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Abstract 

The camera module provides data for improving models of dynamic events on Orbital ATK 

Corp. rockets and aids in troubleshooting, if necessary. Video images provide a valuable addition 

to the strain, vibration, shock, and acoustic data used for modeling dynamic events, such as stage 

separations. The cameras can record a duration of video data suitable for capturing a dynamic 

event and of high enough quality to aid in its modeling. The module readily integrates into the 

rocket’s current analog data collection systems. The project has further relevance to any other 

application that necessitates video data transmission over similar limited-bandwidth, analog data 

channels.  

Though errorless data transmission was not achieve, over 99% of the digital by bytes transmitted 

where recovered to within 99% accuracy. This level of error is not suitable for compressed data. 

However, the primary sources of error can potentially be resolved by adaption to a more 

permanent prototype platform. 
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I. Introduction 

The camera module records dynamic events on Orbital ATK Incorporated rockets. Examples of dynamic events 

include stage separations and payload (satellite) deployments. Video data provides a valuable addition to previously 

existing sensors such as strain gages, accelerometers (vibration and shock), and microphones (for acoustic 

information). Teams then use the information from these sensors to improve models of the events, and to 

troubleshoot any undesired outcomes [1].  

Groups internal to Orbital ATK have done some work on developing an inexpensive camera module for this task, 

however, their versions do not currently satisfy all of the needs of other departments in the corporation. 

Unfortunately, Orbital ATK has not approved for public release the details of the status of current development. 

However, this project focuses on the need to utilize an existing data channel that has minimal impact on the 

resources of the larger rocket system (the same type of data channel which the accelerometers use) [2]. The data 

channel consists of an analog data line, with relatively low bandwidth when compared to typical video data 

channels. The primary constraint to the bandwidth comes from the receiver unit consisting of an ADC with a 

maximum sampling rate of 10 kilo-samples per second, with a maximum of 12 bits of resolution [2]. Fortunately, 

the video data utilizes buffering before transmission and does not need to achieve real time transmission. However, 

the severely limited bandwidth still places significant limitations and consequences on the design. Though no need 

exists for real time transmission, the module must still transmit the video sample within a widow constrained by the 

minimum flight time of the rocket after the dynamic event. Other groups have done some work on “low-bandwidth” 

video data transmission [3]. But it remains an under-developed area, because of the limited number of applications 

that necessitate it. 

Because of the data bandwidth limitations, effective compression before its transmission must also occur, in order to 

minimize the necessary transmission time. In contrast to the “low-bandwidth” concerns, video compression remains 

an area of significant and active development. The MPEG-4 AVC/H.264 lossy compression standard illustrates a 

method with widespread use [4]. In addition, groups have also researched the implementation of compression 

algorithms in embedded applications, both using microprocessors [5] and using FPGAs [6]. 

 However, the author believes that this project typifies one of very few that require the compression of video data, 

and its transmission through such a narrow bandwidth analog data channel. 

 

II. Production Design Engineering Requirements 

Customer Needs Assessment 

Orbital ATK Incorporated needs a low-cost module to provide video data for improving models of dynamic events 

and for troubleshooting. It needs to be relatively stand-alone, and require minimal effort to integrate into their 

existing rocket system; and it should have minimal impact on their existing resources [1, 2]. 

Requirements and Specifications 

The marketing requirements and engineering specifications listed in Table I below, primarily come from the need to 

integrate the module into the existing systems of the rocket. However, marketing requirements 1 & 2 and the first 

three specifications relate to the need to obtain sufficient data for useful study of dynamic events. 

Orbital ATK deems that 0.5 to 3 seconds of video, with a resolution of 640x480 pixels, with 8-bit depth grayscale 

pixels, and a rate of 30 frames per second, is sufficient for aiding in their modeling and troubleshooting of typical 

dynamic events [1, 2]. The module must be able to transmit the data through of the previously existing data channel 

(the analog data line), and the data must be recoverable after receipt by their previously existing hardware (the 

ADC). In order to make better use of the limited bandwidth, the data must be compressed before transmission. The 
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transmission of the video sample must take less than 10 minutes. The module must also store the original, followed 

by the compressed, data, before being ordered by a dedicated 1-bit “Transmit Command” line send it. Recording and 

compression should start after the receipt of a signal from a dedicated 1-bit “Record Command” line. The device’s 

addition to the larger rocket system should not constitute a significant increase to the cost of the overall system [1, 

2]. The module must be safe and minimize its environmental impacts. 

 

TABLE I 

ROCKET CAM MODULE REQUIREMENTS AND SPECIFICATIONS 

Marketing 

Requirements 

Engineering 

Specifications 
Justification 

[1], [2] Capable of recording at between 0.5 and 3 

seconds of video 

Sufficient time to observe event (i.e. stage 

separation)  

[4] At least 640x480 pixel image resolution, at 8 

bits per pixel  

Sufficient for useful image of event. 

[1], [2], [3] Captures at between 30 and 60 frames per 

second 

Fast enough to track dynamics, but slow 

enough to not produce excessive data. 

[2], [3], [6] Sufficient memory to store captured data and 

to perform compression operations on the 

data 

Necessary to hold data and send it only when 

requested. 

[4] Output data over analog line Existing data interface that has the minimum 

system impact. 

[4] Data recoverable after analog signal is 

sampled by an ADC with 12 bit maximum 

resolution, at 10,000 samples per second 

This describes the existing system that 

receives the transmitted data. 

[5] Inputs 2 separate, 1-bit command lines. One 

signals the module to begin recording; the 

other to transmit recorded data. 

Minimal interfacing between an otherwise 

stand-alone module and the larger system. 

[6] Sufficient video data compression such that 

sample transmission requires less than 10 

minutes (minimum compression factor of 2 

to 1) 

Due to the limited bandwidth of the necessary 

data channel, it’s critical to reduce the size of 

the data, so that transmission fits within 

available time 

[7] Finished production units should cost no 

more than $200. 

Desire a relatively inexpensive module to 

complement existing sensors. 

[8] Use at least 70% ROHS compliant 

components. 

ROHS provides a good general standard for 

minimizing health and environmental impacts 

of component materials 

Marketing Requirements 

1. Provide short duration video data of dynamic events 

2. Video data has sufficient quality to aid in event modeling and troubleshooting 

3. Internally store the captured data until transmission 

4. Use existing data interfaces on the rocket 

5. Require minimal command interfacing 

6. Transmit data in less than 10 minutes 

7. Be “low-cost” 

8. Be safe and relatively environmentally-friendly 
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Black Box Diagram (Level 0) 

As its overall function, the design inputs light data, and then outputs an analog voltage representation of that data. 

The module also accepts two 1-bit command signals, the record and transmit commands, and it inputs power. Figure 

1 shows this overall Level 0 functionality within the context of the larger rocket system, and Table III elaborates on 

each facet of it. 

 

FIGURE I 

ROCKET CAM – LEVEL 0 BLOCK DIAGRAM 

 

TABLE II 

ROCKET CAM – FUNCTIONAL REQUIREMENTS 

Module Rocket Camera 

Inputs –  

 

Record Command: Bi-level optical signal or 1-bit TTL level signal 

Transmit Command: Bi-level optical signal or 1-bit TTL level signal 

Image Field: Incident light from the surrounding environment 

Power: Sufficient power for the module to function on 

Outputs – 

 

Video Data: Analog signal, 8 to 12 bit resolution, sampled at 10,000 samples per second 

Functionality – 

 

Upon receipt of the Record Command, it records and stores 0.5 to 3 seconds of video data. 

Then, upon receipt of the Transmit Command, it outputs the analog Video Data 

 

Bi-level optical signal and 1-bit TTL level signals represent the existing command line infrastructure available in the 

rocket system. The bi-level optical signals have the advantage of providing optical isolation between the camera 

module, and rockets more critical control systems. The 1-bit TTL signals have the advantage of being faster, 

cheaper, and easier to implement and integrate. The analog data line represents the available, and lowest impact, 

data channel [1,2]. 
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IV: System Design – Functional Decomposition (Level 1) 

Functional Block Diagrams 

Figure II illustrates the primary subcomponents of the module in hierarchical decomposition format. Figure III 

shows them in function structure format. In words, the control unit receives the Record and Transmit Commands 

from the outside world and controls the other sub-modules’ operations so that the device performs these tasks. Upon 

receipt of the Record Command, the video camera activates, takes in visual data and outputs an uncompressed 

digital representation of this data, which the memory access peripheral routes into memory. The control & data 

processing unit then communicates with memory, in order to perform compression and encoding operations on the 

video data. The compressed and encoded version of the data gets stored back in memory. Upon receipt of the 

Transmit Command, the compressed and encoded data gets read from memory, routed by the peripheral, and sent to 

the digital-to-analog converter, which converts it to its final analog form and outputs it to the outside world. During 

all of these operations, the power regulation unit provides appropriate power to all of the other sub-modules. The 

Control Unit contains the Memory Access Peripheral shown in the functional structure diagram, however, the 

peripheral can operate largely autonomously from the rest of the Control Unit, and is functionally distinct and 

significant enough to warrant separate mention at this level. 

 

FIGURE II 

ROCKET CAM – LEVEL 1 HIERARCHICAL DECOMPOSITION  

 

 

FIGURE III 

ROCKET CAM – LEVEL 1 BLOCK DIAGRAM 



9 

Table IV provides a breakdown of the inputs, outputs, and functional requirements of each sub-module. 

 

TABLE III 

ROCKET CAM – LEVEL 1 FUNCTIONAL REQUIREMENTS 

Module Power Regulator 

Inputs –  External Power:  3 to 13V, constant voltage source at up to 100mA [1] 

                           Or programmable 28V (max) voltage source, with unspecified current capability 

Outputs – Regulated Power: Power at voltage levels acceptable to all of the other components 

 

Functionality – Regulates externally supplied power to a level safe and usable by the other sub-modules 

  

Module Video Camera 

Inputs –  Camera Control Lines:  Digital. Controls operation and settings. 

Image Field: Optical. Incident light from the surrounding environment. 

Regulated Power: DC voltage source. 

Outputs – Raw Image Data: Digital. Uncompressed (raw) video image data. 

Functionality – After receiving instruction from the Control Unit, it inputs optical information from the 

surroundings and converts it into an uncompressed digital representation, which it outputs. 

  

Module Control & Data Processing Unit 

Inputs –  

 

Record Command: 1-Bit external control signal 

Transmit Command: 1-Bit external control signal 

Memory Data Bus: Digital. Accesses data stored in the Memory sub-module. 

Regulated Power: DC voltage source. 

Outputs – 

 

Camera Control Lines: Digital. Instructs the Video Camera sub-module when to activate and 

controls its settings. 

DAC Control Lines: Digital. Controls settings of the DAC sub-module. 

Memory Control Lines: Digital. Control setting of the Memory sub-module. 

Memory Data Bus: Digital. Send data to the Memory sub-module for storage. 

Functionality – Inputs the Transmit and Receive Commands from the outside world. Controls the other sub-

modules and overall behavior of the device. Takes raw video data from memory, compresses and 

encodes it, then stores it back in memory. 

  

Module Memory Access Peripheral 

Inputs –  

 

Address Information: Digital. From the main part of the Control Unit module. 

Data In: Digital.  

Regulated Power: DC voltage source. 

Outputs – 

 

Memory Control Lines: Digital. Controls address access and settings of Memory sub-module. 

Memory Data Bus: Digital. Sends data to the Memory sub-module for storage. 

Functionality – Controls and formats data access from and storage in the Memory Sub-module. Physically 

integrated into the Control Unit sub-module, but can operate largely autonomously and 

considered functionally distinct and significant enough to warrant separate mention. 
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TABLE III (continued) 

ROCKET CAM – LEVEL 1 FUNCTIONAL REQUIREMENTS 

Module Memory 

Inputs –  

 

Control Lines: Controls operation and settings. 

Address Line: Controls accessed address for read or write operations. 

Data Bus In: Digital. 

Regulated Power: DC voltage source. 

Outputs – 

 

Data Bus Out: Digital.  

Functionality – Stores values placed in it by the Control Unit or the Memory Access Peripheral. Allows retrieval 

of these stored values. 

  

Module Digital-to-Analog Converter 

Inputs –  

 

Control Lines: Controls operation and settings. 

Data Bus: Digital. 

Regulated Power: DC voltage source. 

Outputs – 

 

Analog Data Line: Analog. Transmitted to outside world. Converted at a resolution of higher 

than 8-bits, and a rate of 10,000 samples per second. 

Functionality – Takes digital data sent to it and converts it into an analog representation. 

 

Implementation Concept Block Diagram 

Figure IV below displays the implementation concept block diagram, indicating the physical component breakdown 

of the system. The control/processing unit consists of two processors, one which primarily controls the video capture 

and processing, and one which primarily controls the analog data transmission. The video data is captured by a 

digital camera unit. The non-volatile memory consists of a microSD card inserteded into the video processors board 

(on which the video processor’s operating system is also stored). The digital-to-analog converter also exists on a 

separate chip, and steps are taken to reduce the effect of noise generated by the digital circuitry it. The power 

regulation system is actually comprised of multiple regulators associated with each submodule in order to provide 

the voltage levels necessary for all of the components and subcomponents. 
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FIGURE IV 

ROCKET CAM – IMPLEMENTATION CONCEPT BLOCK DIAGRAM 

Table IV describes in greater detail, important data flow signals shown in Figure IV. 

TABLE IV 

ROCKET CAM – DATA FLOW SIGNALS 

Source Signal Format/Function 

Outside 

World 

Record Command –  

Transmit Command –  

Image Field –  

Power – 

1-Bit external control signal 

1-Bit external control signal 

Physical light striking the sensor 

DC 3 to 13V, constant voltage source at up to 100mA 

or programmable 28V (max) voltage source, with unspecified current 

capability (higher than 100mA) 

Image 

Sensor 

Raw Image Data – Camera Serial Interface (CSI-2), 15 pin interface [7] 

Rasp. Pi 

w/ Cam 

Raw Image 

Data/Camera Control – 

Camera Serial Interface (CSI-2), 15 pin interface 

Rasp. Pi Compressed Data – 

 

8-pins parallel data + 2-pins control (data ready & more data available) 

Tiva C. Buffered Data – 

Request Data – 

8-pins parallel data + 1-pins control (write enable) 

1-pin control 

DAC Analog Video Data –  

 

1-pin. 0-10 V analog value with minimum of 8-bit accuracy. 

 

Additional, parameters necessary for functional components in the design are summarized below.  

Control/Processing Unit –  

 Capable of inputting image data at real time video speeds 
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o ≥  27.648 * 106 Bps        [YCbCr format] 

 Capable of storing image data to memory at real time video speeds 

o ≥  9.216 * 106 Bps         [Grayscale format] 

 Capable of outputting a byte to the DAC at consistent frequencies up to 5 kHz 

o Maximum hypothetical unsynchronized transmission rate, the Nyquist Rate  

o Maximum allowable timing deviation, 20 μs (10%) 

 Compression takes less than 2 minutes to complete 

o Any processing time beyond this mark must either be more than compensated in reduced 

transmission time, or must occur concurrently with transmission of earlier data 

 Cost less than $60 

Image Sensor – 

 Capable of VGA quality resolution at 30 frames per second 

o 640x480 pixels @ 30 fps 

 Minimum of 8-bit luma depth 

o 8-bit grayscale can be extracted 

Memory – 

 Capable of inputting image data at real time video speeds 

o ≥  9.216 * 106 Bps         [Grayscale format] 

 Sufficient memory to store both raw and compressed video data 

o ≥  9.216 * 106 Bytes           

Digital-to-analog converter – 

 Output levels of 0-10 V (unipolar operation) 

o The values read by the existing ADC 

 Slew + settling time (to within 10/256 V)  should be less than 100 μs 

o Operating at 3.33 kHz this means that at least 2/3 of the period should be at the correct level, and 

with the external ADC sampling 3 times for each period, two out of three samples should contain 

the correct value. 

 Monotonic 

o An increase in value always equates to an increase in voltage 

 Total Unadjusted Error should be less than 10/256 V and INL < the 8th bit (1 LSB if a 8-bit DAC) [8] 

o The importance of these requirement can be reduced by sending a calibration signal over the line, 

prior to any data transmission, and accounting for existing offsets. 

 

V. Technology Choices and Design Approach Alternatives Considered  

The primary technology choice central to this design, was how to implement the control/processing unit. Several 

possibilities were investigated. The two primary alternatives categories were: a low-cost ARM microcontroller with 

direct C programing and real time operation (typically targeted at controls applications), or a more expensive ARM 

microprocessor built for mobile applications and running a full operating system. Below are listed some of the pros 

and cons of each option. 

ARM “Controls” family – 

Pros: 

 Low-cost (with development boards as low as $13) [9] 
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 C environment  gives designer a large degree of control over the behavior of the processor 

 Interrupt driven, real time operation is possible 

 Existing code for serial interfaces available for specific devices 

 Existing C code for video compression could potentially be adapted for device 

Cons: 

 Small on-chip memory means video data must be stored off-chip 

 Clock speeds and data transfer rates are on the edge of not being able to handle the live video data, 

especially with the need to immediately send it to external memory (though DMA’s could help 

with this, that removes the possibility of performing any processing to the data before storage (i.e. 

convert to grayscale to save memory space)) 

 Compression algorithms would likely take significant time, and could be challenging to run 

simultaneously with data transmission 

ARM “Mobile” family – 

 Pros: 

 Sufficient data rates to handle video 

 Active and helpful development communities and documentation (esp. for BeagleBone and 

Raspberry Pi) 

 Existing projects and software for camera integration and video compression 

 Either larger on chip memory, or relatively inexpensive development board with memory onboard 

Cons: 

 Non-real time operating systems make timings unreliable 

FPGA – 

 Pros: 

 Can be designed to handle capturing and moving video data into memory in real time, even with 

some preprocessing 

 Various operations can be performed in parallel 

 Hardware based compression algorithms could potentially run very fast 

 Open source hobbyist community [10] 

 Most flexible option 

Cons: 

 Most expensive option 

 Requires external memory (or very large, and expense chip) 

 HDL coding and implementation are potentially more challenging than software implementation 

In the end, I choose a hybrid approach, utilizing both a low-cost “controls” ARM and a higher performance 

“mobile” ARM. This solution takes advantage of the benefits of both families. The higher performance processor 

can handle video capture and storage, and perform the computationally intensive compression operations; and it can 

make use of the large development communities, a higher level of abstraction, and available open source software, 

to streamline the development process. While the lower-performance controls ARM can control the analog data 

output with consistent, reliable timing, for little additional cost. This solution is still significantly less expensive than 

using an FPGA, and is also less expensive than high performance, real-time operation (single) ARM processors. The 

approach does have higher complexity than a single processor and requires the two to communicate with each other, 

but it also allows a greater degree of design flexibility.  
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A color image sensor was chosen, despite only needing grayscale data, because color image sensors are more 

prevalent, more supported, and actually cheaper. In specific an image sensor already supported by the “mobile” 

ARM processor was chosen. 

A digital-to-analog converter that met all of the performance parameters discussed above was chosen. 

Specifically the Raspberry Pi Model B+ development platform serves as the video capture, processing, and storage 

control role. The Raspberry Pi’s low cost, large open-source development community, specifically supported low-

cost camera unit, and existing software for performing H.264 video compression (included with the Raspbian 

operating system), caused its selection platform. The Raspberry Pi features a Broadcom BCM2835 system-on-a-

chip, containing an ARM11 floating point CPU and Videocore 4 GPU [11]. For the analog data output control, the 

design uses the Tiva C Launchpad development platform, which features a Texas Instruments TM4C123GH6PM 

microcontroller with an ARM Cortex-M4 processor core and 32 KB of on-chip SRAM [12]. The Tiva C was chosen 

for its sufficient memory to buffer the video data, sufficient processing capabilities to control the data output and 

retrieval from the Raspberry Pi, and low-cost. The Raspberry Pi Camera Module’s compatibility and support with 

Raspberry Pi determined its selection.  The AD7245A digital-to-analog converter’s compliance with the minimum 

static and dynamic performance parameters determined in the previous section, and its 0-10V unipolar operating 

mode allowed its consideration [13]. Its relatively simple parallel digital interface, and its availability in a PDIP 

package conducive to early prototyping furthered its selection. 

 

VI. Project Design Description 

Component Integration 

The Level 2 Block Diagram of the final design with additional signal and interconnection detail is shown in Figure 

V. It contains all functional submodule connections. 
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FIGURE V 

ROCKET CAM – IMPLEMENTATION CONCEPT BLOCK DIAGRAM LEVEL 2 

The connection between the Raspberry Pi B+ and the Raspberry Pi Camera Module follows the MIPI standard and 

is controlled using existing drivers. The communication between the Raspberry Pi and the Tiva C consists of a 

custom parallel data interface (coded by the project designer). The Tiva C controls the AD7245A via a single-

latched, parallel data loading structure (the AD7245A contains a double latched input, however, the design is 

configure so that one latch is left transparent). 

For simplicity the schematic wiring diagrams showing specific pinouts are broken into 3 diagrams, centered around 

the 3 main subcomponents. This prevents crossing wires in the diagrams. Signal names correspond to those shown 

in Figure V.  

Figure VI shows the pin connections for the AD7245A DAC. The DAC is configured in unipolar-mode, with the 

LDAC latch held transparent, the chip select engage, and latch clearing disabled. The design only makes use the 

upper 8 data bits and the lower 4 are tied to ground; this allows the design to make use of the higher precision the 

AD7245A has over most 8-bit DACs, without pushing the resolution to its limit and incurring less noise and drift 

resilience. The device configuration is primarily based on the unipolar configuration and microprocessor interfacing 

application notes contained within its datasheet [13]. 
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FIGURE VI 

AD7245A PINOUT AND WIRING SCHEMATIC 

(IMAGE BASED ON DATASHEET PINOUT [13]) 

Figure VII shows the pin connections for the Tiva C Launchpad evaluation board. In the design, the Tiva C serves 

the function of controlling the analog data output with reliable timing. After being informed that the Raspberry Pi 

has data ready for it, it buffers data from the RPi and sends it to the DAC at consistent time intervals. When the 

amount of data stored in the buffer falls below a minimum value, it requests the next byte from the RPi. 

 



17 

 

FIGURE VII 

TIVA C LAUNCHPAD PINOUT AND WIRING SCHEMATIC 

 

Figure VIII shows the pin connections on the Raspberry Pi B+. The RPi’s function is to receive record and transmit 

commands, control video data collection, perform video compression, store the video data, and send it to the Tiva C 

when requested. For the purposes of testing and debugging, the receive and transmit commands are instructions sent 

over an SSH connection from the designer’s computer, rather than the specified 1-bit lines. However, switching to 

1-bit TTL-level commands takes minimal effort (the RPi’s gpio ports are already compliant with TTL-levels). 
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FIGURE VIII 

RASPBERRY PI B+ PINOUT AND WIRING SCHEMATIC 

(IMAGE BASED ON RASPBERRYPI-SPY.CO.UK IMAGE [14]) 

Design Operation 

The final analog output of the design is at 256 discrete levels, corresponding to one full byte of data. Because of the 

inability to synchronize transmission and reception, the design faces Nyquist rate limitations. The DAC outputs the 

next byte at intervals of 300 μs (or slightly longer), so that the receiving end will have at least 3 samples for every 

new voltage level (every new byte). If transition (slew) and settling times are below 100 μs total, then (assuming 

negligible noise) there will be 2 settled samples with voltages correctly representing the byte of data, for each byte 

sent. Thus the analog data decoding algorithms on the receiving end can look for two consecutive readings at the 

same voltage level, to determine the byte value. The output interval is controlled by the Tiva C’s timers, which are 

set to trigger at 3330 Hz. This necessity for settling in under 100 μs, was a primary reason behind the choice of the 

AD7245A, as mentioned in Section V. Before actual data is sent, a calibration signal containing 2 full 300 μs 

periods of every voltage level (byte value) is output, so that the decoding algorithm can adjust and calibrate for any 

offsets and persistent non-idealities of the DAC’s output levels. 
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The Tiva C uses a 512-byte array as a circular type buffer. A byte received from the Raspberry Pi is stored into the 

array at one index location, while bytes sent to the DAC are read from a different index location. The program 

attempts to keep the receive index 500 elements in the lead of the send index, with the indices wrapping around 

when they reach the end of the array. The 500 element buffer length was chosen, because, during a test of the impact 

of the Linux’s background multithreading on gpio output performance, the largest undesired delay  

(during a 3 minute measurement period) was approximately 5.3 ms with multiple others on the order of 4 ms. The 

500 element buffering length, combined with the output interval of 300 μs, means that the buffer stores enough 

information for 150 ms, or roughly 30 times the maximum observed delay. This better than order of magnitude 

safety margin, which is desirable to protect against the possible danger if multiple delays are stacked before the 

buffer can be fully replenished. In the Tiva C’s code, the receive and store process is run in the main program, while 

the read and send process occurs within an interrupt service routine (triggered by the timers). 

The communication between the Raspberry Pi and the Tiva C uses the following pattern: 

 Begin:  RPi: MoreData = 1; //To tell the TC there is data available 

 Repeat: TC: If the buffer is not full, set Send=1, else wait; //TC requests next byte from RP 

  RPi: Load the byte onto the Data[7:0] pins; 

  RPi: Set Ready=1; //Tell TC that the byte is ready 

  TC: Read byte 

  TC: Send = 0; //Acknowledge receipt of data 

  RPi: If no more data (file end reached), MoreData = 0; 

  RPi: Ready=0; //Prepare for the next loop iteration 

  TC: If MoreData==1, repeat, else break loop. 

This communication method was specifically designed to be resilient to interrupts, both from the Tiva C’s timers 

and from background threads in the Raspberry Pi’s non-real time operating system (Raspbian Linux), and to neither 

lose its place in the process nor miss data that was sent, due to timing errors. Thus its asynchronous nature. This 

provides a reliable communication scheme, which can still be quite fast when compared to the 300 μs per byte that it 

must exceed, because (when not interrupted) the next step runs as soon as the previous step is completed (and  the 

outputs are stable), at the clock speeds the two processors are configured for. 

The code for the Tiva C was rewritten in C using Texas Instruments’ Code Composer Studio IDE. During 

compiling, the optimization level for set to 1, while optimize-for-speed was set 5 (maximum), because sufficiently 

fast operation is critical to the buffer’s reliability. The gpio interactions of the Raspberry Pi were written in C in a 

simple text editor, before being compiled in Linux terminal commands using the GCC compiler with standard 

compilation and optimization options. The code made use of the WiringPi library for gpio control [15]. Running the 

exiting video capture and compression code, as well as higher level program flow control, takes place in Linux shell 

scripts. The compressed H.264 video data is wrapped in .mp4 format using the MP4Box application [16]. The 

analog data capture for testing purposes used an Analog Discovery’s oscilloscope, which was being controlled by a 

Python script provided with the beta 2.8.13 Version of its software development kit (WaveformsSDK)[17][18]. 

Decoding of analog data and reconstruction into a digital file is performed in Matlab. Samples of all the source code 

developed for the project are included in Appendix D. 

 

VII. Physical Construction and Integration 

For prototyping purposes the design consists of the Tiva C Launchpad and Raspberry Pi B+ development boards, 

and an AD7245A in a PDIP package on a breadboard, all interconnected via wire-leads and jumpers, as shown in 

Figure IX.   
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FIGURE IX 

ROCKET CAM: FINAL PROTOTYPE 

On the breadboard, all ground connections (especially for analog references) are made as physically close together 

as practical, and capacitive coupling is added between all nodes that are supposed to have fixed DC values. Figure X 

is a closer image of the bread board section. 

FIGURE X 

ROCKET CAM: FINAL PROTOTYPE - DAC 
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For the prototype, power for the AD7245A is provided by a voltage source set to 12.5 V. Power (5V) for the Tiva C 

Launchpad is provided over a micro-USB connection. When debugging this is typically connected to the designer’s 

computer. Power (5V) for the Raspberry Pi B+ is also provided via a micro-USB connection. This connection is 

typically to a wall outlet adapter. 

 

VIII. Integrated System Tests and Results 

For testing purposes the recovered, processed, and reconstructed video data from the analog output of the module is 

compared with the raw video data stored in the modules memory (accessed via an Ethernet connection). The 

reconstructed byte-array in Matlab is compared to the original file viewed as a byte-array. The following numbers 

are based off of a specific test of the video capture and transmission. 

The first statistic to consider is the number of times the Matlab code detected that it had failed to read a byte, these 

points are stored in the byte array as NaN’s (Not-a-Number’s). This occurs when Matlab does not detect a settled 

value within 4 samples of the previous byte. The resulting count was: 

NaN Count: 1025 

The next relevant statistic is the length of the reconstructed data array, vs the actual data array. This gives a general 

starting point for comparison of the too samples. 

Actual Video Data Length: 959038 bytes 

Reconstructed Data Length:  959034 bytes 

Which means that the decoding algorithm failed to read at least 4 bytes, which it did not explicitly detect as failed 

reads and use a NaN as a placeholder for. Also note that this also allows the calculation of the percentage of detected 

unreadable bytes, 1025/959038 = 0.107%. 

Table V shows a comparison of the first 12 and the last 12 bytes of the actual and the reconstructed data. The sets 

clearly correlate, however there are several single bit errors present, most likely due either to inaccurate calibration 

of the decoding, or to noise on the analog line.  

TABLE V 

ACTUAL AND RECONSTRUCT VIDEO DATA – BEGINNING AND END COMPARISON 

Index 1 2 3 4 5 6 7 8 9 10 11 12

Actual 0 0 0 24 102 116 121 112 105 115 111 109

Reconstructed 0 0 0 24 102 116 121 112 104 115 111 109

Index end-11 end-10 end-9 end-8 end-7 end-6 end-5 end-4 end-3 end-2 end-1 end

Actual 67 32 48 46 53 46 48 45 114 101 118 0

Reconstructed 68 32 48 47 53 47 48 45 114 101 119 0  

A plot of the between the first 50,000 bytes of the two arrays shows that up to the 24,138th byte, there was at most 

single, least significant bit errors. Figure XI shows this.  
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FIGURE XI 

DIFFERENCE BETWEEN RECONSTRUCTED & ACTUAL BYTES 

The 24,139th byte represents the appearance of an index offset, after which the array values no longer match up.   

The primary cause of unreadable bytes is parasitic RC delays that increase the settling time of large code transitions 

to the point that two settled sample values are not detected before the output transition to a new value. Using the test 

file whose analog output is shown in Figure XII, it was determined that at code transitions of greater than about 50, 

byte detection became unreliable. 

FIGURE XII 

OSCILLOSCOPE CAPTURE OF TEST DATA USED  

TO DETERMINE SETTLING ERROR THRESHOLD 

Because of the various errors present, the reconstructed file could not be opened by normal .mp4 players.  
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Summarizing, over 99% of the digital by bytes transmitted were recovered to within 99% accuracy; however, this is 

not sufficient for corruption free transmission of .mp4 files. 

 

IX. Conclusions 

The complete specifications were not met. Because of the noise and delay errors, the reconstructed, compressed 

video data file was corrupted and unreadable. In part this is due to the unforgiving nature of H264 compression, and 

compression in general, to errors. Compression involves the reduction of statistical redundancy in data, and 

reduction of redundancy also means a reduction in resilience to errors [19]. In its current state, the channel and 

reconstruction likely has sufficient accuracy for uncompressed video data to be sent and recovered with adequate 

quality. However, uncompressed video cannot have the specified video duration and resolution and still be 

transmitted in the specified time. In addition, although documentation to the contrary exists, the drivers for the 

Raspberry Pi Camera Module do not currently support 30 frames per second capture, the videos are actually 

captured at 25 fps (83% the specified speed) [20].  

Despite its inability (in its current form) to meet all of the specifications simultaneously, this project serves as a solid 

proof of concept for the technology. In the trials discussed above, less than 0.2% of all bytes transmitted were 

unreadable, and of those that were readable almost all were within one least significant bit of the correct value. 

Moving forward with this project to a PCB design would most likely resolve the primary issues preventing the 

project from fully meeting all of the specifications. A well designed PCB will have significantly lower parasitic 

capacitances than a breadboard circuit, allowing the time until a settled value, to be decreased, potentially to less 

than 100 μs for a full 10 V swing. Furthermore, implementation of noise suppression techniques and methods for 

isolating analog components from digital noise, should greatly reduce the number of least significant bit errors. This 

combined with improved reconstruction algorithms could potentially remove them altogether, allowing for 

complete, uncorrupted reconstruction of the compressed video data and achievement of all of the specifications. 

Specifications that the design currently fully meets are: capable of recording at between 0.5 and 3 seconds of video; 

at least 640x480 pixel image resolution, at 8 bits per pixel; sufficient memory to store captured data and to perform 

compression operations on the data; output data over analog line; sufficient video data compression such that sample 

transmission requires less than 10 minutes (minimum compression factor of 2 to 1); finished production units should 

cost no more than $200 (Note: the component costs of the final prototype are at less than $100); and use at least 70% 

ROHS compliant components. The 1-bit TTL-level record and transmit were not implemented in the final design for 

debug and testing reasons, but would be trivial to add to it. 

Overall the project meets the majority of its specifications, and meets each of the remaining specifications by better 

than 80%, and there are clear routes that can improve the design until all of the specifications are met. 
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Appendix A – Analysis of Senior Project Design 

Project Title: Rocket Cam: Low Frequency Analog Transmission of Digital Video 

Student’s Name: Thomas Higdon 

Advisor’s Name: Professor Wayne Pilkington 

1. Summary of Functional Requirements  

The design’s overall function inputs visible light video image data, and then to outputs an analog voltage 

representation of that data. The module also accepts two commands, record and transmit. Upon receipt of 

the record command, the module captures and stores 3 seconds of video data. Upon receipt of the transmit 

command, the module sends that data over the analog data line [1],[2]. 

2. Primary Constraints  

The primary challenges came from the need to transmit the video data over a narrow bandwidth analog 

data channel. The available channel is sampled at 10,000 samples per second (at most), with 12 bit 

resolution. Thus, the primary challenges to overcome in order to meet product specifications involved: 

devising an effective analog encoding scheme within this bandwidth; compressing the data so that it takes 

a short enough duration to transmit (sending entire sample within mean flight time; keeping the noise 

from the module components off of the analog channel; maximizing the signals resilience to noise; and 

handling bit errors that occur. A supplemental challenge was establishing reliable communications 

between components. 

3. Economic  

The product’s design and creation utilized multiple forms of capital. In human terms, a variety of 

individuals have contributed to the project’s success (discussed further in terms of direct and indirect 

stakeholders in the Social and Political section). In addition, the project made use of third party services 

such as major components vendors, component manufacturers, and delivery infrastructure. In this way, 

the project utilizes the existing infrastructure of these organizations, rather than necessitating the 

construction of entirely new facilities. Lastly, the materials used to manufacture the product come from 

the planet itself, as does the energy used in the manufacturing process and in operation. 

The direct monetary investment in the project, for physical component and equipment purchases, rounds 

to approximately $200. However, the equivalent monetary value of the labor provided in the development 

process approaches $8,000 dollars. Tables A1 and A2 below, detail the preliminary planning estimates of 

costs for components and labor (estimated using $30/hour). The formula, estimated = (min + 4*typical + 

max)/6, yields the PERT values listed. Further below, Tables A3 and A4 detail the actual final costs for 

part and labor. 
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TABLE A1 

ESTIMATED PARTS AND EQUIPMENT COSTS 

Estimated Development Costs (Equipment)

Final Prototype

System Min Typ Max PERT

Camera $5 $10 $40 14.17$    

Controller $10 $25 $80 31.67$    

Data Storage $2 $8 $30 10.67$    

DAC $2 $10 $20 10.33$    

Misc. Passive $1 $5 $20 6.83$      

Power Systems $4 $6 $25 8.83$      

PCB $40 $75 $150 81.67$    

Total - $64 $139 $365 $164

Development Cycle's 1 and 2 (Not PCB Version)

System Min Typ Max PERT

Total $24 $64 $215 82.50$    

Development and Test Equipment

System Min Typ Max PERT

Total $20 $35 $120 82.50$    

Equip. Total Min Typ Max PERT

$108 $238 $700 $329  

TABLE A2 

ESTIMATED LABOR COSTS 

Estimated Development Costs (Labor)

Labor (Weekly)

Person Min Typ Max PERT

Myself (hrs) 8 18 30 18.3

Myself ($) 240.00$  540.00$  900.00$  550.00$   

Labor (Total)

Person Min Typ Max PERT

Myself (hrs) 160 360 600 366.7

Myself ($) $4,800 $10,800 $18,000 $11,000

Others (hrs) 10 15 40 18.3

Myself ($) $300 $450 $1,200 $549

Grand Total Min Typ Max PERT

$5,100 $11,250 $19,200 $11,549  
 

These estimated costs corresponded to the planned development cycle illustrated in the Gantt charts in 

Tables A5 (a), A5 (b), & A5 (c). 
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Tables A3 and A4 detail the actual final costs for part and labor (approximated using an updated 

$35/hour) for the project. The parts whose costs are listed at N/A, are ones which were already owned 

before the start of the project, but are important enough to the final prototype, to warrant explicit 

mentioning in the table.  Components and devices used for early prototyping, and for development and 

testing, but not purchased specifically for the project are not listed.  

TABLE A3 

ACTUAL PARTS AND EQUIPMENT COSTS 

TABLE A4 

ACTUAL (APPROX.) LABOR COSTS 

 

The initial planning timeline for project development is shown in Tables A5 (a), A5 (b), & A5 (c) below.

Approximant Development Costs (Labor)

Labor (Weekly Averaged)

Person Min Typ Max PERT

Myself (hrs) 8 10 15 10.5

Myself ($) 280.00$  350.00$  525.00$  367.50$   

Labor (Total)

Person Min Typ Max PERT

Myself (hrs) 160 200 300 210.0

Myself ($) $5,600 $7,000 $10,500 $7,350

Others (hrs) 12 18 25 18.2

Others ($) $420 $630 $875 $636

Grand Total Min Typ Max PERT

$6,020 $7,630 $11,375 $7,986

Actual Development Costs (Equipment)

Final Prototype

System Part Name/Number Vender Manufacturer Base Price Cost (w/ Tax)

Camera Raspeberry Pi  5MP Camera Board ModuleAmazon Raspberry Pi Foun. 26.95$      29.38$         

Video Data Processor Raspberry Pi - Model B+ MCM Elec. Raspberry Pi Foun. 25.00$      N/A

Memory 16 GB Micro SD Card Amazon Kingston Digital 6.95$        N/A

DAC AD7245AANZ DigiKey Analog Devices 19.37$      20.92$         

D/A Control Unit Tiva C TM4C123GXL Eval DigiKey Texas Instruments 16.68$      18.01$         

Misc. Passive Caps/Resistors/Leads N/A N/A 2.00$        N/A

Total - 96.95$      $68

Early Prototype

System Part Name Vender Manufacturer Base Price Cost (w/ Tax)

Camera OV7670 300KP VGA Module Amazon Atomic Market 10.99$      10.99$         

Memory PmodSF2 - Serial PCM Amazon Digilent 14.95$      14.95$         

DAC AD7243ANZ DigiKey Analog Devices 16.68$      16.68$         

Total: 42.62$      42.62$         

Development and Test Equipment

Function Part Name Vender Manufacturer Base Price Cost (w/ Tax)

ADC AD1674JNZ DigiKey Analog Devices 29.17$      31.50$         

USB-UART Cable 768-1204 DigiKey FTDI 15.00$      16.20$         

Antialiasing Filter LTC1564IG#PBF DigiKey Linear Technologies 17.59$      19.00$         

Breakout BNC FEMALE-20AWG LEADS DigiKey Pomona Electronics 17.10$      18.47$         

Total: 78.86$      85.17$         

Shipping and Handing:

Total $16.50 Equip. Total Base Price Actual Cost

S&H:   $16.50 218.43$     196.10$        
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TABLE A5 (a) 

PLANNING GANTT CHART – FALL QUARTER AND WINTER BREAK 2014 [21] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

EE 460 Gantt Chart

Winter Break 2014

M T W R F M T W R F M T W R F

15 22 29

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

ADCs & DACs

Design

Block Diagrams

Preliminary Parts Lists ?

Order Parts

Week 1 Week 2 Week 3

EE 460 Gantt Chart
Fall 2014

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

22 29 6 13 20 27 3 10 17 24 1 8

Project Plan

Abstract (Proposal) V1

Requirements and Specifications

Block Diagram

Literature search

Gantt Chart

Cost Estimates

ABET Sr. Project Analysis

Requirements and Specifications V2 + Intro

Report V1

Advisor Feedback Due

Report V2

Presentations

Requirements and Specifications

Report V1

HW 1 Resume & Cover Letter

Due

HW 2 Sensitivity Analysis

Due

HW 3 Reverse Engineering

Due

Final Exam

Team Assignment Feedback Required Assignment Due V1.5 Due to Advisor & Instr. In-class assignment Advisor Feedback

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 FinalsWeek 11

NOTE Due dates AND feedback required
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TABLE A5 (b) 

PLANNING GANTT CHART –WINTER 2015 

EE 460 Gantt Chart

Winter 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

5 12 19 26 2 9 16 23 2 9 16

Cycle 1 (Prelim)

Design Functioning Camera

Assemble Camera

Design Prelim Analog Channel

Assemble Prelim Analog Channel

Cycle 2

Implement Compression

Improve Encoding Scheme

Optimize Compres/Encod Together

Improve Reliability

Handle Errors / Reduce Corruption

Last Minute Troubleshooting

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

Document Cycle 1

Camera, Memory, Controller

Analog Data Channel

Whole System

Document Cycle 2

Compression

Encoding

Reliability / Noise Reduction

Compress + Encoding

Whole System

Minor Milestone Order Parts Major Target Deadline

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9
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TABLE A5 (c) 

PLANNING GANTT CHART – SPRING 2015 

EE 460 Gantt Chart

Spring 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

30 6 13 20 27 4 11 18 25 1 8

Cycle 3 (Final)

Design/Layout Robust & Compact

(PCB and Possibly Packaging)

Assemble Boards

Test and Troubleshoot

Tweak and Improve Algorithms

Safety Buffer

Test and Troubleshoot

Tweak and Improve Algorithms

Make Package Prettier (Possibly)

Document Cycle 3

Layout

Assembly

Test 

Whole System

Final Documentation

ABET Senior Project Report

Draft Of Final Project Report

Senior Project Expo Board

Final Project Report

Possible Safety Margin

Minor Milestone Order Parts Major Target Deadline

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 
 

 

In the initial timeline planning, the first design-build-test cycle corresponds to implementing a basic version of the design on a breadboard. The 

second design-build-test cycle involves creating an improved version on perf-board. And the last cycle implements a final version of the design on a 

printed circuit board and with included packaging. 

 

Tables A6 (a), A6 (b), and A6 (c) contain the timeline that the development actually followed. 
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TABLE A6 (a) 

ACTUAL DEVELOPMENT GANTT CHART – FALL QUARTER AND WINTER BREAK 2014 [21] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

EE 460 Gantt Chart
Fall 2014

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

22 29 6 13 20 27 3 10 17 24 1 8

Project Plan

Abstract (Proposal) V1

Requirements and Specifications

Block Diagram

Literature search

Gantt Chart

Cost Estimates

ABET Sr. Project Analysis

Requirements and Specifications V2 + Intro

Report V1

Advisor Feedback Due

Report V2

Presentations

Requirements and Specifications

Report V1

HW 1 Resume & Cover Letter

Due

HW 2 Sensitivity Analysis

Due

HW 3 Reverse Engineering

Due

Final Exam

Team Assignment Feedback Required Assignment Due V1.5 Due to Advisor & Instr. In-class assignment Advisor Feedback

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 FinalsWeek 11

NOTE Due dates AND feedback required

Senior Project: Actual Timeline - Gantt Chart 

Winter Break 2014

M T W R F M T W R F M T W R F

15 22 29

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

ADCs & DACs

Design

Block Diagrams

Preliminary Parts Lists

Week 1 Week 2 Week 3
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TABLE A6 (b) 

ACTUAL DEVELOPMENT GANTT CHART –WINTER 2015 

Senior Project: Actual Timeline - Gantt Chart 

Winter 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

5 12 19 26 2 9 16 23 2 9 16

Requirements & Specifications

Request Elaboration on Needs

and Requirments

Modify Specifications

Further Research

Simulations

Conceptually Design

Study & Simulate Encoding

Block Diagram

Select Parts

Tiva C Based System

Get Dev Envir to Work

Learn Basics of the MCU

Develop Interfaces

FPGA Based System

Research Hobbyist Work

Integrate Camera & FPGA

Try to integrate DAC

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

Document Cycle

Update Req and Spec

Design Documentation

Minor Milestone Parts Arrive

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 
  

  

 

  



34 

 

 

  

TABLE A6 (c) 

ACTUAL DEVELOPMENT GANTT CHART – SPRING 2015 

Senior Project: Actual Timeline - Gantt Chart 

Spring 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

30 6 13 20 27 4 11 18 25 1 8

FPGA Based System

Research Hobbyist Work

Try to integrate DAC

Try to integrate Ext. Memory

Raspberry Pi Based System

Intergrating Pi & Camera

Improving Capture & Compression

Try to Impliment DMA Timing

Raspberry Pi + Tiva C System

Establish Comm betw  RPi & Tiva

Impl Tiva Timers For Output Ctrl

Integrate DAC (w/ Timed Output)

Fix Bug in Comm betw RPi & Tiva

Reduce Noise and Settling Error

Estab Reciever for Testing

Create Code for Decod Analog Dat

Improve Decode Accuracy

Document Cycles

FPGA Doucumentation

Raspberry Pi Documentation

RPI + Tiva C Documentation

Final Documentation

ABET Senior Project Anal (Final)

Final Report

Minor Milestone Parts Arrive Major Target Deadline

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 



  

4. If manufactured on a commercial basis  

The project has a small direct market, consisting of Orbital ATK itself. The market does have the 

possibility for expansion to any customers who need a camera module capable of recording and 

transmitting buffered video data over a low-bandwidth analog data channel. However, considering only 

Orbital ATK’s business, we estimate the possibility of 10-20 rocket launches in the next 10 years, which 

utilize an average of 3-4 of the modules (corresponding to multiple stages and payload deployments). 

Assuming the purchase of a few spare units, this brings the total number of modules to the order of 60 

units. This averages to 6 units per year. Estimating a manufacturing cost, for a finished unit, of $130-170 

($70-80 in components, $15-30 for OSH Park PCB, and $45-60 assembly). Setting a corresponding $180-

220 price point (a $50 profit-margin per unit), this means an estimated $300 dollars of profit per year. 

The primary expected cost for the user, after purchase, comes from the installation of the module as well 

as any required modifications to their existing systems to incorporate the module. Since the module is 

specifically intended to take minimal effort to integrate into their existing systems, , we expect minimal 

modification costs. The module itself, however, may require application specific outer packaging ($40-

100). The other primary costs come from the labor to install the module, which we estimate as around $60 

(2 hours of work, mostly spent verifying and triple checking, at $30 an hour). The module does also draw 

power, however, a commercial version’s power requirement should be low compared to the existing 

systems on the rocket. In addition, costs associated with the fuel burned to lift the module’s weight exist, 

but compared to the weight of the payload and the rocket itself, the impact is essentially negligible. 

Unfortunately, all of these costs accrue on a single launch, with little chance of reuse for the module, both 

because of the harsh operating environment it faces and because Orbital ATK does not directly reuse 

components after a mission, due to reliability and safety issues. 

5. Environmental 

Materials that come from limited natural resources compose the product. A few examples of materials 

used in some fashion include:  laminates & resins (PCBs); copper (PCB & wires/cables); silicon (ICs); 

polymers (IC packages); ceramics (discrete capacitors and resistors); aluminum (metal layers in ICs); tin 

(solder); and miscellaneous trace heavy metals. The manufacturing processes, both of the module and of 

its components, also use energy, which may come from any of the typical sources, fossil fuels, nuclear, 

solar, wind, hydro-electric, etc. In addition, the component manufacture processes also inevitably produce 

wastes, which, if not properly disposed of or recycled, could potentially get released into the environment. 

Unfortunately, if the customer does not take care to properly recycle or dispose of the product, at the end 

of its lifecycle it could end up as waste or litter. Coupled with its short life cycle (Orbital ATK does not 

directly reuse components after a mission, due to reliability and safety issues) and manufacturing wastes, 

this could have a negative impact on other species in the environment. Hopefully, however, the use of 

100% ROHS compliant components, the limited quantity produced, and any steps that the customer may 

take towards properly disposing of the product, should help mitigate the short term and long term 

environmental impacts. 

 6. Manufacturability 

The design uses all readily available, “off-the-shelf” components. Thus the primary manufacturing 

challenges consist of the fabrication of the PCB board, and assembling of the components into the 

completed module (potentially very time consuming), and the programing of the control unit (also costs 

some time). But perhaps most significantly, the manufacture of the mechanical packaging of the module, 

and the assembly of the electrical components into the finished package, presents a major production 

challenge. 

 



 

7. Sustainability 

Unfortunately, the camera operates in a harsh, destructive environment, which makes maintaining the 

completed device exceedingly difficult. In addition, since reliability constitutes a critical safety issue, 

Orbital ATK does not directly reuse rocket systems. Thus sustainable use of project resources focuses on 

proper disposal and recycling of the design at the end of its mission. The limited production quantities 

help to also improve the sustainability of the overall product. 

Improvements or upgrades could potentially include lower power consumption, reduced manufacture and 

component costs, improved reliability/survivability, additional features that could broaden the potential 

market (perhaps alternative data channels, and the ability to transmit in real time), and reduction in 

environmentally harmful components (increase in percentage of ROHS compliant components). The first 

major upgrade should be implementation on a single, custom PCB board. This will allow for improved 

reliability, smaller size /  lower weight, lower power consumption, and reduced noise. Then improved 

decoding algorithms can be tuned to utilize the improved noise and delay characteristics of the single 

board. However, these upgrades involve a significant increase in design time and cost, as it necessitates a 

lower level focus on the requirements of the processors used, and it entails the higher cost of custom 

PCBs.  

8. Ethical 

Considering the project from the framework of utilitarianism, we arrive at the following conclusions. 

Though the manufacture of the project produces waste and the product itself (if not properly disposed of) 

may become waste, the target application provides data for modelling and troubleshooting dynamic 

events on large scale rocket systems. A failure during a dynamic event, could lead to severe repercussions 

for the rocket system, and if it causes an overall failure of the rocket, this could lead to significant littering 

and environmental harm, and possibly even risk to human life. Thus if improved models resulting from 

the use of this module help to prevent failures during dynamic events, then I would argue that the benefit 

in reducing the risk of large scale damage to the environment outweighs the relatively small harm the 

production wastes constitute. In addition, reducing the risk of a failure reduces the risk to both human 

health/safety, and the risk of financial harm, both to Orbital ATK and to their customers (who often pay 

Orbital ATK to deliver their products to space). From the framework of utilitarianism, creating this 

product performs greater good than not creating it.  

From the framework of ethical egoism, the creation of this senior project helped the student (myself) to 

gain valuable experience and skills. Both technical skills and project management/develop experience, 

will help me to perform better engineering, by better meeting customer requirements, and by creating 

more reliable, sustainable, and beneficial designs in the future. 

These arguments are also consistent with the IEEE Code of Ethics. The module provides data for 

improving the understanding of dynamic events and the technologies used in them, which directly ties 

into the 5th point of the code. Improvement of these models could help reduce the risk to public health, 

welfare, and property (points 1. and 8.). Lastly, it gave the designer the opportunity to develop and 

improve technical competence in several areas (point 6.) 

Like any other technology, people could potentially misuse the product for unethical purposes. The 

module suffers from similar possible misuses to those other camera technologies face (such as “spying”), 

however, the product does not lend itself well to these misuses. The limited video duration and the narrow 

bandwidth data channel would hinder, or at least not provide advantage, for most unethical applications I 

can think of. There already exist a plentiful number of camera modules available that exhibit both lower 

cost and better suited features for illicit purposes. Thus the chance of unethical misuse of this project 

remains minimal. 



 

9. Health and Safety 

There always exists health and safety concerns associated with any product. During the design and testing 

process, the designer had to take care to avoid contact with any potentially harmful substances, and ensure 

that no one else came into contact with them. In addition, the designer had to take care to avoid burns, 

cuts, and electrocution. Assembly of the completed project features the same safety concerns. The 

manufacture of the components incorporated also have their associated health concerns, however, the 

manufacturers from which we purchase the parts deal with these themselves, via established procedures. 

Use of the design involves the same risks from dealing with the power source connected to the design. 

The module itself draws low enough power and current so that it’s not directly dangerous, however, 

damage or defect could cause an unintended short and dangerous amounts of current to flow. The design 

does use 100% ROHS compliant parts, which reduces the risk from toxicity. Installation into a larger 

system involves the same risks/concerns as any other work on the larger system, and as well as risks 

stemming directly from the act of installing (for instance, jabbing your hand with a screwdriver, getting 

your fingers pinched, or cutting your hand). 

10. Social and Political 

Various individuals have contributed to the project’s success, including the project’s advisor, Professor 

Wayne Pilkington, and the company liaison, Johnathan Chan. In addition, the project made use of third 

party services such as major components vendors, component manufacturers, delivery infrastructure, and 

caffeine providers. Inside of each of these organizations, a number of individuals worked to complete the 

contracted tasks. The organizations also inevitably made use of various other suppliers and subcontractors 

of their own. Lastly, numerous other persons provided advice on developmental challenges of the project, 

when consulted by the project designer. These persons range from engineering faculty and students, to 

friends and family of the lead designer, and a generous responder on a help forum. All of the individuals 

in the supplier, contractor, and subcontractor organizations benefit in a small way from business received 

from this project. Johnathan Chan and other Orbital ATK employees benefit from a module that they can 

potentially use or modify to use with their products. 

 

A negative impacted on an indirect stakeholder could include if someone (or creature) is harmed by 

wastes due to manufacture or improper disposal of the product. 

11. Development 

During the course of the project, I learned about a number of fields in which I previously had little 

background. I studied lossy video compression schemes, analog data encoding schemes, and how to 

reduce noise & bit errors. I learned how to utilize Linux terminal commands and shell scripting, as well as 

how to write and implement C code in a Linux environment. I experienced using ARM based 

microcontrollers, making use of (and debugging) manufacturer provided driver libraries, and adjusting 

optimization and compiler (in particular, stack size) settings. And I gained practice using Matlab for large 

scale data manipulation, algorithm prototyping, and conceptual simulations. 

Please see the Literature Search section for resources I used while developing this knowledge. 
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Appendix B – Parts List and Costs 

Actual Prototyping Parts Costs: 

Table B1 shows the actual cost of prototyping materials from the project.  

TABLE B1 

ACTUAL PARTS AND EQUIPMENT COSTS 

 

Estimates of Production Model Parts Costs: 

Table B2 shows an estimate of how much a production model of the design would cost, assuming a production 

quantity of 1000 per year. It shows both per unit and grand total costs. 

 

TABLE B2 

ESTIMATED PRODUCTION MODEL PARTS AND EQUIPMENT COSTS 

 

Actual Development Costs (Equipment)

Final Prototype

System Part Name/Number Vender Manufacturer Base Price Cost (w/ Tax)

Camera Raspeberry Pi  5MP Camera Board ModuleAmazon Raspberry Pi Foun. 26.95$      29.38$         

Video Data Processor Raspberry Pi - Model B+ MCM Elec. Raspberry Pi Foun. 25.00$      N/A

Memory 16 GB Micro SD Card Amazon Kingston Digital 6.95$        N/A

DAC AD7245AANZ DigiKey Analog Devices 19.37$      20.92$         

D/A Control Unit Tiva C TM4C123GXL Eval DigiKey Texas Instruments 16.68$      18.01$         

Misc. Passive Caps/Resistors/Leads N/A N/A 2.00$        N/A

Total - 96.95$      $68

Early Prototype

System Part Name Vender Manufacturer Base Price Cost (w/ Tax)

Camera OV7670 300KP VGA Module Amazon Atomic Market 10.99$      10.99$         

Memory PmodSF2 - Serial PCM Amazon Digilent 14.95$      14.95$         

DAC AD7243ANZ DigiKey Analog Devices 16.68$      16.68$         

Total: 42.62$      42.62$         

Development and Test Equipment

Function Part Name Vender Manufacturer Base Price Cost (w/ Tax)

ADC AD1674JNZ DigiKey Analog Devices 29.17$      31.50$         

USB-UART Cable 768-1204 DigiKey FTDI 15.00$      16.20$         

Antialiasing Filter LTC1564IG#PBF DigiKey Linear Technologies 17.59$      19.00$         

Breakout BNC FEMALE-20AWG LEADS DigiKey Pomona Electronics 17.10$      18.47$         

Total: 78.86$      85.17$         

Shipping and Handing:

Total $16.50 Equip. Total Base Price Actual Cost

S&H:   $16.50 218.43$     196.10$        

Parts Costs - Commercial Basis

Production Model

System Part Name/Number Vender Manufacturer Unit Price 1000 Units

Camera Raspeberry Pi  5MP Camera Board ModuleAmazon Raspberry Pi Foun. 26.95$        26,950.00$   

Video Data Processor Raspeberry Compute Module Newark Raspberry Pi Foun. 30.00$        30,000.00$   

Memory 16 GB Micro SD Card Kingston Digital 4.00$          4,000.00$      

DAC AD7245AARZ DigiKey Analog Devices 11.37$        11,371.50$   

D/A Control Unit TM4C123GXL DigiKey Texas Instruments 3.57$        3,570.00$      

Misc. Passive Caps/Resistors/Leads N/A N/A 0.10$          100.00$         

PCB N/A OSH Park OSH Park 12.00$        12,000.00$   

Shipping and Handing: N/A USPS N/A 0.50$        500.00$         

Equip. Total Unit Price 1000 Units

88.49$      88,491.50$   



 

Appendix C – Project Schedule 

Planning and Actual Time Estimates: 

Table C1 shows the initially planned estimate of hours to work on the project.  

TABLE C1 

ESTIMATED PLANNED DEVELOPMENT TIME 

Estimated  Planned Development Time

Labor (Weekly)

Person Min Typ Max PERT

Myself (hrs) 8 18 30 18.3

Labor (Total)

Person Min Typ Max PERT

Myself (hrs) 160 360 600 366.7

Others (hrs) 10 15 40 18.3

Total Min Typ Max PERT

170 375 640 385  
 

Table C2 shows the actual estimated of hours of work on the project.  

 

TABLE C2 

APPROXIMANT ACTUAL DEVELOPMENT TIME 

Approx. Actual Development Time

Labor (Weekly Averaged)

Person Min Typ Max PERT

Myself (hrs) 8 10 15 10.5

Labor (Total)

Person Min Typ Max PERT

Myself (hrs) 160 200 300 210.0

Others (hrs) 12 18 25 18.2

Total Min Typ Max PERT

172 218 325 228  
 

Planning and Actual Timelines: 

The initial planning timeline for project development is shown in Tables C3 (a), C3 (b), & C3 (c) below



  

 

TABLE C3 (a) 

PLANNING GANTT CHART – FALL QUARTER AND WINTER BREAK 2014 [21] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

EE 460 Gantt Chart

Winter Break 2014

M T W R F M T W R F M T W R F

15 22 29

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

ADCs & DACs

Design

Block Diagrams

Preliminary Parts Lists ?

Order Parts

Week 1 Week 2 Week 3

EE 460 Gantt Chart
Fall 2014

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

22 29 6 13 20 27 3 10 17 24 1 8

Project Plan

Abstract (Proposal) V1

Requirements and Specifications

Block Diagram

Literature search

Gantt Chart

Cost Estimates

ABET Sr. Project Analysis

Requirements and Specifications V2 + Intro

Report V1

Advisor Feedback Due

Report V2

Presentations

Requirements and Specifications

Report V1

HW 1 Resume & Cover Letter

Due

HW 2 Sensitivity Analysis

Due

HW 3 Reverse Engineering

Due

Final Exam

Team Assignment Feedback Required Assignment Due V1.5 Due to Advisor & Instr. In-class assignment Advisor Feedback

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 FinalsWeek 11

NOTE Due dates AND feedback required



 

 

TABLE C3 (b) 

PLANNING GANTT CHART –WINTER 2015 

EE 460 Gantt Chart

Winter 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

5 12 19 26 2 9 16 23 2 9 16

Cycle 1 (Prelim)

Design Functioning Camera

Assemble Camera

Design Prelim Analog Channel

Assemble Prelim Analog Channel

Cycle 2

Implement Compression

Improve Encoding Scheme

Optimize Compres/Encod Together

Improve Reliability

Handle Errors / Reduce Corruption

Last Minute Troubleshooting

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

Document Cycle 1

Camera, Memory, Controller

Analog Data Channel

Whole System

Document Cycle 2

Compression

Encoding

Reliability / Noise Reduction

Compress + Encoding

Whole System

Minor Milestone Order Parts Major Target Deadline

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 
 

 

 

 



 

TABLE C3 (c) 

PLANNING GANTT CHART – SPRING 2015 

EE 460 Gantt Chart

Spring 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

30 6 13 20 27 4 11 18 25 1 8

Cycle 3 (Final)

Design/Layout Robust & Compact

(PCB and Possibly Packaging)

Assemble Boards

Test and Troubleshoot

Tweak and Improve Algorithms

Safety Buffer

Test and Troubleshoot

Tweak and Improve Algorithms

Make Package Prettier (Possibly)

Document Cycle 3

Layout

Assembly

Test 

Whole System

Final Documentation

ABET Senior Project Report

Draft Of Final Project Report

Senior Project Expo Board

Final Project Report

Possible Safety Margin

Minor Milestone Order Parts Major Target Deadline

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 
 

 

In the initial timeline planning, the first design-build-test cycle corresponds to implementing a basic version of the design on a breadboard. The 

second design-build-test cycle involves creating an improved version on perf-board. And the last cycle implements a final version of the design on a 

printed circuit board and with included packaging. 

 

Tables C4 (a), C4 (b), and C4 (c) contain the timeline that the development actually followed. 

 



 

 

TABLE C4 (a) 

ACTUAL DEVELOPMENT GANTT CHART – FALL QUARTER AND WINTER BREAK 2014 [21] 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

EE 460 Gantt Chart
Fall 2014

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

22 29 6 13 20 27 3 10 17 24 1 8

Project Plan

Abstract (Proposal) V1

Requirements and Specifications

Block Diagram

Literature search

Gantt Chart

Cost Estimates

ABET Sr. Project Analysis

Requirements and Specifications V2 + Intro

Report V1

Advisor Feedback Due

Report V2

Presentations

Requirements and Specifications

Report V1

HW 1 Resume & Cover Letter

Due

HW 2 Sensitivity Analysis

Due

HW 3 Reverse Engineering

Due

Final Exam

Team Assignment Feedback Required Assignment Due V1.5 Due to Advisor & Instr. In-class assignment Advisor Feedback

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 FinalsWeek 11

NOTE Due dates AND feedback required

Senior Project: Actual Timeline - Gantt Chart 

Winter Break 2014

M T W R F M T W R F M T W R F

15 22 29

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

ADCs & DACs

Design

Block Diagrams

Preliminary Parts Lists

Week 1 Week 2 Week 3



 

  

TABLE C4 (b) 

ACTUAL DEVELOPMENT GANTT CHART –WINTER 2015 

Senior Project: Actual Timeline - Gantt Chart 

Winter 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

5 12 19 26 2 9 16 23 2 9 16

Requirements & Specifications

Request Elaboration on Needs

and Requirments

Modify Specifications

Further Research

Simulations

Conceptually Design

Study & Simulate Encoding

Block Diagram

Select Parts

Tiva C Based System

Get Dev Envir to Work

Learn Basics of the MCU

Develop Interfaces

FPGA Based System

Research Hobbyist Work

Integrate Camera & FPGA

Try to integrate DAC

Research

Compression

Encoding / Comm Protocols

Noise Reduction

Handling Bit Errors

Document Cycle

Update Req and Spec

Design Documentation

Minor Milestone Parts Arrive

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 
  

  

 

  



 

 

 

  

TABLE C4 (c) 

ACTUAL DEVELOPMENT GANTT CHART – SPRING 2015 

Senior Project: Actual Timeline - Gantt Chart 

Spring 2015

M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F M T W R F

30 6 13 20 27 4 11 18 25 1 8

FPGA Based System

Research Hobbyist Work

Try to integrate DAC

Try to integrate Ext. Memory

Raspberry Pi Based System

Intergrating Pi & Camera

Improving Capture & Compression

Try to Impliment DMA Timing

Raspberry Pi + Tiva C System

Establish Comm betw  RPi & Tiva

Impl Tiva Timers For Output Ctrl

Integrate DAC (w/ Timed Output)

Fix Bug in Comm betw RPi & Tiva

Reduce Noise and Settling Error

Estab Reciever for Testing

Create Code for Decod Analog Dat

Improve Decode Accuracy

Document Cycles

FPGA Doucumentation

Raspberry Pi Documentation

RPI + Tiva C Documentation

Final Documentation

ABET Senior Project Anal (Final)

Final Report

Minor Milestone Parts Arrive Major Target Deadline

Week 10 FinalsWeek 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9

 



  

Appendix D – Program Listings 

Raspberry Pi Code: 

Shell Script for Video Capture, Compression, and Wrapping in .mp4 file – Vid_script_Pi: 

 

#!/bin/bash 

# Video record,store,play,and convert to .mp4 

 

raspivid -w 640 -h 480 -t 3000 -o scriptest.h264 -fps 30 -e -cfx 128:128 

omxplayer scriptest.h264 

if [ -e scriptest.mp4 ]; then 

    rm scriptest.mp4     # Delete previous otherwise unexpected results 

    echo "deleted scriptest.mp4" 

fi 

MP4Box -add scriptest.h264 scriptest.mp4 

 

 

C code for sending video data to the Tiva C – ComProtVidPlus: 

/* 

-- Author:  Thomas Higdon 

-- Last Modification:  6/8/15 

*/ 

 

//-----------Libraries------------ 

#include <wiringPi.h> 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <stdint.h> 

 

//-----------Definitions------------ 

#define BCM2 2 

#define BCM3 3 

#define BCM4 4 

#define BCM5 5 

#define BCM6 6 

#define BCM7 7 

#define BCM8 8 

#define BCM9 9 

 

#define SendSig 21 

#define ReadyPin 20 

#define MoreDataPinO 16 

 

//-----------Pre-declare Functions------------ 

inline void BCM_writeByte(char Byte); 

void BCM_ByteOut_Ini(); 

 

int main()  

{ 

    //--------Variable Declaration-------- 

    //int I; 

    //uint8_t I8; 

    uint8_t NextByte=0; 

     



 

    FILE *infile; 

    uint8_t successful_read; 

     

    //--------Initialization-------- 

    if (wiringPiSetupGpio() == -1) 

        exit(1); 

    BCM_ByteOut_Ini(); 

    if(piHiPri(99)) 

    { 

        printf("Error setting high priority\n"); 

        return 1; 

    }; 

     

    pinMode(ReadyPin,OUTPUT); 

    pinMode(MoreDataPinO,OUTPUT); 

     

    pinMode(SendSig,INPUT); 

        pullUpDnControl(SendSig,PUD_DOWN); 

    //------------------------------------ 

     

    //--------Data to Send-------- 

    printf("Opening File to be sent..."); 

    infile = fopen("scriptest.mp4","rb"); 

    if (!infile) 

    { 

        printf("Unable to open file(scriptest.mp4)"); 

        return 1; 

    } 

    printf("opened.\n"); 

    //---------------------------- 

     

    //-----------------Data Transfer------------------ 

    //  I8=0;//!!!!!!Just for testing send 

    //wiringPiISR(HaltSig, INT_EDGE_RISING, &HaltFunc); 

     

    digitalWrite(MoreDataPinO,1); 

    while(1) 

    { 

        successful_read = fread(&NextByte, 1, 1, infile); 

        if (successful_read != 1) { break; } 

        //---More File Data Ready--- 

        digitalWrite(ReadyPin,0); 

        //printf("Ready Low\n"); 

        //or//Same 

            //I8++;//!!!!!!Just for testing send 

            //printf("New Index: %d",I8); 

             

    //---Wait to send--- 

        while(!digitalRead(SendSig)); //trap until not 0 

        //printf("\nDetected a Send Request\n"); 

    //---Send Byte--- 

        BCM_writeByte(NextByte); 

        //printf("Sent: %d (from I=%d)\n",NextByte,I8); 

    //---Signal Ready--- 

        digitalWrite(ReadyPin,1); 

        //printf("Ready High\n"); 

    //---Wait for Send==0--- 



 

        while(digitalRead(SendSig)); //trap until not 1 

        //printf("Send Low Detected\n"); 

 

    /* 

    //---Signal Ready--- 

        digitalWrite(ReadyPin,0); 

        printf("Ready Low\n"); 

        //or//Same 

            I8++;//!!!!!!Just for testing send 

            //printf("New Index: %d",I8); 

    */ 

    } 

    digitalWrite(MoreDataPinO,0); 

    digitalWrite(ReadyPin,0); 

    printf("\nDone Reading File and Sending Data.\n"); 

    NextByte = 0x00; 

    fclose(infile); 

    return 0; 

} 

 

 

inline void BCM_writeByte(char Byte) 

{ 

    int val; 

    val = 0x01 & Byte;       //Bit-masking 

    digitalWrite(BCM2, val); //treats any nonzero as high 

 

    val = 0x02 & Byte; 

    digitalWrite(BCM3, val); //treats any nonzero as high 

 

    val = 0x04 & Byte; 

    digitalWrite(BCM4, val); //treats any nonzero as high 

 

    val = 0x08 & Byte; 

    digitalWrite(BCM5, val); //treats any nonzero as high 

 

    val = 0x10 & Byte; 

    digitalWrite(BCM6, val); //treats any nonzero as high 

 

    val = 0x20 & Byte; 

    digitalWrite(BCM7, val); //treats any nonzero as high 

 

    val = 0x40 & Byte; 

    digitalWrite(BCM8, val); //treats any nonzero as high 

 

    val = 0x80 & Byte; 

    digitalWrite(BCM9, val); //treats any nonzero as high 

} 

 

void BCM_ByteOut_Ini() 

{ 

    int I; 

    for (I = 2; I < 10; I++) 

    { 

        pinMode(I, OUTPUT); 

    } 

} 



 

Tiva C Code: 

The C code for Buffering Data from the RPi to the DAC – Com_with_Pi_Timer: 

/* 
--Author:  Thomas Higdon 
--Last Modification:  6/8/15 
-- 
--Based in part on Texas Instruments Code Samples for using the Tiva C 
--included with the Tiva C development package 
--The sample projects: project0.c and timers.c 
--TI's copyright statement and disclaimer are below: 
 //****************************************************************************
* 
 // 
 // project0.c - Example to demonstrate minimal TivaWare setup 
 // timers.c - Timers example. 
 // 
 // Copyright (c) 2012-2013 Texas Instruments Incorporated.  All rights 
reserved. 
 // Software License Agreement 
 // 
 // Texas Instruments (TI) is supplying this software for use solely and 
 // exclusively on TI's microcontroller products. The software is owned by 
 // TI and/or its suppliers, and is protected under applicable copyright 
 // laws. You may not combine this software with "viral" open-source 
 // software in order to form a larger program. 
 // 
 // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. 
 // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT 
 // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
 // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY 
 // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL 
 // DAMAGES, FOR ANY REASON WHATSOEVER. 
 // 
 // This is part of revision 1.1 of the EK-TM4C123GXL Firmware Package. 
 // 
 //****************************************************************************
* 
*/ 
 
//For talking to Pi 
#include <stdint.h> 
#include <stdbool.h> 
#include "inc/hw_types.h" 
#include "inc/hw_memmap.h" 
#include "driverlib/sysctl.h" 
#include "driverlib/gpio.h" 
#include "driverlib/debug.h" 
 
//For Timers 
#include "inc/hw_ints.h" 
//#include "driverlib/fpu.h" 
#include "driverlib/interrupt.h" 
#include "driverlib/pin_map.h" 
#include "driverlib/rom.h" 



 

#include "driverlib/timer.h" 
 
//***************************************************************************** 
// 
// Define pin mapping. 
// 
//***************************************************************************** 
#define RED_LED   GPIO_PIN_1 
#define BLUE_LED  GPIO_PIN_2 
#define GREEN_LED GPIO_PIN_3 
#define SendPinO GPIO_PIN_0 
#define ReadyPinI 0x02 
#define MoreDataPinI GPIO_PIN_5 
#define DAC_nWR_O GPIO_PIN_3 
#define Buff_Full_O GPIO_PIN_7 
#define Buff_Low_O GPIO_PIN_4 
 
 
//***************************************************************************** 
// 
// The error routine that is called if the driver library encounters an error. 
// 
//***************************************************************************** 
#ifdef DEBUG 
void 
__error__(char *pcFilename, uint32_t ui32Line) 
{ 
} 
#endif 
 
//***************************************************************************** 
// 
// Global Variables 
// 
//***************************************************************************** 
static uint_fast8_t gbl_storedData[512]={0}; 
 
volatile int gbl_ReceiveIndex; 
volatile int gbl_SendIndex; 
volatile int32_t gbl_BuffLeadSize; 
 
volatile uint_fast8_t gbl_SendMode=0; 
volatile uint_fast32_t gbl_SendCount=0; 
 
const uint_fast32_t MinBuff = 500; 
//***************************************************************************** 
//Function Declarations 
//***************************************************************************** 
void init_gpio(); 
uint_fast8_t read_Pi_Byte(); 
void write_DAC_Byte(uint_fast8_t Byte); 
void Timer0IntHandler(void); 
void init_timers(); 
//***************************************************************************** 
// 



 

// Main 'C' 
// 
//***************************************************************************** 
int 
main(void) 
{ 
 //---------------Initiallization-------------- 
 gbl_ReceiveIndex=-1; 
 gbl_SendIndex=-1; 
 //int I=0; 
 //uint_fast8_t testbyte = 0xAA; 
 uint_fast8_t readbyte; 
 //uint_fast8_t storedData[512]; 
   /* // 
    // Setup the system clock to run at 50 Mhz from PLL with crystal reference 
    // 
    SysCtlClockSet(SYSCTL_SYSDIV_4|SYSCTL_USE_PLL|SYSCTL_XTAL_16MHZ| 
                    SYSCTL_OSC_MAIN);*/ 
 // 
 // Set the clocking to run directly from the crystal. 
 // 
 //ROM_SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | 
         //SYSCTL_XTAL_16MHZ); //Timer Interrupt 
Original 
 ROM_SysCtlClockSet(SYSCTL_SYSDIV_4 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | 
        SYSCTL_XTAL_16MHZ); //TH: Modded to 50 Mhz PLL 
 
 
    SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //For debug 
    GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED); //For debug 
    //GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, RED_LED); //For debug 
    init_gpio(); 
 
    write_DAC_Byte(0x00); 
    init_timers(); 
 
    GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, BLUE_LED); 
 
    //-----------Start of Communication with RPi Loop-------------- 
 
    while(GPIOPinRead(GPIO_PORTB_BASE,MoreDataPinI)>0) //For Testing 
    { 
     while(gbl_BuffLeadSize >= MinBuff); //Wait until buffLead < 500 
 
       //GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
GREEN_LED|BLUE_LED); //For debug 
     GPIOPinWrite(GPIO_PORTB_BASE, SendPinO, 0xFF); //Request Next Byte from Pi 
       //GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
GREEN_LED|RED_LED); //For debug 
     while((GPIOPinRead(GPIO_PORTB_BASE,ReadyPinI)&ReadyPinI)==0); //Wait until Pi 
says the data is Ready 
       //GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
RED_LED|BLUE_LED); //For debug 
     readbyte = read_Pi_Byte(); //Read the actual data in from the Pi 



 

       //GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
GREEN_LED); 
     GPIOPinWrite(GPIO_PORTB_BASE, SendPinO, 0x00); //Tell Pi Data has been 
received 
     gbl_ReceiveIndex++; 
  //gbl_ReceiveIndex=gbl_ReceiveIndex%512; //Too slow, if statement faster 
  if(gbl_ReceiveIndex>511) 
  { 
   gbl_ReceiveIndex=0; 
  } 
     gbl_storedData[gbl_ReceiveIndex] = readbyte; //For Testing 
 
      //write_DAC_Byte(readbyte); //For Testing 
 
     while((GPIOPinRead(GPIO_PORTB_BASE,ReadyPinI)&ReadyPinI)!=0); //Wait for 
acknowledge/reset from Pi 
 
 
     //-----Update BuffLeadSize----- 
  if((gbl_ReceiveIndex-gbl_SendIndex) >= 0) 
  { 
   gbl_BuffLeadSize=gbl_ReceiveIndex-gbl_SendIndex; 
  } 
  else 
  { 
   gbl_BuffLeadSize=gbl_ReceiveIndex-gbl_SendIndex+512; 
  } 
 
     //Begin again 
    } //Receive Data Loop 
 
    while(gbl_SendMode!=5); //Wait to finish sending what is stored in the buffer 
    ROM_IntMasterDisable(); //Disable timers 
    write_DAC_Byte(0x00);   //Turn everything off . . .  
    GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 0x00); 
 
 
    return 0; 
} //-------------End of Main------------- 
 
//******************************************GPIO*************************************
*** 
//============================GPIO Initialization============================ 
void init_gpio() 
{ 
 //-------------------------Receiving End--------------------------- 
 GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, RED_LED); //For 
debug 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); //Enable Port B 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD); //Enable Port D 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOE); //Enable Port E 
 
 //GPIOPinTypeGPIOInput(GPIO_PORTE_BASE, 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1); //PE: 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1 0x1E 



 

  // Check the arguments. 
  ASSERT(_GPIOBaseValid(GPIO_PORTE_BASE)); 
     // Make the pin(s) be inputs. 
     GPIODirModeSet(GPIO_PORTE_BASE, 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1, GPIO_DIR_MODE_IN); 
     // Set the pad(s) for standard push-pull operation. 
     GPIOPadConfigSet(GPIO_PORTE_BASE, 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1, GPIO_STRENGTH_2MA, 
GPIO_PIN_TYPE_STD_WPD); 
     ///////GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
GREEN_LED|RED_LED); //For debug 
 
 //GPIOPinTypeGPIOInput(GPIO_PORTD_BASE, 0x0F ); //PD: 
GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1|GPIO_PIN_0 <----- This was causing stack overflow, 
the following was not 
  // Check the arguments. 
  ASSERT(_GPIOBaseValid(GPIO_PORTD_BASE)); 
     // Make the pin(s) be inputs. 
     GPIODirModeSet(GPIO_PORTD_BASE, 0x0F, GPIO_DIR_MODE_IN); 
     // Set the pad(s) for standard push-pull operation. 
     GPIOPadConfigSet(GPIO_PORTD_BASE, 0x0F, GPIO_STRENGTH_2MA, 
GPIO_PIN_TYPE_STD_WPD); 
     ////////GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
BLUE_LED|RED_LED); //For debug 
 
 //GPIOPinTypeGPIOInput(GPIO_PORTB_BASE, ReadyPinI ); //PB GPIO_PIN_1  <----- 
This was 
  // Check the arguments. 
  ASSERT(_GPIOBaseValid(GPIO_PORTB_BASE)); 
  // Make the pin(s) be inputs. 
  GPIODirModeSet(GPIO_PORTB_BASE, ReadyPinI|MoreDataPinI, 
GPIO_DIR_MODE_IN); 
  // Set the pad(s) for standard push-pull operation. 
 
 GPIOPadConfigSet(GPIO_PORTB_BASE,ReadyPinI|MoreDataPinI,GPIO_STRENGTH_2MA,GPIO
_PIN_TYPE_STD_WPD); 
  /////////GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
BLUE_LED|GREEN_LED|RED_LED); //For debug 
 
 GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, SendPinO ); //PB GPIO_PIN_1|pin5 
 
 //-------------------------Sending End--------------------------- 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC); //Enable Port C 
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA); //Enable Port A 
 //FOR DEBUG, REMOVED: SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //Enable 
Port F 
 
 GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, 0xF0 ); //PC: 
GPIO_PIN_7|GPIO_PIN_6|GPIO_PIN_5|GPIO_PIN_4 
 
 GPIOPinTypeGPIOOutput(GPIO_PORTA_BASE, 0x1C ); //PA: 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2 
 
 GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_2); //PB: GPIO_PIN_2 
 



 

 GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, DAC_nWR_O); //PB: GPIO_PIN_3 controls 
DAC's nWR 
 GPIOPinWrite(GPIO_PORTB_BASE, DAC_nWR_O, DAC_nWR_O); //Initialize High, 
because active low 
 
 GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, BLUE_LED); //For 
debug 
 return; 
} 
//=========================================================================== 
 
uint_fast8_t read_Pi_Byte() 
{ 
 uint_fast32_t Byte = 0x00; 
 //GPIOPinWrite(GPIO_PORTF_BASE, BLUE_LED|GREEN_LED, BLUE_LED); 
 Byte = (GPIOPinRead(GPIO_PORTE_BASE, 0x1E )<<3); //PE: 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1 
 Byte |= GPIOPinRead(GPIO_PORTD_BASE, 0x0F ); //PD: 
GPIO_PIN_3|GPIO_PIN_2|GPIO_PIN_1|GPIO_PIN_0 
 //GPIOPinWrite(GPIO_PORTF_BASE, BLUE_LED|GREEN_LED, 0); 
 return Byte; 
} 
 
void write_DAC_Byte(uint_fast8_t Byte) 
{ 
 //uint_fast32_t BigInt; 
 //BigInt = Byte; 
 //GPIOPinWrite(GPIO_PORTF_BASE, BLUE_LED|GREEN_LED, BLUE_LED); 
 GPIOPinWrite(GPIO_PORTB_BASE, DAC_nWR_O, 0x00); //nWR low to read data to DAC 
 SysCtlDelay(ROM_SysCtlClockGet()/11000000); //delay 91 ns 
 GPIOPinWrite(GPIO_PORTC_BASE, 0xF0, Byte);//PC: 
GPIO_PIN_7|GPIO_PIN_6|GPIO_PIN_5|GPIO_PIN_4 
 ////////GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, RED_LED); 
 GPIOPinWrite(GPIO_PORTA_BASE, 0x1C, (Byte<<1)); //PA: 
GPIO_PIN_4|GPIO_PIN_3|GPIO_PIN_2 
 /////////GPIOPinWrite(GPIO_PORTF_BASE, RED_LED|BLUE_LED|GREEN_LED, 
RED_LED|GREEN_LED); 
 GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_2, (Byte<<2)); //PB: GPIO_PIN_2 
 SysCtlDelay(1); //delay 20 ns 
 GPIOPinWrite(GPIO_PORTB_BASE, DAC_nWR_O, DAC_nWR_O); //nWR high to latch data 
to DAC 
 //GPIOPinWrite(GPIO_PORTF_BASE, BLUE_LED|GREEN_LED, GREEN_LED); 
 return; 
} 
 
//************************************Timers*************************************** 
void 
Timer0IntHandler(void) 
{ 
    //char cOne, cTwo; 
 
    // 
    // Clear the timer interrupt. 
    // 
    ROM_TimerIntClear(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 



 

 
    // 
    // -----Send To DAC------ 
    // 
    if(gbl_SendMode == 3) //Mode-3=Sending Data from Buffer; Most timing critical 
mode is first tested for 
 { 
  gbl_SendIndex++; 
  //gbl_SendIndex=gbl_SendIndex%512; 
  if(gbl_SendIndex>511) 
  { 
   gbl_SendIndex=0; 
  } 
  write_DAC_Byte(gbl_storedData[gbl_SendIndex]); 
   
  //Update BuffLeadSize 
  int temp_sub_int = gbl_ReceiveIndex-gbl_SendIndex; 
  if((temp_sub_int) > 0) 
  { 
   gbl_BuffLeadSize=gbl_ReceiveIndex-gbl_SendIndex; 
  } 
  else if(temp_sub_int<0) 
  { 
   gbl_BuffLeadSize=gbl_ReceiveIndex-gbl_SendIndex+512; 
  } 
  else 
  { 
   gbl_SendMode=5; 
  } 
 
 }else 
 if (gbl_SendMode == 0) //Initially send 20 zeros 
 { 
  write_DAC_Byte(0x00); 
  gbl_SendCount++; 
  if (gbl_SendCount>19) 
  { 
   gbl_SendCount = 0; 
   gbl_SendMode = 1; 
  } 
 } 
 else 
 if(gbl_SendMode == 1) //Send callibration ramp 
 { 
  uint_fast32_t calli_data; 
  calli_data = gbl_SendCount>>1; //Sends same byte twice before moving on 
  write_DAC_Byte(calli_data); 
  gbl_SendCount++; 
  if (gbl_SendCount>511) 
  { 
   gbl_SendCount = 0; 
   gbl_SendMode = 2; 
  } 
 } 
 else 



 

 if(gbl_SendMode == 2) //Send 20 zeros after callibration 
 { 
  write_DAC_Byte(0x00); 
  gbl_SendCount++; 
  if (gbl_SendCount>19) 
  { 
   gbl_SendCount = 0; 
   gbl_SendMode = 3; 
  } 
 } 
 else // Just send zero, final state 
 { 
  write_DAC_Byte(0x00); 
  GPIOPinWrite(GPIO_PORTF_BASE, BLUE_LED|GREEN_LED|RED_LED, RED_LED); 
 } 
 
    // 
    // Update the interrupt status on the display. 
    // 
    ROM_IntMasterDisable(); 
    ROM_IntMasterEnable(); 
} 
 
void init_timers() 
{ 
 // 
 // Enable the peripheral used by this example. 
 // 
 ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_TIMER0); 
 
 // 
 // Enable processor interrupts. 
 // 
 ROM_IntMasterEnable(); 
 
 // 
 // Configure the two{one} 32-bit periodic timers. 
 // 
    ROM_TimerConfigure(TIMER0_BASE, TIMER_CFG_PERIODIC); 
    ROM_TimerLoadSet(TIMER0_BASE, TIMER_A, ROM_SysCtlClockGet()/3330); 
 
    // 
 // Setup the interrupts for the timer timeouts. 
 // 
 ROM_IntEnable(INT_TIMER0A); 
 ROM_TimerIntEnable(TIMER0_BASE, TIMER_TIMA_TIMEOUT); 
 
 // 
 // Enable the timers{timer}. 
 // 
 ROM_TimerEnable(TIMER0_BASE, TIMER_A); 
} 

 



 

Analog Data Decoding and Digital Data Reconstruction (Matlab): 

The primary piece of reconstruction code is an m-script: ana2file_script_B.m, however it calls 3 functions also 

created by the project designer, whose code will follow ana2file_script_B.m’s code. 

The functions are: clust_callibration.m, findbin.m, and writebytes2file.m 

An alternatice to clust_callibrated.m is dev_callibration.m 

 

Main Script for translated analog readings back into a digital file – ana2file_script_B.m: 

% ana2file_script_B.m 
%--Author: Tom Higdon 
%--Date Modified: 6/13/15 
an_data=importdata('ana_vid_data2.csv'); 

  
max_an=max(an_data); 
min_an=min(an_data); 
range=max_an-min_an; 

  
%---------------Callibrate---------------- 
% -- Find Callibration Signal -- 
start_sig=find( an_data<(1.1*abs(min_an)), 1, 'first'); 
trig_start=find( an_data(start_sig:end)>(max_an/5),1,'first' ); 
trig_start=start_sig+trig_start; 
trig_stop=find( an_data(start_sig:end)>(max_an*4/5),1,'first' ); 
trig_stop=start_sig+trig_stop; 
% ------------------------------ 
%Old: % calli_data=an_data((trig_start-326):(trig_stop+326)); 

%(255/5)*6+20=326 

  
% Using data from beginning middle and end to try to reduce any component 
% drift issues. Adaptive Callibration might further improve. 
stop_data=find(an_data>0.100,1,'last'); 
mid_point=round(mean(trig_start,stop_data)); 
calli_part1=an_data((trig_start-326):trig_start+15000); % Beginning 
calli_part2=an_data((mid_point-7500):(mid_point+7500)); % Middle 
calli_part3=an_data((stop_data-15000):stop_data);       % End 
calli_data=vertcat(calli_part1,calli_part2,calli_part3); 
zer_noise=(calli_data<0); 
calli_data(zer_noise)=[];  

  
% To generate callibrated byte code levels 
[cent, numpoint2]=clust_callibrate(calli_data); % User created function 
%[level, dev_groups]=dev_callibration(calli_data); % Alt created function 

  
mid_fin=cent; %!!!!!!!!!!!!!!!!!!Change if you change which callib type! 
%mid_fin=level; 

  
brder=zeros(255,1); % Create borders that can be used to put readings into 
for I=2:256         % Bins 
    brder(I-1)=(mid_fin(I)+mid_fin(I-1))/2; 
end 

  
'Callibrated.' 

  
% Initiallize for Interpretation loop 
continue_reading=1; 



 

Bfnd_flg=0; 
nBfnd_cnt=0; 
skip_cnt=0; 
old_samp=NaN; 
samp=0; 
nan_count=0; 
nan_loc=[]; 
nan_loc_an=[]; 
smp_num=(trig_stop+326); % 
I=1; 
I_B=1; 
binned_data=zeros((length(an_data)-smp_num),1); 
Byte_data=zeros(ceil(length(binned_data)/3),1); 
while(continue_reading==1) 
    if(Bfnd_flg==0)  % If you haven't just found a Byte, look for one 
        [ samp ]=findbin(an_data(smp_num),brder); %put anlg data in dig bin 
        % findbin() is User Created Function 

         
        if(abs(an_data(smp_num)-an_data(smp_num-1))<0.045) % compare with 

previous sample 
            

Byte_data(I_B)=findbin(0.8*an_data(smp_num)+0.2*an_data(smp_num),brder); % if 

equal, you found a Byte 
            Bfnd_flg=1; % set flag that a Byte has been found 
            nBfnd_cnt=0; % reset counter since last Byte found 
            I_B=I_B+1; % increment Byte array's index 
        else % if not equal 
            old_samp=samp; % get ready to check the next pair 
            nBfnd_cnt=nBfnd_cnt+1; % increment the byte not found counter 
        end 
         if((nBfnd_cnt>=2)) % Let me know if something is wrong 
             Byte_data(I_B)=NaN; 
             nan_count=nan_count+1; 
             I_B=I_B+1; 
             %nan_loc=[nan_loc,I]; 
             %nan_loc_an=[nan_loc_an,smp_num]; 
             nBfnd_cnt=0; 
         endxlabel('Index') 

  

  
    else % If you have found a byte recently 
        skip_cnt=skip_cnt+1; % increment skip counter 
        if(skip_cnt>=2) % after 2 loops (so completely skiping 1 an_samples) 
            skip_cnt=0; % reset skip counter 
            Bfnd_flg=0; % reset Byte found flag 
            nBfnd_cnt=0; % reset Byte not found counter 
            % load 1st analog sample after the skipped sample into old_samp 
            old_samp=findbin(an_data(smp_num),brder);  
        end 
    end 

         
    binned_data(I)=samp; % save the digital equivalents of all of the samps 

  
    smp_num=smp_num+1; % increment the index in the original data array 
    I=I+1; % increment the index for the shorted binned array 
    if(smp_num>(length(an_data))) % stop when at the end of data 



 

        continue_reading=0; 
    end 
%     if(I_B>100) 
%         if(sum(Byte_data((I_B-10):(I_B-1)))==0) 
%             continue_reading=0; 
%             'Stopped Binning Early Because zeros' 
%         end 
%     end 
end 

  
Start_data=find(Byte_data>0,1,'first'); 
End_data=find(Byte_data>10,1,'last'); 

  
% .mp4 has 3 leading zeros and one trailing zero, I think 
Vid_array = vertcat([0;0;0],Byte_data(Start_data:End_data),[0]); 
'Vid_array ready!' %#ok<NOPTS> 

  
success=writebytes2file(uint8(Vid_array),'DecodedVid.mp4'); 
if(success == 1) 
    'Wrote to the File!' %#ok<NOPTS> 
end 
  

 

 

 

Function that finds calibrated voltage levels by clusting readings into 256 clusters – clust_callibrate.m: 

 

function [ cent, pointsperclust ] = clust_callibrate( calli_data ) 
%--Author: Tom Higdon 
%--Date Modified: 6/9/15 
len_cal=length(calli_data); 
max_an=max(calli_data); 
min_an=min(calli_data); 
range=max_an-min_an; 

  
%-----cent initiallization----- 
cent=zeros(256,1); 
cent(1)=0; 
for I=1:256 
    %cent(I)=(range*(I-1)/(256-1)) + min_an; 
    cent(I)=(2*5)*(16*(I-1)/4096); %From DAC (AD7345A) Datasheet pg 10 
end 

  
dtocent=zeros(len_cal,256); 
pointsperclust=zeros(8,1); 
catag=zeros(len_cal,1); %#ok<NASGU> 
catag_old=catag; 
clust_long=zeros(len_cal,256); 
iterate = 1; 
iter_count=0; 
while iterate==1 
    %-------Distance from centroid Calulation------- 
    for I=1:256 
        dtocent(:,I)=abs(calli_data-cent(I)); 
    end 



 

    %Catagorizing  
    [~,catag]= min( dtocent, [], 2 ); %Dimension-2 

     
    %---------- Recalculating centroid locations ----------- 
    for I=1:256 
        clust_temp=zeros(len_cal,1); 
        cl_temp_ind=find(catag==I); 
        size_cl=length(cl_temp_ind); 
        clust_temp(1:size_cl)=calli_data(cl_temp_ind); 

         
        %if (size_cl ~= 0) 
            cent(I)=sum(clust_temp)./size_cl; 
        %end 
        pointsperclust(I)=size_cl; 
        clust_long(1:size_cl,I)=clust_temp(1:size_cl); 
    end 

     
    iter_count = iter_count+1; 
    if (iter_count >= 3) 
        compar_catag = (catag~=catag_old);  
        percent_diff = sum(compar_catag)/len_cal; 
        if (percent_diff <= 0.05) 
               iterate = 0; 
           elseif (iter_count > 35) 
               'Could not converge!' %#ok<NOPTS> 
               iterate = 0; 
        end 
    end 
    catag_old=catag; 
end %while 

  
end 

  

 

 

 

Alternative Function that finds calibrated voltage levels based on ramp structure of the calibration signal 

– dev_callibration.m: 

 

function [ level, clust ] = dev_callibration( calli_data ) 
%--Author: Tom Higdon 
%--Date Modified: 6/9/15 
len_cal=length(calli_data); 
sort_calli=sort(calli_data, 'descend'); 

  
clust(256,:)=sort_calli(1:7); 
clust(256,:); 
cl_mean=mean(clust(256,:)); 
cl_med_dev=median_deviation(clust(256,:)); 
for CI=1:7 
    if (abs(clust(256,CI)-cl_mean)>(1.5*cl_med_dev)) 
        clust(256,CI)=NaN; 
    else 
        last_in_clust=CI; 
    end %if 



 

end %Inter-cluster for 
temp_clust=clust(256,(isfinite(clust(256,1:7)))); % Temp array with all non 
                                                    %NaN numbers 
level(256)=mean(temp_clust); 
Start = 1 + last_in_clust; 

  
I=255; 
while (I>1) 
    last_in_clust=0; 
    clust(I,:)=sort_calli((Start):(Start+6)); 
    cl_mean=mean(clust(I,:)); 
    cl_med_dev=median_deviation(clust(I,:)); 
    for CI=1:7 
        if (abs(clust(I,CI)-cl_mean)>(1.5*cl_med_dev)) 
            clust(I,CI)=NaN; 
        else 
            last_in_clust=CI; 
        end %if 
    end %Inter-cluster for 
    Start=Start+last_in_clust; 
    temp_clust=clust(I,(isfinite(clust(I,1:7))));  
    level(I)=mean(temp_clust); 
    I=I-1; 
end  

 

 

 

Function that returns the byte “bin” of the analog data, based on boundries – findbin.m: 

 

function [ bin_value ] = findbin( analog_sample, boundry ) 
%--Author: Tom Higdon 
%--Date Modified: 6/9/15 
below=find(boundry<analog_sample,1,'last'); 
above=find(boundry>analog_sample,1,'first'); 

  
if(~isempty(below)) 
    bin_value=below; %not below+1 because Matlab 1-indexed and value 0-ind 
elseif(~isempty(above)) 
    bin_value=above-1; %should only occur for the case of above==1, val==0 
else 
    'error, neither high nor low!' %#ok<NOPRT> 
    bin_value=NaN; 
    %return 
end 

 

 

 

Function that writes bytes to a binary file – writebytes2file.m: 

function [ success ] = writebytes2file( Byte_vector,filename ) 

% Essentially taken from Mathwork Documention 
fid = fopen(filename,'w'); 
fwrite(fid,Byte_vector); % Default is one byte at a time 
fclose(fid); 
success=1; 
end 


