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Statement of Disclaimer 
 
Since this project is a result of a class assignment, it has been graded and accepted as fulfillment 
of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use 
of information in this report is done at the risk of the user. These risks may include catastrophic 
failure of the device or infringement of patent or copyright laws. California Polytechnic State 
University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the 
project.  
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1. Introduction 
 

The Heliodon Project is a Mechanical Engineering senior design project undertaken by 
students of the California Polytechnic State University San Luis Obispo. The goal of the 
Heliodon Project is to design, build, and test a rig to be used by students and faculty of Cal Poly. 
This final project report contains information about why Cal Poly needs a Heliodon, some 
background information about the Sun’s motion and about Heliodons, the Heliodon’s desired 
specifications and the objectives of this project, our methods of brainstorming and idea selection, 
our final designs, any technical content needed to help explain our designs and decisions, 
manufacturing process details, instructions for operation, and future suggestions if further 
iterations are to be made.  
 

The purpose of the Heliodon project is to provide professors with a means to educate 
students about the movement of the sun and how that movement varies with location on earth 
and throughout the year. It may also be used to provide architecture, electrical engineering, and 
mechanical engineering students a means to accurately and physically model the sun’s position 
and motion to better inform their design considerations. A custom designed rig is required in 
order to provide an accurate way to physically model shading and sun position for design testing 
and educational purposes. This custom designed rig must be easy to use, intuitive, relatable to the 
real world, and accessible by faculty and students. It must also be durable, transportable enough 
to move outdoors and move from building to building and from classroom to classroom. 
 

The Heliodon Project team is composed of three senior mechanical engineering majors 
and one senior electrical engineering major: Greg Bucher, Lucas Carter, Jake Hamilton, and 
Robin Hubilla, respectively. We are excited to construct an educational tool to be used by our 
fellow students at Cal Poly for years to come and with our combined background in mechanical 
design, programming, motors, and mechatronics, we believe we are capable of doing so. 
Electrical engineering professor Dale Dolan is the project’s sponsor and advisor.  
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2. Background 
 

2.1 Heliodon Definition: 
 

A Heliodon is a three-dimensional physical sun simulator with two essential components; 
a light to model the sun, and something for the light to strike (usually a building model). In 
essence, its purpose is to simulate the motion of the sun from the Earth’s perspective. It can also 
simulate the relationship between the sun and anything that the sun’s rays strike. The focus here 
is not on simulating the radiant heat from the sun’s rays, but instead on simulating what the light 
rays strike and the shadows that are created on surfaces when the sun is in different locations in 
the sky throughout the year. It is limited to only simulating clear sky conditions. Other software 
is used to simulate weather changes and their effects on the sun’s rays. The main advantage of a 
physical Heliodon is that it can demonstrate the sun’s motion in the different months of the year 
and for the different seasons. A Heliodon should be able to simulate seasonal changes by 
changing solar declination, simulate changes in the Earth’s rotation by modeling the sun’s 
different positions in the sky throughout the day, and simulate changes in site location by latitude 
adjustment. 

 

2.2 Earth‐Sun Background: 
 

To model the sun’s relative motion, we must first understand the way the Earth moves 
about the sun. The Earth moves in an elliptical rotation about the sun and this rotation takes place 
in what is called the orbital plane. The orbital plane can be found by identifying only three 
points. One point would be the center of what is being orbited (the center of the sun), another 
would be the center of what is doing the orbiting at a specific time (the center of the Earth), and 
the third is the center of what is doing the orbiting at any other time. An expansion of these three 
points would identify the orbital plane of any object. This can be confirmed by looking at Figure 
1 and imagining that the celestial body is Earth and it is rotating about the sun. By picking any 
two points the Earth will be located and picking the sun as the third point, the orbital plane 
would be defined. 

 

 
Figure	1.	Orbital	Motion	
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More formally however, the orbital plane of an object is defined by two parameters; 
Inclination and Longitude of the ascending node. These angles are also shown in Figure 1. 
Inclination of the orbit of a planet is the angle between the plane of the orbit of the planet and a 
reference plane. The reference plane is the plane containing Earth’s orbital path. So for Earth the 
inclination angle is zero. A node is a point in which the orbit of an object passes through the 
reference plane. There are two nodes in Figure 1 because the orbit of the celestial object will 
cross the reference plane exactly twice. The ascending node is the angular position at which a 
celestial body passes from the southern side of a reference plane (below the plane of reference in 
Figure 1) to the northern side of the reference plane (above the plane of reference in Figure 1). 
This will not be important to understand as the reference plane is the Earth’s orbital plane and so 
this will not be of use to us. The Longitude of the ascending node is the angle from a reference 
direction, called the origin of longitude, to the direction of the ascending node. The origin of 
longitude is specified differently for different applications but this will not be important for us to 
understand.  
 

Figure 2 helps to visualize the motion of the Earth around the sun [1]. The important 
thing to take from Figure 2 is the notion that the Earth’s equatorial plane is tilted at an angle of 
23.45o to the Earth’s orbital plane. This tilt angle leads to a variation in the solar declination 
angle, δ, and this variation causes the changing seasons with their unequal periods of daylight 
and darkness. Solar declination angle is a measure of how many degrees North or South of the 
equator the sun is when viewed from the center of the Earth [2]. There are equations that 
calculate the declination angle based on what day in the year it is and these equations will be 
useful in our model. Figure 3 on the next page shows how solar declination varies throughout the 
year [2]. 
 

	
Figure	2.	Motion	of	Earth	around	Sun 
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Figure	3.	Solar	Declination	Daily	Variation	

	
The sun’s position in the sky can be expressed in terms of the solar altitude angle, which 

is the angle above the horizontal, and the solar azimuth, which is an angle that sweeps across the 
earth and is measured from the south. In Figure 4, the solar altitude angle is the angle beta, β, and 
the solar azimuth is the angle phi, ϕ [1]. The other angles in Figure 4 are not important for our 
applications. The solar altitude angle is defined as the angle between the horizontal plane and a 
line emanating from the sun. The solar azimuth angle is defined as angular displacement from 
south of the projection, on the horizontal plane, of the Earth/sun line. Both of these angles are a 
function of the local latitude, the solar declination, and few other parameters that are not 
important to delve into [1].   

 

	
Figure	4.	Solar	Angles	for	Vertical	and	Horizontal	Surfaces	
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Figure 5 shows the sun’s position as expressed by the solar altitude and solar azimuth 
angles as a function of different dates for a latitude of ±450. As stated before, the sun’s position 
varies by date due to the Earth’s rotation about the sun and the tilt of the equatorial plane from 
the orbital plane. We can see from the figure that the range of the solar azimuth angle varies over 
the course of the year and goes well over a range of 180 degrees.  

	
Figure	5.	Sun	Position	for	Various	Dates 

 

2.3 Research and other Models: 
 

From what we have researched, Heliodons are the only physical models we have found 
for sun motion and position simulation. There are various software platforms available that can 
model the sun’s motion and position, each meant for different applications. For example, 
architects may use Rhinoceros 3D to simulate shadows that the sun makes at different locations 
to better visualize designs; electrical engineers that design solar panels may use Solemetric 
devices such as SunEye and PV Analyzer to find sun angles at different times of the day and at 
different seasons in order to position solar panels most efficiently; mechanical engineers use 
HVAC programs such as Trace that account for sun angles in load calculations to help with 
HVAC designs.  
 

The physical Heliodon model is one whose design varies extensively today. There are 
two main categories of Heliodon, each with its own advantages and disadvantages. First is the 
Fixed Sun Moveable Earth model, in which the model is moved while the light source remains 
fixed in order to create the appropriate sun angles and shadows on the model. Second is the 
Fixed Earth Moveable Sun model, in which the model stays fixed and the light source moves 
around the model to simulate sun motion, sun angles, and the shadows that the sun casts on the 
model. The Fixed Sun-Moveable Earth model is popular today and many industries or schools 
that have a Heliodon have one of this type.  
 

PG&E in San Francisco has such a model that was designed and built by a three-person 
team. The team consisted of Professor Charles C. Benton of the University of California, 
Berkeley, Paul Leberge, a PG&E designer, and Ian Melody, a machinist. In their model, the 
motion of the model seems to be purely mechanical and it has knobs in which you can set the 
latitude, time of day, and time of year. The knobs adjust the various angles of the model. Their 
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light source has been placed 30 feet from the model to simulate the sun’s parallel rays in order to 
cast accurate shadows. There are two disadvantages associated with this Fixed Sun-Moveable 
Earth design. The first is that the model must be fixed securely to the rotating surface. The model 
must be able to maintain its own weight as it rotates to different orientations. Each model that is 
to be used with the Heliodon must be able to be fixed to the rotating surface as well. The second 
disadvantage is that because the model is moving, its simulation is inherently different from what 
is experienced on Earth. The shadows are hard to observe when the model is moving or even 
when it is fixed at a non-horizontal orientation. On Earth, even though we are moving around the 
sun (as the Fixed Sun-Moveable Earth model demonstrates), we see it the opposite and think that 
the sun is moving around us. So we are used to visualizing shadows as the sun moves and the 
object stays stationary. PG&E has accounted for this by attaching a Toshiba IK-M40A color 
CCD Point-of-View camera head and camera control unit to the moving table. This makes it so 
that when the video is watched, it appears that the model is not moving and that instead the 
shadows are changing due to sun motion. In our minds, this defeats the purpose of having a 
physical model because a video must be watched to observe the simulation [3].  
 

Another type of Heliodon is a Sun Simulator. We analyzed the HPD Sun Simulator, and, 
later in the Ideation section of this report, we use this model as a benchmark to compare our 
ideas to. The HPD Sun Simulator falls under the category of Fixed Earth-Moveable Sun model. 
The table-top is usually fixed and the sun’s path is simulated over the model and this is typically 
done by having multiple arches representing different sun paths. A different light along each arc 
represents one hour of the sun’s movement relative to Earth. This type of Heliodon can only 
represent a single day of each month but only seven arches are needed for each month because 
certain months overlap. That is, for certain months, the sun’s path is exactly the same. The main 
advantage of this design is that it simulates our everyday experience. It shows the physical 
movement of the sun relative to Earth. It is pretty accurate because the further the light source is 
away from the model, the more parallel the rays are when they strike the table-top. This 
particular Heliodon allows the top to rotate an additional five degrees allowing for more than one 
latitude without losing any clarity. The size allows for larger architectural models to be studied in 
addition to larger audiences, but this sacrifices ease of transportation. We may consider taking 
the principle of having a fixed table to increase accuracy [4]. 
 

Architects currently use 3D modeling software to see shadows caused by their buildings. 
A fixed light source is inserted somewhere in their model and then a rendering is done to see the 
desired result. Simulating a day takes time to set up and render. A physical system would benefit 
architect students by physically allowing them to see the movement instead of just looking at a 
rendered model where the light changes. Different features could be added without having to 
model anything in a computer program [5]. Both mechanical engineering and electrical 
engineering students would benefit from a physical model as well. If an electrical engineer 
wanted to install solar panels on a building, knowledge of the way the sun moves across the sky 
would be extremely helpful in panel placement. Mechanical engineers interested in calculating 
energy loads on a building (which are most impacted by radiation from the sun) and designing 
systems to cool or heat buildings would benefit from knowledge of the sun’s motion as well. 
Currently, both electrical and mechanical engineers use programs that require little knowledge of 
the sun’s motion to satisfy their needs.  
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2.4 Outside Effects of Operation: 
 
 Our final model will ideally not only demonstrate the motion of the sun, but also be able 
to simulate the sun’s rays on an object. For that reason, it is important to consider the intensity of 
light that is emitted. We must consider if our Heliodon is to be as effective in daylight as it is in a 
darker setting. 
 
 We have recognized that previous senior projects have been stored outdoors and so we 
must consider weatherproofing our final model. We must decide if we want to create a covering 
to protect the Heliodon from the wind, the rain, and other debris or if we want to use 
weatherproof materials in manufacturing our final product. 
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3. Objectives 
 

Our overall goal for this project is to deliver a fully functioning Heliodon that can be 
transported between different buildings and rooms and is capable of accurately and precisely 
modeling the position and overall motion of the sun throughout specific days and times at 
various locations on Earth. 

 
To create the specifications for the Heliodon based on the needs of those who will use it, 

our team utilized the Quality Function Development (QFD) method. This involves creating a list 
of the people who will use the Heliodon and what their particular needs are from the device, 
followed by comparing those needs to a list of design specifications. 

 
Various requirements like “lightweight”, “ease of use”, or “speed of operation” are all 

given an importance rating, ranking how important each customer requirement is to the overall 
product. These are then matched up with design specifications and given a relationship strength 
rating. For example, “lightweight” as a customer requirement and “weight” as an engineering 
specification would be given a “strong” relationship rating because it is very important that 
weight of final product is light. Each of the specifications are then given a weighted importance 
to help decide which have the highest priority and deserve the most consideration. Our QFD 
house of quality can be viewed in the appendix. 

 
The highest ranked customer requirements for the Heliodon were to be able to model the 

sun’s position at precise dates and to accurately replicate the sun’s motion. Professor Dolan 
made it clear that the Heliodon’s primary purpose is to be a learning tool to help all students 
better understand sun’s relative motion and that its secondary function will be as a testing tool. 
This educational focus puts an emphasis on the Heliodon’s ability to accurately model the sun’s 
position and motion so that students learning from our model are not given false information. 
During the light’s movement, it is also desirable for the light to remain stable and to not vibrate 
too much. Ideally the light’s rays would remain fixed on the desired location as the light source 
moves to simulate the day. 

 
Though the Heliodon is to be primarily used for educational purposes, it is also important 

that it also be usable for testing purposes. This means that it can be used by architecture students 
to model shadows, HVAC students to minimize sun radiation incident on surfaces, and electrical 
engineering students to optimize sun contact with solar panels. This is why the Heliodon’s ability 
to cast shadows well and output sun angle information are both ranked high on the importance 
scale. 

 
To encourage students to use and learn from our Heliodon, a large importance ranking 

was given to the ease of using our interface. We want students to be able to quickly understand 
what the machine is and how to use it and then be able to operate it on their own with ease. A 
high importance was also placed on the operation speed of our machine as well. There are 
existing software that students can use as a tool to model the sun, so if our Heliodon moves 
slowly and is inconvenient to use, students will be more inclined to use such software. 
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While the Heliodon will be used primarily in the electrical engineering department, it 
must be able to be moved between rooms and buildings. This requires the Heliodon to be 
transportable and be able to fit through doors, which will dictate the sizing specifications. This 
also adds importance to the speed at which the machine can be set up so that it can be quickly 
used once being moved into a different room. 

 
One last customer requirement is for the Heliodon’s table to be fixed while the light 

source moves. A common trait amongst most Heliodons is for the light source to remain fixed 
while the model moves. This works well for use as a testing tool, but not when the primary focus 
is to help people learn about the sun’s relative motion. 
 

From our QFD analysis we were able to create a list of specifications. This list includes 
the specification targets and their tolerances, as well as the risk associated with trying to meet 
that specification that varies between Low (L), Medium (M) and High (H). It also includes the 
means by which we will check for our design’s compliance with these specifications. These 
means are Analysis (A), Testing (T), Similarity to Existing Designs (S), and Inspection (I). 

 
	

Table	1.	QFD	Specifications,	Tolerances,	Risks	

Spec 
# Description Requirement/Target Tolerance Risk Compliance

1 Explanation Time 5 min ±2 min L T 

2 Height 78 in Max L A,S,I 

3 Width 36 in Max M A,S,I 

4 Length 90 in ±6 in L A,S,I 

5 Weight 250 lbs Max L A,T 

6 Setup Time 5 min ±3 min L T 

7 Light Movement speed 3 deg/ sec Min M A,T 

8 Angle precision 2 deg Min H T,I 

9 Settling Time 1 sec Max L A 

10 Angle Accuracy 1 deg Min H T,I 

11 
Altitude Angle Range of 

Motion 180 Max M A,S 

12 
Latitude Angle Range of 

Motion ±50 deg ±.05 in L I 
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The explanation time ties in with the ease of usability of our Heliodon. We figured that if 

it took more than about five minutes for someone to become acquainted with how to use it then 
they would be more inclined to use another tool for their task. We can test this specification after 
it is built by running trials with students. 
 

The height, width, length and weight all tie in to the transportability of the Heliodon. The 
height and width are both tied to dimensions of a typical door frame to allow for movement 
through doorways. The length is connected to an approximate hallway width so that it can be 
turned to go through a door without hitting the hallway walls. We will try make the Heliodon 
light enough so that pushing it will not be too strenuous for an adult of average strength. We 
should be able to approximate the size and weight of the model with SolidWorks and other CAD 
software and use other machine designs to see if we meet our specifications. We will also be able 
to inspect whether we’ll be able to meet our targets once we have our materials.  
 

The setup time is connected with the transportability of the Heliodon. We want the user 
to be able to move the model into a new room and then be able to set up and be able to operate 
the Heliodon within about five minutes. Again, we can conduct testing with various students and 
faculty after the Heliodon is built to determine whether we meet this target. 
 

We chose a minimum angular light speed of about three degrees per second so that if our 
range of motion is from horizon to horizon, our Heliodon would be able to cover that in about a 
minute. Ideally this speed will be adjustable by the user, but we want it to be able to at least 
match this speed. We can figure out this speed through analysis once we have a motor selected 
and can also run tests once we have the Heliodon built. 
 

The solar angles of our Heliodon need to be very precise and accurate so that they can 
model the true relative motion of the sun. We are aiming to have an accuracy of one degree and a 
precision of two degrees. To verify this, we can test the precision of our motors and the accuracy 
of our program. We can also measure the angle the light makes with the model or the distances 
of the light from the model. These distances may be used to calculate the angles and these angles 
may be compared with known angles for particular times. 
 

Once the light reaches the desired position it needs to settle and stay there. We want to 
keep this settling time down to about one second. To check for this we can create a model and 
check its settling time, and then we can tweak it until we can get the response we desire. We also 
need to make sure that the light remains pointed at the model during its entire motion. We will be 
able to check this once the Heliodon is built and plan on troubleshooting if there are issues.  
 

We are aiming for a range of motion (ROM) of the solar altitude angle of -5 to 185 
degrees, which would be more than horizon to horizon. We are aiming for a full azimuth angle 
ROM corresponding to the azimuth angle ROM for our maximum latitude simulation. We want 
to make sure that we can model the sun’s motion for at least all of the United States. Missing 
solar altitude ROM by a few degrees is not a huge issue as long as we get from horizon to 
horizon but we would like to be able to stick to our azimuth ROM. Our SolidWorks model of our 
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design should be able to show how large our ROM is, and we can also view other Heliodon 
designs to see if we can achieve this. 
 

It is important that our table is flat so that models can be placed on our table and the light 
will hit it in a true manner. The flatness of the whole table is not very important, but the flatness 
near the model’s placement zone is. In this region we are aiming for a flatness of about 0.1 
inches. We can only really test this flatness once we get our materials and assemble our table, 
after which we can make adjustments to get our desired flatness. 
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4. Ideation
	
	 The brainstorming for the project was an ongoing process. We divided the process into 
two phases; general brainstorming and detailed brainstorming. General brainstorming was 
completed for the overall look and operation of our Heliodon and the detailed brainstorming 
entailed the specifics of how the Heliodon as a whole would operate. Once the general 
brainstorming was completed, we had to pick our top concepts and select a final general design 
to go with before we started the detailed brainstorming.  
	
4.1 General Brainstorming: 
	

Our first brainstorming session was completed in class. We took a giant sheet of paper 
and wrote down different categories for different parts of a Heliodon. Our categories were 
transportation, material, light source movement, and user interface. With categories selected, we 
thought different aspects that could be used in the Heliodon that were related to those categories. 
For example, we thought of wheeling, sliding, dragging, and other things for transportation. We 
thought of wood, t-slot, aluminum, PVC pipe, and other things for material. And lastly, we 
thought of other relevant things for light source movement and user interface. An important 
aspect of this brainstorming session was to get every idea possible out there, even the farfetched 
and silly ones because clever and feasible ideas could spring from them. 
 
 Our second brainstorming session included brainstorming for specific parts of the 
Heliodon. For example, we first brainstormed the ways the light source could move. All four 
group members took out a blank piece of paper and had five minutes to individually write down 
their ideas for the light’s movement. After the five minutes expired, each group member passed 
their paper to another person who would then build on those ideas. Figure 6 below shows one 
example of what a final piece of paper looked like after each group member added to the first 
idea. This brainstorming session inspired various possibilities for light movement, some of which 
included a rack and pinion system, a pulley and cable system, manually moving it along pegs or 
notches, or having rollers inside the arch. 
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Figure	6.	Brainstorming	Example	

	
During our third brainstorming session, we decided to visualize the movement of the sun 

through role play. This was an attempt to understand how the sun would actually move through 
the sky during different periods of the year. One group member stood in the middle of the room 
to play the role of the model while another played the role of the sun by holding a light and 
tracing the sun’s path. This activity helped us realize that we needed to construct a rig that would 
be able to encompass all angles of altitude and azimuth. It also made us wonder whether the 
shape of the arch should be circular or ellipsoidal. We tried to visualize types of structures that 
would be able to achieve this movement and wrote our ideas on a white board. These white 
board sketches can be seen below in Figure 7. 

	

	
Figure	7.	Angle	Brainstorming	
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Next, we met up to sketch possible designs that could place a light at all altitude and 

azimuth angles. We also considered what kind of table or frame would be best for each light 
movement method. We used the category list from the first brainstorming session and made 
selections from each category to form combinations. We then made four combinations and had 
each group member sketch what the combination may look like.  Figures 8 and 9 show a few 
sketches from the brainstorming session. The Figure 8 design utilized an x-y-z coordinate 
movement system to place the sun in each desired location while the Figure 9 design used more 
of an r-theta-z coordinate system. This brainstorming session helped us think about how we 
could make the Heliodon as large as possible but still fit it through a door. We came up with the 
idea of a folding table. The table could be folded when the Heliodon is being transported and 
unfolded when the Heliodon is going to be used. 

	

	
Figure	8.	Possible	Heliodon	Constructed	out	of	Cardboard	
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Figure	9.	Rotating	Arch	with	Centering	Light

	
	
4.1.1 Modeling: 
	
	 In our last brainstorming session we built small, crude models of prototype designs based 
on our ideas thus far. We made three designs and one concept design for an arch and folding 
table. These models helped us realize some otherwise overlooked problems with our designs. 
Figure 10 shows our original concept for the folding table Heliodon. The arch can pivot allowing 
for a full range of motion for the altitude angle. Even though we later found that this model 
would not give all the accuracy we wanted, the concept was the basis for later ideas. 
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Figure	10.	Folding	Table	Single	Arch 

 
Figure 11 shows the model Heliodon that operates similarly to a 3-D printer. It would 

ideally have full range of motion in the x, y, and the z plane and so it could model the sun’s 
position in the sky at any time.  

 

	
Figure	11.	3D	Printer	Model 

 
Figure 12 shows a model of the cylindrical telescoping Heliodon. The arm, represented as 

a straw, would be able to telescope in and out while rotating around the table at 3600. 
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Figure	12.	Cylindrical	Telescoping	Heliodon	Top	Concepts	and	Design	Selection 

4.1.2 Top Concepts and Design Selection: 
	

Out of all of the possible designs that were brainstormed, we considered five distinct 
designs to weigh against each other and against a datum existing Heliodon. The process by 
which we compared them all will be explained below.  

 
The first of the five designs was labeled as the “3D printer” which can be seen in Figure 

13. It would use Cartesian coordinates to model the sun’s movement in the x, y and z, plane. 
Servo motors would power each axis individually and vector equations would be used to move 
the sun in the orientation that a person would see while standing on earth. This would require all 
three motors working simultaneously to provide the correct path instead of the simpler design of 
having each motor work independently to get the sun in the correct position. The advantage of 
this design is that the overall principle of three axis motion has already been done with 3D 
printers. Instead of having a material injector, a light source would be attached. The overall 
design could fit through a doorway and be rolled around from classroom to classroom. 
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Figure	13.	3D	Printer	Heliodon	

 
The second of the designs considered was the fixed light moving table. Out of all the 

designs, this was the simplest. A single light would be hung over a pivoting table that could be 
adjusted in any direction to achieve the range of motions necessary. The building model to be 
observed would be securely fastened onto the table to prevent it falling. This design is common 
due to ease of manufacture and operation. However, this design is unable to model the sun’s 
movement as we see it from Earth. This is one of our main design criteria given by our sponsor, 
Dale Dolan, and sacrificing this element is not acceptable. The fixed-light moving-table model is 
not intuitive and so it is not a good learning tool.  

 
The third design better shows the sun’s movement relative to earth. This design is the 

rotating arch seen in Figure 14. This design incorporates a folding table to maintain the mobility 
and space criteria while making it as large as possible to increase accuracy. The further the light 
source is from the model, the more parallel the rays of light will be when they reach the model. 
A machined arch would be able to rotate and move along a slotted frame that is attached to the 
table. The slotted frame would also be able to rotate clockwise and counterclockwise as needed 
to simulate different latitudes of location on Earth. The arch position within the slot would 
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represent the solar declination (the change in seasons). A wide azimuth range would be possible 
with this design. A moving light source would be attached to the arch to represent the sun’s 
movement across the sky. This design could be fully automated or manual depending on the 
budget or the accuracy required. Each different angle would be driven by a single motor or 
manually before the next angle would need to be adjusted. The light movement along the arch 
would benefit most from having the motor because adjusting for the hour manually would be 
inaccurate. This design has the highest educational value because it shows the physical paths the 
sun would take. 

 

	
Figure	14.	Circular	Arch	Heliodon 

The fourth design uses cylindrical coordinates to model the sun’s movement. This design 
can be seen in Figure 15. A collar that would rotate a full 360o would be attached underneath a 
folding table. A slotted frame would be attached to the end of the collar and would contain the 
light source. Inside the slotted frame would be a carriage that could either raise or lower the light 
source depending on the simulation. A telescoping mechanism would come off the carriage and 
would hold the light source. A wire feeder would expand or retract the telescoping piece. Three 
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separate motors would be used to adjust the sun at any location or time. They would also be 
programed to simulate a full day’s movement at various latitudes and times of year. 

	

	
Figure	15.	Cylindrical	Heliodon	

The	last	design	would	use	spherical	coordinates	and	may	be	seen	in	Figure	16.	It	is	
similar	to	the	cylindrical	design	but	instead	of	having	a	slotted	member,	it	would	have	an	
extending	rod	with	the	light	source	attached	at	the	end.	The	collar	would	rotate	underneath	
the	table	while	the	rod	would	either	extend	or	contract	while	bending	from	the	end	
attached	to	the	collar.		The	extended	rod	would	also	be	able	to	pivot	so	that	the	light	could	
extend	even	more.	
	

	
Figure	16.	Cylindrical	System	
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4.1.3 Selection Process: 
	

Our team used a Pugh matrix to establish which ideas were better than the datum. The 
Pugh Matrix can be seen in Table 2. We chose the High Precision Devices Heliodon as our 
datum, as this is one of the few Heliodons we have come across that is available for purchase and 
that can model the motion of the sun. We ranked the 3D printer model, spherical and cylindrical 
telescoping models, and rotating arch model with differing numbers of motors. 

 
For cost we ranked the cylindrical, spherical, 3D printer, and arch with 3 motors as all 

worse than the datum. All three of these will need three accurate and strong motors, which would 
likely set the cost higher than the datum. The arch with one motor would likely be about the 
same cost as we would need to manufacture only one arch as opposed to the seven that the datum 
has, but we would still need to buy a motor. The arch with no motors would be almost the same 
as the datum but would only need one arch as opposed to seven, making it cheaper. 

 
The scale of all of these designs would be larger than the datum because we are planning 

on having a foldable table for each. This would allow us to make a large scale Heliodon while 
allowing for transportation and for passing through doors. 

 
All but one of our designs would be able to simulate the sun’s movement throughout the 

day better than the datum. The datum moves its light source by allowing the user to rotate the 
arches by hand. This shows the path of the sun, but doesn’t accurately show the rate at which it 
moves through the sky. It also doesn’t have a precise way of displaying a particular sun location 
at a particular time of the day. Our arch design without a motor would function similarly and 
come with the same disadvantages. Our arch designs that include a motor would also have a 
controller that would give the motor directions to provide for more precise movement of the light 
source. 

 
All of our designs were equal to the datum for mobility, setup time, and ease of user 

interface. All of the designs, as well as the datum, have wheels and a small enough footprint to 
be able to be navigated through doors and hallways. They also all have the same setup time. The 
datum’s setup involves rotating the table from vertical to horizontal, adjusting the dials until the 
arches rotate to the correct latitude, and then pulling the individual arch to select the month and 
the sun’s motion for that day. Our arch design with no motor would function almost exactly like 
this, and our arch design with motors would involve unfolding the table, plugging the machine 
in, and using the user interface to input what date and time you would like to model. All of these 
designs would be very intuitive and would take little instruction before somebody could use it. 

 
The resolution of all of our models would be better than the datum, with the exception of 

the arch with no motor. The datum is limited to only seven arcs, which greatly limits the range of 
dates that it can model. With seven fixed arches, the datum can only model one day of each of 
the 12 months. Our fully automated models with three motors theoretically should be able to 
simulate any day at any time, and thus give full resolution. Even the arch with a single motor 
would have more than seven possible positions, so while it would not have more resolution than 
the fully automated designs, it would still have more than the datum. 
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For the accurate positioning of the sun, the three designs with simultaneous three axis 
motion would have the most success. However, it would be extremely difficult to keep the 
motors coordinated with each other and thus it would be difficult to produce an accurate sun 
position. The datum has several fixed arches for the light to travel across, so as long as those 
arches are precise, the sun’s position will also be precise. Though, as already stated, the datum 
has no way of very accurately simulating the sun’s position at any given time as it is controlled 
by the user rotating the arches by hand. Our arch designs with motors would eliminate this 
problem as they would be able to more accurately model the sun’s position at any time during 
the day. 

 
While the Heliodon’s main function is a learning tool, it is also important for it to be able 

to be used by students as a testing tool. This requires a light that can be shone directly at models 
to show sun contact. With our arch models, a spotlight could be used since the shape of the arch 
keeps the light shining at the center of the table at all times. For the non-arch models, separate 
control would be needed to aim the light directly at the model at all times, or a high intensity 
bulb would need to be used. This consideration made us decide that they were worse than the 
datum in that aspect. 

 
For ease of manufacturing we believe all of our proposed models would be easier to 

manufacture than the datum, simply because of the seven accurate circular arcs that it uses. 
These arcs also need to serve as rails for the seven lights that it has, which would be much harder 
to create than any of the components in our designs. 

 
Adding motors to a design means higher cost, more time spent programming, more 

power needed, and more variables to consider. The datum is completely manual and it doesn’t 
need to deal with any of the previously listed factors. The spherical, cylindrical, and 3D printer 
designs would all need three motors running simultaneously, which would create many issues 
that could be difficult to foresee and could be difficult to resolve. The arch designs with motors 
would not need three motors all running at once, but they would still need motors that would 
need to be programmed and supplied with power. This made us give them a lower rank than the 
datum. 

 
An automated Heliodon would require very little effort from the user and would help 

prevent against human error. All of our designs but one would involve automation, and of those, 
the one arch motor design would be the only one without complete automation. Though 
automation would be preferred, it is not necessary to make a functioning and accurate Heliodon, 
so its importance has not been given much weight. 

 
The Heliodon is to be mainly used as an educational tool to help students of all ages 

understand the relative motion of the sun. For this reason, the design’s educational value is 
highly important. The datum does a very good job of this, as do our arch designs, because the 
arch that the light travels on is actually viewable by the observer. The other three designs move 
the light source freely though the three axes, making the sun’s actual path harder to visualize. 

 
The last criterion on the matrix is the time required to build each design, including the 

time spent programming. The longer a design will take to manufacture and assemble, the greater 
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the chance that it will not be completed before the deadline. Programming for the single motor 
arch will take a lot of time, and the designs with three motors will require even more time, 
making them all worse than the datum. Even though the single motor arch will take time to 
program, it will also only have a single arch that needs to be built and installed, which we believe 
makes it equal to the datum’s seven arch assembly time.  
 

After summing the weighted scores of each design and putting the scores in the “Total” 
row of Table 2, it is apparent that the 3D printer, spherical, and cylindrical models all scored 
lower than the datum. A design with three motors all being controlled simultaneously would lead 
to many headaches during programming, would lead to a high design cost, and would also 
sacrifice the educational value of the Heliodon. 

 
Table	2.	Pugh	Matrix	

Criteria 
Weight 
(1 to 5) 

HPD Sun 
Emulator 

Cylindrical 
(Telescoping) 

3D 
Printer 
(Folding) 

Spherical 
(Telescoping) 

Rotating Arc 
(3 motors) 

Rotating Arc 
(No Motors) 

Rotating Arc 
(1 motor) 

Cost  4  Datum  ‐1  ‐1  ‐1  ‐1  1  0 

Scale  3  Datum  1  1  1  1  1  1 

Footprint (in 
storage) 

2  Datum  0  0  0  0  0  0 

Simulates Sun's 
movement 

5  Datum  1  1  1  1  0  1 

Mobile  4  Datum  0  0  0  0  0  0 

Setup Time  1  Datum  0  0  0  0  0  0 

Ease of User 
Interface 

4  Datum  0  0  0  0  0  0 

Resolution 
(how many 
dates) 

3  Datum  1  1  1  1  0  1 

Accurate 
Positioning 

4.5  Datum  ‐1  ‐1  ‐1  1  0  1 

Light Type?  2  Datum  ‐1  ‐1  ‐1  0  0  0 

Ease of 
Manufacturing 

3.5  Datum  1  1  1  1  1  1 

Number of 
Motors 

3  Datum  ‐1  ‐1  ‐1  ‐1  0  ‐1 

Automation  2  Datum  1  1  1  1  0  1 

Educational 
Value 

5  Datum  ‐1  ‐1  ‐1  0  0  0 

Assembly Time 
(including 
Programming) 

2  Datum  ‐1  ‐1  ‐1  ‐1  1  0 

TOTAL  48     ‐4  ‐4  ‐4  12  12.5  18 

 
The top designs were all of the circular arch variations, which beat out all of the other 

completely automated designs as well as the datum. The circular arch design came out on top 
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mainly due to the educational value that it holds. The arch shows the sun’s path as the light 
moves along it, helping any student gain a better understanding of the sun’s relative motion. 
Also, with all variations of the circular arch, it was the only design that would not require three 
motors being controlled simultaneously while still achieving all of the necessary angles.  

 
The one motor variation of the circular arch came in first place at 18 points with the fully 

automated and fully manual designs nearly tying at 12 and 12.5 points respectively. This shows 
that the best design is actually a combination of the two. The one motor circular arch design 
captures the fluid sun movement and accurate time representation of the automated version as 
well as the lower cost and simplicity of the manual version. For this reason, we are selecting it as 
our top design choice. 

 

4.2 Detailed Brainstorming: 
	
	 Detailed brainstorming was the most ongoing portion of this project as the need to further 
brainstorm arose again and again as we began finding issues with manufacturing and assembling 
different parts. The brainstorming of each part is described below.  
	
4.2.1 Frame and Wheels Considerations: 
	

The size of the frame was limited by the requirement of fitting the Heliodon through the 
smallest door and in the smallest hallway of the EE building on campus. The height during 
transportation had to be less than six and a half feet, the total length had to be less than seven and 
a half feet, and the width had to be less than two and a half feet. The frame would also have to be 
strong enough to hold around 150 pounds. The inside dimensions of the frame were limited by 
considering the door and hallway restrictions and relating them to the dimensions of our table 
and our arch. The table and the arch had to fit within the inside dimensions of the frame without 
interfering with each other.  
 

The wheels needed to be large enough to keep the frame off the ground and small enough 
to prevent the Heliodon’s interference with the top of the door. They also needed to have braking 
or locking capability so the Heliodon would not roll on surfaces that aren’t completely flat. We 
considered both hand brakes that could be used while the Heliodon was rolling around and 
“parking brakes” that would simply lock the wheels in place after the Heliodon was already held 
stationary. The price of the wheels was also a huge consideration as it was out of our budget to 
spend a few hundred dollars on each wheel. We considered different combinations of fixed 
wheels and casters. The requirement of getting through a door in a small hallway made us lean 
towards choosing casters for all four wheels.  
	
4.2.2 Concept Evaluation: Frame and Wheels: 
	

When we learned of Dr. Dolan’s inclination towards T-slot and that Dr. Dolan’s previous 
project team, the PV Trainer, got aluminum T-slot donated for their frame, we decided to use T-
slot for our frame as well. T-slot is strong enough to support a lot of weight and it keeps the 
overall structure’s weight low. Also, aluminum has good durability so that leaving the Heliodon 
outside would be possible. We decided that a system with four casters best suited the need to fit 
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the Heliodon through a door. The difficulty of implementing hand brakes made us lean towards 
the simple wheel locking brakes.  
	
4.2.3 Latitude Slots: 
	
4.2.3.1 Latitude Slot to Frame Attachment: 
	

The latitude slots had to be sized so that they were long enough to allow the full range of 
sunrises and sunsets at the different locations we chose to model and not too long so that they 
caused interference with the frame of the Heliodon or the frame of the door. The slot size was 
directly related to the size of our arch. We needed to decide both how they would attach to the 
frame while maintaining the ability to rotate and how the slots would interact with the slider in 
the slot. 
 

The first idea for how the slots would connect to the frame while being able to rotate was 
what we called joint connections. This configuration may be seen in Figure 17. Each end of the 
slot would have a connecting rod extruding from it. The rod would be in two parts with a joint in 
the center to allow rotation of the slot. The end of the rod would be attached to the frame and 
would be able to slide up and down the frame to change the angle of the slot.  
 

	
Figure	17.	Joint	Connections 
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The second idea for how the slots would connect to the frame while being able to rotate 

was what we called the adjustable height connections. In this design, which is shown in Figure 
18, the slots would sit on the top of each of the columns coming up from the frame and the slot 
angle would change by adjusting the height of each individual column. The bottom columns 
could be hollow so that the columns connecting to the slot could dip into the hollow sections. 
The heights could be changed using pegs and adjusting each height differently would change the 
angle of the slots.  
 

	
Figure	18.	Adjustable	Height	Connections 

The third idea for how the slots would connect to the frame while being able to rotate was 
the multiple slot configuration. This configuration is demonstrated in Figure 19. The latitude slot 
piece would have a main slot in which the arch would slide back and forth. It would have two 
secondary slots as well. These secondary slots would have pins in them and these pins would be 
connected to the columns coming up from the frame. Sliding the pins along these columns and 
within these secondary slots would change the angle of the latitude slots.  
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Figure	19.	Multiple	Slot	Configuration 

 

	
The fourth idea for the how the slots would connect to the frame while being able to 

rotate was a simple shaft connection. This is demonstrated in Figure 20. A shaft would connect 
the latitude slot to the frame and the latitude slot would be able to rotate about this shaft in order 
to change the angle of the latitude slot.  

	
Figure	20.	Shaft	Connection 
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4.2.3.2 Latitude Slot – Slider Interaction: Motion and Locking: 
	

The sliders needed to move freely within the slots so the arch could change position 
relative to the table. They also needed to have some way to lock in place so that when the 
latitude slots are angled, the sliders do not slide to the bottom of the slots. They will be holding 
the weight of the arches and so they will need to be structurally sound as well. One of the most 
challenging problems to tackle was the fact that both sliders would have to be moved at exactly 
the same time and move exactly the same distance. This was a difficulty because our sliders are 
six feet apart. In Figures 21 and 22 below, a sketch of how the sliders and the slot may interact is 
shown. The side plates would be attached to the slot after the slider is inserted, and both the 
slider and the slot could have rods coming out of them to connect to the Heliodon. 
	

	
Figure	21.	Slot	Slider	Interaction	

	
	

	
Figure	22.	Slot	Slider	Interaction	Side	View	

	
The materials we considered for the sliders were wood, aluminum, and some sort of 

plastic. Wood is a little cheaper than aluminum and it is more readily available with the 
dimensions we are considering. Aluminum is more structurally sound and it would probably look 
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more aesthetically pleasing with the rest of the Heliodon. Aluminum would also last longer. We 
thought that plastic could be a good option because it may have the lowest friction and thus it 
may be the easiest to slide. 
	
4.2.3.3 Motion: 
	

Our first idea for slider motion was to have ball bearings within the slots. Ball bearings at 
the top and the bottom of the slider would create a smooth and easy motion for the slider. The 
sketch shown in Figure 23 is an idea of how this may work. 
 

	
Figure	23.	Ball	Bearing	Slider 

 
Our second idea for slider motion was to have an internally threaded hole through the 

slider.  A lead-screw would run through this hole so that turning the lead-screw would create 
linear motion in the slider. Figure 24 shows this design.  
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Figure	24.	Lead‐Screw	Slider	

	
Our third idea was to have guide-shafts running through each slider. Figures 25 and 26 

below show this design. Figure 26 provides a side view showing a rod sticking out of the side. 
This rod could be a connection point to the rest of the Heliodon. These guide shafts would help 
to keep the sliders in line. Small wheels could be attached to the top and the bottom of each 
slider so that their motion would be more fluid.  

 

	
Figure	25.	Guide	Shafts	and	Wheels	
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Figure	26.	Wheels	

	
	
	
4.2.3.4 Locking: 
	

Our first idea for locking the slider in place was by installing a removable rod that could 
be placed through the slots and locked in place. Once the rod was locked in place, the slider 
would not be able to move past it. Nuts on the top and bottom of the slot could be loosened or 
tightened to provide sliding or locking. Figure 27 demonstrates this idea. 
 

	
Figure	27.	Removable	Rod	Locking 
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Another idea we had for locking the slider in place was by providing the user with an 

adjustable bar which could be placed between the slider and the side of the slot. This bar’s length 
could be varied and once the correct length was selected, it would be wedged between the slider 
and the wall of the slot to prevent motion. Figure 28 demonstrates this idea. 
 

	
Figure	28.	Adjustable	Wedge	

	
	

A third idea we had for locking the slider in place was to have a bar extruding from the 
slider that would slide with the slider along the slots. This bar would be threaded and would have 
a nut on the portion that is extruded from the slot. This nut could be loosened or tightened to 
allow for locking and unlocking of the slider. The bar could extrude from either the bottom of the 
slot, as seen in Figure 29, or the side of the slot as seen in Figure 30. 
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Figure	29.	Bottom	Extrusion 

	

	
Figure	30.	Side	Extrusion	
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4.2.4 Concept Evaluation: Latitude Slots: 
	
	 The joint connecters to move the latitude slots would effectively allow for the changing 
of the latitude slot angle. However, the way the joint would work could be very complicated. 
This design would also require the columns that support the latitude slots to have a slot down the 
side of the column. The adjustable height slots would also effectively allow for the changing of 
the latitude slot angle. However, the columns here would need to be hollow and a locking 
mechanism may need to be brainstormed to lock the slot in place. The connection between the 
slot and the columns could be complicated as well due to the way the contact surface changes 
with a changing angle. The multiple slot configuration would also work, but it introduces the 
need for many slots with many locking mechanisms. The shaft connection was the simplest 
design. The only foreseeable issue with this design was that the rod would have to be supporting 
a lot of weight, which could be an issue. 
 

The ball bearings for the slider could work but the difficulty with this idea is thinking of a 
way to keep the ball bearings in place. The bearings may need to be replaced eventually as well. 
The lead-screw design seemed to be one of the most promising. The challenge of this idea was 
moving both sliders at the same time. We considered having a lead-screw through each slider, 
but then both lead-screws would have to be turned at the same time and the same rate. We then 
considered having a lead-screw in one slider while the other was free to move. This became 
complicated because we did not know whether the freely moving slider would move more or less 
than the lead-screw slider. The concept of using shafts to guide the slider could help this issue 
but any greater or lesser motion of the free slider would add a tilt to the arch and therefore 
decrease the Heliodon’s accuracy. Some positive of this idea were that slider motion could be 
very precise and it would also be self-locking. The use of wheels on the slider would definitely 
ease their motion. 

 
The removable rod would provide a good way to lock the slider in place, but locking it in 

exactly the right spot could prove difficult. There is also the possibility of losing the rod because 
it is removable, and in this case the Heliodon could not operate correctly without a replacement. 
The adjustable wedge rod would work to lock the slider in place, but it would probably be very 
tedious and difficult to both adjust the rod to the correct length and insert it into the slot. The 
extruding bar would provide a good way to lock the slider, but it may be difficult for the user to 
turn the bolt to the correct tightness. 
	
4.2.5 Arch Design: 
	

Before selecting an arch design, we had to learn what was feasible to be manufactured. 
We knew we needed a large arch that had a constant radius and we were thinking of using some 
sort of piping or tubing, but we didn’t know if bending such a material to our desired radius was 
something that we could do ourselves or whether someone else could do it. The arch needed to 
have a light carriage traveling along it and this made us think of various cross sectional shapes 
for the arch. Some of these cross sections can be seen in Figure 31.  
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Figure	31.	Cross	Sections	of	Potential	Arches 

 
We started the brainstorming of the arch with the way the carriage may move along it in 

mind. However, we soon decided that it was more important to pick a design for the arch and 
then design a light carriage around it because the arch is the least customizable piece of the entire 
project. We considered using one arch as the track or using multiple arches for the track. We also 
considered a couple types of material to use for the arches including Aluminum, steel, and PVC 
pipe. Different manufacturing processes were analyzed for cost, efficiency, and feasibility.    
 
	
4.2.6 Concept Evaluation: Arch Design: 
	
	 After weighing the benefits and drawbacks of various arch cross sections, we decided that 
above all else the most important thing was to ensure that the arch be simple. We were most 
concerned about what was able to be manufactured and so choosing the simplest design was 
essential. In this case, a simple pipe with a circular cross section seemed to be the best. If the 
arch of our radius was to be produced, it would surely be most feasible with a circular cross 
section. We knew that our arch needed to be as light as possible, and this made us lean towards 
using PVC or aluminum over steel. We also leaned towards using multiple arches to simulate a 
track rather than only using one arch. We thought that having multiple arches to serve as a track 
could be beneficial for the light carriage because it could help with stability as it moved along 
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the arch. We recognized that using two arches instead of one would require some way to lock the 
arches so there was a set distance between them. The use of brackets to lock them in place 
seemed to be the most feasible. The final design would really come down to what was possible to 
bend to the dimensions that we needed. 
	
4.2.7 Light Carriage Design: 
	

Only after the arch design was finalized could the detailed brainstorming for the light 
carriage begin. We knew that the carriage would have to be driven by a motor as it moved along 
the arches and most of our light carriage brainstorming assumed that the carriage was to be 
pulled by a cable attached to the shaft of the motor. 

 
One of the initial ideas for the light carriage was to have its body being pulled by cables 

while being guided along the arches via two pieces of pipe that would slide onto the outside of 
the arches. A sketch of this design can be seen in Figure 32 and Figure 33. We called this the cut-
pipe guide carriage design. This would allow the motor to pull the carriage and the arches to 
guide the carriage’s path. 

 

	
Figure	32.	Carriage	with	Cut	Pipe	Guide	Carriage	
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Figure	33.	Side	View	of	Carriage	Movement 

 
 The other carriage design was inspired by a History Channel special on roller coasters. 
The arc will act like the roller coaster track and the carriage will have wheels surrounding it to 
guide it along it. A sketch of this mechanism can be seen in Figure 34.   
 

	
Figure	34.	Early	Sketches	of	Carriage	Roller	Coaster	Concept 

4.2.8 Concept Evaluation: Light Carriage Design: 
	

There were two main concerns with the cut-pipe guide carriage. The first of these 
concerns would be manufacturing. To build this, we would need to get some pipe with an inner 
diameter similar to the outer diameter of our arch. We would then need to bend it to a similar 
diameter to the arc as well, because straight pipe will not slide well when mated against curved 
pipe. We would also have to cut out a portion of the outer pipe because free space on the arch 
piping is needed to attach the wire guides and the brackets. These pipe guides would also need to 
be attached to the main carriage body. 

 
Another concern we had was the friction between the pipe guide and the arches. We 

would want the contact between them to be as great as possible, but this would also generate a 
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lot of friction. This would make it difficult for the motor to pull the carriage along the arches 
without some sort of lubrication. 

 
The benefits of this design is that it would be using the arches directly as the guide, so it 

would follow its path very well. It is also more limited in parts, so while it may take some time to 
assemble, it would not take very long, it would be cheap, and it would be less parts to worry 
about. 

 
The roller coaster design’s negatives are mainly the number of parts that are required. To 

make this idea work we would need to mount bearings for the wheels that we use, and these 
bearings would be relatively expensive. We also would want to use springs to force contact from 
the wheels to the arches, and because of the small amount of space there would be to work with, 
creating these spring attachments could prove difficult. All of the different components of this 
carriage would lead to greater manufacturing and assembly time, higher cost, and more places 
for the design to go wrong. 

 
The pros of this design are that it is a proven concept that we know currently works with 

roller coasters. The wheels would provide smooth motion along the arches, which would better 
accomplish our goal of modeling the sun’s motion accurately. The rotating shafts in this design 
may also be able to be coupled with an encoder, allowing us to directly track the carriage’s 
position, if we wished to do so.	
	
4.2.9 Motor: 
	

We knew the carriage was going to be driven by a motor, but the placement of the motor 
on the Heliodon was up for discussion. We had the ideas to mount the motor to the arches, the 
frame, or to the carriage itself. We did not know how heavy our carriage would be and so we did 
not know how heavy the motor driving it would be. This made the notion of mounting the motor 
to the carriage seem a little unreasonable, but at the same time neglecting to mount the motor to 
the carriage made the need for some kind of cabling to pull the carriage.  

 
We also had to decide what kind of motor to use. We had the option of using a stepper 

motor or a servo motor. We needed the motor to have enough holding torque to lock the carriage 
in place if it were to stop at some midsection of the arch. We also needed to decide whether the 
motor would be dual shaft or single shaft. That decision would depend on how the motor was 
going to interact with the cables and wiring. We also needed to consider whether or not the 
motor would need to be coupled with a gearing system to get the torque that we needed. 
	
4.2.10 Concept Evaluation: Motor: 
	

The concept of mounting the motor to the frame was weighed against the concept of 
mounting the motor to the arches. Mounting the motor to the frame would be very simple as far 
as supporting the motor, but the idea became complicated when we thought about how it would 
affect carriage motion. As the arches rotate, the carriage would move away from the motor and 
the cable connecting the two would be pulled on. We did not know exactly how this tension in 
the cable would affect the motor or how it would affect the accuracy of our simulations as a 
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whole. When we considered mounting the motor to the arches, this problem disappeared because 
the motor and the carriage would move together. The difficulty of this idea was the actual 
mounting of the motor. We would need to design some kind of connection to the arches that the 
motor could be bolted to. 

 
The chosen motor needed to be able to be controlled by the microcontroller and have 

enough torque to manage the cables. We found that servo motors only require three wires to 
control as opposed to stepper motors that require at least six. Servo motors are simpler to control 
and require less input and output pins on the microcontroller. 
	
4.2.11 Carriage Motion: 
 

We had to figure out how the carriage would move along the arches once the motor was 
driving it. We figured that the motor would have to be pulling a cable of some sort. We initially 
thought of using either 1/16th inch diameter steel cable or 1/32 inch Kevlar cable. This cable 
would be attached to the light carriage in some way, and would also be guided along by the 
arches so that it would pull the carriage in the needed direction. We also need to make sure that 
the carriage could move back and forth along the arches. Some initial “sleeve” design concepts 
are shown in Figure 35 below. 
 

 
 

	
Figure	35.	Cable	Guides	with	Collar	Attachment	

	

	
Figure	36.	Cable	Slit	Sketch	
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One suggested method was to have cable guides attached to the arches at various places. 
They would have a slit in them that would be too small for the cable to slip out of, but large 
enough to allow for an attachment from the cable to the carriage without interfering with the 
guides. This method can be seen in Figure 36.  The other idea was to use wire guides, but to have 
the cable directly attach to the carriage and to have the cable rest in the guides. As the carriage 
would approach a cable guide it would slightly lift the cable out of its guide, and as the carriage 
passed the guide, the cable would fall back into place. This method can be seen in Figure 37. 

 
 

	
Figure	37.	Cable	Guides	with	Resting	Cable 

 
There were three main ideas that dealt with how to get the motor to draw in and release 

the cable to allow for the forward and reverse motion of the carriage. The first idea was to use a 
series of pulleys and tensioners to pull the cable, with the other end of the loop running through 
the inside of the arc. The next was to use a spool that the motor would rotate to take in one end 
of cable and let out cable on the other end, depending on the desired direction. This spool can be 
seen in Figure 38. The final option was to have two motors, one on each side of the arc, that 
would take in or give cable depending on the desired carriage motion. 

 

	
Figure	38.	Cable	Feed	Spool 
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4.2.12 Concept Evaluation: Carriage Motion: 
 

The cable guide with the collar attachment for the carriage would have some issues. It 
would be difficult to get the collar to go through the guides perfectly. It would be very easy for 
the collars to catch and bind and prevent the carriage from moving. The collar-carriage 
connection would have to line up with the slit in the cable guide or else it would not be able to 
get through. We would need to think of a way to secure the collar to the cable. A nut and bolt or 
a screw would likely cause interference with the guides while a weld would probably sever the 
cable. 
 

Some difficulties we would face with the cable guide with resting cable would be 
ensuring that the cable settles back into the guides every time the carriage passes. We would also 
need to think of a way to join the cable to the light carriage. This design would be incompatible 
with the pipe-guide version of the light carriage and would be difficult to implement if we chose 
to go with the roller coaster design for the carriage 
 

All of the methods for pulling the cable had issues. If we were to use the pulley and 
tensioner method, then we would need a lot of tension in the cable to be able to draw it in and 
feed it out, but would need as little tension as possible so that the cable’s friction on the guides 
would not be so great that carriage motion would be prevented. This would eliminate the need to 
have a spool that accumulates wire, but it would also require us to create an adjustable pulley 
assembly. 
 

The main con of the spool idea is that we would have to create a spool that can hold up to 
20 feet of cable at a time on a limited amount of space. The spool shaft would require another 
bearing to support it, which would cost more money. There would also be the possibility of the 
cable overlapping on itself or spacing out while spooling, which would give inaccurate 
measurements when drawing in and letting out the cable. 
 

The last idea was to have two spools and two motors on either ends of the arches. This 
seems like a simple solution, but it actually has many issues. The second motor would cost more 
money and we would have the same issue with creating a spool. Probably the biggest issue 
would be controlling both motors simultaneously, without letting up any of the tension in the 
cable, and keeping an accurate carriage position. 
	
4.2.13 Light Power: 
	

The method of powering the light was an iterative process. We needed to figure out how 
to effectively string power wires to the moving light fixture without bunching up the line, 
causing excessive bending, or allowing the line to dangle below the arches. A few ideas were 
thought up including using battery power, feeding wire from the top of the Heliodon, and 
spooling the power wire in tandem with the driving cables.  
	

We quickly decided that battery power would be implausible; the LED light bulb, though 
efficient, would discharge a battery too quickly. A battery would be very inconvenient because it 



42	
	

would need a recharge or a replacement very often and would add unnecessary volume to our 
light carriage. 

 
Feeding the power wire through the top of the arches would not work either because it 

would add extra height to the Heliodon and risk interfering with the door frame. The addition of 
another spooling mechanism would require even more parts and design. This complexity ruled 
out that idea. 

 
We decided that spooling the power wire in tandem with the driving cables would be the 

best option as we already had a spooling mechanism in place from the light carriage movement 
mechanism. The power wires would already have to be travelling with the light carriage driving 
cables. 
 

The next problem with this method was keeping the cable up and out of the way of the 
Heliodon. We wanted the wires to have the orientation shown on the left in Figure 39 rather than 
the orientation on the right. 

 

	
Figure	39.	Potential	Wire	Locations 

 
We thought of using wire guides with a method similar to the way a ski lift allows the lift 

to move past the supports and hooks as possible solutions to having the wires run along the arch.  
	
4.2.14 Concept Evaluation: Light Power: 
	

We determined that the best method to keep the power wires from interfering would be to 
run the wires through wire guides. These wire guides took many complex forms before reaching 
a simple effective solution. We first thought to use a sort of clamping mechanism similar to the 
way ski lift cables allow the lifts to pass through a pulley system. The power cable guides would 
open and close to let the light carriage pass through and rest the wire inside the enclosure. 
Though we were confident that this would work, these wire guides would require a lot of 
machining. 
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We finally thought to use a simple hook to string the wires through. An example of this 
hook may be seen in Figure 40. These hooks would be screwed in to each arch bracket and the 
hook would extrude from the bracket. This design requires that the light carriage has a bent tube 
to orient the power cable to be strung through the hooks. The design of the hooks to string the 
wires through was chosen for its simplicity, functionality, and low cost. 
	

	
Figure	40.	Wire	Hanging	Sketch	for	Hooks 

	
4.2.15 Interface/Control System: 
	

Our control system needed to accurately model the movement of the sun across the sky 
while providing an intuitive, user friendly interface. We decided that a user interactive interface 
would serve this purpose well. We wanted the interface to allow the users to input specific times 
and locations, control motor movement, and easily extract data. We thought of allowing the users 
to input specific latitudes or choose from a dropdown menu of pre-set major cities, and allowing 
the users to input specific days. We also thought of the idea of allowing the user to control the 
light carriage’s motion and watch the screen output the time of day or of letting the user press a 
button that would run the carriage all the way across the arch to show the motion of the sun for 
that day. We also considered having the LCD screen output the sun angles for given inputs in 
case our Heliodon was not as physically accurate as we wanted. It was our hope that doing so 
would at least give the user some form of exact results.  
 

 The placement, housing, and location of the control system on the Heliodon needed 
consideration as well. Figure 41 below is an idea of how this control system may look. 
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Figure	41.	User	Interface	Keypad	Sketch 

 
Our first idea was to place the control system housing to the side of the frame for ease of 

access. The box would be protruding from the frame at around waist height so people could 
access the controls comfortably and out of the way of the arch’s range of motion. This placement 
may be seen in Figure 42. 

 

	
Figure	42.	Control	System	Location	Sketch 

Our next idea was to place the control system out of the way and underneath the table. 
The issue with this placement is that the user would have to kneel and duck underneath the table 
to interact with the controls. This is obviously not a desirable option. With this placement, we 
needed a way for the user to easily access the controls. The solution to this problem was to make 
a wired handheld control interface for the user to operate comfortably and out of the way. This 
solution along with the placement of the control system can be seen in Figure 43. 
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Figure	43.	Alternate	Control	System	Location	

Figures 44 and 45 show an idea of the handheld user interface.  
 

	
Figure	44.	Handheld	User	Interface	Sketch	
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Figure	45.	Keypad	to	Control	System	Wiring	Sketch 

	
	
4.2.16 Concept Evaluation: Interface: 
	
	 The first idea for the placement of the control system housing which is depicted in Figure 
42, though ideal, is problematic because it adds too much length to the Heliodon. The Heliodon 
needs to be able to fit in a hallway so its length is limited. We needed to place the control system 
elsewhere. This limitation made us lean towards a placement that is better depicted in Figure 43.  
 
 The handheld user interface seen in Figures 44 and 45 seem to be feasible systems to 
implement. 
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4.3 Prototyping: 
	

Once the final general design was chosen, possible problems were identified and a few 
scaled prototypes were built using readily available material. Building a few prototypes allowed 
us to prove the feasibility of our design and it also helped us identify overlooked issues with our 
design. Tackling these issues before the final build was critical if the final Heliodon was to work 
as planned. The first prototype was made after the general brainstorming was completed and the 
top concept had been selected. The second prototype was made during the process of the detailed 
brainstorming in order to test some of the specifics of our detailed design. 
 

4.3.1 General Heliodon Prototype 1: 
	

The first prototype was completed before the 
Preliminary Design Report on November 18th. Foam core 
was used to build the frame, table top, and slots while a 
cut hula-hoop was used to model the arch. A threaded 
rod and wing-nuts secured the arch to the slots and duct 
tape secured the slots to the table top. A headlamp 
attached to the hula-hoop represented the sun. After 
completing the prototype we found problems that we did 
not anticipate with the design. The initial prototype is 
shown in Figure 46. 	
 
4.3.1.1 Unforeseen Issues: 
 

Securing the arch to the outside of the slots 
prevented the light source from passing the slots, which 
meant the light source could not complete its full range 
of motion. We decided that an easy fix to this issue 
would be to secure the hoop to the inside of the slots so 
that the light could move past them. We would need to 
consider the way the slots are attached to the table though, as this attachment could be a 
hindrance to the movement of the arch within the slots. One other problem with the slots was that 
if the lamp had been able to pass by them, the light emitted by it would have been blocked by the 
slot. This would cast a shadow on the table and prevent the model from being lit. Another 
problem that we encountered was that the frame interfered with the arch circumference as the 
arch changed angle. To address this we would need to make sure the frame is out of the way of 
the arch when the arch is changing in angle. Another issue we encountered is that not all the 
latitudes could be modeled. The north and south poles have the most extreme latitudes and the 
only way to model these would be to have a full circle about the table which is not possible with 
this design.  
  

Figure	46.	Initial	Prototype
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4.3.2 General Heliodon Prototype 2: 
 
 A second prototype was created by February 1st. This prototype had a more detailed arch, 
arch brackets, working latitude slots, and a working carriage. The prototype can be seen in 
Figure 47.  
 

	
Figure	47.	Prototype	Two 

 
The arch was made up of two 3/4 inch diameter 10 feet long pieces of PVC pipe bent into 

a 1-1/2 foot radius circle. The two pieces were secured together with adequate spacing for the 
light carriage using the arch brackets which were made of wood 1 X 4s. The carriage was made 
of similar wood 1 X 4s and wheels were attached in a style similar to a roller coaster setup. Holes 
were made in the two arch brackets that attach to the latitude slots so that threaded rod could 
connect the brackets to the slots. The rod was threaded so that nuts could be used to loosen and 
tighten the brackets, thereby allowing for the independent adjustment of the arch angle relative to 
the latitude slot angle. This independent adjustment will be necessary in order to allow the final 
Heliodon to move through doors. The latitude slots were constructed using 2 X 4s with a 
countersink and a through hole for the threaded rod and the bolt.  
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4.3.2.1 Unforeseen Issues: 
	

The construction of this prototype made it apparent that some of our parts were going to 
be very difficult to manufacture. Spacing out the arches and attaching all the brackets was very 
difficult and we would need to think of a better method of attaching the brackets to the arches 
when the final product is to be put together. We also realized that making the sliders for the slots 
and making the slots themselves was going to be difficult. The prototype really helped us 
comprehend how long and difficult manufacturing was going to be.  
	
4.3.3 Spool Prototyping: 
	

The spooling system that was a possibility for moving the light carriage was extensively 
explored. Six physical prototypes were made to test the feasibility of this carriage motion 
method. 
 

The first prototype used a 1/16th inch steel cable to simulate the drive cable of the 
carriage. This cable was a consideration for the final design. The shaft used was a 1-1/4 inch 
PVC pipe and we used wood blocks with holes for bearings. These decisions were made to make 
the prototype cheap and easy to make. This prototype was made with the intention of testing 
ways to make the cable spool correctly. The cable was connected to the shaft by drilling a hole 
through both walls of the PVC, feeding the cable through, and tying it together. The cable was 
then spooled by hand in the fashion that it was hoped to spool on its own. That is, the cable was 
wound around the shaft so that each winding lined up directly next to the previous one, without 
space between the two and without overlapping any two windings. Once the cable was about two 
to three windings from being complete, the excess cable was fed through a pulley away from the 
shaft. This pulley was about three feet from the shaft. From this pulley, the cable was feed to the 
other end of the shaft (the side with no windings yet) and it was attached to the shaft in the same 
fashion. With this prototype we were not interested in building a rig that was to be to the precise 
dimensions that the final spool would be. We figured that this would increase the difficulty of the 
task. We were simply interested in experimenting with ways to get the wire to spool correctly 
and more importantly, if we would be able to even make this happen. This prototype can be seen 
in Figure 48. 

	
Figure	48.	Initial	Spool	Prototype 
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We found that the wire tended to want to spool towards the point on the shaft that was 

perpendicular to the pulley as show in Figure 48. We determined this point to be the settling 
point. This motion toward the settling point would not cause overlap, but it caused a lot of space 
between each winding. This was no good. We solved this problem by implementing a spring to 
pull each consecutive winding towards the previous one. This solution worked every time and 
that result was promising. We also noted that this rig worked really well even though the cable 
was not very tight. We wondered about the effects of having a tight cable and the effects of 
having a cable with more slack. Now that we knew that making it spool perfectly was possible, 
we wanted to create a prototype closer to the dimensions of the final design. 
 

The second prototype used 1/32 in Kevlar cable as this was also a possibility for the drive 
cable. The rig was the same as prototype 1 with the exception of the distance from the shaft to 
the pulley. The pulley in this rig was about 6 inches from the shaft. The Kevlar wound in the 
same fashion as the steel cable. We noticed that the Kevlar thread was itself a winding of wire 
and that the ends of the wire would unwind if tampered with. We noted that this may affect the 
strength of the cable and that this possibility should be a factor to consider when choosing the 
final cable. The Kevlar wanted to wind to the point on the shaft that was perpendicular to the 
pulley. One thing that we observed that was because the pulley was so much closer to the shaft, 
the initial angle that the cable made with the shaft was way more extreme. This extreme angle 
caused the Kevlar to reach this perpendicular point on the shaft more quickly than in prototype 
one. In prototype one, most of the cable had been spooled by the time that the cable reached the 
perpendicular settling point. Now, that settling point would be reached in only two or three turns. 
This became a huge issue because the cable needed to be wrapped 20 to 30 times more than this 
to completely spool the cable. After only a few turns the cable would start to stack. Just as in 
prototype one, we tried implementing springs to pull the cable back. In prototype one this pulling 
back of the cable was to prevent the cable from spacing out, but in prototype two the springs 
hoped to prevent the cable from stacking. What we found was disconcerting. The springs helped 
slow the cables approach to the settling point, but before the cable could reach the settling point, 
it would be pulled back too much and stack over itself in the opposite direction. This result 
nullified the promising results from the first prototype as now we questioned whether a spring 
would work to make the cable spool the way we wanted. This second prototype can be seen in 
Figure 49. 

 

	
Figure	49.	Second	Spool	Prototype 
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From the first prototype to the second prototype, we had changed the thickness of the 

cable (from 1/16 in to 1/32 in) which we figured made the cable more likely to stack on itself and 
we also had changed the length of cable that was being spooled (20 feet of steel cable to 50 feet 
of Kevlar). This length change of the cable affected the final length of the spool that was wound 
up on the shaft. The spring would theoretically have to stretch this total wound up length and as 
the spring stretched more and more, the force that pulled the cable back up against the previous 
winding increased. This force increased more and more until it became too large and the cable 
jumped over the previous winding. Confused at how to fix this problem, we thought we should 
try the same rig with the steel cable. 
 

The third prototype was made from the second prototype. We detached the Kevlar from 
the shaft of the second prototype, detached the steel cable from the first prototype, and attached 
that same steel cable to the previous second prototype (now the third). This steel cable had lost 
its original form from being wound over and over on the first prototype. It had kinks all along its 
length. We rigged the prototype up to test and soon found that these kinks were a huge problem. 
As soon as one of the kinks was wound around the shaft, it would either stack on the previous 
winding, or it would cause the next winding to stack. We determined that the final cable that was 
to be used had to be perfectly straight and free of kinks. The steel cable option was out. This 
prototype can be seen in Figure 50. 

 

	
Figure	50.	Third	Spool	Prototype 

 
 This prototype reverted back to the design of the second prototype with the Kevlar cable 
but now used two pulleys instead of one. The idea here was that there would be one pulley for 
each side of the winding; one for the feed and one for the return. We hoped that this might create 
two points that the cable would want to wind to (the perpendicular settling points discussed 
before) and that it would also reduce the angle in which the cable comes off of the feed and 
return sides. Although this worked well sometimes, new problems arose most of the time. For the 
pulleys to feed to each other they had to be at an orientation that was detrimental to the cable 
winding around the shaft. We also found that with these specific pulleys, the cable would 
sometimes get wedged between the rotating element of the pulley and the wall of the pulley 
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housing. This created extra unwanted friction. We reverted back to one pulley to fix this 
problem. We then contemplated whether having the pulley below the shaft, about the shaft, or in 
line with the shaft had any effect on the spooling.  
 

In this prototype we took the second prototype and tweaked a few things. First we 
realized that the angle that the cable came off of the shaft was related to stacking. We wanted to 
minimize this angle and so we determined that minimizing the distance between the shaft-cable 
connection points was essential. That is, we wanted the distance between the attachment points 
to equal the distance spanned by the cable when it was fully wound. We also tried to put the 
pulley on a spring as opposed to fixing the pulleys location and using a spring to pull the cable 
inwards. This produced the most promising results yet. The winding works perfectly sometimes 
and does not work other times. That is, sometimes we will wind it up perfectly, not change 
anything, and then rewind it and it will begin to overlap. As in previous prototypes this overlap 
causes huge issues and is very hard to reset. So far, it has not been determined what actually 
causes it not to work sometimes. Our theories so far are that it is caused by the inconsistency in 
the relative straightness of the cable in relation to the spool (it isn’t spooling perfectly vertically, 
it is sometimes wavy, horizontal, etc) or that it is the non-constant speed that we are turning the 
shaft.  
 

The final prototype incorporates the same elements of the fifth prototype, but it has been 
made somewhat modular. That is, we have set it up so that we can quickly test springs with 
different stiffness and we can test each spring at various locations. Figure 51 shows this 
prototype. 
 

	
Figure	51.	Spooling	Prototype	
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4.3.4 Prototyping Conclusions: 
	

Overall this design can be accurate, but we will need to find a way to put everything 
together and to make it user friendly while maintaining accurate results. The slots will need to 
rotate to the correct angles and the light will need to maintain its focus on the model as it moves 
along the arches. If we are to go with the spooling method for moving the carriage, it must work 
according to plan, otherwise accuracy will be sacrificed. A testing procedure must be developed 
to verify the accuracy of the light’s movement throughout various days of the year and through 
various times of the day.   
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5 Final Design Description: 
	
5.1 Design Summary:  
	

This section contains a detailed description of the final Heliodon design concepts. The 
final Heliodon has a maximum length of 88 inches, a maximum width of 30 inches, and a 
maximum height of 78 inches. The length allows for the motion in the smallest hallway of the 
EE building and the height allows for the Heliodon to be fit through the smallest door in the EE 
building. The maximum width is the width of the latitude slots and allows the Heliodon to fit 
through a door. The final arch that our Heliodon uses has a radius of 33 inches. This large radius 
should produce accurate results for the locations that we are modeling. According to the 
MATLAB code, our Heliodon should be able to model from 55 degrees North latitude to 55 
degrees South latitude. To give a better idea of that latitude range, we have provided Figure 52 
below. The lines of latitude are the horizontal lines bisecting the map and their degree values can 
be seen on the left and right sides of the map. 
 

	
Figure	52.	World	Map	with	Latitudes 

Figure 53 is the final assembly of the Heliodon. Please refer back to this figure while 
reading the following design sections. 
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Figure	53.	Final	Heliodon	Assembly 

	
All part drawings and part lists can be seen in Appendix I.  
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5.2 Base and Structure: 
	
5.2.1 Wheels: 
	

The casters are connected to the frame with custom designed mounting plates. We 
manufactured these plates by cutting aluminum plate down to four inches by six inches and 
drilling 1/4 inch through holes. These plates were attached to the T-slot frame using four low-
profiles T-slot fasteners and bolted to the wheel mounting plates using four 1/4 inch diameter 
carriage bolts with nuts and washers. This attachment can be seen in Figure 54. 
 
 

 
Figure	54.	Caster	Wheel	Assembly 

 
 These wheels allow a smooth ride on level surfaces while being able to travel over rough 

terrain (e.g. concrete, grass, dirt, gravel). All four wheels swivel to facilitate hallway navigation 
and lock to secure the Heliodon in place during normal operation and storage. The wheels don’t 
add any length to the frame because the swivel radius is thirteen inches which is the length of the 
supporting T-Slot member. The overall wheel and plate height is 9-1/4 inches.  
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5.2.2 Frame: 
	

The Heliodon’s frame is constructed from 10-Series ‘8020’ Aluminum T-Slot extrusion. 
The extrusion components are attached to one another by purpose-made hex-head fasteners and 
8020 gusset plates. These fasteners may be seen in Figure 55. The frame’s exact dimensions and 
parts may be seen in Appendix I. 
 

	
Figure	55.	T‐Slot	Fasteners	and	Fastening	Method 

    
        In the interest of maximizing the arch radius to increase the accuracy of the Heliodon, a 
two-level frame was chosen. This two-level frame is shown in Figure 56.  
 

	
Figure	56.	Two‐Level	Frame 

 
With the addition of the lower frame level, we were able to lower the arches on the 

Heliodon without creating arch interference with the frame. The upper frame level allowed for us 
to use larger diameter wheels to transport the Heliodon. With this final design, there are 3 inches 
of clearance between the bottom of the bottom level frame and the ground. 
         

We decided to use T-slot aluminum extrusions for multiple reasons. First, T-slot was 
recommended by our sponsor because of how simple it is to put together and how elegant it 
looks. It is easy to take apart, which allows the builder to modify the frame design during or after 
assembly without having to start from scratch. This opens up the design for more iterations. The 
T-slot fasteners simplify manufacturing and fabrication by guaranteeing right angles between 
components. In addition, no welding or special fastening tools are required other than standard 4 
and 4.5 mm Allen wrenches. Since no welding is required, there is no risk of heat damaging the 
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frame, creating unsightly weld defects, or burning through the walls of an extruded part. 
Aluminum is corrosion-resistant and so the frame will not be damaged if it is left outside or in a 
humid environment. 
	
5.2.3 Latitude Plates and Latitude Angle Markers: 
 

The latitude plates, whose front view is shown in Figure 57 are 1/8 inch thick. This is a 
1/16 inch thinner than a typical T-Slot fastener piece so when the bolts are fully tightened into 
the T-Slot channel, the bolt head is not flush with the plates. In order to secure a flush, tight fit, a 
1/4 inch washer is placed between each bolt head and hole before fastening. This extra thickness 
made all the fasteners mesh with our latitude plate design. The plates are made from stainless 
steel sheet metal and are machined so that they can connect to the T-Slot frame. The latitude 
plates have a 1 inch diameter hole in the plate’s center so that the threaded rod that attaches the 
latitude plates to the latitude slot can be inserted. 

 

	

Figure	57.	One	Latitude	Plate 

 The Latitude Angle Markers are fixed to the outside of the Latitude Plates. They remain 
fixed to serve as a reference when adjusting the latitude slots. They are laser cut from acrylic 
sheets. They display north and south latitudes from 0 to 90 degrees. Their smallest resolution 
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markers are 5 degrees apart, their mid-resolution markers are 10 degrees apart, and their major 
resolution markings are 30 degrees apart. The final design may be seen in Figure 58. 
 

	
Figure	58.	Latitude	Angle	Marker 

 
5.2.4 Table: 
	

The Heliodon’s table-top is constructed from maple plywood. A single sheet was used to 
make the 4-1/2 foot diameter round table. It consists of three pieces; a center piece and two side 
pieces that fold upward in transportation mode. The center piece has a maximum width of 28 
inches so that it can be directly supported by the frame. This allows the side pieces to fold 
because they are not connected to any other part of the frame. Standard T-slot fasteners attach 
the frame to the bottom of the table. This fastening is shown in Figure 59.  



60	
	

	
Figure	59.	L	Brackets	Connecting	Frame	to	Table 

 
The sides of the table is attached to the center by butler table tray hinges. These hinges 

lay flush in the wood and allow the table’s side pieces to rotate up 90 degrees to the storage and 
transport position. Two hinges on each of the table’s side pieces support the weight of the table 
and prevent bending. The hinges are self-locking when rotated to a 90o angle so that the user does 
not have to hold the side portions at 90 degrees when locking. 
 

The Heliodon should be stored indoors and out of inclement weather. The tabletop is 
painted white to emphasize the shadows that are created by the light source and models and the 
table is finished with multiple layers of polyurethane for sealing purposes. If outdoor storage is 
required, we are recommending that a tarp be used to protect the electronics and tabletop. 
	
5.3 Latitude Slots and Slider: 
 

The latitude slots serve two purposes. The angle of the slots themselves represents the 
latitude angle that the user desires to model, while the slider’s position inside of the slots 
determines the time of the year the user desires to model. Figure 60 below is a SolidWorks 
model of the slots while Figure 61 demonstrates the functions described above. 
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Figure	60.	Latitude	Slot 

 

	
Figure	61.	Latitude	Slots	Changing	Heliodon	Latitude	and	Time	of	Year	
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With the help of calculations that can be seen in Section 6.1 and Appendix G, we 

determined that the slot inside the latitude slot body that the slider slides in should be 27 inches 
long. This gives us enough room for our slider to cover all times of the year. The latitude slots 
were cut to 30 inches long in order to accommodate this slot.  

 
The slot’s main body is comprised of 1/8” X 2” X 4” rectangular aluminum tubing as 

shown in Figure 62.  
 

	
Figure	62.	Rectangular	Aluminum	Tubing	Used 

 
The initial design was comprised of several individual pieces of steel, but this proved 

nearly impossible to machine. The light weight of the aluminum combined with its ease of 
manufacturing made it the ideal material to work with. The main body had three main features: 
the front slot, the front holes, and the top slot. These features are highlighted in Figure 63.  
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Figure	63.	Slot	Main	Body	Features	

	
The front slot allows the threaded rod in the slider to protrude, while the other two 

features are used for locking. The front holes each represent the 21st day of each month. The two 
holes on each end of the slots represent the summer and winter solstices, while the very middle 
holes give the sun’s position during the spring and fall equinoxes. A front hole in the slider 
allows the user to quickly and accurately place the slider in the correct position for these 
important dates. We have termed this feature the “quick adjustment feature”. The top slot allows 
the user to lock the slider in position during any desired time of the year. All of these features 
can be seen in Figure 64. 

 

	
Figure	64.	Slot	Holes	for	Various	Times	of	the	Year 

The back of the slots (the slot connector) can be seen in Figure 65. This is comprised of a 
small section of rectangular aluminum tubing with a single 1 inch hole drilled in the back of it to 
allow a threaded shaft to protrude. This back piece is welded to the main body.  
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Figure	65.	Isometric	View	of	the	Back	Slot	Connector	

 
The threaded shaft in the back of the slot is secured using two hex nuts, as shown in 

Figure 66. The nut inside of the back connector is screwed on tight and will not be loosened, 
while the one outside of the back connector is loosened to allow for the rotation of the latitude 
slots. After the slot is rotated to the desired angle, the outside nut is tightened back in place to 
lock the latitude slots at the desired latitude. 

	
Figure	66.	Side	View	of	Hex	Nuts 

 
The slider itself is made of a 3-3/4” X 3-3/4” X 2” block of ultra-high molecular weight 

(UHMW) polyethylene. This material was chosen because of its low coefficient of friction, 
allowing for smooth sliding within the slots. It has a main hole in the center for another one inch 
threaded shaft, as well as a bore in the back that a hex nut can sit in, preventing the rotation of 
the threaded shaft inside of the slider. It has a hole in the front that allows it to be secured to the 
slot’s front holes via a peg, and a hole on the top so that it can be locked in place with the 
latitude slot’s top slot as shown in Figure 67.  
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Figure	67.	Slot	Sliders 

 

5.4 Arch Design: 
	

After looking at the ideas that we came up with, we decided that the best solution was to 
have the arch made at a professional machine shop with a standard aluminum pipe. Each 
aluminum pipe has an outside diameter of 1-1/4 inches and a wall thickness of 3/16 in. The cross 
section is constant circle along the entire length of the arch. The arch is 300 degrees out of a full 
360 degrees circle. We determined that this was the simplest design that could also be bent to our 
specifications. Aluminum provides enough structural stability to carry the light carriage and it is 
malleable enough to be bent without kinking or deforming. The two arches form a track and the 
light carriage travels along this track. The arches are connected on the inside of the latitude slots 
so that the slots do not interfere with the carriage or the light source as it passes the slots. The 
arches along with the latitude slots can be seen in Figure 68. 

 

	
Figure	68.	Arches	with	Brackets	and	Latitude	Slots	
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5.5 Bracket Design and Drive Cable Hooks: 
 
 There are multiple types of brackets in our final design; the 0o/180o brackets, the spool 
bracket, the pulley bracket, the 1/4 inch thick brackets, and the 1/8 inch thick brackets. Each 
bracket is made of steel. Every bracket except the spool and pulley mounting bracket also house 
the drive cable hooks. These hooks allow the drive cable to run along the arches as they pull the 
carriage. Details on the drive cable and the carriage motion are further explained in section 5.7. 
 
5.5.1 0 and 180 Degree Brackets: 
	

The 0o and 180o brackets refer to the brackets that connect the arches to the sliders within 
the latitude slots. These brackets are made of three pieces of sheet steel that have a thickness of a 
quarter inch and can be seen in Figure 69. 
 

	
Figure	69.	Quarter	Inch	Bracket	Components 

 
The top sheet steel piece is 13 inches long and 2 inches wide. The two pieces extruding 

down from this top piece are 3-3/4 inches long and 2 inches wide. These three pieces are 
fastened together via TIG (Tungsten Inert Gas) welding (this is also known as GTAW, Gas 
Tungsten Arc Welding). The two 3-3/4 inch long side pieces each have two holes of 3/16 inch 
diameter which are used to rivet the brackets to the arches. The 13 inch long top piece has five 
holes, one of 1 inch diameter, and four of 5/16 inch diameter. The 1 inch diameter hole allows a 
1 inch diameter shaft to connect the bracket to the slider in the latitude slot. The four 5/16 inch 
diameter holes allow for the placement of the drive cable hooks. These hooks ensure that the 
drive cable will be guided along the arches. The full 0 and 180 Degree brackets can be seen in 
Figure 70.  
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Figure	70.	0/180	Degree	Bracket	

	
5.5.2 Quarter Inch Thick Brackets: 
	
 The quarter inch thick brackets are also made of three pieces of sheet steel that have a 
thickness of a quarter inch. The top sheet steel piece is 13 inches long and 2 inches wide. The 
two pieces extruding down from this top piece are 3-3/4 inches long and 2 inches wide. These 
three pieces are fastened together via TIG welding. The two 3-3/4 inch long side pieces each 
have two holes of 1/8 inch diameter which are used to rivet the brackets to the arches. The 13 
inch long top piece has four holes of 5/16 inch diameter to house the drive cable hooks. This 
design can be seen in Figure 71.  
 

	
Figure	71.	Quarter	Inch	Bracket 

	
5.5.3 Eighth Inch Thick Brackets: 
 
        The eighth inch thick brackets are made of three pieces of sheet steel that have a 
thickness of 1/8 inch. These pieces can be seen in Figure 72.  
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Figure	72.	Eighth	Inch	Bracket	Components 

 
The top sheet steel piece is 12-3/4 inches long and 4 inches wide. The two pieces 

extruding down from the top piece is 3-3/4 inches long and 4 inches wide. These pieces are also 
fastened via TIG welding. The two 3-3/4 inch long side pieces each have two holes of 3/16 inch 
diameter which are used to rivet the brackets to the arches. The 12-3/4 inch long piece has four 
holes of 5/16 inch diameter to house the drive cable hooks. This design can be seen in Figure 73. 

 

	
Figure	73.	Eighth	Inch		Bracket 

	
5.5.4 Spool Bracket: 
	
The spool bracket is the bracket used to mount the spool to the arches. Figure 74 demonstrates 
this function.  
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Figure	74.	Spool	Bracket	with	Spool	Plate 

 
This bracket is also made of three pieces of sheet steel have a thickness of a quarter inch. 

The top sheet steel piece is 13 inches long and 2 inches wide. The two pieces extruding down 
from this top piece are 3-3/4 inches long and 2 inches wide. These three pieces are also fastened 
together via TIG welding. The two 3-3/4 inch long side pieces each have two holes of 1/8 inch 
diameter which are drilled to rivet the brackets to the arches. The 13 inch long piece has eight 
holes of 1/8 inch diameter. These holes allow the spool bracket to be riveted to the motor 
mounting plate. The spool bracket can be seen in Figure 75.  

 

	
Figure	75.	Spool	Bracket 

	
5.5.5 Pulley Bracket: 
  
        The pulley bracket is made of three pieces of sheet steel that have a thickness of a quarter 
inch. The top sheet steel piece is 13 inches long and 2 inches wide. The two pieces extruding 
down from this top piece are 3-3/4 inches long and 2 inches wide. These three pieces are 
fastened together via TIG welding. The two 3-3/4 inch long side pieces each have two holes of 
1/8 inch diameter which are used to rivet the brackets to the arches. The 13 inch long top piece 
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has four holes of 1/4 inch diameter which are used to fasten the pulleys to the bracket.  This 
design can be seen in Figure 76.  
 

	
Figure	76.	Pulley	Mounting	Bracket 

5.5.6 Bracket Summary: 
	

All of these brackets, with the exception of the spool and the pulley bracket, needed an 
additional hole in the 13 inch long piece to house a power cable hook. However, due to time 
constraints, these holes and therefor these hooks were never implemented. Refer to suggested 
improvements, section 9.1.4, for additional information. 	
	
5.6 Power Cable Spool: 
	

The light bulb required 120 Volts at 60 Hertz (standard wall socket power) to be 
delivered while the carriage moved back and forth along the arches with the bulb. For this 
reason, we utilized a cord reel to feed and retract a thick insulated power cable that could move 
with the light carriage without posing any safety or shock hazards. The cord reel we used was the 
HDX 30 ft. retractable cord reel seen in Figure 77.  
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Figure	77.	Cord	wheel 

 
 The reel has a desired retracting force at all times that pulls the cable back into the 
housing. This is desired when the carriage is coming back along the arches. Some tampering 
with the reel was done in order to achieve this, and this process is detailed in manufacturing, 
section 7.1.11. For safety concerns regarding the cord reel, refer to section 6.4.2. 
	
5.7 Light Carriage Design: 
 

The light carriage was primarily designed around the arches. Our team decided to go with 
the roller coaster design of the carriage because despite it having more components to it, it is a 
more reliable design for our purposes. 
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Figure	78.	Light	Carriage 

The final light carriage can be seen in Figure 78. It is advised that the reader refer back to 
this figure when reading following sections. It consists of a square aluminum tube body with a 
top and bottom plate bolted on, two track dolly swivel wheels and two spring loaded shafts 
connecting the wheels to the body. 

 
The center body is made out of 1/4” X 3” X 3” square aluminum tubing and is four 

inches long. The top plate has a center hole that is 1-1/32 inches diameter and it is secured to the 
body via two screws. This is to accommodate the cable strain relief grip that grabs the power 
cable. The bottom plate of the carriage has a 1-1/4” diameter hole so that the end of the light 
socket can rest in it. The bottom of the carriage can be seen in Figure 79.  
 

	
Figure	79.	Light	Carriage	Bottom	Plate 
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The end of the socket rests inside of this hole and it is secured in place by tightening two 
set screws on either side of the carriage body. This prevents the socket from moving around and 
becoming loose while the carriage is in motion. This can be seen in Figure 80.  
 

	
Figure	80.	Set	Screws	in	Carriage	Body 

 
The initial design of the light carriage used three wheels on each rail to keep the carriage 

in line. This design would require very precise machining of various parts and its assembly 
would be very difficult. After speaking with an aspiring movie director, it was recommended to 
us to try track dolly swivel wheels. These wheels are shown in Figure 81. These mechanisms use 
four wheels to contact each rail and come pre-made at a lower cost and higher quality than any 
wheels our team could have fabricated. The new and old wheel designs can be seen side-by-side 
in Figure 82.  
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Figure	81.	Track	Dolly	Swivel	Wheels 

	
Figure	82.	New	(Left)	and	old	(Right)	Carriage	Wheel	Design 
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A labeled picture of the one side of the carriage can be seen in Figure 83. It is advised 

that the reader refer to this picture while reading the following paragraphs. 
 

	
Figure	83.	Spring‐Loaded	Shaft	Mechanism	for	Carriage	Wheels 

 
To guarantee that the wheels remain in contact with the arches at all times, a spring 

loaded shaft mechanism is attached. This mechanism can be seen in Figure 83.  
 

Ideally, the wheel plate that came with the track dolly swivel wheels would have a hole 
for the shaft to go through, but instead, this plate has a slot. This slot allows the shaft that goes 
through the hole and connects to the carriage to move both vertically and horizontally. We want 
to prevent this vertical motion because we want the shaft to only be able to move linearly in the 
horizontal direction as the spring compresses and extends. To solve this problem we made the 
wheel mounting plates. These plates are made out of 1/4 inch aluminum and are riveted onto the 
carriage wheels.  It has a single hole in it which prevents the shaft from moving up or down, and 
the thickness of the plate prevents any wiggling of the shaft. One of the two wheel mount plates 
can be seen in Figure 84.  
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Figure	84.	Wheel	Mount	Plate 

The shaft itself consists of a 1/4-20 socket head cap screw joined to a threaded shaft via a 
shaft coupler. The shaft coupler is essentially an elongated nut with enough interior threads to 
house two different shafts. The cap screw has a large shoulder to allow more distance for it to 
slide through the wheel mount plate, so only about half an inch of thread actually goes into the 
shaft coupler. The threaded shaft is threaded into the carriage body through a tapped hole and 
secured with a hex nut inside the body. A previous figure is repeated in Figure 85 for 
convenience. 
 

	
Figure	85.	Spring‐Loaded	Shaft	Mechanism	for	Carriage	Wheels 

A spring is used between the wheel mount plate and the shaft coupler to spring load the 
wheels and force wheel contact with the arches. A large washer is placed between the shaft 
coupler and the spring to ensure that the spring doesn’t slip over the coupler and become fully 
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extended. When the wheels are pressed inwards towards the carriage body, the spring pushes 
them back out, ensuring contact on the rails. This motion is demonstrated in Figure 86.  

 

	
Figure	86.	Carriage	Wheel	Spring	Loading 

The final component of the carriage are the cable grabbers. They can be seen in Figure 
87. They are screwed onto the side of the carriage body and extend upwards, passing by the drive 
cable hooks in the brackets that carry the Kevlar thread. 
 

	
Figure	87.	Carriage	Grabbers 

 
 A small 3/32 inch hole in the top of the cable grabbers has Kevlar thread tied to it. As the 

Kevlar is reeled in by the motor, it pulls on the grabber, thus moving the carriage along the arch. 
The Kevlar tied to the grabbers can be seen in Figure 88.  
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Figure	88.	Kevlar	Thread	in	Cable	Grabbers	

  
The grabbers are made out of 1/4 inch aluminum shaft and the ends connecting to the 

carriage body are ground down flat so they have a flat contact surface with the body. It is 
intended for the cable grabbers to lift the Kevlar thread from the drive cable hooks as the 
carriages passes them and lay them back into the hooks after the carriage has passed. 
	
5.8 Spool Mounting Plate and Spooling Mechanism: 
	
5.8.1 Spool Mounting Plate: 
	

The spool mounting plate is made of 3/16 inch thick aluminum plate. It is 12 inches by 12 
inches with two 2 inch by 1 inch cuts on one end so that it fits into the spool bracket. The 
dimensions of the plate were chosen after considering possible interference with the frame and 
possible deflection due to the motor and spooling mechanism. The deflection calculation can be 
seen in a MATLAB code in Appendix F. There are eight holes of 1/8 inch diameter at the top of 
the plate so that the plate can be riveted to the spool bracket. There is a 3/4 in wide 6 inch long 
slot that is cut along the plate as well as various holes for the spooling mechanism.  The motor 
mounting plate can be seen attached to the spool bracket in Figure 89.  
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Figure	89.	Spool	Mounting	Plate 

	
5.8.2 General Spooling Mechanism: 
	

In order for our Heliodon to be automated while maintaining accuracy, the motor has to 
move the light carriage very precise distances. Each turn of the motor must correspond to a 
specific distance traveled by the carriage along the arches. Since the carriage is pulled by the 
Kevlar thread drive cables, these cables must connect to the drive shaft. When the motor turns, 
these cables spool around the drive shaft, thereby pulling the carriage. In order to ensure that 
each turn corresponds to a specific distance traveled by the light carriage, the drive cables must 
not space out when spooling on the shaft, as is drawn in Figure 90, and they also must not stack 
on top of themselves, as is drawn in Figure 91.  
 

	
Figure	90.	Spaced	Out	Thread	on	Spool 
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Figure	91.	Stacked	Thread	on	Spool 

 
 

They must spool perfectly, with each subsequent wrap sitting directly against the 
previous one, as shown in Figure 92.  
 

	
Figure	92.	Ideal	Thread	Spooling 

To accomplish this task, we contacted California Fine Wire Company in Grover Beach, 
California. They recommended using a lead-screw with wire guides that was coupled to the 
drive-shaft. This became our final design. A SolidWorks image of our final design can be seen in 
Figure 93.  
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Figure	93.	Spooling	Assembly 

The specifications for each component of the final spooling mechanism may be seen in 
Appendix I. A detailed explanation of considerations and choices for individual spool 
components may be seen in the following Detailed Spooling Mechanism section. 
	
5.8.3 Detailed Spooling Mechanism: 
 
 With the help of a MATLAB code that we created, which can be seen in Appendix F, we 
sized the components of the spooling mechanism. We needed 173 inches of cable to span one 
arch length, and since the two arches each needed a supply and return cable, we needed four 
times this, or about 58 total feet of cable. With two 66 inch diameter arches of 300 out of 360 
degrees, 173 inches of cable are needed to span one arch length. Each arch has a supply and 
return cable, so twice this amount, or 346 inches, is needed. We need this amount for each arch, 
so a total of 692 inches, or around 58 total feet of cable is necessary to pull the carriage back and 
forth along the arches. 
 
 Once the total length of cable was chosen, we needed to size the shaft that was to spool 
the cable. This shaft is referred to as the drive shaft because this is also the shaft connected to the 
motor. As the shaft diameter increases, so does the required torque to drive the carriage. We 
want this required torque to be as small as possible and so we chose to make the shaft hollow to 
decrease its moment of inertia. However, as the drive shaft diameter decreases, the number of 
rotations necessary for the carriage to traverse the arch increases, and thus the length of the spool 
increases. This is shown in Figure 94, where the smaller diameter shaft, D1, has longer spool, 
L1, and the larger diameter shaft, D2, has a shorter spool, L2.  
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Figure	94.	Kevlar	Thread	on	Small	vs.	Large	Shaft 

 
This spool length cannot be excessive because the difficulty of spooling over a larger 

distance is immense. We experimented with input drive shaft sizes in the MATLAB code in 
Appendix F and found that a 1 inch diameter drive shaft yielded a spool length of about 1-3/4 
inches. We decided that this was sufficient.  
 
 Once the drive shaft was chosen, we needed a way to get the cable to spool evenly along 
the shaft. Our Kevlar drive cable had a diameter of 1/32 inch, so for the cable to spool perfectly, 
it needed to move linearly 1/32 inch along the drive shaft for every rotation of the drive shaft. To 
accomplish this task, we elected to use a lead-screw that was coupled with the drive shaft. This 
lead-screw would have guides that move linearly along the lead-screw as it turns in order to 
guide the wire onto the drive shaft appropriately. These wire guides and their linear motion is 
illustrated in Figure 95.  
 
 

	
Figure	95.	Cable	Guide	Motion	Description 

 
In order for the wire guides to work correctly, they have a 3/8 inch diameter, 16 threads 

per inch hole, a wire hole to feed the drive cables through, and a “leg” to fit into a T-Slot channel 
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to prevent rotation (thereby creating the linear motion) with rotation of lead-screw. This “leg” 
and T-Slot channel interaction can be seen in Figure 96.  
 

	
Figure	96.	Cable	Guide	in	T‐Slot	Rail 

The wire guides are made Ultra-High Molecular Weight Polyethylene because the 
material is easy to work with. We could have used a lead-screw with 32 threads per inch, so that 
for every turn of the lead-screw, the wire guides would traverse the linear 1/32 inch, but this 
threads per inch is difficult to attain. Instead, we used a 3/8 inch diameter lead-screw of 16 
threads per inch, and used a 2:1 gear ratio. This way, one turn of the drive shaft rotates the lead-
screw half a turn, and so 32 turns of the drive shaft rotates the lead-screw 16 times. With 16 
threads per inch, 16 turns of the lead-screw moves the wire guides 1 inch, and this 1 inch is 
traversed over 32 turns of the drive shaft as necessary.  
 
 Creating the 2:1 gear ratio was tricky, because our drive shaft and lead-screw did not 
have a 2:1 ratio (1 inch to ⅜ inch). We found two sprockets of 48 and 24 teeth on ServoCity that 
came with clamping hubs and a drive chain. The two sprockets and a clamping hub are shown in 
Figure 97 and the chain and exploded views of the chain sizing accessories are shown in Figure 
98.  
 

	
Figure	97.	Spool	Sprockets	and	Bore	Clamping	Hub	
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Figure	98.	Spool	Chain	

The 48 tooth sprocket was for a 1 inch shaft and the 24 tooth sprocket was for a 1/2 inch 
shaft, so we needed to increase the diameter of our 3/8 inch shaft to the 1/2 inch shaft that fit the 
24 tooth sprocket. We tried to accomplish this by purchasing a hollow 1/2 inch shaft and a shaft 
adapter that stepped a ⅜ inch shaft up to a 1/2 inch shaft. This adapter is shown in Figure 99.  
 

	
Figure	99.	Spool	Shaft	Coupler	

	
Unfortunately, we found that this did not work because our ⅜ inch shaft was threaded 

and this made it too small to be clamped in the shaft adapter. To resolve this issue, we placed our 
hollow 1/2 inch shaft around our threaded 3/8  inch diameter shaft (like an annulus) and clamped 
the two together with two nuts. Two annuli were needed; one to mate with a bearing, and one to 
mate with a bearing and the 24 tooth sprocket. These annuli and the mating to their parts can be 
seen in Figure 100.   
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Figure	100.	Spool	Annuli	with	and	Without	Bearings	

 Once the sprockets fit the desired shafts, they were clamped to the shafts with their 
respective clamping hubs and the chain was applied. We decided to use Ultra-High Molecular 
Weight Polyethylene blocks to serve as the bearings for each shaft. The general design can be 
viewed in Figure 101, and the detailed dimensioned design may be seen in Appendix I.  
 

	
Figure	101.	UHMW	Shaft	Bearing	

To attach the bearings to the motor mounting plate, we used 3/4 inch Zinc plated corner 
braces, which can be seen in Figure 102.  
 

	
Figure	102.	L	Brackets	for	Bearing	Mounting	
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6 Design Considerations 
	
6.1 Latitude Slot Length Requirement: 
	
 The required length of the slot within the Latitude Slot is a function of the radius of our 
arch. The slot has to be long enough to simulate the sunrise and sunset at the equator during the 
summer and winter solstices. That is, the light arch has to move far enough within the slot so that 
when the light passes the plane of the table it appears to be doing so at the azimuth angle 
corresponding to sunrise and sunset at the winter and summer solstices at the equator. These 
sunrises and sunsets occur at azimuth angles of +23.45o and -23.45o. Figure 103 provides further 
explanation. 
 

 
 

	
Figure	103.	Slot	Length	Schematic	Diagram	

	
Figure 103 shows the location of the light at sunrise of the summer solstice at the equator. 

This is the max distance the light will have to move from the center of the slot and it is equal to 
the distance it would have to move to get to the sunrise for the winter solstice. Therefore, the 
length of the slot needs to allow for two times this max distance. The geometry and calculation 
for the length that the slot would need to allow the light to move, Ls, is in Figure 104.   
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Figure	104.	Slot	Triangle 
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The actual length of the slot would need to allow for this Ls to be traversed by the center 
of the 1 inch diameter shaft in the slider. This means that the slot has to be this length, plus the 
radius of this shaft, 1/2 inch, on each end of the slot. This put the final length required of the 
slots at 27 inches, and we made our slot a round 30 inches.    
	
6.2 MATLAB System Modeling: 
	

The MATLAB code served a few purposes for our team. First, it helped us relate the size 
limitations of the Heliodon (its ability to be transported in hallways and through doors) to the 
latitude simulation limitations (the range of latitudes that could be simulated). It helped us 
experiment with different arch sizes and frame dimensions by letting us know what combinations 
would be feasible. Some combinations would create interference in transportation, some 
combinations caused the arches to interfere with the frame, and some combinations delivered 
very limited latitude ranges. The code helped us pick the optimum combination – one that gave 
us door frame clearance and clearance between the arch and the frame while maximizing the 
latitude simulation range. 
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6.2.1 Deriving the Equations:  
	

In order to create the code, we first had to determine the governing equations of our 
system. Figure 105 is a side view of the Heliodon that shows the latitude slots, table, frame, and 
arches of the Heliodon. The latitude slots are rotated to an arbitrary latitude angle ӨL.  
 

	
Figure	105.	MATLAB	Schematic	Diagram 

 
The length Ls is the length from the center of the slot to the outermost point on the outer 

arch. The calculation for Ls is provided in Figure 106 and has been typed up as well for 
convenience.  
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Figure	106.	True	Slot	Length	Math 
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This length is a function the slot length (which is in itself a function of the radius of our 
arch), the distance between the two arches (which affects the distance between the outermost 
point on the outer arch and max point the slider has to slide to) , and the cross sectional diameter 
of the arches.  
 

The height, H1, is the perpendicular distance from the top (or bottom) of the slot to the 
bottom (or top) of the table. It is found by the equation, 
 

sin	 Ө  
 
as derived from the triangle highlighted by Figure 107.  
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Figure	107.	H1	Derivation	Triangle 

This distance is important because we need to make sure that the bottom portion of the 
arch is long enough for the light to pass the horizontal plane of the table and therefore simulate 
sunrise and sunset. This bottom portion of the arch has been called Rbottom, and it is a parameter 
that is chosen by us. As shown in Figure 108, we choose how full of a circle we want and this 
choice changes the value for Rbottom. We chose to have a 300 degree arch which gave a value of 
28 inches for Rbottom.	
	

 
Figure	108.	Rbottom	Schematic 
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The parameter, H2, is related to Rbottom by the equation below as derived from the triangle 

highlighted by Figure 109.   
 

cos	 Ө  
 
 

	
Figure	109.	H2	Derivation	Triangle 

 
We want to make sure H2 is always greater than H1 so that the Heliodon will be able to 

simulate sunrise and sunset. At the point where H1 becomes larger than H2, we will not be able to 
simulate the sunrise and sunset because the light source be unable to pass below the plane of the 
table. This could occur when the Heliodon is simulating the summer solstice at extreme latitudes. 
The point at which this condition does occur is the maximum latitude that our Heliodon can 
simulate. This operation point can be seen back in Figure 105 when the arches are in position 1, 
at the top left of the slot. Since H1 and H2 are functions of the latitude angle, ӨL, there are some 
latitudes that make H1 larger than H2 and these latitudes cannot fully be modeled by our 
Heliodon. This is the first limitation that the code is checking.  

 
 
The variable htotal is the distance from the top of the table to the top of the bottom of the 

T-Slot frame. We chose this distance when we designed the frame. For our design htotal = 36.5 in. 
The second limitation that we are checking for is whether or not the arch will interfere with the 
frame. This interference may occur when the Heliodon is operating at the winter solstice for 
certain latitudes. This operation point is shown back in Figure 105 when the arch is at position 2, 
the bottom right slot position.  
 
The governing equations for the MATLAB simulation are simply, 
 

sin	 Ө  
 

cos	 Ө  
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We choose the radius of our arch, Rarch, which determines the length, Ls, and we choose the 
amount we cut off which affects Rbottom and therefor H2 as well.	
	
6.2.2 Justifying Our Final Dimensions: 
	
 The full MATLAB code that was written can be seen in Appendix G. The code displays 
our final chosen inputs. The radius of our arch is 33 inches, the distance between the top of the 
table to the top of the bottom beam of the frame is 36.5 inches, and the final arch is 300 degrees 
which makes the lower portion of the arch 28 inches. The code was run for latitudes from 0 
degrees to 90 degrees North latitude, which would produce the same results from 0 degrees to 90 
degrees South latitude. The output plot of our graph can be seen in Figure 110. 
 

	
Figure	110.	MATLAB	Code	Output 

	
	 The plot is an overlay graph of H1 versus ӨL, H2 versus ӨL, and Htot which is equal to 
(htotal-H1-H2) versus ӨL. Remember, the limiting factors for Heliodon operation are if H1 
becomes larger than H2 (limiting sunrise and sunset simulations) or if H1+H2 becomes greater 
than htotal (creating arch interference with the frame at certain latitudes). In our plot, the latter 
limitation is displayed by the red line. If the red line, Htot, dips below zero, then there is arch 
interference with the frame at that latitude. For all latitudes shown, Htot is positive and so there 
should never be arch interference with the frame. H1 becomes larger than H2 at a latitude of 
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around 51 degrees, and so this should be the maximum latitude in which our Heliodon can 
display all sun paths throughout the year. 
 

6.3 Design Analysis: 
	

In order to justify all of the sizing of the load-bearing components of our design we 
turned to hand calculations and analysis. We analyzed the deflection of two different beams of 
the frame, the stresses in the threaded rods, and the possibility of tipping during both general 
operation and during transportation. We sized the parts according to rough estimations and then 
used the dimensions to calculate the stresses and deflections that a given component might 
experience. We overestimated the weights of components in order to over-design in the interest 
of safety. 

 
6.3.1 Weight Estimations: 
	
	 Before any analysis was done, the weights of all the components in the Heliodon system 
had to be estimated. All of part’s weights that were not pre-ordered (the wheels, the motor, etc.) 
were estimated using the density of the material they were made from and the volume of the 
individual materials. These calculations can be seen in Appendix G, and here we have included 
the weight estimations for each component in Table 3. 
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Table	3.	Weight	Estimations	

Part 
Number 
of Parts 

Material 
Density 
(lb/ft^3)

Volume 
(in^3) 

Volume 
(ft^3)) 

Weight 
Per Part 
(lbs) 

Total 
Estimated 
Weight (lbs) 

Casters  4  Mixed  ‐  ‐  ‐  9  40 

Frame  1  Aluminum 169  700  0.4  65  70 

Table  1 
Maple 
Plywood 

‐  ‐  ‐  20  20 

Latitude 
Plates 

4  Steel  491  5  0.003  1.5  6 

Steel Rods  4  Steel  491  5  0.003  1.5  6 

Latitude 
Slots 

2  Aluminum 169  175  0.1  16.9  35 

Sliders  2  UHMW  58.75  32  0.019  1.5  5 

Brackets  11  Steel  491  16  0.009  5  55 

Arches  2  Aluminum 169  111  0.06  11  25 

Carriage  ‐  ‐  ‐  ‐  ‐  ‐  10 

Motor 
Mounting 
Plate 

‐  ‐  ‐  ‐  ‐  ‐  5 

Spool  ‐  ‐  ‐  ‐  ‐  ‐  5 

Motor  ‐  ‐  ‐  ‐  ‐  ‐  1 

Total 
Estimated 
Weight 

                  283 

	
6.3.2 Threaded Rod Analysis: 
	

We knew that the threaded rod would have to hold the weight of the arches, slots, 
carriage, cables, wiring, brackets, and motor, and so we assumed that it would have to be strong. 
We first decided to use a 3/4 in diameter steel threaded rod. Analysis was done by transmitting 
the forces and the moments created by the forces to the very end of the rod. These forces may be 
seen in Figure 111 and have been translated to the rod in Figure 112.  
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Figure	111.	Threaded	Rod	Analysis	Schematic. 

 

	
Figure	112.	Forces	and	Moments	in	Threaded	Rod 

 
 The stresses caused by these moments, torques, and shear forces were then found using 

governing equations. The stress diagram for point H and the governing equations can be seen in 
Figures 113 and 114, respectively. 
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Figure	113.	Stress	Diagram 

 

	
Figure	114.	Governing	Equations 

 
 Once these stresses were known, Mohr’s circle of stresses was drawn so the maximum 

shearing stress and the maximum stress could be found and compared to the yield strength of 
steel. These calculations can be seen in detail in Appendix G. To our surprise, we found that 
using 3/4 inch diameter rod created a maximum stress of 42.46 ksi. This exceeded the yield 
strength of steel of 36 ksi. This told us that a 3/4 in diameter steel rod was not feasible. Redoing 
the calculations with a 1 inch diameter steel rod gave us a maximum stress of 12.1 ksi which was 
acceptable.  
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6.3.3 Frame Deflection: Columns: 
	

There were two parts of the frame which we considered may deflect. The first part was the 
columns that extrude up from the bottom of the frame and attach to the latitude plates. The columns 
of interest are shown in Figure 115 below. 
 

	
Figure	115.	Initial	Column	Design 

 
We recognized that these columns would have a large moment as they would be 

supporting the arches weight and the moment they created. We modeled the extruding columns 
as a cantilevered beam with a moment acting at the free end of the beam. This analysis can be 
seen in Appendix G. This analysis told us that using 1” X 1” T-slot would create a 1.2 inch 
deflection at the top of the column inward towards the table. This deflection was not acceptable 
so a different solution was necessary. We decided that we needed either more 1 x 1 inch T-slot to 
distribute the weight and moment more, or 2” X 1” inch T-slot for the columns instead. Using 2” 
X 1” inch T-slot reduced the deflection to 0.16 inches and using four columns on each side 
instead of only two on each side reduced the deflection to 0.30 inches. It is important to note that 
this analysis did not take into account the two 45 degree bracings at the bottom of the columns. It 
also overestimated the weights of each component that adds to the moment.  
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Each of these facts indicate that the calculated deflection should be more that the actual 
deflection. Figure 116 shows our final design with the extra columns that should prevent drastic 
deflection. 

 

	
Figure	116.	Final	Column	Design 

	
6.3.4 Frame Deflection: Bottom Beam: 
	

The forces in the bottom beam were determined by creating free body diagrams of each 
part of the Heliodon. The bottom beam can be seen in Figure 117 and the free body diagram of 
the bottom beam can be seen in Figure 118.  

 

 
Figure	117.	Bottom	Beam 
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Figure	118.	Bottom	Beam	FBD 

 
 
The Ry forces were modeled as reaction forces from the supports that bottom beam would 

be resting on even though the Ry forces are truly from the vertical columns holding the bottom 
beam up. The full calculation showing how these forces were determined is extensive and can be 
seen in Appendix G. The deflection in the center was found by using the beam deflection 
equations and the principle of superposition. Figure 119 below shows the two cases that were 
superimposed on the beam. The first case was used twice, once for each moment, and the second 
case was used once. Figure 120 shows the governing equations used.  

 
 

 
Figure	119.	Superposition	Cases 
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Figure	120.	Governing	Equations 

Using the moment of inertia of 2” X 1” T-slot provided from the T-slot website, the 
deflection was determined to be only six one hundredths of an inch [7]. This amount of 
deflection was negligible to our design. 
	
6.3.5 Tipping At Extreme Operating Conditions: 
	

For safety purposes and in the interest of keeping the Heliodon operational, we needed to 
determine whether the Heliodon would tip over at the extreme modeling conditions. We first 
determined whether the biggest moment from the arches would occur at the equator on either 
solstice or on either solstice at the maximum latitude we are modeling. We found that the 
maximum moment would occur at the latter condition. The weight of the arches at the solstice on 
the equator acts at a distance equal to half of the length of the slots while the weight of the arches 
at the solstice at our maximum latitude acts at a distance greater than half the length of the slots. 
These distance calculations can be seen in Figure 121, Figure 122 and in Appendix G. 

 

	
Figure	121.	Max	Moment	Calculation	Diagram 
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Figure	122.	Tipping	Calculation	Triangle 

 A free body diagram was constructed with the weight of the arches, carriage, brackets, 
cables, and motor placed at the maximum distance that the weights would act during operation. 
Normal forces were drawn at each wheel and the weight of the frame, slots, table, wheels, and 
rods was lumped in the middle of the Heliodon. This free body diagram can be seen in Figure 
123.  

 
 
 

	
Figure	123.	Free	Body	at	Max	Tip	Condition 
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Summing the moments about one of the wheels told us whether or not the Heliodon 
would tip. If the normal force that we solved for was less than zero that would mean that the 
ground would need to pull down on the Heliodon to prevent tipping. This is impossible when the 
support is a wheel, and so the Heliodon would tip. If the normal force was greater than zero that 
would mean that the ground would be pushing up on the Heliodon indicating that it would not 
tip. The normal force we solved for was greater than zero and so we determined that tipping 
would not occur.  
	
6.3.6 Tipping Due to Wind During Transportation: 
	

For safety purposes and in the interest of keeping the Heliodon operational, we needed to 
see what kind of wind force would tip the Heliodon. We determined that the Heliodon was most 
likely to tip from wind when in transportation mode, with the sides of the tables folded up. A free 
body diagram was drawn with the weight of the Heliodon acting in the center and the normal 
forces on the wheels. We decided that the wind force would act at over half the maximum height 
of the Heliodon, a distance we called 45 inches. This diagram can be seen in Figure 124.  
 

	
Figure	124.	Wind	Tipping	FBD 

We summed the moments about the wheel at B and said that when the Heliodon tipped, 
the normal force N2 would be equal to zero. We solved for the greatest value the wind force 
could be before the Heliodon tipped. We determined that a force of greater than 62.5 lbs. would 
tip the Heliodon over.  

 
We would like to note that many assumptions were made in this calculation and we are 

hesitant to say that it is accurate. We do not know the true location that a wind force would act at 
and we were not able to determine what a reasonable wind force would be. The wind force is 
determined by the equation, 

1
2
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is the drag coefficient,  is the density of air, 	is the wind velocity and A is the 

area that is acted upon. The drag coefficient is dependent upon the shape and orientation of what 
the wind is acting upon, in this case the shape and orientation of the Heliodon. This was not able 
to be accurately determined or estimated. The area that the wind acts upon was also not able to 
be accurately determined or estimated. Without these two parameters, we were unable to 
estimate a reasonable wind force and so we have come to the conclusion to not transport the 
Heliodon when it is windy.   
	
6.4 Safety Considerations: 
	

This section will examine the safety of the final design for the Heliodon. We will discuss 
the potential safety hazards and the measures we have taken to eliminate or reduce them. Areas 
of discussion include the mechanical and electrical systems. 

 
 

6.4.1 Mechanical Safety: 
	
Although the light carriage moves automatically, it moves slowly enough so that body 

parts such as hair and fingers will not get caught and dragged under the wheels. Also, because of 
how closely the carriage passes underneath the brackets, it would be very difficult to build some 
sort of guard around the wheels. 

 
Our final design utilizes a chain and sprocket to drive two shafts with a single motor. The 

Heliodon does not currently have a working motor, so no cage or protective barrier is needed 
around the spooling mechanism. If a motor is implemented in the future, this will create a major 
pinch point and will need to be covered accordingly. There are also small pinch points on the 
folding portions of the table and the sliders in the slots. While these can be easily avoided, 
caution should still be taken. 

 
One of the greatest safety concerns with the Heliodon in its current state is its inability to 

lock its arches and the latitude slots in place properly. The current method of locking is 
tightening two hex nuts together and having the friction between them act as the locking 
mechanism. This is demonstrated in Figure 125. After speaking with Jim Gerhardt, he 
recommended adding some sort of pegs to allow for locking. This would reduce the resolution of 
our Heliodon by limiting simulations to very specific latitudes, but it would allow effective 
locking. 
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Figure	125.	Current	Locking	Mechanism 

To test for tipping, the Heliodon was taken out to the hill beside building 20 on the Cal 
Poly campus. It was turned horizontally and the wheels were locked. The Heliodon did not tip in 
this extreme scenario, so any tipping occurring is very unlikely. Figure 126 shows the conducted 
testing. 
 
 

	
Figure	126.	Heliodon	Horizontal	on	a	Hill	Not	Tipping 
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        One last concern about the Heliodon was it possibly rolling down a hill out of control. 
One member of our team pushed the Heliodon up and down a hill and was able to maintain 
control of the device with ease, despite how large it is. This reassures us that transporting the 
Heliodon will be of little concern. 
	
6.4.2 Electrical Safety: 
 

The only electrical shock hazards present on the Heliodon are within the light carriage 
and along the power cord. Shock hazards can be caused by cutting or abrading the power cord as 
it passes through the brackets or hooks. Wearing away the insulation of the cord could expose 
energized wires, posing an electrocution hazard. This hazard has been eliminated by ensuring 
that the power cord only contacts smooth surfaces and no sharp edges.  
 

The light bulb socket inside the light carriage does not have a grounding wire, but the 
power cord from the cord reel does. If any of the energized wires were to break and contact the 
light carriage, someone touching the carriage and any other conductive surface would be 
electrocuted. We solved this shock hazard by connecting the ground wire to the metal body of 
the light carriage. This prevents the light carriage from being electrified in the event of a broken 
energized wire. Ben Johnson, electric shop supervisor of Cal Poly, had recommended that we 
take further safety precautions by using a cable strain relief grip in the light carriage to prevent 
the power cord from bending, flexing, and tearing. This was also implemented and may be seen 
in Figure 127.  

 

	

Figure	127.	Strain	Relief	Grip	with	Internal	Grounding	Wire 
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6.5 Cost Analysis: 
 

Several major changes occurred to our budget over the course of the project. We were 
given a flexible budget that varied based on whether or not our sponsor liked our design. After 
the preliminary design review, we came up with a budget of around $2,000 for prototyping and 
final design. 
 

The largest expense of the project was the T-Slot framing. It cost around $900. The 
fasteners to connect all the individual pieces of T-Slot made up about two thirds of that $900. 
After contacting the manufacturer, Futura Industries, we found that they would donate all the T-
Slot and fasteners to help the school funded project.  

 
The final cost of the components required to build the Heliodon was $1,631.94. This 

amount neglected the T-Slot that was donated. A detailed parts list with the costs and the source 
list can be found in Appendix H. 
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7. Manufacturing and Assembly 
	
7.1 Manufacturing: 
 
 The following sections are an account of the manufacturing of individual components in 
our Heliodon. All of the components were manufactured by the team members in the Mustang 60 
machine shop or the Hangar. The manufacturing of the Heliodon took over 300 hours of 
combined shop time. 
	
7.1.1 Frame: 
	
 The frame is made of T-Slot because it is easy to assemble, non-corrosive, and 
lightweight. Futura Industries was gracious enough to donate all the T-Slot extrusions and 
fasteners used for the project. We placed a bulk order that specified the length of each extrusion 
and how many fasteners were needed to construct the frame. Upon arrival each piece was laid 
out according to the drawings so that individual sections could be constructed before assembling 
the final frame. The fasteners to put the T-Slot together consisted of t-nuts, locking plates, and 
individual fastener plates. Pictures of the T-Slot, the t-nuts, the locking plate, and how the three 
combine has been provided in Figure 128. Pictures of the different individual fastener plates can 
be seen in Figure 129.  
 

	
Figure	128.	T‐Slot	Fasteners 
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Figure	129.	T‐Slot	Connecting	Fasteners 

 The t-nuts were placed into each fastener and the locking plate was lightly screwed on so 
that each fastener can be inserted by sliding them into the extrusion channels as shown in Figure 
130.  

	
Figure	130.	Ideal	Fastening	Method 

Assembling each T-Slot and fasteners with this method made the assembly much simpler. 
It is more difficult to place the locking plates in the T-Slot channel, place the fastening plate on 
the T-Slot and then feed the t-nuts through the fastening plate while trying to find the hole in the 
locking plate within the channel. This method is shown in Figure 131.  
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Figure	131.	Non	Ideal	Fastening	Method 

Due to late changes in the design, some of the T-Slot extrusions needed to be cut down. 
We first attempted to cut the T-Slot to length with the Chop Saw in the Mustang 60 machine 
shop. Despite the shop techs advice, we do not recommend using this machine as even though it 
cut to the desired length, it left the cross section of the T-Slot marred and disfigured. We did a 
re-cut on the horizontal band saw and this cut the T-Slot to a precise length and left the cross 
section in good order. A picture of the horizontal band saw in the Hangar is shown in Figure 132.  
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Figure	132.	Horizontal	Band	Saw	Cutting	T‐Slot 

There were only a few pieces that needed cutting. The 1” X 1” T-Slot table supports 
needed to be lengthened to 36-1/4 inches, so we had to cut down some of our extra T-Slot to this 
length. We also needed to cut down four 1” X 1” T-Slot to 4 inch lengths for in the latitude 
plates. An image of Jake (left) and Luke (right) working on the frame in the early stages is 
shown in Figure 133.  

 

 
Figure	133.	Two	Cool	Dudes	Assembling	the	Frame	

7.1.2 Caster Wheels: 
	

In order to provide mobility to the Heliodon, we purchased four large 8 inch diameter 
locking casters. The mounting plates that were provided with each caster were too large to 
interface with the aluminum T-slot. Our solution was to machine a 1/4 inch thick aluminum plate 
to connect the casters and the T-slot.  
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           Fabrication of these plates took place in the Mustang 60 machine shop. We began with a 
1/4 inch thick strip 4” X 24” inch long aluminum stock. We used the vertical band saw to cut the 
metal down into four 4” X 6” inch rectangular pieces. We did not take into account the fact that 
with every cut, material is removed from the total length, so not all the pieces turned out to be 
exactly 6 inches. One of the pieces was measured using calipers and rulers to get proper 
placements for the holes. A vertical drill press was used to drill six, 1/4 inch diameter holes in 
the proper locations. One plate was manufactured first and then this was used as a template for 
the other three plates. Once all the plates were drilled, deburring took place using files and other 
deburring tools. The completed caster mounting plate is shown in figure 134. 
 

	
Figure	134.	Caster	and	Wheel	Mounting	Plate 

 
	
7.1.3 Table:  
 
           Our table was fabricated from a large sheet of maple plywood. Fabrication of the tabletop 
took place in Mustang 60 and the Hangar. The maple plywood was cut into the three sections 
using the table saw. In order to achieve a perfect circle, a large compass was constructed using a 
piece of scrap plywood and the desired final radius of the circular table was marked. Two holes 
were drilled into the compass; one for a pencil to trace the circle on the plywood and the other 
for a screw to anchor the compass in the center. Laying the three pieces of maple plywood on the 
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ground, the compass was screwed onto the center of the circle. A circle was traced using the 
pencil. This process is shown in Figure 135.  
 

	
Figure	135.	Tracing	Outline	for	Table	Top 

 
The pieces were cut using the vertical band saw and then finished using the vertical belt 

sander. 
 
           The hinges had to lie on top of the table in order to achieve the folding we required. The 
hinge outline was traced on the bottom of each piece. Using the table router and a 1/4 inch bit, 
the hinge holes were cut. The hinges had two separate levels that had to be accounted for. The 
first was 1/16 inch and the other was 3/16 inch. The bit on the router was raised to accommodate 
the deeper cut. The router was not able to create a perfect channel for the hinges to sit in so we 
planned on using wood glue to fill any gaps after the hinges were applied. The hinge screws 
would go all the way through the table so to prevent any injuries, small wood blocks were cut 
and glued underneath where the hinges screws would have otherwise protruded.  
 
           To achieve the darkest shadows, we decided to use a white table top. Once all the cutting 
on the three pieces was done, a fine sanding was performed starting at 60 grit and repeating until 
400 grit. After all of the sanding, the three pieces were painted. Once dry, a second light sand job 
was performed to ensure the paint coat was evenly distributed. After this, another layer of paint 
was applied. To protect the table from the elements, a spray on sealant was used on the bottom of 
the table. This was also sanded for even distribution and a second coat was applied. 
 
             Once dry, the pieces were flipped and the hinges were screwed into place. Wood filler 
was applied to any excess cuts in the table. An intermediate picture of the table and a location 
where filler was applied can be seen in Figure 136.  
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Figure	136.	Table	Top	Mid‐Finishing 

 
After the wood filler was dry, the table-top was sanded, painted twice, and a final layer of 

the sealant was applied again.   
  
 The center part of the table dimensions is 26” X 48”. Using this information, the table 
was centered on the frame by using a table measure and measuring from each corner of the 
frame. Once centered, a pencil was used to mark where the fasteners holes should go. The 
fasteners used were the standard T-Slot bolts. A countersunk pilot hole was required to prevent 
the bolt from going all the way through the tabletop. To ensure that the pilot holes drilled did not 
go through the tabletop, we marked the drill bits that were used to drill the pilot holes with blue 
painters tape. This marking was made from the tip of the drill bit to a length that was shorter that 
the thickness of the table. Once this marking was reached, the hole was not drilled any deeper. 
An image of this drill marking method may be seen in Figure 137.  
 

	
Figure	137.	Hole‐Depth	Marking	Method 

The tabletop was flipped upside down and this process was repeated for the twelve 
marked holes to secure the table to the frame. Once these hole were complete, the table was 
turned right side up and placed back on the frame. The bolts were inserted and tightened using a 
standard 4 mm Allan wrench.  
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7.1.4 Latitude Plates and Angle Markers: 
 
 To create the Latitude Plates, we used 1/8 thick, 4 inch stock stainless steel plate. The 
latitude plates were created in the Mustang 60 shop. The chop saw was used to cut down the 
stock stainless steel to four, 6” X 4” pieces. Each plate was wire brushed to provide a clean 
finish. 
 
 The plates use standard T-Slot bolts to attach to the frame. Since these plates were to be 
load bearing, it was decided that there needed to be many connection points to the frame. All the 
1/4 inch holes for the T-Slot bolts need to be drilled into the steel plate in locations that were as 
precise as possible so that all the fasteners could fit in the T-Slot channel. To achieve this 
precision we used the Bridgeport Mill. The vise on the mill was squared using the dial gage and 
rubber mallet. The plate was placed in the mill and zeroed to the top left corner. Parallel bars and 
wood were placed under the plate in order to increase accuracy by preventing the warping of the 
metal. A picture of the latitude plates in the vise can be seen in Figure 138.  
 

	
Figure	138.	Milling	Spool	Mounting	Plate 

 
 Each hole was aligned using the digital readout. The 1/4 inch holes were drilled first 
using a two flute end mill. The center 1 inch hole was drilled progressively, starting with a 1/8 
inch and increasing drill size by 1/8 inch until 1 inch was reached.  We repeated this process for 
the other three plates. All four of the plates were deburred using files and the circular deburring 
tool. 
 
 To make the latitude angle marker, we used the laser cutter in Mustang 60 machine shop. 
We used AutoCAD to make the two different circular angle markers. The laser cutter uses an 
RGB color scheme to distinguish between full cuts and rasters (etchings). From previous 
experience, it was determined that the majority of the circle would be laser cut and not rastered 
to save time. Three colors were chosen, red for the thru cut, yellow for the shallow cut, and green 
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for the rastering. Both circles would be cut at the same time to give accuracy and to save time. 
An image of one of these drawings is shown in Figure 139.  
 

	
Figure	139.	AutoCAD	Drawing	Used	in	Laser	Cutter 

 
 The acrylic came with a white protective sheet which was left on during the 
manufacturing. Leaving the white sheet on prevented the acrylic from acquiring unwanted burn 
marks during the cutting. The table saw was used to cut down the stock acrylic to a piece that 
would fit in the bed of the laser cutter. This final sheet was roughly 17” by 31”. The cut piece 
was centered in the laser cutter and the height of the laser was checked using the height gage. 
The through cut used a power rating of 100 with a speed rating of 6 while the shallow cut used a 
power rating of 50 and a speed rating of 7. Three passes had to be used to cut all the way through 
the material. The final result can be seen in Figure 140.  
 

	
Figure	140.	Final	Latitude	Angle	Marker 

	



116	
	

7.1.5 Latitude Slots: 
 
 Our initial slot design was made of steel and utilized various pieces of angle and plate 
steel. Many pieces of angle steel needed to be cut down to uneven “L” dimensions, requiring 
cutting along the length of the steel. These required cuts can be seen in Figure 141.  
 

	
Figure	141.	Needed	Steel	Angle	Cut	with	Initial	Slot	Design 

 
After purchasing the steel from B&B Steel, our group tried many methods to cut down 

the steel angle. First, our team tried to cut it on the vertical band saw. This seemed to work well 
initially, until we got to the end of the cut and realized that the guide was loose and we had 
slowly drifted over the length of the cut so that the cut was no longer straight. Another attempt at 
cutting the steel ended up breaking the teeth of the band saw, rendering the machine useless. 

 
Next, we tried using the mill to make these cuts. It was difficult to do so because the 

length of the slots caused a lot of vibration of the part. The length also required us to remove the 
material from the vice and move it over multiple times which led to a non-uniform cut. Cutting 
the steel produced so much heat that several bottles of coolant were required to finish just a 
single piece. It ended up damaging several end mills as well. The heat required us to cut slowly, 
taking about three hours to machine a single piece. These attempts can be seen in Figure 142. 
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Figure	142.	Attempting	to	Mill	Steel	Angle 

 
Lastly, our team tried oxyacetylene cutting.  This was by far the fastest and easiest 

method of cutting, but it also yield the roughest cuts. The finished product was so rough that it 
was unusable, even after grinding down the cuts for a better finish. 

 
After all of these issues working with the steel, Greg found out that B&B Steel also 

supplied specialty aluminum parts, including rectangular aluminum pipe. This was perfect for 
what we wanted our slots to be, so our team scrapped the steel angle and purchased 1/8” X 4” X 
2” rectangular aluminum tubing, as seen in Figure 143. 

	
Figure	143.	Rectangular	Aluminum	Tubing 

The first step in creating the slots was to cut them to length according to the slot length 
calculations in Appendix G. This was done using the horizontal band saw in the Hangar. After 
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cutting it to length it was placed on the mill to cut the front slot. We had to use two vices because 
of the length of the piece and we had to square both the vices because of the length of our cut. 
After squaring the two vises, we used the edge finder to zero the mill on one of the corners of the 
tubing. We then located the center of the edge finder and set the digital readout to zero. After 
going in the correct X distance, an initial pass was made with a 1/4 inch end mill. This was done 
to ensure the tool wasn’t damaged by removing too much material. This end mill was used to 
complete the initial pass of the front slot. This first pass can be seen in Figure 144. 

 

	
Figure	144.	First	Pass	While	Milling	the	Front	Slot	in	the	Latitude	Slots 

After making this initial pass a 1/2 inch end mill was used to make the final cuts of the 
front slots. The initial pass with the smaller end mill made this cut very easy with the auto feed 
engaged. 

 
Next, the front holes were made in the slots on the mill using a chuck and a 1/4 inch drill 

bit. After zeroing the mill on the corner of the slots, the Y position was adjusted and locked. 
After this, we moved into the correct X positions for each of the seven required holes.  

 
Lastly, the top slot had to be made. The slot was repositioned in the vise as shown in 

Figure 145. The mill was zeroed and, using a 1/4 inch end mill, the slot was machined in the 
center of the top of the slot. This completed the machining required for the latitude slot main 
body. 
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Figure	145.	Milling	the	Top	Slot	in	the	Latitude	Plates	

	
Each slot required a back piece to connect to the frame. Each back piece was made of the 

same rectangular aluminum tubing as the slot itself. The length was achieved using the 
horizontal band-saw and then the piece was deburred. A one inch hole was drilled in the center 
of the back of the connecter. We used the drill press to drill an initial 1/4 inch hole and then we 
increased the drill bit size by 1/4 inch intervals until the 1 inch hole was achieved. This back 
connector was welded to the main slot body to join the two. The weld locations are demonstrated 
in Figure 146.  

 
 

	
Figure	146.	Slot	Weld	Location 
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One latitude slot has welds in the locations illustrated by the blue lines (top and bottom) 
and the other has welds in the locations illustrated by the red lines (sides). The first slot was 
welded horizontally on the top and bottom of the latitude slots. These welds deformed the 
aluminum by causing the top slot of the latitude plates to pinch in and become thinner. After 
seeing this result, he decided to weld the next slot vertically on the sides. This weld did not 
deform the top slot, but we later discovered that it deformed the inner channel where the slider 
moves. The weld made the center section of the inner channel thinner and created some difficulty 
in moving the sliders within the tubing. The final welds may be seen in Figure 147.  
 

	
Figure	147.	Final	Slot	Welds 

7.1.6 Sliders: 
	

The sliders were made of ultra-high molecular weight polyethylene (UHMW). It was 
ordered in a single length with a 2” X 4” cross section. It was first cut on the horizontal band saw 
in the Hangar into two four inch long pieces. One quarter of an inch was then milled off the front 
and side with a half inch end mill using the mini-mill in Mustang 60 so that they could fit inside 
of the latitude slots. 

 
After the sliders were completely cut to length, a 31/32 inch hole was cut in the center of 

them to accommodate the threaded shaft that connects them to the arch assembly. This was done 
using the digital readout on a mill and a mill- compatible drill chuck. 

 
After this hole was complete, the sliders were inserted into the slots. Marks were made on 

the top and side of the sliders where it lined up with the front holes and top slot on the latitude 
slots. After these marks were made, the sliders were placed back in the vise on the mill and a 
3/16 inch it was used to drill about one half inch into the material. This work can be seen in 
Figure 148. 
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Figure	148.	Drilling	Front	and	Top	Holes	into	UHMW	Slider 

 
To get the size of the bore in the back of the slider for the hex nut to rest in, the inch 

threaded shaft was threaded into the slider as shown in Figure 149. It is important to note that 
using a vise to clamp the shaft, as shown in the figure, ruins the threads of the rod and renders 
the clamped portion unusable. 

	
Figure	149.	Threading	Rod	into	UHMW	Slider 

After this was done, a hex nut was threaded onto the rod and its outline was traced on the 
slider. It was then placed on the mill where the outline was milled out using a 1/2 inch end mill. 
The bore was milled to be the exact depth of the nut, which was approximately 0.85 inches.  
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7.1.7 Brackets 
 

The different brackets were made from welded steel. The 0 and 180 degree brackets, the 
1/4 inch thick brackets, the spool bracket, and the pulley bracket were all made from 2 inch wide, 
1/4 inch thick steel.  The top and side pieces of each 1/4 inch thick bracket were cut to length on 
the chop saw and then faced on the mill using another vise acting like a part stop to ensure that 
all lengths were the same. This process can be seen in Figure 150.  
 

	
Figure	150.	Facing	Bracket	Tops	to	Length 

After all bracket components were faced to length the rivet holes were drilled. Two 1/8 
inch holes were drilled in the 1/4 inch thick bracket side plates, while two 3/16 inch holes were 
drilled in the 1/8 inch brackets to accommodate the different rivets used. 
 

Once the pieces were faced down and the rivet holes were drilled, they were run through 
a wire wheel to remove any contamination before welding. We decided to TIG weld the steel 
together and the welding was performed in Mustang 60 and in the Hangar. Before welding the 
final pieces, practice brackets were welded with scrap steel provided by the shops. The practice 
bracket welds helped us make sure that our final welds would look nice. 
 

Once we determined that additional brackets would be needed to house the drive cable 
hooks, we decided to use 1/8 inch thick, 4 inch wide steel for the addition. These new brackets 
were cut to length and welded in the same fashion as the thicker brackets. 
 

After all the brackets were welded, four 5/16 inch holes were drilled in the tops of nine of 
the brackets to allow placement of the cable drive hooks. The brackets were secured on the 
manual drill press to complete this action.  
 

Two of the brackets were selected to be the 180 degree brackets. These brackets are the 
same as the others, just with one inch holes drilled in the center. A 1 inch hole-saw was used on 
the manual drill press in the Hangar to accomplish this. 
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To make the pulley mounting plate, the two pulleys being used were placed on the 

bracket and holes were drilled with a hand drill corresponding to the mounting holes on the 
pulleys. 
 

After all of the brackets were fully made, black Rust-Oleum spray paint was used to 
finish them. An example of a finished bracket can be seen in Figure 151.  

 

	
Figure	151.	Finished	Bracket	on	Arch 

Lastly, the spool bracket was made by lining up the rivet holes on the spool plate with the 
bracket. Once they were both aligned to our liking, we went through and drilled 1/8 inch holes in 
line, riveting the holes as we went. 
	
7.1.8 Carriage: 
 

The carriage’s main body was the first part of the carriage that was manufactured. It was 
found in the scrap storage container in the back of Mustang 60. It was cut to 4 inches in length in 
Mustang 60 on the horizontal band saw. After this, two 1/4 inch holes were drilled in the sides of 
the carriage body. These holes were then tapped to allow the wheel shafts to feed into the 
carriage. 

 
Six more holes were drilled in the carriage main body: two on top, two on the bottom, 

and two in the side. The two on top allow the top plate to be screwed on to the main body. The 
two on the bottom allow the bottom plate to be screwed on. The two in the side allow two set 
screws to secure the socket inside of the carriage body. All of these holes were tapped with a #6-
32 tap.  
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The top and bottom plates of the carriage are very similar. We used 1/4 inch thick 
aluminum to cut 3” X 3” plates. The top plate was secured in a vise and a hole was drilled in the 
center starting with a 1/2 inch bit, stepping up to a 1-1/32 inch bit. This was to accommodate the 
cable strain relief grip that sits in the hole. The bottom plate had a 1-1/4 inch hole drilled in its 
center to accommodate the end of the light socket. Both of these plates had two holes drilled in 
their sides to become compatible with the screw holes in the carriage body. These are the same 
screw holes that are mentioned in the previous section. 
 

The cable grabbers were cut from a quarter inch aluminum shaft. They were cut to about 
3 inches long using the horizontal band saw in the Hangar. They were then secured in a vise 
about an inch from the end and struck with a rubber mallet until they were bent to an 
approximate 20 degree angle. The actual numerical value of the angle was not important, but 
instead, the angle needed to be attained that would allow the grabbers to interact with the drive 
cable hooks properly. The grabbers were then secured again and bent back vertically about an 
inch from that bend. The initial end of the cable grabbers were then taken on the wheel grinder 
and ground down flat so that they could sit flush against the carriage body. Two holes were 
drilled and tapped in this bottom section to attach it to the carriage body and a hole was drilled in 
the top to allow the Kevlar thread to be fed through. These cable grabbers can be seen in Figure 
152.  

	
Figure	152.	Cable	Grabbers 

 
For the spring-loaded shafts, we had to manufacture the wheel mount plates, the spring, 

and the threaded shaft connecting them to the main body. 
 
The wheel mount plates were cut from 1/4 inch aluminum to mirror the dimensions of the 

plates on the track dolly swivel wheels. A single 1/4 inch hole was drilled in the center to allow 
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the socket head cap screw to feed in, as well as two 1/8 inch holes to allow the plates to be 
riveted to the wheels. 

 
After the mounting plate was riveted on, the screw was fed though and the amount of free 

space was measured. We took a spring purchased from Ace Hardware and used wire cutters to 
cut it to this appropriate unstretched length. We then pressed the cut end against a grinding wheel 
to give it a flat surface to sit on. Lastly, we used a hacksaw to cut a 1/4 inch threaded shaft about 
an inch and then ground down the ends to allow it to be threaded into the carriage hole. The 
entire spring loaded shaft was then assembled as shown in Figure 153. 
 

	
Figure	153.	Spring	Loaded	Shaft 

 
7.1.9 Spool Mounting Plate: 
 
 The spool mounting plate was made from a 12” X 12” X 3/16” inch thick plate of 
aluminum. A picture of this plate is shown in Figure 154. 
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Figure	154.	Aluminum	Plate 

The entire plate was manufactured on the mill in the Mustang 60 machine shop. Due to 
its size, the piece could not fit in the vise and be zeroed on the mill. This made the manufacturing 
process extremely difficult. To solve this clamping issue, we used scrap lengths of 2” X 4” wood 
blocks to support the plate on the mill’s worktable. We clamped the aluminum plate to the wood 
and the worktable with toe-clamps. The most difficult part of the manufacture was the process of 
squaring the aluminum plate to the worktable. This was accomplished after a few hours of 
meticulous adjustment. Once the plate was square, an edge-finder was used to zero a corner of 
the plate. Due to the plate’s size, only one side of the plate could be manufactured at a time. A 
1/2 inch end mill was used to cut the 1” X 2” inch portions (that allows for the plates meshing 
with the spool bracket) out of the plate. The same end mill drilled the 1/2 inch diameter hole for 
the power cable to run through. A 1/8 inch drill bit was used to drill the rivet holes in the plate. 
Once all of these cuts were made, the toe-clamps were loosened, the plate was flipped over and 
the part was re-squared and re-zeroed. After another tedious hour, the remaining cuts were ready 
to be made. Multiple passes with the 1/2 inch end mill was used to make the 3/4 inch wide 6 inch 
long slot for the sprockets and chain to sit in. 
	
7.1.10 Spooling mechanism: 
 
 The order of part manufacture for the spool was a big issue. We had been getting 
conflicting advice from valid sources and we ended up blindly following one source’s advice. If 
we were to do it again, we would do it differently.  
 
 The bearings on the spooling mechanism were made from UHMW Polyethylene. They 
were cut the appropriate size using the horizontal band-saw and any flaky pieces that remained 
were ground off using the wood belt sander. To precisely make the bearings the same height, we 
placed them on the Bridgeport mill in the Hangar and faced the sides. Using the mill, a 1 inch 
diameter hole was drilled in two of the bearings, and a 1/2 inch diameter hole was drilled into the 
other two. To ensure that the bearings slid smoothly on their respective shafts, we used the rotary 
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sander in the Mustang 60 machine shop to slightly enlarge the previously drilled holes. Holes for 
the screws used to fasten the bearings to the spool mounting plate were drilled in the appropriate 
sides of each bearing with a cordless power drill, 
 
 The 3/8 inch diameter, 16 threads per inch shaft, was cut to length by clamping the shaft 
in a vise and using a hand saw to cut the desired portion. We made sure that the piece that were 
planned on using was not clamped in the vise, as this would have ruined the threads. 
 
 The 1 inch and the 1/2 inch outer diameter shafts were cut to length on the vertical band-
saw in the Hangar. They were then placed on the grinding wheel to face flat and to taper the 
outer edges. The 1 inch shaft needed holes to connect the Kevlar drive cables to the shaft. We 
marked the location of the holes with sharpie, and before we could drill the holes, we had to use 
a hole-punch to flatten the drill surface. Without the hole-punch, the drill bit used to drill the 
holes would slip along the arch of the shaft and the bit would break. Once the punch was used to 
flatten the drill surface, these holes were drilled using a 3/32 inch drill bit on a drill press.  
 

The wire guides were made out of half inch thick UHMW. First, four 1” X 2” sections 
were cut on the horizontal band saw. After this they were placed on the mill and were zeroed to 
their top right corners. Their bottom “leg” was machined with a half inch end mill. This was 
difficult because the legs on the guides were so thin that the force of the end mill pressing against 
them caused them to deflect before actually removing material. This required some finishing on 
the sander after the milling process was complete. 
 

After the legs were milled out, a hole was drilled in the center of each guide. This was 
done on the mill as well using a chuck and a 5/16 inch fractional drill bit. This size bit was used 
to accommodate the 3/8-16 lead screw they would be sliding on. A 3/8-16 TPI tap was used to 
thread the holes. 
 

Once that hole was made and threaded, the guides were placed on the drill press and 
given 1/8 inch holes in their sides to allow the Kevlar thread to travel through.  
 

The guides were actually quite difficult to move along the lead screw as it rotated. We 
wanted motion with little resistance so it was recommended to us to connect the lead screw to a 
drill to allow us to linearly move the wire guides on the screw. We ran the drill forward and in 
reverse so that the wire guides moved back on forth on the threads. We hoped that this would 
wear the internal threads in the wire guides and produce low resistance spinning. After hundreds 
of runs, little progress was made, so instead we ran the 3/8-16 TPI tap through the holes again. 
This ended up doing a better job of lowering the spinning resistance. 
 
 The T-Slot channel that prevented the rotation of the wire guides was cut to length on the 
horizontal band-saw. Once its position on the spool mounting plate was finalized, holes were 
drilled in the plate so that the T-Slot fasteners could lock the T-Slot to the plate.  
 
 We forgot to order the piece that allows for easy adjustment of chain length, so to adjust 
the length we had to place the chain in a vise and use a punch and hammer to try and remove 
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individual pegs. It is advised that in future designs, this device is purchased. The device that 
would mesh with our chain is the ServoCity chain breaker. This device is shown in Figure 155.  
 

	
Figure	155.	ServoCity	Chain	Breaker	

  
 Once the desired pegs were removed, the pieces indicated by Figure 156 were applied to 
fix the chain at the final length.  
 

	
Figure	156.	Chain	with	Removed	Links 

7.1.11 Power Cable Spool: 
	

The HDX cord reel has a ratcheting gear mechanism that prevents the retraction of the 
cord once the cord is pulled out of the reel. For our purposes, the reel needed to retract the cord 
at all times so that the cord could move forward and backward along the arches with the light 
carriage effectively. Our solution was to open the cord reel and break the ratcheting gear 
mechanism to force the reel to retract the cord at all times. We also had to cut off the outlet at the 
end of the reel cable and use the remaining wires to splice it with the light bulb socket wires in 
order to power the light bulb without the use of bulky socket and plug connections.  
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7.2 Final Assembly: 
	

The majority of assembling parts together was fairly straightforward. Frame assembly 
was not complicated, and assembling the caster wheels to the frame was simple as well. After 
manufacturing, the sliders slid into the latitude slots as planned. All of the sections of the 
threaded rods fit in their necessary holes and were easily clamped in place using crescent 
wrenches and 1 inch nuts.  
 
There were four parts of the assembly that were particularly challenging. They were the arch 
assembly, the carriage assembly, the spooling mechanism assembly, and the drive cable hookup. 
These assembly methods are described in the sections in the 
	
7.2.1 Arch Assembly 
 

Assembling the arches together was one of the hardest parts of the project.  The arches 
had a natural tendency to bow out due to the bending process. Since the two arches had to be 
perfectly centered with each other a pseudo-brace was developed before trying to attach the 
brackets. To keep the arches our specified distance apart and perfectly parallel, five wooden 
braces were constructed. These braces are as shown in Figure 157. 

 
 

	
Figure	157.	Braces	for	Holding	Arches	in	Place 

 
We made a 2-1/2 foot wide protractor in AutoCAD and printed it on the plotter in 13-

107. This protractor was essentially a drawing of a 300 degree circle with markings at the 
specified angles that the brackets were to be attached. Figure 158 provides a representation of the 
protractor. 



130	
	

	
Figure	158.	AutoCAD	Protractor	Printed	on	Plotter 

We laid the protractor on the floor of the bay in Bonderson and set the braces up around 
the protractor. We placed the arches in the braces so that they were “stacked” above the 
protractor. To ensure the arches were concentric with the protractor, we made sure each point on 
the arch was equidistant from the center of the protractor. We did this using a tape measure. 
Once concentricity was attained, we used yardsticks to extend the lines of the protractor in order 
to line up the bracket markings on the protractor with the desired bracket locations on the arches. 
Once these locations were found we marked the locations on the arches.  
 

Once all the markings of where the arches should go on the arches were made, they 
needed to remain in the braces each of the brackets was matched with a location on the arches. 
After we matched specific brackets to specific locations, we thought it’d be a good idea to label 
each bracket to indicate where it had been on the arches. We used blue painter’s tape and pencil 
markings to keep track of the pieces. The 0 degree and 180 degree brackets were the most 
important because they needed to remain level after the fastening for the Heliodon to be accurate. 
We laid one side plate of each bracket flush with its respective arch location and we used a small 
nail and rubber mallet to line up the holes in the side plate of the bracket to where the holes 
should be located on one of the arches. Once all the hole locations were marked, this arch was 
brought to the drill press and a 1/8 inch bit was used to drill the necessary holes. The 0 degree 
and 180 degree brackets were then riveted into the one arch. The second arch was lined up to the 
unfastened side plates of the brackets and C-Clamps were used to secure the arch to the 
unfastened side plates. This guaranteed a tight fit between the arches and the unfastened side 
plates and allowed the rivets to fasten the two securely. This process was repeated with all of the 
other brackets. The only difference in this process was that the 1/8 inch thick brackets required a 
3/16 hole instead of a 1/8 inch hole. We used an electric drill for these holes because it was 
easier than bringing the two arches in on the drill press. 
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7.2.2 Carriage Assembly: 
 

The carriage was assembled in the Hangar and the Mustang 60 machine shop. The first 
part of the carriage that was assemble was the spring loaded shafts. The socket head cap screw 
was put through the small washer, then through the slot in the back of the track dolly swivel 
wheels, and then through the wheel mount plate. After this, the spring was placed over the 
shoulder of the cap screw with the ungrounded end in contact with the wheel mount plate. The 
large washer was placed over the screw and the shaft coupler was threaded on to slightly 
compress the spring. The threaded shaft was then threaded into the other end of the shaft coupler. 
This process was repeated for the other spring loaded shaft. 
 

Before placing the spring loaded shafts on the carriage, the cable grabbers need to be 
attached. This was done by screwing the two holes on each cable grabber. These holes 
corresponded to two holes on the carriage body so that the two could be attached with a screw. 
 

After the carriage grabbers were attached, spring loaded shafts were connected to the 
body of the carriage. This was done with threaded shafts and shaft couplers. The connection was 
made so that the shaft couplers were flush against the carriage body. Once this was ensured, nuts 
were placed on the threaded shaft inside the light carriage and tightened to complete the 
fastening of the wheels to the carriage body. 
 

The next step was to place the light socket inside of the light carriage body. We did this 
by placing the end of it through the hole in the carriage bottom plate. Once the socket was in the 
hole, the carriage bottom plate was screwed onto the body. Next, we used the two small holes on 
the carriage body to tighten two set screws to hold and lock the socket in place inside of the 
carriage body. After this was done, the carriage top plate was placed on the top of the carriage 
body and was secured down with two screws. 
 
7.2.3 Spooling Mechanism Assembly: 
 
 Assembling the spooling mechanism components together was tricky. We continually ran 
into issues with chain length, sprocket spacing, shaft alignment, and bearing friction. The 
mechanism was assembled and disassembled of the mechanism.  
 

To make sure the sprockets fit on each shaft, we had to sand down the outside diameter of 
each shaft. This was done by hand at first, but after realizing how much time this would take, we 
put each shaft on a lathe and held sandpaper against the shaft as it spun. This was done until each 
sprocket and its pair bore clamping hub fit tightly on each shaft. We removed the sprockets and 
clamping hubs before continuing.  
 

Another thing we needed to ensure was that the threaded rod and the 1/2 inch shaft that 
was sleeved over were concentric. To do this, we wrapped painter’s tape around the threaded 
shaft until its outer diameter could be press fit to the 1/2 inch shaft’s inner diameter. This can be 
seen in Figure 159.   
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Figure	159.	Painter's	Tape	Sleeve 

 
Once this was done, the two shafts were concentric, and the bearings and the 24 tooth 

sprocket and bore clamping hub were applied. We applied the 48 tooth sprocket and its bore 
clamping hub to the 1 inch shaft as well. We spaced the wire guides to their appropriate spacing, 
2 inches apart from one another. It is important that they were placed correctly, as once 
everything is tightened down and connected, adjustment is very difficult.  

 
 We placed the T-Slot so that the wire guides would have a channel to traverse. We now 

had two aligned shafts on bearings, wire guides in the correct position on threaded shaft and in 
the T-Slot channel, and the chain around the sprockets. All that was left was to fasten the 
bearings and the T-Slot to the spool mounting plate.  
 

The hole location for the bolts that connect the bearings to the spool mounting plate were 
then marked on the plate. Their location was marked through the L-brackets that fasten the 
bearings to the plate. Once marked, each component was removed, and the holes were drilled on 
a drill press with a #36 drill bit. These holes were then tapped with a 6-32 tap. 
 

Once all the holes were drilled, everything was re-assembled and fastened down. 
 
7.2.4 Drive Cable Hookup: 
 

Attaching the Kevlar drive cables to the Heliodon was a challenge. Each cable needed to 
be attached simultaneously, so two people needed to be working in tandem accomplish the task. 
Two uncut spools of Kevlar cable were used to hook up the drive cables to the Heliodon. The 
carriage was at rest at the top of the arches upon hooking up the cables. 
 

The initial spool setup without the drive cables attached is sketched in Figure 160. The 
wire guides should be spaced evenly, with 2 inches separating each guide. 
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Figure	160.	Initial	Wire	Guide	Positioning 

 
 First, we rotated the threaded rod so that the wire guides reached their max displacement. 
The desired direction of wire guide motion is sketched in Figure 161. By comparing Figure 160 
and 161, it can be seen that the wire guides have moved in relation to the shaft holes. The goal 
was to get the two guides to line up with the two holes as shown in the figure. 
 

	
Figure	161.	Wire	Guides	in	Max	Displacement	Positions 
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Next, we wanted to thread the drive cables through the two wire guides that were aligned 
with the holes and through the holes in the 1 inch shaft that the guides were aligned with. This 
was difficult due to the small diameter of the Kevlar cable. To feed the cables through the holes, 
they were first carefully fed through standard sewing needles. This was difficult because the eye 
of the needle was smaller than the diameter of the thread. Individual strands of the Kevlar thread 
had to be fed through the eye of the needle one by one until the entire thread was through. This 
needle provided the cables with a rigid structure to ease the feeding through the 1 inch shaft. 
Once drive cable was through each needle, the cables were fed through each wire guide and shaft 
hole. They were looped around the shaft and tied to themselves. This is shown in Figure 162.  
 

	
Figure	162.	Wire	Guide	Set	Up 

 Before feeding the drive cables around the arches, they needed to be wound around the 
shaft tightly and without stacking. To do this, the threaded shaft was rotated so that the wire 
guides moved back to their original position. This final winding is shown in Figure 163. The 
arrows next to each wire indicate the Kevlar drive cables untied end. The other arrow indicates 
the motion of the wire guides in the process previously described. 
 

	
Figure	163.	Second	Step	in	Wire	Guide	Set	Up 
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Next, from each cable’s untied end (which was still on the full purchased spool of 

Kevlar), the cable was run around the arches of the Heliodon until the carriage at the top of the 
arches was reached. Moving one bracket at a time, the cable was placed in its respective feed 
drive cable hooks. When each cable reached the carriage, the cable was cut and each cable was 
tied to its respective cable grabber on the carriage. Now the need for two new lengths of cable 
arose. The new cables were needed to for the Kevlar to span the arch length. One cable was tied 
to one cable grabber, and one cable was tied to the other. This connection would allow the 
carriage to be pulled as the spool rotated. The connection is shown in Figure 164.  

 

 
Figure	164.	Spool‐Kevlar	Connection 

 Next, we used the remaining length of Kevlar to reach the other end of the arches. 
Moving one bracket at a time, the cable was placed in its respective feed drive cable hooks. This 
was repeated until the pulley bracket was reached. When the pulley bracket was reached, each 
cable was looped around its respective pulley. An image of the threads wrapping through the 
pulleys is shown in Figure 165.  

 

	
Figure	165.	Thread	Running	Through	Pulley 
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After this the cables were once more fed about the length of the arches. Now, moving one 

bracket at a time, the cables were placed in their respective return drive cable hooks. This was 
repeated until they were back to the spool mounting plate.  
 
 Once the spool mounting plate was reached the wires were fed through the wire guides 
labeled “return” in Figure 166. They were then threaded through the holes in the 1 inch shaft and 
tied off. This completed hookup can be seen in Figure 166.  
 

	
Figure	166.	Final	Spool	Setup	with	Feed	Directions 

 

7.3 Operating Guide: 
 

Operation of the Heliodon requires two people and a tool that is able to grip the large hex 
nuts on the threaded rods. We recommend large vice grips or a crescent wrench. Before making 
adjustments to the Heliodon’s position, ensure that all four brakes are engaged on the caster 
wheels. While one person is making adjustments to the Heliodon’s simulation, ensure that at 
least one other person is holding on to the arches to ensure that they do not tip over. 
 

To adjust the latitude of the Heliodon, the latitude slots should be tilted by first loosening 
the hex nuts that are locking the latitude slots in place. The slots may then be tilted to the desired 
position in reference to the latitude angle marker. It is important to ensure that the arches rotate 
with the latitude slots so the arches always form a perpendicular angle with the latitude slots. 
Once the slots are tilted into position, retighten the hex nuts. 
 

To adjust the date that is wished to be simulated, slide the slider within the latitude slots 
to the desired location. There should be one person at each end of the frame working together to 
move each of the two sliders in tandem. Avoid sliding the arches in one latitude slot without 
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doing the same in the other latitude slot. For the most accurate simulations, use the front holes in 
the latitude slot to line up the sliders in the latitude slots. All slider position adjustments should 
be done symmetrically.  

 
To adjust the position of the light carriage, the spooling mechanism must be driven either 

by hand or by a motor. Whatever method is used, the rotational force should be applied to the 
smaller of the two spooling shafts. See Section 9.1.3 for future modifications that should be done 
in order to make a motorized spooling mechanism possible. 

 
Once the Heliodon is adjusted to the desired position, plug in the cord reel to a wall 

socket to power the light bulb and illuminate the table. 
 

To transport the Heliodon from room to room, the Heliodon must first be returned to 
standard position in order to fit through doors. This means that the latitude slots should be 
parallel to the ground, the arches should be centered in the latitude slots, the arches should be 
perpendicular to the ground, and the two wings of the table should be folded up. Unlock the four 
caster wheels and push the Heliodon to its destination. 
 

7.4 Disassembly, Maintenance, and Repair: 
 
In the case of faulty operation of the Heliodon, parts may become loose, worn, or even 

broken. The following sections will recommend how to disassemble, maintain, and repair parts 
of the Heliodon.  
	
7.4.1 Disassembly: 
 
 Disassembly could be an important part of troubleshooting if an issue with the Heliodon 
occurs. We recommend that before disassembly, the user fully understand the difficulty of 
putting the Heliodon back together. We also recommend that at least four people are present to 
disassemble the Heliodon. The arches are heavy and if they were to unlock and swing 
downward, they could pose a serious safety hazard.  
 
 The first thing to be done upon disassembling would be to cut the Kevlar drive cables and 
remove the carriage from the arches. The drive cables can be cut with scissors and the carriage 
can be removed with some force. 
 
 Next, with multiple people to help out, the nuts on the 1 inch shaft should be loosened 
and removed. One person should hold the arches on the 0 degree bracket side and another person 
should hold the arches on the 180 degree bracket side. The other two people should help 
preventing the arches from tipping. One person at a time should remove the threaded rod from 
the latitude plates while keeping the latitude slots connected to the arches. Once this is complete, 
the other should repeat the process. Next the sliders should be disconnected from the 1 inch 
threaded shaft. This will disconnect the latitude slots from the arches. Once the threaded shaft is 
removed, the slider and latitude slot can be separated. The arches should be laid down carefully, 
and at this point the rivets can be removed from the brackets if necessary.  
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 The remaining disassembly of the Heliodon can be done with one person if desired. All 
that is needed to take apart the latitude plates, T-Slot frame, table,  spooling mechanism, and 
caster wheel mounting plates is a 4mm Allan Wrench and a Philips Head screwdriver.  
 
 Once the Heliodon has been taken apart, individual components can be modified for 
upgrades or repaired. 
 
7.4.2 Maintenance and Repair: 
 
 In this section we have identified the components on the Heliodon that are most likely to 
fail or need maintenance. 
 

With the final decision to use epoxy to fasten the drive cable hooks to the brackets, we 
have discovered that the epoxy is susceptible to failure. If this happens we recommend getting a 
new hook instead of trying re-epoxy the old one. It is difficult to get the old epoxy out of the hole 
in the bracket where the hook previously laid, and if an old hook is reapplied with new epoxy it 
may sacrifice strength. We recommend clearing the hook hole of epoxy by using a drill. Slather 
the new hook with epoxy and insert into the now clean hole. Apply epoxy to the back of the 
bracket to ensure that the hook and hole are covered thoroughly. Once dry, peel off the excess 
epoxy and spray paint to obtain a clean finish. If this continues to be an issue, see section 9.1.4 
for further recommendations. 
 
 During typical use, the Heliodon’s frame fasteners may become loose due to the 
vibrations from transportation. We recommend to check the fasteners every so often and see if 
any T-Slot bolts have become loose. If upon checking it is discovered that any of the fasteners 
can be tightened, these fasteners are susceptible falling off the frame. Use a 4 mm Allan wrench 
to tighten the loose bolts.  
 
 The chain and sprocket assembly will require light lubrication every so often to function 
properly and to maintain the life of the chain. Lubricate the chain every four months to prevent 
early onset fatigue and to ensure a working Heliodon.  
 
 The tabletop was sealed with a polyurethane type substance. These types of finish wear 
off over time. We recommend that every year the tabletop is sealed to prevent weather and UV 
damage. This will prevent wood rot from occurring 
 
 The electrical connections need to be maintained as well. It is recommended that the 
wiring is checked every so often for frays or kinks. No maintenance should be done on the 
electric components unless the Heliodon is unplugged.   
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8. Design Verification, Testing, and Future Test Plan 
	
 Upon the deadline for completing the Heliodon, only the mechanical portion of the 
project was finished. The electrical and automation goals were not reached and therefore, many 
of our desired tests could not be performed. In the following subsections we will discuss the 
status of our goals, show results from the testing that we were able to perform, and provide a 
possible test plan for future iterations of the design. 
 

8.1: Design Verification: 
 
 At the beginning of the design process we set various specifications and goals for the 
final design to meet. Table 4 shows the specifications and whether or not we delivered on those 
specifications.  
 

Table	4.	Specification	Evaluation	

Spec 
# Description Requirement/Target Tolerance

Pass/Fail/Not 
Tested 

1 Explanation Time 5 min ±2 min P 

2 Height 78 in Max P 

3 Width 36 in Max P 

4 Length 90 in ±6 in P 

5 Weight 250 lbs Max F 

6 Setup Time 5 min ±3 min F 

7 Light Movement speed 3 deg/ sec Min Not Tested 

8 Angle precision 2 deg Min Not Tested 

9 Settling Time 1 sec Max Not Tested 

10 Angle Accuracy 1 deg Min Not Tested 

11 
Altitude Angle Range of 

Motion 180 Max P 

12 
Latitude Angle Range of 

Motion ±50 deg ±.05 in P 
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 We gave ourselves a pass on explanation time, height, width, and length. It seems that 
explaining the purpose of the Heliodon as well as the way to operate it is fairly straightforward. 
With only three inputs to perform a simulation, it take the user significantly less than five 
minutes to understand the Heliodon’s purpose and how it is operated. 
  
 The Heliodon fit through the doorways of the EE building and it was easily maneuverable 
through hallways and across campus. All of our dimensions were within our specifications. 
 
 We gave ourselves a failing grade for the weight of the Heliodon. As can be seen in 
section 6.3.1, we have estimated the Heliodon weight to be 283 lbs. We believe that we failed on 
this specification because we changed our bracket design from aluminum to steel at the last 
minute. We were willing to sacrifice weight for structural integrity. One of the reasons that we 
came up with the weight specification maximum of 250 lbs was because we thought anything 
heavier than that would be hard for one person to transport. Upon testing however, it is 
surprisingly easy to push around and so we are happy with the final weight. 
 
 We gave ourselves a fail on the setup time as well. This failure was more a result of not 
being able to set up as opposed to not being able to do it in a certain time. The locking 
mechanisms that we went with were not up to par with the locking mechanism that is required to 
operate the Heliodon effectively. 
 
 We did not test the light movement speed, angle precision, light source settling time, or 
the angle accuracy. All of these tests were intended for a motorized design. Our final Heliodon 
did not have a motor and so we could not test these specifications. 
 
 We gave ourselves passing scores on the altitude angle range of motion and the latitude 
angle range of motion. The light source was able simulate sunrise and sunset and latitudes of 50 
degrees north and 50 degrees south. 
 

8.2 Testing: 
 

The first round of testing we conducted was to verify that the Heliodon was able to fit 
through a doorway. Once the final Heliodon was assembled, it was measured with a tape 
measure. The final length was 88 inches, the width was 30 inches, and the height was 78 and 3/4 
inches. These values are within the design specifications. The Heliodon was wheeled to the 
Electrical Engineering building and brought inside. It cleared the large doorframe to enter the 
building and it was able to maneuver through the small hallways with ease. It was able to rotate a 
full 360 degrees in the hallway. A variety of different classrooms were chosen to test if the 
Heliodon could fit through the doors and each test was successful. Pictures of the test are shown 
in Figure 167 to Figure 169.  
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Figure	167.	Heliodon	in	the	Electrical	Engineering	Building	Hallway 

 

	
Figure	168.	Heliodon	in	a	Doorway 
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Figure	169.	Heliodon	Top	Bracket	Clearance	

	
The second round of testing consisted of testing the accuracy of the “quick adjustment 

feature” of the slots (locking the slider in the slots using the holes in the front of the latitude 
slots). The center of the table coincides with the center of the circle traced by the arches and this 
is supposed to be the most accurate position for simulations on the Heliodon. Our latitude angle 
marker served as a protractor that we placed on the center of the table. We lined up the 90° line 
on the latitude angle marker with the “North” side of our table. This is shown in Figure 170.  

 

	
Figure	170.	Angle	Accuracy	Test	Setup 

A string was tied to the summer solstice hole and was brought to the compass to measure 
the angle formed. The angle recorded was 22.4° which is only 1.05° off from the actual angle of 
23.45°. A sketch of the test set up and the desired angle is shown in Figure 171. 
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Figure	171.	Desired	Heliodon	Angle 

 
 

 One concern that we had was the Heliodon may tip during use or if was on a steep hill. 
The first tipping test was set up by moving the arches to the summer solstice and moving the 
light carriage to the farthest point away from the center of the frame. These settings provide the 
greatest moment. The Heliodon did not tip and so it passed this test. The other tipping test 
consisted of the Heliodon being moved on a hill parallel to the incline. It did not tip on the hill 
either.   
 

The setup time, light movement speed, angle precision, settling time, angle accuracy and 
altitude range of motion were not tested. All of these specifications were for the automation of 
the Heliodon which wasn't complete. These tests will have to be performed in a future iteration. 

 

8.3 Future Testing Recommendations: 
 
 The most important test for a Heliodon is ensuring that the simulation of times, dates, and 
locations, is accurate. The sun angles that are created by the Heliodon at different simulations 
should match given sun angle data for the same simulation parameters. The best way to test these 
sun angles is to test the angles at sunrise and sunset for different months at the equator. If these 
angles are accurate, then angles during other simulations can also be accurate. If these angles are 
slightly off, then all of the simulated angles will be slightly off as well. 
 
 The accuracy of the angles just described is entirely dependent on the mechanical system. 
Inaccuracy could be the result of the table not being centered in the arches, the latitude slot not 
angled to the correct latitude, the slider not being in the precise location in the latitude slots, or 
just misalignment created through assembly in general. Alignment and locking accuracy should 
be a huge concern for future iterations of this project. There is no point of automating the day to 
day simulation if the latitude and date parameters cannot be made accurate in the first place. 
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 If the Heliodon is sufficiently dimensioned and aligned, then there needs to be extensive 
testing to calibrate the control system. In our design, our spooling system would have to work 
perfectly for any automated carriage to have the change to accurately demonstrate times of the 
day. Any stacking or spacing of our driving cables during the spooling process would create 
inaccuracies.  
 
 We recommend inputting sun calculation equations to a micro-controller that can 
communicate with the motor. Tests various times should be run at specified latitude and date 
simulations. For example, the light source could be told to move to 3PM in San Luis Obispo on 
October 21st. After this motion, the tester would measure the altitude and azimuth angle formed 
by the light source and compare these values to the values predicted by sun equations. These 
tests should be run at numerous times, dates, and latitudes, until the motor and micro-controller 
are calibrated. 
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9. Suggested Improvements 
 
 Our project is largely mechanical, but there is also a huge potential for an electrical side. 
We have split our suggested improvements section into mechanical improvements and electrical 
improvements. The following sections detail our suggestions. 
	
9.1 Mechanical Improvements: 
	
9.1.1 Alignment: 
 

Despite our best efforts, not everything on our final design was as aligned and level as we 
wanted. The latitude slots are not quite parallel to the ground. The 1 inch holes in the latitude 
plates are not all in line with each other. The table is not quite square with the frame. The 0 and 
180 degree brackets are not perpendicular to the ground. 
 

All we can recommend is investigating better manufacturing methods to ensure 
alignment and leveling. We recognize that we were not experienced manufacturers and we also 
recognize that future teams may also lack experience. The best recommendation that we can 
offer is to continue searching for manufacturing and assembly advice.  
 
9.1.2 Motion and Locking: 
 
 For future considerations, multiple components need a better way to lock in place. 
Specifically, locking the latitude slots at desired angles and locking arches and the latitude slots 
so that they rotate together must be improved. 
 

In regards to the locking the latitude slots at required latitude angles, a design other than 
tightening nuts needs to be thought of. A possible solution to this is shown in Figure 172.  
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Figure	172.	Possible	Solution	to	Heliodon	Locking	Issue 

First, a partially threaded bolt would need to be purchased. The unthreaded, or shoulder, 
section of the bolt would go through both the latitude plates and the latitude slot connector, but a 
bore clamping hub and nut would be placed in between the latitude plates and slot. The bore 
clamping hub would screw into the latitude plates, making the shaft unable to rotate. The end of 
the bolt would have another bore clamping hub attached to the inside of the slot. This prevents 
the slots from moving in the axial direction and provides a surface for the nut to press into once 
tightened. Rotating the slots with this method only requires loosening the one nut.   
 
 The current design doesn’t have a safe place for the acrylic angle markers due to the six 
nuts. If the above design is implemented the angle marker could go between the bolt head and 
latitude plate. This location will allow a user specified amount of force on the plate, preventing it 
from cracking.  
 

Another locking issue is that the arches can rotate independently of the slots. While 
designing the Heliodon, we wanted to keep this rotation possible due to its mobility and being 
able to fit through a door. If the Heliodon ended up being too large to fit through a door, we 
wanted to be able to orient the slots vertically so that we could slide the arches to a lower 
point.  Once built and tested, the overall height was just short enough to fit through a door.  
 

To eliminate this rotation, a double shaft design could be implemented into the slider. 
The center one inch shaft would be removed, new sliders would be fabricated to fix the hole and 
two, 1/2 inch shafts would take its place. The length of the slider would not change but the slot 
length would need to increase by an enough to allow the center of the slider to reach its 
necessary position. The two 1/2 inch shafts would go straight from the slider to the 0 and 180 
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degree brackets. This would effectively lock the slot’s rotation with the arches and keep the 
arches perpendicular to the slots as necessary. A sketch of the design is shown in Figure 173.  

 

	
Figure	173.	Slot	Shaft	Rotation	Solution 

9.1.3 Spooling Mechanism: 
 
 The general idea for the spooling mechanism is sound. The two shafts coupled with a 
chain and wire guides that run along a lead screw is the best way to spool the wire as necessary. 
However, the individual parts of the spooling mechanism can be greatly improved. The use of 
small journal bearings, like the ones seen in Figure 174, will help with shaft alignment and 
bearing life.  
 

	
Figure	174.	Shaft	Bearing	Improvement 

 The largest problem that we failed to realize was the coupling between the spooling shaft 
and the lead screw shaft. Despite the requirement of spooling shaft to spin twice as often as the 
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lead screw shaft, we used a gear ratio that actually did the opposite of this. In our assembly, the 
lead screw spins twice as often as the spooling shaft. We failed to realize this until the day that 
we assembled the final Heliodon and we did not have enough time to fix this error. If a future 
team is to modify our Heliodon, this is the first problem that should be fixed. It is important to 
note that there are other gear ratios that could be used if different threads per inch are used on the 
lead screw. Future teams must also understand that the gear ratio, the threaded shaft TPI, the 
shaft diameters, the shaft lengths, and the drive cable diameter are all dependent variables in the 
spooling design.  
 
 Placement of a motor on the spooling mechanism and possibly a force or torque 
measurement system on the spooling mounting plate or mechanism must also be considered.  
	
9.1.4 Drive Cable and Power Cable Hooks: 
 

The current design of attaching the drive cable hooks to the brackets is not effective. The 
epoxy that holds the drive cable hooks to the brackets cannot support the tension created by the 
Kevlar drive cable and so they pop out of the brackets when tensioned. We recommend a bolt 
style hook with matching nuts and washers. The bracket holes wouldn’t need to be threaded 
because the two nuts would prevent the movement of the hook. This idea provides easy 
maintenance in the case that a hook has to be replaced.  
 

The shape of the hook should also be changed. The current hooks do not allow the cable 
grabbers to replace the Kevlar thread in the hooks after lifting them out. There is a product called 
a J-Bolt that we recommend using. Figure 175 shows the J Bolt with the two nut idea.  

 

	
Figure	175.	J	Bolt 

 
 
 With these J-Bolts, the cable grabbers could be remade to similar J shapes and this would 
lift and replace the cable as necessary when the carriage passes the hooks. A sketch of the 
theorized cable grabber, J-bolt interaction is shown in Figure 176.  
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Figure	176.	J	Bolt	Solution	to	Cable	Drive	Hook	Issue 

 
 To better accommodate the power cable and to prevent it from dangling as the carriage 
runs along the arches, we recommend power cable hooks. These hooks are similar to the drive 
cable hooks, but they only require one hook per bracket. This design requires that the locking 
mechanism between the latitude slots and the arches be implemented, because ideally the power 
cable would lay in the center of each bracket. As of now, this is not possible at the 0 and 180 
degree brackets because of the 1 inch threaded connecting shaft. With the new locking 
mechanism proposed, there would be no shaft in the middle of the brackets (as shown previously 
in Figure 173) and so a power cable hook could lie there instead. A third cable grabber could be 
implemented to the carriage and the same mechanism for lifting the wire out of the hooks as the 
carriage passes could be implemented.  
	
9.2 Electrical Improvements: 
	
9.2.1 Power Cable Management: 
 

The power cable needs proper management to reduce friction, to keep the cable out of the 
way of the light, and to properly travel along with the moving light carriage. Larger cable hooks 
attached to each bracket could be utilized to guide the power cord in a similar way that the drive 
cable hooks guide the Kevlar drive cable string. The cord reel could also be modified so that the 
internal torsion spring pulls with reduced force, lowering the required torque of the motor. 
Whatever method is employed, it must be ensured that the cord does not come into contact with 
sharp or abrasive edges to protect the integrity of the wire insulation.  
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9.2.2 User Interface: 
 
 The design of the user interface should encourage accessibility and ease of use. At the 
very least, there should be a screen and a keypad for the user to input and read out information. 
This design could utilize on screen instructions or have an accompanying instruction booklet. 
 
 One concept of the user interface can be seen in Figure 177 below. With this handheld 
device, the user could interact with the control system through the keypad and receive 
information (i.e. menu displays, instructions, sun angle information) from the LCD screen. Refer 
to Appendix E for a concept of the control system’s function state diagram. Switches could be 
used as well to turn on and off the light bulb and/or the control system.  
 

	
Figure	177.	Handheld	User	Interface	Concept 

 
9.2.3 Sun Angle Calculator: 
 

Regardless of how accurate the physical Heliodon is, the control system should be able to 
calculate and output the simulated sun angles accurately. This will require the use of a robust 
microcontroller or PLC due to the complex nature of the sun angle equations. Trigonometric 
functions (i.e. sine, cosine, arccosine, arcsine) must be utilized. The future project leaders should 
be advised to select a controller that is capable of performing these complex calculations well. 
Users should be able to input latitude, date, and time and receive accurate sun angle information. 
We recommend talking to Dr. Jesse Maddren of the Mechanical Engineering department, as he 
has an excel code that already does this. We also recommend talking to Dr. Kim Shollenberger, 
as she teaches a solar course at Cal Poly as well. 
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9.2.4 Motor and Motor Control: 
 
 The selected motor must be able to effectively mobilize the entire light movement system 
including the spooling mechanism, driving cables, and power cable management systems. In 
order for proper motor selection to be made, the entirety of the light movement system must be 
designed and tested to determine how much torque is needed in the motor. The fixture should be 
rigged up, and strain gauges or other force transducing devices should be used to extract the 
required torque. The motor should be sized accordingly. The motor control system should also be 
determined after the selection of the motor. Motor, motor power supply, and controller selection 
should be considered carefully.  
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10. Conclusion 
 
 Over the course of this capstone project, team Heliodon succeeded in making a functional 
prototype of the Heliodon. We are proud to say that the mechanical systems work and with a 
further iteration, automation and fully functioning, accurate Heliodon is possible.  
 
 We hope that once the final iteration of the Heliodon is complete, it will be a valuable 
contribution to the Cal Poly Electrical Engineering department and the students and faculty of 
Cal Poly as a whole. This project has helped us learn about how the Sun moves relative to the 
Earth and the Heliodon is definitely a helpful teaching tool. Throughout this project, we 
encountered challenges that required us to push ourselves to complete.  
 
 We would like to thank Dr. Dale Dolan for being a helpful sponsor, Dr. O’Neil and Dr. 
Maddren for helping us learn about Sun motion and Sun angles, Kevin Williams for teaching and 
practical welding help, Hans Meyer for spooling advice, Dr. Shollenberger for providing us with 
a small scale Heliodon, Futura Industries for donating the T-Slot, California Fine Wire for 
providing us with the idea for our final spooling method,, and Advanced PipeBending for the 
arches.    
 
 We would especially like to thank Professor Sarah Harding, our advisor. She always 
guided us in the right direction, pushed us to be our best, and never gave up on us. 
 
 Finally, we wish the best of luck to future students working on the Heliodon. It’s a 
challenging but rewarding process.  
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Appendix A: QFD Analysis: 

	
	 	

E
xp

la
na

tio
n 

Ti
m

e

H
ei

gh
t

W
id

th

Le
ng

th

W
ei

gh
t

S
et

up
 T

im
e

Li
gh

t A
ng

ul
ar

 S
pe

ed

A
ng

le
 p

re
ci

si
on

S
et

tli
ng

 T
im

e

A
ng

le
 A

cc
ur

ac
y

R
an

ge
 o

f M
ot

io
n

F
la

tn
es

s

A B C D E G I J K N O P 1 2 3 4 5
Easy to use interface 1 8 9 1
Transportable 2 9 3 3 3 9 3
Fast setup time 4 3 9
Fast operation time 5 4 1 1 1 9 3 1
Can fit through a door 7 8 9 9 9
Precise dates 8 10 9 9 9
Minimal light source vibration 9 3 3 9
Able to cast shadows well 11 8 3 3 3 1
Outputs sun angle information 12 8 3
Can model sun's motion 13 10 3 9 9 9
Fixed Table 14 8 9

Strong - 9 Good 5
Medium-3 4
Weak  - 1 Company Ratings 3

2
Bad 1

Targets

5 
m

in
ut

es

6.
5 

ft

2f
t 1

0i
n

5.
5f

t

20
0l

bs

5 
m

in
ut

es

45
 s

ec
on

ds

2 
de

gr
ee

s

5 
se

co
nd

s

1 
de

gr
ee

18
0 

de
gr

ee
s

.1
in

Weighted Importance 96 127 127 127 81 62 76 180 39 180 184 72

% Importance 7.1 9.4 9.4 9.4 6 4.6 5.6 13 2.9 13 14 5.3

Measures

1351

100

I
m
p
o
r 
t
a
n
c
e 

I tem 
No. 

Voices 

Customer 

Customer 
Ratings 

Bad Good 

="PG&E"fixed"light"
=Large"scale"fixed"table"design"
="Sun"modeling"so; ware"

="Professor"Dolan"
=Cal"Poly"Students"
="KB12"students"



iii	
	

	
Appendix B: Gantt Charts: 
	 	



ID Task 
Mode

Task Name

1 QUARTER 1: PROJECT DESIGN

2 YELLOW TAGS

3 DESIGN TABLE

4 DESIGN LIGHT MOVEMENT

5 DESIGN INTERFACE

6 DESIGN FRAME

7 WORK ON PDR

8 PRESENTATION PREP

9 PDR DUE

10 PRESENTATION 

11 RESEARCH MANUFACTURING

12

13 QUARTER 2: ENGINEERING DESIGN

11/18

11/18

Oct Nov Dec Jan Feb Mar Apr May Jun Jul
Qtr 4, 2014 Qtr 1, 2015 Qtr 2, 2015 Qtr 3, 2015

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 1

Project: GANTT
Date: Fri 6/5/15



ID Task 
Mode

Task Name

14 STRESS ANALYSIS

15 DYNAMIC ANALYSIS

16 TABLE SIZE AND MATERIAL

17 FRAME SIZE AND MATERIAL

18 ARCH SIZE AND MATERIAL

19 CHOOSE MOTORS

20 DETAIL DRAWING

21 CAD ASSEMBLY

22 ELECTRICAL DESIGN

23 MICROCONTROLLER SELECTION

24 USER INPUT

25 DISPLAY

26 ENCODER

Oct Nov Dec Jan Feb Mar Apr May Jun Jul
Qtr 4, 2014 Qtr 1, 2015 Qtr 2, 2015 Qtr 3, 2015

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 2

Project: GANTT
Date: Fri 6/5/15



ID Task 
Mode

Task Name

27 PROGRAM OUTLINE

28 WORK ON CDR

29 CDR DUE
30 CDR PRESENTATION

31 TEST PROCEDURE OUTLINE

32 MANUFACTURING AND TEST REVIEW

33 ORDER MATERIALS

34

35 QUARTER 3: ASSEMBLY AND TESTING

36 FRAME BUILD AND ASSEMBLY

37 TABLE BUILD AND ASSEMBLY

38 PROGRAMMING

39 BUILD AND ASSEMBLE ARCH

40 BUILD AND ASSEMBLE LIGHT CARRAIGE

1/31
2/3
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Qtr 4, 2014 Qtr 1, 2015 Qtr 2, 2015 Qtr 3, 2015

Task

Split

Milestone

Summary

Project Summary

Inactive Task

Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 3

Project: GANTT
Date: Fri 6/5/15



ID Task 
Mode

Task Name

41 INSTALL SAFETIES

42 INSTALL INTERFACE

43 TROUBLESHOOT PROGRAMMING WITH 
ARCH AND LIGHT CARRIAGE

44 ASSEMBLE FULL STRUCTURE

45 TESTING

46 CHECK FULL ASSEMBLY MOBILITY

47 TEST ACCURACY AND PRECISION

48 TEST EASE OF USE

49 SETUP DEMO MATERIAL

50 PROJECT HARDWARE DEMO

51 VERIFY ENGINEERING SPECIFICATIONS

52 SETUP EXPO MATERIAL

53 SENIOR EXPO

4/24

5/28
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Qtr 4, 2014 Qtr 1, 2015 Qtr 2, 2015 Qtr 3, 2015

Task
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Inactive Milestone

Inactive Summary

Manual Task

Duration-only

Manual Summary Rollup

Manual Summary

Start-only
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External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 4

Project: GANTT
Date: Fri 6/5/15



ID Task 
Mode

Task Name

54 FINAL REPORT DUE 6/5
Oct Nov Dec Jan Feb Mar Apr May Jun Jul

Qtr 4, 2014 Qtr 1, 2015 Qtr 2, 2015 Qtr 3, 2015

Task

Split

Milestone

Summary

Project Summary
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Inactive Milestone

Inactive Summary
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Manual Summary Rollup

Manual Summary

Start-only

Finish-only

External Tasks

External Milestone

Deadline

Progress

Manual Progress

Page 5

Project: GANTT
Date: Fri 6/5/15
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Appendix C. Initial Heliodon Designs: 
	
The following appendix displays SolidWorks images from previous design iterations. None of 
these designs were adopted, but it can be seen how each initial design developed into the final 
design. 
	
Initial SolidWorks Designs: 
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First Iteration Designs: 
 
Latitude Slots: 
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Latitude Slot Sliders 
 

 
 
Arch Assembly 
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Carriage Design 
 

 
 

 
 

Carriage Bearings 
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Spool Design 
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Appendix D: Final Heliodon Design: 
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Appendix E: Function State Diagram: 
	
This function state diagram outlines the user’s interaction with the planned (but not 
implemented) control system. 
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Appendix F. MATLAB Codes: 
	
This appendix shows the MATLAB codes for the latitude simulations, for the spool and drive 
cable calculations, and for the spool mounting plate deflection. 
 
Latitude Simulation Code: 
 
Our inputs are a 300 out of 360 degree arch of radius 33 inches and a frame to table height of 38 
inches. The output graph showing the results is on the following page.  
	
% MATLAB CODE WITH A 5.5FT ARCH, 38IN HTOTAL, AND 300O ARCH (RBOTTOM=28 
INCHES) 
  
Rarch = 33;                     % Arch radius (minus light), inches 
Ls = (Rarch-3)*tand(23.5)+7;    % Half slot length + extra, inches 
Htotal = 36.5;                  % Max table to top of bottom of frame, inches 
Rbottom =28.57;                 % Length of bottom half of arch, inches 
  
arch_angle = asind(Rbottom/Rarch)*2+180; % Angle of the arc, degrees 
  
thetaL =zeros(900,1);       % Latitude range, degrees 
H1 = zeros (900,1);         % Table to slot at max latitude, inches 
H2 = zeros (900,1);         % Slot bottom to bottom of arch, inches 
  
  
% Calculating values for H1 and H2 for ThetaL from 0 to 90 Degrees 
  
for i = 1:900  
thetaL(i) = i/10; 
H1(i)=Ls*sind(thetaL(i)); 
H2(i)=Rbottom * cosd(thetaL(i)); 
H=H1(i)-H2(i); 
  
% Latitude angle at which sunset and sunrise cannot be shown 
  
if (H>-.1 && H<.1) 
    ThetaPrime = thetaL(i); 
end 
  
end 
  
% plot(thetaL,H1+1,thetaL,H2),legend('H1','H2'); 
  
plot(thetaL,H1,thetaL,H2,thetaL,Htotal-H1-H2,thetaL,0,ThetaPrime,thetaL) 
xlabel('Latitude (degrees)'),ylabel('Length (inches)') 
legend('=H1','=H2','=Htot-H1-H2') 
axis([0,70,-5,35]); 
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Spool and Drive Cable Calculations 
 
%Spool Shaft Diameter Calculation 
  
d_cable = 1/32;                 %cable diameter [in] 
  
ratio = 2;                      %Gear Ratio:1 
  
TPI = 32/ratio;                 %Threads per inch needed 
  
d_arch = 5.5*12                 %arch diameter [in] 
  
L_cable = pi()*d_arch*5/6       %cable length to span one way of one arch 
[in] 
  
d_spool = 1;                    %input spool diamter [in] 
  
N = L_cable/(pi()*d_spool)      %number of turns to move carriage all the way 
across the arch 
  
Cable_travel = N * d_cable      %linear length the cable will spool along the 
arch [in] 
  
Total_cable_in = 4*L_cable 
  
Total_cable_yards = Total_cable_in*1/12*1/3 
  
 
Spool Mounting Plate Deflection: 
 
%Mounting Plate Deflection Calculator 
  
This calculator uses a beam of length L = L1+L2 with force P at 2(L)/3 from the fixed end of 
the beam. This is for a sudo - superposition method. This model coincides with case seen in the 
figure below. 
 

 
 
This calculator calculates the deflection due to a lumped force P which is not at the end of the 
beam L, but is at some middle position L1. This deflection has been called D1 and its equation 
coincides with the maximum deflection for case 1. The calculator also finds the deflection D2, 
which is the additional deflection after the application of P due to the slope at point L1 from P 
and the additional length L2 to reach the free end of the beam. The total deflection is the sum of 
D1 and D2.  
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Parameters such as width, b, length, L, and thickness, h, component weight, the placement of the 
lumped force at L1, total length L, can be modified below. 
  
E_Al=10*10^6;               %Modulus of Elasticity of Aluminum [psi] 
rho_Al=0.0975;              %Denisity of Aluminum [lb/in^3] 
b=8;                        %Width of Aluminum plate [in] 
L1=8;                       %Length 1 [in] 
L2=4;                       %Length 2 [in] 
L = L1+L2;                  %Total Length of Aluminum plate [in] 
h=.25;                      %Thickness [in] 
W_plate = b*L*h*rho_Al      %Weight of Aluminum Plate [lbs] 
I = (1/12)*b*(h^3);         %Moment of Inertia of Rectange about x-centroidal 
axis [in^4] 
component_weight = 10;      %Weight of all spool equipment [lbs] 
P =component_weight + W_plate;            %Weight of everything assuming 
component weight of 10 lbs [lbs] 
  
d1=(P*(L1^3))/(3*E_Al*I)    %Deflection from force of Case 1 [in] 
  
d2=(L2*(sin((P*L1^2)/(2*E_Al*I)))) %Deflection from slope in case 1 and 
additional length [in] 
  
d_max = d1+d2 
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Appendix G. Full Hand Calculations: 
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Weight Estimations: 
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Frame Deflection Calculations: 
	
Upright Columns: 
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Bottom Beam: 
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Slot Length Calculation: 
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Threaded Rod Stress Analysis: 
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Tipping Analysis: 
	
Extreme Operating Conditions: 
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Tipping From Wind: 
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Appendix H. Bill of Materials and Source List: 
	
Bill of Materials: 
	
	 	



CATEGORY ITEM DESCRIPTION (Part #) Qty
COST/  
UNIT 

TOTAL   
COST SHIPPING TAX 

T-Slot 
Framing 

T-Slot, 10-Series, 1x1 (4 inches required) (211) 2 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x1 (36.5 inches required) 
(211) 

4 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x1 (22 inches required) (211) 6 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x1 (37 inches required) (211) 4 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x1 8 inches required) (211) 1 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x2 (13 inches required) (212) 4 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x2 (22 inches required) (212) 5 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x2 (28.5 inches required) 
(212) 

6 Donated by T-Slots $0.00 $0.00 

T-Slot, 10-Series, 1x2 (56 inches required) (212) 2 Donated by T-Slots $0.00 $0.00 

4 Hole Inside Corner Bracket (213) 48 Donated by T-Slots $0.00 $0.00 

8 Hole Inside Corner Bracket (214) 12 Donated by T-Slots $0.00 $0.00 

4 hole Joining Strip (215) 8 Donated by T-Slots $0.00 $0.00 

Right Angle Brace 1x1 6 inch (216) 8 Donated by T-Slots $0.00 $0.00 

8 Hole Joining Plate (217) 32 Donated by T-Slots $0.00 $0.00 

1" X 2" End Cap Black (218) 4 Donated by T-Slots $0.00 $0.00 

1" X 1" End Cap Black (218) 4 Donated by T-Slots $0.00 $0.00 

Compact Head Fasteners (219) 300 Donated by T-Slots $0.00 $0.00 

Standard  Fasteners (219) 324 Donated by T-Slots $0.00 $0.00 

3 Hole Inside Corner Bracket (220) 4 Donated by T-Slots $0.00 $0.00 

2 Hole Inside Corner Bracket (221) 16 Donated by T-Slots $0.00 $0.00 

  

Light Carriage 

Dolly Track Swivel Wheels (297) 2 $29.97 $59.94 $0.00 $0.00 

Light Carriage Body (291) 1 Donated Donated $0.00 $0.00 

Carriage Top Plate (292) 1 Donated Donated $0.00 $0.00 

Carriage Bottom Plate (293) 1 Donated Donated $0.00 $0.00 

Wheel Mount Plate (295) 1 Donated Donated $0.00 $0.00 

Springs  2 $2.39 $4.78 $0.00 $1.13 

Threaded Shaft  (294) 1 $7.49 $7.49 $0.00 $0.60 

Cable Graber shaft (296) 1 Donated Donated $0.00 $0.00 

  

Arches Arches 5.5' Diameter (281) 2 $175.00 $350.00 $0.00 $0.00 

  

Portability 
Casters (241) 4 $22.99 $91.96 $0.00 $7.60 

Caster Mounting Plate 24" (242) 1 $19.00 $19.00 $0.00 $0.00 

  

Table Top 

Maple Plywood (4 ft x 8 ft) (231, 232) 1 $40.34 $40.34 $0.00 $3.20 

Hinges (233) 4 $9.59 $38.36 $5.95 $3.48 

Sand Paper 3 $3.97 $11.91 $0.00 $1.35 

White Paint (234) 4 $3.48 $13.92 $0.00 $0.60 

Painters Touch 2X Gloss Clear (235) 2 $3.98 $7.96 $0.00 $0.32 

Paint Brush 1 $2.48 $2.48 $0.00 $1.47 

Wood Filler 1 $6.48 $6.48 $0.00 $0.00 

Painters Tape 1 $3.93 $3.93 $0.00 $0.00 



  

Stock Metal 

L Channel 2" x 2" x 1/8" , 140" long  1 $29.00 $29.00 

$0.00 $14.92 

L Channel 1.25"  x 1/8" , 2" long  2 $10.62 $21.24 

1/8 x 4" H.R. Strip 20' (263, 264) 2 $31.28 $62.56 

1/8 x 3" H.R. Strip 20" 1 $13.00 $13.00 

1/8 x 2" H.R. Strip 6" 1 $11.00 $11.00 

1/4 x 2" H.R. Flat 126" (261, 262, 265, 266, 267) 1 $25.00 $25.00 

Latitude Plates (253) 1 $4.50 $4.50 $0.00 $0.37 

  

Motor Motor (301) 1 $120.00 $120.00 $10.00 $10.00 

    

Spooling 
Mechanism 

Mounting plate (302) 1 $24.00 $24.00 $0.00 $2.00 

48 tooth gear (303) 1 $7.19 $7.19 

$6.99 $0.00 

24 tooth gear (304) 1 $4.79 $4.79 

1 inch bore clamping hub (305) 1 $5.99 $5.99 

1/2 inch bore clamping hub (306) 1 $7.99 $7.99 

metal chain (307) 2 $8.99 $17.98 

3/8 inch threaded shaft (314) 1 $7.99 $7.99 

$0.00 $2.24 
1/2 Aluminum tube (313, 316) 1 $5.99 $5.99 

1 inch Aluminum Tube (312) 1 $9.99 $9.99 

Rubber Cap 1 $3.59 $3.59 

1" Corner Bracket (311) 1 $7.48 $7.48 $0.00 $0.88 

UHMW (308, 309, 315) 1 $24.17 $24.17 $0.00 $0.00 

            

Arch Wires 

Kevlar Thread (317) 1 $12.00 $12.00 $0.00 $2.86 

Drive Wire Guides (268) 1 $9.99 $9.99 $0.00 $0.85 

Power Cable Guide Hooks  5 $1.92 $9.60 $0.00 $1.55 

  

Power Supply 

Light Bulb (321) 1 $20.97 $20.97 $0.00 $1.68 

Light Bulb Socket (322) 1 $12.47 $12.47 

$0.00 $3.97 Extension Cord (323) 1 $11.73 $11.73 

Cable Spooler (324) 1 $31.97 $31.97 

Junction Box 8x8x4 1 $22.64 $22.64 $0.00 $4.53 

              

Slots 

Alum Rec Tube (251, 252,) 1 $61.20 $61.20 $0.00 $0.00 

UHMW (256) 1 $39.44 $39.44 $18.82 $5.00 

1 Inch Threaded Shaft (257) 1 $23.99 $23.99 $0.00 $3.00 

              

Hardware 

Box of 1 Inch Nuts 1 $14.49 $14.49 $0.00 $1.16 

1 Inch Hex Nut 6 $1.99 $11.94 $0.00 $0.00 

Spray Paint Primer (270) 1 $6.99 $6.99 
$0.00 $1.20 

Black Spray Paint (271) 1 $7.99 $7.99 

Nuts for 3/8 16 tpi shaft  4 $0.12 $0.48 $0.00 $0.00 

Bolts for spooling 20 $0.26 $5.20 

$0.00 $1.22 Nuts for spooling 20 $0.16 $3.20 

Washers for Spooling 30 $0.23 $6.90 

Rivet ST1/8X1/2 100PK 1 $7.99 $7.99 $0.00 $1.28 



Rivet STL 3/16X3/8" 25PK 1 $3.99 $3.99 

Bolt Eye w/Nut 4 $0.99 $3.96 

Light Carriage Screws 8 $0.19 $1.52 $0.00 $0.00 

Wheel Mounting Plates Bolt 5/16x3/4 16 $0.16 $2.56 

$0.00 $0.54 Wheel Mounting Plates Nut 5/16 16 $0.11 $1.76 

Wheel Mounting Plate 25 pack washer 1/4 1 $2.46 $2.46 

Brass Hinge Screws #4x1/2" 3 $1.18 $3.54 $0.00 $0.00 

Flat Head Brass screws 4 $1.29 $5.16 $0.00 $0.00 

Wall/Pulley Ceiling 1 1/2" (269) 2 $4.28 $8.56 $0.00 $0.00 

1/4" 100 Box Washers 1 $8.88 $8.88 $0.00 $0.72 

Bolts 20X3/4" 1 $1.18 $1.18 $0.00 $0.00 

.4375 in L x 6-32 Cap screw (298) 1 $2.09 $2.09 $0.00 $0.00 

6-32x3/8 inch cap screw 4 $0.35 $1.40 $0.00 $0.00 

.220 Acrylic Sheet (254) 1 $54.97 $54.97 $0.00 $0.00 

Shaft Coupler (299)  2  $1.61  $3.22  $0.00 $0.00 

Epoxy  2 $5.59 $11.18 $0.00 $0.85 

Summation Of Each Cost:  $1,509.61 $41.76 $80.57 

Total Cost: $1,631.94

  

Prototyping 

Fasteners Springs  2  $3.19  $6.38 
$0.00  $0.00 

Fasteners Springs   2  $1.49  $2.98 

24" 3/4 inch threaded rod  1  $7.49  $7.49 

$0.00  $2.10 1‐1/2" Rubber Wheel Caster  6  $2.47  $14.82 

3/4 inch hex nut  8  $0.50  $4.00 

Cable 3/16" 7X9  22  $1.29  $28.38 

$0.00  $4.40 Conduit  2  $2.99  $5.98 

Screw ete .098X1  1  $1.71  $1.71 

Flat HR Plain 1/8X2X48"  1  $13.99  $13.99  $0.00  $1.12 

Fastener  2  $3.54  $7.08  $0.00  $0.75 

Light Carriage screw  4  $0.17  $0.68 
$0.00  $0.08 

Light Carriage screw  4  $0.08  $0.32 

Sheet Screw  1  $1.18  $1.18  $0.00  $8.45 

Wood Screw #6x3/4"  2  $1.18  $2.36  $0.00  $0.00 

Summation Of Each Cost:  $97.35  $0.00  $16.90 

Total Cost: $114.25 
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Part Source List: 
	
Item Description  Part Number  Supplier 

T-Slot, 10-Series, 1x1 (8 inches required)  650000 http://www.tslots.com/ 

T-Slot, 10-Series, 1x1 (10 inches required)  650000 http://www.tslots.com/ 

T-Slot, 10-Series, 1x1 (22 inches required)  650000 http://www.tslots.com/ 

T-Slot, 10-Series, 1x1 (34.50 inches required)  650000 http://www.tslots.com/ 

T-Slot, 10-Series, 1x1 (37.25 inches required)  650000 http://www.tslots.com/ 

T-Slot, 10-Series, 1x1 (40 inches required)  650000 http://www.tslots.com/ 

T-Slot, 10-Series, 1x2 (8.50 inches required)  650002 http://www.tslots.com/ 

T-Slot, 10-Series, 1x2 (13 inches required)  650002 http://www.tslots.com/ 

T-Slot, 10-Series, 1x2 (22 inches required)  650002 http://www.tslots.com/ 

T-Slot, 10-Series, 1x2 (28.5 inches required)  650002 http://www.tslots.com/ 

T-Slot, 10-Series, 1x2 (56 inches required)  650002 http://www.tslots.com/ 

4 Hole Inside Corner Bracket  653045 http://www.tslots.com/ 

8 Hole Inside Corner Bracket  653051 http://www.tslots.com/ 

4 hole Joining Strip  653054 http://www.tslots.com/ 

Right Angle Brace 1x1 6 inch  650000 http://www.tslots.com/ 

8 Hole Joining Plate  653098 http://www.tslots.com/ 

1" X 2" End Cap Black  655010 http://www.tslots.com/ 

1" X 1" End Cap Black  655000 http://www.tslots.com/ 

Compact Head Fasteners  651220 http://www.tslots.com/ 

Standard  Fasteners  651221 http://www.tslots.com/ 

T-Slot Pivot  653000 http://www.tslots.com/ 

T-Slot Level Feet  651531 http://www.tslots.com/ 

2 Hole Inside Corner Bracket  653047 http://www.tslots.com/ 

      

      

Dolly Track Swivel Wheels  None  http://www.glidegear.net/ 

Light Carriage Body  Stock Metal  Cal Poly Shops 

Springs  In Store  http://www.acehardware.com/ 

Threaded Shaft   In Store  http://www.acehardware.com/ 

Cable Graber shaft  Stock Metal  Cal Poly Shops 

      

      

Arches 5.5' Diameter  Stock Metal  http://www.advancepipebending.com/ 

      

      

Casters  46819 http://www.harborfreight.com  

Caster Mounting Plate 24"  Stock Metal  http://bbsurplus.com/ 
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Maple Plywood (4 ft x 8 ft)  730232001628  http://www.homedepot.com/ 

Hinges  286260  http://www.hardwaresource.com/ 

Sand Paper 205415923  http://www.homedepot.com/ 

White Paint 205362565  http://www.homedepot.com/ 

Painters Touch 2X Gloss Clear 100670438  http://www.homedepot.com/ 

Paint Brush 100626363  http://www.homedepot.com/ 

Wood Filler 203211477  http://www.homedepot.com/ 

Painters Tape 1000085823  http://www.homedepot.com/ 

      

      

L Channel 2" x 2" x 1/8" , 140" long  Stock Metal  http://bbsurplus.com/ 

L Channel 1.25"  x 1/8" , 2" long  Stock Metal  http://bbsurplus.com/ 

1/8 x 4" H.R. Strip 20' Stock Metal  http://bbsurplus.com/ 

1/8 x 3" H.R. Strip 20" Stock Metal  http://bbsurplus.com/ 

1/8 x 2" H.R. Strip 6" Stock Metal  http://bbsurplus.com/ 

1/4 x 2" H.R. Flat 126" Stock Metal  http://bbsurplus.com/ 

Latitude Plates Stock Metal  http://bbsurplus.com/ 

      

      

Motor  HS‐7954SH  https://www.servocity.com 

      

      

Mounting plate  Stock Metal  http://bbsurplus.com/ 

48 tooth gear  615126  https://www.servocity.com/ 

24 tooth gear  615106  https://www.servocity.com/ 

1 inch bore clamping hub  545352  https://www.servocity.com/ 

1/2 inch bore clamping hub  545600  https://www.servocity.com/ 

metal chain  C250  https://www.servocity.com/ 

3/8 inch threaded shaft  Stock Metal  http://www.acehardware.com/ 

1/2 Aluminum tube  Stock Metal  http://www.acehardware.com/ 

1 inch Aluminum Tube  Stock Metal  http://www.acehardware.com/ 

Rubber Cap In Store  http://www.acehardware.com/ 

1" Corner Bracket  202034303  http://www.homedepot.com/ 

UHMW  UHMW  https://www.interstateplastics.com 

      

      

Kevlar Thread  KEV346NATL00B http://www.thethreadexchange.com/

Drive Wire Guides  In Store  http://www.acehardware.com/ 

Power Cable Guide Hooks  202305418  http://www.homedepot.com/ 
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Light Bulb  203553312  http://www.homedepot.com/ 

Light Bulb Socket  204835997  http://www.homedepot.com/ 

Extension Cord  100661440  http://www.homedepot.com/ 

Cable Spooler 204379332  http://www.homedepot.com/ 

Junction Box 8x8x4 100404099  http://www.homedepot.com/ 

      

      

Alum Rec Tube stock metal  http://bbsurplus.com/ 

UHMW UHMW  https://www.interstateplastics.com 

1 Inch Threaded Shaft  stock metal  http://www.acehardware.com/ 

      

      

Box of 1 Inch Nuts In Store  http://www.acehardware.com/ 

1 Inch Hex Nut In Store  http://www.acehardware.com/ 

Spray Paint Primer 1495498  http://www.acehardware.com/ 

Black Spray Paint 1096056  http://www.acehardware.com/ 

Nuts for 3/8 16tpi shaft  In Store  http://www.acehardware.com/ 

Bolts for spooling In Store  http://www.acehardware.com/ 

Nuts for spooling In Store  http://www.acehardware.com/ 

Washers for Spooling In Store  http://www.acehardware.com/ 

Rivet ST1/8X1/2 100PK In Store  http://www.acehardware.com/ 

Rivet STL 3/16X3/8" 25PK In Store  http://www.acehardware.com/ 

Bolt Eye w/Nut In Store  http://www.acehardware.com/ 

Light Carriage Screws In Store  http://www.acehardware.com/ 

Wheel Mounting Plates Bolt 5/16x3/4 In Store  http://www.homedepot.com/ 

Wheel Mounting Plates Nut 5/16 In Store  http://www.homedepot.com/ 

Wheel Mounting Plate 25 pack washer 1/4 204276388  http://www.homedepot.com/ 

Brass Hinge Screws #4x1/2" 202705647  http://www.homedepot.com/ 

Flat Head Brass screws 135212  http://www.hardwaresource.com/ 

Wall/Pulley Ceiling 1 1/2" 203001587  http://www.homedepot.com/ 

1/4" 100 Box Washers 203639697  http://www.homedepot.com/ 

Bolts 20X3/4" In Store  http://www.acehardware.com/ 

.4375 in L x 6-32 Cap screw  In Store  http://www.acehardware.com/ 

6-32x3/8 inch cap screw In Store  http://www.acehardware.com/ 

.220 Acrylic Sheet  202038052  http://www.homedepot.com/ 

Epoxy 100670610  http://www.homedepot.com/ 
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Appendix I. Drawing List and Part Drawings: 
	



100 – Top Level Assembly 
200 – Frame Assembly 
  201 – Frame Dimensions 
 210 – Frame Cut List 
 210A – Frame (T-Slot) Assembly (1) 
 210B – Frame (T-Slot) Assembly (2) 
 210C– Frame (T-Slot) Assembly (3) 
  211 – 1010 T-Slot 8020 Aluminum Data Sheet 
  212 – 1020 T-Slot 8020 Aluminum Data Sheet 
  213 – T-Slot 4 Hole Inside Corner Bracket Data Sheet 
  214 – T-Slot 8 Hole Inside Corner Bracket Data Sheet 
  215 – T-Slot 4 Hole Joining Strip Data Sheet 
  216 – T-Slot Right Angle Brace Data Sheet 
  217 – T-Slot 8 Hole Joining Plate Data Sheet 
  218 – T-Slot End Cap Data Sheet 
  219 – T-Slot Low Profile Hammerhead Bolt Data Sheet 
  220 – T-Slot 3 Hole Inside Corner Bracket Drawing 

221 – T-Slot 2 Hole Inside Corner Bracket Data Sheet 
 230 – Table Top Assembly 

231 – Center Table Drawing 
231A – Center Table (Table Mounting) Drawing 
232 – Side Table Drawing 
233 – Hinges Data Sheet 
234 – Paint Data Sheet  
235 – Polyurethane Finish Data Sheet 

240 – Caster Assembly 
 241 – Caster Data Sheet 
 242 – Caster Mounting Plate Drawing 
250 – Latitude Slots Assembly 
 251 – Slot Main Body Drawing 
 252 – Slot Connector Drawing 
 253 – Latitude Plates Drawing 
 254 – Latitude Angle Marker Drawing (AutoCAD Drawing. Not featured) 
 255 – Laser Cutter PDF File 

256 – Sliders Drawing 
257 – Threaded Shaft Drawing 

260A – Arch ¼ Bracket Assembly 
260B – Arch ⅛ Bracket Assembly 
260C – Arch 0°/180° Bracket Assembly 
260D – Arch Spool Bracket Assembly 
260E – Arch Pulley Bracket Assembly 
 261 – Steel Plate ¼ Side Drawing 
 262 – Steel Plate ¼ Top Drawing  
 263 – Steel Plate ⅛ Side Drawing 
 264 – Steel Plate ⅛ Top Drawing 
 265 – Steel Plate ¼ Pulley Mounting Drawing 



 266 – Steel Plate ¼ Spool Mounting Drawing 
 267 – Steel Plate 0°/180° Top Bracket Drawing 
 268 – Wire Guides Data Sheet 

269 – Pulley Data Sheet 
270 – Spray Paint Primer 
271 – Black Spray Paint 

280 – Arch Assembly 
 281 – Arch Drawing   
290 – Carriage Assembly 
 291 – Carriage Body 

292 – Carriage Top Plate 
293 – Carriage Bottom Plate 
294 – Threaded Shaft Drawing 
295 – Slider Plate Drawing 
296 – Cable Grabbers Drawing 

 297 – Carriage Wheels Data Sheet  
 298 – Socket Head Cap Screw Data Sheet 
 299 – Shaft Coupler Data Sheet 
300– Spooling Assembly 
 301 – Motor Data Sheet 
 302 – Motor Mounting Plate Drawing 

303 – 48 Tooth Sprocket Data Sheet  
304 – 24 Tooth Sprocket Data Sheet 
305 – 1 Inch Bore Clamping Hub Data Sheet 
306 – ½ Inch Bore Clamping Hub Data Sheet 
307 – Chain Data Sheet 
308 – Wire Guides UHMW Drawing 
309 – 1 Inch Bearing Drawing 
310 – T-Slot Wire Guide Track Drawing 
311 – L Bracket Data Sheet  
312 – 1 Inch Shaft Drawing 
313 – ½ Inch Bearing Shaft Drawing 
314 – ⅜ Inch 16 TPI Threaded Shaft Drawing 
315 – ½ Inch Bearing Drawing 
316 – ½ Inch Sprocket Shaft Drawing 
317 – Kevlar Thread Data Sheet 

 320 – Power System 
321 – Light Bulb Data Sheet 
322 – Light Bulb Socket Data Sheet 
323 – Extension Cord Data Sheet 
324 – Cable Spooler Data Sheet 

 
 



1

2

3

7

6

5

4

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 200 FRAME 1
2 230 TABLE TOP 1
3 240 CASTER 4
4 250 LATITUDE SLOTS 2
5 280 ARCH 1
6 290 CARRIAGE 1
7 300 SPOOLING 1

DO NOT SCALE DRAWING SHEET 1 OF 1

5/13/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:20 WEIGHT: 

REVDWG.  NO. 100

A
SIZE

TITLE:  TOP LEVEL ASSEMBLY

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1



45

FINISH

MATERIAL

DIMENSIONS

3

201
SHEET 1 OF 1

5/3/15

DO NOT SCALE DRAWING

GREG

SCALE: 1:32 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

6061 T-SLOT

UNLESS OTHERWISE SPECIFIED:

2

FRAME 
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

INTERPRET GEOMETRIC

1

 5.38 

 21.75 

 5.38  37.13  9.00 



5

4

1

2

7

8
6

3

ITEM NO. LENGTH DESCRIPTION QTY.
1 56 10-SERIES 1020 T-SLOT 2
2 4 10-SERIES 1010 T-SLOT 4
3 13 10-SERIES 1020 T-SLOT 4
4 36.5 10-SERIES 1010 T-SLOT 4
5 22 10-SERIES 1020 T-SLOT 5
6 22 10-SERIES 1010 T-SLOT 6
7 28.5 10-SERIES 1020 T-SLOT 6
8 37 10-SERIES 1010 T-SLOT 4

45

FINISH

MATERIAL

LIST

3

210
SHEET 1 OF 1

5/3/15GREG

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:16 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

6061 T-SLOT

DO NOT SCALE DRAWING

2

FRAME CUT
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

INTERPRET GEOMETRIC

1



45

FINISH

MATERIAL

ASSEMBLY (1)

3

210A
SHEET 1 OF 1

5/3/15GREG

DO NOT SCALE DRAWING SCALE: 1:16 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

VARIOUS

UNLESS OTHERWISE SPECIFIED:

2

FRAME (T-SLOT)
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

INTERPRET GEOMETRIC

1

ITEM NO. PART 
NUMBER DESCRIPTION QTY.

1 213 T-SLOT 4 HOLE INSIDE CORNER BRACKET 16
2 214 T-SLOT 8 HOLE INSIDE CORNER BRACKET 2
3 216 T-SLOT RIGHT ANGLE BRACE 2
4 217 T-SLOT 8 HOLE JOINING PLATE 5
5 218 T-SLOT END CAP 2
6 220 T-SLOT 3 HOLE INSIDE CORNER BRACKET 4

3

1

2

5

4

6



6

4

2

1

5

7

3

ITEM NO. PART NUMBER DESCRIPTION QTY.
1  213 T-SLOT 4 HOLE INSIDE CORNER BRACKET 20
2 214 T-SLOT 8 HOLE INSIDE CORNER BRACKET 12
3 215 T-SLOT 4 HOLE JOINING STRIP 4
4 216 T-SLOT RIGHT ANGLE BRACE 4
5 217 T-SLOT 8 HOLE JOINING STRIP 16
6 218 T-SLOT END CAP 4
7 221 T-SLOT 2 HOLE INSIDE CORNER BRACKET 12

FRAME (T-SLOT)

2

ENG APPR.

CHECKED

DRAWN

VARIOUS
FINISH

MATERIAL

ASSEMBLY (2)

3

210B
SHEET 1 OF 1

5/3/15GREG

DO NOT SCALE DRAWING SCALE:1:16 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4

UNLESS OTHERWISE SPECIFIED:

INTERPRET GEOMETRIC

1



ITEM NO. PART NUMBER DESCRIPTION QTY.
1 213 T-SLOT 4 HOLE INSIDE CORNER BRACKET 15
2 214 T-SLOT 8 HOLE INSIDE CORNER BRACKET 2
3 216 T-SLOT RIGHT ANGLE BRACE 2
4 217 T-SLOT 8 HOLE JOINING STRIP 5
5 218 T-SLOT END CAP 2
6 220 T-SLOT 3 HOLE INSIDE CORNER BRACKET 4

UNLESS OTHERWISE SPECIFIED:

4

MATERIAL

ASSEMBLY (3)

3

210C
SHEET 1 OF 1

5/3/15GREG

DO NOT SCALE DRAWING SCALE: 1:16 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

VARIOUS
FINISH

2

FRAME (T-SLOT)
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5

INTERPRET GEOMETRIC

1



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

"

1"

1" 0.087

0.205

0.585

"0.355"

"

0.255"

Aluminum Four-Slot
Single Extrusion

211
© 2010 McMaster-Carr Supply Company

Various



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

Double Extrusion

212
Aluminum Six-Slot

© 2010 McMaster-Carr Supply Company

1"

0.087

"0.585

"
1" "

"

0.205

2"

1.000"0.500

0.255" Various



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

2"

7/8"

1/2"

"0.281

1"

Single Extended 90° Bracket

213
Aluminum

© 2012 McMaster-Carr Supply Company

3/16"

2"



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

Double Extended 90° Bracket

214
Aluminum

© 2012 McMaster-Carr Supply Company

1"

1 7/8"

2"

1"

"0.281

1/2"

3/16"

2"



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

Plate

215
Aluminum Single Extended

© 2011 McMaster-Carr Supply Company

4"
1"

7/8"

0.257"

3/16"



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

90° Brace

216
Aluminum Heavy Duty

© 2011 McMaster-Carr Supply Company

1"

1"

Various

45°



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

Plate

217
Aluminum Double Extended

© 2011 McMaster-Carr Supply Company

3/16"1"
4"

2"

"0.257

1"



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

Double End Cap

218
Black Plastic

© 2010 McMaster-Carr Supply Company

1/8"

1"

Various

1"



NUMBER
PART

Information in this drawing is provided for reference only.

http://www.mcmaster.com

1/4"-20 Thread

1/2"

3/32"

End-Feed Slotted Framing Fastener

219
Zinc-Plated Steel

© 2010 McMaster-Carr Supply Company

9/16"

1"

Hex
5/32"

7/16"



 2.00 

 .50 

 1.00 

 .44 

 .93 

UNLESS OTHERWISE SPECIFIED:

2

3 HOLE BRACKET

3

220
SHEET 1 OF 1

5/3/15

DO NOT SCALE DRAWING

GREG

SCALE: 1:1 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

6061 AL
FINISH

4

MATERIAL

TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5

INTERPRET GEOMETRIC

1





3

UNLESS OTHERWISE SPECIFIED:

4

FINISH

2

      235 POLYURETHANE
SHEET 1 OF 1

5/3/15GREG

MATERIAL

SCALE:1:12 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

1

TABLE TOP ASSEMBLY

234 WHITE PAINT

TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5

INTERPRET GEOMETRIC

230

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 231 CENTER TABLE 1
2 232 SIDE TABLE 2
3 233 HINGES 4

1

2

3



24 35

CENTER TABLE

DO NOT SCALE DRAWING

231
SHEET 1 OF 1

5/4/15GREG

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:12

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

MAPLE PLYWOOD
FINISH

MATERIAL

DIMENSIONS ARE IN INCHES

1

 12.00 

 1.50 

 46.00  19.17 

 R27.00 

 .44 

 1.10 

 28.00 

 .50  .25 
 .06 



DO NOT SCALE DRAWING

2

CENTER TABLE (1)

3

231(A)
SHEET 1 OF 1

5/3/15GREG

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:12

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

MAPLE PLYWOOD
FINISH

MATERIAL

DIMENSIONS ARE IN INCHES

5 4 1

 2.50 

 16.71 

 2.00 

 2.00 

 8.00 

 1.00 

 1.00 

 12X .25 .35 



DO NOT SCALE DRAWING

2

SIDE TABLE

3

232
SHEET 1 OF 1

5/3/15GREG

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:12

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

MAPLE PLYWOOD
FINISH

MATERIAL

DIMENSIONS ARE IN INCHES

5 4 1

 13.00 

 .50 

 R27.00 

 1.00 

 12.00 

 1.50 

 19.17 

 1.50 

 46.17 

 .06 



melab2
Typewritten Text
233

melab2
Typewritten Text



 

 

 

melab2
Typewritten Text
234

melab2
Typewritten Text

melab2
Typewritten Text

melab2
Typewritten Text



 

 

 

melab2
Typewritten Text
235



2

1

3 2

CASTER ASSEMBLY

DO NOT SCALE DRAWING

240
SHEET 1 OF 1

5/3/15GREG

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

VARIOUS
FINISH

MATERIAL

DIMENSIONS ARE IN INCHES

5 4 1

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 241 CASTER 1
2 242 CASTER MOUNTING PLATE 1



 

 

melab2
Typewritten Text
241



34 2

PLATE

DO NOT SCALE DRAWING

242
SHEET 1 OF 1

5/3/15GREG

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

6061 T6 AL
FINISH

MATERIAL

DIMENSIONS ARE IN INCHES

5

CASTER MOUNTING

1

 .50 

.31  4X

 4.00 

 6.00 

 3.00 

 4.00  2.00 

 2.00 

 1.00 

 2X .25 

 .25 



2

1

3

4

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 251 LATITUDE SLOT BODY 1
2 252 SLOT CONNECTOR 1
3 256 SLIDER 1
4 257 1 INCH THREADED SHAFT 2

DO NOT SCALE DRAWING SHEET 1 OF 1

5/13/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 250

A
SIZE

TITLE: LATITUDE SLOT

NAME DATE

COMMENTS: SLOT CONNECTOR AND
MAIN BODY ARE CONNECTED VIA TWO
WELDS, ONE ON TOP AND BOTTOM

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL:

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1



 2.00 

 4.00 

 30.00  26.70 

 1.65 

 .25 

 .88 

 1.65  26.70 
 1.30 

 1.87 
 3.51 

 8.31 

 14.97 
 21.62 

 26.43 
 28.07 

 1.35 

DO NOT SCALE DRAWING SHEET 1 OF 1

5/13/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:16 WEIGHT: 

REVDWG.  NO. 251

A
SIZE

TITLE: LATITUDE SLOT BODY

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  

5 4 3 2 1
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SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 252

A
SIZE

TITLE: SLOT CONNECTOR

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 253

A
SIZE

TITLE: LATITUDE PLATE

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH      BEND 
TWO PLACE DECIMAL    
THREE PLACE DECIMAL  
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SECTION A-A
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 256

A
SIZE

TITLE: SLIDER

NAME DATE

COMMENTS: BACK SQUARE HOLE IS
SO THAT A NUT CAN SIT IN THE BACK
OF THE SLIDER

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: UHMW

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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 6.00 

DO NOT SCALE DRAWING SHEET 1 OF 1

5/13/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 257

A
SIZE

TITLE: 1 INCH THREADED SHAFT

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 262 1/4" BRACKET TOP 1
2 261 1/4" BRACKET SIDE 2
3 268 HOOK 4

DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE: 1/4" BRACKET

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL:

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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3
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 264 1/8" BRACKET TOP 1
2 263 1/8" BRACKET SIDE 2
3 268 HOOK 4

DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 260B

A
SIZE

TITLE: 1/8" BRACKET

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 261 1/4" BRACKET SIDE 2
2 267 180 BRACKET TOP 1
3 268 HOOK 4

DO NOT SCALE DRAWING SHEET 1 OF 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 260C

A
SIZE

TITLE: 180 DEGREE BRACKET

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: 

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 261 1/4" BRACKET SIDE 2
2 266 MOTOR PLATE BRACKET TOP 1

DO NOT SCALE DRAWING SHEET 1 OF 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 260D

A
SIZE

TITLE: SPOOL BRACKET

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 thick bracket side 1/4" BRACKET SIDE 2
2 pulley PULLEY 2
3 pulley bracket top PULLEY BRACKET TOP 1

DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 260E

A
SIZE

TITLE: PULLEY BRACKET

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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DO NOT SCALE DRAWING SHEET 1 OF 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 261

A
SIZE

TITLE: 1/4" BRACKET SIDE

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: PAINTED BLACK

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1



 2.00 
 1.00 

 13.00 

 3.50 
 4.50 

 8.50 
 9.50 

 4x 5/16 

 .25 

DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 262

A
SIZE

TITLE: 1/4" BRACKET TOP

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: PAINTED BLACK

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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DO NOT SCALE DRAWING SHEET 1 OF 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 263

A
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TITLE: 1/8" BRACKET SIDE

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: PAINTED BLACK

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 264

A
SIZE

TITLE: 1/8" BRACKET TOP

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: PAINTED BLACK

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 265

A
SIZE

TITLE: PULLEY BRACKET TOP

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: PAINTED BLACK

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 266

A
SIZE

TITLE: MOTOR PLATE BRACKET TOP

NAME DATE

COMMENTS: RIVETS ARE SPACED 8/3"
APPART HORIZONALLY

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: PAINTED BLACK

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 267

A
SIZE

TITLE: 180 BRACKET TOP

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: BLACK PAINT

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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2

3

ITEM NO. PART NUMBER DESCRIPTION QTY.
1 281 ARC 2
2 260C 180 BRACKET 2
3 260A 1/4" BRACKET 2
4 260B 1/8" BRACKET 5
5 260E PULLEY BRACKET 1
6 260D SPOOL BRACKET 1

DO NOT SCALE DRAWING SHEET 1 OF 1

5/13/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:16 WEIGHT: 

REVDWG.  NO. 280

A
SIZE

TITLE: ARCH ASSEMBLY

NAME DATE

COMMENTS: 180 BRACKETS ARE 
ACCROSS FROM ONE ANOTHER. 
THE THICK AND THIN BRACKETS
ARE STAGGERED ALONG THE ARCH

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: 

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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 3/16 

DETAIL C
SCALE 1 : 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:16 WEIGHT: 

REVDWG.  NO. 281

A
SIZE

TITLE: ARCH

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH: SCOTCH BRITE RUB

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 291 CARRIAGE BODY 1
2 292 CARRIAGE TOP PLATE 1
3 293 CARRIAGE BOTTOM PLATE 1
4 299 SHAFT COUPLER 2
5 294 THREADED SHAFT 2
6 295 SLIDER PLATE 2
7 296 CABLE GRABBERS 2
8 297 WHEELS 2
9 298 SOCKET HEAD CAP SCREW 2

DO NOT SCALE DRAWING SHEET 1 OF 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 290

A
SIZE

TITLE: CARRIAGE ASSEMBLY

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: 

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 WEIGHT: 

REVDWG.  NO. 291

A
SIZE

TITLE: CARRIAGE BODY

NAME DATE

COMMENTS: ALL HOLES REFLECTED ON
OTHER SIDE OF BODY AS WELL. DEPTH
FOR HOLES ON TOP AND BOTTOM ARE
NOT VERY IMPORTANT. 

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 292

A
SIZE

TITLE: CARRIAGE TOP PLATE

NAME DATE

COMMENTS: MIDDLE HOLE IS FOR
CABLE TIGHTENER TO GRAB POWER
CABLE

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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DO NOT SCALE DRAWING SHEET 1 OF 1

5/1/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 293

A
SIZE

TITLE: CARRIAGE BOTTOM PLATE

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1



 1/4-20 

 1.25 

DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS

UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1 WEIGHT: 

REVDWG.  NO. 294

A
SIZE

TITLE: CARRIAGE THREADED SHAFT

NAME DATE

COMMENTS: 1/4-20 THREADED ROD
CUT DOWN TO LENGTH. BOTH ENDS 
NEED TO BE THREADED, SO GRIND BOTH
ENDS TO ALLOW NUTS TO BE SCREWED
ON.

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 295

A
SIZE

TITLE: WHEEL MOUNT PLATE

NAME DATE

COMMENTS: NO HOLES ARE THREADED,
JUST STRAIGHT THROUGH. MIDDLE IS FOR
CAP SCREW, SIDES ARE FOR RIVETS

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 296

A
SIZE

TITLE: CABLE GRABBER

NAME DATE

COMMENTS: EXACT SHAPE OF CURVE 
ISN'T IMPORTANT.

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1
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1
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5
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8
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ITEM NO. PART NUMBER DESCRIPTION QTY.
1 302 MOTOR MOUNTING PLATE 1
2 303 48 TOOTH SPROCKET 1
3 304 24 TOOTH SPROCKET 1
4 308 WIRE GUIDE 4
5 309 1 INCH BEARING 2
6 310 T-SLOT WIRE GUIDE TRACK 1
7 311 L BRACKET 8
8 312 1 INCH SHAFT 1
9 313 1/2 INCH BEARING SHAFT 1
10 314 3/8-16 THREADED SHAFT 1
11 315 1/2 INCH BEARING 2
12 316 1/2 INCH SPROCKET SHAFT 1
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 300

A
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TITLE: SPOOLING ASSEMBLY

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL:

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 302
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TITLE: MOTOR MOUNTING PLATE

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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UNLESS OTHERWISE SPECIFIED:

SCALE: 2:1 WEIGHT: 

REVDWG.  NO. 308

A
SIZE

TITLE: WIRE GUIDE

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: UHMW

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 309

A
SIZE

TITLE: 1 INCH SHAFT BEARING

NAME DATE

COMMENTS: USE ROTARY SANDER TO 
GET HOLE BIG ENOUGH FOR SHAFT

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: UHMW

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES

5 4 3 2 1



DO NOT SCALE DRAWING

4

MATERIAL

GUIDE

UNLESS OTHERWISE SPECIFIED:

310
SHEET 1 OF 1

5/3/15

3

GREG

SCALE: 1:2 WEIGHT: 
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COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

6061 AL.
FINISH
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T-SLOT WIRE 
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 312

A
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TITLE: 1" SHAFT

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

TOLERANCING PER:

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
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SCALE: 4:1 WEIGHT: 

REVDWG.  NO. 313
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TITLE: 1/2" BEARING SHAFT

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED
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FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
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SCALE: 1:4 WEIGHT: 

REVDWG.  NO. 314
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TITLE: 3/8-16 THREADED SHAFT

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: STEEL

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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UNLESS OTHERWISE SPECIFIED:

SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 315

A
SIZE

TITLE: HALF INCH SHAFT BEARING

NAME DATE

COMMENTS: USE ROTARY SANDER TO
GET HOLE BIG ENOUGH FOR SHAFT

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: UHMW

INTERPRET GEOMETRIC
TOLERANCING PER:

DIMENSIONS ARE IN INCHES
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 .50 
 .40 

 3.50 

DO NOT SCALE DRAWING SHEET 1 OF 1

5/3/15LUCAS
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SCALE: 1:1 WEIGHT: 

REVDWG.  NO. 316

A
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TITLE: 1/2" SPROCKET SHAFT

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL: ALUMINUM

INTERPRET GEOMETRIC
TOLERANCING PER:
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