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ABSTRACT

The Santo Domingo-Salinas ranges represent a unique Natural Area in the south-central
Pyrenees, and they were declarationas a Protected Landscape in 2015. Available biological
and geological knowledge is extensive but lacks of information on groundwater quality. In
this work we provide new hydrogeological results and integrate them with previously
available hydrogeological data. To do so, we have: (i) compiled existing hydrogeological
information, (ii) exhaustively developed an inventory of water points, (iii) sampled, analyzed
and interpreted the hydrochemical facies detected, and (iv) developed a preliminary
conceptual model for the hydrogeological functioning of the area. These information has
been integrated in an map that displays the chemical analyses of the two new campaigns
(Stiff diagrams), the flow rates and the three aquifer systems defined. This new information
improves and synthetizes the knowledge of the hidrogeology of the Santo Domingo-Salinas
ranges Protected Landscape and it will help in its future management and planning.
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1. Introduction dominant E-W morphostructural alignments that
are crossed by a deeply incised drainage network.
The morphology is mostly governed by lithological
and structural factors. The highest reliefs at the
Sierra de Santo Domingo y Salinas ranges
(>1500 m) represent the morphological expression
of the Pyrenean sole thrust and its associated struc-
tures. A second, lesser relief is conditioned by con-

glomerates accumulated in the apex of a major

The westernmost corner of the External Sierras in the
South-Central Pyrenees (Spain) was declared as a Pro-
tected Landscape by the Aragonian Government in
2015 (Decree 52/2015, BOA 72, 11767-96). The Santo
Domingo-Salinas ranges are characterized by some
remarkable conditions:

e Climate; these ranges represent the transition

between Mediterranean and Atlantic weather con-
ditions. The former dominates the region and the
latter is confined to the north slope of the range,
where snow may last some weeks during winter
time in the highest elevations (between 1000 and
1500 m).

Geology; the Santo Domingo-Salinas ranges rep-
resent the south-westernmost termination of the
Pyrenean sole thrust separating the Pyrenean fold
and thrust belt in the North from the Ebro foreland
basin to the South. The complex evolution of the
Pyrenean orogeny, especially during Eocene-Mio-
cene times, has produced outstanding geological
structures in the area such as large-scale conical geo-
metries, folded thrusts and down-plunging folds,
among others (Pueyo et al., 2020).

Geomorphology; the Santo Domingo-Salinas ranges
is a rough mountain terrain characterized by

Miocene alluvial fan (e.g. 1300 m, Puig Moné).
The horizontal sedimentary series dominate the
southern part of the area, where the fluvial network
is more dendritic (Teixell et al., 1992a, 1992b). Flu-
vial terraces are absent throughout the area but gla-
cis and slope deposits can be identified in some
locations.

Hydrology and hydrogeology; the area drains into
three of the most important river basins of the Ara-
gonian Pyrenees. Thus, the Asabén river drains
most of the northern slope of the Santo Domingo-
Salinas ranges into the Gallego basin, whereas the
northwestern part of the area is drained into the
Aragén basin through the Onsella river. Most of
the southern slope of the sierras drains into the
Arbas basin through the Arba de Luesia river and
its tributaries, Arba de Biel and Farasdués rivers.
Rivers in the area are characterized by modest
flows and are very hierarchical and irregular due
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to the low capacity of regulation of their basins, typi-
cal of pre-Pyrenean rivers. In spite of this, water
resources are abundant in the ranges; despite the
presence of many streams, ravines and springs,
hydrological information on the area is very scarce
(Sanchez-Moreno, 2012).

o Flora and fauna; well preserved and autochthonous
Scots pine (Pinus sylvestris), beech (Fagus sylvatica)
and Valencian oak (Quercus faginea) forests thrive
in the highest elevations and in the north slope of
the ranges. Evergreen oak (Quercus ilex) forest
with shrubs (Buxus sempervirens, Arbutus unedo,
Prunus spinosa, Genista scorpius) dominate in the
southern slope of the ranges. Poplars (Populus
alba, P. Nigra and P. tremula) and willows (Salix,
Sp.) grow along riverbanks. Alpine meadows are
found in the highest altitudes. Reforested pine forest
(Pinus nigra) represents 22% of total forest body.
Among other relevant fauna occurrences (Sus scrofa,
Capreolus capreolus, Cervus elaphus etc.), the popu-
lation of necrophagous raptors stands out (Gyps ful-
vus, Neophron percnopterus, Aegypius monachus
and few Gypaetus barbatus).

e Socio-economic factors; the area is characterized by
low population density that ranges between 0.65
and 3.2 hb/km® Local communities make public
use of the forest in most part of the territory,
where sustainable use of resources (agriculture and
livestock, forest management, hunting and mush-
room reserves, cultural and outdoor activities) is
promoted by local administrators.

These combination of features make the Santo
Domingo-Salinas ranges a unique Natural Area with
a high degree of environmental preservation, as was
initially recognized by the European Union as a Site
of Community Importance (SCI) in the European
Commission Habitats Directive (92/43/EEC). The
ES2410064-Santo  Domingo and Caballera ranges
together with ES2430063-Onsella River SCI's cover
more than 70% of the protected landscape. The area
was also identified as a Special Protection Area (SPA)
of Wild Birds, (SPA ES0000287). These especial preser-
vation areas are enclosed in the Natura 2000 Network
promoted by the European Union for the protection of
biodiversity and habitats.

In order to better improve the hydrogeological
knowledge on the Protected Landscape, we have gath-
ered all information on groundwater characteristics
that is available from public repositories. Apart from
controlling and managing surface waters quantity
and quality, the Ebro Water Authority (Confederacion
Hidrogrdfica del Ebro-CHE) developed an initial inven-
tory of groundwater points that consisted of 26 springs,
nine wells and a basic survey on the groundwater sys-
tem of the ranges. Additional information on the main
aquifers of the area and their hydrogeological

functioning was provided for the area in the framework
of the ES091MSBT033 report produced by the CHE for
the wider Santo Domingo-Guara region. We have had
also access to some supplementary hydrogeological
reports linked to the geological maps from the
MAGNA Program, Sheets Uncastillo (208) and
Agtiero, (209) carried out by the IGME, where a
more complete inventory of groundwater points (Gar-
rido-Schneider, 1995; Garrido-Schneider & Azcén,
1994) and a hydrogeological study of the right bank
of the Gdllego river (Garrido-Schneider, 2004) are
available. All in all, the existing information is scarce
and has led to a simplistic and generic hydrogeological
interpretation of the Santo Domingo-Salinas ranges. In
addition to gathering previous information, we have
made an exhaustive update of the inventory of water
points in the area by undertaking two new field cam-
paigns were new samples were taken and the phys-
ical-chemical parameters of the groundwater were
also measured. All these results are shown in the map
introduced in this paper with the aim of synthetizing
the hydrogeological information and helping in the
management plan of the protected landscape.

2. Map specifications

The map presented in this paper wuses the
ETRS_1989_TM30 projected coordinated systems
(Royal decree 1071/2007, BOE 207 35986/89, ED50
was formerly used in IGME maps), so that it fits the
requirements of the Directive 2007/2/EC of the Euro-
pean Union (March 2007) for establishing an Infra-
structure for Spatial Information in the European
Community (INSPIRE). It also fulfills the Mapping
Standards of Aragon (Spain; http://idearagon.aragon.
es/).

The available hydrogeological maps produced by the
IGME and CHE were ruled out as background map
since they display insufficient scale or very little detail
(usually 1:200,000 scale). On the contrary, and due to
the consistency between the lithology and the chronos-
tratigraphy (no major lateral changes in the sedimen-
tary facies are recognized in this sector), the
MAGNA geological (1:50,000 scale) maps are more
informative as a background layer and display much
more detail in some key detritic and carbonatic for-
mations that have a limited thickness but play a deter-
minant role in the hydrogeological interpretation.
Therefore, portions from MAGNA maps #208 (Uncas-
tillo) and #209 (Agtiero) (Garcia-Sansegundo et al.,
2009; Teixell et al., 2009 respectively) were used as
background. The digital version used in this paper
also benefits from the harmonization carried out
under the GEODE Program in the Pyrenees (Robador
et al, 2011, 2019). Additional improvements are
derived from Sanchez-Moreno (2012) and Sanchez-
Moreno et al. (2015) works. In this paper, the map



scale is 1:25,000. In addition, the map has been
enhanced with supplementary information on the
hydrographic network, the digital terrain model, topo-
graphy and the protected landscape boundaries (http://
iber.chebro.es/geoportal/, http://ign.es/web/ign/portal,
and https://idearagon.aragon.es/). Finally, the three
main defined hydrogeology systems have been also
drawn together with a qualitative estimation of the per-
meability derived from the geological formations in the
region (Garrido-Schneider & Azcon, 1994, 1995).

The Stift diagrams were calculated and generated
with Easy-Quim_5.0 (free software of the Hydrogeol-
ogy Group from the Polytechnic University of Cata-
lonia), and have been represented with the Surfer
v.15 software (Golden Software LLC). These dia-
grams are also displayed in the map for a quick
comprehension of the compositional and spatial dis-
tribution of the groundwater hydrochemistry
throughout the region. In addition, different water
points (spring, well and borehole) were located in
the map; their flowrates were measured in the field
during the summer campaign, and are represented
in the map with a blue spring symbol proportional
to the flow range.

3. General setting

The Santo Domingo-Salinas ranges (Figures 1 and 2)
are located across the Huesca and Zaragoza provinces
(Northern Spain). The study area covers a surface of
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about 230 km?. It is bordered to the north by the vil-
lages of Longas and Salinas de Jaca, to the east by the
Gallego river valley, to the south by the townships of
Luesia and Agiiero, and to the west by the mountain
pass between Luesia and Longas (Lurientes/San Marzal
area). Elevation decreases from north to south, with a
maximum altitude of 1524 m asl at the Pefa de
Santo Domingo summit and a lowermost point of
about 700 m a.s.l. in the southernmost sector of the
map. In the central area, South of the range backbone,
there are still outstanding reliefs (1303 m a.s.l.) such as
the Puig Moné (Figure 3).

In the southwestern sector of the range, the ‘Arba de
Luesia’ and ‘Arba de Biel’ rivers run north-south until
their coalescence to the Arba river, a first-order tribu-
tary of the Ebro river with a mean annual flow of
12.85 m>/s in 2018 (CHE). The ravines on the northern
slope drain their waters towards the Onsella river
(mean annual flow 1.99 m’/s in 2018, CHE). This
river runs from east to west before entering the Aragdn
river. In the eastern sector, the Asabon river (mean
annual flow 0.902 m>/s in 2018-CHE) rises in Villalan-
gua and flows eastwards through the northern slope of
the range to the Pefia Reservoir. Besides these main riv-
ers, there are many torrents and ravines, numerous
springs, waterfalls and river ponds.

The climate is continental-mediterranean with a
certain Atlantic influence in this part of the western-
most Pyrenean foothills. The surroundings of Santo
Domingo-Salinas ranges are quite humid, with an

Figure 1. Aerial picture of the hermitage of the Santo Domingo range. North is to the right.
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Figure 2. Aerial picture of the Salinas range and La Pefia reservoir in the background. North is to the left.

average rainfall of around 900 mm per year in the
northern slope of the area that decreases towards the
Ebro valley in the South. Precipitation falls mainly
during the winter-spring season, and are always scarcer
over the summer. The average annual temperature of
the area ranges between around 8°C in the higher
elevations to 11°C in the valleys. The winters are
cold, with frequent frosts, and the summers display
an average temperature of around 20-22°C (Ibarra,
2007).

4. Geological setting

The Santo Domingo-Salinas ranges represent the relief
caused by the outcrop of the South Pyrenean basal
thrust (Arenas, 1993; Millan, 2006; Nichols, 1987
Pueyo, 2000; Puigdefabregas, 1975; Turner, 1988). As
part of the External Sierras structural unit, the Santo
Domingo-Salinas ranges represent the southernmost
limit of the mountain range, separating the fold-and-
thrust belt (Pyrenees) to the North from its unde-
formed foreland in the South (Ebro basin) (Figure 4).

The oldest materials crop out at the core of the NW-
SE oriented anticline (called Santo Domingo) that is
associated with the South Pyrenean basal thrust (Figure
4). They are gypsum and clays belonging to the so-
called Keuper facies, and dolostones belonging to the
overlying Muschelkalk facies, both Triassic in age.
These lagoon deposits display very low permeabilities,
except for the highly conductive Muschelkalk

dolostones. Atop of the Triassic materials, the marine
transitional and bioclastic Upper Cretaceous lime-
stones (~ 70-85 M.a., <50 m in thickness, permeable)
are found. Just above, the Garum facies (usually red
sandstones) represent the Cretaceous-Tertiary bound-
ary (approx. 50 m in thickness). Conformably above
the Garum facies, the shallow platform limestones of
the Guara Formation are found (Silva-Casal, 2017;
Silva-Casal et al., 2019). This formation ranges in age
from 49 to 40 Ma, shows a maximum thickness of
150 in the area, and constitutes the most prominent
relief at both sides of the core of the Santo Domingo
anticline. Above the Guara Formation, and usually
forming topographic depressions due to their friability,
the marls of the Arguis Formation (~35-40 Ma, 300 m
in thick) crop out. They represent a marine platform
environment with some interbedded shallowing
sequences made up of reef and siliciclastic deposits
whose permeable is larger than that of the surrounding
marls. Continental sedimentation begun right after
deposition of the Arguis Formation, and is represented
(from bottom to top) by the thin (50 m) Yeste-Arrés
transitional sandstone, the Campodarbe Formation
(made up by more than 4500 m of alluvial sandstones
and clays) and the Uncastillo Formation (made up by
1000 m of mainly conglomerates and sandstones).
This latter formation represents the youngest materials
found in the area, and witnessed the exhumation and
subsequent erosion of the highest reliefs of the Pyre-
nees during the Miocene. Accurate dating of most of



JOURNAL OF MAPS 289

Figure 3. Map of the Santo Domingo-Salinas range Protected Area (see inset for location within the Aragén Autonomous Region),
with the locations of rivers, villages, water points and the views depicted Figures 1 and 2.

these sequences have been carried out during the last
years by means of magnetostratigraphic studies
(Upper Cretaceous-Garum, Pueyo et al., 2016; Guara
Formation, Rodriguez-Pinté et al,, 2012; Silva-Casal
et al., 2019; Arguis Formation, Costa et al., 2010;
Pueyo et al., 2002; Campodarbe Formation, Oliva-
Urcia et al., 2016; and Uncastillo Formation, Oliva-
Urcia et al., 2019).

The main structural feature in the area is the afore-
mentioned Santo Domingo anticline (Arenas et al.,
2001; Calvin et al., 2017; Mallada, 1881; Millan et al.,
1995, 2000; Oliva-Urcia et al., 2012; Puigdefabregas,
1975; Teixell & Garcia Sansegundo, 1995), which dis-
plays a prominent conical closure to the west in the
San Marzal pericline (Millan et al., 1992; Nichols,
1987; Pueyo et al, 2017). To the east, the anticline
reaches the Gdéllego River becoming a thrust fault and
shows an eastwards down-plunge. This outstanding
structure can be tracked along-strike the Pyrenean
front for more than 30 km and affects more than
6 km of stratigraphic pile. The fold axis of the Santo
Domingo anticline is horizontal throughout most of
its length but in its westernmost part, where it strongly
down-plunges to the west in San Marzal area in
response to the pinning effect caused by the disappear-
ance of the regional detachment level constituted by
the Keuper facies (Pueyo et al., 2020).

Towards the east (sector of Riglos pinnacles in the
Gallego river), the Santo Domingo anticline no longer
displays the apparently simple geometry of its central
sector. There, a set of Eocene and Cretaceous

limestones, along with relicts of Jurassic limestones,
appear south of the anticline. These outcrops attests
to the complex imbricate system of thrust sheets
(Upper Eocene) that developed prior to the completion
of the folding (Oligocene-Miocene) of the Santo Dom-
ingo anticline (Oliva-Urcia et al., 2019).

5. Methodology

Aiming to improve the hydrochemistry information on
the characteristics and distribution of the water drained
from the aquifers of the Santo Domingo-Salinas ranges,
two field campaigns were carried out. An initial cam-
paign in winter, with three field trips (13—14 December
2016, 22—24 February and 15-16 March 2017), was fol-
lowed by a second one in summer (22-28 July 2017). In
these campaigns, the inventory of water points was
updated and completed, and water samples and ‘in
situ” measurements of physical-chemical parameters
were also taken (Figure 5). In order to review and
update the water points database, the information col-
lected from the CHE and the IGME was previously
studied, and it was completed with additional fountains
and springs found during the development of this work
and also reported by the local forest rangers (Luesia
and Ayerbe headquarters). In total, information from
179 water points was compiled, nine of them being
boreholes and eight wells. The total number of water
points falling within the boundaries of our study area
reaches 78 springs. From them, 58 (none of them
wells or boreholes) were sampled and studied with
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Figure 4. Geological map of the Western External Sierras (Oliva-Urcia et al., 2012). A simplified stratigraphic column and two cross-
sections (Millan et al., 1995) are also shown together with the position of the main map of this paper.

physical measurements and chemical analysis. In
addition, the flowrate of these springs were also
measured.

Electrical conductivity (EC), temperature (T°) and
pH measurements were taken during our campaigns
using portable meters (CRISON pH25/CH35). These
devices were calibrated before measuring in the field
every day. The alkalinity (ALK) was determined in the
field by volumetric titration (0.1 N H,SO,) (HACH
AL-AP). The air temperature was measured with a digi-
tal thermometer. All this information is synthesized in
Table 1. Water samples for standard chemical analyses
of main elements were analyzed at the IGME Water
Laboratory in Tres Cantos (Madrid) using mainly

spectrometric techniques. Spectrophotometry (ALLI-
ANCE Integral Plus) for SO, NOs3, SiO,, HCO; and
Cl and AAS (flame operation, VARIAN FS-220) for
Na, K, Mg, Ca and Fe (Garcia-Gil et al., 2018; San-
chez-Espana et al., 2005).

The chemical analyses were represented in the Piper
and Stiff diagrams. The Piper (1953) diagram consists
of two triangles with a rhombus that collects infor-
mation from both triangles. Cations are represented
in the lower-left triangle whereas anions are rep-
resented in the lower-right triangle. The data are con-
verted from mg/l to meq/l and transformed into
percentages. These diagrams are very useful and
allow for representing numerous analyses at a glance.



Figure 5. Fountains and springs sampling.

Besides, they help identifying geochemical similarities
since different waters types are grouped in specific
regions of the diagram (Custodio & Llamas, 1983).
The Stiff diagrams (Stiff, 1951) represent the milliequi-
valents per liter (meq/1) concentrations of main anions
(right) and cations (left) in parallel rays. Then, a poly-
gon is generated connecting those values and the
resulting shape promptly illustrates the water type,
allowing for rapid, inter-site comparisons.

6. Results

The physical and chemical analyses performed in this
work are summarized in Table 1. The main map of the
paper represents also an overview of the physical and
chemical results obtained in this work. Regarding the
chemical composition, the Piper (Figure 6) and Stiff dia-
grams (Main Map) witness a relative spatial chemical
homogeneity and highlights dominant calcium and/or
magnesium bicarbonated water types. This is consistent
with the predominance of carbonate rocks in the Santo
Domingo-Salinas ranges. To a minor extend, calcium sul-
fated and sodium chloride waters are also observed at the
core of the anticline, were Triassic evaporites crop out
(Calvin et al., 2017 and references therein).

Some chemical characteristics are better understood
considering the geological background of the different
water points. The chemical analyses of groundwater
allow us to differentiate four main types of water in
the Mesozoic and Cenozoic limestone formations: (a)
calcium bicarbonate drained by limestones from the
Cretaceous-Eocene aquifer, (b) calcium-magnesium
bicarbonate drained by limestones and dolomites
from Muschelkalk facies (Triassic), (c) calcium sulfate
and (d) sodium chloride, both related to siltstones
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and evaporites found within the Keuper facies (Trias-
sic). The largest flows are always measured at the foot-
hills of the northern slope; this is the case of the Ibon de
Nofuentes (point #50), with 15 I/s, and the Fayar spring
(#87), where 201/s were gauged during the summer
period (Garrido-Schneider & Azcén, 1994).

On the other hand, the continental Tertiary hydro-
geological system is located in a series of detritic (silt-
stones and sandstones) Oligo-Miocene rocks in age.
There, the type of water is mostly calcium-magnesium
bicarbonate type, with a maximum measured flow of
0.3 I/s during summer periods. Similarly, in the Plio-
Quaternary hydrogeological system, the springs are
numerous, ephemeral during the summer period, and
draining mainly calcium-magnesium bicarbonate
waters. The maximum flow measured during the sum-
mer period is 11/s.

7. Preliminary analysis of the groundwater
systems

The information and results obtained in this work sup-
port the preliminary interpretation on the three main
hydrogeological units proposed by Garrido-Schneider
(1995), and provide novel information on the charac-
teristics, boundaries and functioning of these three
hydrogeological units. According to orographic cri-
teria, structural and sedimentological characteristics,
field observations, and chemical analysis of ground-
water, the three distinctive hydrogeological systems
can be defined as follows:

(1) Santo Domingo-Salinas hydrogeological system is
composed of Mesozoic and Tertiary limestone for-
mations: (a) Muschelkalk limestones and



Table 1. Physico-chemical parameters and chemical analysis of the water samples taken in the field trip in winter (blue) and summer (red.)

EC Lab.
No. FEATURE NAME Date Flow (I/s) pH EC (uS/cm) T2 water (°C) T2 (°C) ALK. HCO3 (mg/l) HCO; meqg/l SO, meq/l Cl meg/l NO;-meq/l Nameq/l K meq/l Cameq/l Mg meq/l (uS/cm) Ph Lab.
76  SAN FELICES-1 12/13/2016 0.5 6.82 492 9.8 7.7 260 287 0.18 0.19 0.30 0.21 0.01 2.80 0.66 349 723
7/24/2017 7.53 471 257 222 238 297 0.13 0.18 0.12 0.29 0.01 3.10 0.08 457  7.66
10  ALISOVA SPRING 1213/ 0.03 6.96 558 13.05 9 298 4.20 0.28 0.19 0.04 037 0.02 4.00 0.50 469 7.6
2016
7/24/2017 0.005 6.9 581 14.05 215 290 3.77 023 0.17 0.01 0.50 0.02 325 0.58 560 7.68
86  ASNOS SPRING 12/13/2016 039 6.92 414 11.55 46 235 3.44 0.12 0.09 0.01 0.12 0.00 295 0.74 348 734
7/24/2017 0.01 7.8 464 15.65 221 219 331 0.10 0.08 0.01 0.22 0.00 3.10 0.08 450  7.65
71 ARRIELLO SPRING 12/13/2016 ~3 7.7 421 11.85 245 282 0.11 0.07 0.04 0.09 0.01 245 0.66 304 729
7/24/2017 033 6.9 467 13.1 225 228 3.10 0.10 0.08 0.04 0.15 0.01 3.25 0.08 455 753
7 CHINCHON SPRING 12/13/2016 0.2 6.92 520 12.25 57 260 3.20 0.52 0.41 0.01 0.69 0.01 255 0.91 409  7.29
7/24/2017 0.023 691 546 15.75 201 284 1.20 0.42 0.00 0.79 0.02 2.60 1.24 530 775
6 POMPILLO SPRING 12/13/2016  0.05 6.94 525 1135 10.6 350 3.87 0.11 0.10 0.01 0.49 0.02 3.00 0.83 405 743
7/24/2017 0.008  7.43 577 14.75 204 294 3.20 0.10 0.12 0.01 1.04 0.02 205 033 468  7.56
9 POYO SPRING 12/13/2016  0.02 7.7 443 9.85 243 2.66 0.24 0.17 0.01 0.12 0.01 245 0.66 303 774
7/24/2017 0.023 756 475 134 19.1 244 270 0.22 0.15 0.00 0.17 0.01 2.60 0.41 418 765
8 L'ARTICA SPRING 12/13/2016  0.02 733 532 6.85 4.7 294 336 0.34 0.25 0.01 0.13 0.01 355 0.50 395 7.62
7/24/2017 0.007 745 557 19.9 20 248 297 032 0.25 0.00 0.19 0.01 325 0.25 408 744
70  FORMAYOR-2 12/13/2016 1 7.08 439 11.05 6.9 256 279 0.17 0.11 0.02 0.12 0.00 2.60 0.50 309 729
7/24/2017 0.96 7.16 448 14.65 17.9 240 4.56 0.12 0.09 0.01 0.15 0.01 4.45 033 438 744
61  GOYA SPRING 12/13/2016  0.66 7.02 486 12.95 255 279 033 0.12 0.16 0.21 0.01 3.00 033 339 727
7/24/2017 038 6.88 469 12.15 17.5 240 292 0.19 0.1 0.08 0.24 0.01 295 0.08 456 7.52
74  CELESTINO SPRING 12/14/2016  0.66 7.21 385 mns 230 293 0.10 0.08 0.02 0.09 0.00 2.60 0.58 315 733
7/24/2017 035 7.16 438 154 185 236 259 0.08 0.06 0.01 0.14 0.01 265 0.08 403 757
36 BOJ SPRING 12/14/2016 0.5 714 497 11.05 263 379 0.18 035 0.02 0.52 0.03 2.80 1.16 423 7.28
7/28/2017 03 7.03 536 10.35 30.2 283 534 0.12 0.26 0.01 0.60 0.04 4.40 0.91 525 743
12 LAS CASAS 12/14/2016 0014  6.99 674 11.85 5.6 274 2.61 0.44 0.65 0.95 0.13 0.05 4.05 0.66 450 7.5
7/28/2017 0.01 6.97 656 14.45 26.2 272 3.95 0.34 0.49 0.71 0.17 0.04 5.00 0.58 632 732
11 HUERTALO SPRING 12/14/2016 ~3 7.49 390 9.5 5 216 3.15 0.15 0.24 0.02 0.34 0.01 240 0.99 344 754
7/28/2017 6.93 535 133 245 272 4.92 0.1 037 0.01 0.60 0.01 3.95 0.66 537 744
35 TRECE MEDIOS 12/14/2016  0.03 71 483 11 253 3.10 0.28 033 0.01 0.49 0.02 2.60 0.74 382 732
7/28/2017 0.05 7.01 530 11.85 282 234 4.4 0.50 0.53 0.01 0.87 0.02 3.80 0.83 518 745
1 PINO SPRING 12/14/2016  0.04 7.21 387 7.05 230 349 0.15 0.08 0.01 0.06 0.00 330 0.58 368 733
7/28/2017 0.03 7.14 447 11.55 241 ? 3.80 0.13 0.07 0.00 0.08 0.01 3.60 0.17 438 754
47  BERROS SPRING 12/14/2016 ~3 7.34 393 1.2 5 227 3.23 0.28 0.08 0.04 0.10 0.01 285 0.83 362 748
7/28/2017 =~ 731 427 1.2 204 252 4.25 036 0.08 0.03 0.15 0.01 3.80 0.83 435 764
2 YESO SPRING 12/14/2016 ~ 4 7.88 1154 1.4 6.4 199 170 1042 0.25 0.03 035 0.03 10.40 231 1008  7.49
7/28/2017 =~ 7.73 1215 13 254 217 284 11.22 0.49 0.02 0.59 0.04 11.60 231 1084  7.52
3 SANTO DOMINGO SPRING 12/14/2016  0.03 7.78 328 6.85 32 209 334 0.08 0.04 0.02 0.05 0.02 215 1.40 340 782
7/28/2017 7.7 362 11.85 15.9 213 3.84 0.06 0.03 0.01 0.07 0.01 250 1.24 363 773
4 LISAN SPRING 12/14/2016 0.5 722 486 10.2 255 3.08 0.84 0.07 0.02 0.11 0.01 3.15 091 406 745
7/28/2017 7.14 519 10.7 17.9 252 4.51 0.82 0.07 0.01 0.20 0.01 4.60 0.91 502 746
5 MARIGUARILLA SPRING 12/14/2016  0.03 71 607 9.95 74 294 5.61 123 0.22 0.02 0.44 0.03 4.95 1.65 596 7.28
7/28/2017 0.03 6.94 628 12.05 18.1 288 5.08 127 0.23 0.01 0.58 0.04 4.50 157 590 7.51
44 BCO. DE CALISTRO 2/22/2017 0.041 7.27 1450 10.35 264 6.00 0.25 0.08 0.00 0.15 0.03 5.40 091 488 7.4
166 ARBA DE BIEL-2 2/22/2017 7.28 595 7.2 290 6.10 1.05 0.08 0.00 0.15 0.05 4.85 2.56 592 740
7/24/2017 ~ 003 799 387 11.95 15.6 180 252 0.53 0.13 0.00 0.24 0.02 1.90 0.99 370 782
45  ARBA SPRING 2/22/2017 0.01 7.21 614 7.5 254 6.10 137 0.09 0.00 0.12 0.04 545 1.82 577 723
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90  RALLA DE LAS PESETAS 7/25/2017 0

87  FAYAR SPRING 2/22/2017 23 7.3 451 8.9 218 5.02 0.27 0.10 0.00 0.14 0.02 4.55 0.74 433 7.6
7/25/2017 0.6 7.09 455 9.45 16.8 230 274 0.28 0.09 0.01 0.16 0.01 250 0.58 435 773
167 O RINCON DE SOLER 2/22/2017 04 YAR 724 10.5 320 6.75 1.42 0.32 0.01 0.61 0.03 575 231 675 692
7/25/2017 7.15 724 15.7 229 312 6.07 1.69 033 0.01 0.78 0.02 5.10 231 665  7.62
89  SAN MIGUEL DE LISO 2/22/2017 735 701 10.8 351 7.74 0.71 0.14 0.01 039 0.76 5.70 1.90 658  7.06
7/25/2017 6.95 660 14.6 237 330 7.05 0.59 0.11 0.03 0.41 0.41 545 1.74 616  7.25
88 O ACHOCETA SPRING 2/22/2017 0.6 735 695 9.4 7.67 0.71 0.23 0.00 0.48 0.06 5.65 240 646  7.08
7/25/2017 0.004  7.66 803 146 222 375 5.25 0.96 0.58 0.00 1.10 0.04 325 248 629 736
83 FUENCALDERAS 7/25/2017 0.031 6.78 706 14.95 216 322 6.89 0.45 0.39 0.26 0.75 0.13 5.80 1.40 632 727
92 JUANES SPRING 2/23/2017 6 71 547 9.4 239 5.48 115 0.17 0.00 0.27 0.03 4.60 157 519  7.06
7/26/2017 1 7.2 601 13.75 256 270 4.25 0.97 0.28 0.00 0.51 0.02 3.50 157 545 758
51 PUIG DEL PANO 2/23/2017 5 8.22 410 8.25 220 4.26 031 0.06 0.01 0.14 0.03 3.00 132 381 744
7/26/2017
50  IBON DE NOFUENTES 2/23/2017 45 7.27 491 89 254 543 0.27 0.07 0.00 0.12 0.03 3.95 1.74 461 7.14
7/26/2017 15 6.93 492 10.15 174 240 430 0.29 0.08 0.00 0.20 0.02 295 1.57 440 739
169 JULIANIN SPRING 2/23/2017 0.1 8.09 591 9.5 275 5.25 112 0.18 0.00 0.48 0.05 3.65 240 531 7.29
7/26/2017
93 BUICHO SPRING 2/23/2017 ~5 7.44 459 10.5 233 5.28 0.23 0.08 0.01 0.16 0.02 4.25 0.99 440 737
7/26/2017 ~1 7.77 492 12.55 225 254 3.82 0.28 0.10 0.03 039 0.01 3.15 0.74 41 7.54
106 RATA SPRING 2/24/2017 ~2 7.8 564 1135 233 4.66 157 037 0.00 038 0.04 435 174 521 747
7/27/2017 ~2 8.03 850 138 3.87 279 375 0.00 445 0.08 430 215 944 801
109 SALADA SPRING 7/27/2017 2 6.54 ~199.900 143 ~ 30 105 14.10 242.77 6645.67 0.00 6599.35  80.69 51.00 11405 632000 6.76
110 BASA SPRING 2/24/2017 1.5 8.08 501 9.75 186 3.77 115 0.39 0.00 0.40 0.03 340 1.65 449 773
7/26/2017 ~1 8.23 461 16.55 170 3.00 1.1 0.38 0.01 0.49 0.02 2.80 1.40 418 7.84
111 FUENFRIA SPRING 2/24/2017 1.5 8.06 418 5.95 177 349 0.77 0.1 0.00 0.12 0.02 335 0.91 377 781
7/26/2017 0.005 7.76 490 11.75 18 163 246 2.26 0.09 0.00 0.13 0.02 3.60 0.91 446 7.62
112 BANOS SPRING 3/15/2017 7 7.9 522 1135 186 3.61 1.30 0.48 0.00 0.60 0.04 3.15 1.74 456  7.68
131 KM 257 3/15/2017 0.25 7.34 484 9.85 269 5.15 0.30 0.05 0.00 0.09 0.00 445 116 442 742
132 ANTES KM 257 3/15/2017 03 8.05 384 935 188 3.64 0.89 0.09 0.00 035 0.04 270 1.82 392 806
172 CARCAVILLA SPRING 3/15/2017 25 7.7 971 14.25 198 4.25 330 2.54 0.02 323 0.06 5.05 223 803 778
7/23/2017 =15 7.4 923 15.8 219 2.89 321 263 0.03 312 0.06 3.75 223 790 783
173 TRAVERTINO DE CARCAVILLA 3/15/2017 ~50 748 1019 145 438 357 2.88 0.02 358 0.07 515 240 870 755
7/23/2017
130 CARCAVILLA 3/15/2017 1 7.96 1350 1.9 222 4.13 11.21 0.28 0.00 0.71 0.04 1240 3.64 1498 749
127 PK. 254.700 3/15/2017 25 7.98 1299 9.25 168 AR 1213 0.13 0.00 035 0.05 11.00 372 1409 778
7/27/2017 0.05 8.08 328 17.6 188 285 0.38 0.08 0.01 0.16 0.01 2.05 124 346 797
118 SAN FELICES 3/16/2017 0.25 6.78 794 124 264 5.74 0.89 0.17 0.00 0.47 0.01 43 223 540 732
7/22/2017 0.1 6.84 626 13.85 281 4.07 0.94 0.17 0.00 0.52 0.02 275 215 594 754
115 AGUERO SPRING 3/16/2017 0.6 73 567 1335 206 430 0.48 0.13 0.00 0.24 0.01 3.95 1.07 408 742
7/22/2017 ~ 03 6.95 421 17.85 180 2.80 047 0.13 0.00 0.26 0.02 255 0.74 405 763
113 VIEJA SPRING 3/16/2017 0.22 6.98 798 12.85 286 2.70 031 0.16 0.05 0.27 0.12 1.50 1.57 294 778
7/23/2017 0.014 69 650 16.95 302 6.07 0.50 0.26 0.26 0.49 047 435 215 632 755
174 PALOMAS SPRING 3/16/2017 7.36 912 13.65 348 748 032 0.29 0.00 0.55 0.01 4.95 2.64 605  7.50
7/23/2017 0.0007 7.43 681 20.75
162 BUICIOS SPRING 7/22/2017 0.02 7.53 465 30.5 200 277 038 0.05 0.00 0.14 0.02 1.80 1.40 395 788
114 CALENTURAS SPRING 3/16/2017 0.03 7.9 702 109 264 223 0.13 0.09 0.01 0.49 0.01 130 0.99 224 777
7/22/2017 0.01 6.91 547 143 272 4.48 023 0.16 0.04 11 0.03 235 1.24 466  7.65
128 LOS IBONES 3/16/2017 ~2 6.97 653 12.75 538 0.59 0.10 0.00 033 0.01 4.15 174 476 739
7/23/2017
175 GARUM-GALLEGO 3/16/2017 0.5 7.27 590 137 239 5.08 0.14 0.07 0.00 0.12 0.01 3.80 1.40 421 7.56
(Continued)

€6C O SV 40 TYNYNOr



294 (&) C.OLIVANETAL.

flesagx dolostones (high porosity and permeability by
g~~~ fracturing and dissolution) are bounded at the
5. _lgnges base by Muschelkalk siltstones and at the top by
JEEmmene siltstones and evaporitic rocks (gypsum and halite)
s from the Keuper facies; (b) Upper Cretaceous
g LIS limestones and calcarenites; and (c) Eocene lime-
— = N - -
) stones (Guara Formation). Both Cretaceous and
- Eocene rocks display high permeability, because
g gRESR of fractures and karstification, but low porosity.
S Interestingly, the Garum facies (siltstones and
S o sandstones) are interbedded between the two lime-
SRR R=-K=] . . .
glssss3 stone formations, but its small thickness appears to
> allow for an effective hydraulic contact between
§§§E§§ the Cretaceous and Eocene aquifers. The mud-
= stones of the Arguis Formation constitute the
= upper and thick impermeable seal of the system.
g — N O O —
Eloac SS9
Om oo oOooo
= The hydrogeological functioning of the system seems
T3S LRR to be strongly conditioned by the structural control over
g cooc—o .
= the geomorphology of the system. The subvertical bed-
- ding of the aquifer formations are captured by the drai-
g RBESR nage network, which display an orthogonal
g arrangement with respect to the dominant tectonic
- grain at both slopes of the range. In this context, the
ﬂg cgaxy low permeable formations above the aquifer act as a
g " e = . barrier for the hydraulic gradient and preclude the
T water recharge (precipitation) to follow the topographic
E: gradient of the range. In addition, the significant frac-
g pomms turing pattern of the evaporites (Muschelkalk and Keu-
g Nm e per) at the core of the anticline seems to promote the
< formation of preferential flow paths responsible for
= . . o .
_ the occurrence of saline springs with significantly higher
i: § 5 g flows than those expected from these rock formations,
: as it is the case at the Yeso spring (point #2) and the Sal-
% - o e ada spring (point #109).
N Y QS =
JEESSP®
- (1) The continental Tertiary hydrogeological system is
g Mg located in a series of detritic (siltstones and sand-
A ~
= Yo stones) Oligo-Miocene outcrops that constitute a
- thick multilayer aquifer (from low to very low per-
T 28388¢ meability) only present in the southern flank of the
= ranges. The high vertical anisotropy gives rise to
3 T~38 numerous perched and small aquifers of free char-
g (o] 2 o oo .« . .
= acter draining above the hydrographic network
NN after a short transit time in the aquifer. Part of
Soooo . . .
SSSSS the water infiltrates deeper forming a regional
E O N OIS~ . H
Bl533I8R level of saturation towards the Ebro basin. These
waters are characterized by a much longer resi-
dence time in the aquifer, which are sporadically
s 2%
S =F captured by the few existing boreholes. Consider-
. (] a
B w2 29 ing the chemical composition of these waters,
3 =Y =3< . . .
£ =5 =8 most of springs in this system are related to
o
§ = 3 2 E < perched aquifer drains.
- = é S83g (2) The Plio-Quaternary hydrogeological system, rep-
o g Zoa . . .
= o oo resented by terraces, glacis and colluvium, consti-
= S RRR tutes small, isolated superficial, low thickness and
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Figure 6. Piper diagram of the water sampled (winter and summer campaigns 2016-2017).

poor lateral continuity aquifers (medium-high
permeability).

8. Conclusions

The physical and chemical studies conducted in this
work were aimed at characterizing the hydrogeology
of a region that has a high natural value but is mainly
devoid of pre-existent information. A preliminary con-
ceptual model of the hydrogeological functioning of the
Santo Domingo-Salinas ranges and the hydrochemical
characterization of their waters have been also estab-
lished. Thus, three aquifer systems with independent
hydrogeological functioning have been identified,
based on the hydrogeological systems defined by Gar-
rido-Schneider (1995). The most important one, the
Santo Domingo-Salinas system, it is composed of

Mesozoic and Tertiary limestones formations that
crop out mainly in the northern slope. On the southern
slope, these beds only crop out at high elevations, bor-
dering and forming part of the backbone of the ranges.
Discharges are much more important in the northern
slope than in the southern one, in both cases constitut-
ing the base flow of the hydrographic network in the
region. Four types of water were differentiated under
the light of chemical analyses: calcium bicarbonate
water drained by Cretaceous-Eocene formations, cal-
cium-magnesium bicarbonate water drained by
Muschelkalk facies (Triassic), and calcium sulfate and
sodium chloride water drained by the Keuper facies
(Triassic).

In order to improve our knowledge on the hydro-
geological functioning of these systems, we recommend
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to follow the next steps: (a) to perform new field cam-
paigns for physical-chemical analysis of groundwater
in different periods; (b) to carry out flow measurement
campaigns aiming to control the discharge of the main
aquifers; (c) to interpret and represent the data, and to
compare the hydrogeological functioning with studies
in nearby areas (Olivan, 2013; Pérez-Bielsa, 2013) as
well as with analogous methodologies (Sarkar & She-
khar, 2015; Singh et al., 2015). A vulnerability study
of the groundwater should be considered as a following
step, as it has been done in other areas at risk of being
contaminated (Vidal Montes et al., 2016, 2017), pro-
vided that enough information is collected in the
future. An interpretative map for the adequate man-
agement of land uses in this kind of environment will
be useful and novel.

Beyond outreach purposes, the hydrogeological
knowledge presented in this paper can provide very
useful information to manage the demand of water
resources in the near future. This is the case of the
Uses and Management Master Plan (PRUG acronyms
in Spanish) of the Natural Protected Landscape, which
is currently in the preparation phase. The final agreed
PRUG will establish the regulations for the natural
heritage (including water resources) of the Santo Dom-
ingo and Salinas ranges. Within this frame, the updat-
ing of the points inventory and the
hydrogeological characterization here defined will be
valuable to locate new and potential sources for water
supply, livestock, agriculture or fire prevention and
extinction. In addition, outstanding springs (Fuente
del Yeso, Fuente Salada, Ib6n de Nofuentes) are better
characterized now.

Finally, one of the main goals of the Protected Land-
scape is to highlight remarkable natural values of the
territory. The map, data and knowledge derived from
this paper will be useful to articulate hiking and camp-
ing activities as well as to delineate cultural or natural
trails in the area. Additionally, part of the water inven-
tory may be included within the points of geological
interest and geological footpaths (Sanchez-Moreno,
2012).

water

Software

Esri ArcGIS 10.2 was used for gathering and visualiza-
tion physico-chemical parameters groundwater and
the final map was compiled in ArcMap 10.2.2.

Data repository

The data shown in this paper (Table 1) will be inte-
grated in available data bases to grant the FAIR prin-
ciples including the public and interoperable access.
http://info.igme.es/BDAguas/.
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