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Abstract——One of the most critical issues in the evaluation of
power systems is the identification of critical buses. For this
purpose, this paper proposes a new methodology that evaluates
the substitution of the power flow technique by the geodesic vul‐
nerability index to identify critical nodes in power grids. Both
methods are applied comparatively to demonstrate the scope of
the proposed approach. The applicability of the methodology is
illustrated using the IEEE 118-bus test system as a case study.
To identify the critical components, a node is initially discon‐
nected, and the performance of the resulting topology is evaluat‐
ed in the face of simulations for multiple cascading faults. Cas‐
cading events are simulated by randomly removing assets on a
system that continually changes its structure with the elimina‐
tion of each component. Thus, the classification of the critical
nodes is determined by evaluating the resulting performance of
118 different topologies and calculating the damage area for
each of the disintegration curves of cascading failures. In sum‐
mary, the feasibility and suitability of complex network theory
are justified to identify critical nodes in power systems.

Index Terms——Power system, critical node, complex network
theory, cascading failures, load flow.

I. INTRODUCTION

In recent years, power systems have become part of the
most important critical infrastructures for the development of
any country. These networks may be prone to undesirable
events such as equipment failures, human errors, procedure
failures, or natural disasters that have the potential to affect
the combined operation of assets and lead to serious conse‐
quences for the whole system [1]. For example, an event in
a substation could degrade the performance of power sys‐
tems and trigger a series of cascading events caused by the
malfunction of critical facilities [2]. The blackouts in the

United States and Canada in 2003, Brazil and Paraguay in
2009 and India in 2012 illustrate the severe effects of these
unwanted events [3]-[5].

Researchers have increasingly focused on the mechanisms
that explain the previous incidents, as they have found that
the disruption of certain buses could severely affect the nor‐
mal performance of the infrastructure [3]. Therefore, it is
necessary to identify critical components that could have cat‐
astrophic consequences on the power grid if eliminated. The
identification of these assets alone could increase the reliabil‐
ity of power systems and reduce the risk of blackouts [6].

To this end, various methods have been used in literature,
among which multi-criteria analysis techniques [7], mixed-in‐
teger linear programming [8] - [10], Monte Carlo techniques
[11], controllability theory [12] and fault chain theory [13]
have been highlighted. More recently, a new methodology
has been employed for the identification of critical assets in
power networks, known as complex networks or graph theo‐
ry [14] - [19]. This technique models the electrical networks
as a graph composed of nodes and links. The models repre‐
sent electrical substations, and the links represent transmis‐
sion lines [20]. The basic concept behind this method is to
use statistical indicators or centrality measures that describe
the topological characteristics of the systems. Until now, the
latest developments in graph theory have provided new
guidelines for the study of power systems [21]. The follow‐
ing is a summary of the most notable works in this research
area.

Reference [14] provides a graphic representation of a pow‐
er system composed of vertices and edges in which the latter
have been weighted by the admittances of transmission lines
of the infrastructure. In addition, the use of alternating cur‐
rent (AC) power flow model is combined to propose a nodal
degree index, which is useful for determining critical buses.
Similarly, [16] proposes the weighted entropy index to identi‐
fy the most vulnerable transmission lines of the electrical
network. In some cases, the addition of some assets could
cause a decrease in power system performance, and small
changes in network topology could drastically increase the
vulnerability [22], [23]. Thus, stakeholders should consider
to make new investments to increase the robustness of the in‐
frastructure against cascading failures or unwanted events.
Several works have followed the same line of the research
using different case studies [18], [19].
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Some research works only apply system connectivity and
purely topological indices [15]. Others propose the use of
combined indicators such as the hybrid flow betweenness ap‐
proach, which considers the power flows and transmission
lines’ reactance [17], [21]. The electrical and connectivity
parameters of the networks are also evaluated, considering
the properties of the components and the mutual effects be‐
tween facilities [2], [24].

Similarly, other academics model the power grid as a
weighted directed graph, through which they construct inci‐
dence matrices of buses and lines to determine the most criti‐
cal buses [25]. Other recent works consider the inherent
structural characteristics of systems by using multidimension‐
al graphs, sensitivity approaches, eigenvalues as well as new
centrality indices formulated from the k-shell decomposition
method and response matrices of both the load and generator
nodes [26]-[30]. We find that the graphical representation of
the electrical network facilitates a prompt identification of
weak elements whose disruption could have an undesirable
impact on power system stability.

Given the extensive development of the communication,
computing, and control technologies, power systems become
smart grids, requiring the reinforcement of protection and re‐
liability strategies, and a detailed analysis of new contingen‐
cies in the face of various types of threats [31]. Therefore, it
is necessary to discuss and analyze the vulnerability of smart
grids, considering the new assets and cyber layers that com‐
pose them. In this sense, the complex network theory has
many applications, mainly aiming at quantifying the infra‐
structure robustness against physical sabotage, cyber-attacks,
and simultaneous attacks [32]-[34].

From a broader view of the literature, the results obtained
in this research area and determined by graph theory show
that high-voltage electrical substations are critical from the
topological perspective for power flow transmission [35],
[36]. Also, critical regions in power systems have been iden‐
tified. In most cases, the physical topology and interaction
between facilities significantly affect the spread of failures
[37], [38]. Likewise, it shows that certain sets of highly con‐
nected buses could contain critical information about the cas‐
cading process, so that their protection would prevent the
propagation of these undesirable events [39]. Some works re‐
cently incorporate the concept of resilience into the study of
power systems [40].

On the contrary, other works apply the bi-level attacker-de‐
fender interdiction model to address electrical network vul‐
nerability and identify critical assets [41]. These multi-level
models aim to estimate the worst-case scenario of the power
grid for any feasible protection strategy. In the meantime,
modal decomposition approaches for determining the dynam‐
ic model of the electrical network and finding generators,
loads, and weak zones have also been utilized [42]-[44].

Finally, some remaining works employ the concept of
sparse optimization to formulate a decentralized solution al‐
gorithm that identifies the most critical buses that contribute
to the dynamics of the system [45], [46]. Other works calcu‐
late the fast voltage stability index (FVSI) to determine criti‐
cal buses and critical lines [47], [48]. The latter approach us‐
es several electrical parameters of the network.

In summary, the following shortcomings can be found in
the literature related to critical bus identification in power
systems:

1) Although some techniques used in the identification of
critical components are well established in [7]-[13], they re‐
quire high computational complexity.

2) The works use the electrical parameters of the systems
[2], [17], [21], [24].

3) The works using graph theory do not validate their re‐
sults against load flow studies [14]-[17].

4) Power systems are now becoming smart grids, thus
more studies should be done focusing on this new area, espe‐
cially on cybersecurity, reliability, and physical sabotage [31].

In this paper, we aim to identify the critical buses of pow‐
er grids according to the behavior of networks in terms of
cascading failures. The main purpose of identifying these as‐
sets is to improve their protection and, consequently, to re‐
duce power grid vulnerability. The consequences are investi‐
gated when the system is prone to random disruptions such
as equipment failures, human errors, or procedure failures,
which could lead to a process of network decomposition and
cause a total collapse in the performance of power systems
[49]. Two types of vulnerability are found in literature: func‐
tional and structural. The first incorporates the technical pa‐
rameters of the infrastructure, and the second involves the
negative performance of the network topology [50]. Thus,
unlike works which deal in-depth with some of the most crit‐
ical blackouts and can be classified as part of functional vul‐
nerability studies [51] - [54], this paper is developed from a
structural vulnerability, as it only considers the study of the
topological structure of the system.

We define structural vulnerability as the lack of robust‐
ness and resilience of the power grid against high-impact
events. Robustness indicates that the power system can con‐
tinue to operate when it is under attack or disturbance, and
resilience indicates that the power system can be adapted for
a new steady condition after a contingency. Structural vulner‐
ability is related to a decrease in the performance and effi‐
ciency of the electrical network after some of its assets have
been disrupted.

The drop of infrastructure performance is measured using
the geodesic vulnerability v̄ index. Because it enables the
performance measurement of an electrical network subject to
contingency events and allows effective comparisons in the
evolution of the successive iterations of bus disconnections
in a power system in relation to its stable condition before
the on-set of contingencies [55]. Another relevant contribu‐
tion of this work is the need to evaluate the effectiveness
and validity of the results achieved with the graph index.
Therefore, parallel to the calculation of the topological indi‐
cator, direct current (DC) load flows are executed on the
electrical networks resulting from the bus disconnections.
We consider this technique because we are only interested in
the calculation of active power flow in the transmission lines
after eliminating a substation, although other techniques
such as continuous power flows could be used [56]. Thus,
the load shedding LS index is used to quantify the total real
power supplied within the electrical infrastructure [57], and
the results are compared to determine the accuracy achieved
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by the statistical indicator, which justifies the use of graph
theory as a faster and more efficient analysis method than
the power flow technique for identifying critical nodes in
electrical networks. Finally, a dimensionless measure is pro‐
posed to quantify the effect of each disintegration curve as a
consequence of the initial elimination of an bus and to classi‐
fy critical nodes in power systems.

Considering these aims, the main contributions of this pa‐
per can be summarized as follows:

1) A detailed procedure based on graph theory is present‐
ed to identify critical buses in power systems. The methodol‐
ogy is effective and flexible.

2) The suitability of v̄ index is demonstrated as a good
substitute for load flow studies to assess the vulnerability of
power grid topologies against cascading effects.

3) A measure called damage area is proposed to classify
the critical buses.

4) In this work, 118 networks of the same test system are
analyzed.

This paper is organized as follows: Section Ⅱ presents a
cascading failure model to identify the critical buses of the
electrical networks. The indices used are mentioned, and the
proposed methodology is detailed. Section Ⅲ describes a
case study and reports the results achieved with the pro‐
posed methodology. Finally, the conclusion of the article is
presented in Section Ⅳ.

II. CASCADING FAILURE MODELING TO IDENTIFY CRITICAL

NODES

This section describes the proposed methodology to identi‐
fy the critical assets of electrical infrastructures.

A. LS Index

From the perspective of the complex network theory, the
cascading failure modeling consists of eliminating nodes and
links in a graph that continually changes its topology. Under
this assumption, a power system is considered in this paper
as a graph subject to random nature events. Therefore, when
electrical networks are exposed to this type of event, it may
be possible to lose critical assets that play vital functions in
system operation.

To quantify the devastating effect of the aforementioned
random failures, the LS index is proposed. This measure is
presented in [57]. Note that one of the objectives of this pa‐
per is to validate the accuracy of the results obtained by
graph theory versus power flow indicators. Thus, the LS in‐
dex is used as a comparison metric relative to the graph in‐
dex, which is calculated as:

LS =
∑

i

( )P LC
Di

2

∑
i

( )P BC
D

2
(1)

where P LC
Di is the real power supplied within the electrical net‐

work after an electrical substation i is eliminated; and P BC
D is

the total real power supplied within the electrical network
for the base case.

The LS index varies between 0 and 1. As the LS index
tends to 0, the impact on the energy supplied to the electri‐

cal infrastructure increases.

B. v̄ Index

A graph adjacency matrix can describe a power system as
follows: Amn = [N ´N ], where m and n represent the links be‐
tween different pairs of nodes and N equals the total number
of vertices [58]. Note that the nodes indicate electrical sub‐
stations and the links indicate power transmission lines.

When the electrical infrastructure is represented as a
graph, one can calculate statistical indices that describe the
physical or topological characteristics of the network [59].
For example, the nodal degree index k provides a measure
for the connectivity of the nodes, the average nodal degree k̄
represents a relative indicator of how meshed the system is,
the shortest average path l̄ measures the accessibility of one
node in relation to another, and the network diameter d is
the longest path in the network. Similarly, the geodesic effi‐
ciency index ē allows to quantify the efficiency with which
the information can be exchanged within a network [55].
The latter indicator determines the v̄ index used in this work.

The v̄ index measures the performance of the network
against contingencies because it normalizes ē and balances
the process of disintegration of the network. The v̄ index is
calculated as:

v̄=
∑

i ¹ j

1

d LC
ij

∑
i ¹ j

1

d BC
ij

(2)

where d LC
ij is the geodesic distance between pairs of nodes in

the graph after each iteration of node elimination; and d BC
ij is

the geodesic distance between pairs of nodes in the graph
for the base case.

The geodesic distance describes the shortest direct dis‐
tance between two nodes by counting the minimum number
of vertices that must be crossed to join them [60].

Similar to the LS index, v̄ index varies between 0 and 1.
The smaller the value of this measure, the greater the impact
on the decomposition of the graph.

C. Algorithm to Identify Critical Buses

In this paper, the critical components of an electrical net‐
work are identified through a cascading failure disintegration
process. In this case, the complex network theory is applied
in addition to the classical power flow technique. A graphi‐
cal representation of a power system composed of nodes and
edges is shown in Fig. 1. It is assumed that the power grid
has ng electric generators that provide enough energy to keep
the system load in operation.

Figure 2 shows the proposed algorithm to identify critical
buses by disintegrating the power system through the evolu‐
tion of LS and v̄ indices presented in (1) and (2), respective‐
ly.

Cascading events are simulated by eliminating nodes ran‐
domly. In this process, multiple iterations of N - k contingen‐
cies are carried out on an electrical network that continually
changes its topology with the elimination of each node.
Since it is not possible to run the power flows without the
slack generator, one cannot delete this node during the exe‐
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cution of the algorithm.
Next, the procedure for identifying critical nodes is de‐

scribed in detail.
The first step of the algorithm in Fig. 2 consists of collect‐

ing the necessary data to simulate the critical infrastructure
of electricity, assuming the models presented in Fig. 1. The

LS and v̄ indices are initialized to 1.
The algorithm starts by removing the first electrical bus of

the system. If this bus is equal to the slack bus, then the
first electrical bus is reconnected, and the procedure is re‐
peated with the next node of the network. In this case, the
slack bus is not disconnected because it balances the power
in the system.

Note that after a component is removed, a new topology
is formed on the power system. The algorithm in Fig. 2 con‐
siders the subnetworks that are generated as a result of the
previous event. Then, the island with the slack generator is
selected, and the problem of DC load flow is solved. In this
work, the DC model is used because only the active power
injected into the network is intended to be measured. As a
note, variations in voltage and frequency could occur during
the process of network decomposition. However, these pa‐
rameters are not relevant in the proposed methodology, since
we consider only the structural performance of the network.
Thus, once the evaluation of power flow is completed, the
power produced by the slack generator is used to calculate
the LS index with (1). In parallel, the adjacency matrix A ij is
built, which represents the equivalent graph of the selected
subnetwork. Similarly, the v̄ index is estimated with (2).

In turn, the subnetwork that results from the first bus re‐
moved is selected as a candidate to be attacked by the ran‐
dom removal of nodes. According to the central limit theo‐
rem, a certain number of experiments is required to obtain
an adequate statistical sample [61]. In this case, 100 samples
are used on each initial candidate subnetwork. Henceforth,
random nodes are eliminated except for the slack generator.
Indicators of (1) and (2) are calculated iteratively in each dis‐
integration step.

Once the desired number of trials is reached, the total set
of disintegration results is averaged for each of the LS and
v̄ indices. The average obtained for both indicators is saved
as correspondence to bus i. Consequently, the bus is recon‐
nected and the procedure is repeated until all the nodes of
the electrical network NB have been evaluated.

Next, to evaluate each set of results and determine the
ranking of critical buses, the algorithm in Fig. 2 initially de‐
termines the correlation between the LS and v̄ indices to vali‐
date the use of the statistical measure of the networks. Then,
the damage area (DA) is calculated for each of the saved re‐
sults in Section Ⅲ. In this case, a low DA value indicates a
high criticality level. Conversely, a high DA value indicates
a low criticality level. Finally, according to the above consid‐
erations, the most critical buses of the electricity infrastruc‐
ture are classified.

III. CASE STUDY

In this study, an IEEE 118-bus test system is used to dem‐
onstrate the effectiveness of the proposed methodology [62].
Initially, the selected structural characteristics of the case
study are detailed, and then the simulation results obtained
from 118 different topologies are exposed. Subsequently, the
correlation analysis between the LS and v̄ indices is present‐
ed, and the most critical buses of the system are reported by
calculating DA for each cascading failure curve.

Bus 1

Bus 2

Bus 4

Bus 5

Bus 3
L3

(a) (b)

L4

L2 G2

G1
Bus 1 Bus 3 Bus 4

Bus 2 Bus 5
L5

Fig. 1. Graphic representation of an electrical network composed of nodes
and links. (a) Sample power system. (b) Power system as a graph.
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Fig. 2. Algorithm proposed to identify critical nodes in power systems.
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A. Topological Characteristic of Case Study

The nodal degree distribution allows to visualize the per‐
centage of nodes in network P(k) which has a certain num‐
ber of connections k. Figure 3 shows the nodal degree distri‐
bution for the IEEE 118-bus test system [62].

Figure 3 shows that the test network has approximately
6% of the single-link nodes, which means that certain electri‐
cal substations remain connected by only one line to the sys‐
tem. In turn, more than 45% of the graph nodes have only
two links, which indicates that most buses of the IEEE 118-
bus test system have little connectivity with other infrastruc‐
ture assets.

On the other hand, when the node percentages with con‐
nections from k = 3 to k = 11 are compared, a clear decrease
in connectivity of the graph components is observed, and
when k = 12, approximately 1% of the buses have the maxi‐
mum connectivity degree. Specifically, a larger number of k
links corresponds to a lower number of components with
high connectivity. The latter reflects a characteristic studied
previously to identify this type of graph as a scale-free net‐
work [1], [55].

These networks are useful because they can be used to
carry out vulnerability studies and allow a characterization
of basic resilience properties against random events [63].
Thus, critical nodes are identified from the perspective of
random errors. Note that strongly connected nodes can be
important network assets and their losses or destructions
may have severe consequences in system operation.

Table Ⅰ summarizes other structural characteristics of the
case study for an IEEE 118-bus test system. The IEEE 118-
bus test system consists of 118 nodes V and 186 links E,
with an average connection degree k̄ of 3.034. This power
system has a node with 12 links maximum nodal degree
kmax, which makes it a vital component for the infrastructure
operation. In addition, d and l̄ are much larger than the ini‐
tial geodesic efficiency ē of the network, potentially produc‐
ing severe problems of congested power flows that result
from losing a component of the power system.

The use of these statistical measures provides an initial
perspective of the network performance, which is always
necessary to consider when carrying out vulnerability studies
or identification of critical components.

B. Simulation Results

We apply the algorithm proposed in Fig. 2 for the identifi‐
cation of critical components. Figure 4 presents the impact
on the power supply to the power system through LS index
of (1) and v̄ index of (2), measured according to a certain
number of nodes removed from the network f. Each curve
represents the average of 100 disintegration simulations of
118 different topologies. Note that Fig. 4 represents only the
cascading failure curves corresponding to the cases of slow‐
er (node 4) and faster (node 80) disintegration. The remain‐
ing 116 cascading failure curves appear between the lower
and upper curves of Fig. 4.
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Fig. 3. Nodal degree distribution for case study.

TABLE Ⅰ
TOPOLOGICAL CHARACTERISTICS FOR CASE STUDY
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Fig. 4. Simulation results for case study. (a) Slower disintegration. (b) Faster disintegration.
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In the graphs, the values of the LS and v̄ indices are equal
to 1 when all nodes and loads are initially connected. Then,
as the network begins to decompose as a result of cascading
disintegration, both indicators decrease until reaching a value
equal to 0. In this last step, all nodes are isolated, and the
electricity supply of the infrastructure has been interrupted.
1) LS Index

Figure 4(b) shows that in all cases, once the traditional
technique of power flow is applied, the total collapse of the
topologies that results from the initial removal of bus i is
produced after eliminating approximately 60% of the nodes.

In other words, the 118 test networks display similar be‐
havior when the nodes located in different positions are dis‐
connected, which implies that cascading events occur with
similar disintegration characteristics in all cases.

In turn, the case results show that although all the topolo‐
gies reach the same final decomposition value, some topolo‐
gies show a greater impact on the energy supply to the sys‐
tem for various partial fractions of eliminated nodes f. For
example, the LS index curve for the topology in which node
80 is removed always has LS values below those of the oth‐
er system assets. The curve of the LS index for the topology
in which node 4 is disconnected turns out to lie above the
other curves of cascading events, which indicates a disinte‐
gration of the electrical network with less interruption of the
energy supplied.

The LS index used in this work is very useful to visualize
the effects of random events on the topologies of power sys‐
tems. Furthermore, the large number of simulations per‐
formed on each test network allows a more precise estima‐
tion of the operation behavior for each of the topologies of
electrical infrastructure.

We consider that this indicator provides a technical per‐
spective of the conditions faced by the electrical networks.
Therefore, the indicator allows the most critical buses to be
identified under certain conditions.
2) v̄ Index

Figure 4(a) reports the results of the v̄ index for each of
the 118 topologies of the IEEE 118-bus test system. In this
case, the results obtained with the LS index are compared to
determine its possible utility.

Figure 4(a) shows that the values of the v̄ index gradually
decrease for each of the nodes. Identical to the LS index, on‐
ly 60% of the nodes need to be removed to collapse the sys‐
tems. Comparing the graphs, it is clear that the statistical
measure of graph v̄ has a behavior similar to that of the LS
index. Therefore, the conclusions obtained in the previous
sub-section are also achieved by applying the complex net‐
work theory.

The results of the 118 topologies show that node 80 is the
most critical and node 4 is one of the most robust. These re‐
sults again confirm the results of the LS index.

C. Correlation Between LS and v̄ Indices

One of the objectives of this paper is to mathematically
validate the results obtained with the v̄ index in comparison
with the classical approach of power flows load shedding.
However, the graphic representation in Fig. 4 is not suffi‐

cient to determine the level of correlation between both sets
of results. Therefore, to achieve the research objective, the
Pearson correlation coefficient is used to determine if there
is a correlation between the results of v̄ index and LS index
[64]. The existence of this correlation validates the v̄ index
as an adequate indicator to identify the critical buses of the
power system.

The Pearson correlation coefficient is calculated as:

ρ i =
σ(v̄iLSi)

σ v̄i
σLSi

(3)

where ρ i is the Pearson correlation coefficient between the

results of node i; σ (v̄iLSi ) is the covariance between the re‐

sults of v̄ index and LS index for node i; σv̄i

is the standard

deviation of v̄ index results for node i; and σLSi
is the stan‐

dard deviation of LS index results for node i.
The value of the correlation index varies in the interval be‐

tween +1 and -1, where a value of +1 indicates a perfect
positive correlation, a value of 0 means no linear correlation,
and a value of -1 shows a perfect negative correlation [64].
Figure 5 shows the Pearson correlations for the 118 topolo‐
gies calculated in Fig. 4. All topologies have correlations ρ i

greater than 0.96, which implies a positive linear relation‐
ship between the results of v̄ and LS indices. We conclude
that the statistical measurement of v̄ index is useful for calcu‐
lating the power supplied to the electrical network in a cas‐
cading failure process. Again, the statistical result confirms
the similarity of the curves shown in Figs. 4(a) and (b).

Thus, the v̄ index has adequate accuracy relative to the
classic power flow approach. However, this indicator uses
only the graph connectivity and does not require technical in‐
formation, which grants it a great advantage over the LS in‐
dex. Therefore, the v̄ index can be used to compare different
topologies of power networks and determine which is the
most vulnerable.

Table Ⅱ shows the execution times (100 samples for each
of the 118 topologies) of the algorithm of Fig. 2, where DC
power flows are performed by using the v̄ index alternative‐
ly. And it is carried on personal computer with Intel® Core™
i7 CPU 3.40 GHz and 32 GB of RAM.

From the perspective of computation, it is observed that
the statistical graph index is more efficient than the DC pow‐
er flow on the power system because the calculation time is
reduced by more than 94%.
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Fig. 5. Pearson correlation coefficients between v̄ index and LS index for
118 topologies.
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The importance of the proposed v̄ index is that it can be
used to evaluate the robustness of electrical infrastructures
without requiring electrical parameters, and its implementa‐
tion may be useful in helping system operators identify criti‐
cal buses.

D. Identification of Critical Components

The v̄ index has shown a suitably linear relationship with
the traditional power flow approach (LS index). Therefore, it
is possible to replace the latter with the statistical graph in‐
dex. Thus, we propose to use the results shown in Fig. 4(a)
to identify the critical buses of the power systems.

Since it is not visually possible to precisely plot the per‐
formance of each disintegration event shown in Fig. 4(a),
the calculation of DA in the flow diagram of Fig. 2 for each
set of results is proposed to determine the damage caused by
the elimination of a certain asset in the electricity network.
The strategy is carried out in the algorithm of Fig. 2 as fol‐
lows.

Step 1: determine the equations that represent each of the
disintegration curves of Fig. 4(a).

Step 2: calculate the integral of each equation in Step 1
which is used as limits of the fraction of nodes removed f
for each curve.

Step 3: sort the results obtained in Step 2 from lower to
higher.

Consider that the v̄ index initially has a value equal to 1
when the entire power system is connected. As the network
is disintegrating, the v̄ index tends to be 0. Therefore, it is
assumed that a lower DA value represents greater damage to
the electrical infrastructure because lower values are associat‐
ed with the disintegration. In turn, a higher DA value repre‐
sents less damage to the power system. Steps 1 to 3 are de‐
tailly shown in Fig. 6.

Table Ⅲ reports the critical buses of the IEEE 118-bus
test system using the strategy mentioned above. Note that
without considering slack node 69, components 80, 49 and
77 are the most critical to the system under study. Further‐
more, the buses in Table Ⅲ are listed in order of criticality.
These are nodes with a high number of connections (higher
nodal degree of the system) or with a high connected electri‐
cal load.

Regarding the less critical buses in Table Ⅲ , the cascad‐
ing failure as a consequence of the disintegration of the net‐
work after the elimination of node 4 is the most favorable
case.

IV. CONCLUSION

This work proposes a methodology to identify the critical
buses of power networks by using v̄ index. To justify the
scope of the results of the topological indicator, a compara‐
tive analysis versus the traditional power flow load shedding
approach is carried out. The high correlation between the in‐
dices is validated mathematically. It allows the replacement
of power flow routines that use electrical parameters and de‐
mands a high computational cost for a graph index which re‐
quires system connectivity and consumes less computational
time. The results of the topological indicator are adequate
for both the analysis of electricity infrastructure topologies
when an asset is eliminated and the evaluation of each subse‐
quent cascading failure. Future research will focus on the is‐
lands formed during the execution of the algorithm, the se‐
lection of new slack generators in the process of systemic
disintegration and the integration of knowledge from the net‐
work operators.
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