
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Programming and control for skill-based robots
Saukkoriipi, Janne; Heikkilä, Tapio; Ahola, Jari M.; Seppälä, Tuomas; Isto, Pekka

Published in:
Open Engineering

DOI:
10.1515/eng-2020-0037

Published: 01/01/2020

Document Version
Publisher's final version

Link to publication

Please cite the original version:
Saukkoriipi, J., Heikkilä, T., Ahola, J. M., Seppälä, T., & Isto, P. (2020). Programming and control for skill-based
robots. Open Engineering, 10(1), 368-376. https://doi.org/10.1515/eng-2020-0037

Download date: 14. Jun. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VTT Research System

https://core.ac.uk/display/324156214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1515/eng-2020-0037
https://cris.vtt.fi/en/publications/51990fb9-10e7-4e48-90a5-5bde2c6d94cc
https://doi.org/10.1515/eng-2020-0037

Open Access.© 2020 J. Saukkoriipi et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 License

Open Eng. 2020; 10:368–376

Research Article

Janne Saukkoriipi*, Tapio Heikkilä, Jari M. Ahola, Tuomas Seppälä, and Pekka Isto

Programming and control for skill-based robots
https://doi.org/10.1515/eng-2020-0037
Received Jul 02, 2019; accepted Feb 27, 2020

Abstract: This paper considers programming and control
of skill-based robots. Robot skills are used to integrate and
synchronize robot actions and sensor data in a consistent
way. Skill-based approachprovides a framework for config-
urable robot systems, enabling quick setups and start-ups
of applications. In the paper we will introduce skill pro-
gramming and skill control concepts in more detail and
how they relate to usage of models and sensors. We will
also give a practical example for programming and imple-
menting skills for a grinding application.

Keywords: robot skill, programming, sensor, control

1 Introduction
With ever-increasing demands for agility and flexibility,
robotized manufacturing is facing challenges and barriers
to the use of robots because; the high cost of engineering
the work cells (i.e., the design, fabrication, and installa-
tion of jigs, fixtures, conveyors, and third-party sensors
and software). Robots must be able to perform their tasks
in environments with greater uncertainty than current sys-
tems can tolerate [1],where the robustness implieswideus-
age of a variety of sensor technologies. Robust robot opera-
tions canbe based onbehavioralmodels supporting the in-
tegration of sensors into robot operations - this is how the
robot “skills” are formulated. A skill is typically defined as
a high level entity as a sensory-motoric decomposition pat-
tern, where skills are decomposed to action and trajectory
level representations [2]. Skill representations support re-
usability and when the skill layer is abstract it provides a
non-expert and intuitive programming interface, but still
relies on a device level setup by an expert user [3]. Re-
usability is two-fold, it canbe supportedby simpler, or con-
versely by more complex skills [4]:

*Corresponding Author: Janne Saukkoriipi: VTT Technical Re-
search Centre of Finland Ltd; Email: janne.saukkoriipi@vtt.fi
Tapio Heikkilä, Jari M. Ahola, Tuomas Seppälä, Pekka Isto: VTT
Technical Research Centre of Finland Ltd, Tapio Heikkilä, Jari M.
Ahola, Tuomas Seppälä, and Pekka Isto

* simpler skills are easier to re-use andmay be related

to generic description on a symbol level, but

* hardware independence can only be achieved to a
certain degree, but is more difficult if skills are sim-
ple.

Skills can be hierarchic and at the lowest level there are
atomic actions representing device interfaces or API func-
tions. Hierarchic structure in skill-based control and pro-
gramming will go as follows: a “task” is described as the
highest-level of operation like for example “Single part
feeding”, “Welding with localization” and “Pick-up with
contact-force” [5]. A task can be decomposed to “skills”
such as “Locate box”, “Pick-up box” and “Place box” [5–
7], which are formed from the lowest-level entities called
“primitives”, which can be described as “device opera-
tions”. Further, the “primitive” layer can be seen to repre-
sent as the conventional robot work sequence, consisting
of commands such as “Move linear”, “Open gripper”, “Get
point-cloud” and “Get force-values”. Skills should be de-
signed in a way, where parametrization supports an easy
and quick re-configurability of the skills for different situ-
ations in varying applications, for example phase depen-
dent locations/points, poses, forces and so on.

To our knowledge, there are no off-line programming
tools for skill based robot systems, where both robot
path programming - especiallywith compliantmotion con-
trol primitives - and sensor programming were integrated.
Schou et al. [8] presents a similar hierarchical functional
modelling and parametrization approach to task-level pro-
gramming. But in their system, only someparameterswere
specified off-line (e.g. velocity, object type etc.) and all the
locations were taught on-line. Whereas in our system, all
skills are fully programmed off-line (with only updating
the specific parameters based on information gained from
the other skills. In their paper, Schou et al. also differen-
tiate computational procedures from skills to “services”,
which is a challenging generalization since almost every
task, skill and primitive include some sort of computa-
tional procedures which can be implemented as SW ser-
vices.

In addition, aswehavebeendeveloping robot skills es-
pecially relying on vision feedback and compliant contact
motions, and for that there are only few, if any, reported

https://doi.org/10.1515/eng-2020-0037

Programming and control for skill-based robots | 369

references in the literature. Zeiss has reported onmodeling
principles [9], where force and torque have been intercon-
nected in the task representation with the a pose-wrench
approach (wrench=force /torqueparameters) but it consid-
ers only static path points and not compliance control.

In this paper we will introduce methods and tools for
robot skill programming and an example of skill based
control system. Skill execution control - or dynamics - is
specified as UML action diagrams, the implementation of
which may be distributed and implemented as robot pro-
grams or PLC programs. Skills are specified with (config-
uration) parameters, and our integrated tool supports set-
ting and computing these, using a robot off-line program-
ming tool with our extensions. In the experiments we will
show examples of skills that rely heavily on off-line pro-
gramming methods.

2 Skill models and
implementations

Ideally, skill models are designed and programmed by ex-
pert users but they could be re-configured for different situ-
ations even by operators who have no experience in robot
programming. This is achieved by making skills intuitive
object-centered robot abilities, where they are applied on
physical entities instead of 3D coordinates [5]. In practice,
this can be accomplishedwith a proper parametrization of
programs,where a set of inputswill define thewhole struc-
ture of a program. The program would automatically give
all the necessary parameters for the sensors and control
systems in a system. Robot skills are divided to primitive
skills and compound skills, composed of primitive skills
and other compound skills. These are described further be-
low.

2.1 Primitive skills

Feature based localization
Fundamentally, rough global localization of the target ob-
ject is needed toproduce the initial poseparameters for the
fine localization. Rough location of the object can be de-
termined based on known features of the object e.g. eigen-
vectors and center points of the 3D point clusters, or other
known vectors, like surface normals or interest points, like
corners. The non-orthogonal estimate of the rotation ma-
trix Re can be computed as

Re = N2N+
1 (1)

in which N1 and N2 are matrices including surface nor-
mal vectors andhavemore columns than rows.N+

1 denotes
pseudoinverse which can be computed as

N+
1 = NT1

(︁
N1NT1

)︁−1
(2)

required that matrix N1NT1 is invertible. The matrix N1 in-
clude vectors in the object’s CADmodel coordinate system

N1 =
[︁
n1 . . . ni

]︁
(3)

and the matrix N2 include vectors in the sensor’s coordi-
nate system

N2 =
[︁
nm1 . . . nmi

]︁
(4)

The orthogonal estimate of the rotation matrix is con-
structed from Re by taking cross products of the columns
of the rotation matrix estimate

vz = vx × vy (5)

in which vx = Re1:3,1 and vy = Re1:3,2.

vx = vy × vz (6)

The initial, i.e. rough, rotation matrix is constructed from
the orthogonal unit vectors.

Rinit =
[︁
vx
|vx|

vy
|vy|

vz
|vz|

]︁
(7)

The initial translational vector Tinit is computed as

T init = pc2 − Rinitpc1 (8)

in which pc1 is the corresponding center point in the ob-
ject’s CAD coordinate system and pc2 is the cluster center
point in the sensor’s coordinate system.

Verification vision
In the fine localization, the target object’s pose is esti-
mated by fitting surfacemodels to themeasured 3D-points.
Here the equations for fitting planar surfaces are presented
and equations for fitting other surface types have been pre-
sented in [14]. The rotation correction ∆R is computed as a
product of rotation matrices

∆R = Rot(x, ∆ϕx)Rot(y, ∆ϕy)Rot(z, ∆ϕz) (9)

in which

Rot(x, ∆ϕx) =

⎡⎢⎣1 0 0
0 cos(∆ϕx) − sin(∆ϕx)
0 sin(∆ϕx) cos(∆ϕx)

⎤⎥⎦ (10)

370 | J. Saukkoriipi et al.

Rot(y, ∆ϕy) =

⎡⎢⎣ cos(∆ϕy) 0 sin(∆ϕy)
0 1 0

− sin(∆ϕy) 0 cos(∆ϕy)

⎤⎥⎦ (11)

Rot(z, ∆ϕy) =

⎡⎢⎣cos(∆ϕz) − sin(∆ϕz) 0
sin(∆ϕz) cos(∆ϕz) 0

0 0 1

⎤⎥⎦ (12)

where ∆φx, ∆φy, and ∆φz are the rotation corrections with
respect to the coordinate axes.

The translational correction ∆T is defined by three
translational components

∆T =

⎡⎢⎣∆tx∆ty
∆tz

⎤⎥⎦ (13)

The correction vector ∆ is defined as

∆ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆ϕx
∆ϕy
∆ϕz
∆tx
∆ty
∆tz

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(14)

The correction vector is calculated

∆ = −(JT J)−1JT · E (15)

in which J is the Jacobian matrix gathered from partial
derivatives of the error functions ei with respect to correc-
tion vector ∆.

J =

⎡⎢⎢⎣
∂e1
∂∆
...
∂eN
∂∆

⎤⎥⎥⎦ (16)

E is the error vector.

E =

⎡⎢⎢⎣
e1
...
eN

⎤⎥⎥⎦ (17)

The partial derivatives are computed as follows
∂ei
∂∆ = ∂ei

∂pMi
∂pMi
∂∆ (18)

If the reference feature is a plane the error ei is computed
as

ei =
(pMi − pp)Tnp√︁

nTpnp
(19)

in which pMi is the i:th measured point and the plane sur-
face is defined by point pp and normal np. The partial
derivative of ei respect to pMi is

∂ei
∂pMi

= 1√︁
nTTnT

nTT (20)

The partial derivative of pMi with respect to ∆ is

∂pMi
∂∆ =

[︁
∂pMi
∂∆ϕx

∂pMi
∂∆ϕy

∂pMi
∂∆ϕz

∂pMi
∂∆tx

∂pMi
∂∆ty

∂pMi
∂∆tz

]︁
(21)

∂pMi
∂∆ =

⎡⎢⎣ 0 −zMi yMi −1 0 0
zMi 0 −xMi 0 −1 0
−yMi xMi 0 0 0 −1

⎤⎥⎦ (22)

The updated T and R of the target object pose are calcu-
lated as

T = R∆T + T (23)

R = R∆R (24)

Compliant motion control
The compliant motion control primitive, “Cartesian
impedance motion control” lays the basis for motion accu-
racy and the compliant contact motions. The impedance
controller regulates the relation between robot’s position
x and contact force F according to time domain equation

F = Mt (ẍ − ẍ0) + Bt (ẋ − ẋ0) + Kt (x − x0) (25)

in which Mt is the target mass, Bt is the target damping,
Kt is the target stiffness, x0 is the nominal position trajec-
tory and x is the actual position. A schematic diagram for
the corresponding one degree-of-freedom impedance con-
trolled motion is given in Figure 3.

The feasible values for target model parameters de-
pend on the dynamics of the robot, stiffness of the envi-
ronment and the characteristics of the contact task. Exam-
ples of derived impedance parameters for two target sys-
tems are [14]:

– Parameters for hard contact (Ke = 100*103 N/m)

– Target model frequency ωt = 0.8 * 2 Hz = 1.6
Hz

– Target stiffness Kt = 100 N / 0.01 m =10000
N/m.

– Target mass Mt = 10000 N/m / (3.2π rad/s)2 =
98.95 kg

– Target damping ξt = 14.75 and Bt = 29351 Ns/m.
– Target impedance model Gt = 98.95s2 +

29351s + 10000

– Parameters for soft contact (Ke = 1000 N/m)

– Target stiffness Kt = 0 N/m (i.e. mass-damper)
– Target mass Mt = 20 N / 1 m/s2 = 20 kg
– Target damping ξt = 1.0 and Bt = 282.0 Ns/m
(critically damped)

Programming and control for skill-based robots | 371

Figure 1: Primitive skill: impedance controlled contact motion

Figure 2: Compound skill: grinding of an object feature, like plane or edge, with contact to followed object surfaces

Figure 3: The schematic control system transfer functions of the
impedance controlled robot

– Target impedance model Gt = 20s2 + 282s

A detailed description of designing robust impedance
controller for the industrial robot arm is given in [14] and
an analysis of the impedance controller’s capability to fol-

low inclined and curved surfaces while keeping the con-
tact force in desired limits is given in [15].

2.2 Skill modeling and compound skills

The compliant motion control primitive, “Cartesian
impedance motion control” is outlined as a UML activ-
ity model in Figure 1. It has two types of input parameters.
The setup parameters, the “configuration” parameters are
nominal force, compliance frame, and impedance control
parameters (stiffness, damping and inertia). In addition, it
has control parameters, i.e. measured forces/torques and
as output parameters, the pose increments. As a sequence,
it is simple: monitor the contact forces and torques, exe-
cute the impedance control compensator, and execute the
incremental Cartesian motion increments with the robot.

372 | J. Saukkoriipi et al.

Typically, the compliance frame coincides the tool frame
but certain tasks may require offsetting the compliance
frame respect to the tool frame. The nominal force is a
force offset that deviates the position of the robot to the
desired direction in compliancewith the target impedance
model.

The surface processing skill represents a compound
skill. There are many tasks where the management and
control of the tool contact to the target object is critical. The
surface processing skill relies on the impedance controlled
motion sub-skill. It has as setup input parameters process
and tool specific nominal force, and tool coordinate frame,
which further forwarded to the impedance motion control
primitive (the compliance frame is set to the contact point,
i.e. the tool end tip) and also the tool dependentmaximum
speed. The surface processing skill includes motions for
approaching the target, getting into contact, executing the
processmotions in contact and impedance controlled, and
finally departing form the target. This is outlined in the Fig-
ure 2.

2.3 Skill programming

Programming of a skill can be based on off-line or on-line
programming methods. In on-line programming, skill pa-
rameters are taught to the system using the actual object
in a real world. On the other hand, off-line programming
methods rely on using off-line programming tools together
with 3D CAD-models of robots, tools, devices, and the tar-
get objects to configure the skill parameters. Skill param-
eters vary with different actions; they should define the
actions for all the components in a robot system. Our pro-
posal for the data flow for skill programming is given in
Figure 4. Starting from the skill model and object models
(or the real object), the skill parameters are acquired, and

Figure 4: Skill programming can be done off-line based on geomet-
ric models or on-line based on sensor data

transformed into forms needed throughout the skill hierar-
chy.

2.4 Skill control

The robot system control model represents the architec-
ture, which enables the robot to integrate and synchronize
sensor data and robot actions. The control architecture
(Figure 5) is based on proprietary and open interfaces, the
latter of which are in our case based on ROS (Robot Oper-
ating System) [10]. Proprietary interfaces are implemented
for connecting devices, i.e. sensors and robot and data in-
terfaces with adapters to ROS. Key functional components
representing the objects (or “swim lanes”) in the skill mod-
els, include an Object Detector component and a variety
of 3D Point Cloud acquisition components (or Point Cloud
sources), based on 3D cameras (based on time-of-flight or
triangulation) or cooperation of a set of motion provider
components (robots, transfer axis and conveyors) together
with 2D laser profiler sensor components. Crosswise usage
of these are supported over ROS based interfaces for 3D
Point Cloud sources and 2D profiles.

Figure 5: A flexible system architecture for integrating sensor data
and robot control

3 Case example: Programming and
control grinding skills

“Grinding with localization” – task is used as a case exam-
ple for off-line programmed skills. It consists of lower-level
skills such as global rough localization with a 3D-depth
sensor, precise localization with a 2D-profile scanner and
straight seamgrinding. All the skills are programmed in an
off-line programming tool RoboDK [11] and implemented
in a robot cell, composed of KUKA KR120 R2500 PRO in-

Programming and control for skill-based robots | 373

dustrial robot with grinding tools, Intel’s RealSense D415
depth sensor and microEpsilon’s 2D-profile scanner. The
experimental work object consisted mainly of plane-like
surfaces, so all the skills were mainly designed for objects
with such features. The process sequence will go as follow-
ing:

1. Programming global localization
2. Programming of the precise (local) localization and

related scanning motions
3. Global localization
4. Precise localization
5. Straight seam grinding

First, the work object will be localized globally in the
robots workspace with accuracy of a few centimeters. For
this, the sensor system needs a set of reference features,
in this case a set of 3 planar surface segments and some
metric parameters of these (e.g., size and nominal direc-
tions and center points). These reference features are pro-
grammedwith the robot programming tool. The estimated
initial position of the work object is used to program scan-
ning movements for the robot to localize the object more
accurately. Thismeans, that the robotwill use amore accu-
rate 2D-profile scanner to scan local features of the object
to get enough data formore precise localization. In precise
localization phase, the measured data will be combined
with reference data to produce a sub-millimeter-level accu-
racy for the object localization before applying the grind-
ing motions. Finally, after the object has been localized,
the grinding movements can be executed.

Figure 6: Skills in “grinding with localization” – task

4 Experimental results and
discussions

4.1 Global localization

The aim of global localization is to locate roughly the work
object within the robot workspace. Accuracy of the local-
ization depends on the sensor used in the process. Gener-
ally, it should be within a few centimeters, depending on
the view angle of the scanning sensor and scanning dis-
tance. The global localization sensor used in the experi-
ments is Intel’s RealSense D415, which is a 3D-depth sen-
sor that uses stereo vision with infrared projector to create
a depth image of the scene (see Figure 7). 3D-depth sensors
are used because they offer a suitable range with reason-
able accuracy for this purpose. Withmultiple external sen-
sors, the whole workspace of industrial 6-DOF robot can
be monitored reliably. If the object is known to be located
at certain side of the robot, a single 3D-depth sensor was
determined to be sufficient.

Figure 7: Colored 3D depth image captured with RealSenseD415 [12]

Localization itself was performed by comparing and
matching the reference and measured surfaces. Based on
the camera data, the measured surfaces can be repre-
sented in robot coordinate systemandmatchedagainst the
reference surfaces. On the other hand, the reference sur-
face normals are represented in 3D-models coordinate sys-
tem. Thus, the comparison of surface normals will result a
position of a 3D-models coordinate system relative to the
robot’s coordinate system.

The RoboDK toolwas used to gather the reference data
from 3D CAD-model; it was already used to program scan-
ning and grinding movements for the robot. The surface
data (a 3D point and a surface normal) were obtained by
selecting sets of three points, one set from each of three
reference surfaces of the 3D-model and calculating the nor-

374 | J. Saukkoriipi et al.

mal and reference points for every surface (see Figure 8).
Surface normals and related 3D points from three non-
parallel surfaces needed to be gathered to express unam-
biguously position and orientation of the object. Adding
the points and calculation of the normal vectors and the
3D points were done through Python API. On the other
hand, corresponding measured surfaces (3D points, sur-
face normal) were solved by segmenting the measured
point cloud and using principal component analysis (PCA)
for the segments as seen in Figure 6. Direction of the least
variance was defined as the surface normal for a segment
(blue axis).Main challenge of the segmentationphase is re-
lated on finding suitable segmentation parameters, which
is very dependent on the geometric surfaces of the work
object.

Figure 8: Gathering reference (on the left) and corresponding mea-
sured surface points and normals [12]

4.2 Precise localization

After global localization had given an estimate of the ob-
ject’s location and orientation, scanning movements were
updated based on programmed nominal paths. Scanning
movements were composed of using a robot with a 2D-
profile scanner attached to its flange, performing scan-
ning motions in proximity of the object. 2D-profile scan-
ners were used due to their high-level accuracy, which
increases accuracy of the localization significantly. Scan-
ning movements resulted a 3D-point cloud of the features
that were within the sensors measurement range, which
was then filtered and segmented into different regions us-
ing Point Cloud Library’s [13] point cloud processing algo-
rithms.

After filtering and segmentation, different regions of
the point cloud represented different planes of the object.
The same reference surfaces (obtained the sameway as for
global localization) were sent to the pose estimator that
was integrated into same software, which was used to cap-
ture and process the point cloud. Pose estimator corrects
iteratively the accurate position parameters so that the dis-

tance between the measured point and corresponding sur-
face in 3D- model will be minimized. The pose estimator
provides a more accurate pose of the target object in the
robot coordinate system, which was used to update posi-
tion of the target object in the robot program (“user coordi-
nates”). Scanning movements, processed point cloud and
fitted point cloud can be seen in Figure 9 and Figure 10.

Figure 9: Scanning the object with microEpsilon 2900-100/BL
profile scanner [12]

Figure 10: Segmented point cloud in precise localization, obtained
by scanning motions and fitted into 3D-model [12]

Programming and control for skill-based robots | 375

4.3 Grinding skills

Even though the object was quite accurately localized af-
ter precise localization, some localization errors are still
present. Even with high-level equipment and calibration
routines, errors will occur due to manufacturing defects
that will make the actual object to deviate from what is
derived based on the 3D CAD-model. These localization er-
rors were compensated by applying impedance-controlled
compliant motions for the grinding movements. In these
force-controlled motions, the robot used a force/torque
sensor integrated into its flange to measure the contact
forces and torquesbetween theobject and the tool. Besides
encountering localization errors, it was used to enhance
even the effect of grinding by applying nominal force to
the surface.

Seam grinding skill is based on four input parame-
ters, i.e. target frames that define the characteristics of the
seam. Targets were placed to the end regions of the seam,
as shown in Figure 11, where target frame pairs were in the
start and end of the seam on adjacent surfaces. All the ap-
proach and grinding movements were based on these four
input target frames. Target frameswere placed easily in Ro-
boDK by using a “Teach target(s) on the surface” feature,
which sets a target frame so that the Z-axis is perpendicu-
lar to the surface and pointing downwards. After this, tar-
gets were only needed to be fine-tuned in location and ori-
entation around Z-axis. After the targets had been placed,
the paths of the grinding skill were then created and sim-
ulated (see Figure 12). The simulation showed if the path
could not be completed due to crossing singularities or is-
sues with reachability. All of this made the skill configu-
ration and validating the program for another seam rela-
tively easy and fast.

Figure 11: Defining location and orientation of the seam [12]

Seam grinding was designed to be in two phases. In
the first phase, the seam will be grinded with long verti-

Figure 12: Full path of the grinding program visualized [12]

cal movements with angle grinder to remove all excessive
material from the seam. Objective of this phase is to re-
sult a sharp-pointed seam without any extra material left
from welding. In the second phase, the seam will then be
rounded by using a sander. Both phases will use the same
four input targets to form the grinding programs. Results
can be seen in Figure 13.

Figure 13: Grinding skill in different phases in left to right: seam
after welding, seam after vertical grinding and fully grinded seam
[12]

376 | J. Saukkoriipi et al.

5 Summary
In this paper we have shown the design and implementa-
tion of off-line programmed skills. Skills such as global lo-
calization, scanning movements, precise localization and
straight seam grinding were used to localize and grind the
object. Programmed skills were tested successfully in a
real robot environment.

References
[1] A Roadmap for U.S. Robotics (2013) - From Internet to

Robotics, 2013 Edition, 129 p. Available in: http://archive2.cra.
org/ccc/files/docs/2013-Robotics-Roadmap

[2] Boada MJ, Barber R, Salichs MA. Visual approach skill for a mo-
bile robot using learning and fusion of simple skills. Robot Auton
Syst. 2002;38(3-4):157–70.

[3] Andersen RH, Solund T, Hallam J. Definition and Initial Case-
Based Evaluation of Hardware-Robot Skills for Industrial Robotic
Co-Workers, Conf. ISR ROBOTIK; 2014.

[4] WeserM, Zhang J. Autonomous Planning forMobileManipulation
Services Based on Multi-Level Robot Skills, The 2009 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, Oct 11-15, 2009, St.
Louis, USA.

[5] Pedersen MR, Nalpantidis L, Andersen RS, Schou C, Bøgh S,
Krüger V, et al. Robot skills for manufacturing: from concept to in-
dustrial deployment. Robot Comput-Integr Manuf. 2016;37:282–
91.

[6] Heikkilä T, Ahola JM. Robot skills – modeling and control aspects.
14th IEEE/ASME International Conference on Mechatronic and
EmbeddedSystemsandApplications. July 2-4 2018,Oulu, Finland

[7] Morrow J, Khosla P. Manipulation Task Primitives for Com-
posing Robot Skills. Proc of the 1997 IEEE Int’l Conf
on Robotics and Automation, Albuquerque, New Mexico.
https://doi.org/10.1109/ROBOT.1997.606800.

[8] Schou C, Andersen RS, Chrysostomou D, Bøgh S, Madsen O. Skil-
based instruction of collaborative robots in industrial settings.
Robot Comput-Integr Manuf. 2018;53:72–80.

[9] Stphan Z. Manipulation Skill for Robotic Assembly. MsC Thesis,
Technical University of Darmstadt, 2014. 117p.

[10] About ROS [Internet]. [cited 2019 Feb 7] Available from: http:
//www.ros.org/.

[11] RoboDK. [Internet]. [2019; cited 2019 Feb 7] Available from: https:
//robodk.com/

[12] Saukkoriipi J. Design and implementation of robot skill program-
ming and control, Master’s Thesis 2019, University of Oulu, Fin-
land.

[13] Point cloud library. [Internet] [2018; cited 2019 Feb 4] Available
from: http://pointclouds.org/.

[14] Heikkilä T, Ahola JM, Viljamaa E, Järviluoma M. An interactive
3D sensor system and its programming for target localising in
robotics applications. Proceedings of the IASTED international
Conference Robotics 2010, Robo 2010. IASTED, p. 89-96.

[15] Ahola JM, Koskinen J, Seppälä T, Heikkilä T. Development of
impedance control for human/robot interactive handlingof heavy
parts and loads. 1 Jan 2015. 2015 ASME International Confer-
ence on Mechatronics and Embedded Systems and Applications.
American Society of Mechanical Engineers ASME. Vol 9.

http://archive2.cra.org/ccc/files/docs/2013-Robotics-Roadmap
http://archive2.cra.org/ccc/files/docs/2013-Robotics-Roadmap
https://doi.org/10.1109/ROBOT.1997.606800
http://www.ros.org/
http://www.ros.org/
https://robodk.com/
https://robodk.com/
http://pointclouds.org/

	1 Introduction
	2 Skill models and implementations
	2.1 Primitive skills
	2.2 Skill modeling and compound skills
	2.3 Skill programming
	2.4 Skill control

	3 Case example: Programming and control grinding skills
	4 Experimental results and discussions
	4.1 Global localization
	4.2 Precise localization
	4.3 Grinding skills

	5 Summary

