
Senior Project: Saddle Force Mapping
Cal Poly Physics

Molly Totten

6/10/2015



Abstract

In horseback riding, the size and shape of a saddle can drastically effect the com-
fort, attitude and performance of the horse as well as the effectiveness of the rider.
In an effort to create an accurate means of fitting the saddle to the horse, I have
created a pressure sensing device that maps the force differences along critical areas
of the horse’s back during motion. Using an Arduino microprocessor and appro-
priate circuits, data was collected about the pressure levels between the saddle and
the horse’s back and a graphic representation of the findings was created.



1 Introduction

Classical dressage, a type of English horse riding, is defined as the art of riding and
training a horse in a manner that develops obedience, flexibility and balance. This
training process can take up to 20 years for a horse to master the correct balance
and knowledge of movements. In dressage, having a properly fitting saddle is
extremely important in allowing full range of motion for and preventing back pain
in horses as well as keeping the rider in a symmetrical position. The effect of the
rider on the saddle fit is critical to understanding the dynamic nature of saddle
fit.

Fitting a saddle to a horse usually involves a series of inaccurate visual tests
as well as feeling underneath the saddle to determin pressure points. This method
gives us very little information about the correctness of fit while the horse is in
motion. Typically, the only information we can gather about the saddle fit while
in motion is from sweat patterns left on the horse’s back after a strenuous workout.
Dry spots in the saddle area indicate pinching while ruffled hairs indicate a loose
fit. After following the rules of thumb, I decided to make a tool that can give more
accurate dynamical information about the pressure in key areas of the spine and
shoulder.

The system used to made to take and interpret information about the pressure
between the saddle and the horse’s back while in motion included; an Arduino
microprocessor, sensors with the appropriate circuitry and a Matlab code to make
plots of the data collected. The circuit and Arduino microcontroller sits in a small
box that is attached to the back of the saddle. The sensors take multiple pressure
readings during a riding session in order to show how well the saddle fits during
various types of motion. By getting information while the horse is in motion, we
can make a much more comprehensive diagnosis of the saddle fit.

In order to gather information about the changes in force beneath the saddle,
sensors were placed in strategic locations on the horse’s back and a circuit was
created to read the output of the sensors. These sensors collect data while the
horse and rider are free to move about. The data is then written to an SD card
and read into a Matlab program that compiles and graphs the data. For the circuit
configuration, there are two viable options for the sensor configuration. One is to
use a variable resistance force sensor and the other is to use a variable voltage
Piezo disk. Both can be configured to read pressure data but their setup, output
and function vary greatly.

1



In order to read the forces, a variable resistance force sensor can be used with
each sensor placed in a voltage divider. In a voltage divider, a power source is
connected to two resistors in series. In this case, the first resistor has a fixed value
while the second resistor is a variable resistance force sensitive resistor. Changes to
the value of the fixed resistor will increase or decrease the sensitivity of the second
resistor. This follows Equation 1, Ohm’s Law, and allows the voltage supplied to
be split between the resistors. Here, V is the voltage, I is the current and R is the
resistance. Rearranging Ohm’s Law and solving for current, we get equation 2.
Since there are two resistors in series, R can be redifined as R = r1+r2. From this,
we can determine the current, I, as seen in equation 3. In this system, the force
sensor can be thought of as R2. In order to determine the corresponding voltage,
V2, across the force sensor, we can substitute the expression for current and get the
result in equation 4 (Eggleston, 12). This setup works nicely for this application
but these sensors typically have a physical limitation of how much weight they can
sense. Since the weight of a person is much larger than the typical 10 kg weight
limit for standard force sensors, another approach was required.

After discovering the weight limitations of the standard force sensitive resis-
tors, using a Piezo disk instead was a much better option. Using inspiration from
the variable resistance force sensors, I set up the Piezo disks in a somewhat sim-
ilar manner. Since the Piezo disk modulates it’s voltage in response to a force
differential, the voltage can be read directly from the disk without the need for
a voltage divider. There is a fundamental difference in the variable force resistor
and the Piezo disk in that the force sensor changes resistance in reaction to force
while the Pieazo disk changes it’s voltage. This eliminated the need for any signale
amplification or complicated circuits.

Piezo disks use a phenomenon called the Piezoelectric Effect, which is the
ability of certain materials to generate an electrostatic charge in response to me-
chanical stress. This creates a transducer effect between the electrical oscillations
from the charge of the crystals and the mechanical oscillations of the force or
strain itself. Transducers allow the pressure information to be converted into an
electrical signal and, in turn, allows the force data to be collected and controled
efficiently. This behavior is unique in that the charge crystals do not hold their
charge once the stress or force is released. The piezoelectric effect can be seen
in common materials such as quartz, sucrose (table sugar) and certain ceramic
material. In the Piezo disk, crystals are placed on one side of the disk and become
charged when they are compressed or distorted. This charge can then be read as
a voltage. (Nave)

2



Due to the limited number of analog input pins on the Arduino Uno, a 4051
integrated circuit was used in order to reduce the amount of input pins used on
the Arduino and take data from multiple sensors and combine it into one string
of information. The 4051 is an 8-channel analog multiplexer and demultiplexer
which means that it can turn eight analog inputs into one digital output when
configured for multiplexing or vice versa for demultiplexing. Though there are
other multiplexers available, the 4051 is most compatible with the Arduino’s and
accepts a high number of analog inputs. With other multiplexers, such as the 4066
which was initially tried, their voltage demand is higher than the Arduino’s 5V
supply voltage and an NPN transistor must be used to supply enough potential.
After the Piezo disks and the 4051 multiplexer were selected and confirmed to
be the most effective for this application, I was able to successfully integrate the
circuit to record and then interperet the data gathered from the horse and rider.

V = IR (1)

I =
V

R
(2)

I =
V

r1 + r2
(3)

V2 = R1
V

r1 + r2
(4)

2 Apparatus

The saddle sensor system consists of four parts; the saddle pad with sensors, a
circuit that is connected to an Arduino, an Arduino with a code to record and
organize the data and a Matlab program to map and display the data in an easily
understood manner. As previously mentioned, the sadde pad has eight sensors
placed in strategic locations with sensors placed along the back and down the
scapula on both sides. The pad sits between the saddle and the horse’s back and
is used to keep the horse comfortable while sweating and to keep the saddle clean.
The sensors are sewn into a pad so that the system can be used with different
saddle, horse and rider combinations. The sensors consist of a Piezo disk that
changes voltage with increased or decreased force. Each Piezo disk is placed in
a strategic location along the horse’s back in order to line up with the latisimus
dorsi, the long back muscles that run alone either side of the spine and carry the
weight of the saddle and rider. In order to keep the circuit protected from dust,

3



the breadboard and Arduino are placed into a small cloth bag. The ends of the
bag are then tucked underneath the edge of the saddle to ensure the bag stays
in place but the circuit stays accessible. A picture of the saddle pad with sensor
placement indications can be seen in figure 1. Pictures of the saddle pad sensor on
the horse can be seen in figures 2 and 3. The bag remained untucked in the rear
view photo to show the wires extending from the back of the saddle.

2.1 Circuit Configuration

The Piezo disks are arranged on a breadboard and are connected to their appropri-
ate analog pins on the 4051 (y0 through y7). Since the disks change their voltage
when compressed or distorted, they can be connected directly to the 4051. The
4051 then interfaces with the Arduino via the Arduino code. A photo of the sensor
can be seen in figure 4 and a Fritzing diagram of the circuit can be seen in figure
5. In the diagram, the green wires connect from pins 9, 10 and 11 on the 4051 to
the three digital output pins, S0, S1 and S2. These pins are responsible for cycling
through the analog inputs and creating one output for each of the 8 inputs.

The 4051 uses pins y0 through y7 for each of the analog inputs from the Piezo
disks along with a common analog, z, outpus that connects to the Arduino. The
4051 also needs three pins connected to ground and one pin connected to the 5V
pin, both on the Arduino. Finally, the 4051 uses three select pins (S0, S1 and S2),
each of which connect to one digital out pin on the Arduino. S0 is assigned the
value 1 while S1 is 2 and S2 is 4. When one of the select pins is set to high by the
Arduino, the value of that select pin is transmitted to the 4051. The Arduino code
is then designed to turn each of the select pins to high in various combinations in
order to count through the analog inputs. For example, is S0, S1 and S2 are all
set to high, the 4051 recieves (S0+S1+S2) or (1+2+4) = 7 and will then read the
value from the 7th analog input value, y6. A table for the counting logic can be
seen in figure 6, where INH is the inhibitor or common analog and A, B and C are
S0, S1, S2, respectively. The pin configuration for the 4051 can be seen in figure
7, where E, Vee and gnd all correspond to the three ground pins and Vcc connects
to the 5V pin.

4



2.2 Arduino Sketch

From the Arduino, the Arduino sketch or code takes in the data from the 4051.
There are two parts to the code; one part to initialize and write the data to the SD
card, one to communicate with the 4051. In order to make data collection physi-
cally possible and eliminate the need for computer interface during data collection,
the data must be written to an SD card so that the sensor system can be used while
riding. Within the Arduino code, there are two parts; one for implimenting the
counting logic and controlling the 4051 and one for reading and writing the data
to the SD card. An SD card is a serial peripheral interface (SPI) device. These
devices can be SD cards, microprocessors or other devices and are controlled by a
master microprocessor which, in this case, is an Arduino Uno. The SPI type and
Arduino type will then determine what to include into the Arduino sketch.

In order to read from the SD card, SPI.h and SD.h must be included in the
initialization section above the setup. Next, for the 4051 initialization, the select
pins must be initialized. In the code, these are defined as r0, r1 and r2 for S0, S1
and S2, respectively, and have an initial value of zero. Next, the count variable
for the 4051 must be initialized and also set to an initial value of 0. Next, a
the common analog pin must be set. In this case, the pin is A0. A variable,
called PiezoValue, also must be initialized in order to store the sensor value. After
initializing the SD card and variables, the setup portion of the sketch follows in
which the pins are activated and the SD card is opened.

In the setup section of the Arduino code, digital pins 2, 3 and 4 are used
for the select pins S0, S1 and S2. These pins must be set to be outputs using the
pinMode command. Digital pin 10 must also be set to output using pinMode since
this pin is the default hardware SS pin for the Arduino Uno. Certain Arduinos
have various SS pins but 10 is most common. The serial communication for the SD
card must also be opened in the setup using the Serial.begin command. Here, the
Serial.begin argument is 9600 which means that the communication rate is 9600
bits per second or 9600 baud. The baud rate must match between the Arduino
serial monitor rate and the rate at which the computer recieves the data. After
setting the digital pins to the proper mode and starting the serial communication,
the loop must be executed.

In the loop, the counting logic for the 4051 is implemented by using a for loop.
The count variable will cycle through values 0 through 7 which corresponds to
each Piezo disk. Next, r0, r1 and r2 are read in order using the bitRead command.
The values of the select pins S0, S1 and S2 are then assigned values of r0, r1 and r2

5



using the digitalWrite command. After that, the 4051 reads the analog values of
each Piezo disk using the analogRead command and assigns these readings to the
Piezovalue variable. The Piezovalue readings are then converted into string values
and placed into an array so that they can be sent to the SD card. Each count
value (0 through 7) will correspond to one Piezovalue entry and will be placed into
the 1x8 array.

After the analog sensor values are placed into the array, the SD card will ini-
tialize and open a file called “datalog.txt” using the File and SD.open commands.
If the file is available, the SD card will write each string onto the SD card and
close the file. The string of data is then printed to the serial port so that it can
be monitored while connected to the computer. The serial monitor will then read
each individual Piezo disk value followed by the string for that data point. If the
datalog file cannot open, then the Adruino will print an error message. In order
to keep the size of the data file from getting very large, a delay was added to the
end of the code to decrease the collection rate. The delay function argument is
set to 500 which represents a 500 millisecond pause between each reading of al 8
sensors. It should be noted that the code research was done using the Arduino
Playground, an open source platform for Arduino programming information. A
copy of the Arduino code can be seen in Appendix A of this document.

2.3 Matlab Script

After the Arduino code takes in the data, it can be put into the Matlab code
for plotting. The data file is first imported into the workspace using the import
tool. In the import tool, the data from the text file is recognized as a column
since each data point is delimited by a space. Each column represents sensors 1
through 8 and can be renamed and imported into the workspace as single column
arrays. Interestingly enough, the Arduino requires an array that must be converted
to strings for the SD card which once again must be transformed into arrays in
Matlab. Once the data has been imported, a script can be opened. In the script,
there are commands for three separate plots; a calibration plot, a plot of the data
while the horse and rider stood still and a plot of the data while the horse and
rider were in motion.

To make the separate plots, the average of the imported data was calculated.
This is to get an overall reading and balance out any outlying high or low data
points. For the plots of the horse and rider standing still and in motion, the
calibration averages were subtracted from the readings in order to ignore thhis

6



force. Then, arrays for x and y values are created in order to set the location of
the plot points. Then an array for the color values is created to set the color values
of the data points. The maximum and minimum values of color are also set up
along with the size and scale of the color scale. A for loop is then implimented
in order to systematically assign color values to each data point. The results are
plotted as a color value at the set location of the x adn y arrays. A copy of the
Matlab code can be seen in the appendix of this document.

3 Results and Analysis

3.1 Calibration

The first plot created by the Matlab script is a calibration plot. The data for this
plot was taken while the saddle was on the horse while standing still with no rider.
This data should not be taken into consideration when analyzing the effects of
riding the horse on the performance and fit of the saddle. This pressure is from
the saddle being secured on the horse and does not affect saddle fit. The plot is
oriented as a bird’s eye view of the saddle; the top right point corresponds to the
sensor near the shoulder on the right side and the lower left point corresponds
to the sensor at the rear of the saddle of the left side. In order to generate this
plot, the average of each sensor value was determined. This is to account for the
baseline pressure the saddle exerts while cinched up. Upon examining the data,
the mean values of the sensors on the right side were close to those on the left.
This shows the Piezo disks are uniformly accurate and that the saddle is sitting
squarely on the horse. The plot also showed higher values at the front and in the
rear for sensors 1, 3,4, 5, 7 and 8. Sensors 2 and 6 are located just behind the
shoulder. These values are lower than the others becuase the saddle is intentionally
fit loosely in this area so that the scapula is allowed to move freely. The calibration
plot can be seen in figure 8. A table of the average values can be seen below.

7



Sensor Number Sensor Value (mV)

1 212
2 146
3 202
4 213
5 236
6 126
7 193
8 201

3.2 Results

After the sensor system was calibrated to ignore the base force from the saddle
being tightly secured, a plot was created to represent the data collected while the
rider sat in the saddle and stood still. Again, this plot is shown as a bird’s eye
view of the saddle while on the horse’s back. These values were calculated by
subtracting the calibration values with no rider from the average of each sensor
values when the horse and rider stood still. Here, we can see that the average
pressure values are higher with the additional weight of the rider. Once again we
see also see a decrease in force for the sensors 2 and 6 located just behind the
horse’s shoulder. This shows that even with the addition of the rider also sitting
just behind the shoulder, the sensor value is still low and the horse’s shoulder is
still free from pinching or interference of movement. Sensor 6 has a much lower
value than sensor 2, indicating a tighter fit on the right. This is also consistent
with the horse’s muscle structure- his right back muscle is more developed than
the left. It is possible that the saddle may need to be readjusted to fit looser on
the right, especially if the horse develops more muscle tone along the back muscles.
The plot of the data collected while the horse was not in motion can be seen in
figure 9. A table of the calibrated sensor readings can be seen below.

8



Sensor Number Sensor Value (mV)

1 391
2 195
3 367
4 356
5 269
6 80
7 295
8 225

After examining the behavior of the saddle while horse and rider were standing,
data was taken while the horse and rider were in motion. A plot of this data was
created by subtracting the calibration values from the average values of the motion
readings. As expected with a well-fitting saddle, the pressures evened out for all
eight sensors during exercise. The slight variations in the force values also follow
logic in that the rider does not distribute their weight ovenly across the entire
sufrace of the saddle. An experienced rider sits lighter on the back edge of the
sitting surface (location of sensors 3, 4, 7 and 8) while in motion than standing
still. Also, sensors 1 and 8, located low on the horses shoulder, experienced a drop
in force reading which is to be expected since the knees should only mildly touch
the saddle while in motion. Sensors 2 and 6, the area behind the shoulder, should
increase since the inner thigh is used strongly to control, direct and balance the
horse which accounts for the increased readings in this area. A plot of the average
values of the data collected while the horse was in motion can be seen in figure 10.
A table of the average values recorded while the horse was in motion can be seen
below.

Sensor Number Sensor Value (mV)

1 250
2 230
3 240
4 235
5 245
6 238
7 245
8 234

9



4 Conclusion

In English riding, proper saddle fit is vital to the comfort and performance of the
horse and rider. Conventionally, saddles are fit using innacurate visual tests and
dust or sweat patterns left on the horse’s skin after exercise. In order to create
a more accurate and dynamic saddle fitting tool, I have created a pressure sensor
system and mapping routine. After attempting to use a variable force resistor,
a more accurate and intuitive measure, the physical limitations of the sensors
required a different approach. In order to compensate for these limitations, Piezo
disks were used instead to record the differences in voltage when pressure was
applied to the disks. It was almost astonishing how well the Piezo disks worked
and how logical the data is.

In order to create the sensor system, a 4051 multiplexer and Piezo disks were
configured and connected to an Arduino Uno microprocessor. The information
collected from the sensor was then read by the Arduino and stored onto an SD
card. The SD card data was then interpereted by a Matlab script and plots of the
data were created. The data points were set in the location of the corresponding
sensor and a color value was assigned to the data point.

After careful calibration, the data showed patterns that reflected the expecta-
tions of the system. The data also showed that the horse and rider combination
have a proper fitting saddle and that the rider appropriately uses their body while
the horse is in motion. In order to further develop this system, more calibration is
necessary to determine the exact force applied to each area as well as a pad that
allows the sensors to be easily rearranged. The exact location of the sensors can
also be determined with more calibration and measurement. Though there can be
a lot of improvement to the system to make it more reliable and easier to use, the
current configuration shows accurate readings that are easily repeated.

10



Figure 1: View of the Pad with Sensors

Figure 2: Side View of the Sensor System

11



Figure 3: Rear View of Sensor System

Picture.jpg

Figure 4: Circuit Layout

12



Figure 5: Fritzing Circuit Diagram for Saddle Sensor System

13



Figure 6: Counting Logic for Select Pins A, B, C (S0,S1,S2)

Figure 7: 4051 Pin Configuration

14



Plot.jpg

Figure 8: Calibration Plot of Saddle Sensor

15



While Still.jpg

Figure 9: Plot of Saddle Sensor with Horse and Rider Standing Still

16



In Motion.jpg

Figure 10: Plot of Saddle Sensor with Horse and Rider in Motion

Appendix

A Arduino Sketch

/*
Code for Saddle Force Sensor by Molly Totten
/
#include <SPI.h> //initialize for SD card
#include <SD.h> //initialize for SD card
const int chipSelect = 4; //for initializing SD card, set CS default pin

17



int mysensorvalue[8]=0,0,0,0,0,0,0,0; //sets up an array for the data to go on SD
card
int r0 = 0; // set select pin value, s0, for 4051 set up
int r1 = 0; // set select pin value, S1, for 4051 set up
int r2 = 0; // set select pin value, S2, for 4051 set up
int count = 0; // set up count to select analog input pins y0 through y7
int sensorPin = A0; // select the common analog input pin for the Piezo disk
int PiezoValue = 0; // variable to store the value coming from the sensor

void setup(){
pinMode(2, OUTPUT); // set S0 to be a digital output (digital pins 0,1 not used)
pinMode(3, OUTPUT); // set S1 to be a digital output (digital pins 0,1 not used)
pinMode(4, OUTPUT); // set S2 to be a digital output (digital pins 0,1 not used)
pinMode(10, OUTPUT); //set default chipSelect pin to output mode. Here, hard-
ware SS pin is 10 by default
Serial.begin(9600); //open serial communications for SD card
Serial.print(”Initializing SD card...”); //print SD initialization
// see if the card is present and can be initialized:
if (!SD.begin(chipSelect)) {
Serial.println(”Card failed, or not present”); //stop reading if no SD card present
return;
}
Serial.println(”card initialized.”); //confirm that card has initialized and opened
}

void loop () {
String dataString= ” ”;
for (count=0; count¡=7; count++) { //use counting logic to select digital pins
S0,S1,S2
r0 = bitRead(count,0); // read bit S0 (read 1st number from count, get value of
S0)
r1 = bitRead(count,1); // read bit S1 (read 2nd number from count, get value of
S1)
r2 = bitRead(count,2); // read bit S2 (read 3rd number from count, get value of
S2)
digitalWrite(2, r0); //set S0 to the value of r0
digitalWrite(3, r1); //set S1 to the value of r1
digitalWrite(4, r2); //set S2 to the value of r2

18



PiezoValue = analogRead(sensorPin); //read the analog value of the Piezo disk
mysensorvalue[count]=PiezoValue; //use values of each PiezoValue in count for
the array mysensorvalue
dataString += String(PiezoValue); //convert data string from array to string
dataString += ” ”; //add space in string
Serial.print(count); //print ”count”
Serial.print(” ”); //add space
Serial.println(PiezoValue); //print ”PiezoValue”
}
File dataFile = SD.open(”datalog.txt”, FILE WRITE); //open the SD file
if (dataFile) { //put the datafile strings onto the SD card file
dataFile.println(dataString); //put the datafile strings onto the SD card file
dataFile.close(); //close ater putting onto SD card
Serial.println(dataString); //print to serial port
}
else {
Serial.println(”error opening datalog.txt”); //print error message if datalog not
available
}
delay(500); //add a delay to decrease data collection rate
}

B Matlab Script

%First, the data must be imported into the workspace via the import tool.
%The data is extracted from the text file created by the SD card. The data
%values are recorded as separate columns in the text file and import as
%nx1 arrays where n is the number of data points.
%Each sensor value column was renamed according to their wiring order and
%their data type (ex. Sensor1Rest)

Rest1 = mean(Disk1Rest); %The Rest1-Rest8 variables are averages of the
Rest2 = mean(Disk2Rest); %ensor readings while the saddle sits on the
Rest3 = mean(Disk3Rest); %horse without a rider
Rest4 = mean(Disk4Rest);
Rest5 = mean(Disk5Rest);
Rest6 = mean(Disk6Rest);

19



Rest7 = mean(Disk7Rest);
Rest8 = mean(Disk8Rest);
disp(Rest1); % display the values of the data points in the command window
disp(Rest2);
disp(Rest3);
disp(Rest4);
disp(Rest5);
disp(Rest6);
disp(Rest7);
disp(Rest8);
x = [9,7,8,8,1,3,2,2]; %set up location of points for x and y
y = [8,6,4,1,8,6,4,1];
colorweight = [Rest1,Rest2,Rest3,Rest4,Rest5,Rest6,Rest7,Rest8];
%set color weight values according to the sensor values calculated in
%Restl1-Rest8
zmin=0; %set minimum color value
zmax=max(colorweight); %set maximum color value
map=colormap; %create new varable called map
colorsteps=size(map,1); %set size/scale of the color scale hold on
for i=1:colorsteps %go through color scale
ind=find(colorweight¡zmin+i*(zmax-zmin)/colorsteps & colorweight¿=zmin+(i-1)*(zmax-
zmin)/colorsteps); %assign x and y pairs to the colorweight and colorsteps to assign
and
%scale colors
plot(x(ind),y(ind),’.’,’Color’,map(i,:),’MarkerSize’,40); %plot the data
%adjust plot settings
xlabel(’Location of Sensor Left and Right of Spine, Color Scale Represents Voltage
(mV)’)
ylabel(’Loaction of Sensor Front and Back of Horse’)
title(’Calibration Plot for Saddle Sensor’)
axis([0 10 0 10]);
end

% Plot data taken while horse and rider are still
Still1 = mean(Disk1Still)-Rest1; %The Still1-Still8 variables are calibrated
Still2 = mean(Disk2Still)-Rest2;%values (rest1-rest8) subtracted from
Still3 = mean(Disk3Still)-Rest3;%the averages of the sensor readings
Still4 = mean(Disk4Still)-Rest4; %while the horse and rider were in motion
Still5 = mean(Disk5Still)-Rest5;

20



Still6 = mean(Disk6Still)-Rest6;
Still7 = mean(Disk7Still)-Rest7;
Still8 = mean(Disk8Still)-Rest8;
disp(Still1); %display the values of the data points in the command window
disp(Still2);
disp(Still3);
disp(Still4);
disp(Still5);
disp(Still6);
disp(Still7);
disp(Still8);
x2 = [9,7,8,8,1,3,2,2]; %set up the locations of the plot points for x and y
y2 = [8,6,4,1,8,6,4,1];
colorweight2 = [Still1,Still2,Still3,Still4,Still5,Still6,Still7,Still8];
%set color weight values according to the sensor values calculated in%Still1-Still8
zmin=0; %set minimum color value
zmax=max(colorweight2); %set maximum color value
map=colormap; %reate new varable called map
colorsteps=size(map,1)%set size/scale of the color scale
hold on
for i=1:colorsteps %go through color scale
ind=find(colorweight¡zmin+i*(zmax-zmin)/colorsteps & colorweight¿=zmin+(i-1)*(zmax-
zmin)/colorsteps);
%assign x and y pairs to the coloreight and colorsteps to assign and
%scale colors
plot(x2(ind),y2(ind),’.’,’Color’,map(i,:),’MarkerSize’,40);%plot the data
%adjust plot settings
xlabel(’Location of Sensor Left and Right of Spine, Color Scale Represents Voltage
(mV)’)
ylabel(’Loaction of Sensor Front and Back of Horse’)
title(’Plot of Seddle Sensor with Horse and Rider Standing Still’)
axis([0 10 0 10]);
end

%Plot data taken while horse and rider were in motion
Motion1 = mean(Disk1Motion)-Rest1; %The Motion1-Motion8 variables are cali-
brated
Motion2 = mean(Disk2Motion)-Rest2; %values (rest1-rest8) subtracted from
Motion4 = mean(Disk4Motion)-Rest4; %the averages of the sensor readings

21



Motion5 = mean(Disk5Motion)-Rest5;%while the horse and rider were in motion
Motion6 = mean(Disk6Motion)-Rest6;
Motion7 = mean(Disk7Motion)-Rest7;
Motion8 = mean(Disk8Motion)-Rest8;
disp(Motion1); %display the values of the data points in the command window
disp(Motion2);
disp(Motion3);
disp(Motion4);
disp(Motion5);
disp(Motion6);
disp(Motion7);
disp(Motion8);
x3 = [9,7,8,8,1,3,2,2]; %set up the locations of the plot points for x and y
y3 = [8,6,4,1,8,6,4,1];
colorweight3 = [Motion1,Motion2,Motion3,Motion4,Motion5,Motion6,Motion7,Motion8];
%set color weight values according to the sensor values calculated in
%Motion1-Motion8
zmin=0; %set minimum color value
zmax=max(colorweight3); %set maximum color value
map=colormap; %create new varable called map
colorsteps=size(map,1); %set size/scale of the color scale
hold on
for i=1:colorsteps %go through color scale
%assign x and y pairs to the coloreight and colorsteps to assign and
%scale colors
ind=find(colorweight3¡zmin+i*(zmax-zmin)/colorsteps & colorweight3¿=zmin+(i-
1)*(zmax-zmin)/colorsteps);
plot(x3(ind),y3(ind),’.’,’Color’,map(i,:),’MarkerSize’,40); %plot the data
%adjust plot settings
xlabel(’Location of Sensor Left and Right of Spine, Color Scale Represents Voltage
(mV)’)
ylabel(’Loaction of Sensor Front and Back of Horse’)
title(’Plot of Seddle Sensor with Horse and Rider in Motion’)
axis([0 10 0 10]);
end

22



References

[1] Dennis L. Eggleston. TBasic Electronics. Cambridge Press, Cambridge, United
Kingdom, 1953.

[2] Carl Nave. Piezoelectricity., 2005
http://hyperphysics.phy-astr.gsu.edu/hbase/solids/piezo.html

23


