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Eq. 1 

Vineyard water use (ETc) is characterized by age, seasonal development, canopy size, row spacing, final 

use, and evaporative demand (Allen et al. 1998). Furthermore, vine water use is dependent on the 

physical availability of water within the soil profile from precipitation or supplemental irrigation, among 

other hydrologic factors (Williams L.E., 2014). In the often arid drought conditions of California, 

agricultural ecosystems have historically relied on the supply and management of irrigation water for 

production. Thus, water availability for crop production is variable by location and specific management 

conditions (primarily trellis type and irrigation scheduling) (Williams and Matthews, 1990). 

ETc is calculated as the product of reference evapotranspiration (ETo) and the crop coefficient (Kc).  

 

For agricultural applications, reference evapotranspiration is commonly calculated through the use of 

hydrometeorological equations such as the Penman-Monteith equation, used by the California Irrigation 

Management Information System (CIMIS). ETo measurements have been standardized to reflect the 

depth of water leaving the earth’s surface as the sum of evaporation and transpiration. Additional 

methods, such as the catchment water balance equation, exist for calculating this value, or for the 

regression modeling of Kc values, but are typically reserved for more in-depth analysis and research 

based applications. Nevertheless, the goal of both methods is to quantify the loss of water from the field 

standardized against a reference crop.  

Theoretically, crop coefficient values are for non-stressed crops cultivated under excellent agronomic 

and water management conditions and achieving maximum crop yield; considered to be standard 

conditions for commercial agriculture (Allen et al. 1998). Therefore, the adaptation of Kc values has 

been the result of continued experimentation and research as methods have produced variable results. 

Methods to determine Kc have historically included measures of Leaf Area (LA) (Williams et al., 2003b), 



Leaf Area Index (LAI) (de Medeiros et al., 2001), canopy cover (de Medeiros et al., 2001), and the 

fraction of light intercepting the canopy (Ayars et al., 2003). These studies have shown a high degree of 

correlation between leaves, light and water use from a catchment balance standpoint through the use 

of lysimeters and soil probes in the calculation of ETc. The correlation of these factors is expected from a 

physiological standpoint, given the necessity of water and light for photosynthesis (Williams, 2000). 

Therefore, if the need for water is biologically linked, Kc values are highly correlated with biological time 

and could be modeled as such to offset the differences of seasonal development (Wright 1985). 

However, practical location specific and useful measurable parameters from empirical research have 

only recently been developed.   

Grape vine water use has been shown to be a linear function of vine shaded area measured beneath the 

canopy (Williams and Ayars, 2005).  Following these findings, the development of localized crop 

coefficients no longer requires the use of expensive machinery, equipment, or laborious methods. For 

example, “A digital camera (and the appropriate software to digitize the amount of shade) would be the 

only hardware required to follow the seasonal development of the grapevine canopy under most 

circumstances.” (Williams and Ayars, 2005). Vineyard managers now have the tools necessary to 

document and calculate seasonal site specific crop coefficients to refine their management practices. 

Additional tools for measuring shaded area have been developed; one example is the Paso Panel. 

Developed by Mark Battany, a UC Cooperative Extension Viticulture Farm Advisor, Paso Panel units are 

homemade devices typically built by the end user, fashioned from an aluminum frame with a solar 

panel, voltage meter, and switch attached. The device works through the direct relationship between 

light and amperage. Any object placed between the sun and solar panel will result in a direct reduction 

in amperage (Battany, M.). Differential reductions in amperage will then be produced depending on the 

size of the vine canopy and resulting shaded area. Measurements are calibrated against a full sun 

reading and the difference calculated to measure a percent shaded area of the panel and vine (Battany, 



M). Solar panel measurements are easily effected by atmospheric conditions such as cloud cover, and 

the sun’s position. Therefore, to minimize variation in measurements, atmospheric conditions must be 

clear and measurements conducted at solar noon. The effects of the latter on measurements are 

dependent on the row orientation of the vineyard. East-West oriented rows will experience less of an 

error due to the changing position of the sun.  

Utilizing this fairly new biological and technological knowledge it was the primary goal of this project to 

model the seasonal change of crop coefficients indirectly measured as shaded area with the Paso Panel 

in accordance with vine biological time as a measure of degree days from bud break till leaf fall.  Shaded 

area measurements were collected monthly during the 2014 season from June until October. 

Measurements were plotted and supporting models were adapted for each of the two varieties and 

upper and lower blocks. In total, four different blocks were analyzed and equations adapted to modeling 

the Kc value in accordance with the historical date of bud break and leaf fall. Degree Days were 

determined and modeled from the UC-IPM website with the degree day calculator using the double sine 

method, an intermediate cutoff, a base temperature of 50 degrees Fahrenheit, and an upper threshold 

of 95 degrees Fahrenheit.  

It was the secondary objective of this study to adapt a historical model of ETo from the CIMIS Station 

(#52), San Luis Obispo, using annual mean daily historical ETo values. The conjunctive use of both 

models could be used to calculate ETc in an average year using the standard ETc Formula (Eq. 1) for a 

vertically shoot positioned (VSP) vineyard with similar shaded areas, phenology, and seasonal 

development located near CIMIS Station (#52) in San Luis Obispo, Ca. 

Materials and Methods 

 Location and Cultivar information. The project was conducted at the Trestle Vineyard (lat: 

35.316382, long: -120.683846) from June until October during the 2014 growing season. The Trestle 



Vineyard is owned by the California State University System, operate by the Wine and Viticulture 

Department of California Polytechnic State University, and (during the duration of this project) managed 

by Pacific Vineyard Management. The vineyard is located on a 14 acre parcel planted on a 

predominantly south facing slope (<10%). Three Blocks are divided with rows oriented north-south 

(parallel to slope). Two blocks were used in this study. The first, was trained to a unilateral cordon, and 

planted with spacing of 8ft x 5ft (row x vine) for a density of 1,089 vines per acre in 2003. The second, 

was trained to a unilateral cordon, planted with two spacing configurations: 8ft x 5ft in the lower 

section, and 8ft x 4ft in the upper section, and densities of 1,089 and 1,361 vines per acre, respectively. 

Vines in block 2 were planted in 2007. Both blocks were planted with grafted rootstock and scion Vitis 

.spp combinations and trained to a Vertical Shoot Positioned (VSP) trellis. Block 1, SYU and SYL, 

consisted of variable Vitis spp. rootstocks and Vitis viniferea L. cv. Syrah scion of variable clones.  Block 2, 

PNU and PNL, was planted to a V. berlanderi x V. riparia (SO4) cross rootstock with grafted V. viniferea L. 

cv. Pinot Noir scion of various clones. Both blocks received similar canopy and water management 

during the course of this study, with all blocks receiving a single mechanical leafing pass, in the fruit 

zone, prior to beginning measurements in June. A single hedging pass conducted between the June and 

July measurement occurred in the Syrah block as shoots were beginning to overtop the highest trellis 

wire. No clusters were removed during the course of this study.   

 Grapevine phenology. Vine phenology was monitored during the course of this study. Specific 

stages were noted using the modified E-L system (B.G. Coombe, 1995). Phenology data was available for 

previous growing seasons, but phonological dates were often spotty and many holes were present in the 

data. Nevertheless, all available data was used in the determination of the average bud break and leaf 

fall dates for model computations. Modified E-L stages were determined using visual best educated 

guesses of appearance assuming 50% of the vineyard was at the given stage.  



 Experimental design and methods. Two blocks each with two sub-blocks, separated by an 

irrigation break near the midpoint of the block, were studied in this project. In each of the 4 blocks, forty 

sample vines were selected at random accounting for a 10 vine buffer and 3 row buffer from the edge of 

rows and blocks. Selected vines were tagged, and locations noted in accordance with a grid pattern. Grid 

origins were determined by on site row markings. In blocks 1, the eastern most rows were row 1 

increasing toward the west. In block 2, the westernmost rows were considered to be row 1, increasing 

toward the east. In both blocks, vines were numbered in row increasing up slope, toward the north. 

Measurements of shaded areas values were repeated, approximately, monthly. Measurements were 

conducted on June 17, July 18, August 15, September 29, and October 27 during the 2014 season. On 

each measurement date, shaded area measurements were conducted around solar noon, typically 

beginning measurements 1 hour before and ending 1 hour after. Weather conditions were optimal on 

all sampling dates with no obstructing cloud layers. 

Shaded area measurements were conducted at each vine on each date in accord with the following 

protocol: (1) prior to entering the vine row a full sun reading was observed, values recorded and the 

time noted, (2) in row, sample vines were approached and solar panel held directly below the canopy at 

the trunk of the vine as close to the canopy as possible, (3) the panel was leveled in accordance with a 

bubble level (on paso panel), (4) the switch was engaged, (4) the resulting amperage was recorded. This 

protocol was repeated for each row and sample vine. (Battany, M) 

Time values were recorded with each row full sun reading in order to model the probably full sun 

reading at the time of vine sample readings. Interpolated values were then used in the calculation of the 

amperage reduction caused by the vine’s shaded area.  
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Eq. 3 

 Kc calculation from shaded area. Crop coefficient values were calculated using an equation 

determined by L.E. Williams and J.E. Ayars (2005) relating shaded area and vine Kc as a linear function of 

water use (Eq. 2) 

  

Therefore, using the Paso Panel, determining shaded area, x, from the amperage measurements, for 

each block (5.75 = length of solar panel, 8 is the distance between rows, constant between blocks), is: 

  

  

 

Seasonal Kc interpolation. Post calculation of Kc values with equations 2 and 3, mean Kc values 

were computed for each block on all dates. Mean values were represented with standard error and the 

relative changed in mean Kc values reflected a change in average shaded area for each of the study 

blocks. With known Kc values for each of the blocks from June until October of 2014, and known 

average phenological data, seasonal Kc values were interpolated using an Excel Add-in called XonGrid 

(XonGrid). Bud break and leaf fall were assumed to have a Kc value of 0.  

Degree Day, and ETo Model data and design. All weather data was sourced from the CIMIS 

weather station #52 located in San Luis Obispo, Ca and maintained by the Bio Resource and Agriculture 

Engineering (BRAE) department on the California Poly Technic State University Campus. The CIMIS #52 

weather station (lat: 35.305462, long: -120.661807) is located approximately 1.5 miles from the trestle 

vineyard. All data values were downloaded from 1986-2014 using the UC-IPM weather models and data 

portal website. All necessary data was used to adapt averages for each day of the year. Averages for 
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Degree Days and ETo, were then calculated over the 28 year period for each day per year. Standard 

Error was calculated for each average day and included in the models. A polynomial line of best fit was 

then computed with excel for each of the graphs and the resulting equations were considered to be an 

accurate model of average ETo and Degree day values annually (R-squared > .95). 

Results 

Grapevine Kc values depicted relatively differing development paths throughout the season between 

varieties and irrigation blocks (fig 1.)    

In block 1, Syrah, crop coefficients reached a peak during the June measurement. Between June and July 

measurements, a hedging pass was completed expectedly reducing the Kc value. However, this 

downward trend continued from July until August. An upward trend was produced from august till 



September. Without, examining soil moisture and the irrigation, little more than speculative conclusions 

can be drawn as to the causes and reasoning behind the trend witnessed in this data.  

The SYL block displayed a large degree of variation across all measurement dates, especially in the lower 

block. Variation is common place in agriculture, however a larger number of blank vines existed in the 

lower block. Having been selected by chance and all vines having an equal opportunity , the variation 

amongst these large sample sizes with fairly consistent errors, indicates that the largest amount of 

variability is in the lower block of the Syrah. With an examination of table 2, it is obvious that standard 

error values are greatest for the SYL block. 

Between the SYL and SYU blocks, both experienced a general downward trend until the August 

measurement.  Prior to August, the SYL block maintained a greater KC value. Post August, an inversion 

of this trend occurred, and the SYU block had a greater shaded area. I am not sure what caused this. 

In block 2, the PN, crop coefficients seemed to follow a more normalized curve, especially in the PNU 

block. In the PNU block an upward trending Kc value was tracked throughout all measurements until 

October; after harvest had occurred and subsequent leaf fall begun. The same positive trend is visible in 

the PNL block, but here too a greater degree of variation between measurements; again mainly due to 

the non-uniform conditions of the field with contributing error from blank values. 

Day of Year PNL Kc PNL_SE PNU Kc PNU_SE SYL Kc SYL_SE SYU Kc SYU_SE

168 0.294638 0.019637 0.313327 0.011565 0.335928 0.026077 0.29328 0.02161

199 0.291639 0.01834 0.351381 0.010905 0.289639 0.021518 0.265543 0.014646

227 0.313802 0.018778 0.369247 0.010576 0.235398 0.019913 0.240227 0.013737

272 0.344125 0.019284 0.375229 0.015717 0.254444 0.020206 0.280124 0.014608

298 0.217899 0.014618 0.200034 0.011586 0.198846 0.024146 0.236694 0.017126

Table 1. Measured Kc values for individual blocks by day of the year during the 2014 season. Standard error was 

calculated through the division of standard deviation by the square root of the sample number. 
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A comparison between the two varieties yields an obvious difference in the shaded area and relative 

water requirements for each variety. 

use of the Syrah variety is below that of

do not take into account the physical availability of water in the root zone. A further expansion of these 

data sets could be make use of the soil moisture monitors in the vineyard to draw a more accurate 

conclusion.  

Further expanding these ideas, data points were interpolated based on historical average

phenological dates for the Trestle Vineyard (table 2

The following are individual block graphs representing the relative formulas adapted for each

PNL PNU SYL SYU

69 69 78.5

140 140 157

205 205 237

257.5 257.5 298

349 349 354

Mean Day of Year For E/L Stage

Table 2 Mean day of year occurrences of modified E/L # Stages. Phenology data was sparse, but averages reflect the relative 

averages of data from the 2012-2014 seasons. No leaf fall data was available, so a best guess approximation was assumed.
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parison between the two varieties yields an obvious difference in the shaded area and relative 

water requirements for each variety. Under the current agronomic conditions, the approximate water 

use of the Syrah variety is below that of the Pinot based on shaded area. However, these measurements 

do not take into account the physical availability of water in the root zone. A further expansion of these 

data sets could be make use of the soil moisture monitors in the vineyard to draw a more accurate 

Further expanding these ideas, data points were interpolated based on historical average

or the Trestle Vineyard (table 2). 

The following are individual block graphs representing the relative formulas adapted for each

SYU E/L # Description

79 4 Green tip; first leaf tissue visible

157 23 17-20 leaves separated; 50% caps off (=full bloom)

237 35 Veraison: berries begin to color and enlarge

298 38 Berries harvest-ripe

354 47 End of leaf fall

Mean Day of Year For E/L Stage

Mean day of year occurrences of modified E/L # Stages. Phenology data was sparse, but averages reflect the relative 

2014 seasons. No leaf fall data was available, so a best guess approximation was assumed.
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parison between the two varieties yields an obvious difference in the shaded area and relative 

Under the current agronomic conditions, the approximate water 

However, these measurements 

do not take into account the physical availability of water in the root zone. A further expansion of these 

data sets could be make use of the soil moisture monitors in the vineyard to draw a more accurate 

Further expanding these ideas, data points were interpolated based on historical averages and available 

The following are individual block graphs representing the relative formulas adapted for each block for 

17-20 leaves separated; 50% caps off (=full bloom)

Veraison: berries begin to color and enlarge

Mean day of year occurrences of modified E/L # Stages. Phenology data was sparse, but averages reflect the relative 

2014 seasons. No leaf fall data was available, so a best guess approximation was assumed. 
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determining the Kc value from the day of the year as the x variable.

assumed to have a Kc value equal to 0.
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determining the Kc value from the day of the year as the x variable. Bud break and leaf fall dates were 

assumed to have a Kc value equal to 0. 
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break and leaf fall dates were 
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Degree Day Model. Conjunctively, a degree day model was generated to adapt the established 

crop coefficients by day of year to a more biologically synced timeframe. The use of degree days was 

first used in the grape industry to establish the differences in growing regions developed by

and Maynard Amerine, for the University of California 

A total of 28 years, from 1986 till 2014, with 96% of the data present for download was used to adapt 

the average growing degree days earned per day for the 28 ye

days, the UC-IPM website was used. 

The generated model is below: 
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Conjunctively, a degree day model was generated to adapt the established 

efficients by day of year to a more biologically synced timeframe. The use of degree days was 

first used in the grape industry to establish the differences in growing regions developed by

, for the University of California Davis, in the 1944  (Winkler et. Al,  1944).

A total of 28 years, from 1986 till 2014, with 96% of the data present for download was used to adapt 

the average growing degree days earned per day for the 28 year time period. To calculate daily degree 

IPM website was used.  

04x + 5.86E+00

350

Conjunctively, a degree day model was generated to adapt the established 

efficients by day of year to a more biologically synced timeframe. The use of degree days was 

first used in the grape industry to establish the differences in growing regions developed by A. J. Winkler 

Davis, in the 1944  (Winkler et. Al,  1944). 

A total of 28 years, from 1986 till 2014, with 96% of the data present for download was used to adapt 

ar time period. To calculate daily degree 



As is to be expected, all dates had a wide standard error when averaged from a 28 year sample size. 

Unfortunately, data was not available for a longer time period. The resulting equation, generated in 

excel, is useful as a representation of degree days earned for the Trestle Vineyard, and can be used to 

model a typical year.  

To calculate cumulative degree days, a few options existed. First, I could have found the integral of the 

equation, which is possible, but degree days are typically counted as the summation between days over 

a time interval. Therefore, finding the integral of the equation, while possibly a more accurate measure 

of the true area under the curve, would introduce error for practical application. Therefore, the 

calculation of cumulative degree days was computed as the summation for each day to replicate real 

world conditions of degree day calculation.  

An analysis of the model’s accuracy was conducted in comparison of the 2014 growing season. I termed 

this “model truthing” and a comparison of the 2014 season and above model are visible in the graph 

below. 
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As you can see, the graph was generated prior to the end of the 2014, 

and a data gap is present. Nevertheless, between bud break and 

December 4, 2014 a total of 3731 Degree Days accumulated. Using a 

lower limit of 50 degrees and upper of 90 degrees Farhenheit, 

calculated with a double sine method and intermediate limit, the model proved to be quite accurate. 

During the same time period, 3405 degree days accumulated in the model. Results are presented in 

table 3.  

A truthing comparison of the model during the 2014 season shows the accuracy of the model over a 

longer time interval. In the short term, degree days can be more variable. For example, Bud Break 

occurrs on the 69th day of the year on average in the Pinot Noir block. The following week, posted 

degree days far above what the model projected. This trend continued until about the 81st day of the 

2014 DD Model

3731 3405

% Error 9.6%

Degree Day Comparison

Table 3. Degree day comparison 

between the 2014 season and the 

generated degree day model. 
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year when degree days were below the projected amounts. Therefore, the model is excellent at 

predicting a long term trend, but specific growth rates will be vari

variance of weather in the short term.

ETo Model. A model was generated using the same procedures as for the degree day model, but 

with ETo values instead. Data was gathered from the CIMIS station and date points represen

average of daily ETo over a 28 year period. 

 

As with the Degree Day model, ETo values w

generated. From the above graph, the pea
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year when degree days were below the projected amounts. Therefore, the model is excellent at 

predicting a long term trend, but specific growth rates will be variable season to season due to the 

variance of weather in the short term. 

A model was generated using the same procedures as for the degree day model, but 

with ETo values instead. Data was gathered from the CIMIS station and date points represen

a 28 year period. The model is presented below. 

As with the Degree Day model, ETo values were historically quite variable, but a normal curve was 

generated. From the above graph, the peak of ETo values occurs from late May until August

02

350

year when degree days were below the projected amounts. Therefore, the model is excellent at 

to season due to the 

A model was generated using the same procedures as for the degree day model, but 

with ETo values instead. Data was gathered from the CIMIS station and date points represent the 

normal curve was 

til August, with a 
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slight tailing off of the graph in the fall months. The polynomial equation represents a high degree of 

correlation with the long term mean annual ETo graph.  

Model analysis was conducted with the 2014 season.  As in the degree day model, the ETo model 

produced results below what was recorded during the 2014 season. A comparison is presented below. 
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oefficient as a function of degree days. Using the Degree day model 

adapted from CIMIS station 52 data, historical phenology dates were averaged and the crop c

cumulative growing degree day model. Phenology data was averaged and 

Below, the models for each of the blocks are presented.  
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Discussion 

Shaded area measurements conducted during this experiment produced variable results depending on 

the block and variety. The results, shown above, demonstrate a trend far from the normal curves 

expected for the development of a vine canopy, particularly in the Syrah block. Emphasizing the non-

ideal conditions, the models produced here were affected by the site conditions and more years of data 

would be necessary to generate a more normalized curve. Nevertheless, the curves generated here for 

the Syrah depict the necessary amounts of water for the given area measured and determined 

independently of the next measurement. Therefore, site conditions and the management decisions 

between measurements continually effected the growth and development of the vine canopy, 

contributing to the deformed shape of the graph. The development of these curves proves seasonal 

development has an effect on the amount of water used by a grape vine. (Williams, 2014) 

Likewise, for similar trellis types but different variety combinations, water use can be drastically 

different. A comparison of the Syrah and Pinot shows that while the Syrah continued to lose shaded 

area, the Pinot continued the expected trend of a saturated curve. In hindsight, the deviation of the 

Syrah from the normalized curve while the Pinot block managed to maintain a normalized curve under 

the same management suggests the need for differing management tactics tailored to the needs of a 

specific variety (Williams, 2014).  

Additionally, per vine spacing was altered between the Pinot upper and lower block. The differing needs 

of the upper block compared to the lower block, show an increased shaded area for closer planted 

vines. However, row spacing, not vine spacing, has been shown to affect vine water use (Allen et al 

1998). Moreover, the reduction in element area per vine, (in the lower 40sqft/vine, upper 32sqft/vine) 

suggests a larger percent wetted area by the emitters relative to element size in the upper block. Terry 

Prichard, recommends near 40-60% of the soil volume be wetted with irrigation (Prichard, T.) On the 



surface, emitters point drop water into a vine element, once in a soil the movement of water is then 

governed by gravity and soil physics. Nevertheless, if an emitter point dropped water into the soil and 

that point produced a radius of 2ft the area covered by that emitter would equal approximately 

12.57sqft, as a percent of the soil area in the upper PN block, a wetted area of approximately 12.57/32 = 

.39. In the lower block, vine spacing is greater while emitter wetted area is kept constant, but element 

area increased 12.57/40 = .31. Therefore, poor vineyard design, and lack of percent wetted area maybe 

contributing to a lack of available water for plant roots within the vine element of the lower block. 

Wetted area is of a large concern with table and raisin grape growers in the central valley and has been 

shown as a possible contributing factor, potentially indirect, as having an effect on the canopy shaded 

area and resulting Kc value. (Burt et al. 2007) However, the need to cross reference this data with soil 

moisture analysis, and supplemental irrigation amounts is necessary before more than speculation can 

be drawn from the results.  

The Kc models developed from the data collected during this project represent the hindsight conditions 

of the Trestle vineyard during the 2014 growing season, under the conditions present at that time. If the 

models are to be adapted to future use, more data is necessary to truth the accuracy of the by block Kc 

models with the true development of the vines. The models presented here for ETo and Degree Days 

have been shown to produce accurate results and maybe helpful in future planning or in the 

determination of vineyard water use from historical averages, as well as a offer a baseline for 

comparison. 

Looking forward to the drought conditions of the future, and impending global climate change, droughts 

may only become worse. The availability of water may, for coastal farmers, if not all, become a limiting 

factor and supplemental irrigation a luxury. If this is the case, the ETo model developed in this project 

could be paired with the Kc curve developed, in the wake of a two year drought, and under non-ideal 

conditions to adapt the average water use of vines in the San Luis Obispo coastal area for a drought 



conditioned year. Therefore, while the data collected during this project may be limited in its scope, the 

conditions of the measurements may represent something of an indication of future developments in 

the wake of a changing global climate given the conditions of a one in 1200 year drought occurrence 

during their recording (Science Direct, 2014).   

  



Below are photos of the project during the spring, summer and fall quarters 2014.  

 

Planning and laying out the Paso Panel Design 5/21/14 



 

One of the two Paso Panels, post fabrication, bolted together outside the engineering hangar. 6/5/2014 



 

After completing measurements. 9/29/14  



 

Shaded Area, after measurement, in the PNL block on 9/29/14. 
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