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Abstract Despite increasing experimental and ana-

lytical efforts to investigate the irreversible effects of

arterial tissue failure, the underlying mechanisms are

still poorly understood. The goal of this study was

characterize the failure properties of the intact wall

and each separated layer (intima, media and adventi-

tia) of the descending thoracic and infrarenal abdom-

inal aorta and to test the hypothesis that the failure

properties of layer-separated tissue depend on the lo-

cation of the aorta. To test this hypothesis, we per-

formed uniaxial tests to study the mechanical behav-

ior of both intact and layer-separated porcine aortic

tissue samples taken from descending thoracic and in-

frarenal abdominal aorta until complete failure. The

fracture stress is higher in the infrarenal abdominal

aorta than in the equivalent descending thoracic aorta.

It was also found that the extrapolation of the elas-

tic mechanical properties from the physiological to the

supra-physiological regime for characterizing the me-

chanical response of the aorta would be inappropriate.

Finally, we report values of constitutive parameters

using phenomenological and microstructural damage

models based on Continuum Damage Mechanics The-

ory. The phenomenological damage model gives an ex-

cellent fit to the experimental data compared to the

microstructural damage model. Although the fitting
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Institute of Engineering Research (I3A). University of Zaragoza,

Spain.

Juan A. Peña at Department of Management and Manufac-
turing Engineering. Faculty of Engineering and Architecture.

University of Zaragoza. Spain.

Miguel A. Mart́ınez · Estefańıa Peña at CIBER de Bioinge-
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results of the phenomenological model are better, the

microstructural models can include physically moti-

vated aspects obtained from experiments.
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1 Introduction

Mechanical force at the tissue level leads to local stress

concentrations within the tissue and, if strong enough,

begins to cause damage at specific spots. In healthy

tissues at physiological stress levels, healing continu-

ously repairs such defects to maintain the structural

integrity of the tissue. Despite increasing experimen-

tal and analytical efforts to investigate failure-related

irreversible effects of soft biological tissue, the under-

lying mechanisms are still poorly understood. In gen-

eral, three important damage phenomena associated

with arteries may be distinguished. First, there is the

dependence of the mechanical response on the previ-

ously attained maximum load level. This is very simi-

lar to the well-known Mullins effect in rubber-like ma-

terials (Alastrué et al., 2008; Garćıa et al., 2013; Peña,

2011c). Another typical phenomenon known as per-

manent set is characterized by residual strains after

unloading (Alastrué et al., 2008; Garćıa et al., 2013).

Finally, there is failure resulting from fibre rupture

and matrix disruption associated with material dam-

age and fracture (Peña, 2011a,c; Peña et al., 2009).

Elastic arterial biomechanics has been intensively

studied. Experimental studies have used different

kinds of procedures such as inflation tests (Barra

et al., 1993; Kim & Baek, 2011; Lillie et al., 2012;

Lu et al., 2003), simple uniaxial tension (Silver et al.,
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2003; Sokolis, 2010; Weisbecker et al., 2012), and bi-

axial tests (Kamenskiy et al., 1998; Lally et al., 2004;

Zeinali-Davarani et al., 2013) to determine the elastic

mechanical properties of aortic tissues. However, there

are few experimental analyses of damage or failure me-

chanics of arteries (Garćıa et al., 2013; Peña, 2011a,c;

Peña et al., 2009; Pierce et al., 2015). Only Weisbecker

et al. (Weisbecker et al., 2012) addresses the layer spe-

cific softening response of the human aorta. However,

their study only presented the softening (Mullin’s ef-

fect) response of the layers and there was no data

about the failure and rupture properties. While it is

well-known that aortic elastic properties vary along

the aortic tree, it is generally agreed that aortic stiff-

ness increases with increasing distance from the heart

(Guo & Kassab, 2003; Hang & Fung, 1995; Kim et al.,

2013; Peña et al., 2018, 2015). Clearly, damage mech-

anisms and specific injury tolerance are closely related

to the individual tissue types, but collagen seems to

play a universal pivotal role. Parameters such as aor-

tic wall thickness, moisture content, and the location

of the specimen along the aorta may also influence the

damage response.

The constitutive response of biological tissues, and

their variation with disease processes must be well-

characterized, both, experimentally and theoretically.

Damage scenarios such as device deployment pro-

cesses, in vivo operating conditions, and and the sur-

geon’s skill must be simulated accurately. Model pre-

dictions should also reflect the heterogeneity, non-

linearity, anisotropy and their dependence on the arte-

rial location of the vessel. With all these facts to hand,

the incorporation of damage in mechanical constitu-

tive models of arteries is a prerequisite for a better

understanding of clinical treatments involving supra-

physiological loading.

There are several damage formulations able to de-

scribe the failure of arteries (Balzani et al., 2006; Calvo

et al., 2007; Hokanson & Yazdami, 1997; Li & Robert-

son, 2009; Peña, 2011b; Peña et al., 2009; Rodŕıguez

et al., 2006; Sáez et al., 2012; Volokh, 2007a; Wu-

landana & Robertson, 2005). Balzani et al. (Balzani

et al., 2006) assumed that discontinuous damage oc-

curs mainly along the fiber direction in the arterial

wall. Rodriguez et al. (Rodŕıguez et al., 2006) intro-

duced a stochastic-structurally based damage model

for fibrous soft tissues in general and arteries in par-

ticular. Calvo et al. (Calvo et al., 2007) proposed an

uncoupled directional damage model for fibred biolog-

ical soft tissues that considers different damage evo-

lutions for the matrix and fibers which was applied

to model the damage process during arterial clamp-

ing. In Li and Robertson (Li & Robertson, 2009),

two damage mechanisms are coupled in a multiplica-

tive manner for cerebral arteries. Peña et al. (Peña

et al., 2009) showed that continuum damage mechan-

ics models can reproduce the softening behavior dur-

ing unloading or reloading only for low dissipative ef-

fects. Ehret et al. (Ehret & Itskov, 2009) and Peña

(Peña, 2011c) presented different models that repro-

duce the softening behavior including all the tissue

dissipative effects (including permanent set). Peña and

Doblaré (Peña & Doblare, 2009) present a very sim-

ple pseudo-elastic anisotropic model to reproduce the

softening behavior exhibited in arteries without per-

manent set. Later, similar model was used by Weis-

becker et al. (Weisbecker et al., 2012) to reproduce the

layer spedific Mullin’s effect of aorta. Of all of these

models, only the stochastic-structurally based dam-

age model (Rodŕıguez et al., 2006; Sáez et al., 2012)

and Kachanov-like damage models (Calvo et al., 2007;

Peña et al., 2009; Sáez et al., 2012) are able to repro-

duce the failure region as a result of the bond rupture

and complete damage presented in arteries.

The goal of this study was to characterize the fail-

ure properties of the intact wall and each separated

layer (intima, media and adventitia) of the descend-

ing thoracic and infrarenal abdominal aorta and to

test the hypothesis that the failure properties of layer-

separated thoracic arteries differ depending on arterial

location in the aorta. To test this hypothesis, we per-

formed uniaxial tests to study the mechanical behavior

of both intact and layer-separated porcine aortic tissue

samples taken from descending thoracic and infrarenal

abdominal aorta until complete failure. For its simplic-

ity and applicability, a phenomenological Continuum

Damage based damage model (Calvo et al., 2007) and

its extension to a microstructural damage model (Sáez

et al., 2012) are considered in this work to reproduce

the experimental data. Finally, we also provided and

compared the damage parameters using both damage

models with a particularized damage function for ar-

teries proposed in Peña (Peña, 2011b) for each layer

that can be used by biomedical engineers for investi-

gating better therapies and developing artery-specific

devices.

2 Experiments

Seven thoracic and abdominal aortas (n=7) were ex-

cised postmorten from 3.5÷0.45 month old female

pigs, sacrificed for other animal studies after which

the aorta remained intact. All animal experiments

were performed in accordance with the ”Principles of

Laboratory Animal Care´´ (86/609/EEC Norm, in-

corporated into Spanish legislation through the RD
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1021/2005) and approved by the Ethical Committee

for Animal Research of the University of Zaragoza.

The animals were anesthetized with potassium chlo-

ride and sodium thiopental, and the aortas were iso-

lated and dissected free of perivascular tissue and pre-

served in ion-free PSS (0.9% NaCl) at 4 [◦C] until

preparation the test samples.

2.1 Mechanical tests

Two circumferential and two longitudinal strips (ap-

proximately 5x15 [mm]) were cut from the proximal

part of the descending thoracic (DTA) and infrarenal

abdominal aortas (IAA). Thus, a minimum of four cir-

cumferential and longitudinal samples were used per

animal. One pair of sample strips taken from each

aorta direction were tested as whole samples. In other

pair of samples, the intimal layer was dissected very

carefully using microsurgery instruments, and then

the media was separated from the adventitia (Peña

et al., 2015). The correct layer separation without

damage were checked by histological images and dam-

aged samples was discarded. The size of the samples

were measured by three measurements at different lo-

cations using a contact Mitutoyo Electronic Digital

caliper with a contact force of 0.5 N and the averaged

values were considered.

Uniaxial tests of the circumferential and axial strips

were carried out in a high precision drive Instron Mi-

crotester 5548 system adapted for biological tissues

with a 10 [N] load cell having a minimal resolution

of 0.005 [N] and using a non-contact Instron 2663-

281 video-extensometer to measure the axial strain.

To avoid specimen drying, tests were performed with

an ultrasonic humidifier. Previous to each test, the

zero load was defined after the tissue specimen was

located in the grips. The specimens were precondi-

tioned by different loading and unloading cycles from

zero to a maximum engineering stress (240 [kPa]) us-

ing a triangular waveform at a 30%/min strain rate.

To characterize the damage behavior, after the pre-

conditioning the specimens were loaded until full rup-

ture. Only the samples whose rupture was located in

the middle of the sample between markers were con-

sidered for subsequent damage analysis. The Cauchy

stress was computed as σθθ,zz =
Fθ,z

tθ,zwθ,z
λθ,z, where F

is the load registered by the Instron machine and tθ,z
wθ,z are the mean computed thickness and with, and

λθ,z is the stretch in the circumferential and longitu-

dinal directions respectively measured by the video-

extensometer.

To gain some insight into the influence of the spe-

cific layer characteristics on the damage properties of

thoracic and abdominal aorta, the maximum values of

stress and stretch, σr and λr respectively, for both cir-

cumferential and longitudinal samples were analyzed.

2.2 Histological analysis

One part of each specimen from the DTA and IAA

samples (approximately 0.5 × 0.5 cm) was used for mi-

croscopic investigation. Segments of each vessel were

fixed in formaldehyde for 24 h and then placed in 70%

alcohol. The segments were dehydrated and embedded

in paraffin. The histology blocks were cross-sectioned

at 5 microns and stained with Hematoxiline-eosine in

order to study the general structure of the sample and

to check that the samples were successfully separated..

2.3 Statistical analysis

A statistical analysis was performed in order to an-

alyze possible significant variations in the damage or

failure behavior of the aorta and each of its layers

(intima, median and adventitia) along the position of

the vessel Therefore, the maximum values of stress

and stretch (σr and λr) for the DTA and IAA were

compared for both circumferential and longitudinal di-

rections for the whole aorta and each individual layer.

Normal distribution of the variables was tested using

the Shapiro-Wilk test. All groups were compared by

means of an independent one-tailed t-test. In cases of

non-normal distribution, the Mann-Whitney test was

used. We established p < 0.05 as the level to indicate

statistical significance.

3 Theoretical framework

In recent years the most widely used approach for

modeling anisotropy in soft tissues has been represent-

ing fiber directions by means of an invariant formula-

tion, referred to in this work as the “Phenomenological

model” (Peña, 2011b). The use of statistical distri-

butions has recently increased and is also adopted in

the present work, referred to as the “Microstructural

model”. Furthermore, a microsphere-based approach

has been used at a micro scale level (Sáez et al., 2012).

3.1 Phenomenological anisotropic hyperelastic

damage model for vascular tissue

In the context of continuum damage mechanics, we as-

sume the existence of a free energy function decoupled
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into volumetric and isochoric parts where the isochoric

contribution is additively decomposed into isotropic

and anisotropic contributions as

Ψ = Ψvol(J) + Ψiso(C̄, Dm) + Ψani(C̄,M ,N , Df ),

(1)

where Ψvol(J) represents the free energy associated to

volume changes, J = detF the local volume ratio, and

C̄ = F̄
t ·F̄ the isochoric right Cauchy-Green deforma-

tion tensor C̄ = F̄
t · F̄ computed by the isochoric de-

formation gradient tensor F̄ = J−1/3F (Flory, 1961).

The anisotropic response is considered by the struc-

tural tensors M = m ⊗m and N = n ⊗ n that ac-

counts the two families of fibres being embedded in the

continuum defined by means of unit vectors, namely

m and n. Finally, Dm ∈ [0, 1] and Df ∈ [0, 1] are

monotonically increasing internal damage variables.

In terms of the strain invariants, the free energy func-

tion Ψ is computed as

Ψ = Ψvol(J) + [1 − Dm] Ψiso(Ī1)

+ [1 − Df ]
[
Ψani(Ī4) + Ψani(Ī6)

]
, (2)

where Ī4 = C̄ : M and Ī6 = C̄ : N are iso-

choric anisotropic invariants (see, e.g., Spencer, 1971).

[1 − Dm] and [1 − Df ] are reduction factors that

weigh the strain energy associated to the undamaged

isotropic and anisotropic contributions, respectively

(Calvo et al., 2007).

The strain energy associated to the undamaged

isotropic contribution was assumed to be represented

by the simple neo-Hookean term and the mechani-

cal behavior associated to the undamaged fibres is

assumed to correspond to the strain energy function

(SEF) proposed by Gasser et al. (Gasser et al., 2006),

i.e.

Ψ = µ [I1 − 3] +
∑
i=4,6

[
k1

2k2

[
exp

(
k2Ê

2
i − 1

)]]
, (3)

where

Êi = κI1 + [1− 3κ]Ii − 1 i = 4, 6 (4)

and κ ∈ [0, 1/3] is a dispersion parameter; when κ = 0,

the model is equivalent to that published in Holzapfel

et al. (Holzapfel et al., 2000), and when κ = 1/3 it

recovers an isotropic potential similar to that used in

Demiray (Demiray, 1972). µ > 0 and k1 > 0 are stress-

like parameters and k2 > 0 is dimensionless.

From the Clausius-Planck inequality and (2), the sec-

ond Piola-Kirchhoff stress can be derived:

S = 2
∂Ψ(C,M)

∂C
= J pC−1 + 2

∑
j=1,2,4

∂Ψ̄

∂Īj

∂Īj
∂C̄

:
∂C̄

∂C

= Svol + [1−Dm]S̄m0 + [1−Df ]S̄f0 . (5)

3.1.1 Damage criterion

A discontinuous damage criterion (Peña et al., 2009)

for matrix (m) and fibers (f) is defined in the strain

space by the condition at any time t of the loading

process (Simo, 1987)

Φm,f
(
C̄ (t) , Ξ∗m,f

)
=
√

2Ψ0
m,f

(
C̄ (t)

)
−Ξ∗m,f

= Ξm,f − Ξ∗m,f ≤ 0, (6)

where C̄(s) the isochoric right Cauchy-Green tensor

at time s and

Ξ∗m,f = max
s∈(−∞,t]

√
2Ψ0

m,f

(
C̄ (s)

)
. (7)

Note that Φm,f

(
C̄ (t) , Ξ∗m,f

)
= 0 defines a damage

surface in the strain space (Peña et al., 2009). The

evolution of the internal damage parameters Dm,f is

defined by the following irreversible evolution equation

dDm,f

dt
=


hm,f (Ξm,f , Dm,f ) Ξ̇m,f if Φ = 0

and Nm,f : ˙̄C > 0

0 otherwise,

(8)

where Nm,f := ∂C̄Φm,f is the normal to the damage

surface in the strain space, Ξm,f are defined at the

current time s, Ξ̇m,f and ˙̄C the time rate of change of

Ξm,f and C̄ respectively and h̄m,f (Ξm,f , Dm,f ) char-

acterize the evolution of the damage in the material.

Following Peña (Peña, 2011b), the expression of the

damage function is a sigmoidal type function as

Dm,f =
1

1 + exp(−αm,f [Ξm,ft − γm,f ])
, (9)

where the parameter αm,f controls the slope and γm,f
defines the value Ξm,ft such that Dm,f (Ξm,ft) = 0.5.

We choose the sigmoidal function (18) as it is real-

valued and differentiable, having either a non-negative

or non-positive first derivative which is bell shaped

and there is also a pair of horizontal asymptotes in 0

and 1 (Peña, 2011b; Sáez et al., 2012).

3.2 Microstructural anisotropic hyperelastic damage

model of vascular tissue

The microsphere approach tries to capture micro-

structural information and transfer it into the macro-

scopic behavior via a homogenization scheme over the

unit sphere U2. In this approach, U2 is discretized

into m directions {ri}i=1...m that are weighted by

factors {wi}i=1...m, where 〈r〉 ≈
∑m
i=1 w

iri = 0 and
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〈r⊗ r〉 ≈
∑m
i=1 w

iri⊗ri = 1
3I. So an integral over the

unit sphere U2 can be approximated by

〈(•)〉 =
1

4π

∫
U2

(•)dA ≈
m∑
i=1

wi(•)i. (10)

The term 4π is a normalization factor, the result of the

surface integral
∫ θ

0

∫ φ
0

sin(θ)dθdφ over the unit sphere.

The unit vectors can be expressed in terms of the

spherical coordinates θ ∈ [0, π) and φ ∈ [0, 2π) as

r = sin(θ)cos(φ)ex + sin(θ)sin(φ)ey + cos(φ)ez with

{ex, ey, ez} the reference Cartesian system. The inte-

gration over the unit sphere was performed using a

Lebedev quadrature rule (Lebedev & Laikov, 1999)

for 77st algebraic order of accuracy. This order, is de-

termined by the concentration parameter b and the

form of the rupture region.

As commented above, the anisotropic part of the SEF

is related to the collagen fibers present in the material.

In a general situation with N families of fibers, the

anisotropic part of the SEF can be expressed as

Ψani =

N∑
j=1

Ψjf =

N∑
j=1

[
1

4π

∫
U2

nρfψfdA

]
j

, (11)

where Ψjf is the strain energy density function for the

j-nth fiber family, n the chain density, ρf a statistical

value associated with the fibrils dispersion and ψf the

free energy function of the fibril. Since an analytical

integration of (11) is not possible in general, a dis-

cretization of this equation as that presented in (10)

is used

Ψani ≈
N∑
j=1

[
m∑
i=1

nρiw
iψ(λ

i
)

]
, (12)

where λ
i

and ψ(λ
i
) are the stretch ratio and the free

energy function associated to each integration direc-

tion.

Regarding, the statistical distributions of the fibrils

around a preferential orientation (ρf) in Eq. (10), a π-

periodic von Mises orientation density function (ODF)

(13) has been adopted in this work following (Alastrué

et al., 2009)

ρ(θ) = 4

√
b

2π

exp(b[cos(2θ) + 1])

erfi(
√

2b)
, (13)

where the concentration parameter b ∈ R+ is a mea-

sure of the anisotropy; b → 0 represents an isotropic

material, and b → ∞ a transversally isotropic one,

and Erfi(x) is the imaginary error function.

Following the results of Eppell et al. (Eppell et al.,

2006) which demonstrated a non-linear response of

collagen fibrils, the contribution of each single col-

lagen fibril in the micro scale is here defined by an

exponential-type function as previously proposed by

(Alastrué et al., 2009; Sáez et al., 2012)

nψij(λ
i
) =

0, if λ
i
< 1

c1
2c2

[
exp(c2

[
[λ
i
]2 − 1

]2
)

]
if λ

i ≥ 1
,

(14)

where c1 > 0 is a stress-like parameters and c2 > 0 is

dimensionless.

3.2.1 Microstructural damage model of vascular

tissue

Following Sáez et al. (Sáez et al., 2012), we postulate

that the anisotropic part of the SEF defined in Eq. (1)

is defined as

Ψani ≈
N∑
j=1

[
m∑
i=1

nρiw
i[1−Di]ψ

i
j,0(λ

i
)

]
, (15)

with Di ∈ [0, 1] being the damage internal variables

(Simo, 1987) for each integration direction respec-

tively and ψ0(λ
i
) the effective strain energy density

functions of the fibers defined in Eq. (14).

The damage variable Di is given by the damage en-

ergy release rate Ξi =
√

2ψ0(λ(s)) where λ(s) the

stretch ratio at pseudo-time s ∈ R in similar way to

the phenomenological model (Eq. (7)) with

Ξ∗i = maxsε(−∞,t]

(√
2ψ0( ¯λ(s))

)
(16)

the maximum thermodynamic force achieved along

the whole load history. Then, the damage criterion

in the strain space is given by the condition

Φi(λ(s), Ξ∗s,i) =
√

2ψ0(λ̄(s))−Ξ∗i ≤ 0. (17)

Finally, the expression of the damage function is a

sigmoidal type function as

Di =
1

1 + exp(−αi[Ξ∗i − γi])
, (18)

where the parameters αi and γi defines the sigmoidal

function in a similar way as presented in Eq (18)

(Peña, 2011b).
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3.3 Data fitting

We fit the mechanical behavior of the tissue using

the last loading curve till rupture for each sample

(whole, intima, media and adventitia). It was nec-

essary to perform two estimation processes. For the

phenomenological and microstructural models, the

elastic constitutive parameters (µ, k1, k2, κ, θ) and

(µ, c1, c2, b, θ), respectively, were determined from

the elastic region of the curves while the damage pa-

rameters (αm, αf , γm, γf ) and (αm, αf , γi, γi), re-

spectively, were fitted from the softening region of the

curves. A total of 9 constitutive parameters should be

fitted per sample for the phenomenological and mi-

crostructural models.

The tissue was assumed as incompressible (Carew

et al., 1968), i.e. det(F) = λ1λ2λ3 = 1, where λi,

i = 1, 2, 3, the stretches in the principal directions.

Considering a uniaxial tension test in the longitudinal

or circumferential directions, then the Cauchy stress

tensor become σ = [σii, 0, 0].

The fitting of the experimental damage data was per-

formed using a Levenberg-Marquardt type minimiza-

tion algorithm Marquardt (1963), by defining the ob-

jective function represented in Eq. (19).

χ2 =

n∑
i=1

[[
σθθ − σΨθθ

]2
i

+
[
σzz − σΨzz

]2
i

]
, (19)

In this expression, σθθ and σzz are the Cauchy stress

data obtained from the tests, σΨ̃θθ = λθ
∂Ψ
∂λθ

and σΨ̃zz =

λz
∂Ψ
∂λz

are the Cauchy stresses for the ith point com-

puted using the SEF defined in Eq. (3), and n is the

number of data points. The coefficient of determina-

tion R2 ∈ [0, 1] was computed for each fitting where

R2 ≥ 0.85 typically represents a good fit to the exper-

imental data.

4 Results

A total of 11 strips were discarded during postprocess-

ing due to the unsuccessful layer separation (intima,

media, or adventitia), damage occurred close to the

grips or poor speckle patterns, 5 strips corresponding

to intima samples of IAA, or occurring close to the

clamps (4 for DTA and 2 for IAA). In all cases, a new

sample was taken in order to have a minimum of four

circumferential and longitudinal samples per animal

(whole, intima, media and adventitia strips). Figure 1

shows photographs of axial strips from the adventitia,

media and intima after 30 min of equilibration from a

DTA sample and the media sample at the beginning

of the test, before rupture and after rupture where the

damage occurred close to the central part of the strip

as a valid test.

Thickness of the total wall for the DTA and IAA is as

follows: 2.51±0.60 [mm] and 1.48±0.33 [mm], respec-

tively; and thickness for DTA and IAA is 0.27±0.09

[mm] and 0.24±0.08 [mm] for intima, 1.51±0.17 [mm]

and 0.69±0.29 [mm] for media, and 0.74±0.16 [mm]

and 0.46±0.07 [mm] for adventitia.

4.1 Mechanical tests

A representative uniaxial mechanical response

(Cauchy stress vs. stretch) up to fracture for the

complete and for separated layer samples are plotted

in Figure 2 for descending thoracic and abdomi-

nal sample specimens V and VI, respectively. The

different behavior between circumferential and longi-

tudinal directions and between descending thoracic

and abdominal aorta are clearly depicted for all layers

(intima, media and adventitia).

Overall, a large variation in the results are presented

in Figures 3 and 4 for descending thoracic and abdom-

inal aorta but marked mechanical heterogeneity was

found. The variation in the curve profiles may be re-

lated to structural variations between individual spec-

imens. The dispersion of the stress-stretch curves is

much higher for the intima and adventitia than for the

media samples and is much smaller for samples tested

in the circumferential than in the longitudinal direc-

tion. All tissue samples exhibit a pronounced nonlin-

ear mechanical response, and the anisotropic behav-

ior for elastic and rupture response is more marked in

the abdominal aorta. The complete and media circum-

ferential samples displayed higher fracture stress and

the axial specimens higher fracture stretches for both

thoracic and abdominal aorta, but these differences

are more rmarked for abdominal samples. In addition,

the abdominal samples are stiffer than the descending

thoracic samples, the most important differences be-

ing between the descending thoracic and abdominal

behaviors in the circumferential direction.

The complete samples had a fragmented response un-

der loading (flattening and dips) in both the circum-

ferential and longitudinal directions associated with

localized failure of the arterial layers. The intima and

adventitia of the descending aorta showed an isotropic

response while the complete and media samples had

similar anisotropic responses, showing that the me-

chanical response of the descending thoracic artery

is dominated by the media behavior. The abdominal

samples showed a greater increase in fracture stress

and stretch in both directions than the descending

thoracic aorta samples. In the longitudinal direction,
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(a) Separated layer strips (b) Before test (c) Before rupture (d) After rupture

Fig. 1 Photographs of (a) axial strips from the adventitia, media and intima after 30 min of equilibration from the DTA, (b)

media axial sample at the beginning of the test, (c) before rupture and (d) after rupture.
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Fig. 2 Representative Cauchy stress vs. stretch behavior for
the complete and for separated layer samples of DTA (V) and

IAA (VI) specimens.

the fracture stress and stretch of the intima are similar

to those of the control samples..

Figures 5.a and 5.b show column plots of the rupture

stretch (λr [-]) and rupture stress (σr [MPa]) for DTA

and IAA corresponding to the circumferential and lon-

gitudinal directions. Table 1 also shows the Mean and

Standard Deviation (SD) of the maximum rupture val-

ues of stress [MPa] and stretch [-] for both circumfer-

ential and longitudinal samples. In general, λr values

for the longitudinal direction are higher than the cir-

cumferential for both, DTA and IAA, locations, espe-

cially for the media layer. Also, λr values for the DTA

samples are higher than those of the IAA samples for

both directions except for Intima and adventitia layer

of the IAA samples. In contrast, σr was higher for the

IAA locations than the DTA and this ultimate stress

was lower in the circumferential direction than in the

longitudinal, except for the intima layer which showed

lower σr for IAA positions and the longitudinal direc-

tion.

Here, we also analyze possible statistically-relevant

differences (p < 0.05) between the rupture values of

the DTA and IAA tissue layers. There were signifi-

cant differences in the λr between the circumferen-

tial and longitudinal directions in media layer for the

DTA and the media and adventitia for the IAA sam-

ples (p < 0.05). In addition, there were significant dif-

ferences in λr between the whole samples and media

samples and between the adventitia and media layers

only for longitudinal directions of IAA; and between

the media and intima layers for the longitudinal di-

rections of the DTA samples. As regards sample loca-
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Fig. 3 Uniaxial tensile stress-stretch curves for separate layer samples I-VII of DTA.
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Fig. 4 Uniaxial tensile stress-stretch curves for separate layer samples I-VII of IAA.
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DTA IAA

Whole Intima Media Adventitia Whole Intima Media Adventitia
λr circ 1.58±0.17 1.65±0.16 1.54±0.12 1.51±0.13 1.51±0.16 1.45±0.14 1.43±0.13 1.41±0.08
λr long 1.61±0.13 1.61±0.06 1.97±0,23 1.61±0.20 1.60±0.14 1.67±0.27 1.83±0.19 1.67±0.23
σr circ 0.83±0.57 1.42±0.32 1.70±0.64 1.43±0.40 2.091±0.99 2.60±0.54 1.62±0.75 3.36±1.15
σr long 0.45±0.16 1.06±0.53 0.55±0.14 1.34±1.09 1.38±1.36 0.70±0.57 0.83±0.41 3.47±2.59

Table 1 Mean±SD of rupture values of stress [MPa] and stretch[-], (σr and λr) respectively, for both circumferential and longi-

tudinal samples

(a) Rupture stretch

(b) Rupture stress

Fig. 5 Maximum rupture values of stretch [-] and stress [MPa],

(σr and λr) respectively, for both circumferential and longitu-
dinal samples. For the comparisons between σr and λr for DTA

and IAA corresponding to the circumferential and longitudi-
nal directions, the means which are significantly different are

marked with ∗p < 0.05.

tions, there were significant differences in λr between

the DTA and IAA samples for the intima and adven-

titia in the the circumferential direction, but not for

longitudinal (p = 0.42).

In the case of σr, p < 0.05 for the whole artery and

media layer of the DTA samples and intima and media

layers of the IAA samples confirms that there is sta-

tistical significance in σr between the circumferential

and longitudinal directions. Also, there are statisti-

cally significant differences (p < 0.05) in σr between

the whole artery and adventitia samples for the lon-

gitudinal and circumferential directions for the DTA

and IAA samples. There was significant differences

(p < 0.05) between the whole and intima DTA sam-

ples for the longitudinal direction only, and between

the adventitia and media for IAA samples and be-

tween the intima and media for DTA samples also in

the longitudinal direction only. Finally, the differences

in σr between the whole and media samples were sta-

tistically (p < 0.05) significant for the DTA samples

in both directions.

4.2 Histological analysis

Histological sections of the samples stained with

Hematoxiline-Eosine are shown in Figure 6. Correct

anatomical separation of the arterial tissue into its

three corresponding layers were checked. For most

specimens only a few laminae of the media were still

attached to the intima or adventitia. The threshold

of 6 lamellas to exclude specimens with an incorrect

layer separation were considered.

4.3 Data fitting

4.3.1 Phenomenological anisotropic hyperelastic

damage model

The stress-stretch plots in Figures 7 and 8 show the

mechanical response and fitting results for the whole

artery and each separated layer, of a representative

DTA sample (III) and IAA sample (IV), using the

phenomenological damage model. The correlation be-

tween the experimental stress-stretch data and the re-

sponse of the proposed constitutive model was satis-

factory. The worst fit is always when the damage re-

sponse is highly anisotropic and the maximum loads

for the circumferential an and longitudinal directions

are totally different. For example, for the media layer

of the DTA sample III, the maximum loads before rup-

ture in the circumferential and longitudinal direction
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(a) Intima DTA (b) Media DTA (c) Adventitia DTA

(d) Intima IAA (e) Media IAA (f) Adventitia IAA

Fig. 6 Hematoxylin-and-eosin-stained sections 5 µm from wall layers after anatomic separation.

are 2.35 and 0.6 MPa, respectively. In this case, the

fitting curve for the longitudinal direction underesti-

mates the stress due to the coupled character of the

damage model. A similar response is obtained for the

intima layer of the IAA sample IV. Also, samples with

a narrow damage zone (of the stress-stretch curve),

which indicates rapid damage and rupture have a bet-

ter fit than samples suffering a mild damage process

identifiable by the smooth round-shaped damage zone,

see Figures 7.b and d and 8.c.

The experimental data curves were fitted using the

proposed phenomenological model following the pro-

cedure explained in Section 3.3. The results of the fit-

ting to the phenomenological model for the DTA and

IAA samples are shown in Tables 2 and 3, respectively.

In most cases the R2 is higher than 0.8. In general, the

parameter κ ranges between 0.15 and 0.33 for the DTA

samples showing a higher fiber dispersion, and ranges

between 0.12 and 0.20 for the IAA samples which re-

veals higher directionality of the collagen fibers. The

phenomenologically identified parameter θ (the angle

of the collagen fibers) is always higher than 45o for

the IAA samples and almost always higher than 45o

for the DTA samples demonstrating a higher stiffness

in the circumferential direction. Regarding the mate-

rial parameters, the parameters γf that defines the

value Ξft such that Df (Ξft) = 0.5 ranges between

0.27 and 0.46 [MPa] for the DTA and IAA samples,

except for the media of the IAA specimens, showing

similar fiber damage accumulation independent of the

position and geometrical fiber parameters (κ and θ).

However, the material parameter αf that controls the

slope of the damage function (brittle response) ranges

in values from 39 to 206, showing strong dependency

on the positions and microstructure of the tissue (dis-
persion and orientation of the collagen fibers). The

matrix damage parameters (αm and γm) also have dif-

ferent values depending on the position and layer.

4.3.2 Microstructural damage model

The stress-stretch plots in Figures 9 and 10 show the

mechanical response and fitting results for the whole

artery and each separated layer, of a representative

DTA sample (III) and IAA sample (IV) using the mi-

crostructural damage model. The correlation between

the experimental stress-stretch data and the response

of the proposed constitutive model was less satisfac-

tory and worse than the fitting using the phenomeno-

logical damage model.

The worst fit is always when the elastic response

is quasi-isotropic and the damage response is highly

anisotropic. The maximum loads for the circumferen-

tial and longitudinal directions are totally different, as
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(d) Adventitia

Fig. 7 Representative DTA curves (III) and simulation results for (a) whole artery, (b) intima, (c) media and (d) adventitia with
the phenomenological damage model.

occurs with the phenomenological model. For exam-

ple, see Figures 9.b and d and 10.a for the intima layer

of DTA sample III or the whole artery of IAA sam-

ple IV. In addition, when the longitudinal direction is

softer than the circumferential for the elastic part, the

damage response is isotropic and the maximum loads

for the circumferential and longitudinal directions are

very similar, the stress in the longitudinal direction

is underestimated due to the coupled character of the

damage model. For example, see Figure 9.d. for the ad-

ventitia layer of DTA sample III In general, samples

with a narrow damage zone, which indicates a rapid

damage and rupture, have a worse fit than samples

which have suffered a mild damage process identifiable

by the smooth round-shaped damage zone. Due to the

discrete local integration character of the microstruc-

tural damage model, when one fiber associated to one

direction of integration fails, other fibrils associated

to the other integration direction support the load,

causing a non-smother stress response.

The experimental data curves were also fitted using

the proposed microstructural damage model following

the procedure explained in Section 3.3. The results

of the fitting are shown in Tables 4 and 5. In most

cases the R2 is lower than the corresponding value for

the phenomenological model in some cases with R2 <

0.4. This demonstrates that from the fitting point of

view, the phenomenological damage model is better

than the microstructural model. The worst fit was for

the intima layer of the DTA samples with a value of
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Fig. 8 Representative IAA curves (IV) and simulation results for (a) whole artery, (b) intima, (c) media and (d) adventitia with
the phenomenological damage model.

R2 = 0.47 ± 0.16 due to the isotropic character of

the elastic part and the anisotropic character of the

damaged part. The best fitting was for the media layer

of the DTA with a value of R2 = 0.63± 0.20. Finally,

note that the fiber damage parameters (αf and γf )

are very similar for all layers and samples due to the

fact that fiber rupture properties.

5 Discussion

Aortic functionality can be impaired by several car-

diovascular diseases that cause damage or tearing

such as aneurysm or dissection leading to a high

risk of mortality. Most studies on softening, dam-

age and failure of arterial wall properties have char-

acterized arteries as single layer homogeneous struc-

tures (Garćıa et al., 2013; Duprey et al., 2016; Ma-

her et al., 2012). However, arteries are heterogeneous

three-layered structure (intima, media, and adventi-

tia) with layer-specific mechanical properties. Thus a

better understanding of their mechanical function at

the tissue level requires layer-specific data. Few stud-

ies consider the layer specific damage properties of

the aorta. Weisbecker et al. (2012) addresses the layer

specific softening response of the human aorta. How-

ever, their study only presented the softening response

of the layers and there was no data about the fail-

ure properties. Kim et al. (2012) performed a bulge

inflation tests on media and adventitia layers of hu-

man aneurismal aortic tissues up to failure. However,
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Specimen µ k1 k2 θ κ αm γm αf γf R2

Whole artery
I 0.011 1.1455 18.2856 1.81 0.3157 99.9080 0.2244 7.0229 0.1012 0.8480
II 0.0105 0.4818 0.0089 28.26 0.2163 115.1949 0.2364 92.5875 0.3622 0.4076
III 0.010 0.3688 10.1567 14.46 0.3149 12.0080 0.0010 18.4086 0.2448 0.8496
IV 0.0252 0.1107 1.3033 30.56 0.1382 10.0924 0.2684 10.6711 0.4859 0.8876
V 0.0162 0.1527 1.0621 24.91 0.2054 100.0000 0.1807 20.5776 0.6000 0.9181
VI 0.0151 0.5116 0.0156 3.64 0.3041 7.3545 2.9048 114.9979 0.1236 0.2583
VII 0.0308 1.4091 26.4467 10.83 0.2833 192.5518 0.0030 10.8678 0.0100 0.9516
Mean 0.01697 0.5971 8.1827 16.36 0.2539 76.7299 0.5455 39.3047 0.2753 0.7315
SD 0.0080 0.4944 10.5757 11.71 0.0684 70.0183 1.0460 44.7707 0.2167 0.2780

Intima
I 0.0013 5.343 24.0885 1.00 0.3237 86.7862 0.0010 0.3631 0.3170 0.9394
II 0.004 0.2531 2.4286 34.67 0.1808 100.0000 0.2222 98.9707 0.3359 0.9392
III 0.0100 0.3724 2.3497 39.44 0.1823 96.46 0.2071 9.2303 1.0986 0.9119
IV 0.0100 0.0292 81.7298 64.55 0.2958 42.1724 0.2794 54.6172 0.0897 0.7221
V 0.0085 0.3043 8.2914 56.27 0.2583 99.5847 0.2000 6.5233 0.4063 0.1478
VI 0.0100 0.1460 1.1101 40.25 0.1182 16.9875 0.1603 201.3337 0.3751 0.7247
VII 0.0100 1.0165 94.5125 0.01 0.3222 3.6484 4.5073 8.5398 0.1900 0.5370
Mean 0.0076 1.0663 30.6443 33.77 0.2401 63.6627 0.7967 54.2254 0.4018 0.7031
SD 0.0035 1.9121 40.2087 24.98 0.0804 41.7597 1.6384 74.0849 0.3266 0.2863

Media
I 0.0098 1.0737 16.8578 1.87 0.2662 87.49 0.2204 0.2926 0.1100 0.9184
II 0.01586 0.3743 2.7960 27.64 0.2500 19.7945 0.1107 117.0280 0.3357 0.9374
III 0.0072 0.0921 2.7574 34.14 0.0583 92.6382 0.2776 4.6533 0.5000 0.8288
IV 0.0100 0.1784 1.0407 33.92 0.0805 191.8825 0.2762 198.1099 0.5409 0.9150
V 0.0060 0.2261 2.8796 20.86 0.2442 70.0336 0.2000 58.1134 0.3684 0.8443
VI 0.0080 0.3855 1.2380 0.39 0.1916 352.4423 0.6015 496.0084 0.0510 0.9164
VII 0.0100 0.1808 3.1381 26.86 0.0 268.2386 0.7191 99.7525 0.1675 0.5768
Mean 0.0095 0.3587 4.3868 20.82 0.1558 154.6456 0.3436 139.1368 0.2962 0.8481
SD 0.0031 0.3329 5.5625 14.19 0.1077 120.4936 0.2259 171.6602 0.1912 0.1265

Adventitia
I 0.0120 2.8078 5.2094 72.00 0.2784 100.00 0.2073 0.0027 0.5000 0.8615
II 0.0078 0.9591 40.6955 63.76 0.3061 82.7346 0.0823 4.6479 0.2050 0.6148
III 0.0081 2.4371 20.3621 76.35 0.2892 4.6667 9.4180 45.6326 0.3295 0.9291
IV 0.0098 2.2316 42.9244 77.30 0.3125 1.9455 1.3191 13.2685 0.2461 0.9258
V 0.0100 0.1570 5.0353 38.00 0.2151 23.0410 7.5532 6.9720 0.7076 0.9159
VI 0.0083 0.6396 23.0510 0.00 0.2851 98.8049 0.1400 7.6807 0.0100 0.7901
VII 0.0100 0.5021 2.0671 29.84 0.0454 410.8192 0.0020 498.9927 0.4247 0.8840
Mean 0.0094 1.3906 19.9064 51.04 0.2474 103.1445 2.6745 82.4567 0.3461 0.8458
SD 0.0014 1.0702 16.9681 29.31 0.0945 142.2818 4.0308 184.2948 0.2249 0.1128

Table 2 Material constants obtained for the descending thoracic aorta (DTA) curves for the phenomenological damage model.
Constants µ and k1 are in MPa, γm, γf are in

√
MPa, θ in degrees, k2, κ, αm, αf and R2 are dimensionless.

they did not performed inflation test of intima layer

or healthy tissue.

In this paper, we characterize the failure properties

of the intact wall and each separated layer (intima,

media and adventitia) of the descending thoracic and

infrarenal abdominal aorta. We hypothesize that the

layer-separated failure properties of aorta may be de-

pendent on arterial location in the arterial tree and

we report values of constitutive parameters for phe-

nomenological and microstructural damage models.

The incorporation of damage in mechanical constitu-

tive models of arteries is a prerequisite for a better

understanding of clinical treatments involving supra-

physiological loading. To the best of the authors’

knowledge, this study is the first to report direct mea-

surements of the layer-specific failure mechanical re-

sponses of arteries and the determination of damage

constitutive parameters using damage models.

Progress in experimental mechanics has significantly

contributed to characterizing the mechanics of arter-

ies (Alastrué et al., 2008; Peña et al., 2009; Peña &

Doblare, 2009; Weisbecker et al., 2012; Garćıa et al.,

2013). Analyzing these experiments, four important

softening effects associated with arteries may be dis-

tinguished (Peña, 2014). First, there is the dependence

of the mechanical response on the previously attained

maximum load level very similar to the well-known

Mullins effect in rubber-like materials (Mullins, 1947;

Diani et al., 2009; Weisbecker et al., 2012). Another

typical phenomenon known as preconditioning or hys-

teresis is characterized by continuous softening at the

same load level after the first loading until reaching

a certain “saturated” state (Fung, 1993; Humphrey,

2002). Another typical phenomenon known as per-

manent set is characterized by residual strains after

unloading (Alastrué et al., 2008; Maher et al., 2012;

Garćıa et al., 2013). Finally, there is the bond rupture

and complete damage behavior resulting from fiber

rupture and matrix disruption be previous to the frac-

ture of the tissue which is not related to the Mullins

effect (Noble et al., 2016).
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Specimen µ k1 k2 θ κ αm γm αf γf R2

Whole artery
I 0.0013 0.5178 12.7553 40.63 0.0 15.5513 14.7325 28.3974 0.2343 0.8011
II 0.0027 4.5969 56.5479 0.15 0.3248 10.0033 2.8425 57.5256 0.2052 0.8783
III 0.0051 0.1435 6.2121 38.41 0.1704 11.0510 0.1000 10.1270 0.3356 0.8452
IV 0.0086 0.2483 14.8579 35.06 0.2744 55.8691 0.2267 10.2558 0.2116 0.8673
V 0.0165 0.1127 15.6244 0.00 0.0 256.3630 0.6196 9.2194 0.1738 0.7216
VI 0.0100 0.2932 0.3762 32.42 0.0345 6.5934 5.1020 140.5719 0.5187 0.9799
VII 0.0100 6.0486 14.63 26.95 0.3256 99.3045 8.8237 100.0993 0.3098 0.4709
Mean 0.0077 1.7087 17.2863 24.81 0.1614 64.9622 4.6353 50.8852 0.2841 0.7949
SD 0.0052 2.5076 18.1948 17.44 0.1498 90.9868 5.4629 51.7422 0.1187 0.1630

Intima
I 0.0075 1.2154 5.0033 0.63 0.2511 13.2331 0.0017 98.9175 0.9791 0.9628
II 0.0130 3.3308 13.6472 28.87 0.2828 0.0010 0.0249 186.5920 0.2745 0.9216
III 0.0084 0.0425 0.5960 0.00 0.0 194.9276 0.3765 20.0012 0.4432 0.7138
IV 0.0118 0.1087 1.9562 32.94 0.0505 47.7340 0.9933 99.0223 0.4500 0.6955
V 0.0100 2.8077 0.0010 34.16 0.0 159.9684 0.3568 0.0413 0.5101 0.8653
VI 0.0216 0.2027 1.1102 27.19 0.0 49.6591 .3545 521.096 0.2777 0.9727
VII 0.0037 11.0965 17.0885 0.00 0.3238 20.7061 0.0500 423.3217 0.3406 0.9330
Mean 0.0109 2.6863 5.6289 17.69 0.1298 69.4613 0.3082 192.7131 0.4679 0.8664
SD 0.0056 3.9397 6.9152 16.51 0.1487 76.5517 0.3463 202.3119 0.2428 0.1159

Media
I 0.0100 0.2897 3.3841 34.73 0.0 207.1045 0.3798 97.6807 0.6003 0.9206
II 0.0098 1.4816 11.8609 12.66 0.2730 16.0621 0.3660 210.5620 0.2005 0.8803
III 0.0123 0.6484 2.7538 37.16 0.2495 116.1468 0.8372 185.4415 0.3648 0.5862
IV 0.0148 0.4260 4.5274 0.04 0.2676 44.9062 0.0020 97.2008 0.5440 0.9514
V 0.0105 1.3843 1.5508 52.79 0.2489 88.7689 0.2017 98.4999 13.9264 0.8334
VI 0.0129 0.3722 5.1647 26.82 0.0530 0.0100 0.2500 254.0749 0.2854 0.6116
VII 0.0126 2.7596 1.0558 0.98 0.2541 281.9852 0.2801 499.0841 0.3357 0.7373
Mean 0.0118 1.0517 4.3282 23.60 0.1923 107.8548 0.3310 206.0777 2.3224 0.7887
SD 0.0018 0.8953 3.6349 19.81 0.1146 103.7817 0.2562 143.6312 5.1188 0.1468

Adventitia
I 0.0095 3.4639 56.6768 4.45 0.3218 26.3130 0.4757 54.5822 0.2169 0.9099
II 0.0074 16.6244 168.8492 67.52 0.3070 98.6211 0.0100 40.4556 0.2369 0.7067
III 0.0100 0.2036 10.1304 36.12 0.0 11.9946 0.2565 4.9121 0.1495 0.8874
IV 0.0061 0.7789 5.6634 0.00 0.2715 7.4984 9.9366 84.1038 0.5434 0.7504
V 0.0084 1.1635 0.0100 37.11 0.0 24.2229 0.0014 70.2490 0.5229 0.8841
VI 0.00910 0.5634 4.7418 28.89 0.0 310.3481 0.4567 253.0713 0.2942 0.5164
VII 0.0010 5.3814 29.6593 3.04 0.3176 31.1885 0.4883 499.9794 0.4631 0.3415
Mean 0.0074 4.0256 39.3901 25.31 0.1740 72.8838 1.6607 143.9076 0.3467 0.7138
SD 0.0031 5.8625 60.4126 24.57 0.1635 109.0181 3.6553 175.9294 0.1601 0.2147

Table 3 Material constants obtained for the infrarenal abdominal aorta (IAA) curves for the phenomenological damage model.
Constants µ and k1 are in MPa, γm, γf are in

√
MPa, θ in degrees, k2, κ, αm, αf and R2 are dimensionless.

In this study, layer-specific experimental data relating

to the rupture of swine aortas in uniaxial extension
tests were collected and analyzed. Within the elas-

tic range, the media layer seems to be the softest

layer while the intima and adventitia exhibit consid-

erable stiffness, independently of the position along

the aorta. All tissue samples exhibit a pronounced

nonlinear mechanical response and the anisotropic be-

havior for the elastic and rupture response is more

marked in the abdominal aorta. Abdominal samples

are stiffer than descending thoracic samples, with the

most important differences corresponding to those be-

tween the descending thoracic and abdominal behav-

iors in the circumferential direction. It is generally

agreed that aortic stiffness increases with increasing

distance from the heart (Guo & Kassab, 2003; Hang

& Fung, 1995; Kim et al., 2013; Peña et al., 2015,

2018). Our results are in agreement with the results

presented by Peña et al. (Peña et al., 2015). These

authors found statistically significant differences be-

tween the mechanical behavior of proximal and distal

locations in circumferential directions, but not in the

longitudinal direction because they tested the aorta

at low stress-strains corresponding to the physiologi-

cal regime. However, our results show that in the high

loading domain the response in the longitudinal di-

rection is also dependent on the position along the

aorta, and the differences between DTA and IAA in

the circumferential direction are less marked in the

high loading domain than in the lower one. On the

basis of these results, the extrapolation of the elastic

mechanical properties from the physiological to the

supra-physiological regime for characterizing the me-

chanical response of aorta would be inappropriate.

The circumferential complete and media samples dis-

played higher fracture stress (σr) and the axial spec-

imens higher fracture stretches (λr) independently

of the position; however, these differences are more

marked for the abdominal samples. Similar results

were presented by Noble et al. (Noble et al., 2016) who

found greater fracture stress in the circumferential di-

rection and greater fracture stretch in the longitudinal
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Fig. 9 Representative DTA curves (III) and simulation results for (a) whole artery, (b) intima, (c) media and (d) adventitia with
the microstructural damage model.

direction for the whole artery. The magnitude of the

stress in the whole samples, where stress at fracture

varied between 450-830 kPa in the DTA samples and

1.38-2.60 MPa in the IAA samples (Table 1), is simi-

lar to that reported in (Noble et al., 2016) and higher

than in other publications (Holzapfel et al., 2005). Our

results for the rupture properties for each of the sep-

arated layers demonstrated that the fracture stress is

higher in the circumferential than in the longitudinal

direction. This difference is relevant for the intima and

media. Although the mechanics underlying aortic dis-

section are incompletely understood, due to the fact

that the dissection process of blood flow delaminating

the aorta is one of due to shear-induced injury, longi-

tudinal failure properties would be more relevant ma-

terial properties for analyzing the mechanics of Acute

Aortic Dissection (AAD) (Rajagopal et al., 2019). For

example, generally the fracture stress is higher in IAA

compared to the equivalent intima and media DTA

fracture stresses and ADD occurs more frequently in

the ascending or descending aorta than in the abdomi-

nal one. However, we can not directly extend this con-

clusion to human ADD due to the fact that AAD are

pathological whereas we have been tested healthy tis-

sue. It is well-known that certain relationship can also

be established between the microstructural composi-

tion of the arteries observed in the histological analysis

and the elastic behavior of the tissue. However, the

analysis of the fiber orientation and the constituent

organization are outside the scope of this work. So, a
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Fig. 10 Representative IAA curves (IV) and simulation results for (a) whole artery, (b) intima, (c) media and (d) adventitia with
the microstructural damage model.

further analysis of the histological data would be an

interesting future analysis. Our findings are also anal-

ogous to those reported previously for coronary by

Holzapfel et al. (Holzapfel et al., 2005). These authors

found that ultimate tensile stresses of the media and

intima are very similar and the strip samples from the

adventitia showed about three times higher ultimate

tensile stresses than samples from the related media

and intima. Regarding the layer specific failure me-

chanical properties, similar results were obtained by

Kim et al. (2012) for human ascending thoracic aor-

tic aneurysms. They found no statistical differences

between fracture stretches (λr) for the circumferen-

tial or longitudinal directions. They also found that

the longitudinal ultimate stress (σr) was lower than

circumferential ultimate stress for media and adventi-

tia aortic aneurysms samples. Finally, they also found

that the failure stress is much higher in the adventitia

layer compared to that in the media layer as we can

observe on Figure 5.

There are several constitutive models able to describe

the failure of soft tissues in general, and arteries in

particular. First, models based on Continuum Damage

Mechanics (CDM), where a quantification of damage

is performed by evaluating the reduction of the me-

chanical properties of the tissue using internal vari-

ables without a clear physical meaning can reproduce

the softening behavior during unloading or reloading

and rupture (Balzani et al., 2006; Calvo et al., 2007;

Hokanson & Yazdami, 1997; Peña, 2011c; Peña et al.,
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Specimen µ c1 c2 b θ αm γm αf γf R2

Whole artery
I 0.0032 0.0782 1.7239 1.2677 32.16 2.1394 0.02755 91.4665 0.8304 0.6548
II 0.0042 0.1020 1.5072 3.9462 29.17 1.0295 0.0363 12.3689 0.5060 0.7139
III 0.0110 0.0430 1.1840 1.3250 35.52 95.63 0.0190 105.91 0.7438 0.2182
IV 0.0296 0.0141 1.0969 1.9328 21.50 27.5380 0.0622 66.2140 0.8159 0.6417
V 0.0032 0.0421 1.0133 1.9691 42.10 13.4967 0.0395 94.1627 0.8899 0.7963
VI 0.0131 0.0878 0.8493 1.4360 30.84 3.4165 0.1929 101.1592 0.5850 0.4158
VII 0.0013 0.1125 0.6195 2.7692 30.60 11.2915 0.0538 86.1203 0.8222 0.5708
Mean 0.009 0.0685 1.1420 2.0922 31.6985 22.0773 0.0616 79.6288 0.74188 0.5730
SD 0.0099 0.0361 0.3766 0.9691 6.2630 33.71 0.0597 32.2790 0.1425 0.1965

Intima
I 0.0075 0.0951 5.2069 2.7761 37.80 1.1625 0.0325 84.1628 0.8427 0.3339
II 0.0051 0.0575 2.0169 1.6946 44.43 0.9187 0.0606 144.9165 0.9297 0.7080
III 0.0450 0.1014 0.8245 1.1930 25.37 42.1200 0.0049 185.55 0.9803 0.4298
IV 0.0272 0.0541 2.1729 4.9182 54.17 102.7713 0.0369 91.2674 0.8681 0.3501
V 0.0011 0.0515 1.5213 1.2904 81.10 40.1395 0.0664 180.5296 1.2459 0.3939
VI 0.0013 0.0632 0.9150 0.8152 47.90 20.1628 0.1015 264.0195 1.1685 0.3704
VII 0.0022 0.1028 3.1209 2.3914 36.30 8.6582 0.0411 105.3172 0.6957 0.7010
Mean 0.0127 0.0750 2.2540 2.1541 46.7242 30.8475 0.0491 150.8232 0.9615 0.4695
SD 0.0168 0.0234 1.5224 1.3998 17.7392 35.9858 0.0306 64.5471 0.1908 0.1634

Media
I 0.0051 0.2047 2.4649 2.0646 17.30 1.1625 0.0359 123.5752 0.7665 0.6370
II 0.0047 0.0711 1.0485 1.5197 22.60 2.6915 0.0694 241.0200 0.6103 0.8705
III 0.0122 0.0865 0.7491 1.7800 18.74 7.53 0.0190 86.11 0.8855 0.3398
IV 0.0120 0.0456 1.0173 2.4912 21.56 32.1975 0.0290 110.2180 0.7754 0.4181
V 0.0031 0.0545 0.4219 2.9162 14.90 24.1925 0.0550 249.2041 1.5903 0.7386
VI 0.0003 0.1030 0.9700 14.9165 22.60 15.2943 0.1423 126.1861 0.6103 0.8131
VII 0.0015 0.1856 1.5209 4.6913 16.02 1.0236 0.0822 692.1350 0.3795 0.6269
Mean 0.0055 0.1072 1.1703 4.3399 19.1028 12.0131 0.0618 232.6354 0.8025 0.6348
SD 0.0047 0.0632 0.6601 4.7804 3.1897 12.3288 0.0419 212.5895 0.3834 0.1967

Adventitia
I 0.0064 0.1662 4.0129 1.9726 37.80 1.0841 0.0322 201.1654 1.5547 0.1848
II 0.0022 0.1302 2.2064 2.0967 59.12 1.0956 0.0606 134.2958 1.1068 0.4718
III 0.0160 0.1342 6.9100 1.6873 72.12 12.6100 0.0144 31.9500 0.7115 0.2250
IV 0.0034 0.1613 3.0173 1.6472 57.19 17.0091 0.0321 81.9251 0.9549 0.3116
V 0.0050 0.0379 0.9258 2.7520 31.20 11.7952 0.0681 127.9351 0.7368 0.6834
VI 0.0022 0.0830 0.9714 2.1453 21.80 6.0219 0.1028 161.2850 0.7463 0.7742
VII 0.0034 0.3976 1.3367 4.5912 28.80 2.3362 0.0538 286.4935 0.6957 0.6476
Mean 0.0055 0.1586 2.7686 2.4131 44.0042 7.4217 0.052 146.4357 0.9295 0.4712
SD 0.00486 0.1146 2.1507 1.0277 18.7948 6.4027 0.0292 82.2498 0.3151 0.2366

Table 4 Material constants obtained for the descending thoracic aorta (DTA) curves for the microstructural damage model.
Constants µ and c1 are in MPa, γm, γf are in

√
MPa, θ in degrees, c2, b, αm, αf and R2 are dimensionless.

2010, 2009). Models based on the theory of pseudo-

elasticity can represent damage-induced inelastic phe-
nomena such as stress softening and permanent de-

formation (Peña, 2014; Peña & Doblare, 2009; Weis-

becker et al., 2012). Another option is using the soft-

ening hyperelasticity approach (Volokh, 2007b,a). Fi-

nally, fracture mechanics models can predict the rup-

ture of soft biological tissues in computational simula-

tions. These include the cohesive zone model (CZM)

(Ferrara & Pandolfi, 2010; Forsell & Gasser, 2011;

Hernández & Peña, 2016), the extended finite ele-

ment method (XFEM) (Gasser & Holzapfel, 2006) and

the crack phase-field model (CPFM) (Gültekin et al.,

2016; Raina & Miehe, 2016). For their simplicity and

applicability, CDM phenomenological models are good

candidates for modelling stress softening in biological

soft tissues. In addition, the extension to microstruc-

tural models are based on internal variables is eas-

ily formulated (Sáez et al., 2012). For these reasons,

CDM phenomenological and microstructural models

are used in this work to reproduce the experimental

data.

The CDM phenomenological damage model gives an

excellent fit to the experimental data compared with

the CDM microstructural damage model. It has the

same number constitutive parameters, two parameters

to account for damage in the matrix and another two

parameters for the fibers. A comparison of the quality

of the curve fits in the circumferential and axial direc-

tions suggests that the CDM phenomenological model

is best suited for smooth, continuous breaking. The er-

ror measure R2 > 0.7 is very close to one mainly for

arterial layers and specimens. This indicates a very

good correlation between the model and the experi-

mental data for all arterial layers and specimens. The

worst fit R2 > 0.407 is always when the damage re-

sponse is highly anisotropic and the maximum load in

the circumferential and longitudinal directions are to-

tally different. In these cases, the fitting curve in the

longitudinal direction underestimates the stress due

to the coupled character of the damage model. Due
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Specimen µ c1 c2 b θ αm γm αf γf R2

Whole artery
I 0.0072 0.1489 4.1996 0.7516 21.30 1.2139 0.0682 103.4952 1.5547 0.6751
II 0.0037 0.1150 5.9427 1.0924 40.10 18.4619 0.0459 361.3021 1.3123 0.6734
III 0.0170 0.0415 0.9030 1.2175 10.00 16.41 0.01758 71.56 0.7905 0.4454
IV 0.0034 0.0313 1.6181 1.9432 33.19 17.0091 0.0321 81.9251 0.6070 0.5152
V 0.0011 0.9922 5.7918 5.1934 25.90 63.1960 0.0885 46.1952 0.6457 0.3977
VI 0.0013 0.1036 1.3971 2.1453 29.18 12.4195 0.0379 198.1645 1.1574 0.7406
VII 0.0021 0.1492 6.5392 2.1755 40.10 1.6615 0.0686 151.2037 1.2017 0.5035
Mean 0.0051 0.2260 3.7702 2.0741 28.5386 18.6246 0.0513 144.8351 1.0385 0.5644
SD 0.0056 0.3411 2.4201 1.4837 10.7426 20.9107 0.0248 108.4038 0.3615 0.1312

Intima
I 0.0036 0.1586 2.1971 2.5920 20.75 4.0295 0.0544 65.0200 0.8323 0.8087
II 0.0051 0.1960 3.4943 3.0924 35.10 6.7150 0.0332 129.4185 0.9961 0.5636
III 0.0192 0.0599 0.7903 4.6250 25.00 19.4100 0.0504 101.5660 0.8111 0.3074
IV 0.0131 0.0392 1.3173 2.8192 20.62 5.1942 0.0258 101.5754 0.7936 0.4317
V 0.1222 0.1242 0.6789 2.1934 72.50 2.2019 0.4541 119.4495 1.1685 0.7595
VI 0.0129 0.1711 0.9714 3.1315 22.30 6.0197 0.0427 267.2019 0.7147 0.6353
VII 0.0048 0.2862 8.1184 4.6175 41.50 2.1658 0.0550 73.4941 1.3282 0.4385
Mean 0.0258 0.1479 2.5097 3.2959 33.9671 6.5337 0.1022 122.5322 0.9492 0.5635
SD 0.0429 0.0839 2.6652 0.9591 18.7625 5.9442 0.1555 67.7955 0.2258 0.1836

Media
I 0.0038 0.1663 2.7164 5.1463 25.62 10.5160 0.0385 143.2189 0.6325 0.5467
II 0.0040 0.1953 2.9420 3.7165 31.70 11.5492 0.0417 95.4028 0.7115 0.5459
III .0145 0.1040 1.0766 1.9105 34.50 11.8300 0.0685 45.1920 0.9360 0.5639
IV 0.0092 0.0640 1.0194 4.1849 22.19 3.9425 0.0164 105.7140 0.7245 0.5644
V 0.0162 0.5432 5.7918 3.1934 24.30 15.2019 0.4981 164.2940 0.6460 0.7170
VI 0.0022 0.3710 0.2571 4.2294 11.50 14.2197 0.0822 651.0920 0.4111 0.5316
VII 0.0031 0.3246 3.6115 3.6175 24.10 6.4195 0.0601 157.3654 0.6008 0.5656
Mean 0.0076 0.2526 2.4878 3.7141 24.8443 10.5255 0.1151 194.6113 0.6661 0.5764
SD 0.0058 0.1693 1.8957 1.0060 7.3802 4.0509 0.1703 205.5048 0.1577 0.0633

Adventitia
I 0.0027 0.0942 6.9450 0.8625 40.18 0.5160 0.0266 205.9125 1.5811 0.6283
II 0.0067 0.1890 21.3419 3.2165 55.23 8.7152 0.0632 143.2985 1.3993 0.5965
III 0.0074 0.1068 4.6941 2.1933 24.60 19.1676 0.0306 75.1353 0.8412 0.6091
IV 0.0051 0.0802 2.5347 4.1749 31.15 5.1694 0.0247 161.0230 0.9866 0.7755
V 0.0462 0.4894 0.9332 2.6154 22.70 1.2956 0.6185 213.4195 2.1171 0.6716
VI 0.0139 0.5911 2.0135 3.9450 28.50 8.7502 0.0917 152.0946 0.7273 0.4363
VII 0.0057 0.2658 2.9196 1.4765 42.40 10.1658 0.0870 61.2820 2.0871 0.6632
Mean 0.0125 0.2595 5.9117 2.6406 34.9657 7.6828 0.1346 144.5951 1.3914 0.6258
SD 0.0152 0.2044 7.0826 1.2318 11.6000 6.3080 0.2152 58.5807 0.5707 0.1024

Table 5 Material constants obtained for the infrarenal abdominal aorta (IAA) curves for the microstructural damage model.
Constants µ and c1 are in MPa, γm, γf are in

√
MPa, θ in degrees, c2, b, αm, αf and R2 are dimensionless.

to the phenomenological character of the model, the

damage parameters (αm, γm, αf , γf ) present high dis-
persion (higher SD compare with Mean). For example,

γf that controls when the damage starts has values of

0.2753± 0.2167, 0.4018± 0.3266, 0.2969± 0.1912 and

0.3461 ± 0.2249 for whole, intima, media and adven-

titia of the DTA, respectively, and 0.2841 ± 0.1187,

0.4679± 0.2428, 2.3224± 5.1188 and 0.3467± 0.1601

for whole, intima, media and adventitia of the IAA.

The CDM microstructural damage model gives a ques-

tionable fit to the experimental data compared with

the CDM phenomenological damage model. The er-

ror measure R2 < 0.87 is far from one for some ar-

terial layers and specimens. The worst fit is always

when the elastic response is quasi-isotropic and the

damage response is highly anisotropic, and the maxi-

mum load for the circumferential and longitudinal di-

rections are totally different, as also occurs with the

phenomenological model. In summary, samples which

have a narrow damage zone indicating rapid damage

and rupture have a worse fit than samples suffering a

soft damage process identifiable by the smooth round-

shaped damage zone. This fact is due to the discrete

local integration character of the microstructural dam-

age model. When one fiber associated to one direction

of integration fails, other fibrils associated to another

integration direction support the load causing a non-

smother stress response (Sáez et al., 2012). In con-

trast to the phenomenological model, the damage fib-

rils parameters (αf , γf ) have lower dispersion (lower

SD compared with the Mean) due to the fact that

these parameters represent the damage properties of

the fibrils. They would be similar independently of the

layers and positions, as can be seen in Tables 4 and 5

which show values of 0.74188±0.1425, 0.9615±0.1908,

0.8025±0.3834 and 0.9295±0.3151 for whole, intima,

media and adventitia of the DTA, respectively, and

1.0385± 0.3615, 0.9492± 0.2258, 0.6661± 0.1577 and

1.3914± 0.5707 for whole, intima, media and adventi-

tia of the IAA. Another advantage of microstructural

models is they that can include physically motivated

aspects obtained from histological analysis, polarized
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light microscopy (Schriefl et al., 2012) or other quan-

titative experimental techniques (Rezakhaniha et al.,

2012).

There are few works that fit experimental data of

of artery damage and rupture using CDM models.

Only Noble et al. (Noble et al., 2016) fit their ex-

perimental data of healthy and treated porcine me-

dia thoracic aorta with collagenase, elastase and glu-

taraldehyde in order to simulate an aneurysm. The

constitutive model used comprised the Gasser-Ogden-

Holzapfel model (Gasser et al., 2006) for elastic re-

sponse and a continuum damage model for the failure.

However these authors found that the damage param-

eters had to be different in the axial and circumferen-

tial directions in order to get good correlation results.

In contrast, in this work we fitted the damage pa-

rameters at the same time for the circumferential and

longitudinal direction. Fitting both directions sepa-

rately allows better correlation results when the dam-

age response is highly anisotropic and the maximum

load for the circumferential an longitudinal directions

are totally different. However, this methodology is not

useful if we want to use computational models to an-

alyze physiological and pathological aspects of arter-

ies in terms of aortic dissection or aneurysmatic and

atherosclerotic rupture, for example. It is important

to remark that our model is able to predict similar

correlation results using the same fiber parameters.

The findings of this study should be interpreted within

the context of its limitations. Regarding the exper-

imental analysis, a small number of tissue samples

(n=7) were investigated. Another experimental lim-
itation is related to the use of simple tension tests

for separated layers. It has previously been pointed

out (Holzapfel et al., 2005; Peña et al., 2015) that a

layer separation of arteries into their tissue compo-

nents in young samples is difficult. It was impossi-

ble to separate large square samples for biaxial tests,

so only uniaxial rectangular strips with a 5:1 length-

width ratio were used for the uniaxial tests. Another

limitation of the study is that the structural integrity

at the lateral edges of the strips is modified during

the separation process. As pointed out by Holzapfel et

al. (Holzapfel et al., 2005), collagenous fibers that are

cut off during preparation may retract and inappro-

priate layer separation could occur. To check the cor-

rect anatomical separation of the arterial tissue into

its three corresponding layers, a histological analysis

using Hematoxiline-eosine stain was carried out and

some strips had to be discarded during postprocess-

ing as the layer separation process was not successful.

Finally, all mechanical properties were reported un-

der the assumption of homogeneity, which is clearly

not the case for arteries.

With regard to material fitting, the CDM models used

here do not take into account viscoelastic effects, soft-

ening due to Mullin’s effect or permanent set. We use

an experimental protocol with a single loading part

until rupture, so we do not have experimental data

to reproduce these effects. There is data in the litera-

ture suggesting that aortic tissue is highly compress-

ible (Nolan & McGarry, 2016). We do not have enough

information to check this hypothesis, so we assume

the arterial tissue as incompressible material (Carew

et al., 1968). In addition, our CDM models consider

only the passive mechanical response of aortic tissues.

However, active response due to smooth muscle cells

may also play an important role in damage accumula-

tion (Weisbecker et al., 2012). Due to the phenomeno-

logical nature of the CDM phenomenological model,

it is very difficult to associate the internal variables

Di with microstructural changes or internal processes.

Another limitation is related to the undetermined pa-

rameter fitting problem. The approach followed in this

work to fit the experimental data is known to lead to

a non-unique set of parameters able to reproduce the

material behavior. For the microstructural model, this

underdetermination would be a direct measurement of

the micro-structural parameters, through experimen-

tal tests. For example, (Schriefl et al., 2012; Polzer

et al., 2015; Sáez et al., 2016) performed measures

with polarized light microscopy in order to obtain

the concentration parameters of the fibers. Another

limitation of the microstructural model is associated

with the discrete integration performed that leads to
a non-smooth response of the damage response of the

microsphere and a mismatch between the statistical

distribution of the concentration parameter and the

uniform placing of the integration directions. In cases

with highly concentrated distributions, many of the

integration directions are not used in an optimal man-

ner, since they correspond to directions without fib-

rils. Instead of the integration method suggested by

Bazǎnt & Oh (Bažant & Oh, 1986) with 600 integra-

tion directions, we need to use a Lebedev quadrature

rule (Lebedev & Laikov, 1999) for 77st algebraic or-

der of accuracy. For the microstructural model, the

use of the von Mises ODF is a simplification of the

measured fiber distribution. The use of another ODF,

such as the Bingham distribution, could lead to a more

flexible description of the fiber distribution (Alastrué

et al., 2010; Gasser et al., 2012; Sáez et al., 2016).

The waviness of collagen fibers was not included by

means of a probability density function for the recruit-

ment stretch at which the fiber starts to bear a load
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(Weisbecker et al., 2015). This effect could improve

the fitting of the microstructural model, as pointed

out by Hamedzadeh et al. (Hamedzadeh et al., 2018)

in a work where they propose a recruitment and dam-

age constitutive model for collagen fibers in soft bi-

ological tissues. Similarly to other published models

(Hurschler et al., 1997), their model employs proba-

bility distribution functions in order to capture the

progressive recruitment and damage of fibrils in a col-

lagen fiber. We could also improve our model using

a model that includes the interaction between colla-

gen fibers and proteoglycan cross-linked collagen fib-

rils that undergo irreversible deformations, which here

have been ignored (Gasser, 2011). Computational ap-

proaches such as finite element method have a key role

to play in order to provide more realistic simulations

of clinical interventions on supra-physiological scenar-

ios where damage modelling should also be taken into

account. For these cases the determination of the me-

chanical parameters is crucial to carry out simulations

of realistic geometries under actual conditions. How-

ever, sometimes, the use of those constants in numeri-

cal models for complex load conditions does not guar-

antee that results obtained from a uniaxial test can be

applied to a real state, as noted Duprey et al. (2016).

They found statistical differences between bulge infla-

tion and uniaxial tension experiments on σr and λr
distributions of ascending thoracic aortic aneurysms.

The observed that the ultimate stress in bulge infla-

tion testing is similar to the axial ultimate stress and

lower than circumferential ultimate stress in uniaxial

tension tests. So, more realistic loading conditions on

experimental tests would be needed.

6 Conclusions

There are three main findings in this study: first, in

the high loading domain the response in the circumfer-

ential and longitudinal directions are dependently on

the position along the aorta. The differences between

the DTA and IAA in the circumferential direction are

less marked in the high loading domain than in the

lower one. This phenomenon is the contrary of the

elastic regimen at the low loading domain, so the ex-

trapolation of the elastic mechanical properties from

the physiological to the supra-physiological regime for

characterizing the mechanical response of the aorta

would be inappropriate. Second, the fracture stress is

higher in IAA compared to the equivalent DTA. This

lower fracture stress in the media and adventitia in

the longitudinal direction gives us a mechanical fac-

tor explaining the fact that Acute Aortic Dissection

occurs more frequently in the thoracic aorta than in

the abdominal aorta. Third, the CDM phenomenolog-

ical damage model gives an excellent fit to the experi-

mental data compared with the CDM microstructural

damage model. Although the fitting results of the phe-

nomenological model are better, the microstructural

models can include physically motivated aspects ob-

tained from experimental analysis and allow the inte-

gration of biochemical information of the architecture

of arteries at micro level.
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P. Sáez, et al. (2016). ‘Microstructural quantification

of collagen fiber orientations and its integration in

constitutive modeling of the porcine carotid artery’.

Acta Biomat 33:183–193.

F. H. Silver, et al. (2003). ‘Mechanical Behavior

of Vessel Wall: A Comparative Study of Aorta,

Vena Cava, and Carotid Artery’. Ann Biomed Eng

31:793–803.



24

J. C. Simo (1987). ‘On a fully three-dimensional

finite-strain viscoelastic damage model: Formula-

tion and computational aspects’. Comput Methods

Appl Mech Engrg 60:153–173.

D. P. Sokolis (2010). ‘A passive strain-energy function

for elastic and muscular arteries: correlation of ma-

terial parameters with histological data’. Med Biol

Eng Comput 48:507–518.

A. J. M. Spencer (1971). ‘Theory of Invariants’. In

Continuum Physics, pp. 239–253. Academic Press,

New York.

K. Y. Volokh (2007a). ‘Hyperelasticity with softening

for modeling materials failure’. J Mech Phys Solids

55:2237–2264.

K. Y. Volokh (2007b). ‘Prediction of arterial fail-

ure based on a microstructural bi-layer fiber-matrix

model with softening’. J Biomech 41:447–453.

H. Weisbecker, et al. (2012). ‘Layer-specific damage

experiments and modeling of human thoracic and

abdominal aortas with non-atherosclerotic intimal

thickening’. J Mech Behav Biomed 12:93–106.

H. Weisbecker, et al. (2015). ‘Constitutive modelling

of arteries considering fibre recruitment and three-

dimensional fibre distribution’. J R Soc Interface

12:20150111.

R. Wulandana & A. M. Robertson (2005). ‘An in-

elastic multi-mechanism constitutive equation for

cerebral arterial tissue’. Biomech Model Mechan-

biol 4:235–248.

S. Zeinali-Davarani, et al. (2013). ‘Characterization of

Biaxial Mechanical Behavior of Porcine Aorta under

Gradual Elastin Degradation’. Ann Biomed Eng

41:1528–1538.


