Fluid MIDI Ribbon Guitar
Noah Baker

Advisor: Wayne Pilkington

Senior Project
Electrical Engineering Department
California Polytechnic State University
San Luis Obispo, CA

2015

Table of Contents

Section

Abstract

Introduction

Requirements and Specifications
Met Requirements

Preliminary Design and Alternative Discussion

Final Prototype
Functional Decomposition
Code

Schedule

References

Analysis

Tables And Figures

Table/Figure

Table of Similar Products

Requirements and Specifications
Prototyping Costs

Final Design Costs

Testing of Linear and Force Sense Ribbons
Alternative Button Layouts

Capacitive Pad Prototype

Initial Prototype

Alternative Microcontrollers

Initial and Final Neck Design

Final Prototype Body and Internals

Final Assembled Prototype

Bottom Shield

Top Shield

Level 0 Hardware Block Diagram

Table of Level 0 Hardware Block Diagram
Level 1 Hardware Block Diagram

Table of Level 1 Hardware Block Diagram
Software Flowchart

Valid Automatic Chord

Invalid Automatic Chord

Gantt Chart

35-36

Fluid MIDI Ribbon Guitar

Abstract:

This project was developed to create a new electronic instrument based off of a guitar. The
design will give the user more chord combinations than are available on a typical guitar, the ability to
retune each “string”, and customizable MIDI controller outputs, while trying to retain a similar playing
style. The initial design for this project included implementing an onboard synthesizer (analog or
digital). This idea was scrapped for time and cost considerations and replaced with MIDI output which

will yield user customizable sound through virtual instruments, such as Massive.

Introduction:

The purpose of this project is to develop a new affordable, customizable, intuitive guitar based
instrument that outputs MIDI protocol. Through my initial market research, I found that no single
MIDI instruments encompassed all the requirements I intended mine to have. Listed in Table 1 are all

of the similar products that I could find information about.

Table 1: Similar Products

Company Product Type Cost
Sonuus [1] G2M Analog to Midi Converter | $99.00
[2] B2M Analog to Midi Converter | $99.00
Roland [3] GK-2A Pickup add-on $219
YouRockGuita | YRG-1000 (GEN2) | Hybrid $249.00
r[4]
Yamabha [5] EZ-AG Button Fretboard $200 (Discontinued)
[6] EZ-EG Button Fretboard $300 (Discontinued)
MISA [7] Kitara Button Fretboard, $789.00 (Discontinued)
Touch LCD stum detector
[8] tri-bass Capacitive Fretboard, $649.00
Touch LCD stum detector
Starr Labs’ Ztar (various styles) | Button Fretboard $2500 to $5000
[91,[10]

Fluid MIDI Ribbon Guitar 2

Misa, and Starr Labs' are the 2 leaders in MIDI Guitar market. Star Labs’ is the most similar to
my design, but costs much more than what most people can afford. My product is expected to retail for
less than a third of the price.

The MIDI Guitar market is fairly small, but fluctuates quite a bit. Recently, there has been a
surge in subgenres of electronic music. I expect this market to continue to expand over the coming
years. Genres such as Chiptune, Electro Pop, Electronic New Wave, and Synthpop would benefit from
access to more types of instruments. Artists in these Genres, and other electronic music genres, would
benefit from alternative MIDI instruments, which could hasten and expand their song writing while
improving their stage presence.

My company seeks to market to smaller bands and musicians who can’t afford Starr Labs’
equipment, but want a modern and flexible alternative to using keyboard MIDI Controllers.

My product will have the customizability of the Ztar, at a price slightly below the tri-bass, and
uses a new type of fretboard technology, pioneered by David Levi’s Magnetovore, and expanded upon
on my test bench. The fretboard can detect the precise position of the users fingers, and pressure which
the user is applying. All of the analog and digital inputs can be customized to control Velocity,
Aftertouch, or Control Changes. Because it is being developed on the Arduino, the code will be
released, so users can further tweak the functionality to suit their application.

The sooner I can build the prototype and get to market the better; the window of opportunity is
open and does not seem to be closing very fast. Some other companies have been reportedly working
on similar products, but I have not been able to find any hard information. I hope to have a final design
by spring of next year, and begin marketing then.

To enter this market, my company needs to build a reliable prototype, and demo it to several
interested parties to gain an initial investment for the first run of instruments. In addition to this, we
would need to build a website, and create marketing material that would include pictures, and
demonstrational videos. One possible way to get press and initial investments would be to run a
Kickstarter, or Indiegogo campaign. To build an initial run of 25 instruments, we would need an
investment of around $7500 ($300 to build each instrument). This would include the cost of

components, and labor.

Fluid MIDI Ribbon Guitar 3

I have talked with David Levi on several occasions, and mutually expressed interest in
partnering up in our Instrument creation ventures. David already has experience in the industry and
created a company around his invention, the Magnetovore.

I have several friends who play guitar, as well as make electronic music. I will be working
closely with them during the testing and feedback phase of my design. Their feedback will decide

what increased functionality will be added to the final design, and what functions can be removed.

The current solutions are either too expensive, lack functionality, are cheaply built, or are
discontinued.

The neck of instrument will have 4 ‘strings’, each composed of 2 variable resistors; one to
detect location, and one to detect pressure, or force. The body of the instrument shall have both a
capacitive beat pad, and a strum detector for multiple types of note strikes. The guitar will also have an
character LCD to display current string and chord settings, as well as indicator LED’s.

The advantages of my product include increased chord complexity (when compared to a
standard guitar, pickups, analog to midi converters, or hybrid MIDI instruments), logarithmic
continuous fretboard (in place of buttons), and endless customizability through buttons and switches
on the instrument, as well as access to the source code. My instrument offers doubled simultaneous

MIDI voices at an entry level cost.

Fluid MIDI Ribbon Guitar 4

Requirements and Specifications:

Table 2: Requirements and Specifications

Market Engineering Specification Justification
Requirements
1. The final design must cost less than $300, | This will ensure that the product
including labor, when put into production. | will be affordable to most
musicians.
2. The device must be compatible with all Reports of incompatible devices
MIDI 1.0 protocol. [11] [12] will scare away prospective
customers.
3. The linear resistors must be able to detect | This will ensure that the
the locations of the users fingers within instrument is not difficult to
3% accuracy without excess force (greater | play, or susceptible to excess
than IN). [13][16] force which could cause
damages.
4. The force sensitive resistor must have at This will ensure continuity of the
least 400 levels of usable pressure. [15] MIDI AfterTouch, or control
change (depending on user
settings)
5. The strings and keypad must be Retuning will allow users to
reprogrammable on the fly. quickly make presets and find
new chords for their music.
6. The instrument must have not more than | Low latency will make the

40ms of latency.

instrument more playable and
feel more natural.

Market Requirements:

1. Low cost compared to competitors ($500-$750 selling price)
MIDI 1.0 Compliant

Accurate Fret Spacing

Retunable on the fly

2
3
4. Continuous Linear Control Signals
5
6

Low Latency (>40ms)

Fluid MIDI Ribbon Guitar

I expect to spend at least 100 hours programming the microcontroller and adding features. At
$20 an hour, there will be an additional initial cost of $2000 on top of hardware. Updating the
firmware could also add to the cost, but I don’t anticipate lengthy changes to the code after launch.
The bulk cost of components is also much less. Many components are nearly half the price when

purchased in bulk.

Met Requirements:
1. Low cost compared to competitors ($500-$750 selling price)

The final prototype cost only $269.57 for all the components and required hardware.
This cost will be further reduced and labor streamlined if put into production.

2. MIDI 1.0 Compliant
The MIDI functionality which I implemented is able to handle nearly all MIDI
messages. The only signals it currently does not support are fine adjustment control signal
changes which require a single extra byte (4 instead of 3). This is a relatively simple function

to write but has not been implemented yet and isn't supported by all controllers.

3. Accurate Fret Spacing
The Fret spacing on my instrument was measured from a Fender Stratocaster, a very

widely played electric guitar. The lookup table is accurate to 0.5mm at 10 Bit resolution.

4. Continuous Linear Control Signals
The instrument can be set to operate in fretless mode, but this only works with some

VSTI’s.
5. Retunable on the fly
By pressing both buttons at the same time, the user can retune the last string played to

anything by spinning the control channel knob.

6. Low Latency (>40ms)

Fluid MIDI Ribbon Guitar 6

The latency between pressing a capacitive pad and playing a not is 15ms, as measured

in software and with an Oscilloscope by probing the discharge pin and the MIDI Buffer.

Table 3: Prototyping Costs

Required Devices Initial Device Selection # Each | $ Total
Location Sensor 500mm ThinPot (Spectra Symbol) 4 16.95 | 67.8
Pressure Sensor 24” ForceSense Resistor (Interlink) 4 1795 | 71.8
Strum Sensor 100mm SoftPot 1 6.95 |6.95
PCB For Resistors, and Capacitive Pads 1 19.95 | 19.95
Mode Selection Buttons | Pushbutton (momentary) 4 2 8
Note Selection Buttons | Pushbutton (momentary) 8 2 16
Processing Unit Arduino Due 1 50 50
Guitar Body/Neck Handmade 1 100 100
Labor 100 | 20 2000
Total Cost - - - $ 2340.50
Table 3: Final Design Costs
Required Devices Final Selection # Each | $ Total
Location Sensor 500mm ThinPot (Spectra Symbol) 4 13.95 | 55.80
Pressure Sensor 24” ForceSense Resistor (Interlink) 4 14.70 | 58.80
Driver Chip CD4069UBE 1 0.37 |0.37
End Pins Planet Wave Elliptical 1 7.59 | 7.59
Screws Universal 12 |.05 0.60
PCB 1 For Resistors, and Capacitive Pads 1 31.66 | 31.66
PCB2 Capacitive Touchpad 1 31.66 | 31.66
PCB Standoffs Generic Plastic 1 495 |4.95

Fluid MIDI Ribbon Guitar

MIDI Din Connector 7 pin Female Chassis Mt. Din Connector | 1 240 |2.40
Wires JST Jumper 5 Wire Assembly 7 1.50 | 10.50
Pickguard Material Musiclily 4Ply Pearl Green 11x17 1/2 1 16.97 | 8.46
Mode Selection Buttons | Pushbutton (momentary) 2 1.95 |[3.90
Resistors (various) 30 [0.05 |1.50
Capacitor (debounce) 100nF 3 0.05 |0.15
Output Driver CD4069UBE 1 0.52 10.52
Potentiometer 10K Linear 2 1.95 |3.90
Processing Unit Arduino Due 1 20.95 | 20.95
Guitar Neck Handmade .757x2.57x3’ 1 5.50 |5.50
Guitar Body Handmade .75”x5.57x1’ 2 7.23 | 14.46
Body Coating Aerosol Lacquer 1 6.79 |6.79
Material Cost - - - $269.90
Labor - 8 20 160.00
Total Cost - - - $429.90

Preliminary Design and Alternative Discussion:

The Initial design for the neck of the instrument uses 4 linear resistors (ThinPot) and 4 force
sensitive resistors (FSR). The number of linear resistors was chosen based on the width of the force
sensitive resistors; If the initial tests of the early prototype revealed no or limited user desire for force
sensing capabilities, 5 or 6 linear resistors can be placed on the neck while retaining a reasonable wide,

However, the FSR’s proved to be useful for not only chanel pressure, and control channel changes, but

also glitch mitigation. This change would also reduce component component cost as well as

manufacturing complexibility. This would save at least $25 per instrument.

Fluid MIDI Ribbon Guitar

Figure 1: Testing of Linear and Force Sense Ribbons

Initial testing revealed numerous problems with the MPR121 Capacitive Keypad. One of the
major problems is the lack of a complete I*C/TWI Library for the Arduino Due. The Arduino Library
lacks a Repeated Start Bit condition, which hampers access to registers on the MPR121. This lack of
Repeated Start Bit also means that multiple devices can not be used on the TWI, restricting the use of
multiple MPR121’s, and I’C LCD’s. To properly integrate the MPR121, i would need to write my own
I’C Library which would take quite a bit of time due to limited documentation of the SAM3x TWI.
The size and layout of the buttons on the keypad is also not ideal for my application. The keys are
slightly too small, too close together and not ergonomic for the user. Alternative designs are shown in

Figure 2 below.

Fluid MIDI Ribbon Guitar 9

Normal Layout Parallelogram Layout Hexagon Layout

Figure2: Alternative Button Layouts

After some research, I found that instead of using the MPR121 Capacitive touch sensor, it is
possible to use digital pins on the Arduino DUE to directly sense capacitive touch inputs. There is also
an open source library which has already been written to quickly implement this feature. This design
alternative could vastly reduce the cost and complexity of the device and expand customizability.
Testers also noted that they would like to have an additional Capacitive button set.

The final design for the button layout is shown in Figure 3. This layout is 50% larger than the
original layout, and features a 4th row of capacitive pads, bringing the total number of capacitive
buttons up to 16. The method for reading these capacitive pads is as follows; Charge the pad up with
one digital pin, begin discharging the pad with another digital pin through a sufficiently large resistor,
and see how long it takes to fully discharge. The way I have implemented this uses 2 pins for each
sensor, a total of 32 pins, although, if these are needed for other interfacing, one pin could be used as

the discharge pin for all of the capacitive pads.

Fluid MIDI Ribbon Guitar 10

Figure 3: Capacitive Pad Prototype

The initial body design features crisp straight lines and a sharp figure as shown in Figure 4. It
was built using a router and 2 jigs, which could be reused for a small production run. Initial testers had
mixed reviews about the style of the body; some felt it was “pretty cool”, while others wanted a more
traditional curvy shape, like a Fender Stratocaster. Further information will be gathered before a final

design is decided upon and jig made.

Fluid MIDI Ribbon Guitar 11

Figure 4: Initial Prototype

Fluid MIDI Ribbon Guitar

12

The initial neck was cut from a 0.75” thick piece of wood. Two 0.5 45° chamfers were cut on
either side, however, upon playing on it for a while most users commented that they would like to see
a more curved neck, and possibly thinner. The next design will have a rounded neck much closer to
that of a standard guitar.

The Arduino Due was initially selected for its speed, number of analog inputs and ease of use.
It, However, is one of the more expensive microcontrollers. If the FSR’s are removed, only 8 analog
inputs will be needed, which could expand the options of possible microcontrollers. Below, in Table 4,

alternative microcontrollers are shown with the relevant specifications.

Table 4: Alternative Microcontrollers

Microcontroller Price $ (lowest) Analog Pins Digital Pins
Arduino Due 20.50 12 54
Arduino Mega2560 10.08 16 54

While testing the prototype over USB, it occurred to me that many people will be converting
the MIDI DIN to USB for use anyway. USB MIDI can use a much higher baud rate and drastically
reduce latency of the controller. Being able to use DIN or USB would be inexpensive to implement
and enhance user experience. The prototype is currently set up to send serial data from the programing
port at a high baud rate, as well as out of its DIN jack at the standard 31250 baud rate for MIDI
instruments.

After implementing the MIDI interface, I discovered that the MIDI to usb converter I was
using would not recognize any MIDI signals if i was not connected to USB power. I found that the
MIDI specification is reliant on current and the arduino due’s 3.3V digital pin did not supply the
proper SmA. To solve this issue, | used a pair of inverters from a hex inverter out of an old lab kit. The
solution to this in the final design will be a single buffer.

By working on a side project, I familiarized myself with the V-USB Library. This library can
be used to create virtual USB devices on Atmel AVR processors. While this library is not currently
compatible with the due, it may be a future step in the device development to further expand

compatibility, and features of the controller.

Fluid MIDI Ribbon Guitar 13

Final Prototype:

The biggest difficulty to overcome playing the initial prototype was the bad ergonomic design
of the original neck. The second revision of the neck was initially cut with a router in a similar method
to the first design, but was then sanded with a random orbit sander to create a smooth ergonomic grip
allowing the user to reach each ribbon without strain. The revised neck is much easier to play on. The

design was reviewed by 2 guitar players throughout its manufacturing process to ensure an ergonomic

design

Figure 5: Initial Neck Design (Left) Final Neck Design (Right)

Fluid MIDI Ribbon Guitar 14

When building the final body design, I wanted to increase the simplicity of manufacturing and
reduce weight and cost. The final version of the body was much easier to make than the original. The

final square body design, which measures 1.5”x5.5”x1’, is a third of the weight of the original design.

Figure 6: Final Prototype Body and Internals Before Assembly

I decided to continue to use most of the same hardware when building the final prototype , with
the addition of another button and 2 rotary potentiometers for controlling volume and control channel
changes. To mount and hold the components I selected a green pearl pickguard to be on the front and

back of the instrument. This makes assembly quick, and looks sleek once assembled.

Fluid MIDI Ribbon Guitar 15

: ")f"r » <
s ':’ “‘”}p:ﬂ-"”a

Figure 7: Final Assembled Prototype (Front and Back)

In addition to these extra components, I traced and manufactured 2 PCB’s; One shield for the
Arduino Due, and one set of capacitive buttons. Both of these boards stack and include holes for
plastic standoffs to add structural stability.

After receiving the boards, I noticed several problems. There were a few mistakes on first
printing of PCB. One of the headers on the Arduino Due was spaced non uniformly compared to the
rest, which I overlooked, and was 0.025” off when I received the board. The header pin through holes

were also slightly too small for the header I was using.

Fluid MIDI Ribbon Guitar 16

|:'ST—'3||_:|5T—5||_‘I':T—5J|:IST—'5|

[f‘dhl]
[Cdb?]

Vin

3_3_Vﬁ

Due ﬂnalog MIDI Shield R2
; Hoah Baker

w0

'JST—'5'|'| JST—'5'| | JoT -9 | |'JST'—5 |'|'JST—'5'|'

Figure 8: Bottom Shield

Figure 9: Top Shield with Capacitive Buttons

Fluid MIDI Ribbon Guitar

I was able to work around these issues and use the boards, but corrected the issues on the new
design are shown above.

When selecting the driver chip to buffer the midi signals, I used mousers search function and
selected a CD40107BE (comprised of 2 NAND Buffers) After installing and testing the chip, however,
1 found that no transitions were being made. Upon reviewing the datasheet again I noticed that V.
was 3.5V, not 3.0V, as I thought it was. To remedy this, i switched back to using a CD4069UBE,
which I had used in the first prototype.

Functional Decomposition:

The level 0 block diagram, in Figure 10, shows the flow of analog, digital, and supply inputs,
as well as the MIDI, LCD, and indicator LED outputs. Table 5 Describes each input and output in
detail.

Figure 10: Level 0 Block Diagram

9V Supply
Analog Ribbons 5 Pin MIDI DIN Cable
Capacitive Pads Indicator LED's
Buttons USB Serial (debug)

Potentiometers

Table 5: Level 0 Block Diagram Table

Name Description
Input | 9V Power Supply DC power will be supplied from a powered MIDI hub over
the 2 extra pins on the DIN connection.
Analog Ribbons, These Analog inputs come from the ForceSense, ThinPot
Potentiometers variable resistors and Potentiometers.

Fluid MIDI Ribbon Guitar 18

Buttons, Capacitive These digital inputs come from the momentary push buttons,

Pads and the capacitive keypad. [17]
Output | 5 pin MIDI DIN Digital MIDI data sent according to protocol over a DIN 5
Cable cable

USB Serial (Debug) | This allows for debugging of the hardware and testing of
new functionality via the serial monitor.

Indicator LED’s Onboard LED’s indicating various String and keypad
modes.

Figure 11 shows the level 1 block diagram of the instrument. This diagram shows the basic

components on the Arduino Due, the required external components, and their data flow.

Figure 11: Level 1 Block Diagram

\

9V Supply

Indicator LED’s

Buttons USB Serial (debug)

Analog Ribbons
5 Pin MIDI DIN Cable

Capacitive Pads

Potentiometers

/

Table 6: Level 1 Block Diagram Table

Name Description

Components | Arduino Due The Arduino Due was selected as the microcontroller for
its speed, number analog inputs, and number of digital
outputs. The Due will regulate power for the digital pins,
convert the analog values to digital, Process the

Fluid MIDI Ribbon Guitar 19

information for user inputs and send the MIDI signals.

ADC The built in ADC on the Due will convert all of the analog
values to digital.

Digital The digital pins on the Due will receive button presses,
key presses, and send data to the LCD and MIDI output.

ARM Processor The ARM processor on the due will process all of the user
inputs and compute the MIDI data to be sent out.

Pull-Up/Pull-Dow | These resistors will debounce digital inputs, regulate
n Resistors current on the MIDI output, and assist in the reading of
analog voltage values.

Figure 12: System Software Flowchart

Read Analog Values <j

Look Up Root Note Values

-

Read Button Presses

-

Calculate Note, Velocity, and
Control Change Values

-

Output MIDI Data Updates

-

Check for Mode and Note Changes

Apply Mode/Note Changes E%

Fluid MIDI Ribbon Guitar 20

-

Testing and verification of Protocol was done with several MIDI compliant devices, such as

controllers, and MIDI to USB hubs. Latency was be measured with an oscilloscope monitoring the

MIDI data pin, and output of the Capacitive keypad, as well as in software. Currently, the controller

has been tested on 4 different USB to MIDI interface devices.

Automatic Chord Generation:

The initial chord generation algorithm developed to use with my MIDI controller builds triads

based off of the root note of the first string (Default tuning is E). Currently, the programed scales

include: Major, Natural Minor, Harmonic Minor, Melodic Minor, and Octave. For example, if the user

is in Standard tuning, holding a G major chord, with the controller in Natural minor mode, a G Major,

B Minor, D Major and G Major +1 chord will be generated as shown in Table 7.

Table 7: Valid Automatic Chord

IAutomatic Triad Generation

E Natural Minor Natural Minor [root
Em tonic 0 0 3 7 Minor
F#dim supertonic 2 2 5 8 Dim
GM mediant 3 3 7 10 Major
Am subdominant 5 5 8 12 Minor
Bm dominant 7 7 10 14 Minor
CM submediant] 8 8 12 15 Major
DM subtonic 10, 10 14 17 Major
Generated Notes
G Major Chord in E Natural

Minor Root] user defined
3)3 G Major]
2)7 B Minor
(0) 10 D Major

Fluid MIDI Ribbon Guitar

21

G Major (+1)

G Major| B Minor| D Major

This initial implementation ignores generating chords for notes not in the scale, but could later
on be changed to generate a user defined chord for these accidentals. The downfall of the current
automatic triad generation is shown in Table 8. As can be seen here, this chord is not in the key
signature and lacks many automatically generated chords. Furthermore, misplayed chords from
incorrect finger position will also result in undesired results, unless automatic proximity assisting is
implemented.

Table 8: Invalid Automatic Chord

IAutomatic Triad Generation
E Melodic Minor Melodic Minor froot
Em tonic 0 0 3 7 Minor
F#m supertonic 2 2 5 9 Minor
Gaug mediant 3 3 7 11 Aug
AM subdominant 5 5 9 12 Major
BM dominant 7 7 11 14 Major
C#dim submediant 9 9 12 15 Dim
D#dim subtonic 11 11 14 17 Dim|
Generated Notes
G Major Chord in E|
Root user defined
Melodic Minor|

Fluid MIDI Ribbon Guitar 22

User Defined Chord Generation:

One proposed solution to create a seamless automatic chord generator was suggested by a
fellow Engineer, Michael Twardochleb. His proposed method lets the user select which types of
chords they want to generate based off the combination of buttons that they press. This will greatly
expand the possible number of chords that could be played without adjusting settings. This mode has

not been fully developed and is not functional at the time of writing this report.

Smart Chord Generation (Following):

The final advanced generation function I made for this project is a smart generation which
keeps track of the most often recently played notes. Based off of this it can currently build common
triads from the 7 most common notes. If the user switches his chord progression, It will quickly

change within the time the user plays a few chords.

Noise and Glitch Mitigation:

There were 2 main causes of glitches in the initial implementation. The first was that when a
string is being pressed, the voltage level on the analog pin rises to meet the value, and is not
instantaneous. This caused intermediate notes to trigger when pressing higher up on the neck. To
account for this, 3 samples are taken for each ribbon. If the samples don't closely match, then it
resamples the analog values. There is also a minimum force required to initiate the “note on”
command which removes the remainder of the glitches. The second, more expected, glitch occurs
when the user places his/her finger directly on the transition (fret) of a note. This will cause the
controller to bounce back and forth between the two and cause stuttering. To mitigate this, a ‘fret
width’ was added which acts as a schmitt trigger, requiring the user to move past the area to initiate

the next note.

Seamless Pitch Bend:
The MIDI protocol only allows for 2 semitones (notes) of pitch bend. It is also limited to
bending the entire channel, and can not bend individual notes. In order to implement a fretless mode,

multiple things must be calculated and taken into account. Firstly, the notes decrease in size in a

Fluid MIDI Ribbon Guitar 23

logarithmic fashion, however, because of the number of notes, bending linearly based on the relative
position of the users finger on a note yields a pseudo-logarithmic bend, like classical stringed
instruments. Each string must also output their data to separate channels because of the lack of
functionality in the protocol. Lastly, the fret width of the glitch mitigation causes problems in

calculating the pitch bend, creating a very complex function required to have a continuous sweep.

Code:

Below is the code as it is on June 1st 2015. More commenting is needed, and individual
functions need to be made for each calculation in order to simplify the understanding for users wishing
to modify the functionality of their instrument. A header file for constants will also be made once all
glitches have been removed and the functionality will not change drastically. The new LCD/user

interface code was removed to be rewritten, and is not yet done.

/*Fluid MIDI Ribbon Guitar
*Noah Baker
*Senior Project Spring 2015
*/

#include <CapacitiveSensor.h>
#include <stdlib.h>

//array of capacitive pads

CapacitiveSensor pad[4][4] = {
{CapacitiveSensor(22,23),CapacitiveSensor(24,25),CapacitiveSensor(38,39),CapacitiveSensor(40,41)},
{CapacitiveSensor(26,27),CapacitiveSensor(28,29),CapacitiveSensor(42,43),CapacitiveSensor(44,45)},
{CapacitiveSensor(30,31),CapacitiveSensor(32,33),CapacitiveSensor(46,47),CapacitiveSensor(48,49)},
{CapacitiveSensor(34,35),CapacitiveSensor(36,37),CapacitiveSensor(50,51),CapacitiveSensor(52,14)}

1

//analog resistance values (frets)

int markers [23] = {11,78,152,222,288,350,409,464,517,566,612,656,698,737,774,809,842,873,903,930,956,981,1004};
int softpot [4] = {A1,A3,A5,A7}; //softpot analog values

int FSR [4] = {AO,A2,A4,A6}; //fsr analog values

char root [4] = {0x28,0x2D,0x32,0x37}; //E2 as root note, to be set later by button input, tuned as bass
char softpot_previous_note [4] = {0x28,0x2D,0x32,0x37};
int FretlessEnabled = 0; //Changes weather or not fretless mode is enabled

int OffFirst = 0; //changes weather or not MIDI notes are turned off before turned on when sliding
int FretWidth =5; //Width of the frets
int total=0; //Number of buttons pressed

int lastpressed = 0; //last string pressed

char softpot_note [4] = {0,0,0,0};
int FretlessPitch[4] = {0,0,0,0}; //pitch shifting for fretless mode
int RawPadData [4][4] = {

Fluid MIDI Ribbon Guitar 24

{0, 0, 0, 03,
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}

b
char MIDI_notes [4][4] = {
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
};//stores the midi values for the notes
char MIDI_notesp [4][4] = {
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
}; //stores the previous midi values for the notes
int PadButtonsPrevious [4][4] = {
{0, 0, 0, 03},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
}; //previous values on capacitive buttons
int PadButtonsCurrent [4][4] = {
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 03},
{0, 0, 0, 0}
b
int PadNoteMask [4][4] = {
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
};//initially 0
int softpot_reading [4][4] = { //softpot reading, #of reading, or final value (3)
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0},
{0, 0, 0, 0}
1

int RecentNotes[12] = {0,0,0,0,0,0,0,0,0,0,0,0};
int RecentNoteIndex = 0;

int MinMax = -1;

int MinMaxIndex = -1;

int ScaleNoteIndex = 0;

int ScaleNotes[7] = {0,0,0,0,0,0,0};

int MajorNoteMask [4] = {0,4,7,11};//initially major changes based off pad settings
int MinorNoteMask [4] = {0,3,7,10};

int AugNoteMask [4] = {0,4,8,10};

int DimNoteMask [4] = {0,3,6,9};

int OctaveMask [4] = {0,12,24,36};

char NoteOff [4] = {0x80,0x81,0x82,0x83};
char NoteOn [4] = {0x90,0x91,0x92,0x93};

Fluid MIDI Ribbon Guitar 25

char NoteForce [4] = {0xA0,0xA1,0xA2,0xA3}; //aftertouch, individual pressure value
char ControlChange [4] = {0xBO,0xB1,0xB2,0xB3}; //for other sliders etc.

char NoteForceAvg [4] = {0xD0,0xD1,0xD2,0xD3}; //aftertouch, avg pressure value
char PitchBend [4] = {OxE0,0xE1,0xE2,0xE3};

int FSR_reading [4] = {0, 0, 0, 0}; //FSR reading, #of reading, or final value (3)

int scale_mode = 5;

int scale_modep = 4;

int ControlDial = 0;

int ControlDialP = 0;

volatile unsigned long microspsm;

volatile unsigned long microspfm;
int irgPin = 22; // D22

vold UpdateNote(char Status, char Note, char Velocity); //for NoteOff, NoteOn, NoteForce

/*Setup Function*/
void setup(){
Seriall.begin(31250);
Serial.begin(115200);
//set up buttons for scale types
pinMode(5, OUTPUT);
pinMode(2, INPUT_PULLUP);
attachInterrupt(2,scale_modebutton,FALLING); //attaches pin 2 to mode button interrupt
//set up button for engaging Fretless mode
pinMode(4, OUTPUT);
pinMode(3, INPUT_PULLUP);
attachInterrupt(3,Fretless_modebutton,FALLING); //attaches pin 50 to mode button interrupt
//enable interrupts
interrupts();
SetupPads();

/*Main Loop*/
void loop(){
int ndx;
int pad_column;
int string;
int checknote;

//gets analog values
ControlDialP = ControlDial;
ControlDial = (analogRead(A9) >>3);
int Volume = (analogRead(A8) >>3);
for(string=0;string<4;string++){
do{
analogRead(A10); //clears mux voltage
softpot_reading[string][0] = analogRead(softpot[string]);
analogRead(A10); //clears mux voltage
softpot_reading[string][1] = analogRead(softpot[string]);
analogRead(A10); //clears mux voltage
softpot_reading[string][2] = analogRead(softpot[string]);
softpot_reading[string][3]=((softpot_reading[string][0]+softpot_reading[string][1]+softpot_reading[string][2])/3);
Jwhile((abs(softpot_reading[string][3] - softpot_reading[string][1]) >2) & (abs(softpot_reading[string][3] -
softpot_reading[string][0]) >2) & (abs(softpot_reading[string][3] - softpot_reading[string][2]) >2));
//clears mux voltage

Fluid MIDI Ribbon Guitar 26

analogRead(A10);

//reads FSR allows for a maximum pitch bend of 1 semitone (12288) at max pressure

FSR_reading[string] = ((analogRead(FSR[string])*analogRead(FSR[string]))/90);

1f(FSR_reading[string] < 8192){FSR_reading[string] =8192;}//if lower than neutral position, then set to neutral

analogRead(A10);//clears mux voltage

//determines the current frets being played
for(string=0;string<4;string++){

nolnterrupts();

softpot_note[string] = root[string];

ndx = 0;

while (ndx <23 && (softpot_reading[string][3] > markers[ndx])){ //adds fret number to root note
ndx++;

softpot_note[string]++;
}
//ignores press if user is not pressing hard enough, this greatly reduces glitches when changing notes
if(FSR_reading[string] < 3000){

}

//accounts for analog noise, acts a a Schmitt trigger when user is on a fret
if((softpot_note[string] == softpot_previous_note[string] - 1)&&(softpot_reading[string][3] > markers[ndx]-FretWidth)){
//falling

softpot_note[string] = softpot_previous_note[string];

FretlessPitch[string] = ((markers[ndx+1] - softpot_reading[string][3])*4096 / (markers[ndx+1] - markers[ndx]));

}
else if((softpot_note[string]==softpot_previous_note[string]+1)&&(softpot_reading[string][3]<markers[ndx-1]-FretWidth)){
//rising

softpot_note[string] = softpot_previous_note[string];

FretlessPitch[string] = ((markers[ndx-1] - softpot_reading[string][3])*4096 / (markers[ndx] - markers[ndx-1]));
}

else if(FSR_reading[string] >= 3472 && softpot_note[string] != root[string]){

FretlessPitch[string] = ((markers[ndx] - softpot_reading[string][3])*4096 / (markers[ndx] - markers[ndx-1]));
}
else{

FretlessPitch[string] = 0;
}
//calculates a % of a semitone to shift the note below the fret by to give a fretless effect
//FretlessPitch[string] = ((markers[ndx] - softpot_reading[string][3])*4096 / (markers[ndx] - markers[ndx-1]));
//records the value of the note played
softpot_previous_note[string] = softpot_note[string];
interrupts();

//Processes the notes for each string and sends them
for(string=0;string<4;string++){
//updates modulation i1f it has changed
if(ControlDial != ControlDialP){
UpdateNote(ControlChange[string], 0x01, ControlDial);

//gets touch inputs from keypad
readTouchInputs(string);

Fluid MIDI Ribbon Guitar 27

//determines notes being held, relative to 1 (root note)
checknote = softpot_note[string] - root[0] ; //major based on root note of first string

while(checknote > 11){
checknote -= 12;

//checks to see if scale_mode has changed, and sets new PadNoteMask if it has

pad_column=0;

//noInterrupts();

while(pad_column <4){
switch(scale_mode){
case 0:

switch(checknote){ //Major scale root note chord

case

case

case

case

case

case

case

case

case

case

case

case

break;
case 1:

0:

10:

11:

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

generation

= MajorNoteMask[pad_column];

= OctaveMask[pad_column];

= MinorNoteMask[pad_column];

= OctaveMask[pad_column];

= MinorNoteMask[pad_column];

= MajorNoteMask[pad_column];

= OctaveMask[pad_column];

= MajorNoteMask[pad_column];

= OctaveMask[pad_column];

= MinorNoteMask[pad_column];

= OctaveMask[pad_column];

= DimNoteMask[pad_column];

switch(checknote){ //Natural Minor scale root note chord generation

case

0:

PadNoteMask[string][pad_column]
break;

= MinorNoteMask[pad_column];

Fluid MIDI Ribbon Guitar

28

break;
case 2:

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

case 10:

case 11:

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

OctaveMask[pad_column];

DimNoteMask[pad_column];

MajorNoteMask[pad_column];

OctaveMask[pad_column];

MinorNoteMask[pad_column];

OctaveMask[pad_column];

MinorNoteMask[pad_column];

MajorNoteMask[pad_column];

OctaveMask[pad_column];

MajorNoteMask[pad_column];

OctaveMask[pad_column];

switch(checknote){ //Harmonic Minor scale root note chord generation

case 0:

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]

MinorNoteMask[pad_column];

OctaveMask[pad_column];

DimNoteMask[pad_column];

AugNoteMask[pad_column];

OctaveMask[pad_column];

MinorNoteMask[pad_column];

OctaveMask[pad_column];

Fluid MIDI Ribbon Guitar

29

break;
case 3:

case

case

case

case

case

10:

11:

break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

switch(checknote){ //Melodic Minor scale root note

case

case

case

case

case

case

case

case

case

case

case

case

0:

10:

11:

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

PadNoteMask[string][pad_column]
break;

MajorNoteMask[pad_column];

MajorNoteMask[pad_column];

OctaveMask[pad_column];

OctaveMask[pad_column];

DimNoteMask[pad_column];

chord generation

MinorNoteMask[pad_column];

OctaveMask[pad_column];

MinorNoteMask[pad_column];

AugNoteMask[pad_column];

OctaveMask[pad_column];

MajorNoteMask[pad_column];

OctaveMask[pad_column];

MajorNoteMask[pad_column];

OctaveMask[pad_column];

DimNoteMask[pad_column];

OctaveMask[pad_column];

DimNoteMask[pad_column];

Fluid MIDI Ribbon Guitar

30

break;
case 4: //octave mode
PadNoteMask[string][pad_column] = OctaveMask[pad_column];
break;
case 5: //learning mode
//finds most commonly played 7 notes from the array of recent notes once per ribbon
if(PadButtonsCurrent[string][0] == 1 && pad_column == 0){
RecentNotes[checknote]++;
ScaleNoteIndex = 0;
MinMax = 20;
for(RecentNoteIndex = 0; RecentNoteIndex < 12; RecentNoteIndex++){

//fills up the possible notes with first 7 and finds the min
if(ScaleNoteIndex < 7){
ScaleNotes[ScaleNoteIndex] = RecentNoteIndex;
if(RecentNotes[RecentNoteIndex] < MinMax){
MinMax = RecentNotes[RecentNoteIndex];
MinMaxIndex = ScaleNoteIndex;

}

ScaleNoteIndex++;

//looks through the remaining values to find greater values than minmax
else if(RecentNotes[RecentNoteIndex] > MinMax){
//pulls the smallest value out and shifts the rest
ScaleNoteIndex = MinMaxIndex;
while(ScaleNoteIndex < 6){
ScaleNotes[ScaleNoteIndex] = ScaleNotes[ScaleNoteIndex+1];
ScaleNoteIndex++;
}
//saves the most recently found note to the scale
ScaleNotes[ScaleNoteIndex] = RecentNoteIndex;
ScaleNoteIndex++;
//find new minmax
MinMax = RecentNotes[ScaleNotes[0]];
MinMaxIndex = 0;
for(ScaleNoteIndex = 1; ScaleNoteIndex <7; ScaleNoteIndex++){
if(RecentNotes[(ScaleNotes[ScaleNoteIndex])] < MinMax){
MinMax = RecentNotes[(ScaleNotes[ScaleNoteIndex])];
MinMaxIndex = ScaleNoteIndex;

//checks the smallest value to see it its over 100 and divides the recent note index if it is
if(RecentNotes[(ScaleNotes[MinMaxIndex])] > 100){

for(RecentNoteIndex = 0; RecentNoteIndex <12; RecentNoteIndex++){
RecentNotes[RecentNoteIndex] /=2;

}

}

}
//update the pad note mask every cycle

for(ScaleNoteIndex = 0; ScaleNoteIndex <7; ScaleNoteIndex++){
if(checknote == ScaleNotes[ScaleNoteIndex]){
PadNoteMask[string][pad_column] = ScaleNotes[(pad_column * 2)];

Fluid MIDI Ribbon Guitar 31

break;
}
else{
PadNoteMask[string][pad_column] = 0;

break;
case 6: //Standard Mode
PadNoteMask[string][0] = 0;
PadButtonsCurrent[string][0] |= PadButtonsCurrent[string][pad_column];

break;
}
pad_column++;
}
//interrupts();

//if lower than neutral position, then set to neutral
1f(FSR_reading[string] < 8192){FSR_reading[string] =8192;}
// if fretless pitch is enabled, the string is pitch shifted down by a % of the semitone
if(FretlessEnabled == 1){
FSR_reading[string] -= FretlessPitch[string];
FretWidth =7;

//sets MIDI notes based on string and note mask, i1f note has changed turns off previous note
pad_column=0;
while(pad_column <4){
MIDI_notes[string][pad_column] = softpot_note[string] + PadNoteMask[string][pad_column];
1f((MIDI_notesp[string][pad_column] != MIDI_notes[string][pad_column])){
1f(OffFirst == 1){UpdateNote(NoteOff[string],MIDI_notesp[string][pad_column],Volume);}
}

pad_column++;

//sends MIDI Note data
pad_column=0;
while(pad_column <4){
//turns a note on if new button is pressed, or button has remained pressed but string changed
if((PadButtonsCurrent[string][pad_column] > PadButtonsPrevious[string][pad_column]) ||
((MIDI_notesp[string][pad_column]!=MIDI_notes[string][pad_column])&&(PadButtonsCurrent[string][pad_column]>0))){
UpdateNote(NoteOn[string],MIDI_notes[string][pad_column],Volume);
lastpressed = string; //saves the last string pressed
1f((MIDI_notesp[string][pad_column] != MIDI_notes[string][pad_column])){
1f(OffFirst == 0){UpdateNote(NoteOff[string],MIDI_notesp[string][pad_column],Volume);}
}
UpdateNote(PitchBend[string], (FSR_reading[string] & 0x7F),((FSR_reading[string]>>7)& 0Ox7F));
}
else if(PadButtonsPrevious[string][pad_column] > PadButtonsCurrent[string][pad_column]){
UpdateNote(NoteOff[string],MIDI_notes[string][pad_column],Volume);
UpdateNote(PitchBend[string], (FSR_reading[string] & 0x7F),((FSR_reading[string]>>7)& Ox7F));
}
else if(PadButtonsCurrent[string][pad_column] >0){
//UpdateNote(NoteForce[string],MIDI_notes[string][pad column],0x50);
//sends pitch bend update
UpdateNote(PitchBend[string], (FSR_reading[string] & 0x7F),((FSR_reading[string]>>7)& 0Ox7F));
}

PadButtonsPrevious[string][pad_column] = PadButtonsCurrent[string][pad_column];

Fluid MIDI Ribbon Guitar 32

MIDI_notesp[string][pad_column] = MIDI_notes[string][pad_column];
pad_column++;

//1f in single mode only go through once

if(scale_mode == 6){pad_column =4;}

//checks i1f capacitive buttons have been pressed
void readTouchInputs(int string){
int pad_column = 0;
for(pad_column=0;pad_column<4;pad_column++){
RawPadData[string][pad_column] = pad[string][pad_column].capacitiveSensorRaw(3);

if(RawPadData[string][pad_column] == -2){
PadButtonsCurrent[string][pad_column] = 1;

}

else{
PadButtonsCurrent[string][pad_column] = 0;
total++;

}

}
if (total == 16){
//solves not off not sent glitches
UpdateNote(ControlChange[string], 0x7B, 0x00);
}
if(string == 3){total = 0;}
}

//sets up the capacitive buttons with unique time-outs
void SetupPads(){
int string = 0;
int pad_column = 0;
for(string=0;string<4;string++){
for(pad_column=0;pad_column<4;pad_column++){
pad[string][pad_column].set_CS_Timeout_Millis((((double)
pad[string][pad_column].capacitiveSensorRaw(3))/1200.0));
}

//updates midi information
void UpdateNote(char Status, char Note, char Velocity){
digitalWrite(3, HIGH);
Seriall.write(Status);
Seriall.write(Note);
Seriall.write(Velocity);
Serial.write(Status);
Serial.write(Note);
Serial.write(Velocity);
digitalWrite(3, LOW);

//changes the chord generation function, mode indicated by the led
void scale_modebutton(){
nolnterrupts();
if((long)(micros() - microspsm) >= 600000 && digitalRead(3) == HIGH){

Fluid MIDI Ribbon Guitar

scale_mode++;

if(scale_mode > 6){
scale_mode = 0;

}

microspsm = micros();

for(int 1 = 0; 1 <= scale_mode; i++){
digitalWrite(4, LOW);
delayMicroseconds(100000);
digitalWrite(4, HIGH);
delayMicroseconds(100000);

//1f both buttons are pressed lets the user set the root note of the last string played
else if(digitalRead(3) == LOW){
while(digitalRead(3) == LOW){

ControlDial = ((analogRead(A9) + analogRead(A9)) >>4);
UpdateNote(NoteOff[lastpressed],root[lastpressed],0x7F);
root[lastpressed] = ControlDial;
UpdateNote(NoteOn[lastpressed],root[lastpressed],0x7F);
softpot_previous_note[lastpressed] = ControlDial;
delayMicroseconds(500000);

}

interrupts();

//activates or deactivates fretless mode, indicated by the LED
voild Fretless_modebutton(){
noInterrupts();
if((long)(micros() - microspfm) >= 600000){
if(FretlessEnabled == 0){
FretlessEnabled =1;
digitalWrite(5, HIGH);

}
else{
FretlessEnabled =0;
digitalWrite(5, LOW);
}
microspfm = micros();
}
interrupts();

Fluid MIDI Ribbon Guitar

34

Schedule:

Cost Estimation
First Pass

Location Sersa Ineracing
Forca Sencor Insarfacing

Analog Senscr Calbiation

2004-08-29 2014-10-12
2014-40-27

Z014-10-05
2004-10-16 | J014-10-12
2004 00-11 2014-10-17

MIDI Guitar St Date: Seplember 22, 2014

Fall 2094

e LLLLLLLLLTTTTTTT T T L Jolele [111 ____:__________ 1]
.—ui T — B ¥ e wal o T I e rTTTTTe s e ng v |
Irital Abslract | 2040922 20141006

Market Research 24092 2141027

Requirements and Specificatiors | 20140922 2014-10-05

Block Diagram 2014-09-29 2014-10-12

Component Selection 2014-09-29 2014-10-12

Tl Inpt Intectacing

2004-10-24 H14-1106

Capicilive Keypad Interfacing
wﬁ_o: ta Sudch !a..u."_:n

[20141024 20141146

B_P.n.@u

Mum!n_u_ -n__n- _u.ﬁnnk

MEDH over serial USE testing
MADH o MIDH SR hub tesfing

(11
vn__h -m._ym

241103 20141202
41207

2041111 20141275

Durabiity Testing 014-12-08 31150106
MIDI Guitar Start Date: __Januory 1. 2015
Winiter 2015
Toows Compee] | [LLLLL LI LT L bolalal [LLITLLLLLIIIIITITIILITT L] lelelol |
Task Stan Dste Emd Date 8] Comples J la Fle b
ﬂ} L] [EuRET BES P IETODET 3K -BECCINT JET JET-BKC T ODET BET O U VI T T T)
Addticnal Featurs Implomentation | 20150101 2015-02-03 34 100.00%
User Fesdback Revisw 20150101 3015-01-15 15 100.00%
Addtional Hardware Implementation | 20150105 20150203 30 100.00%
Addtional Software | al 1 2015-02-03
Final Hardwaso Selection 20158105 20150125 21 100.080%]
Alernative Hardware Heseaech 20150105 2015-01-11 T

20150119 2015-01-25

15011 1

Final Body Deiign 2015-01-19 2015-02-08 Fil
Final Body Constnuction 20150126 2015-02.08 14 100, 0d%
Ti 1 1
Final Design Profocol Testing 20158202 2015-03-01 28 100.0d%
Final Design Latency Tesling 201502-96 2015-02-20 § 100.00%
Final Design Duability Testing 150302 20150325 26 100.00%
Whiking Piobatype Dus 20150313 20150319 T 100.00%
Martating Mauaiais 30156300 201503 T i00,00%] I~
Piciures of Final Design J0TE03-09 201500 1a 100.00%
Widoos of Final Design 201503-23 2015-03-2¢ T 100.08%
MIDI Guitar St Dote:_ Mareh 30, 7015
Spting 2015
iy comee| | || LT LT LT P lple [LTI L DT LT L]] ey
Task SunDue EndDats [dnys) Complste Alp Mla |y
i“ W M e ad ot el owd e w30 el Al a AT a3 Al A W R M B M W AT A W R W B e A Al
Feature (20150330 20150428 30 100.00% I
User Foscback Review (150330 0150628 30 100.00%
Addirional Hardware Implementation | 201503-30 2015-04-28 0 10000%
Additional Saftware Imglementation | 2015-03-30 2015-04-28 30 109.00%
Seice Project Expa 20150531 | 20150531 T 100.00% . . . [
Profect Expo Date 20150531 | 20150631 1 100.00%
Miarksting Matesials 20150530 | 015062860 10000%]
Piztuies of Final Design 2016-03-30 | 2015-06-28 B0 10000%
Wideos of Final Design 2016-03-30 | 2015-05-28 B0 100.00%

35

Fluid MIDI Ribbon Guitar

HERRSSENERRRRERRERRARRRRRNRERRER

L e[LTLTLLLLLL LTI [[T olelel TTTTIITTTITTITT

= 5 3

LI T I Db TP PO OTTIITITTOTIITITTTT]

i Sob 350 B33 BS LN L3S D8N BSM BN BN bW BE 33 N4 30 06 MY M) 3B WE N M| 043 0Aa il 4F 3 000 0N 5SS N JON 53N N3a) NS OO BOT N30 N5 0 M 41 62 W) 46 48 b 4T 0 4 e

1
|I

EERENERRRREERRRRNRREEERERNNEANSERRRRRRRRRRRERRRRREND

WP oAl A R R R RS A A RN R R A AR AN o 6 M1 b M R AT R W R i iR D b bl il T R R S N A R e W S AT A R R T R R M M M P W

EEENSESSEEEE

36

Fluid MIDI Ribbon Guitar

References:
Market Research

[1] Sonuus, “G2M—Universal Guitar to MIDI Converter,” Sonuus - Music Products Designed in

the UK, 2014. [Online]. Avilable: http://www.sonuus.com/products_g2m.html [Accessed: Oct.

1,2014].

This sources was used for information about pricing and operation of the G2M. It was chosen

because it is hosted on the manufactures site, and contains accurate information about the

product.

[2] Sonuus, “B2M—Universal Bass to MIDI Converter,” Sonuus - Music Products Designed in
the UK, 2014. [Online]. Avilable: http://www.sonuus.com/products_g2m.html [Accessed: Oct.

1,2014].

This sources was used for information about pricing and operation of the B2M. It was chosen

because it is hosted on the manufactures site, and contains accurate information about the

product.

[3] Roland, “GK-2A Divided Pickup,” GK-2A :: Products :: Roland, 2014. [Online]. Avilable:
http://www.roland.com/products/en/GK-2A/ [Accessed: Oct. 3, 2014].

This source was used to obtain information and pricing about the GK-2A, and add-on pickup

manufactured by Roland.

[4] You Rock Guitar, “YRG Gen2,” You Rock Guitar YRG Gen2 - You Rock Guitar, 2014.

[Online]. Avilable: http://yourockguitar.com/yrg-gen2/ [Accessed: Oct. 5, 2014].

This source was used to obtain information about the YRG including technical specifications,

and pricing.

Fluid MIDI Ribbon Guitar 37

http://www.sonuus.com/products_g2m.html
http://www.sonuus.com/products_g2m.html
http://www.roland.com/products/en/GK-2A/
http://yourockguitar.com/yrg-gen2/

[5] Yamaha, “EZ-AG Guitar,” EZ-AG - EG Series, 2014. [Online]. Avilable:

http://usa.yamaha.com/products/musical-instruments/entertainment/lighted key fret instrume

nts/ez_series/ez-ag/ [Accessed: Oct. 8, 2014].

This source was used to determine pricing and availability of Yamaha’s EZ-AG Guitar. This
source was chosen because it is hosted on the manufactures site, and contains accurate

information about the product.

[6] Yamaha, “EZ-EG Guitar,” EZ-EG - EG Series, 2014. [Online]. Avilable:

http://usa.yamaha.com/products/musical-instruments/entertainment/lighted key fret instrume

nts/ez_series/ez-eg/ [Accessed: Oct. 8, 2014].

This source was used to determine pricing and availability of Yamaha’s EZ-EG Guitar. This
source was chosen because it is hosted on the manufactures site, and contains accurate

information about the product.

[7] Misa, “kitata,” misa kitara - Misa Digital, 2014. [Online]. Avilable:

https://misa-digital.myshopify.com/products/kitara [Accessed: Oct. 7, 2014].

This source was chosen to obtain information about the experimental misa kitara. The kitara

has been discontinued, and the tri bass has taken its place.

[8] Misa, “tri-bass,” misa tri-bass - Misa Digital, 2014. [Online]. Avilable:

https://misa-digital.myshopify.com/products/tri-bass [Accessed: Oct. 7, 2014].

This source was used to find information about the mis tri-bass including, its functionality and

cost.

Fluid MIDI Ribbon Guitar 38

http://usa.yamaha.com/products/musical-instruments/entertainment/lighted_key_fret_instruments/ez_series/ez-ag/
http://usa.yamaha.com/products/musical-instruments/entertainment/lighted_key_fret_instruments/ez_series/ez-ag/
http://usa.yamaha.com/products/musical-instruments/entertainment/lighted_key_fret_instruments/ez_series/ez-eg/
http://usa.yamaha.com/products/musical-instruments/entertainment/lighted_key_fret_instruments/ez_series/ez-eg/
https://misa-digital.myshopify.com/products/kitara
https://misa-digital.myshopify.com/products/tri-bass

[9] D. Lockwood, “Starr Labs Ztar Z7s,” Sound On Sound, 2011. [Online]. Avilable:
http://www.soundonsound.com/sos/feb1 1/articles/starr-systems-ztar-z7s.htm [Accessed: Oct.

10, 2014].

This source was used because it contains quite a bit of information about the Starr Labs Ztar
Z7s, one of the top end MIDI guitars from Starr Labs. This review of the instrument explains

how several settings on the controller operate.

[10] Starr Labs, “Price List,” Starr Labs, 2011. [Online]. Avilable:

http://starrlabs.com/menu/price_list.php [Accessed: Oct. 10, 2014].

This source was used to determine pricing on Starr Labs’ Ztar’s. Their prices are not directly

listed on their site, likely because they are quite high.

Interfacing Guides
[11] GweepNET, “The MIDI Specification,” MIDI Specification [Online]. Avilable:
http://www.gweep.net/~prefect/eng/reference/protocol/midispec.html [Accessed: Oct. 15,

2014].

This source was used to gain understanding of the MIDI protocol. While there are other more
‘official’ pages, this single page contains all of the information I need to successfully

implement the MIDI protocol. If problems arise, more sources will be used.

[12] Wavosaur, “HEX to MIDI note chart,” Midi note to Hexadecimal chart, 2014. [Online].

Avilable: http://www.wavosaur.com/download/midi-note-hex.php [Accessed: Oct. 15, 2014].

This source was used as a quick reference for programing in note values with MIDI.

Fluid MIDI Ribbon Guitar 39

http://www.soundonsound.com/sos/feb11/articles/starr-systems-ztar-z7s.htm
http://starrlabs.com/menu/price_list.php
http://www.gweep.net/~prefect/eng/reference/protocol/midispec.html
http://www.wavosaur.com/download/midi-note-hex.php

[13] R. Smith, “Interfacing a Softpot Membrane Potentiometer,” QQRS, 2013. [Online].

Avilable: https://ggrs.github.io/blog/2013/04/22/interfacing-a-softpot-sensor-to-an-adc/

[Accessed: Oct. 15, 2014].

This source was used to determine the range of the value of the pull-down resistors for the
ThinPot potentiometer. Smith tested a near identical linear resistor from the same study and
plotted the linearity results of various sizes of pull down resistors.

[14] Sparkfun, “MPR121 Hookup Guide,” MPR121 Hookup Guide - learn.sparkfun.com,
[Online]. Avilable:

https://learn.sparkfun.com/tutorials/mpr121-hookup-guide/communicating-with-the-keypad
[Accessed: Oct. 22, 2014].

This Source was used as a general interfacing guide for the capacitive keypad. It has many
hints for setting up the keypad to work smoothly with the arduino. It, however, does not

explain how to use all of the functionality of the device, so the datasheet will still be needed.

Datasheets
[15] Interlink Electronics, “FSR 400 Series Square Force Sensing Resistor* FRS 408
Datasheet, [Online]. Avilable:

https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Pressure/FSR408-Layout2.pdf
[Accessed: Oct. 1, 2014].

[16] Spectra Symbol, “ThinPot,” TSP-L-0500-203-3%-ST Datasheet, [Online]. Avilable:
http://media.digikey.com/pdf/Data%20Sheets/Spectra%20Symbol/TSP%20Series%20ThinPot.

pdf [Accessed: Oct. 1, 2014].

[17] Freescale Semiconductor, “Proximity Capacitive Touch Sensor Controller” MPR121 -
Capacitive Touch Sensor Controller Datasheet, [Online] Available:

https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Capacitive/MPR 121.pdf [Accessed:
Oct. 1, 2014].

Fluid MIDI Ribbon Guitar 40

https://qqrs.github.io/blog/2013/04/22/interfacing-a-softpot-sensor-to-an-adc/
https://learn.sparkfun.com/tutorials/mpr121-hookup-guide/communicating-with-the-keypad
https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Pressure/FSR408-Layout2.pdf
http://media.digikey.com/pdf/Data%20Sheets/Spectra%20Symbol/TSP%20Series%20ThinPot.pdf
http://media.digikey.com/pdf/Data%20Sheets/Spectra%20Symbol/TSP%20Series%20ThinPot.pdf
https://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Capacitive/MPR121.pdf

Analysis:
Project Title: Analog MIDI Guitar
Student: Noah Baker

Advisor: Wayne Pilkington

I. Summary of Functional Requirements
A. Describe the capabilities of your project or design and what is does.

1. The Analog MIDI Guitar is an Electronic MIDI synthesizer, capable of creating
complex chords of 12 simultaneous voices. It features advanced control change
capabilities, on the fly retuning, and user customizable presets.

II. Primary Constraints
A. Describe challenges and difficulties related to the design or implementation of your
project. What factors influenced your approach?

1. So far, one of the biggest challenges has been acquiring components to test
with. Several of the components I wish to use must be ordered directly from the
manufacture, and are difficult to purchase in small quantities. These
components are non-stock on most distributor websites, and in final
implementation, special versions of the components will be ordered directly
from the manufacture.

[I. Economic Impacts
A. What are the resulting economic impacts of the project?

1. Human Capital: The construction, and design of this hand crafted instrument
could create jobs for artisan guitar makers, machine shops, and manufactures of
the electronic components present in the product.

2. Financial Capital: This new MIDI instrument could assist in the creation of
music by artists, and indirectly create jobs through the artists success.

3. Natural Capital: The neck and body of the instrument will be made of wood

sourced from sustainable providers. The electronic components of the device are

Fluid MIDI Ribbon Guitar 41

made from plastic and silicon and should be responsibly recycled after the end
of the instruments life.

4. Costs: The cost of the initial prototype will be much higher than the production
costs of the final design. The final design will not need much, if any firmware
modifications, and will cost less to build in bulk. The prototype has an estimated
cost of $340 in materials, and $2000 in coding of the microprocessor. The final
design will cost around 300$ to manufacture, including labor, and retail for
$750. Information related to costs can be seen in table 3.

IV. Commercial Manufacturing Considerations
A. Estimated number of devices sold yearly: Between 50, and 500 Instruments (dependent
on marketing)
Estimated manufacturing costs: around $300 per device (see table 3)
Estimated MSRP: $750
Estimated yearly profit: Between $22,500 and $225,000

m o 0w

Estimated cost to operate device: (SW @$0.10/kWh) about $0.012/day (cost of
electricity)
V. Environmental Impact
A. The materials used in the assembly of the Analog MIDI Guitar include wood, plastics,
silicon and metal. The wood will be bought from sustainable sources, and is a
renewable resource. The plastics, silicon, and metal, on the other hand must be properly
recycled to avoid environmental damage. All of the components will have a carbon
footprint due to extraction, refinement, and manufacturing. These could be offset by
donating to environmental trusts if the company and production grow.
VI. Manufacturability
A. To streamline the manufacturing of the device, the body of the final version will be
machined on a CNC. 3 separate parts will be made: the neck, the body, and the
pickguard. Sanding, fitting, and assembly will be done by hand and each instrument
will be tested individually before it is shipped. Off the shelf parts will be used unless

production grows to a point where proprietary boards become more cost effective.

Fluid MIDI Ribbon Guitar 42

VII. Sustainability

A. What issues may arise in maintaining the device over its lifespan?

1.

The components, such as the linear, and ForceSense resistor may wear out
during the lifespan of the device. Our company will provide replacement, plug
and play, necks, in addition to information about replacing individual
components. We will stock and supply many of the smaller, hard to find parts,

and sell them at a minimal profit.

B. What upgrades could be made to improve the device?

1.

After launch hardware upgrades will have to be implemented on later models.
However, firmware updates which add additional functionality to the device
will be provided periodically. In addition to this, Users will have access to the
code, and be able to make their own personal modifications to the operation of

the microcontroller.

C. What challenges could come from upgrading the design

1.

Some challenges in upgrading the design include being able to release one
firmware update for all versions of the device, and detecting the proper
hardware configuration to use. The microcontroller itself might need to be
changed at some point to accommodate more analog inputs, and the firmware

would have to be rewritten for this.

VIII. Ethical Impacts

A. What ethical implications does the use, design, manufacture of this device bare?

1.

Because some of the components are being bought off the shelf, it can be
difficult to determine the conditions and locations they were manufactured in.
My company will attempt to primarily use components assembled in the United
States, but several of the proprietary parts are manufactured in China. The
quality of living of the workers manufacturing the semiconductors may be
subpar, compared to the ethical standards of the United States. This may lead to
us manufacturing our own components if production exceeds the predicted

limits.

Fluid MIDI Ribbon Guitar 43

IX.

XI.

Health and Safety
A. What Health concerns could arise from the manufacture or use of the device?

1. There are little to no safety concerns for this device. It is relatively low power,
and made from components designed for human interaction. Shorts, or damages
to the device could result in failure, but should be contained internally and not
harm the user. Standard safety procedures should be used when manufacturing
the device and operating machinery such as the sander or CNC. Assemblers will
be required to go through tech training before working on assembly of the
instrument.

Social and Political Impact
A. What social and political issues could arise from the use of the device?

1. This Device will have an impact on any artists who make music, but mostly
electronic musicians. I don't foresee any negative impacts of this device to
music, or society, as its goal is only to add flexibility to the artists personal
playing style.

Development
A. What new techniques or tools that were used in the creation of this device were gained
independently?

1. During the development of this device I learned how the MIDI protocol worked,
its limitations, and workarounds to these limitations. Individual notes can’t
easily be pitch shifted, but using control signals and aftertouch, the virtual
instrument can remedy this. In addition to this, I learned about guitar
construction and assembly, after discovering that a standard guitar neck could

not be used, as the vast majority of them taper at the top.

Fluid MIDI Ribbon Guitar 44

