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Abstract

Liquid crystals is a class of materials possessing properties from both
solids and fluids. Similar to solids the molecules arrange themselves in
some sort of order. In the liquid crystal state there are multiple phases,
smectic being one of them. In a smectic liquid crystal the molecules are
aranged (along z) in layers. Of the smectic liquid crystals there exists
different phases. In the smectic-A (Sm-A) phase the avarage tilt is 0
relative to z and in the Smectic-C (Sm-A) phase the avarage tilt is non-
zero relative to z. Normally the liquid crystal will transition between the
two phases by altering the temperature. In chiral smectics (i.e. Sm-A*,
Sm-C*) it is possible to induce director tilting (i.e. the Sm-C* phase) from
the Sm-A* phase via the application of an electric field. This is known as
the bulk electroclinic effect (BECE). Also possible to have high-tilt - low-
tilt Sm-C* transition, analogous to liquid-gas transition. Like liquid-gas
transition, there is a critical point. We investigate possibility of high-tilt
- low-tilt phase boundary with two critical points, one at each end of the
boundary.
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1 Liquid Crystals: A brief overview

The phases of matter familiar to most people are gas, liquid, and solid. However,
more than these three phases of matter exists. Liquid crystal are an interme-
diate phase present in certain material between the liquid and solid phase. To
understand why liquid crystal is classified as a different phase we need to first
look at the differences between liquids and solids. For a solid the position and
orientation of the molecules are essentially fixed. In a liquid, the molecules are
both free to move about and orient in any direction. A liquid crystal possess
some properties of a solid while still remaining in a state very similar to that of
a liquid. The molecules have a weak or no positional order and are free to move
about like a liquid but they possess a prefered orientational direction. The pref-
ered orientational direction in a liquid crystal is due to their elongated molecular
structure. This structure causes the molecules to on avarage be oriented along
their long axis in the same direction. This direction can be described using a
unit vector called the director n̂.

Figure 1: Liquid crystals are an intermediate phase of matter between a solid and
liquid.

There are many different types of liquid crystals. The type we will analyze in
this paper are thermotropic liquid crystals, which occur in specific temperature
ranges. When the molecules display an orientational but no positional order
the phase is called the nematic phase. This phase is usually found at high
temperatures. As the temperature is decreased a positional order arises as seen
in Fig 1. The molecules tend to be more likely to position themself in different
layers. This is the smectic class of phases and two of these smectic phases
(Smectic-A and Smectic-C) will be studied in detail over the course of this
paper.
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2 Smectic-A to Smectic-C Transition

Figure 2: The differences between Sm-A phase and Sm-C phase are shown. On the
far right, there is a geometrical interpretation of the order parameter vector c.

As seen in Fig. 2 the director n̂ of the liquid crystal in Smectic-A phase
(Sm-A) is at a tilt of zero with respect to the smectic plane vector ẑ (i.e, θ = 0)
and the director of the Smectic-C (Sm-C) is at a tilt of non-zero with respect to
ẑ (θ 6= 0). This figure also demonstrate an orderparameter ~c (c = sin(θ)) which
is the projection of n̂ onto the layer. Where c 6= 0 or θ 6= 0 characterizes the
Sm-C transition. In this analysis only the magnitude of the vector is accounted
for. Energetically, only the magnitude of the tilt matters and not the direction.
This is why the free energy equation is in even powers of θ. We model the
smectic liquid crystal system using the Landau Free Energy Equation:

F =

∫
dxdydz[

1

2
r(T )θ2 +

1

4
uθ4 +

1

6
vθ6] = V f(θ) (1)

where V is the volume of the system and f(θ) is used to model the free energy
density of liquid crystal molecules in the absence of an electric field and is the
following:

f(θ) =
1

2
r(T )θ2 +

1

4
uθ4 +

1

6
vθ6 (2)

• u is the quartic coefficient that will decide the nature of the transition
between Sm-A and Sm-C phase that will occur. For u < 0 we will see the
first order transition, for u = 0 the tricritical transition is exhibited and
for u > 0 a continuous transition will occur.

• r(T ) is a function of temperature and will affect the positional order of
the molecules in the liquid crystal. The function is of the form:

r(T ) = α(T − TAC) (3)
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TAC is the temperature where the transition between Sm-A and Sm-C
occurs.

• f(θ) = 1
2r(T )θ2 + 1

4uθ
4 + 1

6vθ
6 is the free energy density of the system

with v ≥ 0, in order to maintain stability, i.e., to have a finite θ value.

• V is the volume of the system

2.1 Fixed points of the free energy function

The system will be the most stable in a low energy state. Therefore the prefered
tilt of the molecules will be in local minimas of f(θ). To determine these stable
points we will consider the following function:

θ̇ = −df(θ)

dθ
= −(rθ ± uθ3 + vθ5) (4)

where the + corresponds to a value of u > 0 and the − corresponds to a value
of u < 0.

2.1.1 Continuous transition: u ≥ 0

For a continuous transition the θ6 term is unnecessary for stabilization. so we
will use v = 0 here to simplify the equation. By choosing θ̇ = 0 we can solve for
the stable points θ∗:

θ̇ = 0 = −df(θ)

dθ
= −rθ∗ − uθ3∗ (5)

θ∗ = 0, θ∗ = ±
√
− r
u

Figure 3: When T is reduced below TAC (r = 0) the crystal continuously
transitions into the Sm-C phase.
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For any value of r a fixed point will exist on θ∗ = 0 but it is only stable
for r > 0. The two points θ∗ = ±

√
− r
u are only real when r < 0 but they are

always stable in that region. The progession of the stable points can be seen
in Fig. 3. Whether or not a fixed point is stable depends on if the point is a
local minima in the energy function. This can be determined by looking at the
graphs in Fig. 4. This can be further seen in Fig. 5 where θ̇ is plotted against
θ. For r > 0 the θ̇-axis is only crossed once with a negative slope, meaning that
the point is a stable fixed point. For r < 0 the θ̇-axis is crossed three times,
but here the origin is crossed with a positive slope so the point is unstable. The
other two points are clearly stable as the slope is negative.

Figure 4: The free energy f(θ) plotted against θ for postitive and negative r. The
values: u = 1 and r = ±1 were used.
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Figure 5: θ̇ plotted against θ for postitive and negative r. The values: u = 1 and
r = ±1 were used.

For u > 0 the phase transition is continuous. Recall that r(T ) = α(T−TAC).
From this it follows that r > 0 when the temperature T is: T > TAC . The only
stable value for f(θ) is when θ = 0, the tilt is 0 and the liquid crystal is in the
Sm-A phase. Now imagine we slowly reduce the temperature. At a certain point
a tilt of the molecules will be energetically more favorable and a transition from
Sm-A to Sm-C phase occurs. This threshhold is exactly at: r(T ) = 0, which is
at the temperature: T = TAC

2.1.2 First order transition u < 0

This case is more complicated than the previous one. A change in r(t) will
result in a much more dramatic effect on the tilt of the molecule. We can also
no longer ignore the θ6 term and we can’t use v = 0, instead v > 0. θ̇ now
becomes:

θ̇ = −(rθ − uθ3 + vθ5) (6)

Solving for θ∗ again yields us:

θ∗ = 0, θ∗ = ±

√
|u| ±

√
u2 − 4rv

2v
(7)

This result shows us five possible fixed points values of θ∗. However, depend-
ing on the value of r certain points will appear and dissapear in addition to
changing their stability. A closer look of a few different values of r will give us
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a better understanding on how the fixed points of the energy function changes
depending on r. Each case is shown graphically in Fig. 6.

r ≤ 0

In this range we have 3 solutions: θ∗ = 0, θ∗ = ±
√
|u|+
√
u2−4rv
2v .

The free energy plots (Fig. 6) reveals the stability for each fixed point in
this case. The two non-zero points intercepts the θ̇-axis with a negative slope,
which as stated before corresponds to a local minimum. Here the two minimas
are identical, meaning the molecules are equally likely to tilt in either direction.
Neither tilt is prefered. When r = 0 we get fixed points at: θ∗ = 0, θ∗ = ±

√
u
v .

Similar for when r < 0 the fixed point at the origin is unstable while the non
zero points are stable. We can see that the maxima in the origin is starting
to flatten out. We will see an additional two fixed points forming close to the
origin as r increases.

0 < r < 3u2

16v

The fixed points are: θ∗ = 0, θ∗ = ±
√
|u|±
√
u2−4rv
2v for a total of 5 fixed points.

By analyzing the free energy plots we notice that the line intercepts the θ̇-axis
with a negative slope. The fixed point at the origin is stable. However, the two
non-zero minimas are more favorable and the system is at the preferred Sm-C
phase. We say preferred because the solution θ∗ = 0 is a stable solution. While
the system is stable with no tilt, the system like any other will exhibit behavior
that uses the least energy. Thus the non-zero solutions are preferred. If the
system is found to have no tilt, that is its in the Sm-A phase the system is
locally stable but more possible states exists. We call this kind of state a meta-
stable state. The reason why the system is even able to be in Sm-A phase for
this temperature range is because of the energy humps that exists between the
zero and non-zero tilt states (this can be seen in Fig. 6). This hump acts like an
energy barrier that needs to be surmounted in order for the transition to happen.
This behavior is analogous to the super cooling of water. Super cooling is the
process of cooling water below its freezing point without the liquid becoming a
solid. The water is in a meta stable state. By adding a bit of energy to allow
the water to overcome the energy barrier and the transition can happen. This
can be done by tapping the container that holds the water or slightly stiring
it. When the transition do happen it spreads out across the system so even if a
small part of the crystal recieves the “energy boost” the transition is likely to
spread across the entire system.

r = rT = 3u2

16v The solutions in this case are nearly identical to the previous
case. What’s different here is that all three minimas are equally likely to occur.
At exactly this temperature neither Sm-A or Sm-C are preferred. This value of
r is the threshold where the preferred state of the system changes. This is an
important threshold. We denote this specific value of r: rT .
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3u2

16v < r < u2

4v
The solutions in this case remains the same, but the behavior is similar to the
0 < r < rT case. The system can be in a meta-stable. But at this range Sm-A
is the more preferred state since the non-zero solutions now has a higher energy
level compared to the Sm-A state. This is analogous to the super heating of
water, very similar to the super cooling of water described earlier, but instead of
cooling it below freezing, the water is now raised above its boiling temperature.

r ≥ u2

4v = ru

At r = u2

4v we reach a second threshold. We have three fixed points at:

θ∗ = 0, θ∗ = ±
√

u
2v instead of the five we had previously. The phase portrait

tells us that the two non-zero solutions never intercepts the θ̇-axis fully and are
therefore only semi-stable fixed points with only the solution at the origin that
is stable. This is an important threshold. We denote this specific value of r: ru.
For r > ru we only have one solution: θ∗ = 0. This is now the systems only
fixed and stable point. This tells us that values of r in this range can’t be in
any other state than the Sm-A phase.

Figure 6: f(θ) plotted against θ for different values on r with it’s corresponding
stability plot under it. A negative slope when crossing the θ axis tells us that the
specific fixed point is stable.

It is clear that the first order transition is more complicated than the con-
tinuous one. This is because the transition experiences a subcritical pitchform
bifurcation. To get a better understanding of the transtion we can look at Fig.
7. implying that in regions where multiple stable solutions coexist, there is the
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r ≤ 0 3 possible fixed points. θ∗ = ±
√
|u|+
√
u2−4rv
2v and θ∗ = 0

0 < r < u2

4v 5 possible fixed points. θ∗ = ±
√
|u|±
√
u2−4rv
2v and θ∗ = 0

r = u2

4v 3 possible fixed points. θ∗ = ±
√
|u|
2v and θ∗ = 0

r > u2

4v 1 possible fixed point. θ∗ = 0

Table 1: Locations where the number of fixed points changes

possibility for hysteresis, or jumps, as the temperature parameter r is lowered.
Consequently this means that the transition from Sm-A phase to Sm-C phase
will be dramatic and not smooth like the continuous transition. There’s a spe-
cific transition temperature, TAC , where if T > TAC the sytem will always be
in the Sm-A phase, but if T < TAC it can either be in the Sm-A phase or the
Sm-C phase. The bifurcation diagram below demonstrates this.

Figure 7: This diagram demonstrates how the number of solutions and their location
changes depending on r. u = −1 and v = 1 were used here.

We can see in Fig. 7 that there’s a transition temperature TAC , where if
T > TAC the system is in the Sm-A phase, but if T < TAC the system can be in
either the Sm-A phase or the Sm-C phase. Another important thing to notice
is that the critical temperature Tc (r = 0) lies below the transition temperature
TAC . This demonstrates that it is possible in a first order transition to be below
the transition temperature but still exhibit the Sm-A phase.
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Figure 8: A 1-dimensional phase diagram of the transition.

The diagram above shows us a 1-dimensional phase diagram of the tran-
sition. It shows us that there’s a region where both phases are possible with

a threshhold value rT = 3|u|2
16v where if r > rT Sm-A is more favorable and if

r < rT Sm-C is more favorable.

Throughout the previous section, we have seen that smectic liquid crystals
will undergo a phase transition from an average tilt of zero, to a nonzero tilt
throughout. This happens by lowering the temperature of the system to some
value of Tc. In a continuous phase transition, we see a supercritical pitchfork
bifurcation at this critical point. The tilt of the molecules gradually increases
as we lower temperature past this point. In a first order transition, we see the
potential for hysteresis and a spontaneous jump in the tilting of the molecules
near Tc, as is characteristic of a subcritical pitchfork bifurcation. In the next
section, we will see how the application of an electric field can induce similar
tilting behaviors in a liquid crystal cell while temperature is held constant. We
will do this in a more quantitative way, whereas this section was meant to
introduce the basic mathematical behavior of these phase transitions.

3 Induced tilt with an electric field

When an external electric field is applied to a chiral liquid crystal a tilt is
induced. This is because chiral liquid crystals are ferroelectric. We denote
the ferroelectric liquid crystals with a *, so ferroelectric Sm-A = Sm-A* and
ferroelectric Sm-C = Sm-C*. This means that if we have a smectic liquid crystal
in the Sm-A* phase we can use an electric field to induce a tilt and thus changing
it’s phase to Sm-C* without changing the temperature.
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Figure 9: Applying an electric field E the liquid crystal transitions from Sm-A* to
Sm-C* while the temperature remains above TAC .

We expand the Landau Free Energy equation to include the external electric
field, ~E:

f(θ) =
1

2
r(T )θ2 +

1

4
uθ4 +

1

6
vθ6 − Eθ (8)

Through minimization of the energy equation with respect to θ we can solve
for E and get:

E(θ) = r(T )θ + uθ3 + vθ5 (9)

3.1 Continuous transition, u > 0

Figure 10: The free energy plotet against θ with the an electric field applied to the
crystal causing a tilt. r ± 1, u = 1, v = 1 and E = 1

For the continuous transition we will only ever have one stable solution if an
external electric field is applied. The continuous transition is therefore of little
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interest to us for our analysis. A much more interesting development of the
transition happens with u < 0.

3.2 First order transition, u < 0

Just like the previous section the first order transition is more interesting and
complex than the continuous one. We begin with studying the θ vs E(θ) graph
given by Eq. 9:

Figure 11: An ’S’-shape is clearly visible. r = 0.3, u = −1, v = 1. The value of r was
choosen so it was within the multivalued region of Fig. 7.

In Fig. 11 we can see that for certain magnitudes of the electromagnetic field
we have two possible solutions for θ. The ‘S’-shape will only appear if r(T ) lies
within the multivalued region seen in Fig. 7. This specific region is important
to us because of the implications that comes with the ‘S’-shape. It follows that
there’s at least two possible stable angles the molecules can be in and we will
have a possible phase transition. In Fig. 12 I’ve plotted the free energy with
an electric field of 0.05. I chose this value because it lies within the ‘S’-shape of
Fig. 11.
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Figure 12: Because E lies withing the ‘S’-region we have two stable solutions. r(T ) =
0.3, E = 0.05.

θ(E) is only multivalued in a special region of r and E To explore this we
begin with minimizing E(θ) with respect to θ and looking at the numbers of
solutions depending on r.

dE(θ)

dθ
= r + 3uθ2 + 5vθ4 = 0 (10)

θ∗ = ± 1

10

√
10v(−3u±

√
−20rv + 9u2)

v
(11)

It’s when we have 4 possible solutions for θ∗ that we get the ‘S’-shape. This is
only true when the following requirements are met:

• u < 0, first order transition is required.

• r(T ) < rc = 9u2

20v , second rootsign must remain real

With this we can find EUpper(θ) and ELower(θ) by inserting the Eq. 11 into the
E(θ), Eq. 9. This shows us the region of r where two stable solutions will be
available. This is shown in fig. 13.

EL(r) = (

√
− 3u

10v
−
√

9

100
(
u

v
)2 − r

5v
)(−2

5
u

√
9

100
(
u

v
)2 − r

5v
+

4

5
r− 3u2

25v
) (12)

EU (r) = (

√
− 3u

10v
+

√
9

100
(
u

v
)2 − r

5v
)(+

2

5
u

√
9

100
(
u

v
)2 − r

5v
+

4

5
r− 3u2

25v
) (13)
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Figure 13: If r(T ) falls within the region between the red and blue line two stable
solution will be available. rT is the transition temperature for a system without an
eletric field and rc is the critical point of the system. u = −1, v = 1.

For a system without an electric field we know that the transition is at

r = rT = 3u2

16v . But as soon as we apply an electric field the temperature for the
transition changes. It is important for our analysis to know the required electric
field for each value of r(T ) where the transition happen. An important note
to make is that as soon as we add an electric field the system can never truly
exist in the Sm-C* phase as a tilt will always be induced. Instead we will call
it the low tilt Sm-C* phase (Sm-C∗LT ) and the previous Sm-C* phase will be
called high tilt Sm-C* phase (Sm-C∗HT ). While we can’t find this transition line
analytically we can find it numerically using MATLAB. We do this by starting

at r(T ) = rT = 3u2

16v and slowly increase E until the two stable points are equally
energetically favorable. For the starting case the electric field is as mentioned
earlier 0. But as we increase r(T ) the required electric field also increases. If
we look at at Fig. 12 we can see two stable points. But the first one is more
energetically favorable than the second. However, if we increase the strenght
of the electric field the second stable point will eventually become energetically
favorable instead, this is when the transition occurs. We will keep repeating this
process, slowly tracing out the transition line. Eventually r(T ) reaches a value

above the blue line ru = u2

4v if E = 0. At this location the second stable point
cease to exist and only the low tilt Sm-C* phase is available. But if we increase
the electric field it will reapear once we cross the blue line. When we finally

reach r(T ) = rc = 9u2

20 we have reached the critical point of the system and we
can’t continue further since there’s no longer a clear transition happening. The
zero-field Sm-A* - Sm-C* phase transition corresponds to moving up/down on

the vertical (i.e., r) axis. The 1st order transition occurs at r = 3u2

16vm i.e., where
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the transition line intersects the vertical axis. Moving around the critical point
is analogous to moving around the liquid-gas critical point. There won’t be a
clear transition between the Sm-C∗LT phase and Sm-C∗HT phase just as there’s
no clear difference between the liquid and the gas as they are both fluids and
symmetrically similar. We call the traced out line ET and it can be seen in Fig.
14.

Figure 14: Choosing a location inside EU and EL is analogous to the ’S’-region seen
in Fig. 11. u = −1, v = 1.

Fig. 14 is from a MATLAB program included in the appendix. It will allow
you to explore interactively by choosing a value of E and r(T ) by clicking the
graph which the program then uses to plot the energy density function. Playing
around with it will help you understand how the stable points changes depending
on whether we are outside or inside the red and blue line. It also shows how the
negative electric field affects the system by crossing over to the positive side.

4 Including the effects of polarization

So far we have used a very simplified model. A more complete model of the
energy density function contains a polarization variable ‘p’.

f(θ, p) =
1

2
rθθ

2+
1

4
uθθ

4+
1

6
vθθ

6+
1

2
rpp

2+
1

4
upp

4+
1

6
vpp

6−Ep−ep2θ2−γθp (14)

Out initial goal here is to transform the function to something similar to
what we’ve been working with in the previous sections. To do this we will
minimize the function by differentiating with respect to θ and then setting it
equal to 0. This allows us to solve for pmin in terms of θ.
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df(θ, pmin)

dθ
= rθθ + uθθ

3 + vθθ
5 − 2ep2minθ − γpmin = 0 (15)

pmin =
−γ +

√
8eθ6vθ + 8eθ4uθ + 8eθ2rθ + γ2

4eθ
(16)

Our next step is to solve for the electric field E. We can do this by differentiating
the energy density with respect to p and then minimizing it.

df(θ, p)

dp
= rpp+ upp

3 + vpp
5 − E − 2epθ2 − γθ = 0 (17)

E = rpp+ upp
3 + vpp

5 − 2epθ2 − γθ = 0 (18)

Inserting pmin (Eq. 14) into Eq. 16 followed by expanding it with respect to θ
to the fifth power we get the following expression:

E =(
rprθ − γ2

γ
)θ+

(
upr

3
θ + rpuθγ

2 − 2erθγ
2 − 2rper

2
θ − 2erθγ

2

γ3
)θ3+

(
vpr

5
θ − 2euθγ

4 + 4e2r2θγ
2 + 3upr

2
θuθγ

2 − 6upr
4
θe+ rpvθγ

4 − 4rperθuθγ
2 + 8rpe

2r3θ
γ5

)θ5+

O(θ7)

(19)

The last step to make it similar to Eq. 9 is to replace the parameters before
each θ with new parameters, ‘a, b, c’.

E(a, b, c) = aθ + bθ3 + cθ5 (20)

With a, b, c defined as:

a =
rprθ − γ2

γ

b =
upr

3
θ + rpuθγ

2 − 2erθγ
2 − 2rper

2
θ − 2erθγ

2

γ3

c =
vpr

5
θ − 2euθγ

4 + 4e2r2θγ
2 + 3upr

2
θuθγ

2 − 6upr
4
θe+ rpvθγ

4 − 4rperθuθγ
2 + 8rpe

2r3θ
γ5

(21)

Our energy function now has the exact same form as the previous more
simpler model. But unlike the previous one all three parameters depend on
the temperetaure coefficient rθ. This proves to be very important as it may
mean the θ vs E can start with no ‘S’-shape, that is no possible coexistence and
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no Sm-C∗LT -Sm-C∗HT transition as E is varied. But as the temperature lowers
an ‘S’-shape might appear which means the crystal is in it’s Sm-C∗HT phase
(the ‘S’-shape can be seen in Fig. 11). Followed by the crystal reverting back
to it’s Sm-A* shape and the ‘S’-shape vanishing. A behaviour that would be
impossible with our previous more simpler model which can be seen in Fig. 13.
Fig. 15 below is what this new model’s a vs E(θ∗) graph could look like which
is analogous to what’s seen in Fig. 13. Note that the transition line no longer
intersects the vertical axis. This means that the zero-field transition would be
continuous.

Figure 15: Mockup of how we imagine the ET line to look like with polarization
added to our model.

What is different here compared to what we found with our previous model
is two critical points instead of one. This is a consequence of adding polarization
to the model. Our next and final step in our anaysis is to find a numerical value
of the parameters to prove that this phenomenon is possible.

5 Sm-A* to Sm-C* transition.

By expressing rθ in terms of a we can effectively eliminate rθ from our expres-
sions. We now have a as the temperature coefficient which will change the
current state of the crystal similar to how we varied r(T ) earlier.

rθ =
γ(γ + a)

rp
(22)

By inserting this in to b and c we get the following two expressions:
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B(a) = b0 + b1a+ b2a
2 + b3a

3

C(a) = c0 + c1a+ c2a
2 + c3a

3 + c4a
4 + c5a

5
(23)

With the coefficients in front of the powers of a being:

b0 =
γ2r4puθ + γ6up − 4eγ4r2p

γ3r3p

b1 =
3γ5up − 6eγ3r2p

γ3r3p

b2 =
3γ4up − 2eγ2r2p

γ3r3p

b3 =
up
r3p

c0 =
6eγ4uθr

5
p − 12e2γ6r3p + 6eγ8uprp − γ4r6pvθ − 3γ6uθupr

3
p − γ10vp

γ5r5p

c1 =
eγ3uθr

5
p − 32e2γ5r3p + 24eγ7uprp − 6γ5uθupr

3
p − 5γ9vp

γ5r5p

c2 =
36eγ6uprp − 28e2γ4r3p − 3γ4uθupr

3
p − 10γ8vp

γ5r5p

c3 =
24eγ5uprp − 8e2γ3r3p − 10γ7vp

γ5r5p

c4 =
6eγ4uprp − 5γ6vp

γ5r5p

c5 −
vp
r5p

(24)

5.1 Requirements

We now have everything we need for our analysis. For the transition to be pos-
sible we need to fullfil a set of requirements. All the requirements has already
been mentioned in section 2 and 3 but we will go through them again with our
new updated model.

In order for the crystal to experience a first order transition we showed that
u must be less than 0. Translating this to our current model we get the follow-
ing requirement:

B(a) < 0 (25)

In addition to this, we want it to be at a positive value at a = 0 this is because
we need the crystal to experience a continuous transition at E = 0 which can
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only happen if B(0) > 0 (analogous to u > 0). But with our current model it is
possible for B(a) to vary between a positive and negative value. What we are
looking for is a region where B(a) is less than zero.

In order for our energy function to be stable C(a) must be positive. This is
because for high θs the 1

6C(a)θ6 term will dominate. If C(a) is negative at
any point the potential will approach negative infinity which we must avoid.
Therefore we obtain our second requirement:

C(a) > 0 (26)

Our fourth and final requirement are obtained from Eq. 11, the fixed points for
θ. Which in our current model looks like:

θ∗ = ± 1

10

√
10C(a)(−3B(a)±

√
−20aC(a) + 9B(a)2)

v
(27)

In order for a second stable point to exist it is crucial that all five fixed
points are real. We are therefore met with the following requirement:

R(a) = B(a)2 − 20

9
aC(a) > 0 (28)

Defining the restricted function as R(a).

In order for the ‘S’-shape to appear in the E vs θ graph the following require-
ments must be met:

1. B(0) > 0 To get a continuous transtion at E = 0.

2. B(a) < 0 This allows the crystal to experience a first order transition.

3. C(a) > 0 Necessary for the system to be stable.

4. R(a) > 0 Necessary for the 2-phase coexistence and possibility of Sm-C∗LT
- Sm-C∗HT transition. Must be true in a common region with the second
requirement.

5.2 Finding a numerical solution

Ideally we would try to find an analytical solution to our problem. But it’s
not possible for this case. However, we can find a numerical solution thus
proving it is possible. We do this by first simplifying the function using already
known restriction. These restriction are directly derived from our requirements
explained above.

• B(0) = b0 > 0

21



• c0 > 0

• c5 > 0 This and the previous restriction is true because of the third
requirement.

We can take advantage of this by expressing the other coefficients in terms of
b0, c0 and c5. As it turns out solving for b3 and expressing the other coefficients in
terms of it will make it easier to work with, even if we have no actual restriction
on b3. I chose to replace uθ with b0, up with b3, vθ with c0 and vp with c5 After
inserting everything into Eq. 22. we get:

b0 = b0

b1 = 3γ2b3 −
6e

rp

b2 = 3γb3 −
2e

rpγ

b3 = b3

c0 = c0

c1 =
4eb03r3p − 16e2r2p − 4γ2eup − 6γb3b0r

4
p + 6γ4b3uprp + 5γ4c5r

4
p

r4p

c2 =
24γ2eb3r

2
p − 28e2rp − 3b3b0r

3
pγ + 3γ4b3up + 10γ4c5

γr3p

c3 =
24eb3rpγ

2 − 8e2 + 10γ4r2pc5

γ2r2p

c4 =
6eb3 + 5γ2c5rp

γrp

c5 = c5

(29)

We now have everything we need to come up with a possible numerical
solution to our problem. We begin with listing the three restrictions we have:

• b0 > 0 because of requirement 1.

• c0 > 0 because of requirement 3.

• c5 > 0 because of requirement 3.

There are multiple ways to do this. I choose to use MATLAB to bruteforce a
solution since doing it analytically would be very difficult. This turns out to be
a sufficient method and multiple solutions were found. The MATLAB program
I used it included in the appendix. The way I set it up is simple. I choose a
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value for b0, b3, c0 and c5 that was within their restrictions. I choose:

b0 = 1

b3 = 0.3

c0 = 1

c5 = 1

(30)

This was mostly done arbitrarily. (The slightly lower b3 results in more
solutions). You could optomize the other coefficients and yield more solutions,
but I deemed it unecessary for this analysis. What’s left is to find a numeric
value for e, rp and γ. This was done by continuously cycle each parameter from
−1 to 1 in steps of 0.1. During each cycle the program checks if there’s a region
where all requirements are met. Fig. 15 below is one example of a solution it
found.

Figure 16: The region we are looking for is where B(a) is negative and R(a) is positive.
Which we see a small region of here. C(a) must also remain positive for a > 0.

The parameter values found displayed in Fig. 16 is:

e = −0.30

γ = −0.30

rp = 1.00

up = 0.30

uθ = −0.41

vθ = 0.97

vp = −1.00

(31)
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We can now show the phase transition going from Sm-C∗LT to Sm-C∗HT and
back to Sm-C∗LT again as a gets lower.

Figure 17: The generated θ vs E(θ) graph from Fig. 15. If we start with an a
above the desired region no S-shape appears. But as a lowers the S appears and then
dissapears as we move outside the region again.

We now have everything we need to make the actual plot instead of the
mockup in Fig. 15. We do this by looking at the energy density which now can
be reduced to the following form:

f(θ) =
1

2
aθ2 +

1

4
B(a)θ4 +

1

6
C(a)θ6 − Eθ (32)

Using MATLAB we will now search for ET by altering a and E respectively
and looking for the transition. Just as we did previously with r and E. Fig. 18
below shows us our result.
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Figure 18: Instead of the nearly straight line we expected we got a ‘C’-shape. But
we did find two critical points as expeceted.

While we expected a straighter line this doesn’t disagree with what we ex-
pected to find, two critical points. In the appendix the MATLAB program is
included that was used to create Fig. 18. It also includes an interactive part
similar to the program used to create Fig. 14. What we have found in our anal-
ysis proves the possibility of smectic liquid crystals having two critical points
instead of one as previously believed. But the ‘C’-shape allows for reentrance.
Consider a fixed E (i.e. moving along a vertical locus as seen in Fig. 18.) Move
from high T (i.e. large a) to small T (i.e. small a). The liquid crystal experi-
ences several transitions, Sm-C∗LT - Sm-C∗HT - Sm-C∗LT . i.e., Sm-C∗LT phase is
reentered.

5.3 Future research

This analysis is not yet fully complete. There are many areas where this model
can be developed. Example of such areas are the energy density function. We
choose our model because of it’s simplicity wich was suited for our analysis.
Adding θp3 and θ3p coupling terms would make the model more complete.
Other possibilities include looking closer to the result seen in Fig. 18. The
shape will change depending on the values of the parameters we use and it
could be necessary to analyze its behaviour.
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%r_vs_E.m
%Ted Cassirer

%Run this program and wait a few seconds.
%When the graph pops up you can click in the graph and it will plot the
%free energy with the r and E you clicked on in the graph.
%To stop the program, just press a key on your keyboard while mousing over
%the graph. Might have to press twice

%The parameter values chosen here are v = 1 and u = -1
%Changing them might make the program to not work as some things here are
%excplicitly coded for these values (Like starting point for finding
%the roots)

clf
clc
clear all
u = -1;
v = 1;

r_c = 9*u^2/(20*v);
r_u = u^2/(4*v);
r_1st = 3*u^2/(16*v);

E = @(r, c) (r*c + u*c.^3 + v*c.^5);
E_c = 1*(-3*u/(10*v))^0.5*(6/25*u^2/v);

a = @(r)(9/100*(u/v)^2-r/(5*v)).^0.5;

%E Lower
E_L = @(r)((-3*u/(10*v)-a(r)).^0.5.*(-2/5*a(r).*u+4*r/5-3/25*u^2/v));

%E Upper
E_u = @(r)((-3*u/(10*v)+a(r)).^0.5.*(2/5*a(r).*u+4*r/5-3/25*u^2/v));

f = @(r, c, E_m) (1/2*r.*c.^2 + 1/4*u*c.^4 + 1/6*v*c.^6 - E_m*c);
df = @(r, c, E_m) (r*c + u*c.^3 + v*c.^5 - E_m);

r_T = [];
E_T = [];
N = 100; %Step-count
rr = r_1st; %Value of r where it starts the search for r_T
for Ev = linspace(0, E_c, N)

    for rv = linspace(rr, r_c, N)

        if E_u(rv) < Ev && Ev < E_L(rv)
            c1 = fzero(@(c)df(rv, c, Ev), 0); %The minima in the middle c~0
            c2 = fzero(@(c)df(rv, c, Ev), 1); %The minima to the right c~1

            f1 = f(rv, c1, Ev);
            f2 = f(rv, c2, Ev);
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            %r moves up. When the second minima is above the first we have
            %r_T. %Can make it more accurate but since this is just
            %graphics it wont make a difference really
            if f1 <= f2
                r_T = [r_T rv];
                E_T = [E_T Ev];
                rr = rv;
                break
            end
        end
    end
end

%The interactive part
figure(1);
r_vec = linspace(-0.2, 9/20, 100);
clf
hold on
plot(E_u(r_vec), r_vec, 'r:')
plot(E_L(r_vec), r_vec, 'g--')
plot(E_T, r_T)
plot(-1*E_L(r_vec), r_vec, 'g--')

plot(-1*E_u(r_vec), r_vec, 'r:')

plot(-E_T, r_T)
clc
plot([-1.5 1.5], [0 0], '--k')
plot([0 0], [-1 1], '--k')
legend('E_U', 'E_L', 'E_T')
title('$r$ vs $E(\theta_*)$','Interpreter','LaTex','fontsize',16)
xlabel('$E(\theta_*)$','Interpreter','LaTex','fontsize',16)
ylabel('$r$','Interpreter','LaTex','fontsize',16)
%Axis for the first plot. Change these values if you want to zoom in
axis([-0.2 0.2 -0.1 0.5])
xlabel('E')
ylabel('r')
while true

        figure(1);
        [x y] = ginput(1);
        figure(2);
        clf
        hold on

        %Finds the local minimas. It's sloppy, but it works well enough.
        c1 = fzero(@(c)df(y, c, x), -1);
        c2 = fzero(@(c)df(y, c, x), 1);
        c3 = fzero(@(c)df(y, c, x), 0);

        f1 = f(y, c1, x);
        f2 = f(y, c2, x);
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        f3 = f(y, c3, x);

        plot(c1, f1, '*g')
        plot(c2, f2, 'or')
        plot(c3, f3, 'xm')

        plot([-1.5 1.5], [0 0], '--k')
        plot([0 0], [-1 1], '--k')
        fplot(@(c) f(y, c, x), [-1.5 1.5 min([f1 f2 f3])-0.01 0.1])

        xlabel('c')
        ylabel('f')
        if waitforbuttonpress
            break
        end
end

Published with MATLAB® R2013a
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%This program searches for possible solutions described in section 5.2 When
%you start the program a window will quickly pop up showing you a possible
%solution and the program pauses. The corresponding parametervalues will be
%displayed in the command window and saved to the array 'values'. If you
%want a different solution you can press any key to unpause the program
%and the program will start searching again for another solution and
%stopping again as soon as it find another solution.

f1 = figure(1);

%Defined parameters
b__0 = 1;
b3 = 0.3;
c0 = 1;
c5 = 1;

%Changes the range 'a' is changed between to look if the current cycle is a
%solution.
av = 0:0.1:4;

%e, gamma and r__p cycles between -1 and 1 to find possible solutions
for e = -1:0.1:1
    for gamma = -1:0.1:1
        for r__p = -1:0.1:1

            %Eq. 29
            b1 = -6*e/r__p+3*gamma^2*b3;
            b2 = -2*e/(gamma*r__p)+3*gamma*b3;
            c1 = -16*e^2/r__p^2-4*gamma^2*e*b3/r__p+4*e*b__0/ ...
                (gamma*r__p)+6*gamma^4*b3^2-6*gamma*b3*b__0+5*gamma^4*c5;
            c2 = -28*e^2/(gamma*r__p^2)+24*gamma*e*b3/r__p+3*gamma^3* ...
                b3^2-3*b3*b__0+10*gamma^3*c5;
            c3 = -8*e^2/(gamma^2*r__p^2)+24*e*b3/r__p+10*gamma^2*c5;
            c4 = 6*e*b3/(gamma*r__p)+5*gamma*c5;
            B = @(a) b__0 + b1*a + b2*a.^2 + b3*a.^3;
            C = @(a) c0 + c1*a + c2*a.^2 + c3*a.^3 + c4*a.^4 + c5*a.^5;
            R = @(a) B(a).^2-(20/9).*a.*C(a);
            al = 0:0.01:20;

            %Checks if C(a) is positive for a>0 and if B(a) is negative at
            %any point.
            if C(al)>0 & min(B(al))< 0
                for a = av
                    %Looks for a region where all requirements are met.
                    if B(a) < 0 && R(a) > 0
                        %A solution has been found is now plotted.
                        clf
                        hold on
                        v = -2:0.01:8;
                        plot(v,B(v))
                        plot(v,C(v),'r')
                        plot(v,R(v),'g')
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                        plot([-10 10],[0 0],'--k')
                        plot([0 0],[-100 100],'--k')

                        xlabel('$a$','Interpreter','LaTex','fontsize',16)
                        legend('B(a)', 'C(a)', 'R(a)')
                        title('$B(a), C(a)$ and $R(a)$','Interpreter', ...
                            'LaTex','fontsize',16)
                        axis([-0.2 4 -5 5])
                        drawnow

                        %All the parameter values are assigned to the
                        %solution that was found
                      ['e r__theta r__p gamma u__p u__theta v__theta v__p']
                        values = num2cell([e, gamma*(gamma+a)/r__p , ...
                            r__p, gamma, b3*r__p^3, -gamma*(b3*gamma^3 ...
                            *r__p-b__0*r__p-4*e*gamma)/r__p^2, ...
                            gamma*(3*b3^2*gamma^5*r__p^5+c5*gamma^5* ...
                            r__p^5-3*b__0*b3*gamma^2*r__p^5-12*b3*e* ...
                            gamma^3*r__p^4+6*b__0*e*r__p^4-c0*r__p^5+ ...
                            12*e^2*gamma*r__p^3)/r__p^6, -c5*r__p^5])

                        [e, r__theta, r__p, gamma, u__p, u__theta, ...
                            v__theta, v__p] =  values{:};
                        pause

                    end
                end
            end
        end
    end
end
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%a_vs_E.m
%Ted Cassirer

%This program allows you to interactively experiment with Fig. 18 in the
%paper.
%Two window will pop up after a few seconds when you run this. In the first
%window you can click and the energy density will be plotted in window two
%with the choosen a and E value. When you are finished click in the command
%window and hold 'ctrl+C' or MATLAB might crash.

clear
clc
clf
%These are the values of the parameters found earlier. Also the same used
%in the paper
values = num2cell([ -0.3000   -0.4500    1.0000   -0.3000 ...
    0.3000   -0.4104    0.9712   -1.0000]);

[e, r_theta, r__p, gamma, u__p, u__theta, v__theta, v__p] =  values{:};

b__0 = -((4*e*gamma^4)/(r__p)-gamma^2*r__p*u__theta-(gamma^6*u__p)/ ...
    (r__p^3))/(gamma^3);
b__1 = -((6*e*gamma^3)/(r__p)-(3*gamma^5*u__p)/(r__p^3))/(gamma^3);
b__2 = -((2*e*gamma^2)/(r__p)-(3*gamma^4*u__p)/(r__p^3))/(gamma^3);
b__3 = (u__p)/(r__p^3);
c__0 = (-12*e^2*gamma^6/r__p^2+6*e*gamma^4*u__theta+6*e*gamma^8*u__p/ ...
    r__p^4-gamma^4*r__p*v__theta-3*gamma^6*u__theta*u__p/r__p^2- ...
    gamma^10*v__p/r__p^5)/gamma^5;
c__1 = (-(32*e^2*gamma^5)/(r__p^2)+4*e*gamma^3*u__theta+(24*e*gamma^7* ...
    u__p)/(r__p^4)-(6*gamma^5*u__theta*u__p)/(r__p^2)-(5*gamma^9*v__p) ...
    /(r__p^5))/(gamma^5);
c__2 = (-(28*e^2*gamma^4)/(r__p^2)+(36*e*gamma^6*u__p)/(r__p^4)-(3* ...
    gamma^4*u__theta*u__p)/(r__p^2)-(10*gamma^8*v__p)/(r__p^5))/(gamma^5);
c__3 = (-(8*e^2*gamma^3)/(r__p^2)+(24*e*gamma^5*u__p)/(r__p^4)-(10* ...
    gamma^7*v__p)/(r__p^5))/(gamma^5);
c__4 = ((6*e*gamma^4*u__p)/(r__p^4)-(5*gamma^6*v__p)/(r__p^5))/(gamma^5);
c__5 = -(v__p)/(r__p^5);
B = @(a) b__0 + b__1*a + b__2*a.^2 + b__3*a.^3;
C = @(a) c__0 + c__1*a + c__2*a.^2 + c__3*a.^3 + c__4*a.^4 + c__5*a.^5;

f = @(theta, a, E) (1/2)*a.*theta.^2+(1/4)*B(a).*theta.^4+(1/6)*C(a).* ...
    theta.^6-E.*theta;

E__L = @(a) sqrt(-3*B(a)./(10*C(a))-sqrt((9/100)*(B(a)./C(a)).^2-a./ ...
    (5*C(a)))).*(-(2/5).*B(a).*sqrt((9/100).*(B(a)./C(a)).^2-a./ ...
    (5*C(a)))+(4/5)*a-(3/25)*B(a).^2./C(a));
E__U = @(a) sqrt(-3*B(a)./(10*C(a))+sqrt((9/100)*(B(a)./C(a)).^2-a./ ...
    (5*C(a)))).*((2/5).*B(a).*sqrt((9/100).*(B(a)./C(a)).^2-a./ ...
    (5*C(a)))+(4/5)*a-(3/25)*B(a).^2./C(a));

tv = -5:0.01:5; %Theta range
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at = [];
aU = [];
aL = [];
Et = [];

for a = 0.2:0.003:10
     %If E__L(a) is real it means it's on the EL-line
    if real(E__L(a)) == E__L(a)
        aL = [aL a];
    end
    %If E__U(a) is real it means it's on the EU-line
    if real(E__U(a)) == E__U(a)
        aU = [aU a];
    end
end
%The program will now search 'horizontally' for the transition.
for a = min(aU):0.003:max(aU)
    (a-aU(1))/(aU(end)-aU(1))*100 %Progress counter

    for E = min(E__U(aU)):0.001:max(E__U(aU))
        f1 = f(tv, a, E);

        %Finds the first minima of the energy.
        c1 = tv(find(f1(2:end)-f1(1:end-1)>0,1,'first'));

        %Finds the second one.
        c2 = tv(find(f1(2:end)-f1(1:end-1)<0,1,'last'));

        %Checks if a transition happen by looking how far theta jumped
        %compared to the last cycle. Big jump = it changed minima and a
        %transition just took place
        if abs(f(c1, a, E) - f(c2, a, E))<0.001 && abs(c1-c2) > 0.1
            at = [at a];
            Et = [Et E];
            break
        end

    end

end

while true
    %The E vs a graph
    figure(1);
    clf
    hold on
    plot(Et, at)
    plot(E__L(aL), aL, 'g--')
    plot(E__U(aU), aU, 'r:')
    text(0.6, 1.86, 'Sm-C_{LT}')
    text(0.6, 1.76, 'Sm-C_{LT}')
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    text(1, 1.81, 'Sm-C_{HT}')
    legend('E_T', 'E_L', 'E_U')
    axis([min(E__U(aU))*0.8 max(E__U(aU))*1.2 aU(1)*0.98 aU(end)*1.02])
    xlabel('$E$','Interpreter','LaTex','fontsize',16)
    ylabel('$a$','Interpreter','LaTex','fontsize',16)
    title('$a$ vs $E(\theta_*)$','Interpreter','LaTex','fontsize',16)

    [x y] = ginput(1); %Allows us to click in the graph

    %The energy density graph
    figure(2);
    clf
    hold on
    f1 = f(tv, y, x);
    plot(tv, f1)
    mm = min(f1);
    mt = tv(find(f1 == min(f1)));
    plot([-5 5], [mm, mm], 'k--')
    plot([mt mt], [-3 3], 'k--')
    xlabel('$\theta$','Interpreter','LaTex','fontsize',16)
    ylabel('$f(\theta)$','Interpreter','LaTex','fontsize',16)
    axis([-1 3 min(f1)*1.2 0.4])
end
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(2)(2)

The free energy is defined by the following function.  is the angle the LC molecules has against the 
planes between the layers and p is the polirization of the molecule

We can express p in terms of  by differentiating with respect to  and solving for the energy minima in
terms of p. We find two solutions. We will notice that only the second one will work.

To solve for E we first differentiate our free energy with respect to p and again solving for E in the 
energy minima.

Redefing  as  by substituting p with 

We expand E with respect to  to the fifth order. Giving us E in the following form:
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We are looking for when has two solutions. We can find it by differentiating E with respect to 

Below we can see four different solutions. Only two of them will work similar to the previous case.
By inserting the first solution into  we get  which is the lower bound where we have two 

solution. Similarly the third solution gives us  the upper bound.
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Returning to the expanded version of E. We defined what's in front of the  as We can solve for  
and use this to eliminate that parameter in the other terms and instead have as a changing variable.

(Using an expansion here just to factor out )
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(8)(8)

The constant  are now be defined as the function B below

We do the same thing with c and define it as the function C.
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(10)(10)

Looking at  we notice that what's under the root signs must be positive for the result to be real. 
Specifically what's under the second root sign is worth looking at. We define what's under there as the 

function R.
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We have now found all requirements for (E) to have two solutions in certain ranges.

This must happen in a common region of a.
In addition to this, C(a) must be greater than 0 when a > 0

From this it follows that:

We can use this to simplify our equations making it easier for us to find values that fulfil all our 
requirements
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To solve for the different parameter values that would fulfil all these requirements is difficult. But by 
using MATLAB to bruteforce a solution shows us it is possible.


