Audio DSP Amplifier

Will Saba
Nicholas Barany

Senior Project
Electrical Engineering Department
California Polytechnic University
San Luis Obispo
June, 2015

Table of Contents

Section: Page:
ADSHrACT: ... e 7
Chapter 1: IntroducCtion ..o e 8
Chapter 2: Requirements and Specificationscoooiiiiiin. . 11
Chapter 3: Project Plan.........c.coooiiii e 15
Chapter 4: System Design.......ccoiiiiiii 22
Chapter 5: TestiNg......ccoiii e 36
Chapter 6: Conclusions and DiSCUSSION..........ccoviiiiiiiiiiiii e, 47
RETEIENCES: ... e 51
Appendices:

A. Senior Project ANalysSiS.oovineiiii i 55

B. Software Design

C. Market AnalysSis.......c.coviiiii 120

List of Figures and Tables

Tables:
2.1) Requirements and Specifications for DSP Amplifier....................... 12

2.2) Engineering/Marketing Trade Off Metric for DSP Audio Amplifier......13

3.1) DSP Audio Amplifier Top Level Functionality................................ 15
3.2) Microcontroller Level 1 Functionality.................coooi 16
3.3) DSP Board Level 1 Functionality............cccooiiiiiiiiiie 17
3.4) Testing and Verification Plan...............coooiiiiii i, 18
3.5) Audio-DSP Amplifier Deliverables............ccooviiiiiiiiiiiiee e, 19
4.1) LCD to Arduino Connections............coviiiiiiiii e 25
4.2) Rotary Encoder to Arduino Connections...............ccoovveiiiiiiininne. 26
4.3) ADAU1702 DSP Eval Board to Arduino Connections...................... 26
4.4) Planned Menu State Chart.............coooiiiiiii e 29
5.1) Hardware Test Output Voltage Summary..............c.cooooviiiiiiinnee. 43
6.1) Final Requirements Conclusions..............ccooiiiiiiiiiiiicie e, 49
A.1) Audio DSP Amplifier Estimated Cost.............coooiiiiiiii 56
C.1) Audio-DSP Amplifier Development Costs..........c.cccovviiiiiiinnnan. 123

C.2) Competing Product Solutions Comparison.............c.ccovviiieannn. 126

Figures:

1.1) Room EQ Wizard Interface............ccooiiiiiiii e, 8
1.2) U.S Census Infographic on Computers in the Home........................ 9
3.1) Level 0 Black Box Diagram...........ccoooiiiiiii i e 15
3.2) Level 1 Black Box Diagram.........ccccoiiiiiiiii e 16
3.3) Gantt Chart Legend For Figures 3.4-3.6..........ccccoiiiiiiiiiiiiiien, 20
34)GanttChart Fall 2014. ... o 20
3.5) Gantt Chart Winter 2015,o e 21
3.6) Gantt Chart Spring 2015, ... 21

4.1) Arduino Rotary Encoder and LCD Black Box Diagram.....................23

4.2) Hardware Debouncing of a Button Switch......................oo, 24
4.3) Audio amplification and DSP Interfacing............cccccooiiiiiiinnn. 26
4.4) Sigma Studio Signal Flow Diagram, Senior Project Expo................ 27
4.5) Final Sigma Studio Signal Flow Diagram.....................coooiiene, 28
4.6) Menu Architecture, Full System..............ooii 28
4.7) Menu Architecture, Simplified................ooi 29

4.8) Cardboard Mock-up for Enclosure Design............cccoooviiiiiiiiinnn. 33

4.9) Front View Enclosure Model.............cooiiiii 34
4.10) Power Cord Recess DIMeNSIONS..........ccovieiiiiiiiiiiiiieiiei e 34
4.11) Enclosure Back Panel...........c.oooiii i 34
4.12) Painted Amplifier Enclosure. ... 35
5.1) I2C Bus Verification..............cocooiiiiiii e, 36
5.2) Sigma Studio Basic Audio Adjustment GUI Interfacing.................... 36
5.3) First Attempt at [2C Transmission................ccocoeiiiiiiiiiiiinie 37
5.4) Second Attempt at I°C Transmission...............ccceiiiiiiiiiiiiineenns, 38
5.5) Program Data Serial.print Transmission Test................cccooiiennee. 39
5.6) Param Data Serial.print Transmission Test..........cccccoiiviiiiiiiinenn. 39
5.7) File Parsing Signal Flow Chart...............ooo 40
5.8) String Parse Test.......ooiiiii 41
5.9) Filter String Import With Parameter Decoding...........c.coceiiiinain. 42
5.10) Parametric Coefficient Calculation Verification............................. 42
5.11) System Integration and Connection Testing...........ccccoovvveiviieannn. 43
5.12) 125 Hz High Pass lllustrating a 6 dB/Octave 1st Order Slope......... 44

5.13) 4 dB Low Shelf with Fcof 180 Hz............cooiii s 45

5.14) Notch Filter, Fcof 300 Hz, Q=4.........coiii e, 45
5.15) Lowpass at 500 Hz Compounded with -6 dB High Shelf 46
A.1) OSHA Sound Level Safety Chart..............coooiiiii . 59
B.1) Menu FIow Diagram..........ccooiiiiiiiii e e 60
B.2) Example REW Filter File.........coooiiiii e, 61
C.1) DSP Board Cost CompariSON...........ccouiieiiiiiiiei i eieeaeieanens 128

C.2) Estimation of Design Method Ease of Implementation.................. 129

Abstract:

The key concept of this project is to create a microcontroller system that serves as an interface
between a DSP board and a total of 4 amplifier channels. The fully integrated system will
provide a fully inclusive audio DSP amplifier for use in 2.1 or bi-amplified stereo speaker setups.
The project will focus on developing an intuitive interface that is operable from the device or a
computer that programs the DSP board for various speaker applications. The finished design will
provide a custom computer sound amplifier in one package, eliminating the need for multiple
components by interfacing two stereo amplifiers, a DSP unit, and an LCD menu using a
microcontroller. This solution will provide a more affordable alternative to the current market
solution for creating a DSP enabled, 2.1 sound system. The system will provide higher quality
audio with more customization options than current competing market solutions.

Chapter 1: Introduction

Overview

The 2 input 4 output.1 DSP audio amplifier project is an approximately 2 rack unit solution that
utilizes a microcontroller to program a DSP unit and drive a graphical interface controlled by
sensors and knobs which interfaces with a 4 channel (bi-amplified stereo) amplifier that has the
ability configure as a stereo plus subwoofer system. This device is entirely self contained in that
the user sends it an audio signal over RCA or Coaxial S/PDIF and it outputs to passive
speakers. Current solutions to a bi-amplified speaker with subwoofer (heretofore referred to as
2.1) system require you either to buy several components, use a specific set of speaker
hardware, learn how to integrate an often archaic signal processing unit, or don’t allow the end
user full flexibility over inputs and outputs. The goal of this project is to fill the niche market of a
single unit DSP 2.1 amplifier that is both easy to use and achieves high flexibility with modest
cost. To give the reader a reference for what DSP software looks like from the user’s
perspective, see below capture of Room EQ Wizard V5, the most widely used and most
powerful free DSP software available often used for home theater applications.

' Il A i EeB

™ Target eoapee [
I Fiers-Torge s

Figure 1.1: Room EQ Wizard Interface

Software such as this is extremely useful as an open source baseline for determining which
filters will achieve a desired response and can be used in tandem with this product to achieve a
more automated system. In short, this software adds microphone measurement and calibration
capabilities and through room measurement would generate a list of parametric filters, that
correct for room modes and speaker deficiencies, to be entered into the DSP system.

Why is Quality Audio Important?
Before diving into the bulk of this report, a small debriefing on what the 2.1 DSP amplifier will
provide to the consumer is helpful to understand why this solution is important. Digitally
transmitted media is becoming more and more common in modern homes. 99 percent of
american households own at least one television [17]. Most households also have computers,
and speakers.

Household Computer and Internet Use: 1984-2011

I internet use at home [computer in household
(In percent)
76.7
741+ 7.5
71.1 71.7
69.7" 63.7
61.8 g1.7
36.3 54.7
51.0 50.4
41.5
36.6
22.9
18.0
15.0
8.2 \
1984 1989 1993 1997 2000 2001 2003 2007 2009 2010 2011

*Note: In 2007 and 2009 the Census Bureau did not ask about computer ownership. The estimates presented here for 2007 and 2009 reflect
estimates made based on the ratio of computer ownership to Internet use in 2003 and 2010, respectivaly.
Source: LS. Census Bureau, Current Population Survey, selected years.

Figure 1.2: U.S Census Infographic on Computers in the Home[18]

All of the songs, movies, and shows people enjoy to everyday use audio signals. A high quality
audio signal can fully immerse the listener, amplifying the emotions felt and creating an overall
enhanced media experience. In order to obtain this experience in the home, a DSP home theater
system is a necessity.

Why DSP?

DSP is the single most flexible and powerful tool that a loudspeaker designer can use to
maximize the performance from a speaker and the fact that most if not all home audio is
conducted inside where room modes dominate frequency response means even an acoustically
flat speaker will not perform optimally in an untreated room[1]. DSP allows the end user to
correct for room response, driver matching imperfections based off of manufacturing tolerances,
transition between low mid and high frequency drivers with sharp transitioning phase response,
and is utilized in all modern surround sound receivers as well as most all professional audio
applications. DSP solutions take significant design and development in order to incorporate into
products and as such very few inexpensive amplifiers utilize them. Graphical all-in-one products

10

come at an extreme markup because most are tailored towards professional, much more
complex processing.

The biggest trend in audio innovation is the utilization of DSP to achieve otherwise impossible
(or prohibitively difficult) audio performance [3]. Marginal audio performance improvement can be
made by increasing amplifier performance compared to mass produced market available units
and due to the team’s desire to work on embedded systems rather than chip level design, we
chose a system level approach instead of electronic design [2]. There is a surprising void of
price competitive dsp amplifier solutions beyond the ubiquitous stereo DSP pro ampilifier. In
recognition of this emphasis on DSP systems and due to the fact that interfacing existing
components including: amplifiers, dsp board, and a microcontroller with a display and physical
controls to achieve a high performance system is the industry standard practice, the focus of
this project will be integrating commercially available components into a user experience
oriented, aesthetically pleasing device.

11

Chapter 2: Requirements and Specifications

The following section describes the process of how the engineering requirements and
specifications for the Audio DSP Amplifier are derived. To begin the process, the customer
desired attributes are established to determine basic product requirements. From the customer
desired attributes, the engineering requirements and specifications are created. The following
subsections highlight the process in more detail.

Customer Desired Attributes

e Production price must not exceed competing solution options, <~$500.

e Enclosure design must be aesthetically pleasing (minimal buttons, simplified 1/O panel,
no front vents).

e Size must not exceed 3u standard rack mount dimensions for potential use (via adaptor)
in audio racks: 18.19” inch wide by 5.256 tall.
Quiet, <35 dBa, operation under standard operating load.
Amplifier must be capable of handling loads as low as 4 ohms on all channels at rated
power without overheating.

e Device must have at least 6 parametric filters for equalization, with separate high pass
and low pass filters of 1st, 2nd, 4th, and 8th, orders for each output.

e Device must have user programmable limiting with variable release times for driver
protection.

e Device must not pull more than 8 amps using a source voltage of 120 V during heavy
amplifier clipping scenario (¥ duty cycle, constant clipping program material)[9].

The unit will be housed in a custom fabricated enclosure with an interfacing comprising of the
following:

LCD display

Array of rotary encoders to operate audio controls such as volume
Speaker outputs

USB input for direct access to the DSP

The amplifier should be capable of outputting 50 watts per channel (assuming a nominal 4 Q
load) for each of 4 main speaker outputs: low-left, low-right, high-left, high-right, and 50 watts for
a mono subwoofer out (that replaces the low outputs). This design will require a DSP board, four
channel amplifier, mono amplifier, and microcontroller to be purchased as the goal of the project
is to implement the system rather than design each component individually.

Requirements and Specifications

Table 2.1 Below lists the engineering requirements and specifications for this project.
The marketing requirements for this product are listed below Table 2.1.

12

Table 2.1 Requirements and Specifications for DSP Amplifier

Marketing
Requirements

Engineering Requirements

Justification

2,4,6,7 The total harmonic distortion at | Based off competitor
rated output power should be performance specs and class D
<0.1 % amplifier topology, this THD
should be obtainable.
*Money Spec[2]
1,2,4,6,7 Should be able to sustain an This power range should be
average output power > 50 sufficient for all reasonable
watts to each main output home theater and stereo
assuming 4 ohm loads for each | listening scenarios that
channel. maintains a reasonable power
supply footprint. This amount of
power exceeds all cheap
alternatives and thus puts it in
its own class.
*Money Spec
1,2,4,6,7 Should have an efficiency Maintaining a high standard for
(n>80%) efficiency is in line with the
expected class D topology and
ensures device longevity by
reducing heat generation.
2,35 Average initial setup time This length of time should be
should not exceed 30 minutes. | sufficient to connect speaker
cables and go through initial
filter setup. This is important for
the desired low learning curve.
1-7 The dimensions should not Target size is less than 3 rack
exceed 18.19” wide by 5.256” units in size such that it can be
tall by 14” deep mounted via adaptor in a rack
case.
2-6 The dsp unit should have at Individual HP/LP filters for each
least 6 parametric filters, output is key to providing
custom High/Low pass filters maximum flexibility and 6
with multiple orders with parametric filters is the average
varying topologies, and found in most professional
delay/phase for each output. DSP’s.
1,2,5,6,7 Device should generate less Critical listening applications

than 35 dBa of sound under

require silent or near silent

13

average load.

amplifiers.

Production price must not
exceed $500

Beyond this price it becomes
feasible to buy alternative
components and match if not
exceed performance, below this
price point the system carries
an edge.

6,7

Device must not draw more
than 5 amps on a 120 V circuit
under a worst case scenario.

At an efficiency of 80%,
maximum power draw
assuming sinusoidal output
should conservatively attain this
spec. For home purposes
excessive current draw can
lead to tripping a breaker or
device damage which do not
review well (marketing)
negatively impact device
reliability.

*Money Spec indicates a specification that customers are willing to spend extra in return for a

specific performance metric.

NoarwN=

Marketing Requirements:
The system should be quiet for use in a home environment.

The system should have excellent perceived sound quality.

The system should be easy to use and have a minimal learning curve.

The system shall be competitively priced (< $600) to attract the DIY end user.
The system shall be user configurable from the device and a PC.

The system shall fit in a standard audio rack mount space .

The system amplifier stage shall maintain greater than 80 percent power
efficiency for loads over 10% rated power

Table 2.2 Engineering-Marketing Trade Off Metric for the DSP Audio Amplifier

THD Output | Amount of DSP | Learning | Cost Size
Power Curve
- + + - - -
1)Device Noise 1 W) !
2)Sound Quality M ! M W W
3)Easy to ! 1 I ! T

14

Usellnstall
4)Cost -1 U W ! l T !
5)Flexibility + i} 1 W S i}
6)Size - ! I ! 7 1)
7) Efficiency |+ | | ! 1 1"

Table 2.2 above shows the correlation between marketing specifications and the engineering
design goals in a grid formation by taking each row (marketing spec) and comparing it to each
column (engineering spec). Two arrows up indicates a high level of correlation, meaning that
improving the marketing specification will correspond with a strong improvement in the
corresponding engineering specification whereas two arrows down indicates that the marketing
spec strongly conflicts with the engineering goal. Single arrows down or up apply a similar logic
with a less drastic degree whereas blank cells represent little to no relation between the
marketing and engineering spec.

Chapter 3: Project Plan

15

The following section details the overall project plan, focusing on top level functionality of
system design. Level 0 and Level 1 black box diagrams are used to showcase the system
inputs/outputs (Level 0) and subsystem interconnections (Level 1). Basic testing and verification
plans are established alongside Gantt charts displaying the overall project work schedule for
both partners. A final overview of division of labor for each partner rounds out the section.

High Level Overview:

Figure 3.1 and Table 3.1 below showcase the Level 0 Block Diagram of the Audio DSP Amplifier
as well as its respective input/output descriptions.

Power (120V AC)
B —

Microcontroller USB
—_—

DSP Board USB
—_—

Audio Signal

—_—

Audio-DSP Amplifier

— 50W Channel Output Main 1+
™ 50W Channel Qutput Main 1-

— 50W Channel Output Main 2+

— ™ 50W Channel Output Main 2-

— Menu Display

Figure 3.1: Level 0 Black Box Diagram

Table 3.1: DSP Audio Amplifier Top Level Functionality

Input/Output

Type

Description

Input

Power

Main power supply input
power: US standard 120 V/60
Hz AC

Input

Microcontroller-USB

USB connection for
reprogramming menu
behavior and active
development.

Input

DSP-USB

Connection for computer
based filter programming

Input

Audio Signal

‘One pair of RCA phono
panel-mount jacks.

16

Output Speaker Level Audio 4 Independent binding post
speaker outputs.

Output LCD Display This display serves as the
graphical interface for
programming or modifying the
DSP filters and setting
input-output routing.

Figure 3.2 and Tables 3.2 and 3.3 below showcase the Level 1 Block Diagram and function
description for the Microcontroller and DSP board.

+-LH
Power Power
s 4 Channel » *-LL
(120 VAC) Supply Amplifier
(24vDC) + RH
» + RL
DSP
Board
Step
Down
Voltage
Regulator
V)
Arduino
Micro- LCD > Menu
e B Controller Display
UsB "

Figure 3.2: Level 1 Black Box Diagram

Table 3.2: Microcontroller Level 1 Functionality

Input/Output Type Description

Input uUSB Computer to arduino with
USB Micro-b termination [4]

Input Rotary Encoder Push type knob for setting
DSP filters and limiters for
LCD interface.

Input BTN Navigating categories for
LCD interface

Input Power 7V regulated input voltage

Input/Output I*’C Digital Data Interface between DSP board

and microcontroller for

17

reading and writing DSP
configuration files. [5]

Output LCD Display Graphical interface for
programming or modifying the
DSP filters and setting
input-output routing. [4]

Table 3.3: DSP Board Level 1 Functionality

Input/Output Type Description

Input Audio signal input RCA stereo signal coming
from panel mount connectors.

Input Power 7V regulated input voltage

Input/Output I°C Digital Data Interface between DSP board
and microcontroller for reading
and writing DSP configuration
files. [5]

Output 4 channels of RCA audio 4 main channel outputs with

signal subwoofer output derived from

summing woofer outputs.

Testing/Verification Plan:

18

The projected testing and verification plan of the engineering requirements and specifications is

shown using the methods in Table 3.4 below.

Table 3.4: Testing and Verification Plan

Engineering Requirement/Specification

Plan of Verification

[2C Communication

Oscilloscope capture of 12C data transfer

Filter Frequency Response Accuracy

Use an oscilloscope to measure the
frequency response of the implemented filters
expected value within 1dB of their respective

cutoff frequencies using its FFT function

Filter Coefficient Generation Accuracy

Test one of each filter type as calculated by
microcontroller and compare the converted
biquad coefficients to those generated by
Sigma Studio (within 5%).

Self-noise Level

Noise level should not disturb the user nor
exceed 40 dBa as measured with an SPL
meter 1 meter from the enclosure (lid on).

Testing of the design itself will incorporate many pass fail checkpoints to guide debugging

including the following:

e Does the dsp boot up stand alone?

e Does the DSP accept analog signals?
o If not then modify source selection hardware/firmware and check jumpers
e Does the output voltage of the DSP match the input sensitivity of the amplifiers?
o If out of range (clipping the output or too small of an input), adjust input
sensitivity fixed gain settings for the amplifiers such that full scale output
of DSP corresponds with maximum power output of the amplifier.
e Does the main menu behave as expected, transitioning from menus to submenus

smoothly?

o If not, check microcontroller code, verify LCD driver is behaving properly,
and check for memory leaks and finite state logic errors.
e Does changing DSP settings make an immediate impact on sound?
o If not, verify that microcontroller is forcing a DSP board reset and that it is
uploading the new file with the configuration profile.

19

Project Schedule:

Nicholas Barany:

My focus on this project is primarily creating software to interface the microcontroller with the
physical hardware of the system. The rotary encoder, volume knob, menu control buttons and
the LCD Display communicate with the microcontroller directly without the need for a serial
protocol interface[4]. Since this portion is not as difficult the 1°C interfacing of the microcontroller
and the DSP board[5], | am also working alongside my partner to finish the DSP interfacing after
the physical hardware interfacing is complete. Both us are testing the system once fully
assembled, however my testing focus once again lies with the physical hardware interfacing that
| coded. See the Gantt charts in Figures 3.5-3.8 below for a more detailed division of labor.

Will Saba:

The maijority of my contribution to the project is focused on interfacing between the
microcontroller and the DSP unit. Specifically, | am in charge of writing the configuration code
for reading, modifying, and exporting DSP settings files such that the microcontroller LCD
interface can be used to program the DSP. | am also the design lead for the construction of the
system’s physical enclosure as | have more enclosure design experience. Furthermore, the
audio testing and filter verification sections remain in my focus. Both my partner and | are
splitting the documentation effort and LCD menu design. Near the end of the development
process,(specifically in the testing and bug testing software phase) the task allocation will
become more team centric due to the nature of the problems.

Table 3.5 below showcases the deliverables for this senior project. These are key project
deadlines that are included in the Gantt charts of Figures 3.3-3.6 below.

Table 3.5: Audio-DSP Amplifier Deliverables

Delivery Date Delivery Description
02/20/2015 EE 460 Report
02/20/2015 Design Review
03/10/2015 EE 463 Prototype Demonstration
04/20/2015 EE 464 Report
05/11/2015 EE 464 Demonstration
05/11/2014 ABET Senior Project Analysis
05/31/2014 Senior Project Expo

Figures 3.4-3.6 on the next two pages showcase Gantt Charts that display a more precise
division of labor and projected completion goals and dates. This a tentative schedule that may
be adjusted as the project progresses.

WEEK NUM

Project Plan (EE460 Proposal Requirements)

Idea Pitch
Literature Search
Abstract

CH 1: Introduction/ Market Research

CH 2: Requirements and Specs
Gantt Chart

Cost Estimates

CH 3: Functional Black Diagrams
ABET Analysis for Project

First Pass Senior Project Definition
Report Plan Document (1st Draft)
Report Plan Document (2nd Draft)
Advisor Feedback and Contact

—

Key Color

Work In Progress Will _
Work In Progress Nick
Work in Progress Mixed
Complete by

Due Dates

Advisor Contact/Feedback
Break

Major Segments _

Figure 3.3: Gantt Chart Legend for Figures 3.4-3.6

Fall 2014
w1 W2 w3 W4 W5 w6 w7 wg w9 W10 wi1 W12
SEPT ocT NOV Dec
22 29 06 13 20 27 03 10 17 24 01 08

Figure 3.4 Gantt Chart Fall 2014

Parts Procurement and Initial Testing
Select Prototype Components
Purchase Prototype Components
Test Amplifier(s) Stand-alone
Learn how to send profiles to DSP board
Verify DSP board USB Programmability
Microcontroller Interface
Create Complete Menu Flow Chart for LCD
Design and Interface Buttons, Controls, and LCD
Create Working Menu System
Create Data Qutput System to Set DSP Board
Implement Microcontroller into Test System
DSP Unit Testing
Interface DSP with Micontroller, Verify Filter Import
Test, Program and Integrate USB control
Verify independent USB and front panel control

Winter 2015

'WEEK NUM w1 w2 w3 W4 W5 we
MONTH JAN FEB
DAY 05 12 19 26 02 09

Winter Break

NJ

Test DSP Board Output Level and Frequency Response

Test Filter and Device Accuracy
Reports and Presentations

1st Draft Senior Project Report

EE Department Design Review

Advisor Weekly Progress Report

System User Manual

EE 463 Prototype Demonstration

System Overview Testing
Debug and Stabilize Microcontroller Code

Test DSP Board Output Level and Frequency Response

Test Filter and Device Accuracy
Power Supply Integration
Stand Alone Operation Verification
Full System Integration
Full System Breadboard Prototype Testing
Fine Tune Proto-Type, Adjustments and Test
Physical Enclosure Design, Component Layout
Enclosure Manufacturing
System Assembly and Component Mounting
Simplified Menu Architecture and File Parsing
Reports and Presentations
1st Draft Senior Project Report
EE Department Design Review
Advisor Weekly Progress Report
System User Manual
EE 462 Demo and Report
Sr. Project Expo Poster and Presentation
ABET Sr. Project Analysis

W7

16

W8

w9
MAR
02

N

1

w10 wil

09 16

Figure 3.5: Gantt Chart Winter 2015

Spring 2015
WEEK NUM w1 w2 W3 w4 W5 W6
MONTH MAR APRIL May
DAY 30 06 13 20 27 04

Figure 3.6: Gantt Chart Spring 2015

W7

11

w8

w9

25

W10 W11
June
01 08

22

Chapter 4: System Design

The goal of this chapter is to fully describe how the system is configured and operates from both
a physical connection and software logic point of view. As such, this section includes details
such as wiring diagrams for the display and SolidWorks models for the enclosure. Further, this
section specifies hardware and software flow both from a menu and SigmaStudio perspective.
Finally, this section also addresses strategies employed to combat memory limitations as it
pertains to coding structure.

Hardware:

The following hardware components below are used to interface and operate the DSP amplifier
system:
e Analog Devices ADAU1702 Eval Board
Arduino ATmega328p
HDM16216H-B Hantronix LCD display
24VDC — 7VDC Drok Voltage Regulator
1 COM-09117 Rotary Encoder
Resistors: 9.1kQ, 4.7kQ, 4.7kQ, 2.2kQ, 2.2kQ, 2.2kQ
Capacitor: 1uF
20 male-male leads
3 female-male leads
2 2’ stereo RCA cables (DSP to Amps)
4 2’ 16 gauge speaker wire segments (power, gnd)
4 6” 16 gauge speaker wire segments (speaker out)
4 Dual banana terminals
1 RCA pair of terminals
1 AC power cord

23

Figure 4.1 below showcases the black box diagram for the front end interfacing between the
rotary encoder, the ATmega328p, the ADAU1701, and LCD display.

—
"Power" "Digital" I jlg
12
5V Vin — — 1] D
11
5V 10 | o e— K
GND 9 I 10
Ri R P 8 —H | :
ATmega328 |7 | 7 .LCD
6 6 Display
'Analog 5 5
Rotary Encoder 0 4 4
™ ENCH1 L ; 3 g
2 =
C.[GND r 3 1 1
— BTN2 4 0 15
ENC2 5 16

Figure 4.1: Arduino Rotary Encoder and LCD Black Box Diagram

The component values R1 and C are set to debounce the button. Both R values are pull-up
resistors that can range from ~1k to ~5k. More detail on chosen component values is shown in
the debouncing and pull-up sections below.

Pull-Up Resistors

Pull-up resistors are resistors that are tied from the signal conductor to the positive rail to ensure
that digital logic levels are met if high impedance or communication device disconnection is
introduced to the circuit. Primary uses for these resistors in this project are for establishing solid
I>C communication bus voltage levels and stable logic levels for the rotary encoder signals.
Pull-up resistors can have any value between 1kQ and 5kQ to be effective. Choosing a resistor
value between this range ensures enough current is drawn for the device to recognize the
transition.

Rotary Encoder Debouncing

Debouncing is necessary in order to prevent the arduino from triggering multiple interrupts upon
pressing of the rotary encoder. While software debouncing is possible, it is taxing on the
microcontroller’s processing power. Hardware debouncing using an RC circuit is a more
effective approach to solving this issue. Figure 4.2 below shows a basic schematic of
debouncing a switch (such as a button).

24

: J_E
’l’\c

}

Figure 4.2: Hardware Debouncing of a Button Switch

By placing a capacitor in parallel over the switch and a pullup resistor from the output to the
positive rail, an RC circuit is formed. While the switch is open (i.e unpressed button), the
capacitor charges from 0 to 5V over time. The logic level will reach from low to high at time

1= R,C,. When the mechanical switch is closed via a button press, the capacitor discharges
slowly through R, to ground. R, prevents any bouncing spikes that may occur the switch is
closed, while R, prevents any bouncing as the switch is opened. The general recommended
time constant value for button debouncing is about 0.5msec. The following calculations are used
to determine the resistor values needed to debounce a circuit at 0.5msec with a 1uF capacitor:

Vcap = Vinitiale(_ﬂRC)

R=R,+R,

V,, = The worst-case transition point for a high-going signal on the arduino (3V)
V... = Rail of the device (5V from the arduino’s voltage regulator)

t = 0.5msec (desired debounce time)

C = 1uF (arbitrarily chosen)

3 = 5exp(-0.0005/R(1x10?))

In(0.6) = -0.0005/R(1x107)

R =-0.0005/[In(0.6) * 1x10®)

R = ~978Q — 1kQ standard value with 5% tolerance

Note : R, as the pullup should be fairly larger than R,. A ratio of around 4~1 was used.
R, = 810Q standard value with 5% tolerance
R, = 220Q standard value with 5% tolerance

However, the button debouncing time proved to be not sufficient, so the debounce time was
raised to 5ms. Leaving the capacitor at 1uF, R, and R, were approximately resized by a factor of
10.

Final Hardware Values:

R1 = 9.1kQ standard value with 5% tolerance
R2 = 2.2kQ) standard value with 5% tolerance
C =1uF

25

Note: Even with this hardware debounce extension, a software delay during the button press
ISR of 50ms was necessary to ensure proper debouncing.

Wire Connections

Tables 4.1-4.3 below list the pin connections for each interfacing component.

Table 4.1: LCD to Arduino Connections

LCD Pin LCD Name Arduino Pin Arduino Port Name
1 Vs POWER:GND GND
2 b POWER: 5V Ve
3 o GND GND
4 RS DIGITAL:11 PB3
5 R/W DIGITAL:10 PB2
6 E DIGITAL:12 PB4
7 DBO
8 DB1
9 DB2
10 DB3
11 DB4 DIGITAL:4 PD4
12 DB5 DIGITAL:5 PD5
13 DB6 DIGITAL:6 PD6
14 DB7 DIGITAL:7 PD7
15 LED+
16 LED-

Note: The blank spaces in Table 4.1 above are left blank because these connections were not
used for this portion of interfacing.

26

Table 4.2: Rotary Encoder to Arduino Connections
Rotary Encoder Pin Arduino Pin Arduino Port Name
ENC1 ANALOG: 2 PC2
GND GND GND
ENC2 ANALOG: 3 PC3
BTN1 DIGITAL: 2 PD2
BTN2 GND GND

Note: A capacitor should be placed in parallel over BTN1 and BTN2 and a pullup resistor should

be placed from BTN1 to the rail to debounce the switch.

Table 4.3: ADAU1702 DSP Eval Board to Arduino Connections

Jumper Jumper Jumper Pin Arduino Pin Arduino Port
Description Number Name
External SPI/I°C J8 1 ANALOG: 4 PC4
External SPI/I*)C J8 3 ANALOG 5: PC5
External SPI/I*)C J8 10 GND GND

Note: Pull-up resistors are needed to pull the I°C bus up to 3.3V. Using the 3.3V voltage
regulator on the ATmega328p, this is easily achievable. The DSP board must also be powered
from J14 with a DC supply between 6V and 9V.

Chassis

120V AC

LN (AC)

24v0C Voltage
Regulator

7VDC

avoc A\

WCC GND
Rout

Ri
@y TDA7492 Rod
. il"C\ass\ D Amplifier

L out
(ch2} Board ou 2

| N—

(eh1)

Class D Amplifier

Glob Tek DC
Supply
RT-35150-24-C .
Earth G +24 GND
24VDC
A
VCC GND
RCAL — ADAU 1702 ou!
RCAR ——» EVAL Board ™%
\ SDA SCL GND)
'S
SDA SCL GND
7vpe ———1 Arduino Uno
—

Board
VCC GND

Lin
(ch2) Qut2

24vDC

Figure 4.3 : Audio Amplification and DSP Interfacing

—l_/—\
R TDAT492 Soif—— Hi

L oyt [Exemal hanana

27

Figure 4.3 depicts the wiring diagram for the audio signal chain and power source. Stereo audio
is received from the front panel of the enclosure via RCA panel mount connectors using a bare
wire to 3.5 mm interconnect. The entire system runs off of a 24V DC powersupply with the
microcontroller and DSP receiving regulated power and the amplifiers directly connect in parallel.
RCA cables are used to connect the outputs of the DSP to the inputs of the amplifiers, jumpers
connect the Arduino to the DSP and regulator, and bare wire connects the amplifier power,
ground, and output signal.

Software:

DSP Signal Flow - Senior Project Expo

Programming the ADAU1702 DSP EVAL board starts with creating and editing a Sigma Studio
project file. This project file designates hardware configuration, register control (for editing input
types, ADC and DAC muting, program length and interfacing), and a functional block
implementation of each DSP function to implement with the signal flow order indicated with
yellow wire. In line with the philosophy of simple is better, the following filter blocks in Figure 4.4
represent the most straightforward to operate, yet still useful, DSP code as implemented for the
senior project expo.

o =l
® - . Zilg
—e@® 2 v || =R
em®on®oq®on®en®en® | g -] LS e
(Ow@m@e@mem®a. | oge)) ®°] = —
:'--;\. 24 Order Eq Filter Bank ——] h e § LE&ummer ”u-ws
: J .‘ High-pass protect @’ P L 1L N A ey
::U:*E " 0 . a ﬂ : ‘:\ Left High - g‘ : Right Lows
% U 2 S e S ! i Right Limiter
* B - S— o[22 1)
E Right High
Input l Volume

Figure 4.4: Sigma Studio Signal Flow Diagram, Senior Project Expo (May 29)

Key limitations of this version of the code (as constrained by microcontroller editing) include the
high-pass protect and limiters had to be implemented in the boot sequence, the crossover filter
type and slope is fixed to Linkwitz-Riley 24 dB/octave, and only the first filter within the EQ
bank is menu editable. Most of these limitations result from limited microcontroller memory
disallowing a more thorough menu structure with the exception being the crossover filter type
which was chosen to be fixed for simplified user experience and because it is the correct type in
excess of 90% of setup cases (Also, most users won’t know or hear the difference between
types). Following the expo, we chose to develop a filter parsing function within the
microcontroller that allows the user to implement up to 10 filters and a mono subwoofer mode

28

using a Room Equalizer Wizard' (heretofore called REW) generated preset file (simulated using
text strings stored in EEPROM). This preset file parse function expands the original capabilities
of REW’s auto-EQ by allowing the user to add notch, low-pass, and high-pass filters to the
exported text file using the same format as the filter types implemented by the software. This
preset file handling works based on the known order of words and thus the filter format must be
followed exactly to behave correctly. See testing section for more information and an example
text file displaying the expected format. Figure 4.5 below showcases the final signal flow
diagram used for the DSP amplifier.

| ®@ 00 ©0 ©0 ©®@ 00 00 00 ©o o Fikialloigelmt
@ @ B 8 8 8 8 B8 G
" - @ 0
* 0 % i - =
| & T o PR
: Sy
- Crossover and Filters @
Low Out
Lo ¥
ie i T
a Lk @ L] A
. d @ 2 *
i @ = *
Inputs and Vol N d
— s Submode Stereo = Mono if enabled
i High Out
g [oxc2]

Figure 4.5: Final Sigma Studio Signal Flow Diagram

Menu - Architecture

The menu structure embodies the primary goal of the design Ul: keep it simple. Minimal buttons
and a simplistic memory structure keep the learning curve as intuitive as possible. The user
adjusts the DSP parameters using a single knob on the front face of the enclosure, displayed
using a 2-line seven segment display. The original menu layout (realizable with increased
microcontroller memory) displayed parameters such as crossover point, filter type, EQ and
speaker protection each have their respective sub-menu stemming from the top and are
accessed with a single press of the menu button. Figure 4.6 below shows a high level
description of this original menu flow in its entirety.

| MENU

[, T = T 1
Spesker Setup, 1 C 2 ualizer (& bands), 3 Speaker
| Back, & rOSSOVEr, i Eq (i =), et
—

___r ™ = N) T 1 |
‘ Back,3 ‘ ‘ T (&EFED,,SU,, - Back2 |[FiltarType,l ’;Equenrm2| Rilt=rils Back,7 ‘ Limiter,1 ‘Wuufer HP,21 | Back,3 |
| | | L B L] | N
Update | ‘ Back,5 ‘ | Type,1 | ‘ a,2 ‘ ‘ Freq,3 ‘ | Gain,4 | ‘Waoaofer Limit e |
| Backz Confirm, 1 ‘ Bwiz,mwz4, | FREQT | (dB), 1* =
LR12, LR24* ! — -
P 'iJSNa;‘;-_hJ q_array* fe_array® | |gain_array® Tweeter limit
— J (dB), 2*

Confirm, 1 ——I Back, 2 [
| Back, 3

Figure 4.6: Menu Architecture, Full System (full size diagram in appendix B)

! http://www.roomeqwizard.com/

29

Note: each starred parameter in both menu architecture diagrams corresponds to a push turn
command that edits the labeled value for the above menu architecture diagrams.

Volume, 0

|
Back, 5

Crossover
Frequency*, 0

fcLookup

s

Figure 4.7: Menu Architecture, Simplified

1 | 1

1
i Filter Filt
Fiter Typer 1 \Q,,,z FiterGan'3 eraquaney
7) _I_i
PK, LS, HS, Looku | i | |
NOTCH q p gainLookup fcLookup

Figure 4.7 above is the simplified menu state chart. It matches planned operation (Table 4.4)
except the simplified menu follows a linear layout with a single parameter layer for decreased
glitches and ease of use. As such there is not a separate state chart for the simplified layout.

Menu - Code Layout

The menu state behaves as a state machine (internally) and is maintained with an integer array
and follows the below format: menu(depth, Ivl 1 sub-branch, Ivl 2 sub-branch, Ivl 3 sub-branch,

Ivl 4 sub-branch). The default value for each of these variables is 0 and the menu variable itself
is updated asynchronously on button presses and encoder rotations. Table 4.4 below displays a
more in depth description of the menu state operation.

Table 4.4: Planned Menu State Chart

menu Name of Display Update uC Update DSP
Value ltem
[0,**** Volume: Turn right ++ setVolume(dBarray(volume),
[volume] Turn left -- device address, target
address, step address))
[1,1,0,0,0] | Speaker Speaker -- Sub Mode (mono bass directed to
Setup Setup left output channel) implemented
using filter readin version of code
using command SUBMODE --
Default is stereo woofer mode.
[2,1,1,0,%] Bi-amp set | Bi-amp
[3,1,1,1,*] | Confirm Confirm Yes | Setoperating mode to 0 On press ->Call
Bi-amp Call 2 back functions NOSUB_download
[3,1,1,2,*] | Confirm Back Call back function
Bi-amp

30

[2,1,2,%%] Stereo + Stereo + sub
Sub set
[3,1,2,1,%] Confirm Confirm Yes | Setoperating mode to 1 On press->Call
S+sub Call 2 back functions subModeEnable(mute/gain
addresses here);
[3,1,2,2,*] | Confirm Back Call back function
S+sub
[2,1,3,%7 Back out On press ->Call Back function
Speaker
setup
[1,2,*** Crossover | Crossover
2,2,1,%%] Filter type Filter type: Read active filter type as shown
[active] [active**] E.G. Crossover Type: LR24
(string array
of types)
[2,2,1,0,*] | Update . Call:
Active filter | Update If button pressed ->Update active setCrossover(freq, 8 biquad
type, push crossover type global, call calculate crossover | filters)
turn state type index >calculate variables, after safeload
variable call back* Requires each biquad to be
initialized as such:
LP1L
->setBiquad(bqg_type_lowpass
LR,
DEFAULT_CROSSOVER_FC
/ sampleRate, 1, 0);
[2,2,2,%] Frequency | Frequency: Read crossover freq array index
[active**]
[2,2,2,0,] Update Index ++ or If button pressed Call:
crossover - ->Update crossover freq array index, | setCrossover(freq, 8 biquad
fc, push [crossover.fr | -> call setCrossover filters)
turn state eq[index]] call back™
[2,2,3,*F Crossover Back Call back function
back out AN
[1,3,%** Equalizer Equalizer
2,31, Filter 1 Filter 1
[3,3,1,1,] | Filter1— Filter 1: Read filter type, send enumerated safeLoadFilter(filter1, address
Type filter1-> type to print function of first destination coeff)
** setType On push turn: set new type
[3,3,1,2,] | Filter1-Q Filter 1: Read q index, send Q value to safeLoadFilter(filter1, address

*%k

filter1-> setQ

screen
On push turn: increment Q index

of first destination coeff)

31

[3,3,1,3,] Filter 1 - Filter 1: Read Fc index, send Fc value to safeLoadFilter(filter1, address
Freq filter1-> screen of first destination coeff)
** setFc On push turn: increment Fc index
[3,3,1,4,%] Filter 1 - Filter 1: Read gain index, send gain value to | safeLoadFilter(filter1, address
Peak Gain | filter1-> screen of first destination coeff)
setPeakGain | On push turn: increment gainLookup
index
[3,3,1,5,%] Filter 1 - Filter 1 - Call back function
Back Back Write filter 1 index variables to file
Repeat structure for filters 2 through 6 Adjust [, X,*,*] where X =
filter number
[1.,4,*** Speaker Speaker
Protection | Protection
2,4,1,%%] Limiter Limiter
[3,4,1,1,*] | Woofer WEF Limit: Read WF limit index
Limiter [wf_lim_i -6
1dB
[3,4,1,1,0 Woofer If push turn— update wf_lim_i within Read index, utilize dB lookup
Limiter Adj range [-40 dB to 0 dB] table.,
corresponding to dB array setLimiter(dBLookup[limiterind
Else-Call back ex-15], DEVICE_ADDR_IC 1,
MOD_LIMITERRIGHT_LOW._
ALGO_THRESHOLD_ADDR,
MOD_LIMITERLEFT_LOW_A
LGO_THRESHOLD_ADDR);
[3,4,1,2,*] | Tweeter TW Limit:
Limiter [twLimitdB_i-
6]dB
[3,4,1,2,0] | Tweeter If push turn— update tw_lim_i within | setLimiter(dBLookup[limiterind
Limiter Ad, range [-40 dB to 0 dB] ex-15], DEVICE_ADDR_IC_1,
push turn corresponding to dB array MOD_LIMITERRIGHT_LOW _
statej Else-Call back ALGO_THRESHOLD_ADDR,
MOD_LIMITERLEFT_LOW_A
LGO_THRESHOLD_ADDR);
[3,4,1,3,7] Limiter Back * *
Back
[4,4,1,3,1] | Limiter Back Call Back Twice
Back [SEL]
[2,4,2,%,* Protection Low Cut: [20 | Read HP_prot i
HP, setin +
bootup 5*HP_prot]
[2,4,2,0,*] | Woofer HP | HP_prot_i ++,ii update safeLoadHP
Push turn ++, update (hpLookup[HP_prot _i))
state filterindex

32

[2,4,3,**] | Speaker Back * *
Pro Back
[1,5,%,%* Top Back Back If pressed - call back -> volume

**This parameter operates using push turn, using is_pressed, and is_released in combination
with turn direction to determine parameter updates.

Altalic states indicate menu states not implemented in actual system either for memory reasons
or because they were deemed unnecessary.

Active Parameter Update - Safe Load

Safe load is the soft write functionality enabled on Analog Device DSP boards that works by
using 10 dedicated registers to temporarily store 5 parameters worth of data and their respective
memory locations. The main control register contains a bit specifically for toggling the safe load
download which essentially tells the DSP to transfer the bytes in the safe load data registers

into the locations designated by the values stored in the safe load address registers at the next
free moment the processor has so as to not disturb the audio stream. These 5 register writes
are enough to update a single Biquad and filters that require multiple Biquads simply repeat this
loading process as many times as needed. For instance, the crossover update requires 8 such
safe load writes because it requires 8 Biquads to update a 2 channel 4th order crossover. One
important thing to note about the DSP is that it stores Biquad coefficients A1 and A2 inverted in
memory and as such those values must be inverted prior to being sent to the board.
Furthermore the DSP stores all variables in 5.23 fixed point format in its 28 bit registers and thus
it is important for the safe write register function to convert input coefficients to the correct data
format, and then manually split the bytes for data transmission.

In completing a safe load write the following write order must be followed: upper byte safe load
data register, lower byte safe load data register, 0x00, 4 bytes of parameter data MSB to LSB,
send data, safe load address register upper byte, safe load address register lower byte,
destination register upper byte, destination register lower byte, transmit data®. We tested this
coefficient conversion and transmission process using a simple on/off command (1 coefficient
written) followed by a full filter update using both pre-generated coefficient data and Biquad
calculated parameters.

Memory Allocation

The arduino and most like-costed microcontrollers have a limited amount of local variable
memory for use in executing functions and large arrays such as the DSP’s Param_Data tend to
exceed the allotted 2 kB of variable memory..The program data and parameter memory required
to boot the DSP board must be stored in progmem (ROM storage within the Arduino) and
extracted using special pgm_read functions to avoid dynamic memory overflow. Specifically,

the DSP program and data registers must be stored in progmem because the boot sequence
reads these 2 primary arrays that control DSP core function over I’C and writing them without

33

splitting it into pieces and progmem storage causes dynamic memory issues. In order to
overcome dynamic memory limitations, each register of program memory and parameter
memory is written one at a time with it's respective number of bytes using separate functions(5,
4 in order). The DSP boot sequence requires approximately 6.5 kB of memory which is a large
portion of the total system code, next to the menu in its entirety.

In developing the user interface and system overall, a number of challenges derive from the
Arduino’s limited code space (32 kB). In order to have enough memory to run Serial.print, the
primary testing and verification procedure for filter calculation and update, the display was
disabled, or sections of the menu - via comment. The end decision to implement two separate
firmwares resulted from the thought that there should be an advanced - computer filter load
firmware with a very limited menu of volume and crossover frequency control, and a more in
depth - live menu edit mode. With approximately 128 kB of memory, both of these functional
systems would run together and provide both user presets, Room Equalizer Wizard integration,
and other advanced functionality. To expand the functionality of the system while remaining
under 85% uC memory usage (above which menu overflow prevents the DSP from booting),
both halves of the system utilize separate microcontroller and DSP code. See appendix B for
information regarding filter format.

Enclosure Design

The enclosure design utilized cardboard mockup followed by SolidWorks modeling. MDF was
chosen as the material of choice because it is easy to cut and takes a duratex finish (patterned
black paint with enhanced durability used in professional audio gear). See Figure 4.8 below for
determining required width and depth using an arbitrary box (height constrained by power supply
and wire clearance).

Figure 4.8: Cardboard Mock-up For Enclosure Design
The following box was designed for MDF %4 inch material using the following model (multiple
views included).

34

Figures 4.9-4.11 show the Solidworks modeling of the enclosure.

,L,—f/-”:‘fh\\ Y
3

Figure 4.9: Front View Enclosure Model

1.00

Figure 4.10: Power Cord Recess Dimensions

8.00

19.50

Figure 4.11: Enclosure Back Panel
The enclosure is finished using Duratex speaker coating for durability and its sleek look (see
Figure 4.12 below). The holes for speaker terminals, display cutoff, and power switch are
machined using a combination of CNC routing and a drill press.

35

Figure 4.12: Painted Amplifier Enclosure

36

Chapter 5: Testing

I’C Communication Testing

Verifying I°C Bus Connection

The first step necessary to ensure communication between the ATmega328p and the
ADAU1702 DSP board is to establish an I1°C bus. Using a pre-written Arduino sketch called
I2CScanner.ino (see Appendix B for code below), device connection can be observed via the
serial monitor on the computer. Figure 5.1 below displays the serial monitor recording of I°C bus
communication along with the addresses of each device. The I°C device address for the
ADAU1702 DSP board is identified as 0x34.

€ COM4 (Arduino Uno) =8| =
Send |
2

Scanning...

I2C device found at address 0x34 !
I2C device found at address 0x50 !
done

Scanning...

I2C device found at address 0x34 !
I2C device found at address 0x50 !
done

Scanning... ol

[Autoscroll .Nohneendng v |9800baud w

Figure 5.1: I*C Bus Verification

ADAU1702 Sigma Studio Boot Sequence - Audio Output

Before testing that the microcontroller can boot the DSP board via I°C, the board is first tested
using the ADAU1702 Sigma Studio software GUI to verify that audio can be received and
outputted from the DSP board. Figure 5.2 shows the software setup GUI for receiving,
processing and outputting audio signals. The DSP correctly filters the signal when booted from
the USB connection.

[SR U—
@ - :;IE
'.() _ [2hC] _ [2Xc] _ [2Xc] _ (2XC)] _ e _ @ J o " R o—e[DA ¥
* 1 og® e
i ‘.-"0 * =
| ?“.() w0 @ - | e
. o@ 2
v * @
v Lo 4= \le|DA >
) & Ce-leDa v M
—— 4 t -:. §

Figure 5.2: Sigma Studio Basic Audio Adjustment GUI Interfacing

37

Figure 5.2 displays the signal chain of the test system. The bank of filters controls the EQ,
high-pass at 30 Hz with the limiter protects the woofers, and the volume analyzer monitors the
signal level for testing purposes.

I°C Transmission Verification

In order for the boot sequence to be successfully received by the ADAU1702 via the arduino,
the information sent over I?C must be verified to match the desired array values. Using an
oscilloscope set for IC transmission, the SCLK (clock) and SDA (data) signals were captured
during data transmission to observe the hexadecimal values sent. Figure 5.3 below displays the
first transmission I1°C from the microcontroller to the ADAU1702.

MSO-K 20128, WY53280108: Frilay 01 07:4348 2015
1200y 20 200V 401.1% 200.05/ Stop L 2 3.23Y

=2 Agilent

i Acquisition
Morrmal
25 0kSa/s

O AR U T L
SCLE/ \ v \ \/ V\/\/ o 1001

O O O O Y Y It Y A

iy

_ |
L ——]
R
—
|
| ——"]
= |
L ——]
= |
| —
= |

2_|-_>5D:'-‘il 1}]] i i i [[} 2. 76kH=z
= Max(1):
3.78Y
Duty[1]
5(12C 20%
Channel 1 Probe Menu: 10.0: 1
2 Units +3 Probe 3 akew Frobe
Yolts 100:1 0.0s Check

Figure 5.3: First Attempt at 1°C Transmission

Note the jagged transmissions observed above. I1°C needs to have very flat distinct high and low
digital logic levels to ensure correct bit transmission. This problem was solved by establishing
pull-up resistors to 3.3V instead of 5V. The ADAU1701 needs to operate on a 3.3V bus while the
arduino operates on a 5V bus. Figure 5.4 below shows the transmission after changing the
pull-up rail voltage.

38

WSO 20128, MYS3280108: FriMay 01 08:11:57 2013
10200V 20 200/ 403.02 10.00%/ Stop 2| 2 323V

i+ Agilent
Acguisition
Mormal
5.00MSa/s
[ﬂ (}.J-# Channels
i 17 i T oo 10.0:1
f r oC 10.0:1
1M{sCLL
T
" e | Cursers B
I S I o At S n (1 e
+16.000000us
AKX
2plSDA1 VRN I Nl] N [1 | — U i} +B2 500kH:z
) AY[1)
-9 64825y
5 [12C 00a 00a

Cursors Menu
+0 Mode 13 Source 4> Cursors Units ¥1: 407 10280000ms
Ianual SCL1 *1 - X2 401.11880000ms

¥1: 1.64828Y
¥2:-8.00000Y

Figure 5.4: Second Attempt at I1°C Transmission

After adjusting the rail to the appropriate 3.3V, the signal clarity improved drastically.
Transmission is verified as usable, but the correct data is still unverified.

Boot Sequence Verification

In order for the arduino to turn on the DSP board, 1536 bytes of program data and parameter
data must be sent to the board via [2C (see main_showcase_IC_1.h in the appendix for exact
arrays). To avoid dynamic memory overflow, these arrays are stored in flash memory using the
pgmspace.h library. By type defining the large Program_Data_IC_1 and Param_Data_IC_1 as
PROGMEM, the arduino can avoid attempting to write the entirety of both arrays during 12C
transmission. However, the arduino can only extract one byte at a time when using PROGMEM.
Using appropriate logic and pointers to the location of the desired arrays, the necessary
information can be extracted from PROGMEM and sent to the DSP board.

The boot sequence function (default_download_IC_1) is broken down into 3 different functions
described below:

SIGMA_WRITE_REGISTER_PROG: The program data must be sent in 5 byte increments.
SIGMA_WRITE_REGISTER_PARAM: The parameter data must be sent in 4 byte increments.
SIGMA_WRITE_REGISTER_BLOCK: Register setting data that is 1 byte only.

The core register of the ADAU1702 must first be set for data transmission using

SIGMA_WRITE_REGISTER_BLOCK. The program data and parameter data is then loaded
using SIGMA_WRITE_REGISTER_PROG and SIGMA_WRITE_REGISTER_PARAM.

39

After the parameter data is fully loaded, the core register must be loaded with a a few more
bytes using SIGMA_WRITE_REGISTER_BLOCK. The boot sequence is verified to work by
powering both the arduino and the DSP board with 7VDC, providing an input audio signal on
input 0/1 and listening to the audio source transmit with the firmware defined lowpass
(implemented with the crossover) on the DAC output 0/1 through headphones.

Figures 5.5 and 5.6 below illustrate the boot sequence Program and Param data being sent over
I12C as monitored using Serial.print commands. Note that serial print prints hex values without
the Ox prefix and ignores leading O’s

afdtenp = address:

L85 2
LBE #ifnder cbi % Snlppmg TOOI
a7 #define cbi(sfr, bit) (_SFB_BYIE(afr) s= ~_BV(bit)) File Edit Tools Help
Lea #endif
186 for (reqeount=0;regeounte length_reg regoountit) Iy I N o
I P bd 5 D | L] @
LS Wire,begin 1smission(devaddress);
192 dtemp +regcount) s 0xFFOD) >> 8);
1 Vire.write((addtempiregeount) & 0x00FF); J* DSF Program Data */
5 Serial.printipom_read_byte (pDhatat+addeount) ,Hex) @ :7 #define PROGRAN STZE IC 1 2560
LS5 Serial.print{”, "]; €20 #define PROGRAM SIZE IC 2 512 // Bupber of Prog registers to write during boot-up
156 Serial.print{pgu_read_byte (pDatataddeount+l) EEX) ;
LG Serial.print(", "); 0 #detine PROGRAM_ADDE_IC_L 1024 @ comil
L Serial.print(pgm_read_byte (pData+addeount+2) KEY) 1
158 Serial.print(”, ™): 72 ADI_FEG_TYPE Program Data IC_L[PROGRAM SIZE_IC 1] = {
100 Serial.pr m_read_byte (pDatataddeount+3) ,HEX) ; 0x00, 0x00, 0x00, 0x00, O0xD1, Program Data Begin
0 Serial.print A 4 0x0DO, Ox00, Ox00, OxER, 0x01,]
0 Serial.print(pgm_read byte pData+addeount+d) HEY) 75 0x00, 0x00, Ox00, 0x00, 0x01, 0
{ Serial.printin{”,”): 76 0x00, 0x08, Dx00, OxE@, 0x01, 0
(i Wire,vrite(pgm_read byte (pDatataddcount)): 77 0x00, 0x02, Ox00, Ox20, Ox01, 0, 8,
205 Wire.write(pyn_read byte pDatataddoownt+l)); & %00, 0xl0, Ox00, OxEZ, 0x01, 0, 2, 0,
0 Uire.urite (pgm_read byte(phatataddeountdZ)); < 0%00, OXOA, OXO0O, Ox20, 0%01, o
. Vire.wrire (pgn_read_byte (phatataddeount+3)) : 50 0x00, Ox1B, Dx00, OxEZ, 0x01, o
[Vire.wrice (pom_read_byte (pDatataddeount+d)) ; 21 OxFF, OxF2, Ox0l, Ox20, Ox01, 0
0 addcountt=5; 0x00, Ox21, Ox0B, 022, Owdl, s , 20, 1,
210 Wire.endTrananission(); 0x00, 0x40, Ow00, OxEZ, 0x01, 0, 21, 8, 22, 43,
| 4 0x00. Ox3l. Ox08, 0xZ0. Ox01. o, 40, 0, E2, 1,
il h 0. 31, B, 20, 1,
1 /WLitES DALADETEL memory in 4 byte chunks g
114 GMA_WRITE_PEGISTER_PARAM(int devhddress, int address, int length | | Autoscroll
5 int addtemn = 0:
]

n

503 gdefine PARAM STZE_IC_ 2 1024
594 #define PARAM ADDF_IC 1 O

595 ADI_FEG TYPE Param Data_IC_1[PARAM SIZE_IC_1] = { | |Param Data Begin o
596 0x00, DxB0, Dx00, 0x00, o, 80, o, 0, |§|
597 0x00, 0xB80, 0x00, 0xO0O, o, &0, 0, 0, B
598 0Dx00, Ox00, 0Ox08, 0x00, 0, 0, &8 0O,

599 Dx0DO0, OxB0, 0x00, 0xO0, o, 80, o, 0,

£00 0x0D0, Dx0O0, Dx0O, 0x0O, o, 0, 0, 0,

£01 0x00, 0x00, Ox00, 0xOO, o, 0, 0, 0O,

£0Z Dx0DO, Ox00, 0Ox00, 0xO0, 0, 0, 0, 0,

£03 Dx0DO, Ox0OD, 0x00, 0xO0, 0, 0, 0, O,

£04 0x00, DxB0, Dx00, 0x00O, o, 80, 0, 0O,

£05 0x00, 0x00, Ox00, 0xOO, g, 0, 0, O,

E0& Dx0DO, Ox00, 0Ox00, 0x00, 0, 0, 0, 0,

£07 Dx0DO0, Ox0OD, 0x00, 0x00, 0, 0, 0, O,

£08 0x00, Dx00, Dx0O, 0x0O, o, 0, 0, 0,

FOS Ml AwAN Mwenn nwenn 0. 80. 0. 0O

Figure 5.6: Param Data Serial.print Transmission Test

40

Once the DSP correctly boots, audio transmits to the output DACs and whatever baseline filters
specified in the exported SigmaStudio project code are implemented. The next important step in
communicating with the DSP is safe loading parameters, the process of updating filters without
audible artifacts, necessary for all real time control and parameter updates. The testing of safe
load is contained within filter read in as each filter is transmitted using safeLoadFilter (each call
loads the 5 parameters pertaining to that particular filter into the corresponding stage in
parameter memory).

Filter Import Testing

In designing the filter import code, we discovered that since Arduino doesn’t have an operating
system it cannot access files on a hard drive and the only file access it can understand requires
additional hardware (SD shield). At this point the system doesn’t have the I/O to accommodate
a shield and the time to integrate one was lacking. However, in order to prove that such a
system would work, we developed a filter load and parse function that utilizes EEPROM to store
the text file in internal memory. The restrictions are that it has to be accessed on a per-byte
basis as opposed to using standard C functions such as fopen and fgetin. As implemented the
function reads characters from EEPROM until it reaches a return character (placed at each end
of line for this purpose), places a null character at the end of the string, and parses that line by
using spaces to delimit. This method requires the filter data to be loaded from strings in a
separate project file and as such isn’t viable beyond testing and advanced user purposes. See
Figure 5.7 below for an overview of how the parsing function works:

Parse each line into Store filter

Process line using strcmp 5
Read EEPROM 1 tokens (space B e parameters in
temporary

Filter, On, SUBMODE. B

Set SUBEMODE Call
FLAG subModeEnable

Figure 5.7: File Parsing Process Flow Chart

Line at a time delimited),
IENOring commas

First the parsing system must be verified to see if the lines are correctly being read from
memory and don’t contain junk data. At first test, the buffered lines Serial.print displayed
garbage data following the last character of the line because it lacked a null character and thus
was printing to the end of the allocated memory. Furthermore, arduino through couldn’t find
errors when trying to include certain C++ libraries required for parsing files. To work around this
restriction the parse code was rewritten using basic C commands including atof to convert
strings to doubles and while loops instead of fgetline. Once null characters were added to the
buffer string, the code correctly parsed as displayed in the following figure. In Figure 5.8 below
each string is printed followed by the individual tokens (words, separated by commas).

41

Noline endng

Figure 5.8: String Parse Test

The next step is utilizing these strings and their token location (fixed given correct formating) to
interpret filter instructions and set the correct filter parameters in the next available biquad. The
following figure displays filter coefficients and parameters being compared to the parsed and
imported ones. These parameters being correct verifies that the filters being generated (including
the string conversion process using the atof function) behave the same as manually set filters
using fixed parameters. The image also shows that SUBMODE flag properly goes high based on
the SUBMODE command occupying one of the filter lines. SUBMODE is then audibly confirmed
by listening to the woofer outputs and noting that a mono bass signal is coming out of a single
channel.

42

3.00000000

Figure 5.9 Filter String Import With Parameter Decoding

To show that not only are the correct filter parameters being read from EEPROM but that the
coefficients are being correctly calculated the below figure shows the coefficients sent to the
DSP to implement a -10 dB parametric filter with a Q of 1 centered at 1 kHz over 12C. The
serial monitor calculated coefficients: BO, B1, B2, A1, A2 of 0.97337179, -1.87919673,
0.90809135, 1.87674655, and -0.88391313 are within reasonable tolerance of the SigmaStudio
reference values of (coefficients generated using the GUI software that implement the same
filter) 0.9624, -1.886, 0.9276, 1.886, and -0.8900. See Figure 5.9 below for a visual verification.

EXPERIMENT | Arduino 1.6.3 =B X D Analog Devices - SigmaStudio - [EXP.dspproj] "
File Edit Sketch Tools Help [s File Edit View Tools Format Action Window Help
s eI 0 ol O[] [E[E[E]L 8t A& e B &l e o6k 2@l
ErETEEE I e -}
||t Tree Toolax 4 % || _Heroware Configuration __Schematic |
50
451 @m@@ ©0 00 ©® ©6-*
i@ 8 =2 =
o of
T
o wet Y
s g Crossover andFilters
160 g
. {153 Advanced DSP B =
13 Basic DSP 3] | =
Inputs and Volume NACES)
| High Out
[oa v
“ 111 | >
_Main -
: Capture 5 x
%[m- «
CelName _Parameter ... Add... Vaue
81... 2nd Orde... EQ1940Dua... 0x00... 0.962422132492065
1 2nd Orde... EQ19400w8). 1586039
81... 2nd Orde... EQ1940D: ... 0.927664518356323
51... 2nd Orde... EQ1540: ... 1.88603985309601
81... 2nd Orde... EQ1940Dua... 0X00. -0.890086650848389

Figure 5.10: Parametric Coefficient Calculation Verification Read From EEPROM

43

Hardware and System Integration Testing

Testing the voltage regulator, power supply voltage, and switch polarity are all important
prerequisites for connecting the amplifiers, DSP, and microcontroller together. The following
table summarizes the tested output voltages for the above circuits.

Table 5.1: Hardware Test Output Voltage Summary
Circuit Voltage (V)

DC Voltage Regulator (powers uC and DSP) | 7.1008 DC

24V DC Power Supply 24123 DC

AC Switch, Up Position 120.1 VAC

Once the power source voltages checked out and the regulator is tuned using the onboard
potentiometer to 7V to power the microcontroller and DSP board the next step is to test connect
the signal path starting at the DSP and ending at the amplifier banana terminals to ensure that
connections and wires are secure. This test was quickly performed using a pass/fail metric and
in the process a few loose wires required attention. See Figure 5.11 of this system integration
process.

S S e T e e e P,
R R, S2E7
Cegarcattietre

Figure 5.11: System Integration and Connection Testing

44

Filter Frequency Response Verification

Most software testing described in the previous section including filter implementation, signal
verification, and data transmission required no more than headphones connected to the two DSP
analog audio outputs. However, in order to verify that the filters properly affect filter response on
the output terminals, oscilloscope measurements using white noise stimulus offer much more
reliable data than simple hearing tests. The following images highlight the frequency response
impact of the following filters using white noise input: 180 Hz low shelf with a gain of 4 dB, 400
Hz high shelf with a gain of -6 dB combined with 500 Hz low pass, 125 Hz high pass, and 300
Hz notch filter with a Q of 4.

Despite inaccuracies inherent to using white noise as an input source and the finite accuracy of
measuring the FFT average value when it has 10 dB of dynamic range, the data measured
correctly reflects the filters read in from EEPROM as shown in the Figure 5.12-5.15.

rAS0- 20128, MYB3ZB0105: Wed Jun 1008:05:42 2015

2 -14.002 37.00%/ stop £ 2 5a.0%
¢ Agilent
-------------------------- e | Acquisition
Mormal
100k=a/ls
Channels
OC 10.0:1
Cursors
A
-64 7000000Hz
AV
-6.573dE
Cursors Menu
Mode Source 43 LCursors Units X1: 128.7000000Hz ¥1:-19.4064EY
flanual ¥ ~P- X2 64 0000000H:z

Figure 5.12: 125 Hz High Pass lllustrating a 6 dB/Octave 1st Order Slope
Response should be down 6 dB, 1 octave below the cutoff frequency and it is within
measurement tolerance at 6.57 dB.

MAS0-% 20128, MYS3260108: Wed Jun 1008:10:16 2015

-14.002

37.00g/

Stop

£

2 o8.0%

as

i Agilent

Aoquisition

Normal
100kSals

Channels

OC

10.0:1

Cursors

A

+86.8000000H:

AL

-4.695dE

Cursors Menu
WMode
Manual

2

Source

4+ Cursors
2

Units
~-

X1 180.0000000H:
X2 258.5000000H:

1 -19.4064BY

Figure 5.13: 4 dB Low Shelf with Fc of 180 Hz

Response is expected to be 4 dB greater within the passband of the low shelf filter and is

measured at 4.69 dB in the above figure.
WS0-K 20128, MY53280108: Wed Jun 10 08:13:52 2015

37.00%f

atop

£

2 oo.0%

-92.508

e

Agilent

45

Aoquisition

Wormal
100ksals

Channels

oc

10.0:1

Cursors

A

-31.3000000Hz

AY[)

-20. 12448

Cursors Menu
WMade
Manual

Source

4+ LCursors
2

Units
~P-

#1: 300.1000000H:
X2: 26B.8000000H:

1 -29. 795dEY

Figure 5.14: Notch Filter, Fc of 300 Hz, Q=4

46

Response (figure 5.14) measures 20 dB down at 300 Hz as expected and the narrow Q is
reflected inthe ~70 Hz bandwidth.

IS0 20128, MYE3280108: Wed Jun 10 08:22:22 2015
2) -91.002 38.00/ Trig'd £ 2 5h.0%

i Agilent
Aoquisition
Mormal
100ksals
Channels
oc 10.0:1
; Cursors
po e A L Rl LR RTRNIEN I RIRATl L] SRR P A)(:
+615.000000H:
R LML RPN
-13.771dE
Cursors Menu
Mode SOUrCE 4+ Lursors Units #1: 3681.000000H:
Manual Y P %2 1.000000000kH: — |¥2: -45 697 dBY

Figure 5.15: Lowpass at 500 Hz Compounded with -6 dB High Shelf Centered at 400 Hz

Response is expected to be -13 dB at 1 kHz due to the sum of -6 dB from a high shelf and -7 dB
from being 1.25 octaves above the cutoff frequency, measuring quite close at -13.77 dB.

Altogether these tests verify that not only are we generating sufficiently accurate filter
coefficients, but also that the resulting filters being implemented are accurate to within the
measurement tools at our disposal.

47

Chapter 6: Conclusions and Discussion

The final system performs all of the key functions described in the original requirements but a
combination of memory limitations and time constraints meant that the functional capabilities of
the DSP are significantly limited by the menu and microcontroller interfacing. The code contains
functions to set all of the implemented functional blocks but some of these aren'’t called because
the menu couldn’t be expanded to accommodate live editing of their parameters. For example,
limiter gain setting is fully functional but not contained in the final menu, all 10 filters can be
loaded but not without exceeding microcontroller dynamic memory, and setting the crossover
filter type and slope is works but is disabled for user friendliness and menu constraints. The rest
of this section explains the thought process behind what how select features were chosen to
demonstrate with the limited memory available and where system performance and flexibility
could be expanded given additional time and resources.

Hardware Choices

Arduino

After developing the system and attempting to load the entire project onto the arduino, it became
apparent that significant memory overflow has occurred. The Atmega328p only has 32kB of
flash memory and 2kB of dynamic memory. To avoid dynamic memory issues, PROGMEM is
used as a means to circumvent the issue, which in turn causes new issues. At the cost of being
able to push large arrays into flash memory, the pgmspace.h library can only extract one byte of
these arrays at a time from flash memory. To transfer these arrays to the DSP board, the data
transmission function had to be split into three separate functions, reading from specific address
locations of each array.

In addition to dynamic memory limitations, the flash memory of the arduino reaches maximum
flash memory limitations. Implementing 6 actively updateable parametric filters alongside the
fully integrated menu is impossible with only 32kB of dedicated memory. The final prototype
designed on the Atmega328p only has active volume and crossover frequency adjustments
through the menu, while all 6 filters are statically loaded upon booting the DSP board. In order to
change these filters, a separate file must be manually edited and loaded into the
microcontroller's EEprom, which is restricted to 512 bytes. In the future, an arduino with
significantly larger memory (such as the Arduino Mega [22]) would be used to incorporate the full
active parameter adjustment menu.

Rotary Encoder

The rotary encoder is the ideal component for menu control for the Audio DSP Amplifier. Using
open-source community written code modified by ourselves for this specific project, the rotary
encoder successfully navigates the menu and actively updates filter parameters and volume.
Using a rotary encoder is preferred over multiple buttons and potentiometers as it reduces
complexity for the product user.

48

Addressing Memory Limitations

Upon finishing the beginning of the EQ branch of the menu, memory limitations arose as the
DSP would no longer boot with system memory above 83%. In order to test dynamic filter
updating it was clear that the menu needed to be rewritten with only the most important
functions and a single menu layer.

DSP Board

While the DSP board accomplishes all functionality required for this project, the provided
documentation concerning the ADAU1702 development board from Analog Devices is lackluster
at best for 12C transmission and active filter parameter editing. Jumper locations for 12C bus and
multiple pinouts are mislabeled or difficult to find, despite the product being advertised as easily
interfaceable with a microcontroller over 12C. For a prototype this board is a decent choice, but a
marketable product would use a custom built PCB based around the ADAU1702 DSP that does
not include the extraneous features that are built into the development board.

Software Design Process

Successes

In developing such a complex menu, the need for a pseudocode outline and graphical structure
uses sufficient comments to navigate the large switch case state machine it entails. This layout
of the menu drives much of the following code design process as it suggests important functions
and helps plan the DSP interfacing methods. Hard coded state machine logic makes rotary
encoder debugging straightforward and memory efficient. Push turn logic is both useful in
reducing the complexity of the menu structure by reducing the levels of menu given the
7-segment LCDs limited display space and intuitive to use for parameter adjustments.
Furthermore, on the fly filter calculation using coefficient lookup tables is an efficient option for
limiting microcontroller resource requirements and helps restrict selecting parameters out of
range for DSP functions.

Challenges

In getting a DSP board to boot, the most important milestone is achieving serial communication
and it is a mistake to underestimate the complexity of sending large amounts of serial data. The
manual was sparse on information regarding 12C pinouts and multiple hardware switch positions
on the DSP EVAL board required counter intuitive (contradicting manual information at times)
switch positions in order for the DSP to receive 12C data. Allot the most time for device
interfacing as it has the most opportunity for failure and complexity.

Degrees of Success
Table 6.1 below addresses how well the engineering requirements are met for this project.

49

Table 6.1: Final Requirements Conclusions

Engineering Requirement

Met?

Why?

have at least 6
parametric filters,
custom High/Low
pass filters with
multiple orders with
varying topologies,

be implemented using
filter read in and can be
used for custom
high/low pass
applications. Crossover
topology is fixed to

2. The total harmonic At reduced power This amplifier represents an
distortion at rated output (25 W per acceptable cost to performance
output power should | channel) yes 2" trade off and utilizes RCA inputs
be <0.1 % and screw terminal outputs.

3. Should be able to Yes, at 10% The chosen amplifier is rated for
sustain an average distortion®" this power output.
output power > 50
watts to each main
output assuming 4
ohm loads for each
channel.

4. Should have an Yes, >90%?"! Class D topology satisfies this
efficiency (n>80%) requirement

5. Average initial setup Yes, plugging in the The compressed menu structure
time should not system, connecting a makes navigation intuitive and
exceed 30 minutes. source, and adjusting requires minimal user effort to edit

every parameter takes parameters. Also, many parameters
less than 15 minutes omitted due to memory
considerations.

6. The dimensions All but width, The DSP eval board, amplifier
should not exceed 19.5"x3.5"x9” boards, and microcontroller are less
18.19” wide by 5.256” compressed than ideal to make
tall by 14” deep them easier to configure, a custom
. system with a single PCD would

require half the space and the
power supply size could be
reduced. Parts chosen based on
availability and technical capability.

7. The dsp unit should 6 parametric filters can | Microcontroller memory constrains

the number of filters implemented,
crossover topology is beyond the
knowledge of expected user and
simplifying it to LR24 optimizes
performance and user experience.
Delay is limited to the point of being

50

and delay/phase for
each output.

LR24 dB/octave, and
delay/phase control is
not implemented

useless by the DSP board (not
enough registers to buffer audio
given a 96 kHz sample rate) and as
such isn’'t implemented.

Phase control beyond inversion is
complex for users to understand
and can be achieved by simply
flipping the banana plugs on the
output.

8. Device should Yes Only sound generating components
generate less than 35 are the amplifier fans and at 50w
dBa of sound under per channel class D they don’t
average load. dissipate much heat and thus the

fans generate minimal noise
(inaudible from outside the case).

9. Production price must | Yes Borrowing the DSP board and the

not exceed $500 power supply (the two largest
expenses of the project)
significantly reduced the overall
prototype cost overhead. Total of
our purchased components is
$119.06.
The chosen power supply is rated
for less than 2 A of current draw at

: 120V and as such even a worst
10. Device must not draw :

case scenario such as each

more than 5 amps on amplifier dissipation maximum

a 120 V circuit under | Yes

a worst case
scenario.

power conservatively meets this
requirement. Using class D
amplifier boards allows maximum
output power within the limits of the
selected power supply.

51

References

[1] Earl R. Geddes. “Audio Acoustics in Small Rooms” Powerpoint Presentation hosted
by GedLee LLC., Retrieved from
‘http://gedlee.azurewebsites.net/Papers/Audio%20Acoustics%206%2012%2005.ppt’

Description of Source: The result of audio research Geddes conducted on the topics of
acoustics and small rooms, this resource has extensive insight as to the limitations of
small rooms and the impact that it has on speaker response. This resource is used as a
justification for the need for DSP and displays the benefits through the form of response
plots that DSP can have in terms of improving speaker performance. Earl Geddes has
hundreds of times for his acoustic research into the way we perceive sound and has a
PHD on studying the response of non-rectangular rooms. He is the one of the most
experienced and respected acoustic engineers with 17 active patents and multiple
pending patents.

[2] L.W. Lee and E.R. Geddes, “Auditory Perception of Nonlinear Distortion,” Paper
presented at the Audio Engineering Society 115th Convention - Paper 5891 (2005, Oct.)

Description of Source: This published paper on distortion explores the nature of our
hearing and the subjective audible differences between different types and amounts of
distortion. This research paper explains that human perception of distortion is frequency
dependent and non-linear, meaning that 12% distortion could seem less distorted than
10%. It conducts an experiment on a group of 37 people to see how different amounts of
THD (total harmonic distortion) and IMD (intermodulation distortion) affected our
perceived sound quality. Furthermore, the paper proposes a new metric G, that
quantifies with great accuracy the perceived quality and is calculated from above
mentioned metrics. This resource was chosen because it reinforces that there is much
more to excellent audio than raw harmonic distortion measurements and that when
judging sound quality one must accept that human ears are imperfect.

[3] Earl R. Geddes. “Small Room Acoustics in the Statistical Region,” presented at the
Audio Engineering Society 15th International Conference - Paper 15-006 (1998, Oct.)

Description of Source: This paper goes into depth about the measuring loudspeaker
systems in rooms and the different regions dominated by room modes versus other
stimuli. This paper was referenced because it discusses the nature of measuring sound
in the statistical region (mid to high frequencies) which require more in depth measuring

52

methods. Being published at an AES international conference, this acoustics research
carries considerable credibility.

[4] Texas Instruments. “MSP430 Ultra-Low-Power Microcontrollers,” ti.com/lit/. [Online].
Available:http://www.ti.com/lit/sg/slab034z/slab034z.pdf [Accessed: Oct. 13, 2014].

Description of Source: This product sheet goes into detail comparing all the variations of
the MSP430 F series and is helpful in determining which microcontroller will provide the
I/O necessary for the project. Texas Instruments is known for their excellent
documentation, design environment, and example code which is one of the reasons that
we are highly considering the FRAM series of MSP430. The FR series has capacitive
touch capabilities which will prove useful for the LCD interface segment of the project.

[5] Texas Instruments, “Interfacing an I12S Device to an MSP430 Device,” ti.com/lit/.
[Online]. Available:http://www.ti.com/lit/an/slaa449a/slaa449a.pdf [Accessed: Oct. 23,
2014].

Description of Source: This article details the process of converting an SPI interface for
I2S operation, commonly used to drive DSP units. This may be necessary to interface
the MSP430 with the chosen DSP unit, based on device flexibility (if it needs I12S, then
this workaround will be important).

[6] miniDSP (2011, Oct. 7), “miniDSP 2x8 User Manual’. [Online]. Available:
http://www.minidsp.com/images/documents/miniDSP%202x8%20User%20manual%20v
1.1.pdf

Description of Source: This is the manual for the most likely DSP unit for the system. It
contains details on microcontroller interfacing parameters and overall connectivity. This
resource will be imperative in configuring the DSP microcontroller interface and learning
how to communicate with it will determine the extent of features the final system
implements.

[7] Occupational Safety and Health Organization (2013, Aug. 15). “Noise” in OSHA
Technical Manual. ch. 5, sec. 3. [Online].
Available:https://www.osha.gov/dts/osta/otm/new_noise/index.html

Description of Source: The occupational safety and Health Administration is the US
government sanctioned entity responsible for setting safe sound levels for the workplace

53

and within this project is used to establish safe listening levels for the playback of
loudspeaker systems employing this or a comparable DSP amplifier.

[8] Parts Express (2011, Sept. 1). “250 Watt Subwoofer Plate Amplifier Model:
SPA250”. [Online]. Available:
http://www.parts-express.com/pedocs/manuals/300-803-dayton-audio-spa250-manual.p
df

Description of Source: Competitor mono subwoofer datasheet.

[9] Behringer. “INUKE NU6000DSP/NU3000DSP/NU1000DSP User Manual”. [Online].
Available:
http://www.behringer.com/assets/NU6000DSP_NU3000DSP_NU1000DSP_M_EN.pdf

Description of Source: Competing stereo DSP amplifier competitor datasheet.

[10] Peavey. “IPR2000/3000 DSP Operating Manual”. [Online]. Available:
http://assets.peavey.com/literature/manuals/118438 26188.pdf

Description of Source: Competing stereo DSP amplifier operating manual.

[11] Cityfeet. “San Luis Obispo Retail Space” [Online]. Available:
http://www.cityfeet.com/cont/ca/san-luis-obispo-retail-space#pgNum=3

Description of Source: Used to approximate local office retail rent in San Luis Obispo.

[12] Payscale Human Capital. “Electrical Engineer Salary”. [Online]. Available:
http://www.payscale.com/research/US/Job=Electrical_Engineer/Salary

Description of Source: Approximation of average electrical engineer annual salary.

[13] Consumer Electronics Association. “Industry Revenues to Reach Record High”.
[Online]. Available:

http://www.ce.org/News/News-Releases/Press-Releases/2013-Press-Releases/CE-Indu
stry-Revenues-to-Reach-Record-High-$209-Bil.aspx

Description of Source: Consumer Electronics Market Association

[14] Westegg. “The Inflation Calculator”. [Online]. Available:
http://www.westegg.com/inflation/infl

54

Description of Source: Inflation calculator for market size conversion.

[15] Consumer Electronics Association. “Home Audio Rebounds”. [Online]. Available:
http://www.ce.org/i3/VisionArchiveList/VisionArchive/2011/October/Home-Audio-Reboun
ds.aspx

Description of Source: Approximation of the present size of the home audio market.

[16] Dayton Audio. “2.1 Channel Class D Amplifier”. [Online]. Available:
http://www.parts-express.com/dayton-audio-mca2250e-21-channel-class-d-plate-amplifi
er--300-771

Description of Source: Competing product specification document.

[17] Herr,Norman. “Television and Health”. [Online]. Available:
http://www.csun.edu/science/health/docs/tv&health.html

Description of Source: Statistical information on project market consumer.

[18] US Census Bureau. “Computer and Internet Use in the United States”. [Online].
Available: http://www.census.gov/prod/2013pubs/p20-569.pdf

Description of Source: Statistical information on project market consumer.

[19] Analog Devices. “SigmaDSPTM 28-/56-Bit Audio Processor Evaluation Board
Operation Manual”. [Online]. Available:
http://www.analog.com/static/imported-files/eval_boards/EVAL-AD1940AZ.pdf

Description of Source: This is the manual for a likely DSP board for the system. It
contains details on microcontroller interfacing parameters and overall connectivity. This
resource will be imperative in configuring the DSP microcontroller interface and learning
how to communicate with it will determine the extent of features the final system
implements.

[20] Analog Devices Engineer Zone. “Real Time Control TUTORIAL: SAFE LOAD,
Fixing and Breaking variables”. [Online]. Available:
https://ez.analog.com/message/61175#61175

[21] Parts-Express. “2x50W TDA7492 Class-D Amplifier Board”. [Online]. Available:
http://www.parts-express.com/2x50w-tda7492-class-d-amplifier-board--320-301

[22] Arduino. “Arduino Mega 2560”. [Online]. Available:
http://www.arduino.cc/en/Main/ArduinoBoardMega2560

55

Appendix A:Senior Project Analysis

Project Title: Audio DSP Amplifier
Student(s): Will Saba and Nick Barany
Advisor: Dr. Bridget Benson

1. Summary of Functional Requirements
a. Describe the overall capabilities or functions of your project or design.
Describe what your project does.

i. The Audio DSP Amplifier is a wall-powered device that processes
and splits an analog audio signal with the ability to power up to
loudspeakers, including four main outputs (50 WPC) with the ability
to drive a mono-summed subwoofer.

ii. The system shall be programmable through external controls such
as capacitive sliders or buttons and an LCD display as well as
through USB for flexible setup and configuration.

iii. The DSP section will have 6 independent parametric filters per
channel on top of limiting, crossover, time delay, and phase control
capabilities.

2. Primary Constraints
a. Describe significant challenges or difficulties associated with your project or
implementation. Explain limiting factors or issues that influenced your
chosen approach.

i. Creating an effective menu system that is simple enough for basic
users to operate but powerful enough to adjust independent filters,
limiter, and crossovers for each channel.

ii. Itis difficult to find a DSP board (stand alone with standard RCA
input and output terminals on a PCB) that has more than 4 output
channels while still being reasonable (<$400) in price.

iii. All components must operate off a single 12 V DC power supply.

iv. The system requires custom code to facilitate profile data storage,
preset recall, remote read, and specially formatted file export to be
transmitted over I°C [5].

3. Economic

56

a. What economic impacts result?

Human Capital: The development of this device creates enough
work to support jobs in engineering, manufacturing, and sales
distribution.

Financial Capital: Profit may result from the development of the
system and the price savings of the final product will be passed on
to customers. It has potential to stimulate the production of
competing products as other audio companies attempt to replicate
its functionality.

Natural Capital: The product utilizes power amplifiers, a DSP board,
a microcontroller, and a steel chassis whose components require
electronic-waste recycling due to the presence of rare-earth metals.
Costs: The commercial sale price is largely dependent on how
cheap the DSP section can be designed as the amplifier and
microcontroller sections are only marginally cheaper in bulk than the
development price. The direct profit from the device would come
from product markup which would need to be approximately 45% to
accommodate for development time and manufacturing scaling
cost. Using an estimated production cost (including economy of
scale) of $380, the retail price would be at least $600.

Table A.1: Audio DSP Amplifier Estimated Costs

Item Number Company Cost ($)
10A/24V Power 1 Parts Express 115.00
Supply
7V Voltage 1 DROK 6.20
Regulator
Microcontroller 1 Atmel 20.00
DSP Board (2 1 Analog Devices 600.00
Input, 4 output) [19]
2x50W/Channel 2 Digikey or Parts 60.00
Amplifier Express
LCD Display 1 Hantronix Inc. 10.00
Chassis 1 Custom MDF 10.00

57

Mounting * Multiple 30.00
Hardware/Accessor
ies
Labor 300 hours 5400 (at $18/hr)
Total 6251.20

Table A.1 above demonstrates the prospective total cost of parts and labor for the
design of this project. The optimistic total (T,) estimates the total cost to be $6251.20.
The most likely cost total (T,,) estimates the total to be $6851.20. The pessimistic cost
total (T,) estimates the total cost to be $7451.20. These projected estimations are
calculated assuming labor costs of $20/hr and $22/hr for most likely cost total and
pessimistic cost total, respectively. Below lists the Ford and Caulston [6] cost estimation

formula.
(Ta +4Tm + Tb)
6

Calculating the expected cost using the formula above, the result is shown below.
T =(6251.20 + (4 « 6851.20) +7451.20)/6 = $6851.20

4. If manufactured on a commercial basis:

a. 800 systems will be sold in the first year.

b. The total cost of the prototype can be deduced from Table A.1 above.
Subtracting $6000 for labor (20$/hr) from the estimated total cost of
$6851.20 results in prototype total of $851.20. Actual manufacturing
product line systems will assemble for about $500.

c. Estimated purchase price for each device: $800

d. Estimated profit per year: (800 % $800) — (800 % $500) = $240,000

e. Estimated cost for user to operate device, per unit time: Using an electricity
cost of $0.15/KWh, an average “normal use” current draw of
approximately 2/3 amp at 120 V AC. This metric is calculated with the
following expected average power figures and efficiency ratings:

15 « 4 W (Amplifier outputs) + 10 W (DSP) + 5 W (Microcontroller)

5) Environmental
a) The environmental impact of this project comes from the fabrication of the
components.The microcontroller, DSP board, and the amplifiers (4
Channel and Mono Subwoofer) all use PCB fabrication which has an

58

indirect effect on environment through parts manufacturing. Factories are
needed to produce the components, and those factories all use energy
and caustic materials during production. As with all electronics, proper
recycling in accordance with electronics disposal regulations is needed to
reduce environmental impact. If not properly recycled, harmful chemicals
may leak into the surroundings, directly affecting all local animal life and
other people.

6) Manufacturability
a) The manufacturing of the chassis will be the most difficult portion of the
manufacturing process. The enclosure will be fabricated in shop using
sheet metal. However, since there is significant power dissipation, heat
dispersion will be a necessity to ensure the safety of components and
strategic heatsinks and active fans may be necessary.

7) Sustainability

a) In regards to product life, the components most likely to break first are the
buttons and the rotary encoder due to constant physical stress from
handling. For active electronic components, the sub amplifier will be run at
higher power than the rest of the components in the device, resulting in a
shorter life cycle than the other electronic components. These high stress
components may require replacement to maintain system sustainability.

b) Describe how this project impacts the sustainable use of resources:

i) By combining multiple products into a single housing, the result is
less overall electronic waste and less housing material (sheet metal)
being necessary for the same design goals.

c) Describe any upgrades that would improve the design of the project.

i) One method of improving the design is to use a larger
microcontroller to implement more functionality and more menu
customization. This would create a more robust sound system that
gives the user more control.

i) The system could use a dedicated subwoofer amplifier to improve
the output power to a subwoofer. This would increase the internal
component size of the system, which could be difficult to for the
original chassis to hold. The chassis may need to be increased in
size to accommodate for this.

59

8) Ethical

a) Positive ethical implications that this product provides for residential use
would be for personal enjoyment of high quality audio (when listening to
music, movies, etc). Users of this device will have their audio entertainment
experience enhanced greatly. In accordance with the IEEE code of ethics,
our system also guarantees that performance specifications will be met
with absolute certainty through actual use testing (load testing) other than
ideal circumstances.

9) Health & Safety
A health and safety concern associated with this project is its role in the ability to
generate dangerous sound pressure levels of greater than 100 dBa (for exposure
exceeding 15 minutes) in conjunction with speakers which provides physical harm
to the ear in accordance to OSHA standards(See Figure A.1 below) [7].

Typical Sound Levels (dBA)

]

140 -
130 -
120 -
Mo -
00 -
an -
a0 -
0

Threshold of Fain

Jet Talding OFf {200 ft. awau}
Operating Hecwy Equiprment
Might Club {ws music)
Canstruction Site

Bailer Roam

Freight Train {100 ft. away’s

Classroom Chatter

- Conversation {3 . awea)
S50 -

Urban Residence

40 - Soft Whisper (5 f1 away)

30 = Marth Rim of Grand Canyon
20 - Silent Study Room

10

0 - Threzhold of Hearing {1000 Hz)

Figure A.1: OSHA Sound Level Safety Chart

10) Social and Political
a) A significant social impact with this devices is only prevalent when the
Audio DSP amplifier is connected to speakers. The amplifier system could
function as a replacement contractor amplifier with dsp capabilities if the
power supply was replaced with one that runs off of a 70V power supply.
This would function as an audio system for social gatherings at large
meeting rooms, lecture halls, etc.

60

Appendix B: Software Design

_ MENU *
| | |
Back, 5 Speaker Setup, 1 mﬁ..wm&m.. a_
ion,
| | |
I L | | i |
1 Crossowver, 2 -
Back,3 _ Bi-AMP, 1 * +5ub,2 _ Limiter,1 Woofer HP,2 _ Back,2
| | i |
Back,3 Filter T 1 uency, 2 — _I
_ ck, _ ilter Type,1| |Frequency, | Wacter Limit fo_array®
_ Back2 W Confirm,1 7 - (dBj, 1
Updats | _ Equalizer (5 bands), 3 _ —
Confirm, 1 | Back 2 BW12,BW24, FREQ* qimnm%m..u_..!a
LR1Z, LR24* -|—J (dB),
Filter#, 1-5 Back,7
L Back, 2
| | | - 1 |
Back,S _ Type,1 ; Q.2 Freq,3 Gain,4
ux.,.mznwm.._._._ qg_array® fo_array® aﬂm_:lm_._ﬂ____..

Figure B.1: Original
Menu Flow Diagram

61

Mj exampleFilterFormat.txt - Notepad =NNCIN X

File Edit Format View Help
Filter settings file

»

Room EQ Wv5.00
Dated: May 30, 2015 9:49:55 FM

Notes:This is what comes out of rREwW, filters 1-4

are generated/set using the software, 5-9 show format for
addeg filter types and SUEMODE. Spaces are used as
delimiter, word order is important.

m

Equaliser: DCx2496
NO measurement

Filter 1: ON BP Fc 53.3 Hz Gain 3.0 de q 4.00

Filter 2: OFF Modal FC 56.8 Hz Gain -3.6 dB8 Q 7.90 T&0 target 300 ms

Filter 3: ON LS 12dB FcC 75.4 Hz Gain 3.8 de

Filter 4: ON HS 12dB FcC 7,710 Hz Gain 2.5 dB

Filter 5: ON LP Fc 16000 Hz

Filter 6: ON HP FC 50 Hz

Filter 7: ON NOTCH Fc 60 Hz slope 2.0

SUBMODE]|

Filter 9: ON NoOne T

Figure B.2: Example REW Filter File

Note: Main - Menu, and highpass update altered/removed in final version (see Expo section).
See Filter Import (final version) for pieces of code that occur in both sketches (Arduino Projects).

Microcontroller Code, Expo

Main - Maximum Menu Implemented

char foo; // junk code

// Work in progress, Senior Project Showcase Code - 5/29/15

// See “final” code for more comments on common functions

// Created by will Saba and Nick Barany to interface an LCD 7-segment display and ADAU 1702 EVAL DSP board
// to an Arduino Uno

// Require selfboot off, s5 set left to "spi" in order to get data on scope i2c

#include <Wire.h>

#include <EEPROM.h>

#include "SigmaStudioFw.h"
#include "main_final_IC_1_REG.h"
#include <avr/io.h>

#include "Biquad.h"

#include "main_final_IC_1.h"
#include "main_final_IC_1_PARAM.h"

#include "LCDDriver.h"
#include "RotaryEncoder.h"

//Set sample rate for filter calculation

#define sampleRate 96000.0

#define I2C_ADDR_ADAU1702W 0x34 // i2c Write address of tested ADAU DSP board
#define type_peak 0

#define type_lowshelf 1

#define type_highshelf 2

#define type_notch 3

#define SUB_MODE_FLAG_HIGH 2

#define DEFAULT_CROSSOVER_FC 100.0

typedef PROGMEM const unsigned char ADI_REG_TYPE;

//Define crossover biquads
Biquad *LPiL = new Biquad();
Biquad *LP2L = new Biquad();
Biquad *LP1R = new Biquad();
Biquad *LP2R = new Biquad();
Biquad *HPiL = new Biquad();
Biquad *HP2L = new Biquad();
Biquad *HP1R = new Biquad();
Biquad *HP2R = new Biquad();

// This struct contains index variables for each filter parameter corresponding to its named lookup table
typedef struct Filter {
int q = 10, gain = 10,fc = 33, type = type_peak;
// int filterType = 0; // Initialize type to off
}Filter;

// declare 1 index storage variables out of 6 corresponding to Biquad filteril
Filter filterii;//,filter2i,filter3i,filter4i,filter5i,filter6i;

//Define 6 blank biquads (BP gain of 0 dB), for now don't update previous settings from memory

Biquad *filterl = new Biquad();
/* Biquad *filter2 = new Biquad();
Biquad *filter3 = new Biquad();
Biquad *filter4 = new Biquad();
Biquad *filter5 = new Biquad();

62

63

Biquad *filter6 = new Biquad();

*/

int volume = 37;// default -> -3 dB DSP gain
// -40 -> 0 dB lookup table stored in decimal format for volume control and wherever -dB gain is needed as a decimal (dB values stored
as linear decimals in registers)

double dBLookup [41] =
{0.01,0.011220185,0.012589254,0.014125375,0.015848932,0.017782794,0.019952623,0.022387211,0.025118864,0.028183829,0.031622777,0.0354813
39,0.039810717,0.044668359,0.050118723,0.056234133,0.063095734,0.070794578,0.079432823,0.089125094,0.1,0.112201845,0.125892541,0.141253
754,0.158489319,0.177827941,0.199526231,0.223872114,0.251188643,0.281838293,0.316227766,0.354813389,0.398107171,0.446683592,0.501187234
,0.562341325,0.630957344,0.707945784,0.794328235,0.891250938,1};

// Stores common 1/3 octave increments of quality factor used for parametric filters. Doubles as lookup table for slope parameter in
high-shelf and low-shelf filters.

double qLookup [20] = {0.127,0.152, 0.182, 0.22, 0.267, 0.33, 0.4, 0.51, 0.67, 0.92, 1.04, 1.41, 1.9,2.14,2.87,4.32,5.76,7.2,8.65,10};

int is_pressed = 0
int is_released =

int push_turn = 0;
int turn_dir = 0;

int pos = 0;

int crossoverFc_i = 34; // crossover fc index

char buf[20];

char x= 0; // keeps track of hp index (first array dimension), defaults to 30 Hz HP in firmware, can be set in setup
RotaryEncoder encoder(A2, A3);

volatile int count = 0;

int menu[5] = {0,0,0,0,0};

;
H

//Function Declarations
void back();
void menu_update();
// Boot the LCD
int LCDscreen_init()
{
//Wait for startup
_delay_ms(50);
LCD_4pin_init(12, 11, 10, 7, 6, 5, 4);

//Functions set. 4 bit, 2 lines, display on
LCD_cmd_function(0, 1, 1);

//Display ON, Cursor off, Blink off
LCD_cmd_display(1, 0, 0);

//Display CLR
LCD_cmd_clr();

//Entry Mode (Shift off, increment)
LCD_cmd_entry(1, 0);
//Initialization END.

return 0;

int led_write_str(char buf[]) //find length of string, send 1 char at a time for each index of str until it ends
{

int 1=0;

int len;

len = strlen(buf);

for(i=0; i<len; i++)

{
LCD_send_data(buf[i]);

}

return 0;

}
// End boot the LCD//

// Back Functions
// Goes up 1 level in menu
void back()

{
//g0 up a level
is_pressed = 0;
menu[menu[0]] = 0;
menu[0]--;

}

// Menu Update

void menu_update()

{

// Serial.print(F("turn_dir: "));
// Serial.println(turn_dir);

// Serial.print(F("is_pressed: "));
// Serial.println(is_pressed);

// Serial.print(F("is_released: "));
// Serial.println(is_released);

// Serial.println(push_turn);

switch(menu[1])
{
case 0:
if(turn_dir) //if knob is turned right or left no button press
{
volume += turn_dir;
sprintf(buf, "Volume: %d dB", volume-40);
setVolume(dBLookup[volume], I2C_ADDR_ADAU1702W);
// Serial.println(dBLookup[volume]);

1
else if(is_pressed == 1)
{
is_pressed = 0;
//one menu level deeper
menu[0]++;
menu[1]++;
}
else if(is_released)
{
is_released = 0;
sprintf(buf, "Volume: %d dB", volume-40);

}

else // catchall scenario

{
is_pressed = 0;
is_released = 0;
turn_dir = 0;

}

break; //break menu[1]

case 1:
switch(menu[2])
{
case 0:
//crossoverh [1,1,0,0,0]

65

if(is_released == 1)

{
sprintf(buf, "X-over Fc: %d", fcLookup[crossoverFc_i]);
is_released = 0;
}
is_released = 0;
if(turn_dir == 1 ||turn_dir == -1)
{

if(push_turn == 1){
//
is_pressed = 0;
crossoverFc_i +=turn_dir;

LP1L ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i]/ sampleRate, 1, 0);

LP2L ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);

LP1R ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);

LP2R ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);

HP1L ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);

HP2L ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);

HP1R ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);

HP2R ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
setCrossover((double)fcLookup[crossoverFc_i]/ sampleRate, LPiL, LP1R,LP2L,LP2R,HP1L,HP1R,HP2L,HP2R);

sprintf(buf, "X-over Fc: %d",fcLookup[crossoverFc_i]);

}
else// not push turn
{
menu[2] += turn_dir;
if(turn_dir == 1){
sprintf(buf, "Filter 1 Type: %d", filterii.type);
}
else
{
sprintf(buf, "Back");
menu[2] = 5; // wraparound
}
}

}
else if(is_pressed == 1){
push_turn = 1;
is_pressed = 0;
}
else{ //is released
// sprintf(buf, "X-over Fc: %d",fcLookup[crossoverFc_i]);
is_pressed = 0;
push_turn=0;
}

break;
case 1:
is_released = 0;
if(turn_dir){
if(push_turn == 1){

is_pressed = 0;
filterlii.type+=turn_dir;

if(filterli.type==4){
filterii.type=0;
}
else if (filterii.type==-1){//type = 3
filterii.type = 3;
}
if(filterii.type == 0)
{
filterl->setType(bq_type_peak);
sprintf(buf, "Filter 1: Pk"); // update once #defines proven
}
else if(filterii.type == 1)
{
filterl->setType(bq_type_lowshelf);
sprintf(buf, "Filter 1: LS");
}
else if(filterii.type == 2)
{
filterl->setType(bq_type_highshelf);
sprintf(buf, "Filter 1: HS");
}
else if(filterii.type == 3)
{
filterl->setType(bq_type_notch);
sprintf(buf, "Filter 1: NOTCH");
}
safeLoadFilter(filter1l, MOD_2NDORDEREQFILTERBANK_ALGO_STAGEO_BO_ADDR);

}//end if push turn
else
{
menu[2] += turn_dir;
if(turn_dir == 1){
sprintf(buf, "Filter 1 Q:%d", filterli.q);
}
else
{
sprintf(buf, "X-over Fc: %d", fcLookup[crossoverFc_i]);

}

turn_dir = 0;

}
} //end if turn dir

else if(is_pressed == 1){
push_turn = 1;
is_pressed = 0;
}
else
{
is_pressed = 0;
push_turn=0;
sprintf(buf, "Filter 1 Type: %d",filterli.type);
}
break;
case 2:
//Filter 1 Q

is_released = 0;

66

if(turn_dir){
if(push_turn == 1){
is_pressed = 0;

filterii.q+=turn_dir;

if(filterii.q == 21)

{
filterii.gain = 20;

}

else if(filterii.q == -1){
filterii.gain = 0;

}

//Print the Q
filter1i->setQ(qLookup[filterii.q]);
sprintf(buf,"Filter 1 Q: %d", filterli.q);

safeLoadFilter(filter1, MOD_2NDORDEREQFILTERBANK_ALGO_STAGEG_BO_ADDR);

}

else{
menu[2] += turn_dir; //Wrap around right side of menu
if(turn_dir == 1){

sprintf(buf, "Filter 1 Gain: %d", gainLookup[filterii.gain]);

}
else{
sprintf(buf, "Filter 1 Type: %d",filterli.type);
1
}//end push turn if
}//end turn dir if

else if(is_pressed == 1){
push_turn = 1;
is_pressed = 0;

}
else // is released
{
turn_dir = 0;
is_pressed = 0;
push_turn=0;
sprintf(buf,"Filter 1 Q: %d", filterii.q);
}
break;
case 3:

//Filter 1 gain

is_released = 0;

if(turn_dir)

{

if(push_turn == 1){

is_pressed = 0;
filterii.gain+=turn_dir;
if(filterli.gain == 22)

{
filterli.gain = 21;

}

else if(filterii.gain == -1){
filterii.gain = 0;

}

//Print the gain
filter1l->setPeakGain((double)gainLookup[filterii.gain]);
sprintf(buf,"Filter 1 Gain: %d", gainLookup[filterii.gain]);

67

safeloadFilter(filter1, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE@_BO_ADDR);
}
else
{
menu[2] += turn_dir; //Wrap around right side of menu
if(turn_dir == 1){
sprintf(buf, "Filter Fc: %d", fcLookup[filterii.fc]);
}
else{
sprintf(buf, "Filter 1 Q: %d",filterii.q);
1
}//end push turn if
}//end turn dir if
else if(is_pressed == 1){
push_turn = 1;
is_pressed = 0;

}

else{ // is released

turn_dir = 0;

is_pressed = 0;

push_turn=0;

sprintf(buf,"Filter 1 Gain: %d", gainLookup[filterii.gain]);
}

break;
case 4:

//Filter 1 freq
is_released = 0;
if(turn_dir){
if(push_turn == 1){
is_pressed = 0;
filterii.fc+=turn_dir;
//Protect range of Fc lookup table from overflow
if(filterii.fc == 174)
{
filterii.fc = 173;
}
else if(filterii.fc == -1){
filterii.fc = 0;
}
//Print the gain
filteri->setFc((double)fcLookup[filterii.fc]/sampleRate);
sprintf(buf,"Filter Fc: %d", fcLookup[filterii.fc]);
safeLoadFilter(filterl, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE®_BO_ADDR);
1
else
{
menu[2] += turn_dir; //Wrap around right side of menu
if(turn_dir == 1){
sprintf(buf, "Back");

}
else{

sprintf(buf, "Filter 1 Gain: %d",gainLookup[filterii.gain]);
}

}//end push turn if
}//end turn dir if

else if(is_pressed == 1){
push_turn = 1;

68

is_pressed = 0;
}
else // is released
{
turn_dir = 0;
is_pressed = 0;
push_turn=0;

sprintf(buf,"Filter Fc: %d", fcLookup[filterii.fc]);

}
break;
case 5:
//Back level
if(turn_dir == 1)
{

menu[2] = 1; // Wrap around to Speaker Setup
sprintf(buf, "X-over Fc: %d", fcLookup[crossoverFc_i]);

}
else if(turn_dir == -1)
{

menu[2] += turn_dir;

sprintf(buf,"Filter Fc: %d", fcLookup[filterii.fc]);

}
else if(is_pressed == 1){
back();

}

break;

}

break;
}

// End of Menu
LCD_cmd_clr();
delay(100);
lcd_write_str(buf);

}

// End of menu_update

void setup() {
// Serial.begin(9600);

//Wait for DSP to initialize clock
delay(350);

//Write "firmware" version of code to DSP

default_download_IC_1();
delay(100);

LCDscreen_init(); // init LCD
delay(100);

// Initialize volume to -3 dB

setVolume(dBLookup[volume], I2C_ADDR_ADAU1702W);

// Setup for rotary encoder handling
pinMode(2, INPUT_PULLUP);
sei();

PCICR |= (1 << PCIE1); // This enables Pin Change Interrupt 1 that covers the Analog input pins or Port C.

PCICR |= (1 << PCIE2); //This enables Pin Change Interrupt 2 that covers Port D.
PCIFR |= (1 << PCIF2); //Enables a flag in response to logic change to trigger ISR2. Flag cleared after completion of ISR.

PCMSK1 |= (1 << PCINT10) | (1 << PCINT11);
PCMSK2 |= (1 << PCINT18);

// This enables the interrupt for pin 2 and 3 of Port C.
// This enables the interrupt for pin 2 of Port D.

69

/*

//Example function calls

updateHP(hpLookup_loc, 0, DEVICE_ADDR_IC_1, MOD_HIPASSPROTECT_ALGO_STAGEG_BO_ADDR);

setLimiter(dBLookup[limiterIndex-15], DEVICE_ADDR_IC_1,
MOD_LIMITERRIGHT_LOW_ALGO_THRESHOLD_ADDR,MOD_LIMITERLEFT_LOW_ALGO_THRESHOLD_ADDR);

setVolume(dBLookup[0], DEVICE_ADDR_IC_1, MOD_SWVOL1_ALGO_TARGET_ADDR,MOD_SWVOL1_ALGO_STEP_ADDR);

filter1l ->setBiquad(bq_type_peak, (double)pgm_read_word_near(fcLookup+filterii.fc-65) / sampleRate, qLookup[filterli.q],
gainLookup[filterli.gain+80]);

*/

//Initialize crossover to 100 Hz LR 24 dB/octave//

LP1L ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
LP2L ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
LP1R ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
LP2R ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP1L ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP2L ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP1R ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP2R ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
setCrossover (DEFAULT_CROSSOVER_FC/sampleRate, LP1L, LP1R,LP2L,LP2R,HPiL,HP1R,HP2L,HP2R);

// ISRs for handling push, and rotate for rotary encoder
ISR(PCINT1_vect) {
noInterrupts();
encoder.tick(); // just call tick() to check the state.
interrupts();

}

//Debouncing issue, ISR keeps getting called on logic change
ISR(PCINT2_vect) {
noInterrupts();
delay(50);
if(digitalRead(2) == 0) //active low button aka press down
{
is_pressed = 1;
}
else // button release
{
is_released = 1;

}

interrupts();
void loop() {

int newPos = encoder.getPosition();
if (newPos != pos) {
//Serial.print(newPos);
//Serial.println();
turn_dir = newPos - pos;
pos = newPos;

}

//Variable updates depending on whether turn right/left or button
if(turn_dir || is_pressed || is_released) //if any menu change interrupt occurs
{

menu_update(); //change menu

turn_dir = 0; //reset position vector

70

71

Update High-Pass Protect

// This code was removed in the final version (from SigmaStudioFw.h) because highpass implemented using filter read-in method and as
// such a seperate function was redundant and the memory it took up to store all the coefficients for 14 high-pass values

// was repurposed to implement other functionality.

int gainLookup [21] = {-10,-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10};

#define HP_LOOKUP_SIZE 280

int limiterIndex = 41; // used to initiate limiters to -0 dB via dBLookup for a full scale output range.

// 20Hz (index 0) -- 80 Hz (index 12) $96kHZ BW HP 2nd order in 5.23 format (DSP) index 13 = 500 Hz -- testing

/* Define Hi-pass protect values, calculated using SigmaStudio table calculator, converted to comma delimited array.*/
ADI_REG_TYPE hpLookup[HP_LOOKUP_SIZE] = {
0x00,0x7F ,0xE1,0XAF ,0xFF ,0x00,0x3C,0xA2,0x00,0x7F ,0xE1, OXAF ,0x00 , 0XFF , 0xC3,0x57 , 0XFF , 0x80 ,0x3C, 0x9B,
0x00,0x7F,0xDA,0x1C,0xFF,0x00,0x4B,0xC8,0x00,0x7F,0xDA,0x1C,0x00,0xFF,0xB4,0x2D,0xFF,0x80,0x4B,0xBD,
0x00,0x7F,0xD2,0x89,0xFF,0x00,0x5A,0xED,0x00,0x7F ,0xD2,0x89,0x00,0xFF,0xA5,0x03,0xFF,0x80,0x5A,0xDD,
0x00,0x7F ,0xCA, OXF7 ,0xFF ,0x00,0x6A,0x12,0x00,0x7F ,0xCA,0xF7 ,0x00 , 0XFF ,0x95,0xD8 , 0XFF , 0x80 , 0x69 , OXFC,
0x00,0x7F ,0xC3,0x65,0xFF,0x00,0x79,0x35,0x00,0x7F ,0xC3,0x65,0x00 , 0XFF , 0x86 , OXAE , OXFF , 0x80 ,,0x79,0x19,
0x00,0x7F,0xBB,0xD4,0xFF,0x00,0x88,0x58,0x00,0x7F ,0xBB,0xD4,0x00,0xFF,0x77,0x84,0xFF,0x80,0x88,0x34,
0x00,0x7F,0xB4,0x43,0xFF,0x00,0x97,0x7A,0x00,0x7F ,0xB4,0x43,0x00,0xFF,0x68,0x5A,0xFF ,0x80,0x97,0x4D,
0x00,0x7F ,0xAC,0xB3, OxFF ,0x00,0xA6 , 0x9A ,0x00 , 0x7F , 0XAC, 0xB3, 0x00 , 0XFF , 0x59 , 0x2F , OXFF , 0x80 , 0XA6 , 0x64,
0x00,0x7F ,0xA5,0x23,0xFF,0x00,0xB5,0xBA, 0x00 , 0x7F , 0xA5,0x23,0x00 , 0XFF , 0x4A, 0x05 , 0XFF , 0x80 , 0xB5 , 0X7A,
0x00,0x7F,0x9D,0x93,0xFF,0x00,0xC4,0xD9,0x00,0x7F,0x9D,0x93,0x00,0xFF,0x3A,0xDB,0xFF,0x80,0xC4,0x8E,
0x00,0x7F,0x96,0x04,0xFF,0x00,0xD3,0xF8,0x00,0x7F,0x96 ,0x04,0x00,0xFF,0x2B,0xB1,0xFF,0x80,0xD3,0xA0,
0x00,0x7F ,0x8E ,0x76 , 0xFF ,0x00,0xE3,0x15,0x00, 0x7F , 0x8E , 0x76 , 0x00 , OXFF , 0x1C , 0x86 , OXFF , 0x80 , 0XE2 , 0XBO,
0x00,0x7F ,0x86 ,0xE7 ,0xFF ,0x00,0xF2,0x31,0x00,0x7F ,0x86 ,0xE7 ,0x00 , 0XFF , 00D, 0X5C , OXFF , 0x80 , 0xF1 , OXBF ,
0x00,0x7D,0x12,0x74,0xFF,0x05,0xDB,0x18,0x00,0x7D,0x12,0x74,0x00,0xFA,0x13,0xC2,0xFF,0x85,0xC9,0xF2,
i

void safelWriteHP(int devAddress, int address, int length_reg, ADI_REG_TYPE* pData){
int regcount=0, addcount=0, addtemp=0;

for(regcount=0;regcount<length_reg;regcount++)

{

Wire.beginTransmission(devAddress); // 0x34 (write port)

//send data register 1 byte at a time
Wire.write((((SAFELOAD_DATAl+regcount) >> 8) & OxFF)); // send upper byte safeload data register

Wire.write(((SAFELOAD_DATAl+regcount) & OxFF)); // send lower byte
Wire.write(0x00); //load 00 into byte 3 as required by register write format
// pData references the starting address of the target array, addcount keeps track of "register offset, ie 4 bytes"
Wire.write(pgm_read_byte(pData+addcount));
Wire.write(pgm_read_byte(pData+addcount+1));
Wire.write(pgm_read_byte(pData+addcount+2));
Wire.write(pgm_read_byte(pData+addcount+3));
Wire.endTransmission();

Wire.beginTransmission(devAddress); // 0x34 (write port)
//Send address register 1 byte at a time
Wire.write(((SAFELOAD_ADDR1+regcount) >> 8) & OxFF); // send upper byte (0x08), safeload address register
Wire.write((SAFELOAD_ADDR1+regcount) & OxFF); // send lower byte
Wire.write(((address+regcount) >> 8) & OxFF); // destination register
Wire.write((address+regcount) & OxFF);
Wire.endTransmission();
addcount+=4;

72

void updateHP(ADI_REG_TYPE* pData, char turnDir,short deviceaddress, short address){

// 20 bytes per HP frequency -> 20 byte offset array allowing HP frequency selection by index offset. Necessary because progmem can't
handle 3D arrays
int hpLookupOffset[14] = {0,20,40,60,80,100,120,140,160,180,200,220,240,260};
int 1=0, x=0;
unsigned char hp_temp[20];
ADI_REG_TYPE* hp_temp_i=0;
//incorporate rotary encoder turn for adjusting the frequency
x+=turnDir;
hp_temp_i = pData+hpLookupOffset[x];
// Call safeWriteHP passing the pointer hp_temp_i storing the location of the beginning of the chosen HP value
safellriteHP(deviceaddress, address, 5, hp_temp_1i);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

}
Microcontroller Code, Filter Import
Main
char junk; // junk code, included to avoid arduino bug
/*
* File: C:\Users\wsaba\|Google Drive\Senior Project\uC and DSP Code\EXPERIMENT\experiment.ino
*
* Created: Monday, June 01, 2015 9:43:02 AM
* Description: Main, Filter Import
*
* This software is distributed in the hope that it will be useful,
* but is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
*
*
* Purpose: This file controls the menu, LCD driver, and filter creation
*
*/
/*******************__#includes - Libraries__*********************/
[) = i2c communication---=-=-====-cmcommammmmaunnnn //
#include <Wire.h>
[/ = EEPROM Preset Reading-----=-====m=ccmecmecunax //
#include <EEPROM.h>
V/ALEEE TR TP PR DSP Interaction Functions--------=-=-ceeacuc- //
#include "SigmaStudioFw.h"
Y/ AL e e #defines for DSP Control Register Parameters----=----====zmezu-x //
#include "main_final_IC_1_REG.h"
V/ALEEE PR TP PR STDIO Equivalent for Arduino----------------- //
#include <avr/io.h>
Y/ AL e P Biquad Calculation, Biquad Class------------- //
#include "Biquad.h"
V/ALEEE TR TP PR DSP Boot Sequence and Register Storage------- //
#include "main_final_IC_1.h"
Y/ AL EE T P #defines for DSP Parameter Registers (Name Based References)------ //
#include "main_final_IC_1_PARAM.h"
Y/ AL EE T PP Necessary for using the 7-segment display----//
#include "LCDDriver.h"
Y/ AR EE R Rotary Encoder Handling-------======seccau-u- //

#include "RotaryEncoder.h"
/*******************End _>#includes - Libraries__*********************/

73

//Set samplerate for filter calculation

#define sampleRate 96000.0

// i2c Write address of the ADAU DSP board

#define I2C_ADDR_ADAU1702W 0x34

//#defines corresponding to enumerated filter types for menu-display and code readability//
#define type_peak 0

#define type_lowshelf 1

#define type_highshelf 2

#define type_notch 3

//Return value indicating that the Import File designates subwoofer mode//

#define SUB_MODE_FLAG_HIGH 2

// Default crossover Fc, in Hz

#define DEFAULT_CROSSOVER_FC 60

//DSP registers stored in progmem for reduced dynamic memory access, read out via default download -- boot sequence
//typedef used to visually indicate these variables and to match default_download type format//
typedef PROGMEM const unsigned char ADI_REG_TYPE;

/oo kkkkkkk kkkk »o-_Global Variables--****************'k**'k*/

//8 biquads necessary to implement 4th order crossover, LP = low pass, HP = high pass, 1 = 1st filter,
// 2 = 2nd filter (order in cascade), R = right channel, L = left channel

Biquad *LP1L = new Biquad();

Biquad *LP2L = new Biquad();

Biquad *LP1R = new Biquad();

Biquad *LP2R = new Biquad();

Biquad *HP1L = new Biquad();

Biquad *HP2L = new Biquad();

Biquad *HP1R = new Biquad();

Biquad *HP2R = new Biquad();

//Default Volume, initialized in Setup(), this is the index, points to dBLookup

int volume = 37;

// -40 -> 0 dB lookup table stored in decimal format for volume control and wherever -dB gain is needed as a decimal (dB values stored
as linear decimals in registers)

double dBLookup [41] =
{0.01,0.011220185,0.012589254,0.014125375,0.015848932,0.017782794,0.019952623,0.022387211,0.025118864,0.028183829,0.031622777,0.0354813
39,0.039810717,0.044668359,0.050118723,0.056234133,0.063095734,0.070794578,0.079432823,0.089125094,0.1,0.112201845,0.125892541,0.141253
754,0.158489319,0.177827941,0.199526231,0.223872114,0.251188643,0.281838293,0.316227766,0.354813389,0.398107171,0.446683592,0.501187234
,0.562341325,0.630957344,0.707945784,0.794328235,0.891250938,1} ;

// Globals that handle menu operations
int is_pressed = 0;

int is_released = 0;

int push_turn = 0;

int turn_dir = 0;

int pos = 0;

// Index responsible for handling menu crossover adjustment, points to fcLookup
int crossoverFc_i = 34; //

// Display buffer

char buf[20];

//Initialize Analog inputs 2 and 3 as encoder L and R
RotaryEncoder encoder(A2, A3);

volatile int count = 0;

//Declare menu variable

int menu[5] = {0,0,0,0,0};

/oo kkkkkkk *kkkkkk. . FND ->Global Variables--**********'k**'k*******/

/*******************_ _Function Declarations- - *********************/

void menu_update();

// Boot the LCD
int LCDscreen_init()
{
//Wait for startup
_delay_ms(50);
LCD_4pin_init(12, 11, 10, 7, 6, 5, 4);

//Functions set. 4 bit, 2 lines, display on
LCD_cmd_function(0, 1, 1);

//Display ON, Cursor off, Blink off
LCD_cmd_display(1, 0, 0);

//Display CLR
LCD_cmd_clr();

//Entry Mode (Shift off, increment)
LCD_cmd_entry(1, 0);
//Initialization END.

return 0;

int lcd_write_str(char buf[]) //find length of string, send 1 char at a time for each index of str until it ends
{

int 1=0;

int len;

len = strlen(buf);
for(i=0; i<len; i++)
{
LCD_send_data(buf[i]);

}
return 0;

}

// End boot the LCD//

// Main Menu, called on rotary encoder interrupts: is_pressed, is_released, is_turned in - loop()
void menu_update()
{
switch(menu[1])
{
case 0:
if(turn_dir) //if rotary encoder is turned right or left
{
volume += turn_dir;
//Prevent out of range (>0 dB or <-40 dB)
if (volume >40){
volume = 40;
1
else if (volume < 0){
volume = 0;
}
sprintf(buf, "Volume: %d dB", volume-40);
setVolume(dBLookup[volume], I2C_ADDR_ADAU1702W);
}
else if(is_pressed == 1)
{
is_pressed = 0;
//one menu level deeper

74

75

menu[0]++;
menu[1]++;
1
else if(is_released)
{
is_released = 0;
sprintf(buf, "Volume: %d dB", volume-40); // convert dB index position to dB, offset since range is -40->0 dB

}

else // catchall scenario
{
is_pressed = 0;
is_released = 0;
turn_dir = 0;
1
break; //break menu[1]

case 1:
switch(menu[2])
{
case 0:
//crossoverh [1,1,0,0,0]
if(is_released == 1)
{
sprintf(buf, "X-over Fc: %d", fcLookup[crossoverFc_i]);
is_released = 0;

}
if(turn_dir == 1 ||turn_dir == -1){
if(push_turn == 1){
//

is_pressed = 0;

crossoverFc_i +=turn_dir;
//Update 8 crossover biquads
LP1L ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i]/ sampleRate, 1, 0);
LP2L ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
LP1R ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
LP2R ->setBiquad(bq_type_lowpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
HP1L ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
HP2L ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
HP1R ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
HP2R ->setBiquad(bq_type_highpassLR, (double)fcLookup[crossoverFc_i] / sampleRate, 1, 0);
//Load 8 updated biquads into DSP
setCrossover((double)fcLookup[crossoverFc_i]/ sampleRate, LPiL, LP1R,LP2L,LP2R,HP1L,HP1R,HP2L,HP2R);

sprintf(buf, "X-over Fc: %d",fcLookup[crossoverFc_i]);

}
else// not push turn, go to back
{
menu[2] = 1;
sprintf(buf, "Back");
1

}
else if(is_pressed == 1){
push_turn = 1;
is_pressed = 0;
}
else{ //is released
// sprintf(buf, "X-over Fc: %d",fcLookup[crossoverFc_i]);
is_pressed = 0;
is_released = 0;
push_turn=0;

}
break;
case 1:
if(turn_dir)
{
sprintf(buf, "X-over Fc: %d", fcLookup[crossoverFc_i]);
menu[2] = 0O;
}
else if(is_pressed == 1)
{
//->back() function removed, hard coded to avoid bugs
menu[1] = 0;
menu[2] = 0O;
menu[0] = 1;
is_pressed = 0;
}
is_released = 0;
break;
}
break;

}

//Write the buffered string to the display
LCD_cmd_clr();
delay(100);
led_write_str(buf);
//Serial.print(F("Menu: "));
//Serial.print(menu[0]);

// Serial.print(menu[1]);

// Serial.print(menu[2]);

// Serial.print(menu[3]);

// Serial.println(menu[4]);
//Serial.println(buf);
//Serial.println("");

//End temp menu disable

// End of menu_update

void setup() {
Biquad *filterl = new Biquad();
Biquad *filter2 = new Biquad();
Biquad *filter3 = new Biquad();
Biquad *filter4 = new Biquad();
Biquad *filter5 = new Biquad();
Biquad *filter6 = new Biquad();
/*
Biquad *filter7 = new Biquad();
Biquad *filter8 = new Biquad();
Biquad *filter9 = new Biquad();
Biquad *filter10 = new Biquad();
*/
int subMode = 0;// temporary, testing submode

//Wait for DSP to initialize clock
delay(350);

//Write "firmware" version of code to DSP
default_download_IC_1();

//Wait for DSP to load memory
delay(100);

76

77

// Initialize LCD
LCDscreen_init();
//Diagnostic display delay
delay(100);
//Pullup on rotary press enable
pinMode(2, INPUT_PULLUP);
sei();
PCICR |= (1 << PCIE1); // This enables Pin Change Interrupt 1 that covers the Analog input pins or Port C.
PCICR |= (1 << PCIE2); //This enables Pin Change Interrupt 2 that covers Port D.
PCIFR |= (1 << PCIF2); //Enables a flag in response to logic change to trigger ISR2. Flag cleared after completion of ISR.
PCMSK1 |= (1 << PCINT10) | (1 << PCINT11); // This enables the interrupt for pin 2 and 3 of Port C.
PCMSK2 |= (1 << PCINT18); // This enables the interrupt for pin 2 of Port D.

JEERERRRRRRRRRR*R** % - oad Default DSP filters (different from firmware version)--*¥¥k¥kk¥kkkkkikikkiikk/

setVolume(dBLookup[volume], I2C_ADDR_ADAU1702W);
//Initialize crossover to DEFAULT_CROSSOVER_FC Hz LR 24 dB/octave//

LP1L ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
LP2L ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
LP1R ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
LP2R ->setBiquad(bq_type_lowpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);

HP1L ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP2L ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP1R ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);
HP2R ->setBiquad(bq_type_highpassLR, DEFAULT_CROSSOVER_FC / sampleRate, 1, 0);

setCrossover (DEFAULT_CROSSOVER_FC/ sampleRate, LPiL, LP1R,LP2L,LP2R,HP1L,HP1R,HP2L,HP2R);
// load text file function//

// Import filters from Room Equalizer Wizard export format text pattern, Text is currently stored in EEPROM for testing purposes
starting at address 0

subMode = importFilter(filterl,filter2,filter3,filter4,filter5,filter6);//,filter7,filter8);//,filter9,filter10); // 7-10 Disabled
for memory test

// note that filterl starts at "stage0@" so filter names are stage+1
safeLoadFilter(filter1l, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE@_BO_ADDR);
safeLoadFilter(filter2, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE1_BO_ADDR);
safeLoadFilter(filter3, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE2_BO_ADDR);
safeloadFilter(filter4, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE3_BO_ADDR);
safeLoadFilter(filter5, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE4_BO_ADDR);
safeLoadFilter(filter6, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE5_BO_ADDR);
// Maximum number of filters to implement given current firmware = 10, 7-10 disabled due to memory constraints
/* safeloadFilter(filter7, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE6_BGO_ADDR);
safeloadFilter(filter8, MOD_2NDORDEREQFILTERBANK_ALGO_STAGE7_BO_ADDR);
safeloadFilter(filter9, MOD_2NDORDEREQFILTERBANK_ALGO_STAGES_BO_ADDR);
safelLoadFilter(filter10, MOD_2NDORDEREQFILTERBANK_ALGO_STAGES_BO_ADDR);
*/
//Convert Left and Right (low) outputs to a singular left low mono subwoofer output by ...
// Toggling 2 mutes and adjusting mux gain to compensate for the 2x gain of the summed signals
if(subMode == SUB_MODE_FLAG_HIGH){

subModeEnable(MOD_SUBMODETOGGLE_MUTENOSLEWALG2MUTE_ADDR,MOD_RIGHTMUTEIFSUB_MUTENOSLEWALG3MUTE_ADDR,MOD_SUBMODEGAINADI_SINGLECTRLMIXERNE
W19401_ADDR) ;
}

[FE*RRIERREIRR*N%- . Example Function Calls for Updating DSP Parameters--*¥¥¥¥kkkkkkdkkkkkkiddkkkikkiidkirs/
/%

//Example function calls

updateHP(hpLookup_loc, 0, DEVICE_ADDR_IC_1, MOD_HIPASSPROTECT_ALGO_STAGEG_BO_ADDR);

setLimiter(dBLookup[limiterIndex-15], DEVICE_ADDR_IC_1,
MOD_LIMITERRIGHT_LOW_ALGO_THRESHOLD_ADDR,MOD_LIMITERLEFT_LOW_ALGO_THRESHOLD_ADDR);

setVolume(dBLookup[0], DEVICE_ADDR_IC_1, MOD_SWVOL1_ALGO_TARGET_ADDR,MOD_SWVOL1_ALGO_STEP_ADDR);

filter1l ->setBiquad(bq_type_peak, (double)pgm_read_word_near(fcLookup+filterii.fc-65) / sampleRate, qLookup[filterli.q],
gainLookup[filter1i.gain+80]);
*/
}

// ISRs for handling push, and rotate for rotary encoder
ISR(PCINT1_vect) {
noInterrupts();
encoder.tick(); // just call tick() to check the state.
interrupts();

}

//Debouncing issue, ISR keeps getting called on logic change
ISR(PCINT2_vect) {
noInterrupts();
delay(50);
if(digitalRead(2) == 0) //active low button aka press down
{
is_pressed = 1;
}
else // button release
{
is_released = 1;

}

interrupts();

void loop() {

int newPos = encoder.getPosition();
if (newPos != pos) {
//Serial.print(newPos);
//Serial.println();
turn_dir = newPos - pos;
pos = newPos;

}
//Variable updates depending on whether turn right/left or button
if(turn_dir || is_pressed || is_released) //if any menu change interrupt occurs
{

menu_update(); //change menu
turn_dir = 0; //reset position vector
}
}

Biquad.cpp
//

// Biquad.cpp

//

// Created by Nigel Redmon on 11/24/12

// EarlLevel Engineering: earlevel.conm

// Copyright 2012 Nigel Redmon

//

// For a complete explanation of the Biquad code:

// http://www.earlevel.com/main/2012/11/26/biquad-c-source-code/
//

//
//
//
//
//
//
//
//
//
//
//
//

License:

This source code is provided as is, without warranty.

You may copy and distribute verbatim copies of this document.
You may modify and use this source code to create binary code
for your own purposes, free or commercial.

Modified by will Saba and Nick Barany 6/8/2015, all filter formulas

replaced with SigmaStudio equivalents (type 2 filters)

See: http://wiki.analog.com/resources/tools-software/sigmastudio/toolbox/filters/general2ndorder
or, https://ez.analog.com/thread/42007

for details

#include <math.h>
#include "Biquad.h"

Biquad: :Biquad() {
//Default instantiated filter parameters, since peakGain = 0, default filter does nothing

type = bq_type_peak;

a0 = 1.0;

b0 = a1 = a2 = bl = b2 = 0.0;
Fc = 0.001042; // ~100 Hz

Q = 0.707;

peakGain = 0.0;

z1 = z2 = 0.0;

Biquad: :Biquad(int type, double Fc, double Q, double peakGainDB) {

setBiquad(type, Fc, Q, peakGainDB);
z1 = z2 = 0.0;

Biquad::~Biquad() {

}

void Biquad::setType(int type) {

this->type = type;
calcBiquad();

void Biquad::setQ(double Q) {

this->Q = Q;
calcBiquad();

void Biquad::setFc(double Fc) {

this->Fc = Fc;
calcBiquad();

void Biquad::setPeakGain(double peakGainDB) {

}

this->peakGain = peakGainDB;
calcBiquad();

//Note, Fc is passed as normalized frequency
void Biquad::setBiquad(int type, double Fc, double Q, double peakGainDB) {

this->type = type;
this->Q = Q;
this->Fc = Fc;

79

setPeakGain(peakGainDB);

void Biquad::calcBiquad(void) {
double A = pow(10, peakGain / 40.0); //

double alpha;

double gainLinear = 1;//pow(10, peakGain/20);
double woO;

w0 = 2*M_PI*Fc;

double dwo,b;

= pass through rest of spectrum, only boost fc

double S = Q; // Slope parameter passed as Q, keep range 0->2

// Used in Notch filter, notation comes from Analog Devices thread, see top of file

dwo = w0/Q;
b=1/(1+ tan(dwo / 2));

switch (this->type) {
case bq_type_lowpass://BW

alpha = sin(w0)/2 * 1/sqrt(2);
a0 = 1+alpha;
al = -2%*cos(w0);
a2 = 1-alpha;
b0 = (1-cos(w@))*gainLinear/2;
b1 = 1-cos(w@)*gainLinear;
b2 = (1-cos(w0))*gainLinear/2;
break;

case bq_type_lowpassLR://Same as "lowpass" except alpha, 2nd order stage

alpha = sin(w0)/(2*(1/sqrt(2)));
a0 = 1+alpha;

al = -(2*cos(w0));

a2 = 1-alpha;

b1 = (1-cos(w0))*gainLinear;

bo = b1/2;
b2 = bO;
break;

case bq_type_highpass:
alpha = sin(w0)/2 * 1/sqrt(2);
a0 = 1+alpha;
b0 = (1+cos(w0))*gainLinear/2;
bl = -(1+cos(w0))*gainLinear;
al = -2*cos(w0);
b2 = (1+cos(w0))*gainLinear/2;
a2 = 1-alpha;
break;

case bq_type_highpassLR: // Same as highpass except alpha, 2nd order stage

alpha = sin(w0)/(2*(1/sqrt(2)));
a0 = 1+alpha;

al = -2%*cos(w0);

a2 = 1-alpha;

b1 = -(1+cos(w@))*gainLinear;

bo = -b1/2;
b2 = bO;
break;

case bq_type_bandpass: // Not implemented, not useful for this application

break;

//Notch filter with variable width based on passed "Q" parameter...

80

// altering the "S" or slope parameter defined in Sigma Studio

case bq_type_notch:
a0 = 1;
b0 = gainLinear*b;
b1l = gainLinear*(-2*b*cos(w0));
b2 = gainLinear*b;
al = -2*b*cos(w0);
a2 = (2*b-1);
break;

// Parametric Filter Type
case bq_type_peak:

alpha = sin(w0)/(2.0000*A*Q);
a0 = 1.0000+alpha/A;
al = -2.0000%cos(w0);
a2 = 1.000-alpha/A;
b0 = (1.0000+alpha*A)*gainLinear;
bl = -(2.0000*cos(w@))*gainLinear;
b2 = (1.0000-alpha*A)*gainLinear;
/* If you wish to implement an actual "peak" filter (inverse of notch)
ad = 1;
al = -2 *b * cos(wo);
a2=(2*b-1);
bo = gainLinear * (1 - b);
b1 = 0;
b2 = gainLinear * (b - 1);

break;

*/

//Primer for shelving filters:
//Variable Slope -> S, passed as Q, '1' gives a smooth transition,

// greater slope increases transition rate, and yields an overdamped looking frequency response

// lower slope decreases and yields underdamped looking frequency response.
case bq_type_lowshelf:
alpha = sin(w0)/2.0000000%sqrt(((double)A+1.000000/A)*(1.0000/S-1)+2);
a0= (A+1) + (A-1)*cos(w@) + 2*sqrt(A)*alpha;
al= -2*((A-1)+(A+1)*cos(w0));

a2 = (A+1) + (A-1)*cos(wO) - 2*sqrt(A)*alpha;

b0 = A*((A+1)-(A-1)*cos(w0)+2*sqrt(A)*alpha)*gainLinear;
b1 = 2*A*((A-1)-(A+1)*cos(w0@))*gainLinear;

b2 = A*((A+1) - (A-1)*cos(w0@)-2*sqrt(A)*alpha)*gainLinear;
break;

case bq_type_highshelf:

alpha = sin(w0)/2.000000*sqrt((A+1.000000/A)*(1.00000/S-1)+2);
a0= (A+1) - (A-1)*cos(w@) + 2*sqrt(A)*alpha;
al= 2*%((A-1)-(A+1)*cos(w0));

a2 = (A+1) - (A-1)*cos(w0) - 2*sqrt(A)*alpha;

b0 = A*((A+1)+(A-1)*cos(w0)+2*sqrt(A)*alpha)*gainLinear;
b1 = -2*A*((A-1)+(A+1)*cos(w0))*gainLinear;

b2 = A*((A+1) + (A-1)*cos(w0@)-2*sqrt(A)*alpha)*gainLinear;
break;

}//End of filter types
//Normalize all values by dividing by a@ to make a0 1 (not stored in dsp)
// -> thus only requiring 5 parameters to define each filter

al
a2
bo
b1
b2

(double)ai/(double)a0;
(double)a2/(double)a0;
(double)bo/(double)aod;
(double)bi/(double)a0;
(double)b2/(double)a0;

//invert A1, A2 for parameter ram storage, see Wiki for explanation

81

82

al = al*-1;
a2 = az2*-1;
return;

Biquad.h
//

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

Biquad.h

Created by Nigel Redmon on 11/24/12
EarLevel Engineering: earlevel.com
Copyright 2012 Nigel Redmon

For a complete explanation of the Biquad code:
http://www.earlevel.com/main/2012/11/25/biquad-c-source-code/

License:

This source code is provided as is, without warranty.

You may copy and distribute verbatim copies of this document.
You may modify and use this source code to create binary code

for your own purposes, free or commercial.

Edited by Will Saba and Nick Barany -- all calcBiquad equations rewritten based on Sigma Studio (Analog Devices) 5/25/15

#ifndef Biquad_h
#define Biquad_h

enum {

b

bq_type_lowpass = 0,

bq_type_highpass,

bq_type_bandpass,

bq_type_notch,

bq_type_peak,

bq_type_lowshelf,

bq_type_highshelf,

// Added LR versions to differentiate these 2nd order Butterworth stages (used in cascade for 4th order LR response)
bq_type_lowpassLR,

bq_type_highpassLR

class Biquad {
public:

Biquad();

Biquad(int type, double Fc, double Q, double peakGainDB);
~Biquad();

void setType(int type);

void setQ(double Q);

void setFc(double Fc);

void setPeakGain(double peakGainDB);

void setBiquad(int type, double Fc, double Q, double peakGain);
float process(float in);

// Make all these public because need read access -> Serial.print verification

void calcBiquad(void);

int type;
double a@, a1, b0, a2, b1, b2;

double Fc, Q, peakGain;

double z1, z2;
b

inline float Biquad::process(float in) {
double out = in * a0 + z1;
z1 = in * a1l + z2 - bl * out;
z2 = in * a2 - b2 * out;
return out;

#endif // Biquad_h

SigmaStudioFw.h

/*

File: SigmaStudioFW. h

Description: SigmaStudio System framework macro and function declarations

This file/software originated as an Analog Devices copyrighted product but since has been
completely rewritten and stripped of copyrighted content for the express purposes
of integrating the arduino uno with the ADAU 1702 EVAL board and helping others
trying to do the same. As such:
This source code is provided as is, without warranty.
You may copy and distribute verbatim copies of this document.
You may modify and use this source code to create binary code
// for your own purposes, free or commercial.
* Purpose:
* This document contains various methods of computing and sending parameter data over i2c to the
* ADAU 1702 dev board. Individual function comments explain there purposes and in most cases
* multiple functions have been implemented where fewer is possible for the sake of readability
*
*
*

* ¥ ¥ ¥ ¥ ¥ ¥ ¥

XX

Last Revised: 6/9/2015 by Will Saba and Nick Barany
If there are improvements that can/should be made or you require the PARAM #define file, feel free to contact me,
Will Saba, at bartallen101@gmail.com

*/

[REFFEER R Rk wwk k- - gincludes -> reference libraries and register address definitions--*¥*¥*¥¥kkikkkkikiiis/
#ifndef __SIGMASTUDIOFW_H__
#define __SIGMASTUDIOFW_H__

#include "Biquad.h"

/** Stores location of all default parameters and their respective locations in DSP memory */
#include "main_final_IC_1_PARAM.h"

/** Stores location of all default register settings and their respective locations in DSP memory */
#include "main_final_IC_1_REG.h"

[EERERRRRERRRRRRRR*R*% Safeload registers used to load parameters on the fly without audible glitching ***/
#define SAFELOAD_ADDR1 0x0815

#define SAFELOAD_ADDR2 0x0816

#define SAFELOAD_ADDR3 0x0817

#define SAFELOAD_ADDR4 0x0818

#define SAFELOAD_ADDR5 0x0819

#define SAFELOAD_DATA1 0x0810

#define SAFELOAD_DATA2 0x0811

#define SAFELOAD_DATA3 0x0812

#define SAFELOAD_DATA4 0x0813

#define SAFELOAD_DATA5 0x0814

// Define double versions of 1 and 0 and 1/sqrt(2) to reduce instances of magic numbers
#define UNO 1.0

#define ZERO 0.0

mailto:bartallen101@gmail.com

84

#define HALF_POWER 0.707945823669434

// Sub mode return value if found "SUBMODE" as first word on its own line in filterImport
#define SUB_MODE_FLAG_HIGH 2

/** Numeric constant required by system volume control to set the slew rate */

#define VOLUME_STEP 0.000244140625

/** Sample Rate of DSP*/

#define sampleRate 96000.0

/** Experimentally determined I2C address(es) for all inter-board communication */
#define I2C_ADDR_ADAU1702W 0x34 // i2c Write address experimental of ADAU DSP board
#define I2C_ADDR_ADAU1702R 0x50 // i2c Read address experimental of ADAU DSP board
/** Byte length of standard DSP registers = 2 (such as core control) */

#define Address_Length 2

//Unused typedef

//typedef unsigned short ADI_DATA_U16;

/** Define PROGMEM type to store byte constant DSP code in program memory and extract on-demand to overcome memory limitations */
typedef PROGMEM const unsigned char ADI_REG_TYPE;

/*************************--Functions that write to DSP-_************************************/

//Initialiize safeload transfer by toggling respective IST bit in control register//

void set_core_IST_bit(int deviceaddress);

//Writes one register of paremter data passed as a double (function converts to fixed point)//

void safeliriteReg(double coeff,short deviceaddress, short data_reg, short addr_reg, short address);

//Writes passed filter Biquad to the DSP with a sequence of 5 safeWriteReg commands and the necesary IST call//

void safeLoadFilter(Biquad* filterX, int addressStart);

//Writes arbitrarily long number of bytes to DSP memory directly//

void SIGMA_WRITE_REGISTER_BLOCK(int devAddress, int address, int length, ADI_REG_TYPE* pData);

//Writes Parameter Memory in 4 byte chunks, length_reg indicates number of registers (not bytes)//

void SIGMA_WRITE_REGISTER_PARAM(int devAddress, int address, int length_reg, ADI_REG_TYPE* pData);

//Writes Program Memory in 5 byte chunks to DSP memory directly, length_reg indicates number of registers (bytes/5)//
void SIGMA_WRITE_REGISTER_PROG(int devAddress, int address, int length_reg, ADI_REG_TYPE* pData);

//Load volume passed as a decimal less than 1, (double) range 0-> 1.00

void setVolume(double coeff, int deviceaddress);

//Load digital fc (need to divide by sampleRate before passing) into 8 biquad filters representing 4th order LR filter//
void setCrossover(double fc, Biquad* LP1iL,Biquad* LP1R,Biquad* LP2L,Biquad* LP2R,Biquad* HP1L,Biquad* HP1R,Biquad* HP2L,Biquad* HP2R);
// Parse a txt file and set filters 1-6 for loading, 7-10 to be implemented with increased uC memory

int importFilter(Biquad* filteril,Biquad* filter2,Biquad* filter3,Biquad* filter4,Biquad* filter5,Biquad* filter6);//,Biquad*
filter7,Biquad* filter8);//,Biquad* filter9, Biquad* filter10);

// Pass address of each parameter location, loads these 3 registers using safeload transfer//

void subModeEnable(int subModeToggleAdd, int rightMuteAdd, int subModeGainAdd);

*
/* Parameter data format
*/
#define SIGMASTUDIOTYPE_FIXPOINT 0
#define SIGMASTUDIOTYPE_INTEGER 1
/*
* Write to a single Device register
*/

#define SIGMA_WRITE_REGISTER(devAddress, address, dataLength, data) {/*70D0: implement macro or define as function*/}

/%
* TODO: CUSTOM MACRO IMPLEMENTATION
* Write to multiple Device registers
*/
void setVolume(double coeff, int deviceaddress){
safeliriteReg(coeff, deviceaddress, SAFELOAD_DATA1, SAFELOAD_ADDR1, MOD_SWVOL1_ALGO_TARGET_ADDR); // address 1 = 0x01 = target
(volume)

safellriteReg(VOLUME_STEP , deviceaddress, SAFELOAD_DATA2, SAFELOAD_ADDR2, MOD_SWVOL1_ALGO_STEP_ADDR);// address 2 = 0x02 = step

85

(correlates to slew rate, unchanged)
set_core_IST_bit(I2C_ADDR_ADAU1702W);

void setCrossover(double fc, Biquad* LPiL,Biquad* LP1R,Biquad* LP2L,Biquad* LP2R,Biquad* HP1iL,Biquad* HP1R,Biquad* HP2L,Biquad* HP2R){

LP1L ->setFc(fc);
LP2L ->setFc(fc);
LP1R ->setFc(fc);
LP2R ->setFc(fc);
HP1L ->setFc(fc);
HP2L ->setFc(fc);
HP1R ->setFc(fc);
HP2R ->setFc(fc);

//LP1L - alg0_low_filt1

safeliriteReg (LP1L->b0O, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALGO_LOW_FILT1_PARAMBO_ADDR);
safeWriteReg (LPiL->b1, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALGO_LOW_FILT1_PARAMB1_ADDR);
safeWriteReg (LPiL->a1l, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALGO_LOW_FILT1_PARAMA1_ADDR);
safeWriteReg (LPiL->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALGO_LOW_FILT1_PARAMB2_ADDR);
safeliriteReg (LP1L->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALGO_LOW_FILT1_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//LP2L - alg 1 low_filt 1

safeWriteReg (LP2L->b0, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALG1_LOW_FILT1_PARAMBO_ADDR);
safeliriteReg (LP2L->b1l, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALG1_LOW_FILT1_PARAMB1_ADDR);
safeWriteReg (LP2L->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALG1_LOW_FILT1_PARAMA1_ADDR);
safeWriteReg (LP2L->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALG1_LOW_FILT1_PARAMB2_ADDR);
safeWriteReg (LP2L->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALG1_LOW_FILT1_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//LP1R - alg0 low filt2

safeWriteReg (LP1R->bO, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALGO_LOW_FILT2_PARAMBO_ADDR);
safelriteReg (LP1R->b1, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALGO_LOW_FILT2_PARAMB1_ADDR);
safeliriteReg (LP1R->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALGO_LOW_FILT2_PARAMA1_ADDR);
safeWriteReg (LP1R->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALGO_LOW_FILT2_PARAMB2_ADDR);
safeWriteReg (LP1R->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALGO_LOW_FILT2_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//LP2R - algl low filt2

safeWriteReg (LP2R->b0, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALG1_LOW_FILT2_PARAMBO_ADDR);
safeWriteReg (LP2R->b1, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALG1_LOW_FILT2_PARAMB1_ADDR);
safeliriteReg (LP2R->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALG1_LOW_FILT2_PARAMA1_ADDR);
safeliriteReg (LP2R->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALG1_LOW_FILT2_PARAMB2_ADDR);
safeWriteReg (LP2R->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALG1_LOW_FILT2_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//HP1L - alg0 high filt 1

safeliriteReg (HP1L->b0O, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALGO_HIGH_FILT1_PARAMBO_ADDR);
safeWriteReg (HP1L->b1, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALGO_HIGH_FILT1_PARAMB1_ADDR);
safeWriteReg (HP1L->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALGO_HIGH_FILT1_PARAMA1_ADDR);
safeWriteReg (HPiL->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALGO_HIGH_FILT1_PARAMB2_ADDR);
safeliriteReg (HP1L->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALGO_HIGH_FILT1_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//HP2L - alg 1 high filt1

safeWriteReg (HP2L->bO, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALG1_HIGH_FILT1_PARAMBO_ADDR);
safeliriteReg (HP2L->b1l, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALG1_HIGH_FILT1_PARAMB1_ADDR);
safeWriteReg (HP2L->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALG1_HIGH_FILT1_PARAMA1_ADDR);
safeWriteReg (HP2L->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALG1_HIGH_FILT1_PARAMB2_ADDR);
safeWriteReg (HP2L->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALG1_HIGH_FILT1_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//HP1R - alg 0 high filt 2

safeWriteReg (HP1R->bO, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALGO_HIGH_FILT2_PARAMBO_ADDR);
safelriteReg (HP1R->b1, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALGO_HIGH_FILT2_PARAMB1_ADDR);

safeliriteReg (HP1R->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALGO_HIGH_FILT2_PARAMA1_ADDR);
safeliriteReg (HP1R->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALGO_HIGH_FILT2_PARAMB2_ADDR);
safeliriteReg (HP1R->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS,SAFELOAD_ADDR5, MOD_CROSSOVER_ALGO_HIGH_FILT2_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

//HP2R - alg 1 high filt 2

safeliriteReg (HP2R->b0O, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, MOD_CROSSOVER_ALG1_HIGH_FILT2_PARAMBO_ADDR);
safeliriteReg (HP2R->b1, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, MOD_CROSSOVER_ALG1_HIGH_FILT2_PARAMB1_ADDR);
safeliriteReg (HP2R->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, MOD_CROSSOVER_ALG1_HIGH_FILT2_PARAMA1_ADDR);
safelriteReg (HP2R->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, MOD_CROSSOVER_ALG1_HIGH_FILT2_PARAMB2_ADDR);
safeliriteReg (HP2R->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATAS5,SAFELOAD_ADDR5, MOD_CROSSOVER_ALG1_HIGH_FILT2_PARAMA2_ADDR);
set_core_IST_bit(I2C_ADDR_ADAU1702W);

delay(50);

}

//Next 3 functions write the boot code to the DSP and initialize sound
//Writes program memory in 5 byte chunks
void SIGMA_WRITE_REGISTER_PROG(int devAddress, int address, int length_reg, ADI_REG_TYPE* pData){
int addtemp = 0;
int addcount =0, regcount=0;
addtemp = address;
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
for(regcount=0;regcount<length_reg;regcount++)
{
Wire.beginTransmission(devAddress);
Wire.write(((addtemp +regcount) & OxFFOQ) >> 8);
Wire.write((addtemp+regcount) & Ox00FF);

Wire.write(pgm_read_byte(pData+addcount));
Wire.write(pgm_read_byte(pData+addcount+1));
Wire.write(pgm_read_byte(pData+addcount+2));
Wire.write(pgm_read_byte(pData+addcount+3));
Wire.write(pgm_read_byte(pData+addcount+4));
addcount+=5;

Wire.endTransmission();

}
//Writes parameter memory in 4 byte chunks
void SIGMA_WRITE_REGISTER_PARAM(int devAddress, int address, int length_reg, ADI_REG_TYPE* pData){
int addtemp = 0;
int addcount =0, regcount=0;
addtemp = address;
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
// Serial.begin(9600);
for(regcount=0;regcount<length_reg;regcount++)
{
Wire.beginTransmission(devAddress);
Wire.write(((addtemp +regcount) & OxFF0O0) >> 8);
Wire.write((addtemp+regcount) & Ox00FF);
Wire.write(pgm_read_byte(pData+addcount));

// Serial.print(pgm_read_byte(pData+addcount),HEX);

// Serial.print(", ");
Wire.write(pgm_read_byte(pData+addcount+1));

// Serial.print(pgm_read_byte(pData+addcount+1),HEX);

// Serial.print(", ");
Wire.write(pgm_read_byte(pData+addcount+2));

// Serial.print(pgm_read_byte(pData+addcount+2),HEX);

86

87

// Serial.print(", ");
Wire.write(pgm_read_byte(pData+addcount+3));

// Serial.print(pgm_read_byte(pData+addcount+3),HEX);

// Serial.println(", ");

addcount+=4;
Wire.endTransmission();
}
// Serial.end();
}
//Write small continuous blocks of data to DSP, such as the core register and other hardware parameters
void SIGMA_WRITE_REGISTER_BLOCK(int devAddress, int address, int length, ADI_REG_TYPE* pData){
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))

#endif
int 1=0;

Wire.beginTransmission(devAddress);
Wire.write(((address) & OxFF00) >> 8);
Wire.write((address) & Ox0Q0FF);

// Serial.println(((address) & OxFFO0) >> 8,HEX);
// Serial.println((address) & OxO0FF,HEX);
for (i>0;i<length;i++){
// Serial.println(pgm_read_byte(pData+i),HEX);
Wire.write(pgm_read_byte(pData+i));
}
Wire.endTransmission();
}
/*
* Convert a floating-point value to SigmaDSP (5.23) fixed point format
*/

#define SIGMASTUDIOTYPE_FIXPOINT_CONVERT(_value)(_value * 0x00800000)

//Writes one filter based on 5 passed parameter values and a starting destination address

void safeLoadFilter(Biquad* filterX, int addressStart)

{

//Load 5 filter coefficients into DSP safe-load registers, note a0 corresponds to b0 in SigmaDSP due to a naming convention conflict
// Function call format: safelLoadFilter(filter1, address);

safelriteReg (filterX->b0, I2C_ADDR_ADAU1702W, SAFELOAD_DATA1,SAFELOAD_ADDR1, addressStart);

safelriteReg (filterX->b1l, I2C_ADDR_ADAU1702W, SAFELOAD_DATA2,SAFELOAD_ADDR2, (addressStart+1));

safeliriteReg (filterX->b2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA3,SAFELOAD_ADDR3, (addressStart+2));

safellriteReg (filterX->al, I2C_ADDR_ADAU1702W, SAFELOAD_DATA4,SAFELOAD_ADDR4, (addressStart+3));

safelriteReg (filterX->a2, I2C_ADDR_ADAU1702W, SAFELOAD_DATA5,SAFELOAD_ADDR5, (addressStart+4));
//Send the OK to transmit filter

set_core_IST_bit(I2C_ADDR_ADAU1702W);

//Writes 1 parameter register via Safeload Write over I2C, doesn't include IST call
void safelriteReg(double coeff,short deviceaddress, short data_reg, short addr_reg, short address)
{

long fixedPtCoeff = 0;

unsigned char bytes[4]={0}; // 4 x Chars to "carry" the broken Float value

fixedPtCoeff = SIGMASTUDIOTYPE_FIXPOINT_CONVERT(coeff) ; //Convert to 5.23 fixed point format
// Seperate fixed point variable into 4 byte sized chunks for transmission to the DSP

bytes[0] = (fixedPtCoeff >> 24) & OxFF;

bytes[1] = (fixedPtCoeff >> 16) & OxFF;

88

bytes[2] = (fixedPtCoeff >> 8) & OxFF;
bytes[3] = fixedPtCoeff & OxFF;

//Transmit Data//

Wire.beginTransmission(deviceaddress); // 0x34 (write port)

//send data register address 1 byte at a time

Wire.write(((data_reg >> 8) & OxFF)); // send upper byte safeload data register
Wire.write((data_reg & OxFF)); // send lower byte

Wire.write(0x00); //load 00 into byte 3 of safeload register as required by safeload write format
Wire.write(bytes,4); // write 4 bytes of parameter data

Wire.endTransmission();

Wire.beginTransmission(deviceaddress); // 0x34 (write port)

//send address register 1 byte at a time

Wire.write((addr_reg >> 8) & OxFF); // send upper byte (0x08), safeload address register
Wire.write(addr_reg & OxFF); // send lower byte

Wire.write((address >> 8) & OxFF); // destination register

Wire.write(address & OxFF);

Wire.endTransmission();

void subModeEnable(int subModeToggleAdd, int rightMuteAdd, int subModeGainAdd){
//Enable submode toggle by setting mute to "1" -> pass audio
safeliriteReg(UNO,I2C_ADDR_ADAU1702W, SAFELOAD_DATA1, SAFELOAD_ADDR1, subModeToggleAdd);
//Enable rightMute
safeWriteReg(ZERO,I2C_ADDR_ADAU1702W, SAFELOAD_DATA2, SAFELOAD_ADDR2, rightMuteAdd);
// Balance sub with mains by allowing half of left and half of right into the bass mix
safeliriteReg(HALF_POWER,I2C_ADDR_ADAU1702W, SAFELOAD_DATA3, SAFELOAD_ADDR3, subModeGainAdd);
// Transfer the settings
set_core_IST_bit(I2C_ADDR_ADAU1702W);

void set_core_IST_bit(int deviceaddress)
{
/*set the initiate safeload transfer bit (5th bit)
in the core control register to initiate the loading into RAM*/
Wire.beginTransmission(deviceaddress);
Wire.write(0x08);
Wire.write(0x1C); //address of DSP core control: 0x081C. Holds 2bytes data.
Wire.write(0x00);
Wire.write(0x3D); // 96 kHz, IST high
Wire.endTransmission();
}
int importFilter(Biquad* filterl, Biquad* filter2,Biquad* filter3,Biquad* filter4,Biquad* filter5,Biquad* filter6){//, Biquad*
filter7,Biquad* filter8){//,Biquad* filter9, Biquad* filter10){

const int MAX_CHARS_PER_LINE = 100;
const int MAX_TOKENS_PER_LINE = 20;
const char* const DELIMITER = " ";
int filterIndex = 1;

double fcTemp = 0;

double gainTemp = 0;

double qTemp = 0;

int address = 0, n = 0, 1 = 0;

char charTemp;

int type;

int subModeFlag = 0, memlength = 0;

/*

// If Had file system

/*FILE *fr; // Declare file pointer

// create a file-reading object

fr = fopen("test.txt","r"); // open a file
*/

// Load first character into temp variable (need for != Null condition)
charTemp = EEPROM.read(address);
address++;
while (charTemp != NULL){ // stop at end of EEPROM

char buf[MAX_CHARS_PER_LINE];
const char* token[MAX_TOKENS_PER_LINE] = {}; // initialize to 0
while (charTemp != '"\n'){
// Throw out commas
if (charTemp!= ',"){
buf[i] = charTemp;
}
else{
i--; //Still looking for a valid character (counteracts i++)
}
charTemp = EEPROM.read(address);
address++;
i++;
}
buf[i] = '\0';
// Serial.println(buf);
// Reset buf index
i=0;
// parse the line // first token
token[0] = strtok(buf, DELIMITER);
//Serial.println(token[0]);
if (token[0]) // zero if line is blank
{
for (n = 1; n < MAX_TOKENS_PER_LINE; n++)
{
token[n] = strtok(0, DELIMITER); // subsequent tokens
if (!token[n])
break; // no more tokens
else;
// Serial.println(token[n]); // Print each parsed word
}
}
// Process a given line -> set filter
// If declared submode, rest of line will be blank, set flag and go to next line//
if (!strcmp(token[0], "SUBMODE")){
subModeFlag = 1;
}
// This is used to ignore header lines that define REW parameters//
else if (!strcmp(token[0], "Filter")){ // filter may occur
// If filter is disabled, don't implement it
if(!strcmp(token[2], "ON")){ //filter is enabled
// Compare substring to find what type of filter is
// contained in the 4th word (see format)

// Note: all token[x] refer to the word # in the line - 1 (index starts at 0)
if(!strncmp(token[3],"B",1)){ // Peak filter

fcTemp = atof(token[5]);
gainTemp = atof(token[8]);

89

qTemp = atof(token[11]);
type = bq_type_peak;
}
else if(!strncmp(token[3],"LS",2)){ // lowshelf
qTemp = 1;
fcTemp = atof(token[6]);
gainTemp = atof(token[9]);
type = bq_type_lowshelf;
}
else if(!strncmp(token[3],"HS",2)){ // highshelf
qTemp = 1;
fcTemp = atof(token[6]);
gainTemp = atof(token[9]);
type = bq_type_highshelf;
}
else if(!strncmp(token[3],"HP",2)){ // highpass 2nd order butterworth
qTemp = 1;
gainTemp = 0;
fcTemp = atof(token[5]); // change to index 6 if include 12dB/24dB designation in input file
type = bq_type_highpassLR;
}
else if(!strncmp(token[3],"LP",2)){ // lowpass 2nd order butterworth stage
qTemp = 1;
gainTemp = 0;
fcTemp = atof(token[5]); // change to index 6 if include 12dB/24dB designation in input file
type = bq_type_lowpassLR;

}

else if(!strncmp(token[3],"NOTCH",5)){ // notch filter
qTemp = atof(token[8]); // Slope parameter, 0 to 2
gainTemp = 0;
fcTemp = atof(token[5]); //
type = bq_type_notch;

}
else if(!strncmp(token[3],"NONE",4)||!strncmp(token[3],"Modal",4)){
gainTemp = 0;
qTemp = 0.707;
type = bq_type_lowshelf;
}
// Note: Modal filter not supported inserted values are default "do nothing" filter
// Bipass filters 9-10 for memory conservation

if (filterIndex == 7){
filterIndex = 999; // out of range
}

switch(filterIndex){
case 1:
filterl ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);
break;

case 2:
filter2 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);
break;

case 3:
filter3 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);

break;

case 4:

filter4 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);
break;

case 5:
filter5 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);
break;

case 6:
filter6é ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);
break;

/*
case 7:
filter7 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTerp);
break;

case 8:
filter8 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTerp);
break;

case 9:
filter9 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTerp);
break;

case 10:
filter10 ->setBiquad(type, fcTemp / sampleRate, qTemp, gainTemp);
break;
*/

default:
break; //Do nothing

}//End case switch

filterIndex++; // filter implemented, go to next open filter

}//Ends 'on if’'

}//Ends 'filter if’'
charTemp = EEPROM.read(address); // Read out start of next line
address++;

}//Done with reading

if (subModeFlag){

return SUB_MODE_FLAG_HIGH; // evaluates to 2
}

else

return 0;

}
#endif

SigmaStudio Main

/*
*File: C:\Users\wsaba\Google Drive\Senior Project\uC and DSP Code\EXPERIMENT\main_final_IC_1.h
* Created: Monday, June 01, 2015 9:43:02 AM
*Description: EXP:IC 1 program data.
* This software is distributed in the hope that it will be useful,
*but is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
*CONDITIONS OF ANY KIND, without even the implied warranty of
*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

*

* This software may only be used to program products purchased from

*Analog Devices for incorporation by you into audio products that
*are intended for resale to audio product end users. This software
*may not be distributed whole or in any part to third parties.

*

* Copyright ©2015 Analog Devices, Inc. All rights reserved.
* Detailed Description: Besides the auto-generated Sigma Studio DSP
*boot code stored in Program_Data_IC_1, Param_Data_IC_1 and the corresponding
* pointers appended _loc, This file contains the lookup tables used to
*Fc for the parametric EQ and Crossover.
* Further, #defines have been added for the register count for both program
*and parameter memory as required for the modified boot sequence functions.
*See boot sequence comments for more details (bottom).
* Purpose: This file stores numeric constants for use in booting and
*editing the DSP.
¥/
#ifndef __MAIN_FINAL_IC_1_H__
#define __MAIN_FINAL_IC_1_H__

#include "SigmaStudioFW.h"
#include "main_final_IC_1_REG.h"

#define DEVICE_ARCHITECTURE_IC_1 "ADAU1702"
#define DEVICE_ADDR_IC_1 0x34
#define HP_LOOKUP_SIZE 280

/***** Store lookup arrays for highpaass, frequency, gain, and Q. See if need to store them in progmem.

ek Update q,gain,fc,db lookup when solution found */

// Lookup table logarithmically spaced spanning 20 Hz to 20 kHz, used in crossover setting
int fcLookup [173] ={
20,21,22,23,24,25,26,27,28,29,30,32,34,36,38, // 0-14
40,42,44,46,48,50,52,54,56,58,60,62,64,66,68, //14-29
70,72,74,76,78,80,82,84,86,88,90,92,94,96,98, //30-44
100,107,114,120,128,135,142,152,162,172, //45-54
180,192,202,212,227,240,257,272,287,300, //55-64
317,332,347,360,382,402,422,442,462,482, //65-74
502,540,578,616,654,692,730,770,810,850, //75-84
900,950,1000,1050,1100,1150,1200,1250,1300,1350,//85-94
1400,1450,1500,1550,1650,1750,1850,1950,2050,2150,//95-104
2250,2350,2450,2550,2650,2750,2850,2950,3050,3150,//105-114
3250,3350,3450,3550,3650,3750,3850,3950,4050,4200,//115-124
4350,4500,4650,4800,4950,5100,5250,5400,5550,5700,//125-134
5850,6000,6150,6300,6450,6600,6750,6900,7050,7200,//135-144
7350,7500,7650,7800,7950,8100,8250,8400,8550,8700,//145-154
8850,9000,9150,9300,9450,9600,9750,9900,11000,12100,//155-164
13000,14000,15000,16000,17000,18000,19000,20000,//165-173

h

/lint limiterindex = 41; // used to initiate limiters to -0 dB via dBLookup for a full scale output range.

// Each _loc variable stores the location in progmem of first byte

/* DSP Program Data */

#define PROGRAM_SIZE_IC_1 2560

#define PROGRAM_SIZE_IC_2 512 // Number of Prog registers to write during boot-up
#define PROGRAM_ADDR_IC_1 1024

ADI_REG_TYPE Program_Data_IC_1[PROGRAM_SIZE_IC_1] ={
0x00, 0x00, 0x00, 0x00, 0x01,

92

0x00, 0x00, 0x00, O0xE8, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x08, 0x00, 0xE8, 0x01,
0x00, 0x02, 0x00, 0x20, 0x01,
0x00, 0x10, 0x00, 0xE2, 0x01,
0x00, 0x0A, 0x00, 0x20, 0x01,
0x00, 0x18, 0x00, 0xE2, 0x01,
0xFF, 0xF2, 0x01, 0x20, 0x01,
0x00, 0x21, 0x08, 0x22, 0x41,
0x00, 0x40, 0x00, 0xE2, 0x01,
0x00, 0x31, 0x08, 0x20, 0x01,
0x00, 0x21, 0x08, 0x34, 0x01,
0x00, 0x42, 0x02, 0x22, 0x01,
0x00, 0x28, 0x00, 0xE2, 0x01,
0x00, 0x28, 0x00, 0xCO, 0x01,
0x00, 0x38, 0x00, 0xF2, 0x01,
0x00, 0x17, OxFF, 0x20, 0x01,
0x00, 0x58, 0x00, 0xE2, 0x01,
0x00, 0x1F, OxFF, 0x20, 0x01,
0x00, 0x70, 0x00, 0xE2, 0x01,
0x00, 0x82, 0x06, 0x20, 0x01,
0x00, 0x7A, 0x07, 0x22, 0x01,
0x00, 0x5A, 0x03, 0x22, 0x01,
0x00, 0x52, 0x04, 0x22, 0x01,
0x00, 0x4A, 0x05, 0x22, 0x01,
0x00, 0x88, 0x00, 0xE2, 0x01,
0x00, 0x9A, 0x06, 0x20, 0x01,
0x00, 0x92, 0x07, 0x22, 0x01,
0x00, 0x72, 0x03, 0x22, 0x01,
0x00, 0x6A, 0x04, 0x22, 0x01,
0x00, 0x62, 0x05, 0x22, 0x01,
0x00, 0xAO0, 0x00, 0xE2, 0x01,
0x00, 0xB2, 0x0B, 0x20, 0x01,
0x00, 0xAA, 0x0C, 0x22, 0x01,
0x00, 0x8A, 0x08, 0x22, 0x01,
0x00, 0x82, 0x09, 0x22, 0x01,
0x00, 0x7A, 0x0A, 0x22, 0x01,
0x00, 0xB8, 0x00, 0xE2, 0x01,
0x00, 0xCA, 0x0B, 0x20, 0x01,
0x00, 0xC2, 0x0C, 0x22, 0x01,
0x00, 0xA2, 0x08, 0x22, 0x01,
0x00, 0x9A, 0x09, 0x22, 0x01,
0x00, 0x92, 0x0A, 0x22, 0x01,
0x00, 0xDO, 0x00, 0xE2, 0x01,
0x00, 0xE2, 0x10, 0x20, 0x01,
0x00, 0xDA, 0x11, 0x22, 0x01,
0x00, 0xBA, 0x0D, 0x22, 0x01,
0x00, 0xB2, 0x0E, 0x22, 0x01,
0x00, 0xAA, 0x0F, 0x22, 0x01,
0x00, 0xE8, 0x00, 0xE2, 0x01,
0x00, OxFA, 0x10, 0x20, 0x01,
0x00, 0xF2, 0x11, 0x22, 0x01,
0x00, 0xD2, 0x0D, 0x22, 0x01,
0x00, 0xCA, 0x0E, 0x22, 0x01,
0x00, 0xC2, 0xO0F, 0x22, 0x01,
0x01, 0x00, 0x00, 0xE2, 0x01,
0x01, 0x12, 0x15, 0x20, 0x01,
0x01, 0x0A, 0x16, 0x22, 0x01,
0x00, OXEA, 0x12, 0x22, 0x01,
0x00, 0xE2, 0x13, 0x22, 0x01,
0x00, 0xDA, 0x14, 0x22, 0x01,

93

0x01, 0x18, 0x00, 0xE2, 0x01,
0x01, 0x2A, 0x15, 0x20, 0x01,
0x01, 0x22, 0x16, 0x22, 0x01,
0x01, 0x02, 0x12, 0x22, 0x01,
0x00, OxFA, 0x13, 0x22, 0x01,
0x00, 0xF2, 0x14, 0x22, 0x01,
0x01, 0x30, 0x00, 0xE2, 0x01,
0x01, 0x42, 0x1A, 0x20, 0x01,
0x01, 0x3A, 0x1B, 0x22, 0x01,
0x01, 0x1A, 0x17, 0x22, 0x01,
0x01, 0x12, 0x18, 0x22, 0x01,
0x01, 0x0A, 0x19, 0x22, 0x01,
0x01, 0x48, 0x00, 0xE2, 0x01,
0x01, 0x5A, 0x1A, 0x20, 0x01,
0x01, 0x52, 0x1B, 0x22, 0x01,
0x01, 0x32, 0x17, 0x22, 0x01,
0x01, 0x2A, 0x18, 0x22, 0x01,
0x01, 0x22, 0x19, 0x22, 0x01,
0x01, 0x60, 0x00, 0xE2, 0x01,
0x01, 0x72, 0x1F, 0x20, 0x01,
0x01, 0x6A, 0x20, 0x22, 0x01,
0x01, 0x4A, 0x1C, 0x22, 0x01,
0x01, 0x42, 0x1D, 0x22, 0x01,
0x01, 0x3A, 0x1E, 0x22, 0x01,
0x01, 0x78, 0x00, 0xE2, 0x01,
0x01, 0x8A, 0x1F, 0x20, 0x01,
0x01, 0x82, 0x20, 0x22, 0x01,
0x01, 0x62, 0x1C, 0x22, 0x01,
0x01, 0x5A, 0x1D, 0x22, 0x01,
0x01, 0x52, 0x1E, 0x22, 0x01,
0x01, 0x90, 0x00, 0xE2, 0x01,
0x01, 0xA2, 0x24, 0x20, 0x01,
0x01, 0x9A, 0x25, 0x22, 0x01,
0x01, 0x7A, 0x21, 0x22, 0x01,
0x01, 0x72, 0x22, 0x22, 0x01,
0x01, 0x6A, 0x23, 0x22, 0x01,
0x01, 0xA8, 0x00, 0xE2, 0x01,
0x01, 0xBA, 0x24, 0x20, 0x01,
0x01, 0xB2, 0x25, 0x22, 0x01,
0x01, 0x92, 0x21, 0x22, 0x01,
0x01, 0x8A, 0x22, 0x22, 0x01,
0x01, 0x82, 0x23, 0x22, 0x01,
0x01, 0xCO, 0x00, 0xE2, 0x01,
0x01, 0xD2, 0x29, 0x20, 0x01,
0x01, 0xCA, 0x2A, 0x22, 0x01,
0x01, 0xAA, 0x26, 0x22, 0x01,
0x01, 0xA2, 0x27, 0x22, 0x01,
0x01, 0x9A, 0x28, 0x22, 0x01,
0x01, 0xD8, 0x00, 0xE2, 0x01,
0x01, OXEA, 0x29, 0x20, 0x01,
0x01, 0xE2, 0x2A, 0x22, 0x01,
0x01, 0xC2, 0x26, 0x22, 0x01,
0x01, 0xBA, 0x27, 0x22, 0x01,
0x01, 0xB2, 0x28, 0x22, 0x01,
0x01, 0xF0, 0x00, 0xE2, 0x01,
0x02, 0x02, 0x2E, 0x20, 0x01,
0x01, OxFA, 0x2F, 0x22, 0x01,
0x01, 0xDA, 0x2B, 0x22, 0x01,
0x01, 0xD2, 0x2C, 0x22, 0x01,
0x01, 0xCA, 0x2D, 0x22, 0x01,
0x02, 0x08, 0x00, 0xE2, 0x01,

94

0x02, 0x1A, 0x2E, 0x20, 0x01,
0x02, 0x12, 0x2F, 0x22, 0x01,
0x01, 0xF2, 0x2B, 0x22, 0x01,
0x01, OXEA, 0x2C, 0x22, 0x01,
0x01, 0xE2, 0x2D, 0x22, 0x01,
0x02, 0x20, 0x00, 0xE2, 0x01,
0x02, 0x32, 0x33, 0x20, 0x01,
0x02, 0x2A, 0x34, 0x22, 0x01,
0x02, 0x0A, 0x30, 0x22, 0x01,
0x02, 0x02, 0x31, 0x22, 0x01,
0x01, OxFA, 0x32, 0x22, 0x01,
0x02, 0x38, 0x00, 0xE2, 0x01,
0x02, 0x4A, 0x33, 0x20, 0x01,
0x02, 0x42, 0x34, 0x22, 0x01,
0x02, 0x22, 0x30, 0x22, 0x01,
0x02, 0x1A, 0x31, 0x22, 0x01,
0x02, 0x12, 0x32, 0x22, 0x01,
0x02, 0x50, 0x00, 0xE2, 0x01,
0x02, 0x3A, 0x35, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x02, 0x70, 0x00, OxE2, 0x01,
0x02, 0x9A, 0x38, 0x20, 0x01,
0x02, 0x92, 0x3A, 0x22, 0x01,
0x02, 0x82, 0x38, 0x34, 0x01,
0x02, 0x7A, 0x3A, 0x22, 0x01,
0x02, 0x72, 0x36, 0x22, 0x01,
0x02, 0x6A, 0x37, 0x22, 0x01,
0x02, 0x62, 0x39, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x02, 0x88, 0x00, 0xE2, 0x01,
0x02, 0xAO0, 0x00, 0xF2, 0x01,
0x02, 0xCA, 0x3D, 0x20, 0x01,
0x02, 0xC2, 0x3F, 0x22, 0x01,
0x02, 0xB2, 0x3D, 0x34, 0x01,
0x02, 0xAA, 0x3F, 0x22, 0x01,
0x02, 0x8A, 0x3B, 0x22, 0x01,
0x02, 0x82, 0x3C, 0x22, 0x01,
0x02, 0x7A, 0x3E, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x02, 0xB8, 0x00, 0xE2, 0x01,
0x03, 0xF8, 0x00, 0xE2, 0x01,
0x02, 0xDO0, 0x00, 0xF2, 0x01,
0x02, 0x39, 0x08, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x02, 0xE8, 0x00, 0xE2, 0x01,
0x03, 0x12, 0x42, 0x20, 0x01,
0x03, 0x0A, 0x44, 0x22, 0x01,
0x02, OxFA, 0x42, 0x34, 0x01,
0x02, 0xF2, 0x44, 0x22, 0x01,
0x02, 0xEA, 0x40, 0x22, 0x01,
0x02, 0xE2, 0x41, 0x22, 0x01,
0x02, 0xDA, 0x43, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0x00, 0x00, 0xE2, 0x01,
0x03, 0x18, 0x00, 0xF2, 0x01,
0x03, 0x42, 0x47, 0x20, 0x01,
0x03, 0x3A, 0x49, 0x22, 0x01,
0x03, 0x2A, 0x47, 0x34, 0x01,
0x03, 0x22, 0x49, 0x22, 0x01,
0x03, 0x02, 0x45, 0x22, 0x01,
0x02, OxFA, 0x46, 0x22, 0x01,

95

0x02, 0xF2, 0x48, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0x30, 0x00, 0xE2, 0x01,
0x02, 0x58, 0x00, 0xE2, 0x01,
0x03, 0x48, 0x00, 0xF2, 0x01,
0x02, 0x52, 0x4A, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0x68, 0x00, 0xE2, 0x01,
0x03, 0x7A, 0x4D, 0x20, 0x01,
0x03, 0x72, 0x4F, 0x22, 0x01,
0x03, 0x6A, 0x4B, 0x22, 0x01,
0x03, 0x62, 0x4C, 0x22, 0x01,
0x03, 0x5A, 0x4E, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0x80, 0x00, 0xE2, 0x01,
0x03, 0x92, 0x52, 0x20, 0x01,
0x03, 0x8A, 0x54, 0x22, 0x01,
0x03, 0x82, 0x50, 0x22, 0x01,
0x03, 0x7A, 0x51, 0x22, 0x01,
0x03, 0x72, 0x53, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0x98, 0x00, 0xE2, 0x01,
0x04, 0x10, 0x00, 0xE2, 0x01,
0x02, 0x51, 0x08, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0xBO0, 0x00, 0xE2, 0x01,
0x03, 0xC2, 0x57, 0x20, 0x01,
0x03, 0xBA, 0x59, 0x22, 0x01,
0x03, 0xB2, 0x55, 0x22, 0x01,
0x03, 0xAA, 0x56, 0x22, 0x01,
0x03, 0xA2, 0x58, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0xC8, 0x00, 0xE2, 0x01,
0x03, 0xDA, 0x5C, 0x20, 0x01,
0x03, 0xD2, 0x5E, 0x22, 0x01,
0x03, 0xCA, 0x5A, 0x22, 0x01,
0x03, 0xC2, 0x5B, 0x22, 0x01,
0x03, 0xBA, 0x5D, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x03, 0xEO, 0x00, 0xE2, 0x01,
0x03, 0x50, 0x00, 0xE2, 0x01,
0x02, 0x59, 0x08, 0x20, 0x01,
0xFF, 0x80, 0x00, 0x02, 0x01,
0x03, 0x51, 0x08, 0x20, 0x01,
0xFF, 0x78, 0x00, 0x02, 0x01,
0x04, 0x22, 0x62, 0x20, 0x01,
0x04, 0x1A, 0x63, 0x22, 0x01,
0x03, 0xFA, 0x5F, 0x22, 0x01,
0x03, 0xF2, 0x60, 0x22, 0x01,
0x03, 0xEA, 0x61, 0x22, 0x01,
0x04, 0x28, 0x00, 0xE2, 0x01,
0x04, 0x3A, 0x62, 0x20, 0x01,
0x04, 0x32, 0x63, 0x22, 0x01,
0x04, 0x12, 0x5F, 0x22, 0x01,
0x04, 0x0A, 0x60, 0x22, 0x01,
0x04, 0x02, 0x61, 0x22, 0x01,
0x04, 0x40, 0x00, 0xE2, 0x01,
0x04, 0x42, 0x64, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x48, 0x00, 0xE2, 0x01,
0x04, 0x42, 0x64, 0x20, 0x01,

96

0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x50, 0x00, 0xE2, 0x01,
0x04, 0x4A, 0x65, 0x20, 0x01,
0x04, 0x58, 0x00, 0xE2, 0x01,
0x04, 0x52, 0x66, 0x20, 0x01,
0x04, 0x60, 0x00, 0xE2, 0x01,
0x04, 0x2A, 0x67, 0x20, 0x01,
0x04, 0x5A, 0x67, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x68, 0x00, 0xE2, 0x01,
0x04, 0x61, 0x08, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xC8, 0x00, 0xFO0, 0x01,
0xFF, 0xE9, 0x08, 0x22, 0x01,
0x04, 0xCO0, 0x00, 0xF2, 0x01,
0x04, 0xB1, 0x08, 0x20, 0x01,
0x04, 0xB2, 0x74, 0x22, 0x41,
0x04, 0xC2, 0x74, 0x22, 0x01,
0x04, 0xA1, 0x08, 0x34, 0x01,
0x04, 0xA2, 0x74, 0x22, 0x41,
0x04, 0xCA, 0x74, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xA8, 0x00, 0xE2, 0x01,
0x04, 0xB8, 0x00, 0xF2, 0x01,
0x04, 0xDO0, 0x00, 0xE2, 0x01,
0xFF, 0xF2, 0x70, 0x40, 0x01,
0x04, 0xD1, 0x08, 0x20, 0x09,
0x04, 0xD2, 0x68, 0x20, 0x01,
0xFF, 0xF2, 0x69, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0xD2, 0x6A, 0x20, 0x01,
0xFF, 0xF2, 0x6B, 0x22, 0x01,
0x04, 0x70, 0x00, OxE2, 0x23,
0xFF, 0xF2, 0x71, 0x40, 0x01,
0x04, 0xD1, 0x08, 0x20, 0x09,
0x04, 0xD2, 0x6C, 0x20, 0x01,
0xFF, 0xF2, 0x6D, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x23,
0xFF, 0xF2, 0x72, 0x40, 0x01,
0x04, 0xD1, 0x08, 0x20, 0x09,
0x04, 0xD2, 0x6E, 0x20, 0x01,
0xFF, 0xF2, 0x6F, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x23,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x04, 0xD7, 0xFF, 0x20, 0x41,
0xFF, 0xF1, 0x07, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x77, 0xFF, 0x20, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x04, 0xD7, 0xFF, 0x20, 0x41,
0xFF, 0xF1, 0x07, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x77, 0xFF, 0x20, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x04, 0xD7, 0xFF, 0x20, 0x41,
0xFF, 0xF1, 0x07, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x77, 0xFF, 0x20, 0x01,

97

0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x00, 0x02, 0x73, 0xAO0, 0x01,
0xFF, 0xE7, OxFF, 0x20, 0x01,
0x04, 0x98, 0x00, 0xE2, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x99, 0x08, 0x40, 0x01,
0xFF, 0xF1, 0x08, 0x20, 0x09,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x98, 0x00, 0xE2, 0x23,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x99, 0x08, 0x40, 0x01,
0x04, 0x91, 0x08, 0x20, 0x09,
0x04, 0x9A, 0x75, 0x20, 0x01,
0x04, 0x92, 0x75, 0x22, 0x41,
0x04, 0x91, 0x08, 0x22, 0x01,
0x04, 0x98, 0x00, 0xE2, 0x23,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0x99, 0x08, 0x20, 0x01,
0x04, 0x88, 0x00, 0xE2, 0x01,
0xFF, 0xF2, 0x76, 0x22, 0x49,
0xFF, 0xF1, 0x08, 0x20, 0x01,
0xFF, 0xE9, 0x08, 0x20, 0x25,
0x04, 0x80, 0x00, 0xE2, 0x01,
0x04, 0x98, 0x00, 0xCO, 0x01,
0x04, 0x67, 0xFF, 0x20, 0x01,
0x04, 0x78, 0x00, 0xE2, 0x01,
0x04, 0x69, 0x08, 0x20, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xC8, 0x00, 0xFO0, 0x01,
0xFF, 0xE9, 0x08, 0x22, 0x01,
0x04, 0xCO0, 0x00, 0xF2, 0x01,
0x05, 0x11, 0x08, 0x20, 0x01,
0x05, 0x12, 0x83, 0x22, 0x41,
0x04, 0xC2, 0x83, 0x22, 0x01,
0x05, 0x01, 0x08, 0x34, 0x01,
0x05, 0x02, 0x83, 0x22, 0x41,
0x04, 0xCA, 0x83, 0x22, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x05, 0x08, 0x00, 0xE2, 0x01,
0x05, 0x18, 0x00, 0xF2, 0x01,
0x04, 0xDO, 0x00, 0xE2, 0x01,
0xFF, 0xF2, 0x7F, 0x40, 0x01,
0x04, 0xD1, 0x08, 0x20, 0x09,
0x04, 0xD2, 0x77, 0x20, 0x01,
0xFF, 0xF2, 0x78, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0xD2, 0x79, 0x20, 0x01,
0xFF, 0xF2, 0x7A, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x23,
0xFF, 0xF2, 0x80, 0x40, 0x01,
0x04, 0xD1, 0x08, 0x20, 0x09,
0x04, 0xD2, 0x7B, 0x20, 0x01,
0xFF, 0xF2, 0x7C, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x23,
0xFF, 0xF2, 0x81, 0x40, 0x01,
0x04, 0xD1, 0x08, 0x20, 0x09,
0x04, 0xD2, 0x7D, 0x20, 0x01,
0xFF, 0xF2, 0x7E, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x23,
0x00, 0x00, 0x00, 0x00, 0x01,

98

0x04, 0x70, 0x00, 0xCO, 0x01,
0x04, 0xD7, 0xFF, 0x20, 0x41,
0xFF, 0xF1, 0x07, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x77, 0xFF, 0x20, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x04, 0xD7, 0xFF, 0x20, 0x41,
0xFF, 0xF1, 0x07, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x77, 0xFF, 0x20, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x04, 0xD7, 0xFF, 0x20, 0x41,
0xFF, 0xF1, 0x07, 0x22, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x77, 0xFF, 0x20, 0x01,
0x04, 0x70, 0x00, 0xE2, 0x01,
0x04, 0x70, 0x00, 0xCO, 0x01,
0x00, 0x02, 0x82, 0xAO0, 0x01,
0xFF, 0xE7, OxFF, 0x20, 0x01,
0x04, 0xF8, 0x00, 0xE2, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xF9, 0x08, 0x40, 0x01,
0xFF, 0xF1, 0x08, 0x20, 0x09,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xF8, 0x00, 0xE2, 0x23,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xF9, 0x08, 0x40, 0x01,
0x04, 0xF1, 0x08, 0x20, 0x09,
0x04, 0xFA, 0x84, 0x20, 0x01,
0x04, 0xF2, 0x84, 0x22, 0x41,
0x04, 0xF1, 0x08, 0x22, 0x01,
0x04, 0xF8, 0x00, 0xE2, 0x23,
0x00, 0x00, 0x00, 0x00, 0x01,
0x04, 0xF9, 0x08, 0x20, 0x01,
0x04, 0xE8, 0x00, 0xE2, 0x01,
0xFF, 0xF2, 0x85, 0x22, 0x49,
0xFF, 0xF1, 0x08, 0x20, 0x01,
0xFF, 0xE9, 0x08, 0x20, 0x25,
0x04, 0xEO0, 0x00, 0xE2, 0x01,
0x04, 0xF8, 0x00, 0xCO, 0x01,
0x04, 0x6F, 0xFF, 0x20, 0x01,
0x04, 0xD8, 0x00, 0xE2, 0x01,
0x04, 0x79, 0x08, 0x20, 0x01,
0xFF, 0x70, 0x00, 0x02, 0x01,
0x04, 0xD9, 0x08, 0x20, 0x01,
0xFF, 0x68, 0x00, 0x02, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,

99

100

0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,

101

0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,
0x00, 0x00, 0x00, 0x00, 0x01,

&

ADI_REG_TYPE* Program_Data_IC_1_loc = Program_Data_IC_1;

/* DSP Parameter (Coefficient) Data */
#define PARAM_SIZE_IC_1 4096
// Number of Param registers to write during boot-up, necessary to convert from bytes to registers due to block write method
#define PARAM_SIZE_IC_2 1024
#define PARAM_ADDR_IC_10
ADI_REG_TYPE Param_Data_IC_1[PARAM_SIZE_IC_1] ={
0x00, 0x80, 0x00, 0x00,

0x00, 0x80, 0x00, 0x00,

0x00, 0x00, 0x08, 0x00,

0x00, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x80, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,

102

0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x07, 0x09, 0x79,
0x00, 0xOE, 0x12, OxF1,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x07, 0x09, 0x79,
0x0F, 0xC5, 0xA3, 0x7F,
0x00, 0x07, 0x09, 0x79,
0x00, 0xOE, 0x12, 0xF1,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x07, 0x09, 0x79,
0xO0F, 0xC5, 0xA3, 0x7F,
0x00, 0x56, 0x24, 0xC8,
0x0F, 0x53, 0xB6, 0x70,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x56, 0x24, 0xC8,
0x0F, 0xC5, 0xA3, 0x7F,
0x00, 0x56, 0x24, 0xCS8,
0x0F, 0x53, 0xB6, 0x70,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x56, 0x24, 0xC8,
0x0F, 0xC5, 0xA3, 0x7F,
0x00, 0x80, 0x00, 0x00,
0x00, 0x07, 0x09, 0x79,
0x00, 0xO0E, 0x12, 0xF1,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x07, 0x09, 0x79,
0xO0F, 0xC5, 0xA3, Ox7F,
0x00, 0x07, 0x09, 0x79,
0x00, 0xO0E, 0x12, 0xF1,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x07, 0x09, 0x79,
0x0F, 0xC5, 0xA3, 0x7F,
0x00, 0x56, 0x24, 0xCS8,
0x0F, 0x53, 0xB6, 0x70,
0x00, 0x9E, 0x36, 0x9F,

0x00, 0x56, 0x24, 0xC8,
0xO0F, 0xC5, 0xA3, 0x7F,
0x00, 0x56, 0x24, 0xC8,
0xO0F, 0x53, 0xB6, 0x70,
0x00, 0x9E, 0x36, 0x9F,
0x00, 0x56, 0x24, 0xC8,
0x0F, 0xC5, 0xA3, 0x7F,
0x00, 0x7F, 0xD2, 0x89,
0xO0F, 0x00, 0x5A, 0xED,
0x00, 0x7F, 0xD2, 0x89,
0x00, OxFF, 0xAS5, 0x03,
0xO0F, 0x80, 0x5A, 0xDD,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0x00, 0x80, 0x00, 0x00,
0xO0F, OxFE, 0x2B, 0xE3,
0x00, 0x22, 0xBE, 0x2C,

0xOF, OxEA, 0xAA, 0xAB,

0x00, 0x6A, 0xAA, 0xAB,
0xO0F, 0x9A, 0x69, 0xA7,
0x00, 0xFD, 0xF7, 0xDF,
0x08, 0x3C, 0x6C, 0x20,
0x03, 0xF5, 0xAA, 0x23,
0x01, 0x80, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00,
0x00, 0x33, 0x33, 0x33,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x03, OXEE,
0x00, 0x00, 0x08, 0x00,
0x00, 0x7F, 0xF0, 0x00,
0x0F, OxFE, 0x2B, 0xE3,
0x00, 0x22, 0xBE, 0x2C,

0xOF, 0xEA, 0xAA, 0xAB,

0x00, 0x6A, 0xAA, 0xAB,
0x0F, 0x9A, 0x69, 0xA7,
0x00, 0xFD, 0xF7, 0xDF,
0x08, 0x3C, 0x6C, 0x20,
0x03, 0xF5, 0xAA, 0x23,
0x01, 0x80, 0x00, 0x00,
0x01, 0x00, 0x00, 0x00,
0x00, 0x33, 0x33, 0x33,
0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x03, OXEE,
0x00, 0x00, 0x08, 0x00,
0x00, 0x7F, 0xF0, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

103

104

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

105

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

106

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

107

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

108

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

109

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

110

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

111

112

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

113

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

114

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

115

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

116

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

117

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,

118

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
b

ADI_REG_TYPE* Param_Data_IC_1_loc = Param_Data_IC_1; // Stores location in progmem of first byte of param mem

/* Register Default - IC 1.CoreRegister */
ADI_REG_TYPE RO_COREREGISTER_IC_1_DefaultfREG_COREREGISTER_IC_1_BYTE] = {0x00, 0x19};
ADI_REG_TYPE* RO_COREREGISTER_IC_1_Default_loc = R0O_COREREGISTER_IC_1_Default;

/* Register Default - IC 1.HWConFiguration */

#define R3_HWCONFIGURATION_IC_1_SIZE 24

ADI_REG_TYPE R3_HWCONFIGURATION_IC_1_Default[R3_HWCONFIGURATION_IC_1_SIZE] = {

0x00, 0x19, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
h

ADI_REG_TYPE* R3_HWCONFIGURATION_IC_1_Default_loc =R3_HWCONFIGURATION_IC_1_Default;

/* Register Default - IC 1.CoreRegister */

ADI_REG_TYPE R4_COREREGISTER_IC_1_DefaultfREG_COREREGISTER_IC_1_BYTE] ={
0x00, 0x1D

h

ADI_REG_TYPE* R4_COREREGISTER_IC_1_Default_loc = R4_COREREGISTER_IC_1_Default;

/*
*This function sends the following code to the DSP and is used to clean load the set of
*default filters: no EQ, 8 kHz crossover, 30 Hz HP on woofers, limiters at -3dB.
¥/

#define DEFAULT_DOWNLOAD_SIZE_IC_15

void default_download_IC_1() {

// Load 0x19 to disable sound transmission through the DSP (lowering CR) to avoid audible glitches created by the CPU during block writes
SIGMA_WRITE_REGISTER_BLOCK(DEVICE_ADDR_IC_1, REG_COREREGISTER_IC_1_ADDR, REG_COREREGISTER_IC_1_BYTE,
RO_COREREGISTER_IC_1_Default_loc); // 2 bytes

// Load 512 registers of program data in chunks of 5 bytes in correspondence with the 40 bit device registers
SIGMA_WRITE_REGISTER_PROG(DEVICE_ADDR_IC_1, PROGRAM_ADDR_IC_1, PROGRAM_SIZE_IC_2, Program_Data_IC_1_loc); // 512
registers of 5 bytes

// Load 1024 registers of parameter data (28 bit registers with 4 don't cares (MSB) for 32 bits of precision stored as 5.23 fixed point
coefficients,

// Param memory array already stored in byte constant format, already in fixed point

SIGMA_WRITE_REGISTER_PARAM(DEVICE_ADDR_IC_1, PARAM_ADDR_IC_1, PARAM_SIZE_IC_2, Param_Data_IC_1_loc); / 1024 registers

119

of 4 bytes

// Set the hardware registers controlling GPIO, clock polarity, memory type, serial input type, power core configuration and more
SIGMA_WRITE_REGISTER_BLOCK(DEVICE_ADDR_IC_1, REG_COREREGISTER_IC_1_ADDR , R3_HWCONFIGURATION_IC_1_SIZE,
R3_HWCONFIGURATION_IC_1_Default_loc);/24 bytes

// Set 0x1D to the core control register. Enables CR, ADCs, DACs, allowing audio to pass through. 2 LSB bits control sampling rate of
device (in this case 01 = 96 kHz
SIGMA_WRITE_REGISTER_BLOCK(DEVICE_ADDR_IC_1, REG_COREREGISTER_IC_1_ADDR, REG_COREREGISTER_IC_1_BYTE,
R4_COREREGISTER_IC_1_Default_loc);// 2 bytes

}

#endif

120

Appendix C: Market Analysis

Commercial alternatives

Within the DSP Amplifier category there are numerous stereo amplifiers in the pro, and
pro-sumer categories offered by companies including: K-array, Behringer, and Crown
Audio (Harman International). Other systems dedicated to installed audio, contractor or
70V systems, and touring sound line arrays as well as those previously mentioned
above are ill-suited for the average consumer looking to better their home audio
experience.

Primarily most of these systems come in rack mount units and are designed to be robust
and functional above aesthetics. An additional grievance is that most of these systems
are two-channel high power units and that need 3 separate units to power the system.
The more power needed, the more expensive the system.

The approach that many enthusiasts take is to use dsp software: Room Equalizer
Wizard, or one that is provided with their hardware, in combination with a calibrated
microphone and an enclosed DSP unit such as a miniDSP to characterize and correct
the frequency response in both time and frequency. This is significantly more cost
effective than the most affordable commercially available rackmount solution: the
Behringer DCX2496, however, considerable wiring is required to interface with multiple
amplifiers and the output level may not match the input sensitivity of the amplifiers being
driven.

There are numerous DSP chips and development kits available through Texas
Instruments utilizing both Purepath (a studio graphical development environment) and
C-based programmability options sold as prototype board/chip level devices. Setting up
one of these systems requires a fair amount of audio technician experience. Many
powered loudspeaker manufacturers have opted to embed similar DSP boards (such as
Equator Audio, JBL Pro) in their loudspeakers but none of these solutions are available
to the public. The key missing link in the market is the integration of these chips into
consumer amplifiers for custom rather than built in use.

This project will incorporate one or more dsp chip(s) with a developer written graphical
interface (like the miniDSP) that can be used to accelerate initial setup and provide the
computational power for all of the filters and speaker control.

121

Definition of Market Region:

The project’s main competitors are other rivaling single unit 2.1 computer programmable
speaker systems. The customers that this project caters to are primarily audio hobbyists
looking to obtain a hi-fidelity stereo system with an emphasis on user friendliness and
simplicity. By combining the key components required to process and amplify a 2.1
system, our product will streamline the 2.1 audio experience for the user and provide
maximum cost savings over competing multi-component systems.The cost of this
system combined with the interface focus on ease of use make this DSP amplifier
system much more appealing to cost conscious and computer inexperienced audio
hobbyists alike compared to more advanced audio dsp systems.

Notable Audio Industry Competitors:

Dayton Audio is a major provider of in the home and
commercial speakers, drivers, and speaker building

> accessories. Selling rivaling products such as subwoofer
plate amplifiers and 2.1 plate amplifiers, this company is a
serious contender in the audio industry.

® Yung International is an international audio sourcing and manufacturing
company based in China/Taiwan. For the last twenty five years, they have
provided quality audio products, most notably their subwoofer amplifiers
ranging from 100-500 Watts.

Behringer is an international company that provides quality,
affordable, audio equipment. The equipment they sell caters
specifically to the music industry, with some emphasis on home audio

behr‘inger* system. A notable rivaling product they offer are audio amplifiers with
DSP.

Peavey is one of the largest audio equipment manufacturers nationwide
and is located in Meridian, Mississippi. Since 1964, they have pioneered
amplifier technology in the audio industry. Most notably, they have
pioneered power amplifier technology by reducing weight and
increasing output power, for affordable cost.

122

JBL Audio by HARMAN is a company that provides every form of
audio product under the sun. Established in the late 1920’s, this

i company has led the charge from the beginning of the electronic audio
m industry. Their most notable competing products to our Audio-DSP
- amplifier are their home theatre systems.
s HABRMNLAM

M-Audio is a provider of two channel USB audio interface
solutions that compete with our audio DSP unit. While not
as large as other competing companies, their products
are unique and provide quality audio tailored to recording professionals.

MiniDSP is provider of Digital Signal Processing Platforms
for audio applications. They also make single and dual
channel plate amplifiers.

Size of Market:

The total market for consumer electronics is over 209 billion USD [13] (according to
2013 study by CEA). Focusing on audio electronics Factoring in inflation [14], the market
in 2013 for home audio products hovers around 1.7 billion USD [15]. Due to its size,
there is a significant ability to profit in this region of the market.

Is Part of this Market Addressable to our Product:

This solution is priced affordably, matching competitor's pricing at around $500-1000.
There are multiple combinations of individual components needed to create such a 2.1
speaker system that are currently being sold (see list of Competitors above). Our
combined Audio-DSP amplifier will fit in right with the competing products while offering
advantages they lack.

Key Strengths to Leverage that our Competitors Cannot:

The project plans to combine features of several other competitor products (most
notably the plate amplifier and a DSP unit) into one unit that runs on higher power
speakers than currently available. The application for this product in the audio market is
extremely relevant; the Audio-DSP amplifier will take the best of the 2.1 amplifier and
the DSP unit to provide quality audio to high power speakers.

123

What Areas of the Market are Not Well Served:

The main strength of our project also coincides with a portion of the market that is
extremely underserved at the moment. There are no other competing solutions that offer
all in one computer programmable audio-DSP 2.1 speaker system management.
Another feature that is lacking in this market is the ability to provide computer controlled
audio-dsp to high power speakers. Most setups are only for computer speaker systems
or theatre systems with low power requirements. A digital 2.1 speaker system that could
operate on high power speakers would have a unique feature that is unmatched by
competing product solutions.

Window of Opportunity:

The biggest window of opportunity in this market is to create a single unit that can
provide high quality audio with DSP capabilities to high power speakers. Many various
components can be purchased and arduously assembled and tweaked to provide quality
audio for a 2.1 speaker system, but there are no available all-in-one systems that cover
the entire spectrum. Providing a product that has easy to use digital interfacing is the
key to surpassing competing affordable 2.1 systems in the audio market.

How big of an effort would it take to enter the market?

The estimated cost of developing this Audio-DSP Amplifier and entering the market are
shown in Table 1.1 below. The bulk of the cost of entering the market comes from
marketing the product to potential customers. Smart times to demo the product would
coalign with convention dates such as NAMM, Jan 22-25 in Anaheim, the annual AES
convention, the NY Audio Show or the Audio Karma Festival to maximize product
exposure to potential customers.

Table C.1: Audio-DSP Amplifier Development Costs

Purchase Cost ($) Assumptions & Reasoning

Retail Space 4500/ month Average between
2000-7000/month in SLO[11]

Engineers 70,000 Assuming team of 2 with
70,000 annual salary per (6
months) [12]

Hiring Process 8,000 total Includes phone interviews,
current employee time spent,
and travel expenses, etc.

124

Prototype

400

Average estimated for
electronic components

Testing

2,000

This value comes from 5
times the parts cost of a
prototype

Marketing + Demos

198,000

Marketing team of 3 who also
demo the product, assuming
for 6 months of work at
$11,000 per month
(individually).

Miscellaneous

5,000

Failed designs, reworks,
meeting time, etc.

Total

298,600

Assuming 6 months of retalil

Who are the Key partners to Engage to be Successful?

key for making a competitive and cost effective end unit.

Texas Instruments is one of the largest
semiconductor device design and manufacturing
companies in the world. With analog ICs and
embedded processors for many electronic
applications ,most notably audio for this project.
Texas Instruments will be the largest provider of necessary (and affordable) ICs as well
as the microcontroller for the project design.

Analog Devices is one of the biggest competitors to
Texas Instruments and has a very wide range of audio
DSP chips that are highly used in industry and very
customizable, working with one of these two giants is

Parts Express is a provider for audio, video, and speaker
components. The power supply unit/power amplifier will

be purchased from them.

125

Who would be key potential customers we would need to contact?

Best Buy is a general purpose provider for a variety of
affordable consumer electronics. Since the product price is
around $400 and customer archetype favors new
audio-hobbyists, Best Buy is a fantastic vendor for the
Audio-DSP amplifier.

Parts Express is another general purpose provider of

a wide range of consumer electronics, with a focus

specifically through internet transactions. In similar

scope to Best Buy, they offer affordable audio products

that are in the Audio-DSP Ampilifier’s price category of
around $400. They would be an ideal vendor for this product.

Amazon is the largest online distributor of products in

the world. Specifically for audio electronics, this

company would be an effective vendor for our
Audio-DSP amplifier, as they would be able to ship the unit to customers across the
globe.

Project/Product Description

What is wrong with the present solutions?

All present solutions satisfy one portion of the home audio market but none succeed in
terms of combining sufficient 3 or more channels of amplification, programmable DSP,
and simplistic user interface at an affordable price. The most common approach when
constructing a bi-amplified audio system with digital processing is to purchase a DSP
unit, two stereo amplifiers (or receiver), and a powered subwoofer (or dedicated
subwoofer amplifier). Other alternatives include receiver with external subwoofer
amplifier systems or three channel plate amplifiers with built-in passive crossovers which
lack DSP and provide inferior sound quality due to use of cheap passive crossovers.

126

What is the nature of your proposed solution?

The answer to the problems of simplicity and system price are combining components
inside a single chassis and providing the most straightforward connectivity option: stereo
RCA input and binding post speaker outputs. Control for the DSP will be implemented
through a microcontroller which takes inputs such as filter selection and volume
displayed through an LCD display and controlled with rotary encoder, buttons, and
capacitive touch control. This cost effective and visually simplified interface will control
the filter settings of the DSP unit which allows for stand-alone, fully configurable system.

Competing Product Solutions:

Table 1.2 on the next page showcases several noteworthy competing product solutions
alongside their respective advantages and disadvantages to our proposed Audio-DSP
Amplifier.

Table C.2: Competing Product Solutions Comparison

Image Product Name Advantages Disadvantages
and Manufacturer
MiniDSP Kit e Simplified e No amplification
2 x1In, 4 x Out input/output e Low output signal
e User friendly USB level
interface e Only four output

channels
Dayton Audio e Cost Effective e Plate Amplifier
SPA250 250 Watt e FEasytouse form factor
Subwoofer Plate e High Level Inputs e No Processing
Amplifier for flexibility e Analog In Only

e Daisy chain
capable
INUKE e Cost Effective e Limited I/O choice
NU1000DSP e Class Leading e |oudFan
1000-Watt Power DSP e Only two amp
Amplifier with DSP e High Output Power channels, need
Control and USB e Lightweight more than one
Interface [9] e Llarge
e Poor high
frequency
response

127

Peavey IPR2™ Class Leading Rack Mount,
2000 DSP Power DSP large
Amplifier [10] High Output Power Very Expensive
Flexible 110 Only two
Input Sensitivity amplifier
Selector channels
Dayton Audio Cheapest reliable No DSP
MCAZ2250E 2.1 2.1 Amplifier Low Output
Channel Class D Self Contained unit Power

Plate Amplifier [16]

Powers a complete
system
Simple wiring

Plate mounting
scheme limited
Limited flexibility

e Attached wires
limits

The goal of the project is to simplify the user experience with home/studio speaker
systems and reduce cost, so removing superfluous features that inflate the cost of the
system is of paramount importance. After comparing the most relevant features of
competing solutions, the following marketing requirements are established below to
remove features that are unimportant or provide unnecessary complication for home
audio applications. See above table 1.2 for a description of competing products’
strengths and weaknesses.

Alternative Design Solutions:

The DSP board is the single most expensive hardware component of the total system.
The main issue with the design proposed in Figure 3.2 above lies with the ability to
interface and control the DSP board with the microcontroller. Once this is achieved, the
total system can successfully integrate and operate as a single unit. The following
proposed design alternatives are heavily centered on choosing an appropriate DSP
board and fleshing the system out to accommodate its specifications.

1)Use MiniDSP 2x8 Unit as DSP Board [6]:

Using a 2x8 MiniDSP unit, we gain access to MiniDSP’s custom DSP software
interfacing. This software has a well designed GUI capable of easily changing audio
settings to meet desired specifications for varying home theatre environments. This
software makes the learning curve of system interfacing much easier for the consumer.
However, the MiniDSP unit is unable to interface with a microcontroller, and must use
computer to USB interfacing to adjust settings on the board. This makes implementing
DSP changes inside the unit extremely difficult, as we do not have access to the source

128

code capable of augmenting the MiniDSP unit to interface with a microcontroller. The
MiniDSP unit is also expensive, pricing at an estimate of around $300.

2) DSP Board Self Fabrication:

By fabricating the DSP board ourselves, we can replace an expensive DSP unit from a
provider (such as MiniDSP) with a custom board design centered around an inexpensive
Texas Instruments DSP chip. A custom tailored DSP board would certainly allow for
microcontroller interfacing, having the necessary input output requirements (2x6), and all
necessary processing capabilities. The manufacturing cost of a self fabricated prototype
DSP board is around $50, in comparison to the MiniDSP (2x8) at $300. This cuts down
prototyping costs drastically, and would be the optimal solution given enough time and/or
additional assistance with this project. Unfortunately, the design and fabrication of a
custom DSP board requires enough man-hours to be its own senior project.

3)Use Existing Analog DSP Board [19]:

If an existing Analog DSP Board is purchased from a provider, an ideal board that suits
our system’s 1/O requirements can be obtained. A 2x4 DSP board capable of
microcontroller interfacing can be purchased from a provider to meet system
specifications. The learning curve for the custom DSP board software is steeper than
the MiniDSP software, but can be adjusted through microcontroller interfacing without
the use of a computer. The board cost is estimated at $600. There is an additional cost
of $70 for a separate hardware component to connect the DSP board to the
microcontroller (to be purchased from the board supplier).

Figures C.1 and C.2 below showcase visual representations of cost comparisons as well
as ease of implementation comparison.

Figure C.1: DSP Board Cost Comparison

129

Figure C.2: Estimation of Design Method Ease of Implementation
*Estimation of ability to implement is based on a scale of 1(most difficult) to 10(easiest).

Although purchasing an existing analog board is the most expensive method, it has the
most reliable chance of an effective system implementation for a prototype. If this
system was designed by a company, the fabrication of the DSP board would be
completed in-house. Since the goal of this project is to produce a functioning prototype
under a limited timeframe, the third design choice is the most desirable method.

