

Universal UAV Payload Interface

Nolan Reker Computer Engineering

nolan@nolanswires.com

Drew Troxell Computer Engineering

troxellus@gmail.com

David Troy Electrical Engineering

davidtroyjr@gmail.com

Advisor Dr. Foaad Khosmood

California Polytechnic State University

San Luis Obispo, CA

Computer Engineering Department

June 12, 2015

Abstract

Unmanned Aerial Vehicle (UAV) technology is becoming increasingly accessible for civilian use. Both

open-source and commercial-purpose UAVs can be obtained affordably or even built. However, the

platforms available are very segmented in their customization to a specific application (i.e. land

surveying, payload delivery). This project aims to create a Universal Payload Interface (UPI) mounted

to the underside of multi-rotors or other UAVs to enable the attachment of customizable sensor

payloads. These payloads allow a single UAV to be rapidly reconfigured to perform a multitude of

tasks.

The Universal Payload Interface facilitates communication between the payload, onboard flight

controller, and operator ground station as well as providing power to the payload from the UAV DC

bus. Both autonomous and manual flight regimes are supported. By using the open-source MAVlink

protocol, the UPI is not restricted to one particular flight controller or ground station platform.

Reker, Troxell, Troy 1

Contents

Abstract 1

Contents 2

Figures 3

1:​ Introduction 4

2:​ ⁣UPI Design 5

 2.1:​ System Capabilities 6

 2.2:​ Software & Firmware Overview 6

 2.2.1:​ Subsystem States 7

 2.2.2:​ MAVLink Protocol Overview 8

 2.2.3:​ ATmega328P Payload Firmware 9

 2.2.4:​ Raspberry Pi Payload Data Network 12

 2.3:​ Hardware Overview 13

 2.3.1:​ PCB Design 13

 2.3.2:​ PCB Fabrication 15

3:​ Testing Methodology 16

 3.1:​ Test Vehicle 16

 3.2:​ Early Flight Tests 17

 3.3:​ Interface Functionality Testing 17

4:​ Conclusion & Future Work 18

 4.1:​ Encountered Challenges 18

 4.2:​ Improvements 19

References 20

Appendix A:​ Software & Hardware Sources 21

Appendix B:​ Bill of Materials 22

Appendix C:​ Electrical Schematics 23

Reker, Troxell, Troy 2

Figures

Figure 2.1:​ Payload interface mated (left) and detached (right) 6

Figure 2.2:​ Software Block Diagram 7

Figure 2.3:​ Payload ATmega328P firmware state diagram 8

Figure 2.4:​ Waypoint sending protocol between a ground station & autopilot 9

Figure 2.5:​ MAVLink packet structure 10

Figure 2.6:​ Hardware level 1 block diagram 13

Figure 2.7:​ Onboard PCB rendering 14

Figure 2.8:​ Offboard PCB rendering 14

Figure 2.9:​ Onboard PCB copper mask 15

Figure 2.10:​ Offboard PCB copper mask 15

Figure 2.11:​ Home PCB etching station 15

Figure 2.12:​ First PCB batch ready for drilling 15

Figure 3.1:​ Test quadrotor with UPI tethered for communication verification 16

Reker, Troxell, Troy 3

1 Introduction

For a majority of the 20​th century, Unmanned Aerial Vehicle (UAV) technology existed only in the

realm of military aeronautics. With recent advancements in microelectronics, the cost of

microprocessors and MEMS sensors has decreased enough to allow for the development of low-cost

UAV platforms in non-military applications. Studies in UAV controls and automation have boomed in

recent years as a result. UAVs are now widely available to researchers, businesses, and hobbyists. In

particular, 4 rotor vehicles known as quadcopters have become fairly popular UAV platforms due to

their relatively simple mechanical structure ‒the complex swashplate mechanisms relied upon by

single-rotor craft can be disregarded, instead relying upon controls abstractions in software. This

software abstraction lends itself to the full automation of flight control processes. With this in mind,

companies like Amazon, Google, and Facebook are pioneering the commercial applications of

autonomous UAVs.

Following in the tradition of military aeronautical engineering, current UAV designs are often tailored

to a specific purpose: payload delivery, aerial photography, recreational flight, etc. Currently lacking,

however, are systems that allow for the modular reconfiguration of a UAV to enable a variety of

features. A surveyor, for example, may utilize an expensive remote-sensing capable UAV equipped

with a Light Detection and Ranging (LIDAR) system. Designed to support an already complex payload,

the vehicle cannot physically support many auxiliary features. The surveyor may be out of luck if he

wished to use the vehicle to instead perform aerial photography. Such a task could require system

rewiring and reprogramming. Simply put, there no commonly-utilized plug-and-play payload handling

systems available today.

The goal of this project is the development of a novel Universal Payload Interface (UPI) that facilitates

the exchange of data, flight instructions, and power between a payload, its vehicle, and any

associated ground-station. The UPI is to allow the rapid coupling and decoupling of payloads to a

vehicle. In order to support a large variety of payloads, the UPI must support USB, ethernet, I​2​C, UART,

and SPI devices. To maintain UAV flight safety and to ensure data validity, the UPI is to prevent circuit

shorts and opens that may arise due to flight vibrations. Such a system will enable the owner of a UAV

to rapidly reconfigure it to avoid the costs of additional application-tailored vehicles. Integrated with a

UPI system, a single UAV can equipped and re-equipped with an infinite arrangement of sensors to

fulfil a multitude of needs. Furthermore, this system can be applied to fully autonomous vehicles,

allowing for the automated coupling of payloads, collection of data, and delivery of goods.

Reker, Troxell, Troy 4

2 UPI Design

The novel UPI system encompasses three primary elements:

1. An offboard (payload-side) printed circuit board (PCB)

2. An onboard (vehicle-side) PCB

3. An onboard (vehicle-side) single board computer to handle payload traffic

Figure 2.1: Payload interface mated (left) and detached (right)

In figure 2.1 above, elements 1 and 2 are shown. A sample payload enclosure is shown attached to

the offboard UPI PCB. The offboard PCB contains an ATmega328P microcontroller to verify proper

coupling to the onboard PCB, pass flight instructions to the onboard single board computer, and

perform any payload-local processes. Payload electronics connect to this PCB via female headers

and/or an RJ-45 jack on its underside.

Prior to flight, this offboard PCB mates to the onboard PCB using 8 permanent neodymium magnets (4

mounted to each board). These magnets are keyed (by polarization) such that they provide the proper

alignment of the two PCBs. Furthermore, the magnets provide the mechanical coupling force

necessary to affix the payload to the vehicle. Electrical connections between the two PCBs are made

by spring-loaded connectors on the offboard PCB. When the PCBs are flight-mated, the force applied

by the spring-loaded connectors on the onboard PCB is negligible in relation to the coupling force of

the magnets. It is great enough, however, to ensure successful power and high-bandwidth data

transfer in a vibratory flight environment.

Reker, Troxell, Troy 5

The onboard PCB interfaces with the on-board computer, a Raspberry Pi. The Raspberry Pi receives

flight instructions from the offboard ATmega328P, passes them to the vehicle’s flight controller, and

returns any data output by the flight controller to the payload. Using an attached USB WiFi dongle,

the Raspberry Pi can also receive instructions from an optional ground-station and return flight data.

In this fashion, the Raspberry Pi essentially serves as the UPI system’s network router.

Communications are facilitated using MAVLink, an open-source, header-based UAV communications

protocol. Further descriptions of the hardware and software aspects of the system follow.

2.1 System Capabilities
The designed and fabricated UPI system supports the following operating features:

● UART/SPI/I​2​C serial payload peripheral support

● 100 Mbit/s Ethernet payload peripheral support

● 5 V​DC​ payload power distribution

● Keyed magnetic coupling to prevent improper flight-mating

● Payload heartbeat message to continually monitor connectivity

● Payload control over flight controller inputs

● Optional ground-station control failover

Current iterations of the UPI design require human intervention for the mating and demating of

payloads. See ​section 4.2​ for possible future improvements.

2.2 Software & Firmware Overview

Figure 2.2: Software Block Diagram

Reker, Troxell, Troy 6

2.2.1 Subsystem States

The firmware onboard the payload ATmega328P operates as a finite state machine. The firmware

provides for transitions between disconnected, connected, waypoint upload, and visual

acknowledgement states. The full state diagram is shown in the figure below.

Figure 2.3: Payload ATmega328P firmware state diagram

When the system is first powered, the payload operates in the Mavlink Disconnected state. While in

this state, the payload reads serial data from the autopilot until receiving 10 heartbeat messages.

Once ten messages are successfully decoded by the payload, the LED signifying a connection is turned

on and the system enters MAVLink Connected state.

While in Mavlink Connected state, the system reads serial data and parses MAVLink packets from the

autopilot. If the system does not interpret a packet for a predefined maximum timeout, the LED

signifying a connection is turned off and the state of the system is set back to disconnected (any other

necessary clean-up also occurs, such as resetting the heartbeat counter). If a packet is received, the

system simply stores the system id and component id of the sending autopilot. In this state, the

system can read in and interpret any of the various status messages the autopilot sends periodically,

but for the purposes of this demo application only identifiers and a handful of other status variables

are stored. While in Mavlink Connected state, if the system has not yet successfully uploaded

waypoints to the autopilot it will enter Send Waypoints state.

While in Send Waypoint state, the system initially sends a waypoint count message to inform the

autopilot that a number of waypoints are about to be provided. The system then waits for a request

for each waypoint up to the number of waypoints defined in the initial count message. For each

received request, the system sends the waypoint details of that waypoint sequence number. Upon

Reker, Troxell, Troy 7

completion, the system will receive a mission acknowledgement from the autopilot, at which time the

system enters Visual Acknowledgement state.

Figure 2.4: Waypoint sending protocol between a ground station & autopilot

The Visual Acknowledgement state simply acts as an external visual to signify to the user that

waypoints have been successfully uploaded to the autopilot. In this state, the onboard LED is toggled

for a short period until re-entering MAVLink Connected state and listening for more incoming

messages.

Once the payload’s mission waypoints have been successfully received by the autopilot, the ground

control station can send a start mission command to run the mission.

2.2.2 MAVLink Protocol Overview
To maximize the potential of the UAV payload management platform, the payload communicates with

the autopilot using the open source MAVLink protocol. MAVLink is a protocol for communicating with

unmanned vehicles. The protocol is openly available as a C header library designed for packing

structures necessary for communication between an unmanned vehicle, a ground control station, and

any internal components to the unmanned vehicle.

Each MAVLink packet contains a header, a message, and a CRC trailer. The header contains a start of

frame identifier, the message length, the packet sequence number, the system ID of the sending

system, the component ID of the sending system, and the ID of the incoming message. The message

varies depending on the message id. Common messages on all autopilots include heartbeat,

command, and waypoint management messages, but the overall message set depends on the

Reker, Troxell, Troy 8

autopilot in use. The trailing CRC uses a ITU X.25/SAE AS-4 hash of the bytes in the packet to confirm

the integrity of the message.

Byte # 0 1 2 3 4 5 6 n + 5 n + 6 n + 7

Value
0xFE

Msg
Len

Seq #
Sys ID Comp

ID
Msg
ID

Payload CRC

Figure 2.5: MAVLink packet structure

The protocol is supported by an assortment of autopilots and ground control softwares including

Ardupilot, Parrot AR, Pixhawk, QGroundControl, APM Planner, and more. By utilizing this protocol, the

payload firmware can seamlessly interface with a wide variety of existing autopilot systems.

2.2.3 ATmega328P Payload Firmware

Including MAVLink Headers

For improved serial communication, common practice for MAVLink protocol on microcontrollers is to

include an input driven serial library such as FastSerial. This file must be included before Arduino.h

since it will be replacing the functionality of Arduino’s HardwareSerial library.

When using a microcontroller with limited memory (such as the ATmega328P 8 MHz), the number of

communication buffers allocated by MAVLink can be limited by defining

MAVLINK_COMM_NUM_BUFFERS before including mavlink.h. If left undefined, MAVLink will attempt

to utilize more memory than is available to the ATmega328P, causing the microcontroller to lock-up.

/* Make sure this is included before Arduino's HardwareSerial */

#include​ ​<FastSerial.h>

/* Make sure this is defined before including mavlink.h */

#define​ MAVLINK_COMM_NUM_BUFFERS 1
#include​ ​<mavlink.h>

Reker, Troxell, Troy 9

Reading MAVLink Packets from APM

Messages can be received from an autopilot utilizing MAVLink protocol via the serial connection. To

parse a MAVLink message, read in characters are passed into the mavlink_parse_char function. This

function will return true when an incoming message successfully passes the CRC check and identifies

as a MAVLink message. The message is then stored in the passed in mavlink_message_t struct pointer

and can be handled based on its message ID. The code below also updates the system and component

IDs of the autopilot based on the values in the received message header. These will be important

when sending messages to the autopilot.

void​ comm_receive​()​ {
 ​mavlink_message_t​ recv_msg;
 ​mavlink_status_t​ recv_status;

 ​// Receive data over serial
 ​while​ ​(​Serial​.​available​()​ ​>​ ​0​)​ {
 ​uint8_t​ c ​=​ ​Serial​.​read​();

 ​// Try to get a new message
 ​if​ ​(​mavlink_parse_char​(​0​,​ c​,​ ​&​recv_msg​,​ ​&​recv_status​))​ {
 ​// Update system and component id
 mav_system_id ​=​ recv_msg​.​sysid;
 mav_component_id ​=​ recv_msg​.​compid;

 ​// Handle message
 ​switch​(​recv_msg​.​msgid​)​ {
 ​case​ MAVLINK_MSG_ID_HEARTBEAT:
 handle_heartbeat​(&​recv_msg​);
 ​break;
 ​case​ MAVLINK_MSG_ID_MISSION_CURRENT:
 handle_mission_current​(&​recv_msg​);
 ​break;
 ​case​ MAVLINK_MSG_ID_MISSION_REQUEST:
 handle_mission_request​(&​recv_msg​);
 ​break;
 ​case​ MAVLINK_MSG_ID_MISSION_ACK:
 handle_mission_ack​(&​recv_msg​);
 ​break;
 ​default:
 ​break;
 }

 }

 delayMicroseconds​(​200​);
 }

}

Reker, Troxell, Troy 10

Decoding Received Messages

When handling received messages, the MAVLink header library provides convenience functions to

extract elements from a message. Each message contains functions following the style

mavlink_msg_<messagetype>_get_<messageelement>(mavlink_message_t*msg)​. The

library also provides general decode functions to decode a received mavlink_message_t into a specific

message struct (such as mavlink_msg_heartbeat_t).

void​ handle_heartbeat​(​mavlink_message_t​ ​*​msg​)​ {
 hb_count​++;
 mav_type ​=​ mavlink_msg_heartbeat_get_type​(​msg​);
 mav_autopilot ​=​ mavlink_msg_heartbeat_get_autopilot​(​msg​);
 mav_base_mode ​=​ mavlink_msg_heartbeat_get_base_mode​(​msg​);
 mav_system_status ​=​ mavlink_msg_heartbeat_get_system_status​(​msg​);
}

Sending MAVLink Packets to APM

In order for a sent message to successfully be read by the autopilot, the CRC trailer must match what

the autopilot is expecting. This requires the identifiers in the header to be correctly set. To send a Set

Waypoint message, the code below creates a local copy of the mavlink_mission_set_current_t

message struct. The seq value of the struct is set to the desired waypoint, and the target_system and

target_component values are set to that of the target autopilot as received in the receive sample

above. MAVLink provides helper functions to encode a MAVLink message when given the message

structure. Once encoded, the message can be written to serial.

Reker, Troxell, Troy 11

void​ send_set_waypoint​(​uint16_t​ wp​)​ {
 ​mavlink_message_t​ msg;
 ​mavlink_mission_set_current_t​ set_point;

 set_point​.​seq ​=​ wp;
 set_point​.​target_system ​=​ mav_system_id;
 set_point​.​target_component ​=​ mav_component_id;

 mavlink_msg_mission_set_current_encode​(​pl_system_id​,​ pl_component_id​,​ ​&​msg​,
&​set_point​);

 send_message​(&​msg​);
}

void​ send_message​(​mavlink_message_t​*​ msg​)​ {
 ​uint8_t​ buf​[​MAVLINK_MAX_PACKET_LEN​];

 ​uint16_t​ len ​=​ mavlink_msg_to_send_buffer​(​buf​,​ msg​);

 ​for​(​uint16_t​ i ​=​ ​0​;​ i ​<​ len​;​ i​++)​ {
 ​Serial​.​write​(​buf​[​i​]);
 }

}

2.2.4 Raspberry Pi Payload Data Network
The MAVlink protocol is supported by several ground station applications allowing support for almost

any platform. During testing ​APM Planner​, ​QGroundControl​, and ​DroidPlanner were able to connect

to the UAV and see its status, any waypoints or commands sent by the payload, and could arm and

disarm the UAV for flight. Communications between the payload, flight controller, and ground station

are all routed through a Raspberry Pi B+ onboard the test UAV via a Python application called

MAVproxy. This application allows routing of multiple MAVlink data streams between the flight

controller and various endpoints. In addition, this allows a payload to use either UART or ethernet/IP

to communicate with the flight controller enabling wide ranges of payload sophistication.

Connection to the ground station while in flight is achieved with a dual band 802.11n USB WiFi

adapter, specifically an ASUS N53 which is based on a Ralink RT2800 chipset and has a rated output

power of 16.5 ~19.5 dBm (40-80mW). This provides a direct line-of-sight wireless link with devices

such as phones and tablets to allow very portable ground station deployments as well as enabling

high speed data communication to the payload with a simple IP interface through the Raspberry Pi.

Reker, Troxell, Troy 12

http://ardupilot.com/downloads/
http://qgroundcontrol.org/
https://play.google.com/store/apps/details?id=org.droidplanner

2.3 Hardware Overview

Figure 2.6: Hardware level 1 block diagram

2.3.1 PCB Design
Two double-sided complementary PCBs comprise the electromechanical interface between the UAV

and payload. These PCBs are custom designed using the freely available KiCAD suite of EDA tools.

Once designed, prototype PCBs were produced using a home photo fabrication process that enabled

quick turnaround of revisions. In order to avoid unnecessary vias that are difficult to manufacture by

hand, the PCB design is optimized so that all traces are routed on a single side, and the only

connections between layers are through the through-hole components. Both PCBs can be

manufactured using only a single sided PCB if desired making it more accessible to the hobbyist UAV

community.

The offboard (payload-side) PCB incorporates an Atmel ATmega328P microprocessor in a surface

mount 32TQFP package. This is the same processor used in the popular Arduino development boards

and enables the simple IDE and existing software to be used directly on the payload board with no

additional hardware. The processor’s flash memory can be programmed on the ground via the pin

Reker, Troxell, Troy 13

headers accessible on the backside, or while seated on the UAV through with the Raspberry Pi acting

as the programmer enabling over-the-air updates of payload configuration.

Several key characteristics of the PCB designs are optimized for use as a mating pair. Copper pads with

thermal reliefs are positioned and aligned on both sides of the interface for easy placement and

attachment of the alignment magnets. The spring-loaded pins contain redundant power connections

to increase current carrying capability, as well as ensuring constant power availability even during

bumps or other physical interruptions to prevent the resetting of payload electronics. An LED

attached to the payload side microcontroller provides a visual indication of successful PCB mating and

is programmed to indicate the successful receipt and transmission of messages with the UAV.

The primary mechanical attachment mechanism consists of four 8mm diameter neodymium magnets

mounted directly to each PCB. They are arranged such that the board will not attach when rotated

180° from the correct orientation. The magnets provide solid physical support to small payloads and

facilitate alignment of the spring-loaded pins used for data and power connections. These magnets

can be supplemented with surrounding attachment mechanisms to accommodate larger and heavier

payloads.

Figure 2.7: Onboard PCB rendering

Figure 2.8: Offboard PCB rendering

Reker, Troxell, Troy 14

Figure 2.9: Onboard PCB copper mask Figure 2.10: Offboard PCB copper mask

2.3.2 PCB Fabrication
Both sides of the payload interface PCBs were manufactured at home using a small scale

photofabrication process that is common among hobbyists. This process starts with the copper mask

printed on plastic transparency film. This is used as an exposure mask to a photosensitive material

affixed to a copper-clad substrate. The photosensitive etch-resist material can be purchased as a film

to be laminated onto copper clad board, or already applied to a presensitized copper board. After

developing the resist in sodium carbonate, the copper is selectively removed in a heated ferric

chloride solution. The whole process takes about 30 minutes for a two sided PCB, and has a minimum

feature size of about 0.1mm which was determined through several trials of fabrication. Solder mask

film can be optionally applied to the etched PCBs similarly to the resist material to give them a typical

green finish, prevent surface tarnish, and control solder flow.

Figure 2.11: Home PCB etching station

Figure 2.12: First PCB batch ready for drilling

Reker, Troxell, Troy 15

3 Testing Methodology

3.1 Test Vehicle
A flight-test UAV was constructed for this project to verify UPI system efficacy. The flight controller

hardware for this vehicle was required to be ubiquitous in use while supporting a host of autonomous

features. For this reason, the Ardupilot Mega (APM 2.6) was chosen. Its award winning Ardupilot

control software is open source. As such, the headaches of communication with external electronics

are reduced. Furthermore, the APM 2.6 is widely used by hobbyists and researchers alike. Its support

of the standardized MAVLink communications protocol ensured UPI system compatibility with a

multitude of other flight controllers.

Testing of the UPI’s instruction passing ability included carrying out a GPS-based flight plan. An

onboard GPS receiver closes this loop and allows the APM to autonomously navigate to

payload-specified waypoints. To avoid designing the complex mechanical controls elements of a

single-rotor UAV, a quadrotor was chosen instead. 3 kW brushless DC motors and 50 A motor

controllers were chosen to accommodate payloads in excess of 10 lbs.

All in all, the assembled test vehicle was constructed solely from commercial off-the-shelf (COTS)

parts that are widely available to and commonly used by unmanned flight hobbyists.

Figure 3.1: Test quadrotor with UPI tethered for communication verification

Reker, Troxell, Troy 16

3.2 Early Flight Tests
Initial testing with the quadcopter focused on becoming familiar with the limitations and functionality

of the APM 2.6 flight controller, Raspberry Pi, and WiFi link to the ground station. Both manual and

autonomous flight modes were tested to ensure reliability and prove that MAVlink in conjunction with

the Raspberry Pi and WiFi link would be adequate to achieve the desired command, control, and data

acquisition capabilities. Multiple flights proved the flight controller and data link are very capable with

the only failures occurring due to faulty motor controllers and shutdown due to a low battery. This

testing stage consumed two full sets (8) propellers.

3.3 Interface Functionality Testing
Throughout the software and hardware development process tests were conducted for mating

alignment and electrical connection integrity. The magnets used for alignment have proven to be

sufficiently strong to force the pogo pins into alignment even if coupling occurs from an off-center

starting point.

Debug output from MAVProxy and sniffing the serial bus between the payload and the Raspberry Pi

allowed for confirmation that messages were getting from the flight controller to the payload and

back, and that they were being properly understood. This is also verified visually through the use of a

status LED on the payload itself.

For further tests a functional example payload was created consisting of just the on-PCB ATmega328P

programmed to send waypoints to the UAV for flight. This payload has a small plastic project box

attached to it allowing future interface stress testing with varying weights in flight, in addition to

providing a mounting platform for test sensors. This payload was used to demonstrate the

functionality of the onboard ethernet connection between the mated PCBs, which negotiated up to

100 Mbit/sec successfully upon connection and worked to full capacity under speed tests (roughly 95

Mbit/sec real throughput). While both test endpoints were capable of 1Gbit/sec, the capacitance of

the PCBs and pogo pins prevented negotiation up to this speed. This is not a very big issue as the WiFi

link shares the same bus on the Raspberry Pi and will thus be limited to slightly less than 100 Mbit/sec

from payload to ground in realistic scenarios.

Reker, Troxell, Troy 17

4 Conclusion & Future Work

UAVs are becoming more and more pervasive in everyday life, and this trend is only accelerating.

There is no shortage of useful and innovative applications for these flying robots, and by enabling

them to be much more versatile, accessible, and universal we’re paving the way for rapid deployment

of new and life changing technologies.

4.1 Encountered Challenges
PCB photofabrication proved to be the most difficult part of the development process. Small mistakes

at any point in the process can make the resulting PCB unusable and this meant some degree of trial

and error was necessary to produce several working prototype revisions of the interface. Drilling

sub-millimeter holes in the PCBs also proved challenging and was prone to the breaking of drill bits.

While this project would not have been possible without the hobbyist community and widespread

availability of UAV components, the vast majority of these parts are very poorly documented and

have either misleading or no technical specifications at all. Dimensions, power ratings, interfaces, and

mechanical drawings are few and far between with a lot of what we encountered proving inaccurate

or simply incomplete. This is one area where it becomes clear the majority of hobbyist UAV

component consumers are not engineers, which is exemplified by the next development hurdle: poor

quality parts.

Most of the hobbyist UAV components on the market come from China and are poorly designed or

quality controlled. Finding “deals” on components online led to four failed motor controllers, four

complete sets of unstable propellers, and a broken frame. We ended up buying most critical

components from a local hobby shop that has so far proved to stock much more reliable components.

On the software side of the project, contradictory and fragmented documentation made finding and

adapting working versions of all of the three major software components proved difficult. This is an

area where some community support could be given back by contributing well documented working

code.

Reker, Troxell, Troy 18

4.2 Improvements
The software, mechanical, and electrical elements of the interface comprise a working interface with

great prospects for future extensibility and improvements. First, the coupling and decoupling

processes could be made automatic, allowing payloads to be attached and dropped on command or

according to a flight plan. The next logical progression from there is to implement an autonomous

attachment system so remote payloads could be picked up and dropped off without human

intervention. This would enable very rapid deployment of large area sensor networks with

applications reaching from agriculture, to search and rescue, to surveying. The payload interface thus

far has been designed with this eventual goal in mind. The onboard Raspberry Pi has adequate

computational power to attempt computer-vision alignment and attachment to the payload, as well

as the ability to add radio based location systems.

While this revision of the payload interface only provides 5V DC power to payloads, high current

zero-insertion-force (ZIF) connectors are commercially available that would enable flight batteries to

be added to payloads. This could extend the range of the UAV potentially indefinitely, and allow

frequent autonomous survey operations to be conducted with the UAV swapping its own batteries.

More electrical protection and battery management hardware would need to be added to ensure high

current shorts do not occur while the interface is being connected.

Reker, Troxell, Troy 19

References
Datasheets

Atmel, “ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES IN-SYSTEM PROGRAMMABLE

FLASH,” ATmega48A/PA/88A/PA/168A/PA/328/P datasheet, 2014. Available:

http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A

-88PA-168A-168PA-328-328P_datasheet_Complete.pdf​. [Accessed: 12- June- 2015].

Open source documentation

Qgroundcontrol.org, 'MAVLink Micro Air Vehicle Communication Protocol - QGroundControl GCS',

2015. [Online]. Available: ​http://qgroundcontrol.org/mavlink/start​. [Accessed: 12- June-

2015].

A. Tridgell and S. Dade, 'MAVProxy', Tridge.github.io, 2015. [Online]. Available:

http://tridge.github.io/MAVProxy​. [Accessed: 12- Jun- 2015].

Copter.ardupilot.com, 'Copter | Multirotor UAV', 2015. [Online]. Available:

http://copter.ardupilot.com​. [Accessed: 12- Jun- 2015].

Software

L. Meier, MAVLink Micro Air Vehicle Protocol. MAVLink, 2009. Available:

https://github.com/mavlink/mavlink​. [Accessed: 12- Jun- 2015].

A. Tridgell, MAVProxy A UAV ground station software package for MAVLink based systems.

MAVProxy. Available: ​https://github.com/Dronecode/MAVProxy​. [Accessed: 12- Jun- 2015].

B. Bonney, APM Planner. DIYDrones, 2015. Available: ​https://github.com/diydrones/apm_planner​.
[Accessed: 12- Jun- 2015].

Reker, Troxell, Troy 20

http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf
http://qgroundcontrol.org/mavlink/start
http://tridge.github.io/MAVProxy/
http://copter.ardupilot.com/
https://github.com/mavlink/mavlink
https://github.com/Dronecode/MAVProxy
https://github.com/diydrones/apm_planner

Appendix A: Software & Hardware Sources

For easier access and future development, the KiCad project files and payload ATmega328P source

files are hosted at: ​https://github.com/troxellophilus/universalpayloadinterface

Reker, Troxell, Troy 21

https://github.com/troxellophilus/universalpayloadinterface

Appendix B: Bill of Materials

Vendor P/N Item Vendor Qty Unit Cost

68X0155 Raspberry-Pi B+ 512 MB Newark 1 $35.00

ED8137-10-ND 10 POS Spring Connector Digi-Key 4 $8.40

ATMEGA328P-AU-ND 32TQFP ATmega328P Digi-Key 2 $3.61

S5519-ND 10 POS Female Header Digi-Key 6 $1.10

A31438-ND Shielded RJ-45 Jack Digi-Key 4 $1.82

P150CCT-ND 150 Ω 0805 Resistor Digi-Key 2 $0.10

B008UH45EW Presensitized Copper-Clad Board Amazon 2 $18.75

B005SAKW9G Asus 802.11-A/B/G/N WiFi Dongle Amazon 1 $40.80

2701801 Project Enclosure Radioshack 2 $4.49

2760322 1.8 MM Green LED Radioshack 2 $1.99

ES-02-8mm 8 MM Wire Mesh Cable Guard HobbyKing 1 $0.51

11260 1 Ft CAT5e Ethernet Cable Monoprice 2 $0.60

095421070459 10-Pk Neodymium Magnets 0.3”x0.11” Home Depot 2 $3.98

887480149586 1”x3/8” Nylon Standoff Home Depot 8 $0.72

887480037388 4-Pk M4 Nut Home Depot 4 $0.37

887480035988 4-Pk M4 Lock Washer Home Depot 4 $0.43

887480035285 4-Pk M4 Flat Washer Home Depot 4 $0.45

887480012781 4-Pk M4 30 MM Bolt Home Depot 2 $0.60

887480012385 4-Pk M4 12 MM Bolt Home Depot 2 $0.57

 Total Cost: $203.93

Reker, Troxell, Troy 22

Appendix C: Electrical Schematics

Offboard PCB schematic

Onboard PCB schematic

Reker, Troxell, Troy 23

