

#TwitterCritic: Sentiment Analysis
of Tweets to
Predict TV Ratings

2

Twitter has rapidly become one of the most popular sites of the Internet.

It functions not just as a microblogging service, but as a crowdsourcing tool for
listening, promotion, insight and much more. From the perspective of TV networks,
tweets capture the real time reactions of viewers, making them an ideal indicator of a
show’s ratings. This paper predicts Internet Movie Database (IMDB) television ratings
by text mining Twitter data.

Tweets for five television shows were downloaded over a period of several
months utilizing a SAS macro. Television show data, such as rating, show title, episode
title, and more were retrieved through the Python package IMDBpy. Overall, there were
four to seven episodes for each show, with approximately 1,000 to 100,000 tweets per
episode.

Tweets were cleaned through a series of Perl-derivative regular expressions in
SAS and Python. Once the data were cleaned as much as possible, both SAS and
Python were used to score each tweet for sentiment analysis based on the AFINN
dictionary. PROC SQL was used to join the datasets as the data were transferred from
each program.

Sentiment analysis was used to determine the attitude or emotion of each tweet
in order to properly capture the audiences’ natural reactions. Reviews are written by a
select minority of reviewers, while tweets can be written by anyone. The tweets might
be more honest than an actual review because users are not writing tweets in the same
setting that they would write a review.

#Abstract

3

Introduction ... 4
Background Information (Data Sources) 5
Overall Process ... 7

Cleaning Process ... 7
Scoring Process ... 12
Analysis .. 16

Multiple Linear Regression .. 16
 Multivariate Adaptive Regression Splines (MARS) 18

Visualizations ... 19
Conclusion ... 22
Appendix .. 23

Other Cleaning Methods Considered 23
Model Conditions ... 24

Acknowledgements .. 26
Resources .. 27

#Table of Contents

4

Ever since the beginning of television criticism, reviews were made by

professional critics who were generally not connected to the public audience. The rise
of social media and networking sites, notably Facebook and Twitter, now allow us to
solicit the opinions of the online community instead of relying solely on professional
critics. Statisticians can leverage the data available through crowd sourcing to discover
how the general public feels. This project harnessed the power of Twitter, IMDB, and
sentiment analysis to investigate whether crowd sourcing of the Twitter community
could accurately predict the IMDB critic ratings of certain television shows. Essentially,
sentiment analysis was performed on tweets downloaded for five different television
shows to predict their IMDB ratings. This paper discusses the entire process of
sentiment analysis of Tweets, starting from the downloading and cleaning of the data
to the end results of the analyses.

#Introduction

5

The data and their sources are summarized in the following table:

DATA

SOURCE

Twitter

SAS

IMDB

Python

Sentiment Dictionary

AFINN-111

Text File From Google

Twitter data were accessed using a SAS macro called “%Tweetomatic”, which
uses an automated approach to download the JSON formatted tweets. This macro
was written as a summer research project and was developed over the course of two
summers. “%Tweetomatic” combines batch processing with SAS code that allows
users to leave their computer unattended while the data is downloading. It utilizes
PROC HTTP to access Twitter’s API, and can be run with Base SAS versions 9.2 and
above. The macro’s algorithm analyzes the rate at which tweets are posted to make
the automated retrieval process possible. More details about this macro can be found
in the paper provided in the Resources section.

IMDB data were downloaded using Python, specifically through a package
called “IMDBPy”, which allows users to directly access the IMDB database. The
Python script retrieves the show title, episode title, rating, number of critics who rated
that episode, and more and writes this information to a CSV file. The main limitation
with this script is that users must directly look up a show’s ID to be used in the script
beforehand. The TV show’s IMDB ID can be easily looked up through the following
steps:

1. Import the IMDB package by calling the code: import imdb

Table 1. Project Data and Sources

#Data Sources

6

2. Call the IMDB function to gain access to the package’s functions and to
create an instance of the IMDB class: imdb.IMDB()

3. Call the following line of code: print(search_movie(“Television Show
Title”)) to display a list of all movies or shows matching the title
provided.

Since many movies and shows share the same title, it’s difficult for the program to
select the exact show a user wants without the identification number.

Words contained in the tweets were scored based on values provided by the
AFINN-111 list, which can be found through a simple Google search. The list was
published in the Technical University of Denmark by Finn Årup Nielsen. Each word in
the list is assigned an integer ranging between -5 to +5 based on its valence.

Information about the shows selected for this project is outlined in the following
table.

SHOWS

The Walking
Dead

NCIS: LA New Girl Arrow How To Get
Away With

Murder

13

episodes

15

episodes

16

episodes

17

episodes

9

episodes

213,988
tweets

7,044

 tweets

12,742
tweets

171,038
tweets

229,034
tweets

The five shows were selected for their differences in genres, times, and
networks. The tweets accounted for in Table 2 were posted starting midnight of the
day the show aired until the actual show time. Due to the timing of the project and
deadline restrictions, no full seasons were captured for any of the shows. The
downloading process started in October and concluded in April.

Table 2. TV Show Information

7

The overall process involves two main parts: cleaning and analysis. The cleaning

process involved deleting and replacing text with regular expressions, SAS, Python,
and SQL. The analysis included multiple regression and multivariate adaptive
regression splines performed solely in SAS.

Cleaning Process

Tweets are unstructured text, which make them difficult to score accurately.

Although each tweet is only 140 characters, they’re filled with links, acronyms,
emoticons, misspelled words, slang words, and much, much more. The final cleaning
process involved three parts. Initial cleaning by deleting certain words such as “&”
and “http://”. Replacing acronyms with their actual words, for example, LOL would be
replaced by laugh out loud. Replacing the emoticon encoded values with their actual
meaning so that a smiley face was represented by the word “smile”. This step was
critical for the sentiment analysis scoring process because the scoring file links only to
words.

The cleaning process is shown with the following example of what a tweet
undergoes at each step. Figure 1 illustrates the tweet that will be used in the example.
Although this tweet was made for the purpose of this example, it is representative of
the challenges involved in scoring unstructured text messages.

The example tweet shown in Figure 1 is how the data appear on the Twitter

website. However, Figure 2 reveals how tweets appear once they’re read into SAS.

It may be easy to classify this tweet just by reading it, however, having the

computer score it is challenging. In order for the program to score tweets as accurately
as possible, code was written to remove certain words that do not have a sentiment
value and to replace acronyms and emoticons with their meaningful translations. The
cleaning process begins with some data manipulation before trying to delete or replace

Figure 1. Example of What a Tweet Looks Like On Twitter.com

omg h8 @MzKatieCassidy!! \ud83d\udc4e but so so much \ud83d\udc98
\ud83d\udc98 \ud83d\udc98 for @amellywood #Arrow

Figure 2. Example of What a Tweet Looks Likes After Its Downloaded

#Overall Process

8

any words. In the following figures, boxes colored in blue represent steps completed in
SAS, while boxes in grey represent steps accomplished with Python.

Step 1: Unroll each tweet into individual words so that each row/line is a single word
instead of the entire tweet.

Tweets were separated into individual words in order to make string matching

easier. Instead of scanning through the entire tweet for multiple phrases to delete, the
program matches the phrases directly to each word. Handling the words this way
streamlines the next step. It should be noted that the actual tweet data sets consisted
of many records and they had to be split into smaller, more manageable data sets to
be unrolled. Data sets were processed in partitions to handle the larger datasets with
over 50,000 tweets that took a long time to unroll. Partitioning the data optimized the
unrolling procedure, which streamlined the initial cleaning outlined in the next step.

omg h8 @MzKatieCassidy!!
\ud83d\udc4e but so so much
\ud83d\udc98 \ud83d\udc98
\ud83d\udc98 for @amellywood
#Arrow

omg
h8
@MzKatieCassidy!!
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
@amellywood
#Arrow

Figure 3. Diagram of Unrolling a Tweet

BEFORE AFTER

9

Step 2: Delete certain words that hold no sentiment value

Initial cleaning was performed through regular expressions within SAS. Regular

expressions are basically pattern matching with strings. Similar to the example tweet,
many posts often contain URL links and usernames, which do not contain any
sentiment value. Perl code allows easy matching of words that start with “@”, contain
“http”, and any other phrases that are not meaningful to score. Using regular
expression also accommodates the variation in the usernames and web addresses by
allowing SAS to look for key strings but ignore various patterns in the string.

Figure 4. Initial Cleaning With Regular Expressions

omg
h8
@MzKatieCassidy!!
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
@amellywood
#Arrow

BEFORE DURING AFTER
omg
h8
@MzKatieCassidy!!
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
@amellywood
#Arrow

omg
h8
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
#Arrow

10

Step 3: Select unique words and write them to a file

Once each tweet was split into individual words, the number of observations

increased considerably to the point where it was difficult to process due to lengthy
processing time. Certain shows had approximately 100,000 tweets for just one episode
and when unraveled, this resulted in millions of words. These episodes led to
unreasonable processing times and sometimes crashed the program due to insufficient
memory. To bypass the memory errors, an algorithm was developed to output distinct
words to a file with a simple SQL query. Referring back to the example, Figure 5
illustrates that the text “so” and “\ud83d\udc98” would only be output once despite
appearing multiple times in the original tweet. This resulted in a smaller overall word
data set to be used for further cleaning and scoring.

Figure 5. Writing Unique Words to a CSV File

omg
h8
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
#Arrow

BEFORE AFTER
omg
h8
\ud83d\udc4e
but
so
much
\ud83d\udc98
for
#Arrow

11

Step 4: Replace acronyms with their meanings

The CSV file containing unique words from all tweets was then read into Python
to translate the acronyms into English words. Combining regular expressions and
dictionary look up tables, Python replaced acronyms with their actual meanings. As
shown above, “omg” would be replaced with three separate words “oh”, “my”, and
“god”. Once all acronyms were properly translated, the next step was run to handle the
emoticons.

Step 5: Replace emoticons with their meanings

omg
h8
\ud83d\udc4e
but
so
much
\ud83d\udc98
for
#Arrow

Figure 6. Replacing Acronyms With Meaningful Words

BEFORE AFTER

oh
my
god
hate
\ud83d\udc4e
but
so
much
\ud83d\udc98
for
#Arrow

omg
omg
omg
h8
\ud83d\udc4e
but
so
much
\ud83d\udc98
for
#Arrow

Uncleaned Cleaned

oh
my
god
hate
\ud83d\udc4e
but
so
much
\ud83d\udc98
for
#Arrow

Figure 7. Replacing Emoticons With Meaningful Words

BEFORE AFTER

oh
my
god
hate
bad
but
so
much
heart
for
#Arrow

omg
omg
omg
h8
\ud83d\udc4e
but
so
much
\ud83d\udc98
for
#Arrow

Uncleaned Cleaned

12

Similar to the previous step, Python translated what each encoded emoticon
actually meant in plain words. In this example, the “thumbs down” emoticon is
translated to “bad” and the “red heart” emoticon is replaced with the word “heart”.
Compared to the unstructured text from the original example tweet, the data is finally in
a meaningful form that the computer can make sense of for sentiment scoring.

Scoring Process
Step 6: Score each newly cleaned word

 An additional Python function was developed to score each cleaned word based
on the AFINN dictionary. Once the cleaned words were assigned an integer from -5 to
5, the original word, cleaned word, and sentiment score were written to a CSV file.
Words that did not match any sentiment words were assigned a value of 0. The scored
data was then merged back with the original data consisting of all words unrolled as
shown previously in Figure 5.

BEFORE

oh
my
god
hate
bad
but
so
much
heart
for
#Arrow

omg
omg
omg
h8
…\udc4e
but
so
much
…\udc98
for
#Arrow

Uncleaned Cleaned

AFTER

oh
my
god
hate
bad
but
so
much
heart
for
#Arrow

omg
omg
omg
h8
...\udc4e
but
so
much
...\udc98
for
#Arrow

Unclean

0
0
0
-4
-3
0
0
0
+1
0
0

Clean Score

Figure 8. Scoring Each Cleaned Word

13

Step 7: Join original data with newly cleaned and scored data

BEFORE

oh
my
god
hate
bad
but
so
much
heart
for
#Arrow

omg
omg
omg
h8
...\udc4e
but
so
much
...\udc98
for
#Arrow

Unclean

0
0
0
-4
-3
0
0
0
+1
0
0

Clean Score

DURING

oh
my
god
hate
bad
but
so
much
heart
for
#Arrow

omg
omg
omg
h8
...\udc4e
but
so
much
...\udc98
for
#Arrow

Unclean

0
0
0
-4
-3
0
0
0
+1
0
0

Clean Score

omg
h8
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
#Arrow

Original Unclean

omg
h8
\ud83d\udc4e
but
so
so
much
\ud83d\udc98
\ud83d\udc98
\ud83d\udc98
for
#Arrow

Original Unclean

14

SQL queries were used to combine the original unrolled data with the
condensed scored data joined by original word and uncleaned word. Joining the data
sets on the uncleaned word not only allows us to score the original data, but also
replaces the messy words with the newly cleaned ones. Figure 9 demonstrates this
joining process by starting with the original, uncleaned data, adding in the newly
scored data, and ending with a table of just the cleaned words and their corresponding
scores. To further clarify in the preceding example– while “omg” appears only once in
the original data, it matches the three “omg” observations in the uncleaned column in
the scored data set. Therefore, the final table will have the corresponding cleaned
words “oh”, “my”, and “god”. Similarly, although “so” appears only once in the scored
data set, it will show up twice in the final table because it occurred twice in the original
data. Now that the original data is scored, all that is left in the cleaning process is to
roll the words back into tweets and total their scores.

Figure 9. Joining Original Data With Cleaned Data Based On Uncleaned Words

AFTER

0
0
0
-4
-3
0
0
0
0
+1
+1
+1
0
0

oh
my
god
hate
bad
but
so
so
much
heart
heart
heart
for
#Arrow

Clean Score

15

Step 8: Reroll individual words back into one tweet and total the scores

BEFORE

0
0
0
-4
-3
0
0
0
0
+1
+1
+1
0
0

oh
my
god
hate
bad
but
so
so
much
heart
heart
heart
for
#Arrow

Clean Score

DURING

-6
+1
+1
0
0

oh my god hate bad but so so much heart
heart
heart
for
#Arrow

Clean Score

AFTER

-4

oh my god hate bad but so so much heart heart heart for #Arrow

Tweet Score

Figure 10. Recombining individuals words into each tweet and totaling their scores

16

 In this final step the individual words get concatenated to the first word so that
each row becomes a tweet again. As each word was appended, their scores were
accumulated to compute the total. The end result was a tweet with slightly different
words, due to the cleaning, and a total score. This step concludes the cleaning
process and at this point the tweets were ready to be analyzed.

Analysis Process

An observation in the pre-analytic data consisted of a tweet, its score, show

title, episode number, and the rating. Using individual scores as a predictor became a
problem because the rating would be the same for tweets of the same episode. Since
there are multiple observations for a single episode, the data almost seems to fit a
repeated measures design, however, it does not fit exactly. Each tweet did not come
from every episode of every show violating the definition of a repeated measures
design. Therefore, in the final analytic data set the tweets were collapsed into specific
statistics such as total score, mean score, and the standard deviation of scores for
every episode to account for the multiple observations. Two different types of analyses
were performed using these predictors, multiple regression and multivariate adaptive
regression splines (MARS).

(Note: Vote count represents the number of critics who rated the episode on IMDB.)

Analysis #1: Multiple Regression

 The following list represents all the models considered:
• Rating = ShowTitle + VoteCount + TotalScore
• Rating = ShowTtitle + VoteCount + MeanScore + SDScore
• Rating = ShowTitle + VoteCount + MeanScore

Backwards elimination stepwise regression was used to select a final model

with show title, mean score, and vote count. Table 11 reveals that all predictors are
significant in this model based on the p-values. In this model 64.16% of the variability
in the IMDB ratings of shows could be explained by the model with title of the show,
number of critic ratings, and mean score as the predictors.

Source F-value P-value R-Squared
ShowTitle 4.27 0.0428 0.6416
VoteCount 13.81 <0.0001
MeanScore 7.06 0.0100

Table 3. Type III Model ANOVA Results for Model With ShowTitle, VoteCount & MeanScore

17

Table 4 shows the parameter estimates for each predictor and confirms that
mean score, and vote count are significant predictors after accounting for the other
variables in the model. The shows New Girl and The Walking Dead are significant
compared to the reference show Arrow. The show Arrow was randomly selected to be
the reference group and does not hold any special meaning. Every one unit increase in
the mean sentiment score and every additional critic rating is associated with a
decrease of 0.22 and increase of 0.0001 in rating respectively. When changing from the
show Arrow to New Girl, there is an associated decrease of 0.66 in the IMDB rating of
the show. Lastly, when going from the show Arrow to The Walking Dead, there is an
associated decrease in the predicted IMDB rating by 0.90.

Source Estimate t Value P-value

MeanScore -0.22 -2.07 0.0428
VoteCount 0.0001 2.66 0.0100

ShowTitle: How to
Get Away with

Murder

-0.06

-0.28

0.7780

ShowTitle: NCIS:
LA

-0.18 -0.82 0.4151

ShowTitle: New Girl -0.66 -3.14 0.0026
ShowTitle: The
Walking Dead

-0.90 -4.29 <0.0001

Table 4. Parameters Estimates for Multiple Regression Model with MeanScore, VoteCount & ShowTitle

18

Analysis #2: MARS

 MARS is a nonparametric regression that fits curved lines based on calculated
splines. This model is more flexible and combines model selection with basis functions.
This analysis uses the generalized cross validation (GCV) as an approximation to
assess model performance. All the models fit for the multiple regression analysis were
also fit using MARS, which ended up with the same final model as the multiple
regression including show title, vote count, and mean score. Variable importance was
calculated based on the square root of the GCV from a submodel minus the square
root of the GCV from the selected model scaled to 100. The submodel is formed by
removing all basis functions that have a certain variable removed. Based on variable
importance, the number of critics has the largest importance, while mean sentiment
score has the lowest. In other words, the contribution of the number of critics is the
largest after accounting for the other variables in the model. Lastly, the R2 squared of
0.6992 is similar to the one found through multiple regression which reveals that a
majority of the variability in the ratings can be explained by this model.

Functional
Component

Variable Importance R-Squared

VoteCount 100.00 0.6992
ShowTitle 35.33

MeanScore 1.82

Table 5. Variable Importance for MARS Model with MeanScore, VoteCount & ShowTitle

19

 The following figures display simple scatter plots of each predictor by show.

Conclusion

as

NCIS:LA and Arrow (orange and green cells) did not experience drastic variation

between the mean score and rating by episode compared to other shows. New Girl
(yellow cell), however, appears to have the largest discrepancy between mean score
and rating. The ratings plummeted around episode 10, but the mean sentiment score
consistently stayed around 1 to 2. The mean score appears to even increase later in
the season, while ratings continued to get worse. This large discrepancy between
mean score and rating for New Girl is difficult to explain, however, there appears to be

#Visualizations

Figure 11. Scatterplots of Mean Sentiment Score By Show

Figure 12. Scatterplots of IMDB Rating By Show

20

a logical reason for the disparity for The Walking Dead and How To Get Away With
Murder (pink and blue cells). Both The Walking Dead and How To Get Away With
Murder consistently have negative mean sentiment scores, but the ratings appear to be
on the rise. Both shows had a substantial amount of tweets containing swear words
compared to the other shows. For example, one The Walking Dead tweet received a
score of -98 because it only contained one swear word (to the reader’s imagination)
repeated over and over. Unfortunately, the AFINN-111 dictionary assigns swear words
the most extreme sentiment values of -4 or -5, which may not the correct context of
the word given opposite connotations used by the younger generation who are also
more likely to tweet.

Lastly, the scatterplot shown in figure 12 displays vote count for each episode
by the show to provide some perspective about the magnitude of the number of critics.
NCIS: LA and New Girl have the lowest number of critics per episode, while The
Walking Dead and Arrow have the largest. For almost all of the shows, there appears to
be one episode early in the season that has a considerably higher number of critics
than the rest of the episode. It is surprising that this does not occur for the season
finales of the shows.

Figure 13. Scatterplots of the Number of Critics Who Rated Each Episode By Show

21

 Crowdsourcing Twitter data allows us to capture real time reactions from the
online community, especially the instant feedback for television shows. These tweets
represent the unfiltered, candid thoughts of users that might be more honest than an
official review because they’re capturing users’ natural reactions. Sentiment analysis
on tweets for five different shows with two different types of statistical model was
performed. Out of all possible predictor variables included in the model, mean score,
show title, and vote count were the only significant predictors for rating after
accounting for all other variables in the model.
 The sentiment analysis and models discussed in this paper only scratch the
surface of what can be done with this data. Some future steps that warrant exploration
include:

• investigating more cleaning methods such as stemming
• comparing multiple regression and MARS models with cross validation
• comparing tweets before, during, and after the airing of an episode
• using SAS Text Miner to form text topics
• examining the geolocation of tweets by show
• downloading more data for more shows

#Conclusion

22

Other Cleaning Methods Considered

 In addition to the cleaning process described above, various other options were
explored. Ultimately, these cleaning methods were not included in the final process
because of their inaccuracy. While some of these other methods were more efficient,
the main cleaning process used for this project was the most accurate out of these
three.

Checking For Embedded Sentiment Words

 A common problem speculated to occur was missed sentiment words due to
hashtag phrases. Since many hashtag phrases do not contain spaces, it would be
difficult to accurately score these phrases if they contained any sentiment words. A
SAS macro to separate any sentiment words embedded in blocks of text was written
so that the scoring program would be able to capture these hidden words. For
example, if the word with the embedded sentiment word was: “#lovethisshow”, the
macro would separate this phrase into “#love” and “thisshow”. Now the sentiment
word “#love” could be properly accounted for in the scoring process. Just as a side
not, the scoring code would still be able to assign the phrase “#love” a sentiment value
despite the preceding “#”. This method was not implemented in the final process
because the occurrence of sentiment words embedded in hashtags was surprisingly
low. The problem of embedded sentiment words only occurred in less than .01% of all
words in the tweets for the various episodes that were tested. In addition, when this
macro was included in the code that would unroll each tweet it caused the program to
run unnecessarily longer than it needed to be. Therefore, for the sake of efficiency and
after discovering that the problem was not as common as previously believed, this
method was not incorporated into the final process.

Fuzzy String Matching

 Another cleaning method that was investigated was fuzzy string matching
through a Python package called “FuzzyWuzzy”. This package includes functions that
will match strings based similarities based on distances, token sets, and sorts. The
partial string similarity attempts to account for inconsistent length strings through what
the developers call “best partial”. The site SeatGeek has an in-depth explanation, but
the following example will be used for the the context of this study. The following
function will compare the two strings provided and assign a value of how similar they
are and can be used for identifying substrings of the given string. For example consider
the code: fuzz.partial_ratio(“amazing”, “ahhmazing”) = 85

#Appendix

23

This function does a great job of capturing slang words that look similar to sentiment
words but do not match exactly. The use of fuzzy string matching was not included in
the final processes because it ended up over scoring words. Many of the scores
greater than 100 did not match the sentiment word at all. For example, matching the
word “brilliant” and “ill” resulted in a value of 100, but these words obviously have
opposite sentiment score. Since so many words resulted in erroneous scores, this
method was excluded because in order to maximize scoring accuracy.

Model Conditions

Analysis #1: Multiple Regression

 Figure 14. Plots to Check Conditions for Multiple Regression Models in Analysis #1

24

Linearity:
Since the points do not appear to form any patterns in the Residual by Predicted Value
plot, the linearity condition does not appear to be violated.

Normality:
Since the distribution of the residuals appears to be approximately normal in the
Percent by Residual plot, the condition does not appear to be violated.

Equal Variance:
The equal variance does not appear to be violated since there is no fanning shape or
pattern in the Residuals by Predicted Value plot.

25

Fuzz

#Acknowledgments

26

• ADAPTIVEREG Procedure:

https://support.sas.com/documentation/onlinedoc/stat/121/adaptivereg.pdf
• AFINN Dictionary:

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
• Fuzz String Matching: http://chairnerd.seatgeek.com/fuzzywuzzy-fuzzy-string-

matching-in-python/
• IMDBPy: http://imdbpy.sourceforge.net/support.html#documentation
• Tweetomatic: http://wuss.org/proceedings14/53_Final_Paper_PDF.pdf
• Using Sentiment Analysis to Predict Popular TV Series: http://www.r-

bloggers.com/using-sentiment-analysis-to-predict-ratings-of-popular-tv-series/

#Resources

