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Abstract of Thesis 

Transcriptomic analysis of cytokine-treated tissue-engineered cartilage as an in vitro model of 

osteoarthritis 

By 

Rachel (Jiehan) Li 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2020 

Research Advisor: Professor Farshid Guilak 

 

Osteoarthritis (OA), as the most common form of arthritis and a leading cause of disability 

worldwide, currently has no disease-modifying drugs. Inflammation plays an important role in 

cartilage degeneration in OA, and pro-inflammatory cytokines, IL-1β and TNF-α, have been 

shown to induce degradative changes along with aberrant gene expression in chondrocytes, the 

only resident cells in cartilage. The goal of this study was to further understand the transcriptomic 

regulation of tissue-engineered cartilage in response to inflammatory cytokines using an in vitro 

miPSC model system. We performed RNA sequencing for the IL-1β or TNF-α treated tissue-

engineered cartilage derived from murine iPSCs, and analyzed transcriptomic profiles by 

comparing with those of two different osteoarthritis models and human OA cartilage samples. We 

investigated differentially expressed genes (DEGs) as well as gene set enrichment and protein-

protein interaction network, showing a significant similarity between model systems and human 

OA cartilage. Our analysis revealed a significant number of overlapping DEGs, together with 

consistent pathway enrichment in inflammatory response, cytokine-mediated response and 

extracellular matrix organization, which support that the murine iPSC model system can replicate 
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many of the characteristics of OA cartilage at the transcriptomic level, specifically in the catabolic 

aspect of inflammation induce OA. The murine iPSC model system provides a method for studying 

the pro-inflammatory response and pathogenesis in OA cartilage, and will be a valuable dataset 

for identifying therapeutic targets of inflammation induced OA. 
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Chapter 1:  

Introduction 

Osteoarthritis (OA) is the most common form of arthritis and a leading cause of disability 

worldwide. OA is a chronic joint disease that is characterized not only by degeneration and 

calcification of cartilage, but also by subchondral bone sclerosis, osteophyte formation, and joint 

inflammation, which lead to symptoms of joint pain, stiffness, and loss of mobility and flexibility 

in OA patients (Goldring & Goldring, 2010). Over 10% of men and 13% of women aged 60 and 

over are diagnosed with knee OA (Murphy et al., 2008). In 2015, it was estimated that 30.8 

million adults suffer from osteoarthritis in the United States (Cisternas et al., 2016). However, 

there are no cure of OA currently (W. Zhang, Robertson, Zhao, Chen, & Xu, 2019). Further 

insight in transcriptomic profile of osteoarthritic cartilage is critical to development of 

therapeutic treatment. This thesis value the capability of murine iPSCs derived tissue-engineered 

cartilage to replicate OA environment. In this thesis, total RNA of murine iPSCs derived tissue-

engineered cartilage in response of pro-inflammation cytokines were extracted, sequenced and 

analyzed. Further transcriptomic comparison of iPSC OA model, IL-1β treated murine 

chondrocytes, IL-1β and TNF-α treated human OA cartilage, and untreated human OA cartilage 

were done with the RNA sequencing data from published online datasets and the RNA seq result 

of the iPSC OA model generated in our lab.  

 

1.1 Current Treatment of OA 

Current treatment of OA is still mainly limited to pain relievers and anti-inflammatory drugs, 

which may alleviate symptoms, but cannot restore the joint function (W. Zhang et al., 2019). 

Traditional medications for OA include paracetamol, nonsteroidal anti-inflammatory drugs, and 
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opiate analgesics; however, they are limited and only show moderate treatment effects with 

potentially adverse side effects and toxicities (Meek, Van de Laar, & H, 2010; W. Zhang et al., 

2019). No disease-modifying osteoarthritis drugs (DMOADs) are currently available, which in 

part is due to the fact that the development of DMOADs are limited by the understanding of this 

complex chronic joint disease, as well as the lack of good in vitro disease models for drug screening. 

 

1.2 Inflammation in OA 

OA has many risk factors such as aging, joint injury or trauma, genetics, obesity, metabolic 

disorders and inflammation. Pro-inflammatory cytokines, such as interleukin-1 (IL-1) and tumor 

necrosis factor-α (TNF-α), have been shown to play an important role in OA (Goldring & Otero, 

2011). These pro-inflammatory cytokines are elevated in synovium, chondrocytes and other 

surrounding tissue and induce aberrant expression of catabolic and inflammation-related genes in 

an OA joint, which also prevents articular cartilage repair. IL-1β and TNF-α induce cartilage 

degradation and inflammation by activating NF-𝜅B signaling, which increases matrix 

metalloproteinases and aggrecanase expression, nitric oxide (NO) and prostaglandin E synthase 2 

(PGE2) synthesis, and reduces production of extracellular matrix (ECM) components(Goldring & 

Marcu, 2009; Studer, Jaffurs, Stefanovic-Racic, Robbins, & Evans, 1999; Wojdasiewicz, 

Poniatowski, & Szukiewicz, 2014). A number of anti-inflammatory agents have been developed 

as potential therapies for OA or as an approach to inhibit inflammatory effects on cartilage tissue 

(Alten et al., 2008; Cohen et al., 2011; Guler-Yuksel et al., 2010; Magnano et al., 2007; 

Verbruggen, Wittoek, Vander Cruyssen, & Elewaut, 2012). Although these anti-inflammatory 

mediators show promising effects in murine cartilage, most of them failed in clinical trials of 

human patients with OA due to limited efficacy and no significant treatment effects compared to 
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placebo. Thus, it is critical to further understand the molecular mechanisms in OA cartilage using 

disease models for the development of therapeutic interventions.  

1.3 Current Models of OA 

Common animal models used for OA are the knee joints. Models can be classified by 

primary OA (spontaneous models) or Secondary OA (post-trauma and other causes). Primary 

OA models closely simulate the natural progression of osteoarthritis development, while 

Secondary OA models are conditionally induced osteoarthritis to study specific causes or risk 

factors of OA. Secondary OA models can be further classified by surgical or chemical induced 

(Kuyinu, Narayanan, Nair, & Laurencin, 2016). Anterior Cruciate Ligament Transection (ACLT) 

and Destabilization of the Medial Meniscus (DMM) are two common methods widely used in 

OA research, as they are highly reproducible and progress rapidly. Toxic or inflammatory 

compounds are also used in OA research for generated chemically induced OA model (Kuyinu et 

al., 2016).  

In vitro models are essential for drug development for their high tractability, convivence 

and rapid progression. Besides mechanical loading, cytokine induction has also been heavily 

studied in OA. Two pro-inflammatory cytokines, IL-1β and TNF-α, are the most common 

components used to generated OA-like process in cartilage tissue or chondrocytes (Johnson, 

Argyle, & Clements, 2016). 

 

1.3 iPSC Model System in OA 

Current in vitro models involve treating isolated cells or cartilage explants with cytokines such 

as IL-1β or TNF-α (Johnson et al., 2016; Kuyinu et al., 2016). These approaches have provided 

important information for the differences in OA compared to healthy tissues, however they lack 
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an abundant source of cells or tissues with a controlled genetic background, which is necessary for 

high-throughput DMOAD screening. Induced pluripotent stem cells (iPSCs) can aid high-

throughput drug screening due to their capacity for extensive expansion as well as consistent 

differentiation and genetic tractability (Engle & Puppala, 2013). In previous work, our lab 

developed a rigorous protocol to generate tissue-engineered cartilage from murine iPSCs (miPSCs) 

(Diekman et al., 2012). Here, we treated tissue-engineered cartilage pellets differentiated from 

miPSCs with IL-1β or TNF-α to recapitulate OA environment and investigated transcriptomic 

profile of the cytokine treated pellets with RNA sequencing.   
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Chapter 2:  

Transcriptomic Analysis of Cytokine-Treated Tissue-Engineered Cartilage as an In Vitro 

Model of Osteoarthritis 

2.1 Introduction 

The goal of this study was to further understand the transcriptomic regulation of tissue 

engineered cartilage in response to inflammatory cytokines using an in vitro miPSC model system. 

Previous studies (Willard et al., 2014) have shown that some of the characteristics of OA are 

recapitulated in murine iPSCs, but the overall effects of IL-1β and TNF-α on the transcriptome are 

unknown in comparison to OA cartilage. Thus, we examined the transcriptomic profile of IL-1β 

or TNF-α stimulated miPSCs derived tissue-engineered cartilage (pellet.IL or pellet.TNF, Figure 

1A), and compared it to publicly available data sets from the National Center of Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) database and SkeletalVis: (1) IL-1β treated 

murine chondrocytes (mchondro.IL, Figure 1B), (2) IL-1β or TNF-α treated human OA cartilage 

(OAcartilage.IL or OAcartilage.TNF, Figure 1C), and (3) untreated human OA cartilage 

(cartilage.OA, Figure 1D). Differentially expressed genes and gene set enrichment analysis were 

performed and were used to evaluate the ability of this in vitro culture system to replicate the 

osteoarthritis cartilage. Furthermore, the transcriptomic analysis comparison among different OA 

models provided valuable information on target genes and pathways, as well as insights into the 

molecular and cellular mechanisms of inflammation in OA.  
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Figure 1. Flow chart and overview of 4 datasets used in transcriptomic comparison. (A) RNA 

sequencing data from IL-1β or TNF-𝛼 treated tissue engineered cartilage pellets, which were 

named as pellet.IL and pellet.TNF separately; (B)  RNA sequencing data from mouse IL-1β 

treated primary chondrocytes, which was named as mchondro.IL; (C)  RNA sequencing data 

from IL-1β or TNF-𝛼 human osteoarthritic cartilage, which were named as OAcartilage.IL and 

OAcartilage.TNF; (D)  RNA sequencing data from human OA cartilage, which were named as 

cartilage.OA.  
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2.2 Materials and Methods 

2.2.1 RNA-Sequencing of Tissue-Engineered Cartilage  

Murine iPSCs were chondrogenically differentiated following an established protocol from our 

lab (Diekman et al., 2012) and were given 1ng/ml IL-1β, 20ng/ml TNF-α, or control media without 

cytokines for 72 hours (Figure 1A). Total cellular RNA was isolated with Total RNA Purification 

Plus Kit (Norgen) for mRNA sequencing. Three biological replicates for each condition were 

sequenced on Illumina HiSeq3000 (n=3) (Ross et al., 2020). The IL-1β treated iPSC derived 

cartilage was designated pellet.IL, while the TNF-α treated group was named pellet.TNF (Figure 

1A). 

 

2.2.2 RNA Sequencing Data Information 

Gene expression datasets from IL-1β treated murine chondrocytes (GSE104793) and human 

OA patient cartilage (GSE114007) were obtained from the National Center of Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO) database (www.ncbi.nlm.nih.gov/geo). In 

the dataset GSE104793, primary mouse articular chondrocytes were isolated from mouse cartilage 

tissue and cultured with 1 ng/ml IL-1β or control media for 24 hours before cellular RNA isolation 

and mRNA sequencing (Son et al., 2017). This group was called mchondro.IL in Figure 1B and 

the following part of this paper.  

Human OA cartilage mRNA expression profiles in response to cytokine treatment were 

obtained from SkeletalVis (http://phenome.manchester.ac.uk/)(Jamie Soul, Boot-Handford, 

Schwartz, & University of, 2017; J. Soul, Hardingham, Boot-Handford, & Schwartz, 2019). OA 

cartilage explants were harvested from 3 patients with OA at total knee replacement and cultured 

http://www.ncbi.nlm.nih.gov/geo
http://phenome.manchester.ac.uk/


8 

with serum free Dulbecco's modified Eagle's medium (DMEM) for 3 days before treated with 

0.1ng/ml IL-1β, 10ng/ml TNF-α, or control media for 72 hours before cellular RNA isolation and 

mRNA sequencing (Jamie Soul et al., 2017) (Figure 1C). The IL-1β treated human OA cartilage 

was named OAcartilage.IL, and the TNF-α treated OA cartilage was named OAcartilage.TNF in 

this paper.  

In dataset GSE114007, cartilage samples were harvested from the knee cartilage of 20 patients 

with OA and compared to 18 cartilage samples from normal patients without any joint disease or 

trauma (Fisch et al., 2018). This group of mRNA sequencing result was named cartilage.OA in 

Figure 1D and in the following comparisons. 

 

2.2.3 Data Preprocessing and DEG Screening  

The limma package in R was used for differential expression analysis. To find DEGs 

(differentially expressed genes), we performed Benjamini-Hochberg multiple testing correction 

and the cutoff values for DEG identification were adjusted such that the adjusted P-value was less 

than 0.05 (Padj < 0.05) and the absolute value of log2(fold change) (Log2FC) was set as greater than 

1 (|Log2FC| > 1) for cytokine treated pellets and untreated human OA cartilage.  For cytokine 

treated human OA cartilage and IL-1β treated murine chondrocytes, genes were selected with 

|Log2FC| > 0.5. Murine gene IDs were mapped to homologous human genes with Mouse Genome 

Database (MGD) at the Mouse Genome Informatics website for comparisons between human and 

mouse transcriptomic profiles.  

 

2.2.4 Functional and Pathway Analysis 
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Gene set enrichment analysis was performed through the Enrichr web-based tool with GO 

categories “Biological process 2018” (https://amp.pharm.mssm.edu/Enrichr/)(Chen et al., 2013; 

Kuleshov et al., 2016). This analysis was used to provide information about the biological 

processes that are significantly enriched in upregulated or downregulated DEGs. A standard FDR 

cutoff of 0.05 was used as the cut-off of GO term enrichment. 

 

2.2.5 PPI Network Integration 

To investigate the protein-protein interactions (PPI), the STRING database (version 11.0) was 

used to construct functional protein association networks. Interaction scores more than 0.70 (high 

confidence) were defined as significant. Both up-regulated overlapping DEGs and down-regulated 

overlapping DEGs were investigated through STRING, to analysis the major cellular function with 

the predicted functional protein-protein interactions. 

 

2.3 Results 

2.3.1 Differentially Expressed Genes in Cytokine Treated OA Models and OA Cartilage 

From Patients 

The analysis of differentially expressed genes was performed with the 4 groups of data 

separately, and the mouse and human cartilage gene expression datasets shared 11613 orthologue 

gene groups. In pellet.IL, 1781 (849 up-regulated and 932 down-regulated) genes were detected 

as differentially expressed genes (DEGs) after treated with IL-1β; while in pellet.TNF, 1174 (635 

up-regulated and 512 down-regulated) genes were detected as DEGs after treated with TNF-α. In 

mouse mchondro.IL, 1914 (857 up-regulated and 1057 down-regulated) gene were classified as 

DEGs. In OAcartilage.IL, 1974 (812 up-regulated and 1162 down-regulated) were detected as 

https://amp.pharm.mssm.edu/Enrichr/
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DEGs, and in OAcartilage.TNF 1565 (780 up-regulated and 785 down-regulated) genes were 

detected as DEGs. In cartilage.OA, 1687 (1066 up-regulated and 621 down-regulated) DEGs are 

found. Gene names of DEGs for each model and OA cartilage are listed in Supplemental File S1. 

 

Figure 2. Venn diagrams showing shared differentially expressed genes (DEGs). (A) Shared 

DEGs in IL-1β treated tissue-engineered cartilage pellets (pellet.IL), murine primary 

chondrocytes (mchondro.IL) and human osteoarthritic cartilage (OAcartilage.IL), as well as non-

treated human osteoarthritic cartilage (cartilage.OA). 23.9% (427 (=223+110+41+64) 

overlapping DEGs / 1781 total DEGs in pellet.IL) of DEGs in pellet.IL are also dysregulated in 

mchondro.IL; 23.4% (417 (=188+110+41+78) overlapping DEGs / 1781 total DEGs in pellet.IL) 

of DEGs in pellet.IL are differentially expressed in OAcartilage.IL; 22.0% (392 

(=209+78+41+64) overlapping DEGs / 1781 total DEGs in pellet.IL) of DEGs in pellet.IL are 

differentially expressed in cartilage.OA. (B) Shared DEGs in TNF-𝛼 treated tissue-engineered 

cartilage pellets (pellet.TNF) and human osteoarthritic cartilage (OAcartilage.TNF), as well as 

non-treated human osteoarthritic cartilage (cartilage.OA). 21.7% (255(=171+84) overlapping 

DEGs / 1174 total DEGs in pellet.TNF) of DEGs in pellet.TNF are shared between 

OAcartilage.TNF and pellet.TNF. 21.2% % (249(=165+84) overlapping DEGs / 1174 total 

DEGs in pellet.TNF) of DEGs in pellet.TNF are also detected as dysregulated genes in cartilage 

from OA patients. (C) Shared DEGs pellet.IL, pellet.TNF, OAcartilage.IL, and 

OAcartilage.TNF. 47.7% (560(=370+48+118+24) overlapping DEGs / 1174 total DEGs in 

pellet.TNF) of DEGs in pellet.TNF overlap with DEGs in pellet.IL, and 72.4% 

(1134(=788+78+118+150) overlapping DEGs / 1565 total DEGs in OAcartilage.TNF) of DEGs 

in OAcartilage.TNF overlap with DEGs in OAcartilage.IL. 

 

Venn diagrams were used to show the number of shared and different DEGs in groups. Each 

model showed more than 20% of shared DEGs compared to other models and OA cartilage 
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samples (Figure 2A, B), indicating that these models partially replicate the DEGs from human 

OA cartilage. Comparing between different cytokine treatments shows that 47.7% of genes in the 

murine iPSC model dysregulated after TNF-α treatment were also differentially expressed with 

IL-1β treatment, while 72.4% of DEGs in TNF-α treated human OA cartilage were shared with 

DEGs responding to IL-1β treatment (Figure 2C).  

 
Figure 3. Venn diagrams showing number of overlapping upregulated (+) or downregulated (-) 

differentially expressed genes (DEGs) between different models. (A) Upregulated (+) or 

downregulated (-) DEGs in IL-1β treated tissue-engineered cartilage pellets (pellet.IL) and IL-1β 

treated murine primary chondrocytes (mchondro.IL). (B) Upregulated (+) or downregulated (-) 

DEGs in IL-1β treated tissue-engineered cartilage pellets (pellet.IL) and IL-1β treated human 

osteoarthritic cartilage (OAcartilage.IL). (C) Upregulated (+) or downregulated (-) DEGs in IL-

1β treated tissue-engineered cartilage pellets (pellet.IL) and human osteoarthritic cartilage 

(cartilage.OA). (D) Upregulated (+) or downregulated (-) DEGs in TNF-𝛼 treated tissue-

engineered cartilage pellets (pellet.TNF) and TNF-𝛼 treated human osteoarthritic cartilage 

(OAcartilage.TNF). (E) Upregulated (+) or downregulated (-) DEGs in TNF-𝛼 treated tissue-

engineered cartilage pellets (pellet.TNF) and human osteoarthritic cartilage (cartilage.OA).  
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To better understand the advantages and limitations of tissue-engineered cartilage as a model 

system, DEGs were classified by up-regulated or down-regulated and comparisons were made 

between cytokine treated tissue-engineered cartilage and IL-1β treated murine chondrocytes, 

cytokine treated human OA cartilage or untreated cartilage from OA patients.  

When pellet.IL and mchondro.IL were compared, 427 overlapping DEGs were detected with 

high significance (p= 4.070184e-19). Among them, 404 genes were regulated in the same direction, 

while 23 genes were regulated in opposite direction (Figure 3A). Vnn2, Nos2, Ccl5, Cfb, Ccl20, 

Serpina3f, Ch25h, Col10a1, and Matn1 show the highest absolute value of Log2FC in IL-1β 

treated pellet among all the overlapping DEGs (Table 1).  

Table 1. Top 30 dysregulated genes common to both IL-1β treated pellets (pellet.IL) and IL-1β 

treated murine primary chondrocytes (mchondro.IL).  

Gene 
Name 

Functional Annotation Log2 Fold Change 

pellet.IL mchondro.IL 

Vnn3 Vascular non-inflammatory molecule 3; 
Amidohydrolase 

8.20 4.30 

Nos2 Nitric oxide synthase; Produces nitric oxide (NO) 
and mediates cysteine S- nitrosylation of 
PTGS2/COX2.  

6.11 6.25 

Ccl5 C-C motif chemokine 5 6.10 4.33 

Cfb Complement factor B 5.46 3.77 

Ccl20 C-C motif chemokine 20; Chemotaxis of dendritic 
cells, T-cells and B-cells 

5.45 2.80 

Serpina3f Serine (or cysteine) peptidase inhibitor, clade A, 
member 3F 

5.45 0.52 

Ch25h Cholesterol 25-hydroxylase; Regulating lipid 
metabolism, cell positioning and movement in 
lymphoid tissues 

5.14 4.94 

C3 Complement C3; Activation of the complement 
system 

4.97 5.39 

Orm1 Alpha-1-acid glycoprotein 1; Modulates activition 
the immune system during the acute-phase 
reaction 

4.89 1.41 



13 

Orm2 Alpha-1-acid glycoprotein 2; Modulates activation 
the immune system during the acute-phase 
reaction 

4.86 1.04 

Tnfsf15 Tumor necrosis factor ligand superfamily member 
15; Mediates activation of NF-kappa-B 

4.83 0.97 

Lcn2 Neutrophil gelatinase-associated lipocalin; 
Regulation of apoptosis, innate immunity and renal 
development.  

4.79 2.72 

Gpr84 G-protein coupled receptor 84 4.72 2.97 

Tnfrsf9 Tumor necrosis factor receptor superfamily 
member 9 

4.52 1.61 

Gdnf Glial cell line-derived neurotrophic factor; Survival 
and morphological differentiation of dopaminergic 
neurons  

4.42 0.71 

Tubb2b Tubulin beta-2B chain; Major constituent of 
microtubules 

-2.90 -1.32 

Kcnt2 Potassium channel, subfamily T, member 2 -2.92 -1.21 

Inhbe Inhibin beta E chain; TGF-beta family -3.03 -0.88 

Ucma Unique cartilage matrix-associated protein; 
Negative control of osteogenic differentiation 

-3.13 -1.05 

Ptgis Prostacyclin synthase -3.25 -0.64 

Chad Chondroadherin; Promotes attachment of 
chondrocytes, fibroblasts, and osteoblasts.   

-3.31 -1.52 

Cmtm5 CKLF-like MARVEL transmembrane domain 
containing 5 

-3.34 -2.18 

Frzb Secreted frizzled-related protein 3; Antagonist of 
Wnt8 signaling. Regulates chondrocyte maturation 
and long bone development 

-3.34 -1.93 

Zfp648 Zinc finger protein 648 -3.35 -1.11 

C1qtnf3 C1q and tumor necrosis factor related protein 3 -3.47 -3.68 

Mall MAL-like protein; T cell differentiation protein-like -3.70 -1.08 

Matn3 Matrilin-3; Major component of the extracellular 
matrix of cartilage 

-4.90 -2.5 

Omd Osteomodulin; Involved in biomineralization -4.99 -1.50 

Col10a1 Collagen alpha-1(X) chain; Product of hypertrophic 
chondrocytes 

-5.27 -2.52 

Matn1 Cartilage matrix protein; binds to collagen -5.79 -3.30 

 

Similarly, when pellet.IL and OAcartilage.IL were compared, 417 overlapping DEGs were 

detected with high significance (p= 1.933738e-10). Among them, 330 genes were regulated in the 
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same direction, while 87 genes were regulated in opposite direction (Figure 3B). Saa1, Nos2, Ccl5, 

Cxcl1, Ccl20, Ch25h, Csf3, Tnip3, Draxin6, Il6, Col10a1, and Omd show the highest absolute 

value of Log2FC in IL-1β treated pellet among all the overlapping DEGs (Table 2). However, in 

comparison of mchondro.IL and cartilage.OA, 276 overlapping DEGs were detected, which is 

non-significant (p= 0.5694874), Among these DEGs, 94 genes were regulated in the same 

direction and 182 genes were regulated in the opposite direction (Appendix Figure 1.A). 

Table 2. Top 30 dysregulated genes common to both IL-1β treated pellets (pellet.IL) and IL-1β 

treated human osteoarthritic cartilage (OAcartilage.IL). 

Gene 
Name 

Functional Annotation Log2 Fold Change 

pellet.IL OAcartilage.IL 

Saa1 Serum amyloid A-1 protein; Major acute phase 
protein 

7.76 3.03 

Nos2 Nitric oxide synthase; Produces nitric oxide (NO) 
and mediates cysteine S- nitrosylation of 

PTGS2/COX2.  

6.11 1.71 

Ccl5 C-C motif chemokine 5 6.10 2.50 

Cxcl1 neutrophil activation during inflammation 5.90 3.24 

Ccl20 C-C motif chemokine 20; Chemotaxis of dendritic 
cells, T-cells and B-cells 

5.45 3.70 

Ch25h Cholesterol 25-hydroxylase; Regulating lipid 
metabolism, cell positioning and movement in 

lymphoid tissues 

5.14 2.07 

Csf3 Granulocyte colony-stimulating factor 5.11 3.51 

Tnip3  TNFAIP3 interacting protein 3 5.11 2.09 

Draxin Chemorepulsive axon guidance protein; an 
antagonist of Wnt signaling pathway 

5.09 2.68 

Il6 Interleukin-6 5.07 4.53 

Mmp13 Collagenase 3;  Degradation of extracellular matrix 
proteins  

4.91 3.41 

Lcn2 Neutrophil gelatinase-associated lipocalin; 
Regulation of apoptosis, innate immunity and 

renal development.  

4.79 2.31 

Slc15a3 Solute carrier family 15 member 3; Proton 
oligopeptide cotransporter. 

4.76 1.02 

Gpr84 G-protein coupled receptor 84 4.72 2.56 
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Tnfrsf9 Tumor necrosis factor receptor superfamily 
member 9 

4.52 2.38 

Ptgis Prostacyclin synthase -3.25 -1.46 

Clec3a C-type lectin domain family 3 member A; 
Promotes cell adhesion to laminin and fibronectin 

-3.26 -5.33 

Fam43b Family with sequence similarity 43, member B -3.26 -1.95 

Chad Chondroadherin; Promotes attachment of 
chondrocytes, fibroblasts, and osteoblasts.   

-3.31 -4.16 

Cmtm5 CKLF-like MARVEL transmembrane domain 
containing 5 

-3.34 -2.41 

Frzb Secreted frizzled-related protein 3; Antagonist of 
Wnt8 signaling. Regulates chondrocyte maturation 

and long bone development 

-3.34 -3.02 

C1qtnf3 C1q and tumor necrosis factor related protein 3 -3.47 -2.02 

Ogn Mimecan; Induces bone formation in conjunction 
with TGF-beta-1 or TGF-beta-2 

-3.60 -4.17 

Cytl1 Cytokine-like protein C17 -3.62 -2.66 

Pthlh Parathyroid hormone-related protein; Regulation 
of  endochondral bone development 

-3.64 -1.53 

Adamtsl2 ADAMTS-like 2 -4.02 -1.68 

Nxph3 Neurexophilin-3 -4.64 -1.88 

Matn3 Matrilin-3; Major component of the extracellular 
matrix of cartilage 

-4.90 -3.94 

Omd Osteomodulin; Involved in biomineralization -4.99 -3.75 

Col10a1 Collagen alpha-1(X) chain; Product of hypertrophic 
chondrocytes 

-5.27 -2.90 

 

When pellet.IL and cartilage.OA were compared, 392 overlapping DEGs were detected with 

high significance (p= 1.075255e-20). Among them, 170 genes were regulated in the same direction, 

and 222 genes were regulated in opposite direction (Figure 3C). Mmp9, Cybb, C1qtnf7, Tnip3, 

Mmp13, Tnfsf15, Tnfrsf9, Gdnf, Tnfsf11, Traf3ip3, Gm12695, Adamtsl2, and Peg10 show the 

highest absolute value of Log2FC in IL-1β treated pellet among all the overlapping DEGs between 

IL-1β treated tissue-engineered cartilage pellet  and untreated human osteoarthritic cartilage 

(Table 3). Comparison of overlapping DEGs in OAcartilage.IL and cartilage.OA revealed a 
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significant overlapping (p= 0.01509899) of 336 DEGs: 142 of them were regulated in the same 

direction and 194 DEGs responded differently to IL-1β (Appendix Figure 1.B). 

 

Table 3. Top 30 dysregulated genes common to both IL-1β treated tissue-engineered pellets 

(pellet.IL) and human osteoarthritic cartilage (cartilage.OA). 

Gene 
Name 

Functional Annotation Log2 Fold Change 

pellet.IL cartilage.OA 

Mmp9 
Matrix metalloproteinase-9; Bone osteoclastic 

resorption 7.97 5.13 

Cybb 
Cytochrome b-245 heavy chain;  Membrane-

bound oxidase of phagocytes 5.96 3.29 

C1qtnf7 C1q and tumor necrosis factor related protein 7 5.59 1.01 

Tnip3  TNFAIP3 interacting protein 3 5.11 2.59 

Mmp13 
Collagenase 3;  Degradation of extracellular matrix 

proteins  4.91 3.69 

Tnfsf15 
Tumor necrosis factor ligand superfamily member 

15; Mediates activation of NF-kappa-B 4.83 5.21 

Tnfrsf9 
Tumor necrosis factor receptor superfamily 

member 9 4.52 2.06 

Gdnf 

Glial cell line-derived neurotrophic factor; Survival 
and morphological differentiation of dopaminergic 

neurons  4.42 2.86 

Tnfsf11 

Tumor necrosis factor ligand superfamily member 
11; Osteoclast differentiation and activation 

factor.  4.13 2.01 

Traf3ip3 
TRAF3-interacting JNK-activating modulator;  

TRAF3-mediated JNK activation 4.08 1.39 

S100a8 
Protein S100-A8; regulation of inflammatory 

processes and immune response 3.83 3.75 

Tnfsf8 
Tumor necrosis factor ligand superfamily member 

8;Induces proliferation of T-cells 3.83 2.47 

Msr1 Macrophage scavenger receptor types I 3.69 3.47 

Atp8b3 Phospholipid-transporting ATPase IK 3.56 1.27 

Mme Neprilysin; Destruction of opioid peptides 3.48 3.44 

Myzap Myocardial zonula adherens protein -1.94 -2.41 

Tinagl1 Tubulointerstitial nephritis antigen-like -1.95 -1.95 

Stc2 Stanniocalcin-2 -2.00 -2.42 

Kcnk5 Potassium channel, subfamily K, member 5 -2.16 -1.53 
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Slc37a2 Glucose-6-phosphate exchanger SLC37A2 -2.26 -1.59 

Gprc5a 
Retinoic acid-induced protein 3; A negative 

modulator of EGFR signaling -2.38 -2.20 

Ndnf 
Protein NDNF; Promotes matrix assembly and cell 

adhesiveness -2.41 -1.06 

Kcnt2 Potassium channel, subfamily T, member 2 -2.92 -1.03 

Myoc 

Myocilin; Negatively regulates cell-matrix 
adhesion and stress fiber assembly through Rho 

protein signal transduction -3.12 -2.85 

Ucma 
Unique cartilage matrix-associated protein; 

Negative control of osteogenic differentiation -3.13 -2.50 

Cytl1 Cytokine-like protein C17 -3.62 -1.66 

Arhgef37 Rho guanine nucleotide exchange factor 37 -3.65 -1.69 

Peg10 
Retrotransposon-derived protein PEG10; Inhibits 

the TGF-beta signaling -3.80 -1.24 

Adamtsl2 ADAMTS-like 2 -4.02 -1.90 

Gm12695 C1orf87 homolog; C1orf87, calcium ion binding -4.37 -1.22 
 

For the TNF-α treated model, when pellet.TNF and OAcartilage.TNF were compared, 255 

overlapping DEGs were detected with a highly significant value (p= 3.079532e-12). Among them, 

221 genes were regulated in the same direction, while 34 genes were regulated in opposite direction 

(Figure 3D). Ccl5, Il2rg, Cxcl2, Ccl20, Cfb, Tnip3, Gpr84, Il1f9, and Slc15a3 show the highest 

absolute value of Log2FC in TNF-α treated pellet among all the overlapping DEGs (Table 4).  

 

Table 4. Top 30 dysregulated genes common to both TNF-𝛼 treated tissue-engineered cartilage 

pellets (pellet.TNF) and TNF-𝛼 treated human osteoarthritic cartilage (OAcartilage.TNF). 

Gene 
Name 

Functional Annotation Log2 Fold Change 

pellet.TNF OAcartilage.TNF 

Ccl5 C-C motif chemokine 5 8.15 5.00 

Il2rg Cytokine receptor common subunit gamma 7.30 1.70 

Cxcl2 
C-X-C motif chemokine 2; Chemotactic for 

human polymorphonuclear leukocytes 7.03 2.25 

Ccl20 
C-C motif chemokine 20; Chemotaxis of 

dendritic cells, T-cells and B-cells 6.75 4.34 
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Cfb Complement factor B 6.11 1.08 

Tnip3  TNFAIP3 interacting protein 3 6.09 2.75 

Gpr84 G-protein coupled receptor 84 6.07 2.30 

Il1f9 
Interleukin-36 gamma; an agonist of NF-kappa B 

activation 5.92 2.70 

Slc15a3 
Solute carrier family 15 member 3; Proton 

oligopeptide cotransporter. 5.05 1.57 

Traf1 

TNF receptor-associated factor 1; Adapter 
molecule that regulates the activation of NF- 

kappa-B and JNK.  4.99 2.55 

Cxcl10 
C-X-C motif chemokine 10; a proinflammatory 

cytokine 4.85 4.79 

Nos2 

Nitric oxide synthase; Produces nitric oxide (NO) 
and mediates cysteine S- nitrosylation of 

PTGS2/COX2.  4.78 2.06 

Mmp10 
Stromelysin-2; Can degrade fibronectin, gelatins 

and collagens. Activates procollagenase 4.74 1.94 

Slc7a11 Cystine/glutamate transporter 4.63 2.21 

Slc2a6 
Solute carrier family 2 (facilitated glucose 

transporter) 4.42 2.3012152 

C1qtnf3 C1q and tumor necrosis factor related protein 3 -1.88 -1.2424457 

Gdf10 

Growth/differentiation factor 10; Inhibits 
osteoblast differentiation via SMAD2/3 

pathway. -1.89 -2.5585607 

Thbs2 

Thrombospondin-2; Adhesive glycoprotein that 
mediates cell-to-cell and cell-to-matrix 

interactions -1.91 -1.62 

Aqp3 Aquaporin-3; Water channel -2.03 -0.71 

Adamtsl2 ADAMTS-like 2 -2.15 -1.42 

Fxyd3 
FXYD domain-containing ion transport regulator 

3 -2.20 -1.46 

Smim5 Small integral membrane protein 5 -2.25 -1.42 

Col1a1 Collagen alpha-1(I) chain; Type I collagen -2.34 -1.37 

Sv2b Synaptic vesicle glycoprotein 2B -2.34 -1.94 

Nxph4 Neurexophilin -2.55 -1.34 

Tub 

Tubby protein; Functions in signal transduction 
from heterotrimeric G protein-coupled 

receptors. -2.82 -1.05 

Mfap4 
Microfibril-associated glycoprotein 4; Elastic 

fiber assembly andmaintenance -3.37 -3.08 

Ndufa4l2 
NADH dehydrogenase (ubiquinone) 1 alpha 

subcomplex, 4-like 2 -3.39 -1.62 
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Chrdl2 
Chordin-like protein 2; negatively regulates 

cartilage formation/regeneration -3.65 -2.47 

Car9 
Carbonic anhydrase 9; Reversible hydration of 
carbon dioxide. Participates in pH regulation -4.79 -1.52 

 

When pellet.TNF and cartilage.OA were compared, 249 overlapping DEGs were detected with 

a highly significant value (p= 6.401139e-15). Among them, 121 genes were regulated in the same 

direction, while 128 genes were regulated in opposite direction (Figure 3E). In comparison of 

overlapping DEGs in TNF-α treated human osteoarthritic cartilage and untreated human 

osteoarthritic cartilage, 227 overlapping DEGs were detected with a significant value of 0.003 

(p=0.003104403). Among them, 123 genes are regulated in the same direction and 154 genes 

respond differently to TNF-α (Appendix Figure 1.C). Mmp9, Cybb, Tnip3, Nlrp3, Tmem132e, 

Aldh1a2, and Msr1 showed the highest absolute value of Log2FC in TNF-α treated pellet among 

all the overlapping DEGs between pellet.TNF and cartilage.OA (Table 5). The rest of the 

overlapping DEGs are regulated in same direction and listed in Supplemental File S1.  

 

Table 5. Top 30 dysregulated genes common to both TNF-𝛼 treated tissue-engineered cartilage 

pellets (pellet.TNF) and untreated human osteoarthritic cartilage (cartilage.OA). 

Gene 
Name 

Functional Annotation Log2 Fold Change 

pellet.TNF cartilage.OA 

Mmp9 
Matrix metalloproteinase-9; Bone osteoclastic 

resorption 7.03 5.13 

Cybb 
Cytochrome b-245 heavy chain;  Membrane-

bound oxidase of phagocytes 6.90 3.29 

Tnip3  TNFAIP3 interacting protein 3 6.09 2.59 

Nlrp3 
NACHT, LRR and PYD domains-containing protein; 

Innate immunity and inflammation 5.32 1.86 

Tmem132
e Transmembrane protein 132E 5.04 1.41 

Aldh1a2 Retinal dehydrogenase 2 4.51 1.13 
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Msr1 Macrophage scavenger receptor types I 4.28 3.47 

Gdnf 

Glial cell line-derived neurotrophic factor; Survival 
and morphological differentiation of 

dopaminergic neurons  3.71 2.86 

Vegfc 
Vascular endothelial growth factor C; 

Angiogenesis and endothelial cell growth 3.65 1.98 

Ptges 
Prostaglandin E synthase; Catalyzes the 

oxidoreduction of PGH2 to PGE2 3.31 1.77 

Adtrp Androgen-dependent TFPI-regulating protein 3.20 1.97 

Tnfrsf9 
Tumor necrosis factor receptor superfamily 

member 9 3.16 2.06 

S100a8 
Protein S100-A8; regulation of inflammatory 

processes and immune response 3.09 3.75 

AA467197 
Normal mucosa of esophagus-specific gene 1 

protein 3.08 2.73 

C1qtnf7 C1q and tumor necrosis factor related protein 7 3.00 1.01 

Pfkfb3 
6-phosphofructo-2-kinase/fructose-2,6-

biphosphatase 3 -1.51 -2.38 

Pdk1 

Pyruvate dehydrogenase (acetyl-transferring)] 
kinase isozyme 1; regulation of glucose and fatty 

acid metabolism -1.51 -1.53 

Vit 
Vitrin; Promotes matrix assembly and cell 

adhesiveness -1.54 -2.24 

Necab3 N-terminal EF-hand calcium-binding protein 3 -1.54 -1.25 

Ramp1 
Receptor activity-modifying protein 1; receptor 

for calcitonin-gene-related peptide (CGRP) -1.54 -1.50 

Egln3 Egl nine homolog 3; DNA damage response -1.67 -1.74 

Stc2 Stanniocalcin-2 -1.69 -2.42 

Peg10 
Retrotransposon-derived protein PEG10; Inhibits 

the TGF-beta signaling -1.74 -1.24 

Pck1 
Phosphoenolpyruvate carboxykinase, cytosolic 

[GTP] -1.95 -2.62 

Irf4 
Interferon regulatory factor 4; Transcriptional 

activator -1.99 -2.20 

Bnip3 

BCL2/adenovirus E1B 19 kDa protein-interacting 
protein 3; Apoptosis-inducing protein that can 

overcome BCL2 suppression. -2.13 -1.91 

Adamtsl2 ADAMTS-like 2 -2.15 -1.90 

Slc16a3 Monocarboxylate transporter 4 -2.50 -1.20 

Apln Apelin; modulate immune responses in neonates -2.74 -1.08 

Ankrd37 Ankyrin repeat domain 37 -3.02 -2.24 
 



21 

We also compared DEGs in response of different cytokines treatment, IL-1β or TNF-α.  In 

iPSC model system, 560 overlapping genes were detected with a highly significant value (p= 

7.52312e-181). Among them, 487 genes were regulated in the same direction while 73 genes were 

regulated in the opposite direction. In IL-1β and TNF-α treated human osteoarthritic cartilage, 

there were 1105 overlapping DEGs, and all of them were in the same direction (Appendix Figure 

1.D, E). 

 

2.3.2 Pathway Analysis in Cytokine-Treated OA Model and OA Cartilage From Patients 

To gain further insight into the shared and differentially expressed biological processes and 

mechanisms, gene set enrichment analysis was performed using the up-regulated and down-

regulated DEGs. In total, each group of DEGs generated more than 20 significant GO terms, most 

of which were involved in biological processes related to extracellular matrix organization, 

cytokines stimuli, and inflammatory response. Annotated GO terms were ranked by P value, and 

terms with lowest P value in each group of DEGs were shown in Figure 4.  The whole table of 

annotated GO term for each model and OA cartilage are provided in Supplemental File 2.  

Pathways related to cellular response to various stimuli, such as “GO: 0019221 Cytokine-

mediated signaling pathway”, “GO: 0071345 Inflammatory response”, and “GO: 0032496 

Response to lipopolysaccharide” were generally annotated in up-regulated DEGs of all cytokine 

treated models and untreated OA cartilage, while they were only highly ranked in cytokine treated 

models (Figure 4 and Supplemental File 2). Overlapping genes in these terms included Ccl5, 

Ccl20, Chad, Lif, Nfkbia, Ripk2, Sod2, Tnfaip3, and Tnfrsf9 et al (Appendix Table 1, 2).  

Cartilage related biological processes, such as “GO: 0030198 Extracellular matrix organization” 

and “GO:0001501 Skeletal system development” were generally annotated in most groups. 



22 

However, “GO: 0030198 Extracellular matrix organization” was only annotated in up-regulated 

DEGs rather than down-regulated DEGs of OA cartilage (Figure 2 and Supplemental File 2). 

Overlapping genes in these terms included collagen family, Hapln1, matrilin family, and Sox9, et 

al (Appendix Table 1, 2). 
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Figure 4. Top gene ontology (GO) terms and pathways identified by functional enrichment 

analysis through Enrichr and GO Biological Process 2018, (top 10 ranked by P value). (A) 

Upregulated (+) and downregulated (-) differentially expressed genes (DEGs) in IL-1β treated 

tissue-engineered cartilage pellets (pellet.IL) (B) Upregulated (+) and downregulated (-) DEGs in 

IL-1β treated murine primary chondrocytes (mchondro.IL). (C) Upregulated (+) and 

downregulated (-) DEGs in IL-1β treated human osteoarthritic cartilage (OAcartilage.IL). (D) 

Upregulated (+) and downregulated (-) DEGs in human osteoarthritic cartilage (cartilage.OA). 

(E) Upregulated (+) or downregulated (-) DEGs in TNF-𝛼 treated tissue-engineered cartilage 

pellets (pellet.TNF). (F) Upregulated (+) or downregulated (-) DEGs in TNF-𝛼 treated human 

osteoarthritic cartilage (OAcartilage.TNF).  

 

2.3.3 PPI Network in Cytokine Treated OA Model and OA Cartilage From Patients 

To further examine the common DEGs that characterize OA models and OA cartilage samples, 

protein-protein interaction (PPI) networks for common genes shared by different models and OA 

cartilage were established through STRING with interaction score ≥ 0.70 (high confidence), with 

all disconnected nodes are hidden in the network. Reactome pathway assessment was also done in 

STRING to reveal the significant biological pathways in overlapping DEGs. 
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For common DEGs that were co-directionally regulated in IL-1β treated tissue-engineered 

cartilage pellet (pellet.IL) and IL-1β treated murine primary chondrocytes (mchondro.IL), there 

were mainly 4 clusters of genes in the PPI network (Figure 5).  These included clusters of genes 

that were related to the extracellular matrix (Collagen family, Itga10 et al.), cell cycle and mitosis 

(Ccna2, Ube2c, Nuf2, Spc25 et al.), the immune system (H-2 class I histocompatibility complex, 

Orosomucoid, Cd14, Ikbke, et al.), and signal transduction (C-C Motif Chemokine Ligands, Kng1, 

C3, Gng2, Ptger4 et al.).  

 
Figure 5. PPI network between differentially expressed genes (DEGs) that regulated in the same 

direction in two different groups, as established in STRING. DEGs common to both IL-1β 

treated tissue-engineered cartilage pellets (pellet.IL) and IL-1β treated murine primary 

chondrocytes (mchondro.IL), interaction score ≥ 0.90, disconnected nodes were hidden in the 

network. Reactome pathway assessment of these genes were down in STRING, and nodes were 

colored with the Reactome pathway. Color labels of pathways were shown in legend table at left-

top of the figure. 
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For co-directionally regulated overlapping genes in IL-1β treated tissue-engineered cartilage 

pellet (pellet.IL) and IL-1β treated human OA cartilage (OAcartilage.IL), the cluster of 

extracellular matrix related genes was maintained, while the scale of signal transduction related 

genes cluster was reduced. Groups of NF-κB signal related genes and glycosaminoglycan 

metabolism proteins were shown with more interconnections (Figure 6).   

 
Figure 6. PPI network between differentially expressed genes (DEGs) that regulated in the same 

direction in two different groups, as established in STRING DEGs common to both IL-1β treated 

tissue-engineered cartilage pellets (pellet.IL) and IL-1β treated human osteoarthritic cartilage 

(OAcartilage.IL), interaction score ≥ 0.90, disconnected nodes were hidden in the network. 

Reactome pathway assessment of these genes were down in STRING, and nodes were colored 

with the Reactome pathway. Color labels of pathways were shown in legend table at left-top of 

the figure. 
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There were fewer overlapping genes in IL-1β treated tissue-engineered cartilage pellet 

(pellet.IL) and untreated human OA cartilage (cartilage.OA), and the PPI network lost the 

extracellular matrix related cluster as the collagen family genes were regulated in different 

directions (Figure 7). However, groups of ADAMTS and matrix metalloproteinase were shown 

in the network.  

 
Figure 7. PPI network between differentially expressed genes (DEGs) that regulated in the same 

direction in two different groups, as established in STRING DEGs common to both IL-1β treated 

tissue-engineered cartilage pellets (pellet.IL) and human osteoarthritic cartilage (cartilage.OA), 

interaction score ≥ 0.70, disconnected nodes were hidden in the network. Reactome pathway 

assessment of these genes were down in STRING, and nodes were colored with the Reactome 

pathway. Color labels of pathways were shown in legend table at left-top of the figure. 

 

Similarly, in the PPI network for the TNF-α treated tissue-engineered cartilage pellet 

(pellet.TNF) and TNF-α treated human OA cartilage (OAcartilage.TNF), there was a compact 
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cluster of extracellular matrix related genes and small clusters of signal transduction related genes, 

mainly C-C Motif Chemokine Ligands and NF-κB signal related genes (Figure 8).   

 
Figure 8. PPI network between differentially expressed genes (DEGs) that regulated in the same 

direction in two different groups, as established in STRING.  DEGs common to both TNF-𝛼 

treated tissue-engineered cartilage pellets (pellet.TNF) and TNF-𝛼 treated human osteoarthritic 

cartilage (OAcartilage.TNF), interaction score ≥ 0.90, disconnected nodes were hidden in the 

network. Reactome pathway assessment of these genes were down in STRING, and nodes were 

colored with the Reactome pathway. Color labels of pathways were shown in legend table at left-

top of the figure. 

The reactome pathway assessment of co-directionally regulated overlapping genes network in 

TNF-α tissue-engineered cartilage pellet (pellet.TNF) and untreated human OA cartilage 

(cartilage.OA) revealed that matrix metalloproteinase and vascular endothelial growth factor were 

the central of the network, while no collagen family or NF-κB signaling pathway were found with 

reactome pathway assessment (Figure 9).   
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Figure 9. PPI network between differentially expressed genes (DEGs) that regulated in the same 

direction in two different groups, as established in STRING. DEGs common to both TNF-𝛼 

treated tissue-engineered cartilage pellets (pellet.TNF) and human osteoarthritic cartilage 

(cartilage.OA), interaction score ≥ 0.70, disconnected nodes were hidden in the network. 

Reactome pathway assessment of these genes were down in STRING, and nodes were colored 

with the Reactome pathway. Color labels of pathways were shown in legend table at left-top of 

the figure. 

 

2.3.4 Osteoarthritis Pathway 

An inflammation-induced OA signaling pathway was generated with the overlapping genes 

comparing transcriptomic profiles of all the OA groups, both in response to IL-1β and TNF-α 

stimuli and untreated OA cartilage samples (Supplemental File 3). Furthermore, biological 

processing annotation of the list was done to create a network of the genes within the inflammation-

induced OA signaling pathway (Figure 10). The extracellular matrix related pathway 
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(Extracellular matrix organization, collagen fibril organization), skeletal system development, cell 

proliferation related signaling (regulation of cell proliferation, MAPK signaling pathways, 

activation of protein kinase activity), cellular response to cytokines and response to 

lipopolysaccharide were each identified as predominant signaling pathways in inflammation 

induced OA.   

 
Figure 10. OA pathway generated from the common genes and enriched pathways in 

OAcartilage.IL, pellet.IL, and cartilage.OA, together with the common genes and enriched 

pathways in OAcartilage.TNF, pellet.TNF, and cartilage.OA. (A) Common genes – 

GO:BioProcess network of OA. (B) log2 fold change of genes in the network. 

 

2.4 Discussion 

In this study, we compared the transcriptomic profiles of IL-1β and TNF-α treated tissue-

engineered cartilage pellets differentiated from murine iPSCs, IL-1β treated murine primary 

chondrocytes, IL-1β and TNF-α treated human OA cartilage, and cartilage from osteoarthritis 

patients to identify the abilities and limitations of in vitro OA models in replicating OA. Our 

findings show that the miPSC-based in vitro model replicates many of the transcriptomic 

characteristics of native cartilage treated with cytokines, as well as those of cartilage from OA 
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patients. The comparison of differentially expressed genes and pathway enrichment of multiple 

OA models and OA cartilage from patients also provides further insight into the effects of 

inflammation in osteoarthritis and creates opportunities to develop new therapeutic approaches for 

osteoarthritis treatment.   

Through quantitative comparisons of overlapping DEGs and pathways, we valued the overall 

similarities and differences between cytokine treated in vitro OA models and untreated cartilage 

from OA patients. There have been a number of previous studies investigating DNA 

methylation(Jeffries et al., 2014; Moazedi-Fuerst et al., 2014), transcriptomics (Dunn et al., 2016; 

Fisch et al., 2018; Lv et al., 2019; Ren et al., 2018; Steinberg et al., 2017), and protein 

expression(Liao et al., 2018) in OA models or in cartilage from OA patients. However, most of 

these studies only characterized their OA disease model in terms of the expression of specific 

genes (Zhong, Huang, Karperien, & Post, 2016). A few studies integrated -omics datasets (DNA 

CpG methylation, RNA sequencing, and quantitative proteomics) (Steinberg et al., 2017) or 

conducted transcriptomics comparisons between different OA animal models and OA cartilage (J. 

Soul et al., 2019). Here, we found the differentially expressed genes in various cytokine-induced 

OA models and untreated OA cartilage and quantified the overlapping DEGs (Figure 2). Both 

comparisons between IL-1β and TNF-α and various OA models showed a relatively large amount 

of overlapping DEGs, especially in comparison between response to different cytokines in same 

model system (Figure 2,3). A core set of dysregulated genes among all datasets predominantly 

involved Col2a1, col11a1, col9a1 (collagen family), Nfkb2, Nfkbie, Tnfrsf9, Tnip1, Tnip3 (NF-κB 

signaling), Mmp13, and Timp1(Matrix Metallopeptidase). These results support previous findings 

that IL-1β and TNF-α treated tissue-engineered cartilage can replicate the inflammation-induced 

loss of homeostasis and dysregulation of extracellular matrix proteins.  
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Gene set enrichment analysis of up-regulated and down-regulated DEGs revealed the most 

significant terms in each OA model and OA cartilage sample. In total, 34 GO biological processing 

terms were annotated in all datasets, which mainly involved cellular response to cytokine stimulus, 

inflammatory response, extracellular matrix organization and disassembly, immunity, MAPK 

cascade, cell proliferation, and apoptotic process (Supplemental file 2). Furthermore, the PPI 

networks established with overlapping genes further indicated that three major cluster of genes 

were common in most comparisons: NF-κB family (inflammation signaling), collagenase family 

and matrix metallopeptidase (Extracellular matrix organization) and cemokine ligands (Figure 5-

9). These results further supported the finding that the response of murine iPSC differentiated 

tissue-engineered cartilage pellets to pro-inflammatory cytokines replicated the transcriptomic 

expression changes in OA cartilage in inflammation related pathways, and thus provide a model 

system for finding potential targets for future therapies and approaches to overcome the 

inflammatory environment in OA.  

By comparing gene expression changes in response to IL-1β and TNF-α treatment in different 

OA models, we were able to generate a list of common genes that are highly related to an 

inflammation-induced OA signaling pathway (Figure 10, Supplemental File 3). These genes 

revealed the core signaling mediators in inflammation-induced OA. The cytokine stimulus and 

inflammatory related genes play a crucial role in the OA inflammation pathway, which is 

consistent with a number of previous cartilage pathway studies, e.g. Tnfsf11 (Li et al., 2012), Nfkb2 

(Boyce, Yao, & Xing, 2010), Fosl1 (Dunn et al., 2016), Cebpb (Hirata et al., 2012). 

Our data also suggested that dysregulation of ECM components (Col1a1, Col1a2, Col2a1, 

Col5a1, Col9a1) and proteases (Mmp9, Mmp13) involved in ECM remodeling may be active as 

part of the inflammatory response in OA pathogenesis. Previous studies have shown that the  
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dysregulation of collagens plays a crucial role in the chondron-remodeling and cartilage 

degeneration in osteoarthritis (Luo et al., 2017). Type II collagen (Col2a1) is the major component 

that forms the highly dense collagen fibril network in cartilage, while collagen type IX and XI, as 

minor components, fill in this proteoglycan matrix (Xia et al., 2014). Type X collagen (Col10a1) 

has been shown as a marker of chondrocyte hypertrophy (Zheng et al., 2003) and observed in 

hypertrophic zone and calcified zone in cartilage and also in arthritis cartilage (Gannon et al., 1991; 

Shen, 2005). Mmp9 (gelatinase B) is upregulated in hypertrophic chondrocytes, which degrades 

gelatin (Rose & Kooyman, 2016; Vu et al., 1998). Mmp13 (Collagenase-3) is highly over-

expressed at early stage of OA cartilage and induced extracellular matrix degradation in cartilage 

(Burrage, Mix, & Brinckerhoff, 2006). Timp3, an inhibitor of Mmp13, reduces the activity of 

Collagenase-3(Knauper, Lopez-Otin, Smith, Knight, & Murphy, 1996). Wnt and Rho GTPase 

signaling has been implicated in chondrocyte hypertrophy and final maturation in previous studies 

(Day, Guo, Garrett-Beal, & Yang, 2005; Dell'accio, De Bari, Eltawil, Vanhummelen, & Pitzalis, 

2008; Wang & Beier, 2005), which has been shown dysregulated in our study. Sox9, as an 

important transcription factor in chondrocytes differentiation, has been shown to repress the 

expression of ADAMTS at the early stage of OA (Q. Zhang et al., 2015). Regulation of cell 

proliferation and apoptosis is also responsible for cartilage degeneration in OA (Sun et al., 2015). 

Igf1 actives phosphorylation states of ERK1/2 or Akt signaling (McMahon, Prendergast, & 

Campbell, 2008; Montaseri et al., 2011). Igf2 has been shown to reduce loss of chondrocytes, 

osteophyte formation and subchondral bone thickening in vivo injury induced mouse OA 

(Uchimura, Foote, Smith, Matzkin, & Zeng, 2015).  Clec3a encodes tetranectin and is also detected 

as a DEG in multi-omics OA study (Steinberg et al., 2017), in addition to being implicated in 

osteogenesis and bone mineralization in a previous study (Wewer et al., 1994).  
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2.5 Limitations 

A limitation in our findings is that this iPSC OA model only partially replicates the gene 

expression changes in real OA cartilage. There were hundreds of unshared DEGs and DEGs 

regulated in different orientations in models and in OA cartilage. Specifically, we found that the 

cluster of collagen family genes were up-regulated in cartilage from OA patients while down-

regulated in all in vitro models. These differences could be due to a number of factors. First, OA 

is a complex whole-joint disease, which can be caused by various risk factors, such as trauma or 

injury (Thomas, Hubbard-Turner, Wikstrom, & Palmieri-Smith, 2017), aging (Loeser, 2009), 

obesity (Courties, Gualillo, Berenbaum, & Sellam, 2015), and inflammation (Courties et al., 2015). 

Although most of them lead to similar symptoms or cartilage phenotype, different etiologies are 

involved in the OA development. Nonetheless, we found that these in vitro models replicated the 

catabolic aspects of pro-inflammatory environment in OA cartilage, and thus can serve as a 

research tool to future development of therapy and drug screening. While an inflammation-induced 

OA model will not completely replicate the multiple factors that lead to clinical OA, such models 

still serve as the primary in vitro system for research and OA drug screening. Second, there are 

different stages of OA, and many studies have shown that specific genes can be up- or down-

regulated at earlier or later stages of the disease (Loeser et al., 2013; Zhong et al., 2016). Third, in 

the joint of OA patients, there are multiple cell types and tissues interacting with each other in vivo, 

which may affect gene expression changes in chondrocytes in response to stimuli. For example, 

synovial mesenchymal stem cells have been shown to alleviate osteoarthritis by promoting 

proliferation when co-cultured with meniscus chondrocytes(Qiong, Xia, Jing, & Haibin, 2020). 

Finally, the concentrations of cytokines also affect gene expression changes in models with 

variations over time. Studies of cytokine treated tissue-engineered cartilage with multiple time 
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points showed that increasing numbers of DEGs (772 to 1781 genes with IL-1β and 612 to 1147 

genes with TNF-α) and that there were groups of genes with different temporal patterns of 

expression from 4 hour to 72 hour post-treatment (Ross et al., 2020). 

2.6 Conclusion 

Overall, our data support that cytokine treated tissue-engineered cartilage can replicate many 

of the characteristics of OA cartilage at the transcriptomic level. As this model represents the 

cytokine related regulation in OA cartilage degeneration, it can be used to identify targets in the 

inflammatory response, cellular response to cytokines, and NF-κB signaling pathways. Thus, it 

provides a model for studying the pro-inflammatory response and pathogenesis in OA cartilage, 

and will be a valuable dataset for identifying therapeutic targets for inflammation induced OA 

treatment. The ability of self-renewal and unlimited proliferation of iPSCs offers this model the 

possibility of high-throughput drug screening with a defined genotype. Also, this transcriptomic 

analysis comparison of OA disease models and human OA cartilage provides us with a further 

understanding of the systematic mechanism and molecular and cellular basis of inflammation in 

OA.  
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Appendix Figure 1: Venn diagrams showing number of overlapping upregulated (+) or 

downregulated (-) DEGs between different models 

 

(A) Comparison of IL-1β treated murine chondrocytes (mchondro.IL) and untreated human 

osteoarthritic cartilage (cartilage.OA) showed 276 overlapping DEGs: 94 are regulated in the 

same direction, while 182 genes respond differently. (B) Comparison of IL-1β treated human 

osteoarthritic cartilage (OAcartilage.IL) and untreated human osteoarthritic cartilage 

(cartilage.OA) showed 336 overlapping DEGs: 142 are regulated in the same direction, while 

194 genes respond differently. (C) Comparison of TNF-𝛼 treated human osteoarthritic cartilage 

(OAcartilage.TNF) and untreated human osteoarthritic cartilage (cartilage.OA) showed 277 

overlapping DEGs: 123 are regulated in the same direction, while 154 genes respond differently. 

(D) Comparison of IL-1β treated tissue-engineered cartilage pellets (pellet.IL) and TNF-𝛼 treated 

tissue-engineered cartilage pellets (pellet.TNF) showed 560 overlapping genes: 478 are regulated 
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in the same direction, while 73 genes respond differently. (E) Comparison of IL-1β treated 

human osteoarthritic cartilage (OAcartilage.IL) and TNF-𝛼 treated human osteoarthritic cartilage 

(OAcartilage.TNF) showed 1105 overlapping genes with co-directionally regulation. 

 

Appendix Table 1: Common genes of gene ontology (GO) terms in response of IL-1β 

Term DEGs in four study groups 

extracellular matrix organization (GO:0030198) FGF2; HAPLN1; SH3PXD2B; CYP1B1; COL10A1; 
GREM1; COL2A1; MATN4; CD44; MATN3; 
COL11A1; COL11A2; LAMB3; ITGA10; COL9A1; 
COL9A3; COL9A2 

cellular response to cytokine stimulus (GO:007134
5) 

IL1RN; FGF2; TNFSF11; SOX9; IFNAR2; PTGIS; 
IL1R1; IRAK3; ASPN; CEBPD; CCL5; CHAD; CCL20; 
LIF; LCN2; SDC1; PTPN2 

cytokine-
mediated signaling pathway (GO:0019221) 

IL1RN; HFE; FGF2; TNFSF11; IFNAR2; IL1R1; 
CHAD; TNFRSF9; LIF; NFKBIA; LCN2; SDC1; RIPK2; 
IRAK3; ASPN; CD44; CEBPD; CCL5; CCL20; SOD2; 
FAS 

skeletal system development (GO:0001501) COL11A2; HAPLN1; PAPSS2; FRZB; SH3PXD2B; 
COL10A1; SOX9; GDF10; IGF1; COL2A1; COL9A2; 
MATN3; CD44 

regulation of cell proliferation (GO:0042127) FGF2; FTH1; CYP1B1; SOX9; SCIN; ABL1; 
TNFRSF9; LIF; IGF1; NGF; GREM1; FRZB; SOD2; 
FAS; PTPN2 

positive regulation of cell proliferation (GO:00082
84) 

FGF2; SOX8; SOX9; GREM1; CCL5; LIF; IGF1 

response to lipopolysaccharide (GO:0032496) TNFAIP3; PDE4B; CD14; GCH1; TNFRSF9; IRAK3; 
TNIP1; FAS; TRIB1 

negative regulation of cell proliferation (GO:00082
85) 

TNFAIP3; FTH1; CYP1B1; SOX9; NGF; GREM1; 
TRIB1; FBLN1; SCIN; FRZB; SOD2; GDF5; PTPN2 

regulation of cell migration (GO:0030334) RND3; CYP1B1; CCL5; IGF1; SOD2 

regulation of epithelial cell proliferation (GO:0050
678) 

IGF1; GDF5; SOX9 

Common genes of gene ontology (GO) terms from functional enrichment analysis from GO 

Biological Process 2018 with DEGs in all 4 group of studies, IL-1β treated tissue-engineered 

cartilage pellets (pellet.IL), IL-1β treated murine primary chondrocytes (mchondro.IL), IL-1β 

treated human osteoarthritic cartilage (OAcartilage.IL) and untreated human osteoarthritic 
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cartilage (cartilage.OA).  

 

Appendix Table 2: Common genes of gene ontology (GO) terms in response of TNF-𝛼 

Term DEGs in three study groups 

extracellular matrix organization (GO:0030198) CYP1B1; COL2A1; COL11A1; COL11A2; COL9A1; 
COL9A3; COL9A2 

cytokine-
mediated signaling pathway (GO:0019221) 

RIPK2; IFNGR2; CCL5; CHAD; CCL20; TNFSF15; 
TNFRSF9; LIF; SOD2; NFKBIA; FAS 

response to lipopolysaccharide (GO:0032496) TNFAIP3; PDE4B; MEF2C; GCH1; TNFRSF9; 
TNIP1; FAS 

response to molecule of bacterial origin (GO:00022
37) 

GCH1; TNFRSF9; TNFAIP3; FAS 

cellular response to cytokine stimulus (GO:007134
5) 

PTGIS; IFNGR2; CCL5; CHAD; CCL20; LIF 

skeletal system development (GO:0001501) COL11A2; PAPSS2; FRZB; GDF10; COL2A1; 
COL9A2 

regulation of cell proliferation (GO:0042127) FTH1; CYP1B1; SCIN; FRZB; TNFRSF9; LIF; SOD2; 
MDM2; FAS 

negative regulation of apoptotic process (GO:0043
066) 

SOX8; MEF2C; RIPK2; SOD2; NFKBIA; FAS 

positive regulation of cell proliferation (GO:000828
4) 

SOX8; MEF2C; CCL5; LIF; MDM2 

collagen fibril organization (GO:0030199) COL2A1; COL11A1; COL11A2; CYP1B1 

Common genes of gene ontology (GO) terms from functional enrichment analysis from GO 

Biological Process 2018 with DEGs in all 3 group of studies, TNF-𝛼 treated tissue-engineered 

cartilage pellets (pellet.TNF), TNF-𝛼 treated human osteoarthritic cartilage (OAcartilage.TNF) 

and untreated human osteoarthritic cartilage (cartilage.OA). 
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