
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Silica surface-modification for tailoring the charge trapping properties of
PP/POE based dielectric nanocomposites for HVDC cable application
He, Xiaozhen; Rytöluoto, Ilkka; Anyszka, Rafal; Mahtabani, Amirhossein; Saarimäki, Eetta;
Lahti, Kari; Paajanen, Mika; Dierkes, Wilma; Blume, Anke
Published in:
IEEE Access

DOI:
10.1109/ACCESS.2020.2992859

Published: 01/01/2020

Document Version
Publisher's final version

License
CC BY

Link to publication

Please cite the original version:
He, X., Rytöluoto, I., Anyszka, R., Mahtabani, A., Saarimäki, E., Lahti, K., Paajanen, M., Dierkes, W., & Blume,
A. (2020). Silica surface-modification for tailoring the charge trapping properties of PP/POE based dielectric
nanocomposites for HVDC cable application. IEEE Access, 8, 87719-87734. [9088133].
https://doi.org/10.1109/ACCESS.2020.2992859

Download date: 14. Jun. 2020

https://doi.org/10.1109/ACCESS.2020.2992859
https://cris.vtt.fi/en/publications/f6fccc92-2a4e-4fce-9311-d16300b62bd9
https://doi.org/10.1109/ACCESS.2020.2992859


SPECIAL SECTION ON POLYMERIC MATERIALS FOR HVDC INSULATION

Received April 7, 2020, accepted April 24, 2020, date of publication May 6, 2020, date of current version May 21, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992859

Silica Surface-Modification for Tailoring the
Charge Trapping Properties of PP/POE Based
Dielectric Nanocomposites for HVDC
Cable Application
XIAOZHEN HE 1, (Member, IEEE), ILKKA RYTÖLUOTO2, RAFAL ANYSZKA1, (Member, IEEE),
AMIRHOSSEIN MAHTABANI1, (Member, IEEE), EETTA SAARIMÄKI2, KARI LAHTI3,
MIKA PAAJANEN2, WILMA DIERKES1, AND ANKE BLUME1
1Elastomer Technology and Engineering Group, Department of Mechanics of Solids, Surfaces and Systems (MS3), Faculty of Engineering Technology,
University of Twente, 7500 AE, Enschede, The Netherlands
2VTT Technical Research Centre of Finland Ltd., 33101 Tampere, Finland
3Research Group on High Voltage Engineering, Tampere University, 33720 Tampere, Finland

Corresponding authors: Wilma Dierkes (w.k.dierkes@utwente.nl), Xiaozhen He (x.he@utwente.nl), and Rafal Anyszka
(r.p.anyszka@utwente.nl)

This work was supported by the European Union’s Horizon 2020 Research and Innovation Program under Grant 720858.

ABSTRACT This paper focuses on novel insulation polypropylene/poly(ethylene-co-octene) (PP/POE)
nanocomposites for High Voltage Direct Current (HVDC) cable application. The composites contain silica
modified by a solvent-free method using silanes differing in polarity and functional moieties. Thermogravi-
metric Analysis and Fourier Transform Infrared Spectroscopy showed that the solvent-free method is an
effective way to modify silica by silanes. Silica/PP/POE nanocomposites were prepared in a mini twin-screw
compounder, and the effect of silica on crystallization, dispersibility and dielectric properties of the samples
was investigated. Differential Scanning Calorimetry results showed that the unmodified and modified silicas
acted as nucleation agents and increased the onset of the crystallization temperature of the polymeric matrix.
Scanning ElectronMicroscopy images showed that the silica is mostly located in the PP phase matrix. For the
PP/POE nanocomposites filled with unpolar silica, a higher trap density (measured by Thermally Stimulated
Depolarization Current, TSDC) was found; this might be caused by the larger interfacial area due to a better
dispersion of the unpolar silica in the polymeric matrix. Polar silicas introduce deeper traps than the unpolar
ones, which is most likely due to the hetero-atom introduction. Nitrogen atoms were found to have the
strongest effect on the charge trapping properties. According to these results, amine-modified silica is a
promising candidate for PP/POE nanocomposites for HVDC cable applications.

INDEX TERMS PP/POE, nanosilica, surface modification, dispersibility, crystallization behavior, trap
distribution, HVDC cable.

I. INTRODUCTION
Thermoplastic dielectric composites containing nanofillers
have attracted a lot of interest in the field of high voltage
insulation field [1]–[3]. It is widely accepted that the large
interface formed between a nanofiller and a polymer matrix
plays a critical role in the high voltage dielectric properties of
nanocomposites [4]–[6].

However, one of the general problems in the preparation
of nanocomposite preparation is to achieve good dispersion
of the nanofillers in the polymer matrix. For instance, it is
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reported that the dc conductivity of LDPE increases remark-
ably with higher nanofiller loading (>3 phr) than the one
filled with a lower amount of nanofiller (1 to 3 phr) duo to
extensive nanofiller agglomerate formation [7]. In principle,
improving the performance of a nanodielectric requires good
dispersion of the nanofiller, which results in larger interface
area between the nanofiller and polymer.

Although a better dispersion of nanofillers is crucial,
the type of surface functionalization of nanofillers is also
very important from the point of view of dielectric prop-
erties. Incorporation of functional polar groups on the
nanofiller surface can positively alter the dielectric properties
of a nanocomposite. It is reported that the introduction of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 87719

https://orcid.org/0000-0002-9018-9200
https://orcid.org/0000-0002-7500-1134


X. He et al.: Silica Surface-Modification for Tailoring the Charge Trapping Properties of PP/POE

polar groups (amine) onto a nanoparticle surface improves
the breakdown strength of polyethylene nanocomposites
due to the modified electrical features (e.g. charge trap-
ping) at the polymer-nanoparticle interface [8]. Modified
silica containing polar chlorine atoms can suppress the
space charge accumulation of in crosslinked polyethy-
lene (XLPE) nanocomposites, due to a change in the
spherulites size distribution [9]. Furthermore, nanofillers
grafted with π-conjugated surface ligands can act as elec-
tron trap to alter the avalanche breakdown of silica-epoxy
nanocomposites [10].

The dielectric performance of an insulation material is
associated with charge trapping/detrapping phenomena. The
temperature- and field-dependent transportation of charges
in nanocomposites varies with the polarity and morphol-
ogy of the polymeric matrix, the type, size and dis-
persion of the nanofillers, and and the tailored surface
properties of the nanofillers [11], [12]. Therefore, the influ-
ence of modified nanofillers having different surface polar-
ities on the charge trapping properties of the dielectric
materials is studied. Previously, the introduction of differ-
ent polar functional groups on the silica surface resulted
in significant differences in charge trapping properties of
the nanocomposites [13], [14]. Following up our previous
study [14], the current research not only covers the phe-
nomenon of charge trapping properties, but also includes var-
ious characterization methods to investigate the mechanism
of it.

In general, silica-silane modification in most cases is per-
formed in a solvent at various temperatures [15]–[17]. This
enables utilization of various functional silanes and versatile
conditions resulting in a good control of the silane deposition
on the silica surface. However, this also causes an environ-
mental burden by the solvent waste that needs to be properly
recycled or disposed of. Therefore, this paper aims also to
develop a new solvent-free method for silane modification of
silica nanoparticles.

As one requirement of this new development was
sustainability and recyclability, polypropylene (PP) and poly-
olefin (POE) based materials were chosen for the matrix. The
currently used cross-linked polyethylene cannot be recycled
and reused due to its polymer network. Switching to PP and
POE allows to develop a recyclable HVDC cable insulation
material with less environment impact. Blending PP with a
polyolefin can improve the flexibility of the former polymer,
and the addition of the nanofiller can result in a significant
improvement of the thermoplastic dielectric properties. This
can further increase the potential to be used as HVDC cable
insulation material [1].

In summary, the objectives of this study are:
1) Developing an easy-to-upscale solvent-free method to

tailor silica surface properties
2) Investigating the influence of a silica surface

modification on the performance (crystallization, dispersibil-
ity and charge trapping dielectric behavior) in PP/POE
nanocomposites.

II. MATERIALS AND CHARACTERIZATIONS
A. MATERIALS
Fumed silica (Aerosil 200) was obtained from Evonik
Industries Germany. The 3-glycidyloxypropyl trimethoxysi-
lane, aminopropyltriethoxy silane and isocyanatopropyltri-
ethoxy silane were purchased from Sigma-Aldrich, US.
All other silanes (trimethylethoxysilane, dimethyldiethoxysi-
lane, methyltriethoxysilane, vinyldimethylethoxysilane,
phenyldimethylethoxysilane, mercaptopropyltrimethoxysi-
lane ) were purchased from Abcr GmbH, Germany, as were
trifluoroacetic acid and ammonia. A blend of polypropy-
lene (PP) and poly (ethylene-co-octene) (POE) was used as
the polymeric matrix.

The silane modification of silica is described in Section B.
The different nanocomposites destined for high voltage
DC (HVDC) cable insulationwere prepared bymelt-blending
of 1wt% of the reference silica (unmodified) or the modified
silicas with a PP/POE = 55:45 blend and 0.3 wt% of antiox-
idant using a a twin-screw micro extruder, type Haake Mini-
Lab Rheomix CTW5 (Thermo Fisher Scientific, Waltham,
Massachusetts, USA). The compounding was performed at
a temperature of 230 ◦C using a screw speed of 100 rpm
for 4 minutes (min). After melt-blending, the nanocom-
pounds were immediately transferred in molten-state to an
injection moulding system Haake MiniJet Pro Piston Injec-
tion Moulding System (Thermo Fisher Scientific, Waltham,
Massachusetts, USA) and moulded into thin sheets with
dimensions of 26× 26× 0.5mm.

B. CHARACTERIZATION OF SILICA
Information on the chemical composition and structure of
the surface of the unmodified and modified silicas was
obtained by Fourier Transform Infrared Spectrometry (FTIR;
Perkin Elmer – Spectrum 100 series) with the resolution
of 0.1% in the range of 400 to 4000 cm-3. Thermogravimetric
Analysis thermogravimetric analyzer TGA-7 (Perkin-Elmer,
Waltham, Massachusetts, United States) was performed in
order to investigate the extent of silanization of the silica.
This characterization was done in a synthetic air atmosphere
with a heating rate of 20 ◦C/min. The temperature range
was from ambient temperature up to 850 ◦C. X-ray Photo-
electron Spectroscopy (XPS) was conducted by means of a
Scanning X-ray Microscope PHI Quantera (Physical Elec-
tronics GmbH, Munich, Germany) to check the chemical
composition of the silicas. The silica particlemorphologywas
evaluated by Transmission Electron Microscopy (TEM) and
Energy Dispersive X-ray analysis (EDX) using a Transmis-
sion Electron Microscope CM300ST-FEG 300 kV (Philips,
Eindhoven, the Netherlands).

C. CHARACTERIZATION OF SILICA/PP/POE
NANOCOMPOSITES
The melting and crystallization properties of the nanocom-
posites were investigated by differential Scanning Calorime-
try (DSC) using a DSC Q2000 (TA Instruments, New Castle,
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Delaware, USA). Samples with a weight of around 12-14 mg
were placed in a standard aluminum pan. They were first
heated from ambient temperature to 230 ◦C at a rate
of 10 ◦C/min, and kept at this temperature for 5 min to erase
any previous thermal history. The samples were then cooled
down to −20 ◦C (40 ◦C/min) and heated again to 230 ◦C
at a rate of 10 ◦C/min The crystalline structure was studied
by X-ray Diffraction (XRD) spectra using a X’Pert 1 X-ray
diffractometer (Philips, Almelo, The Netherlands). Diffrac-
tion spectra in the 2θ range from 5◦ to 37◦ with a scanning rate
of 0.05 ◦/8 s were collected. Scanning Electron Microscopy
(SEM) was done by means of a MERLIN HR-SEM (Zeiss,
Oberkochen, Germany).The sample for SEM was prepared
in liquid nitrogen without any coating.

The charge trapping properties of the PP/POE
nanocomposites were studied by Thermally Stimulated
Depolarization Current (TSDC). Circular gold electrodes
(diameter 16 mm, thickness 100 nm) were deposited on both
sides of the sample sheets by electron-beam evaporation
under high vacuum (< 1 × 10−6 mbar). The TSDC mea-
surement system consisted of a liquid nitrogen-based temper-
ature control system Novocool (Novocontrol Technologies,
Montabaur, Germany), a DC high voltage source 2290E-5
(Keithley Instruments, Cleveland, Ohio, USA) and a sensitive
electrometer 6517B (Keithley Instruments, Cleveland, Ohio,
USA ). The samples were placed in a shielded sample cell
equipped with a PT100 temperature sensor (Novocontrol
BDS1200HV). The TSDC measurement procedure consisted
of the following steps:

1) The samples were heated up to 70 ◦C and kept stable for
5 min;

A DC electric field of 3 kV/mm was applied for 20 min
under isothermal conditions at 70 ◦C;
3) The samples were rapidly cooled down to −50 ◦C with

the voltage still applied, and kept at this temperature for 5 min
for stabilization;

4) The electric field was removed and the samples were
short-circuited through an electrometer. The short-circuited
samples were maintained at −50 ◦C for 3 min to allow fast
polarization to decay;

5) The samples were linearly heated up to 130 ◦C with
a heating rate of 3 ◦C/min. Meanwhile, the depolarization
current was recorded.

III. RESULTS
A. SOLVENT-FREE MODIFICATION OF SILICA BY SILANES
In this study, trimethylethoxysilane (Fig.1) was chosen as the
starting modifying agent, as it has only one ethoxy group and
therefore does not suffer from side reactions such as conden-
sation. Two kinds of catalysts, ammonia and trifluoroacetic
acid, were used to accelerate the silanization reaction to make
it take place at room temperature.

The solvent-free modification method was chosen, as it
is more environmentally friendly in comparison to solution
methods. It was carried out in a sealed glass jar with a

FIGURE 1. Chemical structure of Trimethylethoxysilane.

magnetic stirrer at room temperature for 24 hours. All the
modification variants were performed with the same amount
of fumed silica (10 g), trimethylethoxysilane (0.98 g), water
(0.3 g) and fixed amounts of the catalysts (trifluoroacetic acid
(0.2 g) or ammonia (1 g)). After the modification, the product
was extracted in a Soxhlet unit with ethanol for 24 hours to
remove all contaminants, and afterwards placed in a vacuum
oven at a temperature of 80 ◦C for 24 hours to remove ethanol.
Five different silica modifications were selected:
S – unmodified silica;
SS – silica modified with the silane;
SSW – silica modified with the silane in presence of water;
SSWA – silica modified with the silane in presence water

and trifluoroacetic acid;
SSWB – silica modified with the silane in presence water

and ammonia (base).

1) THERMO-GRAVIMETRIC ANALYSIS (TGA)
For quantitative analysis of the modification effects, TGA
was performed. The results are depicted in Fig.2. The weight
loss of the pure silica (S) was 2%; however, in the case
of SS and SSW, comparable weight losses of 2.1% and
2.4% respectively were measured. This indicates that there
are barely any organic groups chemically attached to the
silica surface in case of SS and SSW silicas. After the func-
tionalization in presence of the catalysts, the weight loss
increased to 4.1% for SSWA and to 7.2% for SSWB. On the
basis of the TGA curves, it can be concluded that solvent
free silane modification of silica proceeds successfully only
when a catalyst is present, regardles of its nature – acidic
or basis. However, the kinetics of thermal decomposition of
the samples modified in presence of the acid and of the base
varies significantly. The modification performed in presence
of ammonia results in a high amount of volatiles and rela-
tively loosely bound surface-deposition; it shows a constant

FIGURE 2. TGA results of the unmodified and modified silicas.
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decrease of mass from ca. 100 ◦C to 500 ◦C. This might
be due to the physical adsorption of the base onto the silica
surface through hydrogen bonds, which are not stable andwill
be decomposed at lower temperature.

2) FOURIER TRANSFORM INFRARED (FTIR)
Fourier Transform Infrared (FTIR) analysis was performed
on the unmodified silica and modified silica samples. This
technique allows to identify organic groups by measuring the
absorption of infrared radiation by the sample material within
a certain spectrum of wavelengths. The infrared absorption
bands are characteristic for certain molecular components
and structures.

Fig.3 compares the spectra of unmodified silica (S) and
modified silicas (SS, SSW, SSWA and SSWB). A new band
in the region of 2963 cm−1 appeared after the silane modifi-
cations. This band represents the C-H stretching [18] which
comes from the trimethylethoxysilane. The stronger the band
intensities, the higher the modification effect. As seen in
Fig.3, the band became stronger with the addition of the
catalysts. These results are in agreement with the results
of the TGA analysis, indicating that there is indeed a C-H
organic layer covering the silica surface after the solvent-free
modification. The reaction mechanism of the silica-silane
modification is shown in Fig.4.

FIGURE 3. FTIR spectra of the unmodified and modified silicas.

FIGURE 4. Reaction scheme of the solvent-free silica-silane modification.

3) X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)
In order to further evaluate the modification of silica, X-ray
Photoelectron Spectroscopy (XPS) was performed on the
unmodified silica (S) and modified silicas (SSWA and
SSWB). XPS works on the basis of irradiating a material
with a beam of X-rays while simultaneously measuring the
kinetic energy and number of electrons that escape from the
surface (0 to 10 nm) of the analyzed material. Thus, it is

possible to measure the elemental composition of a very thin
surface layer in a parts per thousand range. The XPS results
are presented in Fig. 5 and TABLE 1. The carbon, oxygen and
silicon atom spectra and their content are shown.

FIGURE 5. XPS spectra of the unmodified (S) and modified silicas (SSWA,
SSWB).

TABLE 1. Chemical composition of the surface of unmodified and
modified silicas by XPS.

Both, SSWA and SSWB, exhibited an increased C1s signal
at a binding energy of ca. 280 eV in the XPS spectrum
(Fig.5) demonstrating the presence of carbon from the silane
molecules. This corresponds to the results obtained from
FTIR and TGA measurements. The small carbon signal
present in the reference spectra (S) comes from atmospheric
contaminations deposited on the silica during sample prepa-
ration. The oxygen signal (O1s) originates from the silica
structure. The decreased O1s signal for the SSWA and SSWB
samples versus the S sample at ca. 530 eV also confirms a suc-
cesful surface modification. The decreased oxygen content
observed in the silanemodified silica samples is a result of the
presence of the methyl groups, which are bond to a silicone
atom in the silane molecule. This increases the amount of
carbon in the surface layer of the modified samples covering
the amorphous SiO2 particles.

The silicon signal (Si2p) intensity is similar for unmodified
and silane-coated silicas. This is an effect of two simultaneous
processes: attachment of silicon atoms with the deposition of
silane molecules and covering of the SiO2 particles. In sum-
mary, the effect of enriching the surface layer with silicone
atoms seems to be more efficient resulting in a slight increase
of the silicone amount (TABLE1). Altogether, TGA, FTIR
and XPS proved a successful silica-silane modification via
the solvent-free modification.

In conclusion, the solvent-free method is an effective and
sustainable approach to perform silica-silane modification
using an acidic or alkaline catalyst. In general, the silica mod-
ified using the base catalyst (SSWB) exhibit a higher mod-
ification level in comparison with the acid catalyzed silica
(SSWA). However, the modification performed on SSWB is
significantly less thermally stable, based on the TGA results:
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TABLE 2. Silanes from Group I.

TABLE 3. Silanes from Group II.

the onset of the mass loss of SSWB starts from 100 ◦C,
while it is 500 ◦C for SSWA. Therefore, trifluoroacetic acid
is selected as a catalyst for the silane-silica modification.

B. TAILORING THE SILICA SURFACE WITH DIFFERENT
SILANES VIA THE SOLVENT-FREE METHOD
The solvent-freemethodwas performed on fumed silica using
8 different silanes. The investigated silanes were divided into
three groups:

I. Aliphatic silanes with different numbers of alkoxy
groups (TABLE 2).

II. Hydrocarbon silanes containing delocalized electron
clouds (TABLE3).

III. Polar silanes containing hetero elements (nitrogen,
sulfur or oxygen) (TABLE 4).

The above classification aims at verifying the effective-
ness of the modification by the solvent-free method and
at producing different silicas with varied surface properties
in order to study their influence on dielectric properties of
nanocomposites. For purification, the samples were put into

TABLE 4. Silanes from Group III.

TABLE 5. Recipe for silane–silica solvent free modification.

a vacuum oven at 80 ◦C to remove the residues, instead of
extraction and oven drying.

The amount of the silane added for the modification is
shown in TABLE 5. It is based on Equation (1):

m(silane)=m(silica)∗S(silica)∗N(Si-OH) ∗M(silane)/NA

(1)

where:
m(silane) = amount of silane used for the solvent-free

modification;
m(silica)= 20 g is the amount of silica used for the solvent-

free modification;
S(silica)= 200 m2/g, the specific surface area of the silica;
N(Si-OH)= 2.5 / nm2, the number of silanol groups on the

silica surface per 1 nm2;
M (silane) = molecular weight of a silane;
NA = 6.022 × 1023, Avogadro constant.
The calculation is based on two assumptions:
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1. One silane molecule will react with one silanol group on
the silica surface.

2. All the silanol groups on the silica surface will have
reacted with the silane.

1) THERMO-GRAVIMETRIC ANALYSIS (TGA)
The TGA curves of the modified silicas are shown in Fig.6
(Group I (a), Group II (b) and Group III (c)). The weight
loss attributes to the removal of the molecules from the
silica surface. The weight loss below 100 ◦C results from
water and unreacted alkoxy groups present on silica sur-
face which undergo condensation [19]. The breakage of
Si-C bonds mostly contributes to the weight loss between
300∼450 ◦C [20]. With increasing temperature, the con-
densed organic polymer on silica surface starts degrada-
tion which leads to the weight loss at temperatures higher
than 450 ◦C [20], [21].

FIGURE 6. TGA curves of unmodified and modified silicas treated with
silanes from different groups (Group I (a), Group II (b) and Group III (c)).

Comparing the weight loss of silica modified with the
silanes from Group I, it is clear that using molecules contain-
ing more than one alkoxy group results in a higher degree of
deposition. This is most likely due to a condensation reaction
of the alkoxy groups leading to silane oligomerization, thus
enhanced surface covering. In Group II, the silica modified
with PMDES showed noticeably higher weight loss resulting
from the higher molecular weight of the phenyl group of the
silane. The silanes with different polar moieties in Group III
all have three alkoxy groups and a slightly longer side chain
than the one in Group I. This caused a much higher weight
loss during the TGA tests as shown in Fig.6. It is worth
noting that utilization of the 3-glycidyloxypropyltrimethoxy
silane (epoxy-S) and isocyanatepropyltriethoxy silane
(NCO-S) for modification resulted in a deposition exceeding
15 % of the treated silica mass. This is an exceptional result
in comparison to the state of the art methods presented in
the literature, in which the deposition level usually does not
exceed 10% [22]. Higher levels of silica modification usually
require a complex, multi-step procedure [23].

To get further quantitative insight into the modification
degree of the solvent-free method, the molar amount of
grafted silane was calculated based on the Equation (2):

Grafted amount(mmol/g) =
103W

M(100−W)
[24] (2)

where:
W = weight difference between the weight at 100 ◦C and

750 ◦C;
M = molecular weight of a side chain of a silane.
This equation was introduced by He et al. [24]. However,

the whole molecular weight of a silane was considered to
be equal to M by the authors. This is not accurate consid-
ering the mechanism of thermal detachment of the silane
molecules from a silica surface (Fig.7). Silane molecules
form strong covalent bonds (Si-O-Si) with the silica surface.
This bond is very unlikely to break during a TGA test. Instead,
at lower temperatures residual alkoxy groups are removed
(C-O bond), whereas at higher temperatures breakage of Si-C
bond occurs. During water and acid catalyzed silanization,
we assume that all the alkoxy groups are hydrolyzed to form
silanol groups (Si-O-H). Therefore, only the removal of a
side chain of a silane contributes to the weight loss during
TGA measurements. This gives a strong indication that the
molecular weight of the silane side chain should be taken
into consideration in the above equation rather than the whole
silane molecular weight. This is also confirmed by other
researchers [25].

FIGURE 7. Mechanism of thermal degradation of a silane grafted on
silica. (During heating, the unreacted alkoxy groups marked in red will
leave firstly; with further increasing temperature, the Si-R’ bond of the
side chain from the silane marked in green will be broken).

The results of the calculated amount of deposited silanes
are shown in Fig.8 (right). They are noticeably different than
the TGA total weight losses shown in Fig.8 (left). While
the TGA weight loss in Fig.8 (left) exhibited a correlation
with the molecular weight of the side chain in the silane,

FIGURE 8. The weight loss of the modified silicas (left) and molar amount
of grafted silanes on silica surface (right).
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the grafted amounts in Fig.8 (right) were more dependent on
the number of reactive alkoxy groups.

These results show that there is almost the same amount of
silane (inmmol) grafted onto the silica surfacewhenmodified
with a silane containing only one alkoxy group (0.7 mmol/g
of TMES, 0.6 mmol/g of VDMES, 0.9 mmol/g of PDMES).
However, the total weight loss of PDMES modified silica
gave a much higher value (8.7 %) than the silicas modified
with the two other silanes (1.2 % of TMES and 3.2 % of
VDMES) due to the much higher molecular mass of the
phenyl ring. Furthermore, regarding to the silanes contain-
ing three alkoxy groups (MTES, epoxy-silane, HS-silane,
NCO-silane and amino-silane), the degree of modification
was more or less on the same level (from 1.6 mmol/g to
2.6 mmol/g), while there is a significant difference in the total
weight loss results (from 5.1 % to 17.6 %).

In summary, a higher TGA weight loss does not directly
equal to a more effective silane modification on the silica
surface. To compare the degree of modification, the grafted
amount of silane in mmol/g should be calculated. Neverthe-
less, all the above results show that the solvent-free method
is an efficient way to perform silica-silane modification.

2) FOURIER-TRANSFORM INFRARED SPECTROSCOPY (FTIR)
The FTIR spectra of unmodified and modified silicas are
shown in Fig.9. The band at 2956 cm−1 is attributed to the
stretching vibration of C-H [26]. This proves that TMES,
DMDES and MTES were successfully grafted onto silica
surface.

FIGURE 9. FTIR spectra of unmodified and modified silicas with the
silanes belonging to Group I (a, b), Group II (c, d) and Group III (e, f).

The bands at 3100 cm−1 and 1429 cm−1 presented in
Fig.9 (c) and (d) result from the aromatic ring of PMDES

[26, 27]. The presence of the vinyl group can be proven by
the absorption band at 1593 cm−1 [26].
The bands at 2989∼2843 cm−1 corresponding to the

C-H [28] vibrations shown in Fig.9 (e) demonstrate, that
all four polar silanes are grafted onto the silica surface.
The intensive C-H stretching band in Fig.9 (e) indicates the
presence of the epoxy silane on the silica surface due to the
high number of CH2 units in the chemical structure of this
silane, although the bands from the epoxy ring group were
not detected [29]. The broad band around 1631 cm−1 visible
in Fig.9 (f) and assigned to N-H stretching belongs to the
amine group of the amino silane [28]. Due to the sensitivity
of the N=C=O group to water, it can be easily turned into
a urethane group. Therefore, the bands at 1600∼1500 cm−1

from the distortion oscillation of N-H and stretching oscilla-
tion of C-N, and the band at 1800-1600 cm−1 from stretching
oscillation of C=O represent the presence of urethane, which
proves the NCO-silane grafting onto the silica surface and its
further reaction with water to form urethane groups.

It needs to be admitted that it is difficult to detect a S-H
band at 2568 cm−1, because it gives a very weak response in
FTIR [28]. Nevertheless, all above results can prove that all
the silanes were successfully grafted onto the silica surface
through solvent-free modification.

3) TRANSMISSION ELECTRON MICROSCOPY (TEM) WITH
ELEMENTAL MAPPING
To visualize the morphology of a silica surface with silane
grafted onto it, TEM elemental mapping was carried out on
the silica modified with amino-silane (Fig.10). It shows that
the average size of the primary particles of the modified
silica is around 20 nm, which is more or less as same size
as untreated fumed silica particles. Elemental mapping was
performed in order to identify the distribution of carbon
(Fig.10 (b)) and silicon (Fig.10 (c)) on the silica surface after
modification. Fig.10 (d) reveals the silane layer depicted in
green with a smooth surface and a thickness of approximately
1 nm.

C. CHARACTERIZATION OF PP/POE OF
NANOCOMPOSITES
1) DIFFERENTIAL SCANNING CALORIMETRY (DSC)
Fig.11 and Fig.12 represent the crystallization and melting
behavior of all PP/POE nanocomposites, respectively. The
crystallization parameters are shown in TABLE 6. It is obvi-
ous that there are two melting and crystallization peaks corre-
sponding to the two polymer phases. In accordance with the
previous results [30], the first peak at the lower temperature
originates from the POE phase, in which the crystalline PE
domains melt (or crystallize), while the second peak at higher
temperature comes from the PP phase.

In general, the modified silica has a more pronounced
effect on the crystallization behavior of both phases, PP and
POE, than unmodified silica. The exothermic peak of the
PP and POE phase is shifted to higher temperature values,
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FIGURE 10. TEM elemental mapping image of silica modified with amino
silane. (a: TEM image of modified silica; b: carbon mapping; c: silicon
mapping; d: combined mapping images of carbon in green and silicone
in red)).

FIGURE 11. DSC crystallization curves for PP/POE nanocomposites with
unmodified silica (Ref.-C) and silica modified with the silanes described
in Tables 2-4.

suggesting a strong nucleating effect of the modified sili-
cas [31, 32]. This also corresponds to literature, stating that
silica can act as a heterogeneous nucleating agent because
of the high specific surface area [33]. According to litera-
ture, the new silica/polymer interface reduces the nuclei size
needed for crystal growth. This is due to the creation of
an interface between the polymer crystal and the substrate,
which might be less hindered than the formation of the
corresponding free polymer morphology [34].

However, the nucleating effect is different in the sepa-
rate PP and POE phases. There is a significant shift of the

FIGURE 12. DSC melting curves for PP/POE nanocomposites.

crystallization onset temperature of approx. 10 ◦Cwith regard
to the TC

Peak 2 of the PP phase compared to a smaller shift of
approx. 1 ◦C of TC

Peak 1 of the POE phase: this indicates
that the silica exhibits a more pronounced effect on the PP
phase than on the POE phase. One of the reasons for it is the
favored location of silica in the PP phase caused by the lower
viscosity of the polymer compared to POE.

It is also worth noting that the silicas modified with the dif-
ferent types of silanes also exhibit different levels of impact
on the crystallization behavior of the PP/POE composites.
The silicas modified with unpolar silanes (TMES, DMDES,
MTES, VDMES and PDMES) exhibit a consistent shift on
the exothermic peak shown in TABLE 6 and marked in
red font, while the silicas modified with the polar silanes
(HS-silane, epoxy-silane, NCO-silane and amino-silane) give
various values of temperature shift. This is most likely due
to the differences in silica/polymer compatibility. The silicas
modified with unpolar silanes exhibit better compatibility
with the polymer blend than the silicas modified with polar
silanes. Moreover, the PP phase crystallization temperature
also varies with polarity of the silane and their chemical
nature.

Crystallinity was additionally calculated from DSC melt-
ing curves based on Equation (3):

XC =
1HC

w1H100
100 (3)

where,
1HC = heat of crystallization (J/g)
W = weight percent of the polymer.
1H100 is the heat of crystallization of the hypothetical

100% crystalline polymer. PP and POE blends are used in
our study; POE is a copolymer containing PE as crystalline
phase. In this equation, the1H100 value of 209 J/g for PP [35]
and 293 J/g for PE [36] were used. The results are presented
in Table 6. Compared to the neat PP/POE, the crystallization
energy of the PP/POE nanocomposites are rather similar,
indicating that the degree of crystallinity of PP/POE was not
changed.

The melting curves of all samples are shown in Fig.12.
Compared to the crystallization temperature, there is no
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TABLE 6. DSC crystallization results for PP/POE nanocomposites.

significant difference of melting temperature between neat
PP/POE and silica-filled PP/POE composites; this effect was
also reported in the literature [37].

2) X-RAY DIFFRACTION (XRD)
In order to gain a better understanding of the influence of the
modified silicas on the crystallization behavior of the PP/POE
nanocomposites, XRD measurements were conducted on all
the samples. The results are shown in Fig.13. Three dif-
ferent crystal phases (α and β crystals of the PP phase
and orthorhombic crystals from the PE phase) are detected,
as have been reported in previous work [30]. It is important
to notice that no obvious increase of the β crystal content
in the silica filled PP/POE composites was recorded (both
untreated and treated silicas). These results are similar to our
previous findings, while it is different from results reported
in literature: nanofillers to act as nucleating agents increas-
ing the amount of β crystals under favorable crystallization
conditions, [33]. Moreover, the degree of overall crystallinity
and the PP phase crystallinity were calculated by dividing the
total area of the crystalline peaks by the cooresponding area
of all peaks; and the results are shown in TABLE 7. There
is no significant difference in the crystalline phase content
for any of the nanocomposites, which is in line with the DSC

FIGURE 13. XRD curves of all PP/POE nanocomposites.

TABLE 7. Calculated crystallinity based on XRD curves of all PP/POE
nanocomposites.

results. In summary, 1% of silica does not significantly affect
the degree of crystallinity; however, it influences strongly
the crystallization behavior of PP/POE composites with an
emphasis on the PP phase, where it acts as a strong nucleating
agent.

3) SCANNING ELECTRON MICROSCOPY (SEM)
The morphology of the PP/POE nanocomposites was eval-
uated by SEM. The samples were broken after cooling in
liquid N2 (at a temperature below the Tg’s of the polymers)
and analyzed without surface coating. Two images of each
sample with magnification of 50K and 20K are shown in
Fig. 14, 15 and 16.

FIGURE 14. SEM image of unfilled PP/POE composites (Left 50K and
Right 20K).

The SEM pictures show clearly that there are two phases
evenly mixed together layer by layer in the unfilled PP/POE
composites in Fig.14 and in the silica filled PP/POE
nanocomposites in Fig.15 and 16. One of the phase has
a smooth surface, whereas the other one appears more
rough/granular. Moreover, it is interesting that all the sili-
cas, including the reference silica and the modified silicas,
are by preference located in one of the phases, the smooth
phase, which is coherent with the DSC results. From the
DSC results, it could be concluded that the silica has a
more pronounced influence on the PP phase by means of the
crystallization peak shift. Therefore, we can deduct that the
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FIGURE 15. SEM images of PP/POE composites filled with the reference
silica and modified hydrophobic silicas ((Left 50K and Right 20K)).

smooth phase shown in the SEM images is the PP phase,
while the rough phase is POE. The preferential location of
the silica in the PP phase can be explained by the lower
viscosity of this phase. PP is a thermoplastic material, while
POE exhibits elastomeric properties and therefore a higher
viscosity.

Regarding the dispersion of silica, Fig.15 (A and a) shows
some agglomerates in the reference silica filled PP/POE com-
posites, and the silica is not evenly distributed in the polymer

FIGURE 16. SEM images of PP/POE composites filled with the reference
silica and modified hydrophilic silicas ((Left 50K and Right 20K)).

matrix. Whereas the silicas modified with the unpolar silanes
(TMES, DMDES,MTES, VDMES or PDMES) exhibit better
dispersion and distribution within the polymer matrix, which
is shown in Fig.15 (B, C, D, E, F and b, c, d, e, f). This is due
to a higher compatibility between the modified hydrophobic
silicas and the PP/POE polymer matrix.

In Fig.16, all silicas modified with hydrophilic silanes
are shown (HS-silane, epoxy-silane, NCO-silane or amino-
silane). As all modified silicas shown in Fig.16 still retain
their hydrophilic nature, they are less compatible with the
unpolar polymer matrix. Consequently, these silicas are more
likely to agglomerate and form clusters, which are strongly
connected by polar-polar interactions, and therefore exhibit
a lower degree of dispersion and distribution in the PP/POE
polymer matrix.

4) THERMALLY STIMULATED DEPOLARIZATION CURRENT
(TSDC)
To investigate the influence of different surface-modified
silicas on the charge trapping properties in PP/POE nanocom-
posites, TSDCmeasurements were performed. The measured
TSDC spectra are shown in Fig.17 A, B and C. The cur-
rent formed by the relaxation of trapped charges during the
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FIGURE 17. TSDC results of all composites and the calculated trap density
and depth. Region 1 is the main peak temperature (left) and the trap
depth of the PP/POE composites filled with the silica modified with the
unpolar silane with 2 or 3 alkoxy groups. Region 2 is the main peak
temperature (left) and the trap depth of the PP/POE composites filled
with the silica modified with the unpolar silane with 1 alkoxy group.
Region 3 is the main peak temperature (left) and the trap depth of the
PP/POE composites filled with the silica modified with the polar silane.

thermally stimulated depolarization process is related to the
charge trap distribution in the nanocomposites. In principle,
the TSDC current intensity is associated with the trap density,
and the TSDC temperature is related to the trap depth. The
calculated trap depth vs. density distributions, obtained from
the TSDC spectra by using a numerical method presented
in [38] are shown in Fig.17 a, b and c.

As shown in the Fig.17, the silicas treated with different
silanes tailor the charge trapping properties of the PP/POE
composites. With increasing temperature the TSDC current
starts to rise from 30 ◦C onwards, corresponding to the onset
of charge relaxation. The TSDC measurement range for all
the PP/POE samples is the same, from 50 ◦C to 130 ◦C,
limited by the melting temperature of the PP phase. The
TSDCpeak intensity (apparent trap density) and peak temper-
ature (trap depth) are changing and varying for the PP/POE
nanocomposites filled with different modified silica.

It is interesting to notice that the TSDC peak intensity
(apparent trap density) is higher for the PP/POE nanocom-
posites filled with the silicas modified by unpolar silanes
such as TMES, DMDES, MTES, VDMES and PDMES than
for the silicas modified by polar silanes (HS-silane, epoxy-
silane, NCO-silane, amino-silane), as shown in Fig.17 D.
Since there is no significant difference in the degree of crys-
tallinity for the silica filled PP/POE nanocomposites based on
the DSC and XRD results, the differences in TSDC spectra
are attributed to new trap sites arising from the chemical
nature of the surface modification. These traps (associated
with the silica surface functionalization) are then dispersed
along with the silica throughout the matrix. In addition,
the interface between a silica and polymer matrix plays an
important role in the charge trapping properties. It has been
reported that adding nanoparticles can introduce a large inter-
facial area [6] resulting in higher amount of traps formed in
nanodielectrics [39].

In our study, we applied 9 silanes to be grafted onto silica
surface, which lead to different compatibilities between the
modified silicas and the polymer matrix. The silicas modi-
fied with unpolar silanes (TMES, DMDES, MTES, VDMES
or PDMES) exhibit better compatibility with the PP/POE
matrix. This resulted in better dispersion of the unpolar
modified silicas in the PP/POE matrix and implied a larger
interfacial area (Fig.18 left) between silica and PP/POE
matrix, which is consistent with the SEM results presented
in Figure 15. Consequently, a higher peak intensity (trap den-
sity) is measured as shown in Fig.17 A, a and 17 B, b. On the
contrary, the unmodified silica and the silica modified with
polar silanes (HS-silane, epoxy-silane, NCO-silane, amino-
silane) still tend to agglomerate and have a lower compati-
bility towards the PP/POE matrix, which is also seen in the
SEM images in Fig.16. As a result, compared to the unpolar
silica less interface (Fig.18 right) is formed. This resulted in

FIGURE 18. Schemes of the interface area between silica and matrix.
(Left: Unpolar silica, good dispersion; right: polar silica forming clusters.
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a lower TSDC peak intensity and apparent trap density as
shown in Fig.17 C and c.

The differences observed in TSDCpeak intensity (apparent
trap density) of the nanocomposites may also be linked to
differences in their trap depth and charge mobility. During
the isothermal polarization stage, the charges are injected
and trapped into the samples, with the temperature- and
field-dependent charge mobility and trapping phenomena
dictating the total amount of accumulated charge. Subse-
quently, during the thermally stimulated depolarization stage,
the previously accumulated space charge in the sample is
relaxed (detrapped). Thus, the TSDC peak intensity is in
principle related to the amount of injected charge (neglecting
e.g. charge recombination inside the specimen).With increas-
ing trap depth, the build-up of deeply trapped homocharge
layer near the electrode-specimen interface reduces further
charge injection, and thus higher temperature or electric field
would be required during the polarization step to inject more
charge. Therefore, under the same polarization temperature
and electric field, less charge is accumulated in the sample
with a higher trap depth, with this also resulting in lower
TSDC current intensity and apparent trap density, which is
line with our observations.

It is important to notice that the trap depth also varies
for the composites containing differently modified silicas
(Fig.17 e). It is obvious from Fig.17 E that there is a large
peak temperature shift (approx. 10 ∼30 ◦C) to a higher level
for the nanocomposites filled with the polar silane modified
silicas. These polar silanes contain hetero-atoms (S, O or N)
imposing the polar character of the functional moieties to
the silica surface. Therefore, the silicas modified with polar
silanes introduce deeper traps into the nanocomposites. This
phenomenon is also described in literature, where studies or
models indicate that polar groups or hetero-atoms of elec-
tronegativity higher than the one of carbon can introduce
deep traps [11], [40]–[42]. It is worth to note that the most
pronounced one is the silica modified with NCO and amino
silanes, which both contain a nitrogen atom.

Regarding to the silicas modified with the unpolar silanes
in Fig.17 A and B, the results are also very interesting.
Although there is no significant shift of the peak temperature
comparedwith the onemodifiedwith polar silane in Fig.17 C,
a small variation of approximately 5 ◦C is measured, see
Fig.17 E. In order to explain, why silica modified with unpo-
lar silanes give different results concerning the trap level,
a hypothesis is depicted in Fig.19. As discussed above, there
is an organic layer on silica surface after themodification. The
efficiency of the silane shielding of the silica surface is depen-
dent on the number of alkoxy groups in the silane molecule
as shown in Fig.19. Therefore, the surface properties of silica
are altered via the silane agents containing various numbers
of alkoxy groups. Consequently, the interface between silica
and the polymer matrix is also affected.

Due to condensation of silanes, the silica modified with the
silane containing two or three alkoxy groups shield efficiently
the silica surface based the calculated the amount of grafed

FIGURE 19. Schemes of silica surface modification and shielding effect
by silanes having different number of alkoxy groups.

silane on silica surface in Fig.8 right. As a result, all unreacted
silanol or siloxane groups are covered by silane molecules as
shown in Fig.19 (a) and (b). Therefore, the silicas modified
with DMDES or MTES have their surface covered by a
hydrocarbon layer, which exhibits a similar physicochemi-
cal character as the polymer matrix. As a result shown in
Region 1 in Fig.17 E, the temperature of the main TSDC peak
of the composites filled with DMDES or MTES modified
silicas is more or less the same as for the unfilled PP/POE
matrix. In conclusion, there is no new deep trap introduced
due to a similar energy state of hydrocarbons at the interface
between the modified silicas and polymer matrix.

However, if the silicawasmodifiedwith a silane containing
only one alkoxy group, there are still unreacted silanol or
siloxane groups exposed on the silica surface (Fig.19 (c)).
This inefficient shielding will influence the final interface
properties between the silica and a polymer matrix [40]. As a
result, the silica modified with TMES, VDMES or PDMES
have still unreacted silanol or siloxane group exposed to the
Polymer matrix. There are new deeper traps introduced by
the O- or Si-atoms on the silica surface, which are located in
the interface between silica and the polymer matrix, due to a
different energy state of atoms (O, Si, C, H). Consequently,
the maximum of the main TSDC peak temperature is shifted
to a higher temperature as shown in Region 2 in Fig.17 E.
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In order to further analyze the TSDC results, the amount
of charge injected during the isothermal polarization and
the amount of charge released from the samples during the
TSDC measurement were calculated by integrating the cur-
rent versus time curves during polarization and depolariza-
tion (Fig.20 left). In principle, for unpolar polymers, when
the temperature is above the glass transition temperature,
the TSDC current is mostly due to the space charge relax-
ation. This relaxation is influenced by the chemical and
structural characteristics [43].

FIGURE 20. Calculated injected charge and relative released charge
during TSDC.

In comparison with the neat PP/POE matrix, the amount
of charges injected into the samples during the polarization
decreased for the samples filled with the reference silica and
silane modified silicas, indicating lower charge mobility for
all these nanocomposites. It is also noticeable that a much
lower amount of charges was injected into the NCO silane
and amino silane modified silica filled composites than into
the composites containing silicas modified with other silanes.

The relative amount of released chargeswas also calculated
and shown in Fig.20 right. In general, this value increased
for all the nanocomposites containing the reference silica or
modified silicas compared to the unfilled PP/POE matrix.
However, there is a more significant rise when incorporating
the silica modified by NCO and amino silane. This means
that less charges are permanently trapped or dissipated in
the NCO or amino silane modified-silica filled composites.
In other words, incorporation of the NCO or amino silane
modified silicas can significantly suppress the space charge
accumulation effect of the PP/POE composites. This might
be due to the polar NCO or amino group, which can form
large dipoles and introduce deeper traps [41]. The trap depth
of these materials is large enough to block the movement
of the charge carrier, leading to suppression of space charge
formation [44].

IV. CONCLUSIONS
Based on the investigations performed and presented in this
paper, the following conclusions can be drawn:
• A new solvent-free silane-silica modification method
was developed. A catalyst (acid or base) successfully
accelerates the silica surface modification. The effi-
ciency of this method was supported by TGA, FTIR,
XPS and TEM elemental mapping measurements.

• Based on the TGA results, the modification of the silica
surface assisted by an acid catalyst is more stable than
the one achieved by a base catalyst.

• Successful silica modification was achieved using 9 dif-
ferent silanes, which was proven by TGA and FTIR
results.

• When blended with a PP/POE matrix, the silicas
increased the onset of the crystallization temperature due
to the nucleation effect. This effect was most prominent
in the PP phase, where the silica particles were prefer-
entially located. In terms of degree of crystallinity, DSC
and XRD results both confirmed that there is barely any
influence of adding these silicas.

• Based on SEM images, silica modified with unpolar
silanes were easier to disperse in a PP/POE polymer
matrix, while the ones modified with polar silanes
agglomerated in the polymer matrix.

• Based on the TSDC results, the efficiency of covering
the silica surface depends on the number of alkoxy
groups in the silane. This influences the charge trapping
properties noticeably.

• TSDC results have shown as well, that the PP/POE
nanocomposites filled with an unpolar silane increased
the charge trap density, while the ones filled with a polar
silica increased the charge trap depth.

• Silica modified with the polar silane containing nitro-
gen atoms showed less injected charges, which might
be an indication of suppressing the space charge accu-
mulation by introducing nitrogen-rich polar functional
groups.
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