

mixed-initiative agent proposed is as design- and context-agnostic as possible.

3.1 Algorithm Input

As discussed in Section 2.3, the algorithm employed in this thesis is one developed by Ottley,

Garnett, and Wan [36]. In their paper, the authors of the algorithm discuss how the hidden

Markov model’s unobservable states can be described in terms of the marks and channels of a

visualization. The authors furthermore describe the observable states of the model in terms

of the user’s interactions with the visualization system. Finally, the authors specifically lay

out the unobservable and observable states, as well as the dynamic and observational models

of the HMM for an experiment consisting of a clickable map.

In particular, the authors define the unobservable state of the model (i.e. the user’s attention

at time t) as a four dimensional vector zt = (xt, yt, kt, πt), where xt ∈ R and yt ∈ R are the

coordinate location of the user’s focus, kt is the user’s categorical focus (e.g. Mexican food or
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Arson), and πt ∈ [0, 1] is a bias parameter which describes the user’s bias towards location

vs category. They define the observable state of the model in terms of the set of possible

interactions that the user can perform; in the case of the paper, these are map clicks. We

leave the descriptions of the dynamic and observation models to the original paper, as they

are not as critical to understanding how this algorithm can be modified into a real-time

adaptive system.

Since the paper that created this algorithm laid out specific models of states and dynamics

for a geographical interface, we will limit ourselves to the same models in this thesis. That

is to say, despite the fact that the user can do much more than click on datapoints in the

visualization described in Chapter 4, we will limit ourselves to just the user’s clicks as input

to the real-time algorithm. Further expansion of the algorithm to include all other types of

interaction in the system described above is possible, but is left to future work.

The only real adaptation of the algorithm described in “Follow the Clicks” is assigning an

instance of the algorithm to every user, and persisting that model’s state for the duration

of a user’s interactive session with the visualization. In doing so, clicks can be registered by

the model in real-time, at which point the model updates its internal state and returns a

probability mass distribution over the points in the visualization.

3.2 Visualization Adaptation

In order to understand how the agent will interact with the visualization, it is worth under-

standing in slightly more detail what kinds of mixed-initiative systems exist. In the collec-

tion of essays on mixed-initiative systems mentioned in Section 2.2, James Allen contributes

“Mixed-Initiative Interaction” [1]. In this essay, Allen lays out a hierarchy of mixed-initiative

systems with four levels in order of increasing capabilities: unsolicited reporting, subdialogue

interaction, fixed subtask initiative, and negotiated mixed initiative. The capabilities of these

systems are reproduced in Table 3.1.

The mixed-initiative system that this thesis outlines is one that employs unsolicited report-

ing. While a higher-level mixed-initiative system may be more ideal for exploratory data
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Mixed-Initiative Levels Capabilities

Unsolicited reporting Agent may notify others of critical information as it arises
Subdialogue initiative Agent may initiate subdialogues to clarify, correct, and so

on
Fixed subtask initiative Agent takes initiative to solve predefined subtasks
Negotiated mixed initiative Agents coordinate and negotiate with other agents to deter-

mine initiative

Table 3.1: Capabilities of different levels of mixed-initiative systems, as laid out by [1].

analysis, unsolicited reporting still allows the computer agent to report or point out inter-

esting data to the user. In particular, an unsolicited reporting scheme works well with the

algorithm developed by Ottley, Garnett, and Wan, as its output is a probability distribution

over datapoints. Looked at in terms of available information, the computer agent is only

able to process passive observations and return a probability distribution. The algorithm

does not allow the computer agent to “coordinate and negotiate”, the agent is not “solving

predefined subtasks” (unless the predefined subtask is finding points of future interest), and

the algorithm does not allow direct dialogue input to “clarify, correct, and so on”. As a

result, the best classification of the agent is one that employs unsolicited reporting.

So what kind of unsolicited reporting system can the agent employ? And what kind of

unsolicited reporting is helpful to a user? This depends partially on the stated goal of the

system. This thought was given some consideration in Section 2.3: the algorithm may be

most useful when the user is trying to make sense of large amounts of data.

In particular, visualizations with large amounts of occlusion (where datapoints overlap and

partially or fully obscure each other) are difficult for an analyst to use effectively. These

visualizations could certainly use zooming to handle this occlusion, but this solution has its

problems and limitations. When the visualization is completely zoomed out, many of the

datapoints are partially or entirely occluded, making large trends hard to see. When the

visualization is completely zoomed in, pins can be seen in their entirety, but such a close

view can cause the analyst to lose context [26].

This is not to say that zooming itself is the problem; a 2013 study by Jakobsen and Hornæk

showed that zooming, while sometimes confusing, is also one of the most effective and quickest
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tools for navigating large maps [26]. However, the same study showed that being able to

perform tasks without leaving an overview of the map — i.e. while zoomed all the way out,

as seen in Figure 4.1 — is rated as the easiest way to interface with large maps. It seems

then that the ideal mode of interaction would be to mix the two: to aim for an informative

overview, but still allow for zooming into detail as necessary.

This is where an adaptive real-time system can aid the user. In particular, if the adaptive

system has a forecast of points the user may be interested in, then it should act to change

the visualization, drawing the user’s attention to those points. There are myriad ways such a

system could accomplish this, which broadly fall into three categories: direct reporting, where

the computer agent uses plaintext or other non-visual forms of communication to draw the

user’s attention to points of interest; interactive guidance, where the user’s interactions are

modified to encourage interaction with points of interest (e.g. a bubble cursor [21] or target

gravity [4]); and what we are calling “embedded reporting”, where the agent communicates

with the user via direct manipulation of the visualization. The implementation of this

embedded reporting scheme is further discussed in Section 4.3.
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Chapter 4

Implementation

To support mixed-initiative data exploration, we design a map-based visualization system

to following Shneiderman’s visual seeking mantra: “Overview first, zoom and filter, then

details-on-demand” [43]. To build such a system, we address three major points. The first is

dataset selection, which must be done before anything else (as it is in the analytic process),

since it informs all other aspects of a visualization. The second is encoding: how is each

attribute of the data represented in the visualization system? The third is reporting: how

does the computer agent report its findings to the user via the visualization system? Each

of these aspects of a visual analytic system are discussed below.

4.1 Dataset Selection

We first turn to the critical aspects that this visualization system much have; chiefly, if

the stated advantage of a mixed-initiative system is its ability to help the user navigate

large, dense datasets, then the visualization design must employ large, dense datasets. Fur-

thermore, the datasets should be rich enough to compel exploration (otherwise why would

an analyst be looking at a visualization?) and easily available to the researchers. Finally,

the use of two datasets, rather than just one, provides stronger justification to any results

or conclusions drawn from an experiment by lowering the risk that the results were data-

dependent. Given these criteria, two datasets were chosen: the Yelp Open Dataset [55], and

a dataset of crime in St. Louis, MO, USA [34].
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Yelp Open Dataset

The Yelp Open Dataset was released by Yelp, Inc. as part of a series of challenges put forth by

the company, but is also open to general research. It contains a vast amount of information

about business and reviews, but for the purposes of this experiment the dataset was culled

down to restaurants in Toronto, Canada (chosen for the high-density nature of that subset

of the dataset). Each restaurant had a variable number of attributes. Eight attributes were

selected for use in the experiment based on the availability of each attribute in the dataset:

a unique ID, the name of the restaurant, the address of the restaurant, the exact coordinates

of the restaurant, the average score of all reviews of the restaurant (ranked out of 5), the

price of the restaurant (ranked out of 5), and the “main cuisine” of the restaurant.

The first seven attributes were included in the dataset; the eighth attribute, the “main

cuisine”, was hand-annotated by the researchers, chosen from a set of cuisines provided in

the dataset for each restaurant, and determined by independent research into the restaurant.

Finally, the top ten most prevalent cuisines were chosen for use in the experiment: cuisines

originating from Korea, Japan, Thailand, Canada, Mexico, Italy, and China, as well as pizza,

burger, and sandwich shops. Restaurants that fell into one of these main cuisine categories

were included in the final experiment, culling the dataset down to 2,915 restaurants.

St. Louis Crime Dataset

The St. Louis Crime Dataset was pulled from the database of crimes maintained by the

Metropolitan Police Department of St. Louis; specifically, the dataset consists of the crimes

committed the month of March 2017. The dataset contains 1,951 crimes, each with 20

features. Five attributes were selected for use in the experiment based on the availability of

each attribute in the dataset: a unique ID, the type of crime, the coordinates at which the

crime occurred, the street address at which the crime occurred, the date and time that the

crime occurred, and a description of the crime. Eight types of crime exist in the database:

homicide, theft-related, assault, arson, fraud, vandalism, weapons, and vagrancy.
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3

2

Figure 4.1: An overview of the entire visualization using the St. Louis crime dataset, with vi-
sualization components labelled. Component 1 corresponds to the hover tooltip; component
2 corresponds to the information card; component 3 corresponds to the label and filter.

4.2 Encoding Data into a Visualization

Given that the chosen datasets all had geographical references in their attributes, the logical

choice of visualization is a map. In addition to being the most effective method for showing

geographic information, map visualizations have a major advantage: they are incredibly

prevalent visualization systems, which users often interact with on an almost-daily basis [5].

As a result, experimental results not only have some claim to generality, but user familiarity

with maps also reduces initial confusion and adjustment, allowing the effects of any mixed-

initiative system to stand out more clearly.

The mapping of data attributes to visualization features is often guided, in any project,

by the mantra “Overview first, zoom and filter, then details-on-demand” laid out by Ben

Shneiderman in 1996 [43] — a mantra that has been revised, edited, and expanded upon

since its inception, but which remains highly cited to this day [46, 27, 29, 28, 45, 6, 14].
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Overview First, Zoom and Filter

Following this mantra, datapoints can be represented by pins in a map (determined by the

coordinates included in each dataset) and color-coded according to the category of each

datapoint: the main cuisine for restaurants, and the type of crime for St. Louis crime data.

Colors were chosen using a list compiled by Sasha Trubetskoy [48], and Mapbox [33] was

used as the underlying mapping software, with React-Map-GL [50] as a wrapper to interface

with React [18]. The use of Mapbox means that panning and zooming are automatically

built in to the visualization; both panning and zooming are programmatically limited so that

the user cannot change focus from the desired area, for example by panning to New York

City or zooming out to see the entire world. The result of these overviews can be seen in

Figure 4.1.

Details-on-Demand

This provides a basic overview of the data; however, it is important at this point to address

the difference in available attributes of each dataset. The Yelp dataset, with bounded,

continuous features such as rating and price, could be more deeply encoded as an “overview”

by, for example, using the size of each pin to represent the rating of each restaurant. However,

the crime dataset does not contain any continuous features, which would mean that the

visualizations for the crime dataset and the restaurant dataset would have to be different.

This poses a particular challenge for experimental design, in which both datasets should

be presented as similarly as possible; the goal is to isolate the dataset as the independent

variable, without change to the representation, across the experiment.

As a result, the rest of the attributes are presented as details-on-demand. In particular,

details are provided in two forms: as tooltip popups that appear when a datapoint is hovered

over, or as “information cards” to the right of the map, created when a datapoint is clicked.

The hover tooltip, as seen in segment 1 of Figure 4.1, shows just a few details, such as the

restaurant’s name, rating, and price, or the crime’s type and description.

The information cards, on the other hand, show all the attributes of a given datapoint,

as seen in segment 2 Figure 4.1. The information cards also provide two more modes of
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interaction. The first is “View”, which transitions the viewport to center and zoom in on

the datapoint corresponding to that information card and temporarily enlarges the selected

datapoint to bring the user’s attention to the pin. The second is “Delete”, which removes the

card from the sidebar. This allows the user to keep a running list of datapoints of interest,

and refer back to them on the map on demand.

This setup covers most of Shneiderman’s mantra; the only part left out is “filter”. To round

out the mantra, a legend is attached in the bottom right of the screen, which also acts as a

filter, as seen in segment 3 of Figure 4.1.

Visual History

The final visual encoding employed in the visualization is a representation of interaction

history. Feng et. al have shown that displaying visualization history to a user encourages

them to visit more data and find more insights than they otherwise would [19]. To encour-

age as much exploration as possible without the inclusion of a mixed-initiative system, we

encode the interaction history by lowering the opacity of previously-clicked points in the

visualization.

4.3 Embedded Reporting Implementation

Due to the density of data and the details-on-demand nature of the above visualization,

the mixed-initiative system described here uses embedded reporting to communicate its

beliefs about user attention. There are a number of ways to employ embedded reporting.

Generally, any visual channel can be used to differentiate data points and communicate

points of interest. Given that position, color, size, and opacity are already in use in the

visualization, there are few channels remaining. More obscure channels, such as texture or

orientation, are harder to use in non-categorical contexts. Seeing as the information to be

displayed is an ordered ranking of datapoints, neither of these channels seem appropriate.

Fortunately, the position channel is only used in two dimensions; the z-index of the datapoints

— that is, the order in which they are drawn on screen — is static in a standard map

17



(a) The map before any clicks (b) The map after one click (c) The map after two clicks

(d) The map after three clicks (e) The map after four clicks

Figure 4.2: The changing z-order of the pins as the user clicks, with a particular interest in
Mexican restaurants (coded in brown).

visualization. As a result, the algorithm can take advantage of this open visual channel,

re-ordering the datapoints according to their probability masses, with the points with the

highest probability mass being drawn last, so as to appear on top of all other points. In

addition to simply being an unused channel, the z-order has a distinct advantage over other

channels: it is noticeable at an overview level, but becomes irrelevant as the user zooms

in and occlusion diminishes. Importantly, this means the algorithm is not “hiding” any

information from the user (in contrast, imagine a changing opacity, where low-probability

datapoints would all but disappear from the map). This distinction means that the z-order

change effectively modifies the overview, without changing zoom behavior, mixing the best

of both types of map interaction. The result is a series of changing z-orders of the same

visualization, as demonstrated in Figure 4.2.

The change in z-order is subtle, and it may be difficult to point out exactly what changed,

but this is a purposeful subtlety. A drastic or exaggerated change in visualization parameters

could cause the user to become distracted by the changing layout, rather than being guided

by it. The subtle change is meant to highlight trends in the overall data; for example,

in Figure 4.2 the algorithm brings forward lots of Mexican restaurants (in brown) to the

forefront, highlighting that downtown Toronto has an abundance of Mexican places to eat,

although that may not have appeared to be the case at first.
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Chapter 5

Evaluation

With a description of a real-time adaptive computer agent laid out in Chapter 3 and an

example visualization system laid out in Chapter 4, it is possible to run an experiment to

determine the effect of a real-time adaptive system on user interactions and system usability.

In particular, we employed a between-groups, two-by-two experiment inspired by a similar

study on latency by Liu and Heer [31]: the experiment used two datasets (Toronto restaurants

and St. Louis crimes) and two conditions (adaptive and non-adaptive, a.k.a. responsive and

unresponsive) to study the effects of adaptive systems, creating four groups:

1. Adaptive Toronto, then non-adaptive St. Louis

2. Adaptive St. Louis, then non-adaptive Toronto

3. Non-adaptive Toronto, then adaptive St. Louis

4. Non-adaptive St. Louis, then adaptive Toronto

After agreeing to the terms of the experiment as laid out by Washington University in

St. Louis’s IRB protocol, participants were randomly assigned to one of the four groups.

This two-by-two experiment is not ideal — within-group experiments are generally preferred

to between-group experiments — but participants cannot complete the experiment twice

on the same dataset without seriously biasing the second run. In addition, the inclusion

of two datasets gives some strength to the generalizability of any effect found during the

experiment.
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5.1 Task Design

In the paper “Follow the Clicks”, the predictive algorithm developed was tested via a geo-

graphical experiment using narrowly defined tasks. Specifically, participants of the experi-

ment were asked to carry out location- and type-based tasks, as well as tasks that focused

on both location and type. The advantage of these narrows tasks is that they mimic the in-

ternal, unobservable state of the hidden Markov model underlying the predictive algorithm.

Yet the entire premise of this thesis has been that the real-time system adapted from the

predictive algorithm is design- and context-agnostic; this assertion is hard to support if the

users of the visualization were limited in their interactions.

Consequently, the participants in this experiment were asked not to focus on particular

tasks, but instead to “take some time to interact with the dataset in front of [them], ex-

ploring the data and gathering insights”. Participants were then given the opportunity to

write down as many (or as few) insights as they would like. The reward structure of the

experiment was built around encouraging this insight-gathering: participants were awarded

$1 for participating, and $0.50 for every insight gathered.

Participants were also primed for interaction and insight gathering. Every type of interaction

(as described in Section 4.2) was also described to the user before either of the experiment

conditions started. Additionally, examples of insights were given, such as “there are more

kid-friendly coffee shops downtown than there are uptown”. The goal of this priming was

to introduce the user to the visualization and make explicit the idea of an “insight” without

biasing the user during either segment of the experiment. In this way, users were free to

perform exploratory data analysis without guidance or restriction, creating a general-purpose

task that can demonstrate the flexibility of the adaptive system.

5.2 Objective Data Gathering

To facilitate analysis, every user interaction was tracked; explicitly, all clicks, hovers, zooms,

pans, card views, card deletes, and filter toggles were recorded by the system. This objective
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data collection allows the adaptive system to be analyzed for its effect on the concrete actions

of the users.

5.3 Subjective Data Gathering

In addition to objective data gathered in the background, each participant was asked to

complete a survey about the visualization they had just interacted with (so each partici-

pant fills out two surveys: one after using the adaptive system, and one after using the

non-adaptive system). The surveys were administered using the System Usability Scale

(SUS) [10], a widely-used, “robust and versatile tool for usability professionals” [3], with an

added comments section at the end of each survey for general comments from users.

5.4 Adaptive System Hyperparameters

It should be noted that the predictive algorithm laid out in “Follow the Clicks”, as well

as the real-time version adopted here, uses a number of hyperparameters to control how

the algorithm acts. In particular, while modelling the “diffusion” of the user’s attention

between interactions, the hidden Markov model needs hyperparameters to describe how the

location (σx, σy), category (ρ), and bias (σπ) of the user’s focus (as described in Section 3.1)

shift and change; these variables were set to σx = σy = 0.03, σπ = 0.08, and ρ = 0.23.

These values were chosen based off of Bayesian optimization performed with the data from

“Follow the Clicks”. In a production implementation of this kind of adaptive visual system,

the hyperparameters could be tuned using data from the experiment described herein, or

via optimization over data gathered in the initial usage of the system. Additionally, 1000

particles were used for the particle filter, and the observation model used covariance value

σ = 0.05.
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Chapter 6

Results

To run the study, 200 participants were recruited via Mechanical Turk [2]. There were 127

men and 73 women in the study (with available options for “gender nonbinary” and “prefer

not to answer”), with ages ranging from 18 to 70 (µ = 36.5 and σ = 11.5). 65% of the

participants reported having at least an associate’s degree.

6.1 Limiting Users

Before continuing with the presentation of results, a fundamental issue with the experiment

must be addressed: not all users interacted equally with the system. The reason for this

apparent lack of interaction is discussed further in Chapter 7; however, it is necessary to

address the discrepancy between expectation and reality while performing the data analysis.

A visualization of user interactions can be seen in Figure 6.1, showing what percentage of

users performed a given number of clicks during a session. The main reason this lack of

interaction is an issue is because the algorithm developed in [36] was only shown to be

effective after the user’s third click; consequently, we do not believe it would be appropriate

to include users who did not interact enough to meet this threshold. However, we wanted to

analyze a group of users who seemed truly engaged, and felt that three clicks was not a high

enough cutoff. We instead decided to pick the users whose click interactions were within the

top 20% of their cohort. This ended up only including users who clicked at least eight times

in the St. Louis responsive condition, and seven times in the Toronto responsive condition.

The rest of the analysis presented within is done with only those top 20% of users.
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Figure 6.1: A graph showing how often users clicked on the visualization within a condition.
As the number of clicks increases on the x-axis, the percentage of users who clicked at least
x times decreases. The dotted line shows the chosen cutoff point of 20%.

6.2 Limited User Demographics

The chosen users consisted of 16 women and 25 men, with ages ranging from 19 to 69

(µ = 38.1 and σ = 12.1). 78% of chosen users identified having at least an associate’s

degree, with 61% identifying as having a bachelor’s degree.

6.3 Interaction and Response Data

We begin with interaction and response data; specifically, we look at the number of different

types of interactions within a single condition (e.g. the number of clicks on a responsive

Toronto map). We measure across eight dimensions: clicks, hovers, zooms, pans, card views,
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Toronto St. Louis

Responsive Unresponsive Responsive Unresponsive

Clicks 7.9 12.6 11.8 11.0
Hovers 52.0 41.0 46.4 38.6
Zooms 57.4 25.4 45.8 35.6
Pans 34.5 31.5 27.6 35.7
Views 5.2 41.0 4.0 7.3
Deletes 0.0 0.0 0.0 0.0
Filters 43.6 42.6 32.7 34.3
Insights 5.3 4.8 5.5 6.2

Table 6.1: Average values for interaction data frequency; bold values indicate statistically
significant differences

card deletes, filter toggles, and insights. Table 6.1 contains the average number of each

type of interaction or response per user, spread across datasets and conditions. The only

statistically significant difference was the number of zooms in the Toronto dataset (p=0.048);

all other measurement differences failed to cross a p-value threshold of α = 0.05.

We also measure both click and hover coverage; that is, what percentage of the datapoints

do users investigate via clicking or hovering on them. We describe these results in Table 6.2.

There is no statistically significant difference in click or hover coverage across the conditions.

Toronto St. Louis

Responsive Unresponsive Responsive Unresponsive

Click Coverage 0.25% 0.38% 0.33% 0.33%
Hover Covreage 1.54% 1.18% 1.46% 1.46%

Table 6.2: Average data coverage from clicks and hovers
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6.4 Survey Data

We also look at the data collected from the system usability survey administered at the

end of each condition. We compute the overall score according to the scheme originally laid

out by Brooke in [10], which creates a cumulative score out of 100. According to a meta-

analysis by Bangor et. al in [3], the experiment design scores in the upper section of the

2nd quartile for usability, as compared to 206 studies (containing 2,324 individual surveys

in total). Table 6.3 displays the average scores for the survey, both overall and for each

dimension, for each dataset and each condition. In both datasets, the difference in average

inconsistency scores was statistically significant, with p=0.04 for the Toronto dataset and

p=0.03 for the St. Louis dataset. However, the movement in average inconsistency scores

across conditions is itself inconsistent, with higher inconsistency on the Toronto unresponsive

condition, but lower inconsistency on the St. Louis unresponsive condition. The implications

of this discrepancy are discussed in Chapter 7.

Toronto St. Louis

Responsive Unresponsive Responsive Unresponsive

Overall Score 78.2 74.5 74.1 80.8

Frequency 3.6 3.8 3.5 3.7
Complexity 1.9 2.1 1.9 1.6
Ease of Use 4.2 4.0 4.2 4.3
Technical Support 1.5 1.7 1.7 1.4
Integration 3.9 4.0 3.9 4.1
Inconsistency 1.4 1.8 1.9 1.4
Quick Learning 4.2 4.0 4.0 4.1
Cumbersome 2.1 2.2 2.1 1.7
Confidence 4.0 4.0 3.9 4.2
Learning Curve 1.6 2.0 2.0 1.9

Table 6.3: Average values for system usability scores, overall and per-dimension
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6.5 Open Comments

As mentioned in Section 5.3, the SUS surveys were administered with an additional section

for general comments. After reading through all of the comments from users, we summarize

the main takeaways below:

1. The implementation was well-design and received positive feedback (as confirmed by

the SUS data).

2. Users were overwhelmed or challenged by the size and density of the datasets.

3. Many users wanted additional tools, such as price and rating filters, neighborhood

labels, and links to menus or crime reports.

4. A small number of users wrote that they did not notice a difference between the two

conditions.

5. A general consensus that the restaurant map was harder to analyze than the crime

map, due to the increased density of the restaurants as compared to the crimes.

These takeaways are discussed further in Chapter 7.

6.6 Relational Findings

While the comparison of the average number of clicks, hovers, etc. across conditions is

informative, it does not speak directly to the changes in behavior that may be expected

from changes in condition. In particular, the inclusion of an adaptive system, as discussed

in Section 3.2, aims to reduce the effects of occlusion. If a user is able to see more relevant

points more consistently, we do not necessarily expect the user to simply click more or less.

Rather, we would expect that they would become more efficient at performing whatever task

they may hope to perform. In particular, we can examine two metrics which may reveal more

about how changing conditions affect user behavior: the number of insights a user records

per interaction, and the number of insights a user records per viewport transformation.
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Toronto St. Louis

Responsive Unresponsive Responsive Unresponsive

Clicks 0.693 0.757 0.093 0.190
Hovers 0.083 0.779 0.042 0.514
Transforms 0.430 0.933 0.183 0.147

Table 6.4: p-values of regressions on clicks and hovers to predict number of insights. Statis-
tically significant p-values (p < 0.05) are in bold.

The two major interaction types that users performed were clicks and hovers; as a result,

any changes in insights per interactions are likely to be observed with respect to these two

types of interactions. Ordinary least squares regressions were run on the number of clicks,

hovers, and viewport transformations that an individual performed during an experimental

condition to predict the number of insights a user gathered during that same condition. A

visualization of the regressions is shown in Figure 6.2; the F-statistic p-values of the slopes

are shown in Table 6.4.

Ideally, the analysis of insights per interaction type would include a comparison of the

slopes of different conditions; i.e. comparing the slope of the regression on clicks across

responsive and unresponsive conditions. However, since none of the regressions themselves

are statistically distinguishable form having slope of 0, a comparison across conditions may

just amount to measuring comparisons of noise. As a result, that analysis is left out of the

paper.

27



(a) Insights vs clicks for St. Louis (b) Insights vs hovers for St. Louis

(c) Insights vs clicks for Toronto (d) Insights vs hovers for Toronto

(e) Insights vs transforms for Toronto (f) Insights vs transforms for Toronto

Figure 6.2: Regression models on interactions and transformations to predict number of
insights. Data from responsive conditions are in blue, data from unresponsive conditions are
in orange.
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Chapter 7

Discussion

Interpretation of the results presented in Chapter 6 must begin with a discussion of how

users interacted with the visualization. The beginning of Chapter 6 discusses the fact that

users did not interact with the visualization as much as expected; in particular, users did

not click on the visualization as much as expected. This discrepancy between expectation

and reality is likely due to a flaw in the experimental design: the information given on-hover

was nearly identical to the information given on-click. This information parity means that

there is no incentive for users to click on data points, other than to keep their information

in a persistent state on the sidebar.

This breaking assumption is particularly problematic in the context of an experiment that

relied on user clicks to trigger the experimental condition. This discrepancy is why Chapter 6

starts with an analysis of user clicks, and narrows the analysis to a group of users whose

interactions met the expectations of the experimental design. However, this narrowed user

group is not an ideal form of analysis; a better solution would be an experiment revision

that addressed the design missteps causing the discrepancy between expectations and reality.

Such a revision is discussed in Section 7.5. The rest of this chapter attempts to glean lessons

and information from the results in Chapter 6 despite the experimental design flaws.

7.1 Statistically Significant Change in Zooms

The only statistically significant result in Tables 6.1, 6.2, and 6.3 is a change in the average

number of zooms performed with the Toronto dataset. In particular, there is a significant
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increase in the number of zooms under the responsive condition. This finding is difficult

to interpret, especially since it did not hold across both datasets, and regressions on the

number of viewport transformations did not show any statistical significance. It should be

noted that one possibility is that this measurement arose form noise: this experiment aimed

to measure a number of user interaction metrics, and enough measurements across enough

dimensions could lead to an erroneous statistically significant measurement.

Another possibility is that users truly were driven to perform more zooms under the re-

sponsive condition. This would likely indicate that the mixed-initiative system, using the

re-drawing embedded reporting scheme, actually increases the need for users to zoom. This

could be explained by considering that the higher-density nature Toronto dataset would

create more occlusion overall, and so re-drawing datapoints could create a type of dynamic

occlusion that is more difficult to deal with for users than static occlusion. However, this

interpretation should be taken with a grain of salt, as the same analysis on the (marginally

less dense) St. Louis dataset did show statistical significance.

7.2 Statistically Significant Inconsistency

The other statistically significant results were from the “inconsistency” section of the SUS

survey, which showed that users perceived a decrease in inconsistency in the responsive

condition of the Toronto dataset, but an increase in inconsistency of the responsive condition

of the St. Louis dataset. This result forces the authors to consider that these results are

further measurements of noise. Importantly, this survey data seems to run counter to the

results about zooms discussed above. If the visualization was truly less inconsistent in the

responsive condition of the Toronto dataset, that refutes the hypothesis that the “dynamic

occlusion” created by re-drawing in the Toronto dataset causes confusion. Furthermore, if

the inconsistency measurement was truly correlated to the number of zooms a user had to

perform, we’d expect to either see a statistically significant decrease in the number of zooms

in the responsive condition of the St. Louis dataset, or we’d expect to see no statistical

significance in the inconsistency survey measure for the St. Louis dataset. These observations

seem to support the hypothesis that the statistical significance of zooms in the Toronto

dataset is indeed a statistically significant measure of noise.
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7.3 Interpreting a Lack of Statistical Significance

It is tempting to state that the lack of statistically significant results to support the alterna-

tive hypothesis means that we must accept the null hypothesis. That is, the easy conclusion

is “the adaptive system did nothing”. However, it is more accurate to say that there is not

enough evidence to reject the null hypothesis. Why is this a crucial distinction? Because it

does not destroy any hope of an effective mixed-initiative system. Overall, it is important to

note that these results should not dissuade researchers from further work on mixed-initiative

systems like the one designed in this thesis. We acknowledge, even in the design, that the

system this thesis uses is both flawed and not as powerful as it could be. It is entirely possible

that further research and development could lead to promising new techniques and systems.

7.4 Lessons from Open Comments

The open comments section of the post-experiment surveys may provide another window

into the analysis of this experiment. Some of these lessons are good: the fact that users

found the visualization well-designed, yet were overwhelmed by the size and density of the

datasets, indicates that the chosen datasets worked well to induce a need for an assistive or

mixed-initiative agent to help users make sense of the data. However, it is problematic that

some users did not notice a difference between the two conditions. It is entirely possible

that these users just did not click enough to trigger the mixed-initiative system; this would

require further analysis. However, it does raise the question of whether users should have

been informed about the mixed-initiative system before using the visualization under the

responsive condition. It is possible that being informed in that manner would have made

them more aware of their “partner” in analysis, allowing them to take the re-drawings into

further consideration and perhaps make more use of the mixed-initiative agent.
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7.5 Future Work

This thesis is one towards the type of high-level mixed-initiate system that has been de-

scribed by various visual analytics and human-computer interaction researchers over the

years. A wide swath of work, some of it theoretical and some of it empirical, follows from

the experiment laid out in this thesis.

7.5.1 Differentiate Modes of Information

As has been discussed multiple times in this chapter, the low number of user clicks caused by

a discrepancy between experimental expectations and how users behaved may have impeded

the mixed-initiative system from performing optimally or for all users. One simple fix for

this would be to differentiate the modes of how a user receives information. For example,

limiting hover information to just the name of a restaurant or the type of crime may have

further incentivized users to use the sidebar differently, taking advantage of an increased

display of information or its persistent state. However, this is a “band-aid” fix, as it only

addresses a shortcoming of visual design; ideally, a more powerful agent would more fully

solve this issue.

7.5.2 More Powerful Agent

The agent described in Sections 3.1 and 3.2 is incredibly powerful because its observations

are described by a general mark and channel spaceM. Limiting the agent to observing clicks

fails to take advantage of the full power of the agent’s formulation. In particular, expanded

dynamic and observational models for the HMM could take advantage of user hovers, pans,

and zooms to more accurately predict user attention. Furthermore, an expanded HMM

model would alleviate the discrepancy discussed above by allowing the mixed-initiative agent

to react to any interaction, and not rely as heavily on visualization design.
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7.5.3 Further Analysis of Insights

The analysis of user insights performed in this paper only touches upon quantity, not quality

or type. This was largely due to the time constraints of this paper; other studies in the

field have developed methods for performing quantitative analysis of insights that take into

account quantity, quality, and type. In particular, a paper by Saraiya, North, and Duca lays

out a method for hand-coding insights into different categories, allowing them to perform

more fine-grained analysis [41]; however, even those authors admit that the time-intensity

of their method makes large-scale analysis difficult.

7.5.4 Expanded, Longitudinal Study

The study used in this thesis is of a type commonly employed in information visualization

and visual analytics research, getting non-expert users to perform narrow, time-limited, and

externally-motivated tasks. While this type of study undoubtedly has its use in preliminary

analysis, a longer study which deploys the adaptive system described in Chapter 3 to expert

users in their everyday environments (such as the study described by Saraiya et. al [42])

would allow for a more holistic analysis of the effect that such systems have on users.
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Chapter 8

Conclusion

This thesis lays out the design of a mixed-initiative systems, and investigates the effect of

the system on user interaction and system usability. It does so by laying out a visualization

system, created from first principles and without regard to an underlying or linked adaptive

system. It then builds a mixed-initiative system by outlining how an existing predictive

algorithm can be employed as a real-time computer agent, providing feedback and guidance to

a user in the form of a novel redrawing technique. Finally, the thesis lays out the experimental

design itself, outlining the two-by-two format that allows for a compromise of generalizability

and study integrity, and analyzing the findings.

The authors of the thesis believe this to be the first mixed-initiative adaptive system based

on a design-agnostic algorithm that does not rely on a prior knowledge of the visual system

in use. The technique of providing feedback to the user via responsive re-order of the z-index

of visual elements is also believed to be novel.

Although the results were largely found to be statistically insignificant, the authors point

to a body of future work that can be performed to refine the experiment and create a more

rigorous and robust mixed-initiative system.
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