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Abstract

In the final quarter of the XX century the classical reductionist approach that had
been driving the development of physics was questioned. Instead, it was proposed that
systems were arranged in hierarchies so that the upper level had to convey to the rules of
the lower level, but at the same time it could also exhibit its own laws that could not be
inferred from the ones of its fundamental constituents. This observation led to the creation
of a new field known as complex systems. This novel view was, however, not restricted
to purely physical systems. It was soon noticed that very different systems covering a
huge array of fields, from ecology to sociology or economics, could also be analyzed as
complex systems. Furthermore, it allowed physicists to contribute with their knowledge
and methods in the development of research in those areas.

In this thesis we tackle problems covering three areas of complex systems: networks,
which are one of the main mathematical tools used to study complex systems; epidemic
spreading, which is one of the fields in which the application of a complex systems
perspective has been more successful; and the study of collective behavior, which has
attracted a lot of attention since data from human behavior in huge amounts has been
made available thanks to social networks. In fact, data is also the main driver of our
discussion of the other two areas. In particular, we use novel sources of data to challenge
some of the classical assumptions that have been made in the study of networks as well as
in the development of models of epidemic spreading.

In the case of networks, the problem of null models is addressed using tools coming
from statistical physics. We show that anomalies in networks can be just a consequence of
model oversimplification. Then, we extend the framework to generate contact networks for
the spreading of diseases in populations in which both the contact structure and the age
distribution of the population are important.

Next, we follow the historical development of mathematical epidemiology and revisit the
assumptions that were made when there was no data about the real behavior of this kind
of systems. We show that one of the most important quantities used in this kind of studies,
the basic reproduction number, is not properly defined for real systems. Similarly, we
extend the theoretical framework of epidemic spreading on directed networks to multilayer
systems. Furthermore, we show that the challenge of incorporating data to models is not
only restricted to the problem of obtaining it, but that it is also really important to be
aware of its characteristics to do it properly.

Lastly, we conclude the thesis studying two examples of collective behavior using data
extracted from online systems. We do so using techniques that were originally developed
for other purposes, such as earthquake prediction. Yet, we demonstrate that they can
also be used to study this new type of systems. Furthermore, we show that, despite their
unique characteristics, they possess properties similar to the ones that have been observed
in the offline world. This not only means that modern societies are intertwined with the
online world, but it also signals that if we aim to understand socio-technical systems a
holistic approach, as the one proposed by complex systems, is indispensable.
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1
Introduction

Caminante, son tus huellas
el camino y nada más;
Caminante, no hay camino,
se hace camino al andar.

Al andar se hace el camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.

Caminante no hay camino
sino estelas en la mar.

Wanderer, it is your footprints
winding down, and nothing more;
wanderer, no roads lie waiting,
roads you make as you explore.

Step by step your road is charted,
and behind your turning head
lies the path that you have trodden,
not again for you to tread.

Wanderer, there are no roadways,
only wakes upon the sea.

(“Proverbios y cantares”, Antonio Machado)

“But although, as a matter of history, statistical mechanics owes its origin to investiga-
tions in thermodynamics, it seems eminently worthy of an independent development, both
on account of the elegance and simplicity of its principles, and because it yields new results
and places old truths in a new light in departments quite outside of thermodynamics”
wrote Josiah W. Gibbs in the preface of his seminal book published in 1902, Elementary
principles in statistical mechanics [1]. Yet, starting from that point might fool the reader
into thinking that science progresses in eureka steps, isolated sparks of inspiration only
attainable by geniuses. In reality, however, its progress is much more continuous than
discrete. As Picasso said, inspiration exists, but it has to find you working.

XIX The birth of statistical mechanics
We shall begin this thesis with the work published by Carnot in 1824 [2]. The industrial

revolution had brought steam engines all around Europe, completely reshaping the fabric
of society. Yet, in Carnot’s words, “their theory is very little understood, and the attempts
to improve them are still directed almost by chance”1. Although clear efforts had been
done in the pursuit of understanding the science behind what was yet to be named
as thermodynamics, Carnot’s work is usually regarded as the starting point of modern
thermodynamics. The book was, however, slightly overlooked until 1834 when it laid on
the hands of Clapeyron, who found its ideas “fertile and incontestable” [4]. In fact, it was
Clapeyron the one that used the pressure-volume diagram (developed, in turn, by Watt in
the late XVIII century) to represent the Carnot cycle, an image that is nowadays etched
into the memory of every student of thermodynamics.

Subsequently, the ideas behind thermodynamics were developed mainly by Clausius
and Kelvin, with the indispensable insights provided by experiments such as the ones
carried out by Joule. Actually, it was Clausius the one that coined the term entropy in

1Quote extracted from the English translation published by Thurston in 1897 [3]
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1865 [5] although, interestingly, he had obtained that same quantity a few years before, in
1854, but did not realise its full potential [6]. Albeit in a different shape, this concept will
be one of the cornerstones of chapter 2.

To continue discussing the path followed by Clausius we need to bring two more theories
to the table: the kinetic theory of gases and the theory of probability. The former theory
stated that a gas was composed by many tiny particles or atoms, whose movement was
responsible for the observed pressure and temperature of the gas. This theory had been
proposed a century ago, in 1738, by Daniel Bernoulli, although it did not attract much
attention at the time [7]. The theory of probability, on the other hand, had received several
contributions along the years, being the one by Daniel’s uncle, Jacob Bernoulli, one of the
most well known (for instance, Bernoulli trials or the Bernoulli distribution are named
after him). Probability had been regarded for some time as something mainly related to
gambling2, but step by step it started to loose that negative connotation when scientists in
the XVIII century introduced it into error theory for data analysis. The process was then
firmly established with the works by Gauss in the early 1800s and by the middle of the
century it was already common in physics textbooks3.

This leads us to the year 1859. Clausius had published a work about molecular
movement for the kinetic theory of gases that, at first glance, implied that molecules
could move freely in space. This was criticized by some scientists as, if it were true, they
wandered why clouds of tobacco smoke extended slowly rather than quickly filling up the
whole room. Clausius regarded that objection legitimate and further developed his theory
to account for “how far on an average can the molecule move, before its centre of gravity
comes into the sphere of action of another molecule” [10]. In other words, he calculated
what we know today as the mean free path. Furthermore, he introduced the concept of
average speeds and random impacts. As we will see, this work was fundamental for the
development of statistical physics.

St John’s College, in Cambridge, started a scientific competition in 1855 whose solution
was to be delivered by the end of 1857. The problem was to explain the composition
of Saturn’s rings, something that had puzzled scientists for over 200 years. Laplace had
already shown that a solid ring would be unstable, but nevertheless the examiners proposed
three hypothesis, the rings could be: solid, liquid or composed of many separate pieces of
matter. The only contestant that submitted a proposal was James C. Maxwell, who showed
that the only stable solution was the last one, granting him the prize [11]. Interestingly,
he claimed in his solution that collisions between those pieces were possible, but that he
was unable to calculate them [12]. But then, just three years later, in 1860, he derived
an equation that today is regarded as the origin of statistical mechanics, the Maxwell
distribution of velocities, obtained precisely by calculating collisions between particles [13].
In that three years period only one thing had change, the paper by Clausius in 1859, which
he actually cites at the beginning of his paper. Notwithstanding his great achievement, it
seems clear that the spark was not isolated, but came from a burning wick.

At this point we need to add a new scientist to the group, Ludwig E. Boltzmann. The
scientific career of Boltzmann started in 1866, when he tried to give an analytical proof of
the second law of thermodynamics. His actual accomplishment was quite modest. Yet, two
years later, in 1868, he changed his approach and started a series of lengthy memoirs where
he extended the results from Maxwell resulting into the full development of statistical
mechanics [14]. The fundamental work by Boltzmann was, in turn, expanded by Gibbs in
the classical treatise of 1902 that opened this chapter [1] (although some of his ideas had
been already proposed by Boltzmann, they had been slightly overlooked by his colleges,

2In Maxwell’s own words: “This branch of Math., which is generally thought to favour gambling, dicing
and wagering and therefore highly immoral [...]” [8]

3See [9] for an overview of the introduction of probability into physics.
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see [15] for a discussion on why this might have happened). The development of statistical
mechanics would culminate in 1905 with the work by Einstein on the Brownian motion,
regarded by Born as the final proof for physicists “of the reality of atoms and molecules, of
the kinetic theory of heat, and of the fundamental part of probability in the natural laws”
[16].

It should be noted, however, that one of the key elements of the theory introduced by
the aforementioned scientists was the concept of ensemble, that we will further describe in
chapter 2. In spite of its importance, their use raised some mathematical problems that
they could not solve, “but like the good physicists they were, they assumed that everything
was or could be made all right mathematically and went on with the physics” [17]. Some
years later this lead to the subject of ergodic theory which we will not address in this thesis.

XIX.1 Meanwhile, in the social sciences
The XIX century can be also acknowledged as the century when social science was

born. There were multiple factors leading to such enterprise, of which we might highlight:
the social changes induced by the industrial revolution, the standardization of statistical
approaches beyond physics and the publication of Darwin’s On the origin of Species. Some
of the ideas developed in these areas, perhaps surprisingly, echoed in the own development
of physics in the XX century.

To give a brief overview, we shall start with Quetelet’s view of statistics. Back in the
beginning of the XIX century, statistics was mostly restricted to the calculation of errors
in astronomy. In 1823 Quetelet traveled to Paris to study astronomical activities, and he
became impassioned by the subject of probability. Since then, he went on to put it to
practical use in the study of the human body, in an attempt to find the average man. This
led to the creation of the Body Mass Index, which we still use today [18]. In subsequent
years he developed his ideas further and applied statistics not only to the human body but
also to states and even to the social body, i.e. the aggregation of the whole human race.
We find particularly interesting that, as one of the precursors of social sciences, he believed
that it was possible to find laws for the social body “as fixed as those which govern the
heavenly bodies: [like in] physics, where the freewill of man is entirely effaced, so that the
work of the Creator may predominate without hindrance. The collection of these laws,
which exist independently of time and of the caprices of man, form a separate science,
which I have considered myself entitled to name social physics”4.

Another important (for our interests) branch of science that started in this century is
the mathematical study of demography. In the beginning of the XIX century it was claimed
that surnames were being lost (particularly among the nobility). Francis Galton, a famous
statistician (and cousin of Darwin), thought that this could be addresses mathematically
and put it as an open problem for the readers of Educational times in 1873. The proposed
solutions did not please him, so he joined another mathematician, Henry W. Watson,
and together developed the theory that later came to be known as the Galton-Watson
process [21]. Their theory, based on generating functions, was a novel way of tackling
the study of demography, specially for not being deterministic. This seemingly ingenuous
problem is credited as the origin of the theory of branching processes [22], which in turn
was very important in the development of graph theory, epidemiology and the theory of
point processes, as we shall see in chapters 2, 3 and 4 respectively. Furthermore, this

4August Comte, the father of sociology, held a similar view. He proposed that sciences could be arranged
in order of generality of their theories and complexity: astronomy, physics, chemistry and physiology.
However, there was one type of phenomena yet to be addressed, the “most individual, the most complicated,
the most dependent on all others, and therefore [...] the latest”, social phenomena. Oddly enough, he
coined the term social physics to refer to this new branch of science that had to be affected in part by
physiology and, at the same time, by the influence of individuals over each other [19]. However, once he
discovered that Quetelet had used the same term, he changed it to sociology [20].

3



problem, together with the great impact that the book of his cousin had on him, lead him
to the study of the infamous “cultivation of race” or eugenics [23]. Lastly, in 1906 he went
back to the roots of statistics and performed the first experiment on collective intelligence
to which we shall further return in chapter 4.

XX The century of Big Science
The enormous expenditures for research and development during World War II brought

a revolution in the physical sciences [24]. For instance, branching processes and Monte
Carlo methods, which we will use throughout this thesis, were developed at that time.
Branching processes (term coined by Kolmogorov [25]), following the path started by
Galton in the previous century, were used to study neutron chain reactions and cosmic
radiation [26]. In turn, Monte Carlo methods were a tool used to study several stochastic
processes. In particular, we will use these methods in chapters 3 and 4 (see [27] for a nice
review of their history and the origin of the name).

Both branching processes and Monte Carlo methods are intimately related to percolation
processes, proposed by Broadbent and Hammersley in 1956. Initially, the idea was to
study the diffusion of a fluid in a medium but focusing on the medium, in contrast to
common diffusion processes that used to focus on the fluid, in order to design better
gas masks for coal miners (Broadbent received support from the British Coal Utilisation
Research Association during his PhD5). Interestingly, though, they gave examples of which
problems could be tackled with this formalism and included the spreading of a disease
in an orchad [29]. In recent years these processes have then been applied to the study of
disease spreading and network percolation, as we will see in chapter 3.

But there was also space for fundamental research. Using the information theory
established by Shannon [30], Jaynes proposed in 1957 that statistical physics could be
derived from an information point of view [31]. Rather than deriving the theory from
dynamical arguments, he argued that the objective of statistical physics was to infer which
probability distribution was consistent with data while having the least possible bias respect
to all other degrees of freedom of the system. In this sense, the entropy would be a measure
of the information about the system, so that maximizing the entropy would be equivalent
to maximizing the ignorance subject to the data that is known to be true. This view was
not unanimously embraced, as some scientists believed that this definition depends on the
observer, which goes against the fact that entropy is a definite physical quantity that can
be measured in the laboratory [32].

This debate is still open today. For instance, in the book by Callen that is widely used
to teach thermodynamics in physics courses, this view of statistical mechanics is deeemed
to be “a subjective science of prediction”. Instead, he proposes the more common view
of entropy as a measure of “objective” disorder [33]. Yet, if one goes to the original work
by Bridgman, published in 1943, where he introduces the notion of disorder, he claims
that the definition is “anthropomorphic” and not absolute [34]. Others, like Ben-Naim,
claim that the problem lays in the history of the development of statistical mechanics. As
we saw in XIX, this discipline started from thermodynamics. Hence, entropy was defined
as a quantity of heat divided by temperature, yielding units of energy over temperature.
If entropy, instead, refers to information, it has to be a dimensionless quantity. The
problem, he argues, derives from the fact that the concept of temperature was developed
in a pre-atomistic era. Once Maxwell identified the temperature with the kinetic energy of
atoms, the own definition of temperature could have been changed into the units of energy.
In such case, heat over temperature would result in a dimensionless quantity, making it
much easier to be accepted as a measure of information. Furthermore, he claims that most

5For a historical review of branching processes in general and their relation to percolation processes see
[28]
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people have misinterpreted the own concept of information in this context, see [35]. In
spite of these controversies, in chapter 2 we will follow Jaynes’ definition to be able to
apply the formalism of statistical physics to graphs.

Jaynes’ proposal is one of the first hints about the usefulness of statistical physics
outside the classical realm of physics. In particular, the framework of statistical physics
has shown to be quite useful in a new branch of science that started to develop during the
1960s, complex systems.

XX.1 More is Different
This section is named after the famous paper by P. W. Anderson, where he claimed that

the reductionist approach followed by physicisits up to that moment had to be revisited
[36]. He argued that obtaining information about the fundamental components of a system
did not mean that you could then understand the behavior of the whole. Instead, he
proposed that systems were arranged in hierarchies so that each upper level had to convey
to the rules of the lower level, but it could also exhibit its own laws that could not be
inferred from the ones of the fundamental constituents. His book More and Different offers
some insights about the reasons that led him to write that paper6, as well as a glimpse of
how condensed matter physics was born from the ashes of the Second Wold War [38].

This view of systems as a multiscale arrangement grew during the 1960s and 1970s lead
by several observations that would end up composing what we know as complex systems.
For instance, in condensed matter physics the intereset in disordered systems (such as
spin glasses or polymer networks) started to increase. The expertise obtained with these
models, allowed for the study of collective behavior of completely different systems but
whose components were also heterogeneous, such as in biological systems [39].

Another example of results that composed the early theory of complex systems is chaos
theory. Despite the pioneering work by Poincarè in the late XIX century, chaos theory was
mainly developed in the middle of the XX century [40]. On of its main starting points
was the study by Lorenz in 1963 on hydrodynamics [41]. In that study, he showed that a
simple nonlinear differential system of equations, meant to reproduce weather dynamics,
exhibited wildly different evolution with very similar starting conditions. In other words,
he had discovered chaos. His study had a huge impact in the community because not
only it opened the door to a whole new area of research, but also in the particular case
of weather prediction signaled that maybe long term predictions were not attainable,
as perfect knowledge of the initial conditions was not achievable. He summarized that
statement saying “if the theory were correct, one flap of a sea gull’s wings would be enough
to alter the course of the weather forever” (the sea gull was turned into a butterfly latter
on for aesthetic reasons) [42].

From that point forward, the study of nonlinear systems explode. During the 1970s
mathematicians, physicists, biologists, chemists, physiologists, ecologists... found a way
through disorder. One of those scientists was R. May, a theoretical physicist who initially
focused his research on superconductivity. However, he was suddenly trapped by the ideas
behind nonlinear equations and their application to population dynamics [43]. In fact he is
considered the founder of theoretical ecology in the 1970s, and as we shall see in chapter 3,
his contributions to theoretical epidemiology were also outstanding.

In the following decades many more concepts where added to the body of complex
systems: critical phenomena, self-similarity, fractals... It was found that several systems

6Although we need to look for another source for the origin of the own sentece more is different.
According to Pietronero[37], Anderson confessed that the paper originated from a sort of resentment that
physicists in the field of condensed matter developed with respect to a certain arrogance of the field of
elementary particles, who thought that their research was the only true intellectual challenge. Back in those
dates the British environmental movement had various slogans such as “small is beautifull” and “more is
worse”, from which he drew inspiration.
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from very different fields exhibited similar properties, such as scale free distributions [44].
Unfortunately, their greatest strength is also their main weakness. Complex systems are
everywhere, but there is not yet a universal law that can be applied to a wide array of
them. For some time, it was proposed that self-sustained criticality (critical phenomena
arising independently of the initial condition) could be that holy grial [45] but it turned
out not to be the case [46]. Having scientists from so many different backgrounds tackling
problems set in such a wide array of fields (from molecular biology to economy, urban
studies or disordered systems) without common laws tying them up together, renders even
the own definition of a complex system a daunting task. Finding that common law, or
framework, common to all such systems is still today one of the greatest challenges in the
field.

This problem, unifying complex systems, has been addressed from many diverse
perspectives. For instance, by the end of the century an international group of ecologists,
economists, socials scientists and mathematicians collaborated in the “Resilience project”
with the objective of deepen the understanding of linked socio-ecological systems. From
that 5-year project they developed the concept of panarchy, in an attempt to remove the
rigid top-down nature that is associated with hierarchies [47]. Interestingly, they claimed to
be inspired by the work by Simon, but do not mention the work published by Anderson in
1972 that is essentially the same concept, but in the context of physics. In turn, Anderson
did not cite Simon in his article, even though he had been discussing on the problem of
hierarchies since the 1960s [48]. This is a great example of the fragmentation that ballasts
the development of complex systems.

The view of Anderson in this matter is particularly interesting. He argued that physics
in the XX century solved problems that had clear hierarchical levels such as atomic theory,
electroweak theory or classical hydrodynamics. Consequently, the XXI century should be
devoted to building “generalizations that jump and jumble the hierarchies”. Furthermore,
he claimed that, by embracing complexity, the “theorist” will no longer be confined by a
modifier specifying “physics”, “biology” or “economics” [38].

An arguably more pesimystic view is presented by Newman in his great resource letter
for complex systems. He claims that since there is not a general theory of complex systems,
and it might never arrive, maybe it should be better to talk about “general theories” as
complex systems is not a monolithic body of knowledge. He summarizes this view saying
that “complex systems theory it not a novel, but a series of short stories”. [49]. In this
thesis we will revise some of those stories.

XX.2 From lattices to networks
Towards the end of the century, however, the initial hype on nonlinear dynamical systems

started to decline. It was time to add more details into the models, and consequently more
data, although it was a more challenging venture than it might seem. For instance, the
common approach of making theoretical predictions and comparing them with experiments
is not that straightforward in complex systems, as the own definition of prediction can
have very different meanings in chaos or stochastic systems due to the extreme sensibility
to the initial conditions. Thus, the comparison with data in these systems had to focus
initially on extracting universal patterns rather than going to specific details [50]. A great
leap forward in this direction was the introduction of the classical graph theory developed
in the middle of the XX century in the shape of networks.

A holistic view of a system implies that its components are no longer isolated and their
interactions have to be properly taken into account. Networks represent a particularly
useful tool for such endeavor. In order to gauge their importance in complex systems, suffice
to say that in the Conference of Complex Systems of 2018 out of over 400 contributions,
60% of them explicitly mention the term “network” in their abstract. However, networks
were not originated along complex systems, but way before.
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The origin of networks as a tool to study other systems, rather than as a mathematical
object of their own, began in 1934. The psychologist Jacob Moreno proposed that the
evolution of society might be based on some laws, which he wanted to uncover in order
to develop better therapies to treat his patients. In order to do so, he proposed to study
communities up to their “social atoms”. He then studied the relations between those social
atoms, which in his first work were babies and children in a school. This represented
a shift from classical sociological and psychological studies, where the attributes of the
actors (a generic term used to refer to the element under study in sociology) used to be
more important. Furthermore, he represented the actors in his studies with circles and
connected them with lines if they had some relation. These diagrams, which he denominated
sociograms, where the first examples of networks [51]. This procedure was mostly forgotten
until the 1960s, when it was picked up by sociologists who further developed the theory of
networks, with new tools and frameworks7.

A particularly interesting example of social research on networks is the well-known
study performed by Milgram in 1967 [53]. In his experiment, Milgram sent a package to
random individuals with the instructions that, if they wanted to participate, they should
send the package to someone they knew that might, in their opinion, new a person that
Milgram had chosen, or at least get closer to her. The purpose of the experiment was to
determine the number of steps that the package had to take to navigate the social network
of the country. Interestingly, he found that the average path length was close to six. These
results led to the notion of six degrees of separation and small world that have been part
of popular folklore ever since.

Yet, the use of networks remained constrained to the fields of sociology and some
areas of mathematics until the end of the century, when research in networks exploded in
several fields at the same time. This, however, meant that lot of advances that had been
done during decades were not widely known, leading to multiple rediscoveries of the same
concepts. For instance, the multiplex networks that we will see in chapter 2 were introduced
around 2010, although the term multiplex had been coined in 1955 by the anthropologist
Max Gluckman during his studies of judicial processes among the Barotse [54]. Similarly,
Park and Newman introduced in 2004 [55] the exponential random graph model that had
been already developed in 1981 by Holland and Leinhardt [56]. Nonetheless, it should
be noted that they acknowledge the work by Holland and Leinhardt in their paper and
present a different formulation of the model. In fact, chapter 2 will mostly be devoted to
the formulation by Newman and Park which, in turn, is based in the statistical physics
framework proposed by Jaynes that we discussed in earlier.

The first paper of what we might call the “modern” view of networks, was the work by
Watts and Strogatz on small-world networks, published in 1998 [57]. In their work, they
took three very different networks (the neural network of a worm, the power grid of the
western United States and the collaboration network of film actors) and measured their
average path length. Surprisingly, they found that the three of them exhibited the same
small-world behavior as observed by Milgram 30 years before. Besides, they created a model
to explain those networks that interpolated between the well-known lattices and random
networks. One may wonder, then, why that paper was so successful if most results were
one way or another already known. And the answer, we believe, is data and universality.

Indeed, in sociology most networks analyzed were fairly small, as they were collected
manually. The spreading of the internet in the 1990s, however, allowed scientists to share
information in an unprecedented way. Even more, larger sets of data could be analyzed
and stored. The fact that they showed that three large systems of completely different
nature had the same properties was determinant in its success. In fact, those networks
were not extremely interesting on their own, they selected them “largely because they were

7See [52] for the history of the development of social network analysis.
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available in a format that could easily be put into a computer as the adjacency matrix of a
graph” [58]. But it was clearly a good choice. Thanks to that variety, researchers from
many different areas saw small-world networks as a Rorschach test, in which every scientist
saw different problems depending on their disciplines [59].

We can summarize this point of view using Stanley et al. words in the seminal paper
that started the area of econophysics, “if what we discovered is so straightforward, why
was it not done before? [Becuase] a truly gargantuan amount of data analysis was required”
[60].

XXI The Information Age
Undoubtedly, we live in the information age. To put it into perspective, while in the

small-world paper previously mentioned 3 networks were used, in figure 2.4 we will compare
1,326 networks that were collected with just a couple of clicks.

Obtaining meaningful information from high-dimensional and noisy data is not an easy
task. To achieve this, the limits of the theoretical framework of statistical physics will
have to be extended [61]. A large amount of data also means data from very different
sources. Hence, we need to combine temporal and spatial scales and nonlinear effects in the
context of out of equilibrium systems. Furthermore, it is not only important to extract the
information and build appropriate models to increase our knowledge of a given system, but
also to develop quantities that might be useful to describe multiple sociotechnical systems
at the same time [62].

For instance, in epidemics data from very different scales, from flight data to physical
contact patterns can be combined, together with economic and social analysis to produce
much more informative spreading models. But mathematical models able to capitalize such
data stream are not available yet [63]. The question on whether the information shared
in the internet can be used to track epidemic evolution is also open. Google Flu claimed
that could predict the evolution of flu using search statistics, but it was shown that it was
better at predicting winter than diseases [64].

Interestingly though, one of the areas which might seem would benefit more for having
huge amounts of data about human behavior and communications patterns, sociology, has
not embraced it yet [65]. This is even more striking given that the precursors of sociology,
Quetelet and Comte, as previously discussed, believed in the possibility of addressing social
systems in a similar fashion as other experimental sciences, i.e., with data.

There is currently a huge debate in sociology about the impact that this amount of
data can have in the own field. For instance, McFarland et al. talk about sociology being
subverted to computer science. Their fear is that data might be used only to seek for
solutions without explaining why. Moreover, they argue that the scientific culture of both
disciplines are completely different. While computer science is characterized by large
collaborations, fast review periods and quick development, sociology is slower, with larger
review periods, more theory and a more “monastic” science [66]. But they also observe
that it is a new opportunity, as data from behaviors that could not be analyzed before is
being collected now. In fact, data about new behaviors, which deserve scientific analysis
is also being collected, as we will see in chapter 4. Their proposal is to move towards a
forensic social science in which applied and theory-driven perspectives are merged.

A similar approach is proposed by Halford and Savage, who fear that big data might
corner sociology into a defensive position [67]. Instead, they propose to forget about
inductive theory and woven it with data, in what they call symphonic social science. Even
more, they believe that the limitations of the data, under proper guidance, can be leveraged.
For instance, it is known that most classical psychological experiments are done on WEIRD
population (western, educated from industrialized, rich, democracies) [68]. On the other
hand, Twitter has a disproportionate number of young, male black and Hispanic users
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compared to the national population. Thus, it might offer some insights into groups that
are underrepresented in some traditional scenarios.

There are clear signs that the interconectedness of society is bringing changes into
our sociotechnical systems, even if they are not yet understood. For instance, it has been
observed that since the appearance of Google Scholar the citation patterns among scholars
have changed [69]. Nowadays, older articles are being cited more commonly than before and,
at the same time, non top journals are getting more attention [70]. Still, many sociologists
remain unconvinced that the sources of data and methods present something new or claim
that instead of studying society, the use of data will lead us to study technology instead.
But maybe society and techonology cannot be disentangled anymore, and they have to be
addressed together [71]. In terms of Castells, we live in the culture of real virtuality and
society is no longer structured over individual actors but around networks [72].

In any case, it is clear that in the XXI century the world will not longer be controlled
by those who merely posses the information, but by those who are able to understand it.
In Edward O. Wilson words, we are drowning in information, while starving for wisdom
[73].
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2
Statistical mechanics of networks

In this chapter, we will introduce some of the most basic concepts in network science.
We will begin by giving a brief overview of the mathematical framework used to study
networks in section 2.1. This section is not meant to be a thorough introduction into
the field, for which several good books are available [74, 75, 76], but rather as a way of
establishing the terminology that will be used for the rest of this thesis. For this reason,
we will only focus on those properties of networks that are indispensable for its correct
comprehension. Thus, key concepts in network science such as clustering or community
structure will not be addressed here, as they are not used in the works composing this
thesis.

Special attention will be paid to multilayer networks in section 2.1.3. These networks
are a particular generalization of classical graphs that, as we shall see, will play a key role
in several sections of this thesis. The overview of multilayer networks will be based on one
of the works developed during this thesis:

• A. Aleta and Y. Moreno, Multilayer Networks in a Nutshell, Annu. Rev. Condens.
Matter Phys., vol. 10, pp. 45–62, Mar 2019.

Next, in section 2.2, we will introduce the problem for which this chapter is devoted,
generating appropriate null models of real networks. Our methodology will be based on
the exponential random graph (ERG) model, which will be introduced in section 2.3. In
section 2.4, we will show how this model can be used as a null model of real networks. As
we shall see, the mathematical framework of ERGs has clear similarities with statistical
mechanics, hence the name of this chapter.

Lastly, we will apply this framework to study two particular problems. In the first one,
section 2.5, we will analyze several transportation networks in an attempt to determine
if there are anomalies in them. Anomalies in this context refers to properties that would
differ significantly from what is found in a null model of the network, and we will show that
the assumptions implicit in those models might be one of the main causes of the anomalies.
This section will be based on the work

• L. G. A. Alves, A. Aleta, F. A. Rodrigues, Y. Moreno, and L. A. Nunes Amaral,
Centrality anomalies in complex networks as a result of model over-simplification,
Sent for publication, 2019.

of which I am first co-author.

The second problem, presented in section 2.6, will focus instead on generating synthetic
networks from real data. In particular, we will use socio-demographic data in order to
build multilayer networks in which the mixing patterns of the population are properly
accounted for. In section 3.4, we will measure the impact that incorporating this kind of
data can have on disease dynamics. Both sections will be based on the work

• A. Aleta, G. Ferraz de Arruda, and Y. Moreno, Generating data-driven age contact
networks, In preparation, 2019.
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2.1 Brief introduction to graph theory
Graph theory is the mathematical framework that allows us to encode the properties

of real networks into a mathematically tractable object. In fact, the term network is
often used when talking about a real system while graph is usually used to discuss its
mathematical representation. Yet, this distinction is seldom made and the terms graph
and network are nowadays synonyms of each other [76]. Hence, during this thesis both
terms might be used interchangeably.

Following [74], we define a network as a set of entities, which we will refer to as
nodes, that are related to each other somehow. Said relationship will be encoded in links
connecting the nodes. This very general definition allows us to describe systems of very
diverse nature. For instance, in spin glasses two nodes (spins) will have a link if they can
interact with each other. In other systems, such as transportation networks, two nodes (e.g.
cities) cannot interact per se in the strict sense, but if travelers can go from one destination
to the other somehow, we will establish a link between them to encode the relationship.

In general, it is possible to have more than one link between two nodes. For example, in
order to increase the resilience of a power grid, there could be two independent transmission
lines between two cities. In these cases, we refer to those links as multilinks. Similarly,
it is possible to find nodes connected to themselves through self-loops. However, in this
thesis, we will mostly work with simple graphs. That is, graphs with neither self-loops nor
multiedges.
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0 1 0 0
0 0 0 1
0 1 0 1
0 0 1 0

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

0 1 0 0
1 0 3 1
0 3 0 3
0 1 3 0

A = A = A =

Figure 2.1: Schematic representation of directed, undirected and weighted
networks. In directed graphs a relationship from i to j does not imply that the reciprocal
is true, hence the adjacency matrix is not symmetric. In undirected graphs all relationships
are reciprocal, making the matrix symmetric. In weighted graphs links have associated
weights which can represent various quantities such as the strength or duration of the
interaction.

The fundamental mathematical representation of a network is the adjacency matrix, A.
Given a graph composed by N nodes, its adjacency matrix is a square matrix of size N ×N
in which aij = 0 if there is no relationship between nodes i and j and aij 6= 0 otherwise.
Depending on the values allowed for aij we can define several types of graphs. The most
common one is the undirected binary graph, undirected graph or, simply, graph, in which
the matrix is symmetric and aij can only take binary values. If we relax the symmetry
condition we obtain a directed graph, in which a relationship from node i to node j does
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not imply the existence of a relationship from j to i. Even more, if we allow aij to take
any positive value, we obtain a weighted graph. In these networks links have an associated
weight that represents the relative strength of the interaction. A schematic representation
of these three types of networks is shown in figure 2.1. During this thesis we will explore
the three of them, although the undirected graph is admittedly the most common one.

Although the adjacency matrix completely describes a network, it is rather difficult
for humans to comprehend the structure of the network by just looking at its adjacency
matrix. For this reason, it is common practice to define mathematical measures that
capture interesting features of network structure quantitatively. In the following section
we will describe the ones that will be used all over the thesis.

2.1.1 Topological properties of networks
The most basic microscopic property is the degree of the nodes, which represents the

number of links it has. For a network of N nodes the degree can be written in terms of the
adjacency matrix as

ki =
N∑
j=1

aij . (2.1)

This quantity plays a key role in many networks. In fact, networks can be classified
according to their degree distribution, P (k), which provides the probability that a randomly
selected node in the network has degree k. It has been observed that the precise functional
form of P (k) determines many network phenomena in a wide array of systems. Besides,
with this distribution, it is possible to obtain other important quantities such as the average
degree of a network

〈k〉 =

∞∑
k=0

kP (k) (2.2)

In directed networks (2.1) is slightly different as the network is not symmetric. Thus,
we have to define the in-degree as the number of incoming links to a node and the out-degree
as the number of outgoing links,

kin
i =

N∑
j=1

aij , kout
i =

N∑
j=1

aji (2.3)

In the case of weighted networks, it is common to denote with the binary quantity aij
the existence of a link, while the weight is encoded in the variable wij . This way, it is
possible to use the same definition for the degree (2.1) and, similarly, define the strength
of a node as

si =

N∑
j=1

wij . (2.4)

In a similar fashion, one can define as many observables as desired, some of which
will be more important than others depending on the system under consideration. In
particular, a lot of effort has been devoted to the concept of centrality in networks, which
tries to answer the question of which are the most important nodes in a network. There
are multiple ways of defining the centrality of a node and the best one usually depends on
the specific system that is being analyzed. For instance, the degree of a node by itself can
be considered as a measure of its importance. However, as we shall see, our interest in
this thesis lays on the role nodes play in transportation networks. Hence, for us, it is more
interesting to know which nodes are indispensable for the correct operation of the network
rather than which are the most popular. For instance, one can think of two large parts of
a city divided by a river with one bridge. It is clear than in said situation the bridge holds
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a key position in the system, as if there was a problem there, both parts of the city would
become disconnected. A quantity that can capture this information is the betweenness.

To understand betweenness we first need to talk about paths. A path is a route that
runs along the links of a network without stepping twice over the same link. We define the
shortest path between nodes i and j as the path between them with the fewest number
of links. Note that if we had a weighted network representing some spatial system, with
the real spatial distance acting as weight, this is equivalent to simply look for the route
between two nodes that minimizes the total distance traveled.

Denoting by σirs the number of shortest paths between nodes r and s that pass through
i, the betweenness of node i can be defined as

bi =
2

(N − 1)(N − 2)

∑
r 6=i

∑
s 6=i

σirs
σrs

, (2.5)

that is, the fraction of all shortest paths in the system that include node i without starting
or ending in it. The leading factor is just a normalization constant so that the betweenness
of networks of different sizes can be compared.

2.1.2 Important degree distributions
As previously mentioned, the degree distribution of a network can determine many of

its properties. Although any probability distribution can be used as a degree distribution,
there are two prototypical distributions to which this section will be devoted: the Poisson
distribution and the power-law distribution.

The Poisson distribution attains its importance from being the distribution that arises
naturally in the random graph model. In general, a random graph is a model network in
which the values of certain properties are fixed, but it is in other respects random. One
can think of many properties that could be settled, but undoubtedly the simplest choice
is to establish the number of nodes N and the number of links L. Such model is known
as Erdős-Rényi model (honoring the contributions of Paul Erdős and Alfréd Rényi in the
study of the model [80]), ER graph, Poisson random graph or, simply, “the” random graph.
Henceforth, we will refer to this model as ER.

In the ER model the only two elements that are fixed are the number of nodes, N ,
and the number of links, L. Hence, this model does not define a single network but rather
a whole collection of networks, or ensemble, that are compatible with those constraints.

Indeed, as there are
(
N
2

)
ways of selecting pairs of nodes, there are

((N2 )
L

)
ways of placing

the L links, or different graphs. The probability of selecting any of those graphs will be
given by

P (G) =
1((N
2

)
L

) . (2.6)

Although this is the original formulation of the model, nowadays it is more common to
use a definition that is completely equivalent for large N . Specifically, one defines p as the
probability of including any possible link, independently from the rest of links. Therefore,
for instance, the average degree in both formulations would be

〈k〉 =
2L

N
= p(N − 1) . (2.7)

To obtain the degree distribution of this model we need to consider that a given node
in the network will be connected with probability p to each of the N − 1 other nodes. Thus
the probability of being connected to k nodes and not to the rest of them is pk(1−p)N−1−k.
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As there are
(
N−1
k

)
ways to choose k nodes, the probability of being connected to k nodes

is

P (k) =

(
N − 1

k

)
pk(1− p)N−1−k , (2.8)

which is a binomial distribution. Yet, in many cases we are interested in the properties of
large networks, so that N can be assumed to be large. In the large-N limit equation (2.8)
tends to a Poisson distribution,

P (k) =
(pN)ke−pN

k!
≈ 〈k〉

ke−〈k〉

k!
. (2.9)

Due to its simplicity, this model is often used as the basic benchmark to determine
if a real network has non trivial topological structures. Yet, most real networks do not
resemble an ER graph at all. Actually, the most common distribution of real networks is a
power law distribution. A power law distribution can be expressed as

P (k) = Ck−γ (2.10)

where C is the normalization constant that ensures that the probability is correctly defined.
Networks with a degree sequence that follows a power law distribution are known as
scale-free (SF) networks.

The term scale-free comes from the fact that the moments of the power-law distribution,

〈kn〉 =

∫ kmax

kmin

knP (k)dk = C
kn−γ+1

max − kn−γ+1
min

n− γ + 1
, (2.11)

diverge under certain conditions. In particular, if 2 < γ < 3 and kmax ∼
√
N →∞ the first

moment is finite, but the second moment diverges. Interestingly, most networks following a
power law distribution have an exponent between 2 and 3. Hence, the fluctuations around
〈k〉 are so large that a given node could have a very tiny degree or an arbitrarily large one.
In other words, there is no “scale” in the network. In contrast, if the degree distribution is
Poisson, a node is expected to have degree in the range k = 〈k〉 ± 〈k〉1/2. Thus, in those
cases, 〈k〉 serves as the scale of the network.

This property of both degree distributions gives rise also to another terminology. Some-
times ER networks are said to be homogeneous while SF networks are called heterogeneous.
As we shall see, this heterogeneity is the origin of some of the most interesting phenomena
in network science.

2.1.3 Multilayer graphs
The methodology presented so far has always considered that all the links in a network

represent the same kind of relationship. But, for instance, if we think of a social interaction
network, it is clear that relationships can be of very diverse nature. Thus, given a diverse
system, we can classify its interactions into groups according to their characteristics. This
classification yields a set of networks, one for each interaction, related to each other. The
way in which these networks are connected to one another, the entities their nodes represent
and the way their relationships are represented, produce a new set of networks that goes
beyond the concept of simple graphs. We call these structures multilayer networks [77].
When talking about multilayer networks, one often refers to the graphs presented so far as
single-layer networks or monoplex networks.

In multilayer networks, we have an extra ingredient apart from nodes and links, layers,
which contain the networks defined by each interaction type as discussed above. In its most
general form, a multilayer network is composed by nodes that can be connected to other
nodes in the same layer or to nodes in different layers. Then, depending on the specific
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system under consideration, it is possible to have several types of multilayer networks. For
instance, if nodes represent the same entity in all layers we say that we have a multiplex
network (although the definition of multiplex network is slightly more general, as the main
requirement is that all nodes have their counterparts in other layers, regardless of them
representing the same entity or not). A paradigmatic example of such objects are social
networks, where nodes represent individuals participating in social interactions. If an
individual has relationships in two different contexts, we will find the node representing
that person in two layers.

M

BUS

METRO

TRAM

Figure 2.2: Multilayer representation of Madrid’s public transportation sys-
tem. Nodes in the bottom layer (black) represent bus stops, with a link between two
nodes if at least one bus line connects them. In the middle layer (pink) nodes are metro
stops and links their corresponding metro lines. Lastly, the top layer (blue) is composed
by tram stops and their connections. Nodes in different layers are connected if they are
within 100 meters.

Another system that can be effectively represented using multilayer networks is the
public transportation system of a city. To illustrate this, in figure 2.2 we show the multilayer
representation of Madrid’s public transportation network. In this case, each transportation
mode is encoded in a distinct layer, with nodes representing bus, metro and tram stops. To
take into account the possibility of commuting, e.g., taking first the metro and later a bus,
a link connecting nodes in different layers is set if they are within a reasonable walking
distance. Thus, in this case, nodes do not represent exactly the same entity (although one
could argue that they represent the same physical location) and links across layers have a
clear physical meaning.

There are two main approaches to encode multilayer networks in a mathematical object:
tensors and supra-adjacency matrices [81]. For simplicity, we will only present the latter
approach, as it is straightforward to extend the notions of classical graph theory into
multilayer graphs this way.
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Suppose that we have two single-layer networks as depicted in figure 2.3A, encoded in
their respective adjacency matrices, A1 and A2. These matrices contain information about
the links that are set inside each layer, the intra-layer links. Now, suppose that these two
networks are not isolated but are allowed to interact, or represent different parts of the
same system. In such scenario we can build a coupling matrix, C, containing the links that
connect nodes in different layers, the inter-layer links. These matrices allow us to define
the supra-adjacency matrix as

A = ⊕αAα + C , (2.12)

where α runs over the set of layers. This matrix is shown in figure 2.3B, where both layers
interact via nodes 1− 4 and 2− 5.

0 1 0 
1 0 1 
0 1 0 

A=1

A=2
0 1 
1 0 

1

2

4

A

3

5

3

5

2

1

4

B

1 2 3 4 5

0 1 0
1 0 1
0 1 0
1 0 0
0 1 0

1 0
0 1
0 0
0 1
1 0

1
2
3
4
5

A=

Figure 2.3: Schematic representation of multilayer networks. A) Two independent
graphs with their respective adjacency matrices. B) A multilayer network made of both
networks with its supra-adjacency matrix.

The same way we defined in monoplex networks the degree of a node as the sum of its
links, in multilayer networks the degree of node i in layer α reads

kαi =
∑
j

aαij . (2.13)

Note that this implies that the degree of a node is no longer a scalar but a vector
ki = (k1

i , . . . , k
L
i ). Nevertheless, we can recover the equivalent quantity of degree in

monoplex networks denominated degree overlap as

oi =
∑
α

kαi . (2.14)

A similar procedure can be followed to extend the notion of strength in the case of weighted
multilayer networks.

To conclude this section, let us point out the existence of measures that only exist in
multilayer networks, without single-layer counterparts. For instance, the interdependence
of node i is defined as

λi =
∑
i 6=j

ψij
σij

, (2.15)

where σij is the total number of shortest paths between nodes i and j and ψij is the number
of shortest paths between those nodes that make use of links in two or more layers. Hence,
the interdependence measures how dependent a node is on the multiplex structure in terms
of reachability. To understand this property we can have a look again at figure 2.2. In
that network, it is clear that to reach most nodes from any tram stop it is required to go
through more than one layer, making tram stops quite interdependent. Conversely, it is
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possible to reach almost all nodes from a bus stop without having to go through other
layers. This example highlights that sometimes individual nodes are not that important,
as the layer they are in already determines some of their properties. In this particular
example, it is then useful to extend the definition of interdependence from nodes to layers
to account for the importance of a given layer in the whole system [82].

2.2 The problem of null models
For some systems, networks naturally provide the skeleton on which dynamical processes

can be studied, allowing us to predict the outcome of such processes under different
conditions. However, in Jaynes’ words [31], prediction is only one of the functions of
statistical mechanics. Equally important is the problem of interpretation; given certain
observed behavior of a system, what conclusions can we draw as to the microscopic causes
of that behavior?

To this aim, one of the main focus of network science is to determine the empirical
properties of a network that provide the maximum amount of information about the
network itself or about the dynamical processes taking place in the system that the network
represents [83]. In order to do so, a standard approach is to create a null model of the
network that will act as a benchmark model. Then, it is possible to identify which properties
deviate from what is “expected” in rigorous statistical terms. This, in turn, has several
implications. First, it highlights which properties might bear important information about
the system dynamics. Similarly, it can be used to detect the hidden mechanisms behind
the formation of the network structure, by pointing out the properties that the model
was not able to capture. Furthermore, it can be used to elucidate which characteristics
of the network are truly important and which ones are just a consequence of lower-order
attributes.

Indeed, suppose that we measure two properties of a real network, X and Y . Then, we
build a null model of the network using only information about X. If most networks in the
ensemble of randomized graphs exhibit property Y , we can state that X explains Y and
thus any attempt of analyzing Y without considering X is futile. For instance, many real
networks exhibit what is known as the small-world property, meaning that the average
length of shortest paths in the network scales as l ∝ ln(N) rather than with the number of
nodes [57]. Yet, while in sparse networks like social networks it is a genuine feature of the
system, in highly dense networks, such as the interarial cortical network in the primate
brain where 66% of links that could exist do exist, it is just a consequence of the huge
amount of links present in the network [84].

The previous example shows that sometimes Y can be just a consequence of a particular
value of X. However, it is also possible to find properties Y that are always a direct
byproduct of X, rendering them redundant. For instance, it has been observed that many
ecological networks of mutualistic interactions between animals and plants are nested,
that is, that interactions of a given node are a subset of the interactions of all nodes
with larger degree. Yet, despite being a widely used metric in the field of ecology, it was
recently demonstrated that the degree sequence of the network completely determines the
nestedness of the system. Note that to calculate the nestedness of a network it is necessary
to know the whole adjacency matrix, while the degree sequence is just the number of non
zero entries per row. Hence, the nested pattern is not more informative of the behavior of
real systems than their degree sequence alone. In other words, attempting to explain why
an ecological system exhibits a given value of nestedness is pointless, as the focus should
be on elucidating the mechanisms that give rise to a particular degree sequence [85].

The applications of null models go far beyond the determination of which properties
of the network are important. For instance, when not all the information of a system is
available, they can be used to infer missing information or to devise adequate sampling
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procedures to reduce it [86, 87]. Another interesting and open problem is that network
data may contain errors inherent to any experimental measurement. Null models can then
be used to estimate the errors in the data and even to correct them [74].

However, as with any hypothesis test, the choice of the null model can directly affect
the conclusions. Hence, care must be taken when deciding which one is the best suited for
the system under consideration. There are two possible approaches to create null models
of networks. The first one consists in building networks based on heuristic rules that are
compatible with the specific characteristics of the real system. A classical example is that
of gravitational models, widely used in economical and spatial systems way before the birth
of network science [88, 89], in which an interaction between two entities depends inversely
on their distance and proportionally to their “mass”, be it products or population. This
method can also be used to shed some light on the mechanisms driving the evolution of
networks, rather than just as a tool for generating randomized networks. For instance,
the Barabási-Albert model was proposed as a plausible explanation of the emergence of
scale-free networks. This model is based on, at each iteration, adding a new node into the
network and linking it to m existing nodes, chosen with probability proportional to their
degree. This preferential attachment naturally leads to networks exhibiting the scale-free
property [90].

These types of models, however, can be either too domain specific or require several
refinements to give quantitatively accurate predictions [61]. Hence, frequently, a better
approach is to identify a set of characteristic properties of the real network and then
build a collection or ensemble of networks with those same properties but otherwise
maximally random. Despite its conceptual simplicity, this approach has several subtleties
that have to be properly handled, something that, as we shall see, is not systematically
done. Additionally, we can distinguish two different families of models within this approach:
the microcanonical, in which properties are exactly fixed, and the canonical, in which
properties are preserved on average.

2.2.1 Microcanonical models
Microcanonical approaches are based on generating randomized variants of real networks

in such a way that some properties are identical to the empirical ones. However, although
their simplicity makes them quite appealing, most of them suffer from problems such as
bias, lack of ergodicity or mathematical intractability [91]. Yet, they are widely used, even
if not always correctly.

The simplest microcanonical ensemble of graphs that can be built is based on fixing the
total number of links, L, and otherwise keeping the graphs completely random. This, as we
show in section 2.1.2, defines the ER model. The problem of this model is that it is overly
simplistic and real networks often exhibit much richer structures. Thus, a more common
approach is to fix the degree of the nodes, also known as degree-preserving randomization
or configuration model. To see why this is a good option, note that L can be obtained by
adding up the whole degree sequence. Hence, as discussed previously, if we were able to
reproduce the degree distribution of a network by just fixing L, it would not convey any
valuable information about the network. However, we showed in section 2.1.2 that the
degree distribution in the ER model is Poisson, whereas in most real networks it follows
a power law distribution. In other words, the degree sequence often provides much more
information about the system than just the number of links.

To build graphs with a fixed degree sequence, two different approaches can be followed:
a bottom-up and a top-down approach. The work by Maslov et al. in 2002 on protein
and gene networks [92] is often cited as one of the earliest examples of degree-preserving
randomization. Another common reference (for instance, in the wikipedia entry on degree-
preserving randomization [93]), is the work by Rao et al. in 1996 [94] on generating random
(0, 1)-matrices with given marginals. Yet, both methods fall into the category of top-down
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approaches but, historically, bottom-up approaches were introduced much earlier. In fact,
this is one of those methods that have been independently rediscovered several times in
different fields, usually with different terminology as well [95]. For instance, in sociology
this approach can be traced back to 1938 [96] and in ecology to 1979 [97].

For historical reasons, let us begin with the bottom-up approach. The basic idea is
to attach to each node as many “link stubs” as its degree in the original network. Then,
pairs of stubs are randomly matched, generating graphs that preserve the original degree
sequence. In the context of graph theory stub matching was introduced by Bollobás in
1980 [98]. He called each of the graphs extracted from the ensemble a “configuration”,
from which the term configuration model emerges, even though nowadays it is used to
refer to any model that preserves the degree sequence of the network. Note also that for
this approach it is not necessary to have knowledge of the whole adjacency matrix, as only
the total addition of its rows and columns are needed. Thus, this procedure is suitable
also to create graphs based on a degree sequence sampled from any degree distribution,
and not only to randomize existing networks.

Unfortunately, stub matching presents several drawbacks. First, even if the original
network is simple (and most real networks are), this method naturally allows both multilinks
and self-loops. It is sometimes argued that this is not a problem as their number tends to
zero as the size of the graphs grows [74]. However, this is not true in general for scale-free
networks, which are the most common ones. Even more, real networks are always finite,
and in some fields such as ecology rather small, making this method unsuitable for their
randomization. A widely proposed solution is to reject multilinks or self-loops [61, 99],
but this, again, has numerous issues. Indeed, when most stubs are already matched, it
is possible that the remaining ones cannot be matched, as there might be already links
between the nodes with remaining open stubs. Furthermore, this procedure no longer
samples uniformly the space of graphs, introducing some biases. In the famous work by
Catanzaro et al. on the generation of scale-free networks [100], it was shown that this
bias can be solved by imposing the maximum degree in the network to be kmax ≤ N1/2.
Although this might be a suitable approach for creating random networks from scratch,
it is clearly not valid for randomizing real networks, in which the maximum degree often
exceeds such limit (see figure 2.4A). Several other modifications have been proposed to fix
stub matching for simple networks, but there is not a clear solution that always works [95].

Conversely, the top-down approach starts with the full adjacency matrix and randomizes
it. In this case, the idea is to take existing links and randomly change which nodes they are
attached to. For this reason, this procedure is also known as rewiring. The straightforward
approach would be to simply randomize the entries of the adjacency matrix, but this
procedure would yield the same results as the ER model with fixed number of links [76]. A
better idea is, thus, to take two pairs of connected nodes and swap their links, so that the
degree sequence of the network is exactly preserved. Howbeit, this procedure is neither
free of caveats. For instance, the number of necessary rewires to effectively randomize
the network is unknown a priori, spaning several orders of magnitude depending on the
network under consideration [102]. Even more important, swaps are usually proposed
to be such that given two pairs of connected nodes, {a, b}, {c, d}, the rewiring results in
{a, d}, {b, c} [99]. However, note that the rewiring {a, c}, {b, d} is perfectly valid too [103],
but it is often concealed because if the two randomly selected links are {a, b}, {a, c}, this
last swap would introduce a self-loop in the system. Similarly, multilinks can also appear
in the graph, unless we strictly forbid them. Yet, if this is naively done biases will be
introduced in the sampling procedure, although there are advanced techniques that can be
applied to solve these problems in some cases [95, 103].

Yet, it is stricking that even though the biases of the naive link swapping have been
known for years [104], this method is still widely used today. One could even argue that it
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Figure 2.4: Topological properties of 1326 real networks. These networks represent
the whole Koblenz Network Collection spanning over 24 different types of systems, from
online to infrastructure or trophic networks [101]. In A the maximum degree of each
network as a function of its number of nodes is shown. The line represents the structural
cutoff kmax =

√
N of the uncorrelated configuration model [100]. In B the maximum degree

is plotted against the total degree of the network (note that ktot = 2L). The line represents
the structural cutoff kmax =

√
2L above which equation (2.18) is not valid.

is actually the most common one, as it is recommended in recent books [76, 99] and some
of the most widely used software packages for studying networks do not take into account
the necessary corrections in their routines [105, 106]. In particular, it was shown [107] that
naive rewiring sampling is only uniform as long as

〈k2〉kmax/〈k〉2 � N . (2.16)

But we know that in scale-free networks 〈k2〉 diverges, making this approach ill-suited for
strongly heterogeneous networks, the most common ones.

It is clear then, that even if the main ideas of microcanonical models are easy to
understand, properly implementing them is not as straightforward as it may seem and
multiple subtleties have to be taken into account. Furthermore, so far we have only
discussed about binary networks as extending these concepts to weighted graphs is not
an easy task either. For instance, one could propose that when swapping links its weight
should be attached to it, as if we were directly randomizing the adjacency matrix. Another
possible choice would be to only shuffle weights over links, keeping the latter fixed to their
nodes. Or even creating stubs with fixed weights and only matching those with equal
values, and many more [108]. Obviously, each choice might have its own advantages and
drawbacks, but there is no doubt that using such null models should rise more questions
than answers about the system.

2.2.2 Canonical models
In canonical models, rather than generating randomized networks, the main objective

is to determine mathematical expressions for the expected topological properties as a
function of the imposed constraints. Nevertheless, sampling random graphs from canonical
ensembles is not only possible but often necessary, as we will see in section 2.5.1.

Focusing on binary graphs [91], since any topological property X is a function of the
adjacency matrix A, the goal is to determine the probability of occurrence for each graph,
P (A). This allows the computation of the expected value of X as

∑
A P (A)X(A) without
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resorting to sampling adjacency matrices. More importantly, in canonical ensembles where
the properties that we want to preserve are local, P (A) factorizes to a product over the
probability pij that nodes i and j are connected.

For instance, if we choose pij = p ∀i, j we obtain the canonical version of the ER
model, which in the limit N →∞ is equivalent to the microcanonical setup in which the
number of links is fixed. Note that in the former setting pij = p is the same as fixing the
number of links to be p

(
N
2

)
.

If, instead, one wishes to preserve the degree sequence of the network, the most popular
choice of pij is

pij =
kikj
ktot

=
kikj
2L

(2.17)

which can be clearly related to the problem of stub matching described in section 2.2.1.
Despite its popularity and widespread use, it is important to note - although often
disregarded - that this expression is only valid for uncorrelated networks, i.e., as long as
the largest degree in the network does not exceed the so-called structural cut-off [109],

kmax ≤
√
ktot =

√
2L . (2.18)

But, as we can see in figure 2.4B, most networks do not fulfill this condition. Hence, if
we were to use equation (2.17) to determine if a given property of the network can be
explained just by its degree sequence, we would be making a mistake as the own degree
sequence already has a property that our model is not capturing. Thus, an expression
that correctly captures degree correlations should be used instead. This is not to say that
the reasons why correlations or, similarly, large degrees appear in the network are not
important. On the contrary, they are, but if they are not added into the null model we
will not be able to discern if a given feature of the network is truly meaningful or just a
byproduct of the unavoidable correlations. In addition to all of this, equation (2.17) is not
a correct probability as one can easily think of toy models in which pij > 1.

The problems induced by highly heterogeneous networks, the most common type of real
networks, are clearly challenging most null models, both microcanonical and canonical. In
what follows, we will introduce an approach that can solve all these problems and provide
a unified approach to sample graph ensembles with local constraints in an unbiased way,
the exponential random graph model.

2.3 Exponential random graphs
Suppose that we want to build a simple, binary and undirected graph based only on

two macroscopic properties: its number of nodes, N , and its number of links, L. As in the
classical problems of statistical mechanics, the number of microstates - graphs - that are
compatible with those macroscopic quantities is quite large. Indeed, as we are considering
simple graphs, the number of microstates can be obtained from counting the number of
ways in which we can select L elements from the set of node pairs, CN2 . As such,

Ω = C
CN2
L =

((N
2

)
L

)
=

(N(N−1)
2

L

)
=

N(N−1)
2 !

L!
(
N(N−1)

2 − L
)

!

≈ exp

[
L log

(
N(N − 1)

2L
− 1

)
− N(N − 1)

2
log

(
1− 2L

N(N − 1)

)]
,

(2.19)

where we have used Stirling’s approximation to the factorials.

To illustrate, we can take the example of a seemingly small network, the neural network
of the nematode Caenorhabditis elegans (or simply C. elegans) which was the first - and so
far, only - animal to have the whole nervous system completely characterized [110]. This
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little worm, of about 1 mm in length, possesses 302 neurons and about 5600 synapses
(considering for simplicity both chemical and electrical synapses undirected) as measured
by Brenner et al. in 1986 after 15 years of work [111] (the most recent measurements have
increased this number slightly above 6000 [112]). Even though small in comparison with
the neural system of organisms such as the fruit fly, with over 105 neurons, or the human,
with over 1010 neurons, the total amount of compatible microstates of this system is

Ω =

((302
2

)
5600

)
≈ e16966 ∼ 107368 . (2.20)

No wonder, then, that this network is still being intensely studied today. To asses even
further the importance of this little network, suffice to say that the work by Brenner et al.
not only was the starting point of the field of connectomics, but it also created a whole field
of research around this organism from which three Nobel Prizes honoring eight scientists
have been awarded to date [110].

This example clearly shows that a huge amount of different graphs can give rise to the
same macroscopic properties. However, as described in section 2.2, this can actually be a
powerful tool to asses what are the main topological characteristics of a network, or which
ones are just a consequence of others. The problem is, then, on how to build an ensemble
of networks using only partial information of the real one.

Fortunately, this question was already answered by Jaynes in the context of statistical
mechanics using the results provided by information theory [31]. Indeed, given a certain
quantity G which can take the discrete values Gi(i = 1, . . . , n) and the expectation value
of the function f(G),

〈f(G)〉 =
n∑
i=1

pif(Gi) , (2.21)

where pi is the probability of finding Gi in the ensemble. The only way to set these
probabilities without any bias, while agreeing with the given information, is to maximize
Shannon’s entropy,

S = −
n∑
i=1

pi ln pi , (2.22)

subject to the appropriate constraints derived from the information. Applied to statistical
mechanics, this meant that the old Laplacian principle of insufficient reason according to
which, in absence of evidence, the same probability should be assigned to each possible
event was not needed anymore (although it is still regarded as one of the basic postulates of
statistical mechanics [113, 114]). Instead, the same proposition could be read in positive as
maximizing the uncertainty in the probability subject to whatever is known, thus removing
the apparent arbitrariness of the principle of insufficient reason. It is trivial to see that if
there are not any constraints the maximum entropy is attained for the uniform probability
distribution.

Back into the context of networks, following Park and Newman [55], suppose that the
information we have is a collection of graph observables Xi, i = 1, . . . , r from which we
have an estimate of their expectation value, 〈Xi〉, measured over a real network. Let G
be a graph in the set of all simple graphs of N nodes, G, and let P (G) be the probability
of finding that graph in the ensemble. According to our previous discussion, the most
unbiased method to assign values to said probabilities given the available information is to
maximize the entropy

S = −
∑
G∈G

P (G) lnP (G) (2.23)

subject to the constraints ∑
G∈G

P (G)Xi(G) = 〈Xi〉 (2.24)
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plus the normalization condition ∑
G∈G

P (G) = 1 , (2.25)

where Xi(G) denotes the value of the observable Xi in graph G.
To impose these constraints in the maximization process we can introduce the Lagrange

multipliers α, θi, so that

∂

∂P (G)

[
S + α

(
1−

∑
G∈G

P (G)

)
+

r∑
i=1

θi

(
〈Xi〉 −

∑
G∈G

P (G)Xi(G)

)]
= 0 (2.26)

for all graphs G. This gives

lnP (G) + 1 + α+

r∑
i=1

θiXi(G) = 0 , (2.27)

or equivalently
P (G) = e−(1+α+

∑r
i=1 θiXi(G)) . (2.28)

Now, inserting this last equation into (2.25) we can define the variable Z as∑
G∈G

P (G) =
∑
G∈G

e−(1+α+
∑r
i=1 θiXi(G)) = 1

⇒Z ≡
∑
G∈G

e−
∑r
i=1 θiXi(G) = e1+α .

(2.29)

Hence, the exponential random graph model is completely defined by

P (G) =
e−H(G)

Z
, (2.30)

where H(G) =
∑r

i=1 θiXi(G) is the graph Hamiltonian and Z =
∑

G∈G e
−H(G) is the

partition function. Note that this expression is equivalent to the probability distribution
for the canonical ensemble of statistical physics, which can actually be derived using the
same procedure considering an isolated system in thermal equilibrium with the energy
as observable [115]. Thus, it represents the graph analog of the Boltzmann distribution.
Actually, the classical parametrization of the Boltzmann distribution, i.e., using β instead
of θ, gave the name to the β-model, which is the exponential random graph model in the
particular case of undirected graphs [116].

Using (2.30) it is then possible to measure the expected value of any graph property Y
over the ensemble,

〈Y 〉 =
∑
G∈G

P (G)Y (G) , (2.31)

obtaining the best estimate of the unknown quantity Y given the set of known quantities
Xi.

Before going any further, it might be enlightening to see a simple example. Suppose
that we only know the average number of links, 〈m〉, of our network. In that case the
Hamiltonian is just

H(G) = θm(G) . (2.32)

Let A be the adjacency matrix of graph G with N ×N nodes and elements aij = 0, 1.
Then, the number of links is m =

∑
i<j aij and the partition function is

Z =
∑
G∈G

e−H(θ) =
∑
{aij}

e−θ
∑
i<j aij =

∑
{aij}

∏
i<j

e−θaij

=
∏
i<j

1∑
aij=0

e−θaij =
∏
i<j

(1 + e−θ) = [1 + e−θ](
N
2 )

(2.33)

24



so that

P (G) =
e−H(θ)

Z
=

e−θm

[1 + e−θ](
N
2 )

= pm(1− p)(
N
2 )−m , (2.34)

where we have defined p ≡ (eθ + 1)−1.
Recalling section 2.1 we can clearly see that equation (2.34) is just the well known

Erdős and Rényi graph, or random graph. Thus, it seems that we have achieved our
objectives, building a graph that satisfies our constraints but otherwise completely random,
hence its name.

As an example of how to calculate expected values of graphs over this ensemble, we
show how to obtain the expected degree, which we know should be equal to p(N − 1)
(equation (2.7)),

〈k〉 =
2〈m〉
N

=
2

N

1

Z

∑
G∈G

me−θm = − 2

N

1

Z

∂Z

∂θ
=

2

N

(
N

2

)
1

eθ + 1

=
2

N

(
N

2

)
p =

2

N

N(N − 1)

2
p = (N − 1)p .

(2.35)

2.4 Randomizing real networks
We have seen that equation (2.31) allows us to calculate expected values of graph

observables over an ensemble of maximally random graphs restricted to the information we
have of the system. However, in some occasions the observables we are interested in might
not have an analytic closed-form solution. Or we might be interested in the effect of a given
dynamical process on the network and we would like to know if in networks with equivalent
macroscopic properties the outcomes would be similar. In those cases, the only thing we
can do is to directly sample a large amount of networks from the constructed ensemble and
measure the desired topological properties or implement the dynamical process on them.

In order to do so, following Squartini and Garlaschelli [117], we will focus on local
topological properties of the networks, i.e., properties determined by moving only one step
from a node. As we will see, this will factorize the ensemble probability, allowing us to
independently sample each link of the network. In particular, we will focus on two of the
most simple types of networks: binary undirected networks, characterized by the degree
of their nodes, ki =

∑
j 6=i aij ; and weighted undirected networks, characterized by the

strength of their nodes, si =
∑

j 6=iwij . In these cases, the graph probability, in which we

will make explicit the dependency with ~θ = θi, i = 1, . . . , r, P (G|~θ) ≡ P (G) factorizes as

P (G|~θ) =
∏
i<j

Pij(g|~θ) , (2.36)

where g represents an element of the adjacency matrix of graph G, either a binary number
aij = {0, 1} in the case of binary undirected networks or a real number wij ∈ N in the case
of weighted undirected networks.

Besides, to obtain the adequate values of the Lagrangian multipliers, ~θ, we can maximize
the log-likelihood

L(~θ) ≡ lnP (G∗|~θ) = −H(G∗, ~θ)− lnZ(~θ) , (2.37)

where G∗ denotes the particular real network that we want to randomize. It has been
shown that in the exponential random graph model the maximization of log-likelihood
provides an unbiased method for estimating the values of ~θ for which the constraints equal
the empirical value measured on the real network, ~θ∗ [116].

Hence, the whole procedure for obtaining the maximum entropy ensemble of a network
subject to local constraints is:
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1. Specify the local constraints ~X and obtain the probability P (G|~θ) using (2.26).

2. Numerically determine the parameters ~θ∗ by maximizing (2.37).

3. Use ~θ∗ to compute the ensemble average 〈Y 〉 of any desired topological property Y
or, alternatively, sample a large number of graphs from the ensemble.

2.4.1 Undirected binary networks
An undirected binary network is completely specified by a binary symmetric adjacency

matrix A. Suppose that we have a real network which we want to randomize, A∗, and
the quantity we want to preserve, besides the number of nodes N , is its degree sequence,
ki =

∑
j aij . Hence, equation (2.30) reads

P (A|~θ) =
e−

∑
i θiki(A)∑

A e
−

∑
i θiki(A)

=
e−

∑
ij θiaij∑

A e
−

∑
ij θiaij

=
e−

∑
i<j(θi+θj)aij∑

{aij} e
−

∑
i<j(θi+θj)aij

=
∏
i<j

e−(θi+θj)aij∑
{aij} e

(−θi−θj)aij
=
∏
i<j

e−(θi+θj)aij

1 + e−θi−θj
≡
∏
i<j

Pij(aij |~θ) .
(2.38)

Defining
xi ≡ e−θi (2.39)

and

pij ≡
e−θie−θj

1 + e−θie−θj
=

xixj
1 + xixj

, (2.40)

equation (2.38) can be expressed as

P (A|~θ) =
∏
i<j

Pij(aij |~θ) =
∏
i<j

(
pij

1−pij

)aij
1 +

pij
1−pij

=
∏
i<j

p
aij
ij (1− pij)1−aij ,

(2.41)

which is simply the probability mass function of the Bernoulli distribution.
Given this last result, it is now clear how to sample in an unbiased way graphs from

the ensemble. Indeed, as the graph probability is factorized, we can just sample a graph
by sequentially running over each pair of nodes and implementing a Bernoulli trial with
success probability pij , as defined in (2.40) [91]. This highlights one of the advantages of
this framework over microcanonical methods, the hard core of the computation resides in
obtaining the correct values of pij and is independent of the number of samples we want to
extract. Even more, the sampling procedure is guaranteed to be O(N2).

The only thing left is to devise a way of obtaining the link probabilities, pij . As
previously discussed, this can be easily done by maximizing the log-likelihood (2.37) which
in this particular case can be expressed as

L(~x) = lnP (A∗|~x) = ln
∏
i<j

p
aij
ij (1− pij)1−aij =

∑
i<j

ln
[
p
aij
ij (1− p1−aij

ij )
]

=
∑
i<j

aij ln pij +
∑
i<j

(1− aij) ln(1− pij)

=
∑
i<j

aij ln
xixj

1 + xixj
+
∑
i<j

(1− aij) ln
1

1 + xixj

=
∑
i<j

(aij + aji) lnxi −
∑
i<j

ln(1 + xixj)

=
∑
i

ki(A
∗) lnxi −

∑
i<j

ln(1 + xixj) .

(2.42)
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As expected, the only quantity from the real network that is needed to obtain the values
of xi is the degree distribution. Besides, given the definition of these values, (2.39), these
parameters vary in the region defined by xi ≥ 0 ∀i. Unfortunately, maximizing L(~x) does
not yield a closed-form expression for the values of xi as a function of ki and one would
have to numerically solve the problem.

Nevertheless, the procedure for randomizing a real binary, undirected network is
now completely clear. First, one should numerically solve equation (2.42) to obtain the
parameters xi. Then, the probability of a link existing between any pair of nodes i and j can
be computed using (2.40). With these values the whole ensemble can be characterized using
equation (2.41), from which we can then calculate the expected values of any observable
using (2.31) or, conversely, sample as many graphs as required by going sequentially over
each pair of nodes and performing a Bernoulli trial with success probability pij .

As a last remark, note that if xixj � 1 the link probability can be expressed as
pij ≈ xixj . If we set xi = ki/

√
2L, where L is the number of links such that 2L =

∑
i ki,

we recover the results of the configuration model (equation 2.17). Thus, said model can be
regarded as an approximation of the general exponential random graph with fixed degree
sequence when kikj � 2L (the low heterogeneity regime).

2.4.2 Undirected weighted networks
An undirected weighted network is completely specified by a non-negative symmetric

matrix W whose entry wij represents the weight of the link between nodes i and j, which
we will consider to be an integer. Similarly to the previous section, suppose that we want
to randomize the real network W ∗ while preserving its strength sequence, si =

∑
j wij . In

this case, the probability of finding a graph in the ensemble, equation (2.30), reads

P (W |~θ) =
e−

∑
i θisi(W )∑

W e−
∑
i θisi(W )

=
e−

∑
i<j(θi+θj)wij∑

{wij} e
−

∑
i<j(θi+θj)wij

=
∏
i<j

e−(θi+θj)wij∑
{wij} e

−(θi+θj)wij
=
∏
i<j

e−(θi+θj)wij

1 + e−(θi+θj) + . . .+ e−(θi+θj)∞

=
∏
i<j

e−(θi+θj)wij

1

1−e−(θi+θj)

=
∏
i<j

p
wij
ij (1− pij) ,

(2.43)

where, analogously to the previous case, we have defined

xi ≡ e−θi (2.44)

and
pij ≡ xixj , (2.45)

although in this case the partition function is only defined if θi > 0 and thus xi ∈ [0, 1),
ensuring that the probability pij is correctly defined.

With this formulation the probability of two nodes having weight wij is then

Pij(wij |~θ) = p
wij
ij (1− pij) (2.46)

which equals the geometric distribution of a variable with success probability pij with
wij ∈ {0, 1, 2, . . .} failures. Thus, graphs can be sampled drawing a link of weight w with
geometrical distributed probability pwij(1 − pij). Note that with this formulation of the
geometric distribution the possibility of w = 0 - the absence of a link - is included in the
distribution. Alternatively, it is possible to follow a similar procedure as in the binary
undirected case. To do so, one can connect two nodes with probability pij according to the
Bernoulli distribution and repeat this process until the first failure is encountered [117].
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To determine the correct value of pij for the network W ∗, we can simply maximize the
log-likelihood (2.37) which in this case reads

L(~x) = lnP (W ∗|~x) = ln
∏
i<j

p
wij
ij (1− pij) =

∑
i<j

ln
[
p
wij
ij (1− pij)

]
=
∑
i<j

wij ln(xixj) +
∑
i<j

ln(1− xixj)

=
∑
i<j

(wij + wji) lnxi +
∑
i<j

ln(1− xixj)

=
∑
i

si(W
∗) lnxi +

∑
i<j

ln(1− xixj) .

(2.47)

This equation lacks a closed-form expression for its maxima. Consequently, the values of ~x
have to be computed numerically with the constraint xi ∈ [0, 1).

2.4.3 Fermionic and bosonic graphs
To finish this brief analysis of the exponential random graph model, we can compute

two quantities that will highlight the similarities between this model and classical statistical
mechanics. The purpose of this analysis is not to claim that graphs behave exactly as
physical particles. On the contrary, the mechanisms behind the growth of networks are
completely different from the physical principles underlying quantum statistics. Yet, this
mathematical resemblance highlights once again how powerful the statistical mechanics
formalism is, and also points out again into Jaynes vision of statistical mechanics as a
general problem of inference from incomplete information [118].

In the exponential random graph model we can regard node pairs (i, j) as energy levels
that can be occupied by links. Defining Θij ≡ θi + θj , in the case of undirected binary
graphs, the average number of links between i and j is simply given by

〈n(i,j)〉 = 〈aij〉 = pij =
xixj

1 + xixj
=

e−Θij

1 + e−Θij

=
1

eΘij + 1
,

(2.48)

where Θij ∈ R as θi was defined as a real number. Thus, in the limits where Θij → ∞
we have that the average occupation is 0. Conversely, when Θij → −∞ the average
occupation is 1. In other words, this formulation is equivalent to the Fermi-Dirac statistic
of non-interacting fermions [55], which is not surprising as by construction we only allowed
at most one link to be in each energy level.

Similarly, in the case of undirected weighted graphs the average number of links in
state (i, j) is given by

〈n(i,j)〉 = 〈wij〉 =
∞∑
w=0

wpwij(1− pij) =
pij

1− pij
=

xixj
1− xixj

=
e−Θij

1− e−Θij

=
1

eΘij − 1
,

(2.49)

where Θij > 0 as for weighted graphs θi > 0. Thus, in this case, when Θij → 0 the average
occupation tends to ∞, whereas if Θij → ∞ the average occupation tends to 0. Hence,
equation (2.49) behaves as the Bose-Einstein distribution for bosons. Again, this was
expected as in this case we allow any number of links to connect each pair of nodes. In
fact, this analogy can go even further as there are dynamical models for network growth
that show properties compatible with Bose-Einstein condensation [119].
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2.5 Anomalies in transportation networks
It can scarcely be denied that the supreme goal of all theory is to make the

irreducible basic elements as simple and as few as possible without having to surrender
the adequate representation of a single datum of experience.

(“On the Method of Theoretical Physics”, Albert Einstein)

This well-known quotation by Einstein - usually paraphrased as, everything should
be made as simple as possible, but not simpler - highlights one of the basic problems of
network science. Given a set of data, what are the minimum elements we have to take into
account into our analysis? In other words, what is the proper (network) model for it?

The simplest network model one can think of is the undirected binary graph. Given a
set of elements, a link is established between each pair that interacts somehow, regardless
of the type or length of interaction or the characteristics of the elements themselves. This
simple model has many advantages: it is often analytically tractable, or at least is easier
to work with it than with more complex models; it is easier to analyze as there are less
ingredients into play, specially if we are studying complex dynamics; and they can be
built with very few data. Yet, there are several cases in which this model is clearly not
enough. For instance, as we shall see in section 3.3.3, when one studies disease dynamics on
networks, it is often assumed that the contact between two individuals is undirected, but
there are several examples of diseases whose spreading is clearly not undirectional, such as
HIV which has a male-to-female transmission ratio 2.3 times greater than female-to-male
transmission [120]. This symmetry breaking clearly invalidates a model that explicitly
assumes symmetrical interactions, such as the undirected network.

In this section we will address the question of whether a model is simpler than it needs
to be in the context of transportation networks. Our starting observation is the report
of betweenness centrality anomalies in the worldwide air transportation network [121].
Guimerà et al. built the network considering cities as nodes (joining together airports
belonging to the same city) and establishing a link between them if there was at least
one direct flight connection. Then, they studied the betweenness centrality of the nodes
and found that cities with large number of connections were not necessarily the ones with
largest betweenness. Conversely, they observed that cities with few connections could have
high values of betweenness. This contrasts sharply with the fact that the betweenness
centrality of a node is directly proportional to its degree in synthetic scale-free networks
[122] as well as in several real networks [123]. The emergence of these anomalies has been
attributed to the multi-community structure of the network and to spatial constraints
[121, 124, 125].

However, given our previous discussion, one may wonder whether the anomalies are
truly there or if they are just a consequence of using a network model that is too simple.
Indeed, using a binary representation implies that two cities connected with one flight
per year are as close as two cities with several hundreds of weekly flights. At first glance,
this seems a too far-fetched assumption, specially if we are interested in studying city
centrality. Thus, we propose that an undirected weighted network might be more suited
for this specific problem. This, as we will see, will make the anomalies disappear.

2.5.1 Null models for undirected weighted networks
As discussed in section 2.2, the most common approach to determine if the properties

of a network are out of the ordinary is to reshuffle the connections of the network to build
a null model, extract the average properties of the latter and compare them. In addition
to the caveats of this procedure that have been already described, there is another obvious
issue: it is not clear how to extend this procedure to weighted networks. Indeed, one
possibility would be to extract the weight distribution of the links, reshuffle the network
and then randomly assign weights to the links according to said distribution. Another
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option could be to preserve the total strength of a node and then share it evenly across
the reshuffled links, or according to some distribution. Or even attaching weights to
their links and then reshuffle them preserving their weights. In any case, it is clear that
whichever procedure we choose, there will be several implicit assumptions that will reduce
the universality of the results. Fortunately, there is a better solution: exponential random
graphs.

Initially, as we are working with a weighted network, one might be inclined to use the
formalism we presented in section 2.4.2 that preserves the weights of the nodes. However,
it has been shown that the strength sequence of a network is often less informative than
its degree sequence [126]. In particular, synthetic networks built preserving the strength
sequence tend to be much denser that their real counterparts. For this reason, we propose
that our null model should be an exponential random graph preserving both the degree
and strength sequences.

Following [126], suppose that our real network is described by the symmetric matrix W ∗

of size N ×N . First, we want to obtain the probability of finding any compatible graph in
the ensemble, P (W ), imposing as constraints the degree, ki(W ) =

∑
j aij =

∑
j 1− δ(wij),

and strength, si(W ) =
∑

j wij , sequences, the Hamiltonian of the graph reads

H(W |~θ, ~σ) =
∑
i

θiki +
∑
i

σisi (2.50)

and thus the probability of finding any graph W in the ensemble is

P (W |~θ, ~σ) =
e−

∑
i θiki−

∑
i σisi∑

W e−
∑
i θiki−

∑
i σisi

=
e−

∑
i<j(θi+θj)aij−

∑
i<j(σi+σj)wij∑

{wij} e
−

∑
i<j(θi+θj)aij)−

∑
i<j(σi+σj)wij

=
∏
i<j

e−θiaije−θjaije−σiwije−σjwij

1 + e−θi−θj
∑∞

wij=1 e
−(σi+σj)wij

, defining

[
xi ≡ e−θi
yi ≡ e−σi

]
,

=
∏
i<j

(xixj)
aij (yiyj)

wij (1− yiyj)
1− yiyj + xixjyiyj

=
∏
i<j

Pij(wij |~θ, ~σ) .

(2.51)

To obtain the appropriate values of ~θ and ~σ we can numerically maximize the log-
likelihood function,

L(~θ, ~σ) = lnP (W ∗|~θ, ~σ) = ln
∏
i<j

(xixj)
aij (yiyj)

wij (1− yiyj)
1− yiyj + xixjyiyj

=
∑
i

[ki(W
∗) lnxi + si(W

∗) ln yi] +
∑
i<j

ln

(
1− yiyj

1− yiyj + xixjyiyj

)
,

(2.52)

where xi ≥ 0 ∀i and yi ∈ [0, 1).
Lastly, to sample networks from this distribution we must divide the process into two

parts. First, note that the probability of not having a link, wij = 0, is

Pij(wij = 0|~θ, ~σ) =
1− yiyj

1− yiyj + xixjyiyj
≡ 1− pij . (2.53)

Hence, we can perform a Bernoulli trial with probability

pij =
xixjyiyj

1− yiyj + xixjyiyj
(2.54)

to establish a link. Then, if it is successful, note that for wij > 0 the probability reads

Pij(wij > 0|~θ, ~σ) = pij(yiyj)
wij−1(1− yiyj) , (2.55)
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which is the success probability, pij , times a geometric distribution with parameter yiyj .
Thus, we can simply extract the weight associated to the node from said distribution. Note
that as one trial was already successful, it is necessary to add 1 to the number extracted
from the distribution.

Iterating this process (Bernoulli trial plus weight from geometric distribution) we can
extract unbiased graphs from the ensemble systematically. In this study this will be of
outermost importance as there is not an analytical expression to calculate the betweenness
of a node in a graph from its adjacency matrix. Thus, to test if these two ingredients
(degree and strength) are enough to explain the anomalies of our network, we will have
to sample a large amount of graphs from the ensemble, compute the betweenness of their
nodes and lastly compare their distribution with the one of the real network.

2.5.2 The worldwide air transportation network
We will begin our analysis using the same network as in the paper that inspired this work

[121], the worldwide air transportation network. Howbeit, to facilitate the interpretation
of the results, we will use countries as nodes, rather than cities. This will dramatically
reduce the number of nodes, making the network more manageable. Nonetheless, in section
2.5.3 we will analyze the whole network as it was presented in the original paper.

The geographical location of the airports, the city and country they belong to and
the routes connecting them were obtained from the Open Flights database [127]. After
aggregation, we end up with a network of 224 nodes (countries) and 2,903 undirected links
(unique routes). This data, however, does not include any information about the number of
flights, which we need to establish the weight of the routes. Hence, we collected data from
an online flight tracking website [128] in a period between May 17, 2018 and May 22, 2018.

Our first step is to reproduce the results of Guimerà et al. but, for consistency, using
the undirected exponential random graphs presented in section 2.4.1. This is an important
step for three reasons: first, their data was collected in the period from November 1, 2000
to October 21, 2001, 18 years before ours; second, because to randomize the network they
preserve exactly the degree sequence; and third, because we have used countries rather
than cities as nodes. The results are shown in figure 2.5.

In spite of all the methodological differences between our work and Guimerà et al. we do
find a similar pattern of anomalies. For instance, Christmas Island is one of the countries
with highest betweenness even though is the one with the lowest degree. Conversely,
Montenegro, with degree 11, has one of the lowest values of betweenness. This clearly
contradicts the results obtained for the graphs sampled from the ensemble built preserving,
on average, the degree sequence of the network (shaded gray area). Indeed, in random
networks the betweenness centrality tends to be proportional to the degree of the node.

Even more, using countries as nodes instead of cities reveals a clear pattern. We can
see that most countries with betweenness below the expectation are European. On the
other hand, most nodes laying above the expectation are islands. This can clearly be seen
in figure 2.5B, where we show a representation of the network embedded in space. As we
can see, Europe is much more densely connected that the rest of the world, due to having
a large population shared in several countries. Thus, there are lot of connections between
them that increase their degree but do not make them more central globally. The opposite
effect is observed in islands and large countries, which act as bridges connecting either
large territories or hardly accessible ones, increasing the number of shortest paths that go
through them.

These observations also agree with our hypothesis. We expect that if weights - number
of flights - are included in the network, the centrality of small, fairly disconnected islands
will be reduced while the highly active airports in Europe will increase theirs. Thus, we
will now add the number of flights between any two routes as weight. Note, however, that
the calculation of shortest paths (the key ingredient of the betweenness centrality) tries to

31



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

Germany

Estonia

Finland

United Kingdom

Luxembourg

Poland

Sweden

Libya

Bulgaria

Cyprus
Croatia

Greece

Hungary

Italy

Czech Republic

Israel

Malta

Austria

Bosnia and Herzegovina

Romania

Switzerland

Turkey

MoldovaMacedonia

Serbia

Montenegro

Iraq

Russia

Ukraine

Belarus

Maldives

Latvia

Lithuania

Armenia

Georgia

Papua New Guinea

Iceland

Canada

Ghana

South Africa

Mauritius

Mayotte Reunion
Madagascar

Angola

Gambia

Morocco

SenegalCape Verde

Ethiopia
Kenya

Tanzania

Uganda

France

Fiji

Kiribati

French Polynesia

New Caledonia

New Zealand

GuamMarshall Islands

Micronesia

Palau

Japan

South Korea

Argentina
Chile

Suriname
French Guiana

Antigua and Barbuda
Barbados

Dominica Martinique

Guadeloupe

Grenada

Virgin Islands

Puerto Rico

Saint Kitts and Nevis

Saint Lucia

Netherlands Antilles

Trinidad and Tobago

Hong Kong
Singapore

Australia

Christmas Island

China

United States

Nauru
Namibia

Djibouti

Guinea
Guyana

10−6

10−5

10−4

10−3

10−2

10−1

2 5 10 20 50 100 200

Degree

B
et

w
ee

nn
es

s
●

●

●

●

●

●

●Africa
Asia

C. America
Europe

N. America
Oceania

S. AmericaA

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B

Figure 2.5: Analysis of the worldwide air transportation network with coun-
tries as nodes. In panel A we show the betweenness of each country in the network as
a function of its degree. The shaded gray area represents where are 95% of the nodes
belonging to 104 random graphs sampled from the ensemble. In other words, countries
outside that region can be considered abnormal. Labels have been attached only to said
countries. In panel B we show the geographical projection of the network, with those
countries with betweenness higher than expected in orange and with those countries with
lower values than expected in red.

minimize the total weight of a path. Hence, a larger weight would make the connection
less desirable, which is the opposite of what we want as a larger number of flights makes it
easier to use that connection. For this reason, we will initially set the number of flights as
weight, then we will randomize the network using the method presented in section 2.5.1
and, lastly, to compute the betweenness we will set the weights to be the inverse of the
number of flights, i.e. w′ij = w−1

ij . The results are shown in figure 2.6.

At first glance, we observe that the number of nodes in the betweenness plot is much
smaller than before (figure 2.6A). The reason is that there are several nodes, both in the
real network and in the randomized graphs, that have 0 betweenness. In other terms, there
are not any shortest paths going through them. This was somehow expected given that
in figure 2.5A there were several small countries which clearly do not have as many daily
flights as the biggest hubs in the world, for instance the islands in Oceania. Nonetheless,
now most islands are compatible with the randomized graphs, as well as most European
countries.

To facilitate the comparison of both approaches, in figure 2.6B we show the percentage
of nodes that are not compatible with 95% of the randomized graphs. In the case of the
undirected network, we find over 40% of nodes out of the area covered by the randomized
graphs. Contrariwise, when weights are added to the network, the amount of anomalous
nodes goes below the 5% mark. Thus, it is clear that the anomaly that was observed in
the undirected case is solved once one considers weights. We will not try to answer why
the weights are distributed the way they are, as it is probably a mixture of geographical,
economical and political reasons, out of the scope of this analysis. Nevertheless, this result
partially answers our initial question. Sometimes anomalies can be a byproduct of using a
model that is simpler than it should be. To increase the validity of this statement, in the
following section we will repeat the analysis on other types of transportation networks.
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Figure 2.6: Analysis of the weighted worldwide air transportation network
with countries as nodes. In panel A we show the betweenness of each country in the
network as a function of its degree. The shaded gray area represents where are 95% of
the nodes belonging to 104 random graphs sampled from the ensemble. Labels have been
attached only to countries outside the expectation. In panel B we show the fraction of nodes
that can be considered anomalous in the undirected network (left) and in the weighted
network (right). The dashed line indicates the 5% threshold.

2.5.3 Other transportation networks
This analysis can be extended to other transportation networks. In particular, we have

obtained the inter-city bus transportation networks of Brazil, Great Britain and Spain.
Besides, we will now consider the full air transportation network, with cities as nodes, as
in the work by Guimerà et al. [121]. The networks are represented in figure 2.7.

Data from the Brazilian inter-city routes was obtained from the Brazilian National
Land Transportation Agency (ANTT) [129]. The data corresponds to the period between
January 2005 and December 2014 with a monthly resolution and includes more than
19,000 unique routes connecting 1,786 cities. The geographical location of the nodes was
determined using data from the Brazilian Institute of Geography and Statistics (IBGE)
[130].

Similarly, data from the British inter-city routes was contained in the National Public
Transport Data Repository (NPTDR) maintained by the Department of Transport. The
data corresponds to the period between October 4, 2010 to October 10, 2010, with an
hourly resolution. This dataset was complemented with the National Coach Services Data
(NCSD) distributed also by the Department of Transport [131]. The total number of nodes
is 279 nodes with almost 4,000 unique routes.

For the case of Spain, however, there is no public repository containing the data in a
suitable format to be used. Thus, we had to scrap the data from a website maintained by the
Spanish Ministry of Development that offers information of all the bus connections between
municipalities in Spain except for the province of Girona [132]. The data corresponds to
the period between January 1, 2017 and December 31, 2017. The total number of nodes is
1,435 with over 20,000 unique routes. As nodes in this network are municipalities instead of
cities, we aggregated in all networks their bus stops into their corresponding municipalities.

Next, we repeat the analysis outlined in section 2.5.2 on these 4 networks. To sum
up, we first build the unweighted version of the networks and randomize them using the
formalism of undirected binary graphs presented in section 2.4.1. We then compare the
betweenness of the real nodes to their randomized counterparts. If their betweenness is
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Figure 2.7: Spatial representation of transportation networks. The four networks
under consideration are represented embedded in their corresponding spaces. Nodes are
located in the center of their administrative region in the case of bus networks and in the
coordinates of the city they belong to in the case of the air transportation network. The
size of the nodes is proportional to their degree.

higher than their randomized versions in 97.5% of the samples, or if it is lower than in
2.5% of the samples, we flag them as abnormal nodes. We measure the amount of nodes
that can be regarded as abnormal in all networks, and then repeat the whole process with
the weighted versions of the networks, using the appropriate null model (section 2.5.1).
The results are depicted in figure 2.8.

Several observations are in order. First, we not only find the expected anomalies in the
worldwide air transportation network, but also in the Brazilian and Spanish bus networks.
In the case of Great Britain we do not observe anomalies, although this network has some
special characteristics that might explain this fact. Indeed, as we can see in figure 2.7 large
cities are situated in the middle, with few small cities in the north and some more in the
south. This centralization might explain why we do not see small nodes with large values
of betweenness. Besides, municipalities are larger than in other countries and as a result
the number of nodes in this network is one order of magnitude below the Spanish and
Brazilian networks. This reduces the amount of unique routes and tends to centralize them,
preventing routes in isolated areas that would increase the centrality of small nodes (which
would actually be even smaller if we had not aggregated them). In any case, regardless of
the specific reasons for this observation, it seems that for the particular case of the Great
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Figure 2.8: Fraction of anomalous nodes in transportation networks. Percentage
of anomalous nodes in each network for the unweighted and weighted versions of the
networks. The anomaly is verified for all unweighted networks, except for Great Britain.
In contrast, in the weighted version the fraction of anomalous nodes is of the order of the
false discovery rate, i.e., approximately 5%.

Britain network it is enough to consider only the degree of the nodes to avoid anomalies.

Nevertheless, in the weighted versions of the networks we can see that systematically the
amount of anomalous nodes is reduced in all networks, even in the one from Great Britain
(although both the weighted and unweighted amounts are below the 5% line and thus we
cannot state that the reduction is significant). This result suggests that the existence of
centrality anomalies in transportation networks might be a consequence of neglected, but
functionally crucial, information about the system.

2.5.4 Conclusions
The exponential random graph framework allows us to build very general null models

in which only the information we provide is fixed, the rest being maximally random. This
is specially important when one wants to analyze if the characteristics of a real network are
different from what would be expected from alike graphs. Indeed, if all the assumptions
implicit in a null model are not under control, it is possible to find anomalies that might
be just a byproduct of the null model itself, rather than coming from the real system.

In this particular case, we have seen that when one only gathers information about
the degree of the nodes in a transportation network, their centrality does not behave as
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expected. However, by adding a small piece of information - the weight of the links - the
network starts to behave as its random counterparts. Hence, this work highlights the
fact that when some anomalies are found in a network, care must be taken in order to
determine if those anomalies are really important or just a consequence of not using the
proper amount of information.

Even more, we propose that this technique might be useful to determine how much
data of a system is needed, or how complex its network model has to be. In the particular
case of transportation networks the use of weights is rather straightforward. However, in
systems in which the choice might not be so obvious, hunting for anomalies and looking
for network characteristics that can explain them, might be the key to determine the most
important elements of the system.

2.6 Generating data-driven contact networks
What about the children?!

Won’t somebody please think of the children!?

Helen Lovejoy

Contact networks are graphs whose nodes represent individuals and their links represent
some kind of close interaction between them. This kind of networks are of particular interest
in the field of epidemiology, as there are several diseases which can only be transmitted
from person to person, such as influenza, tuberculosis or HIV. Thus, the contact patterns
of the population can provide the necessary information to implement preventive measures
[133]. For instance, by analyzing who are the most central nodes in the network, it is
possible to devise efficient vaccination strategies [134].

Yet, even for small populations, obtaining the whole contact network of the population
is really hard. A prominent example can be found in the case of sexuallly transmitted
diseases. It is clear that in those particular diseases it should be possible, in general, to
trace back the whole chain of infections and, ideally, reconstruct the contact network [135].
However, this process is full of biases, such as individuals not being willing to provide
detailed information about their sexual partners [136, 137]. In practice, it is only possible
to trace back the whole chain of infections for very small epidemic outbreaks [138].

Hence, to study large scale epidemics one usually resorts to building synthetic contact
networks. In some cases, they can be based on some ad hoc assumptions specific for the
disease under study [139, 140]. In others, a small portion of the population is thoroughly
investigated and then its characteristics are extended to the whole population [141]. Another
possibility is to use aggregated statistics about the population such as household size or
age distributions to build them [142]. The framework that we will develop in the following
pages will follow the latter.

One of the key elements defining contact networks is the social structure of the
population. It has been observed that individuals have very different mixing patterns
depending on their age, and even that they vary greatly from country to country [143].
The usual approach to implement this in epidemic spreading models is to consider that
the whole population is in contact with each other (resembling a fully connected graph)
and weighting the transmission probability between two individuals according to their
respective ages [144, 145]. This, however, completely neglects the network structure of the
population.

In this work we propose a methodology to build contact networks based on the
exponential random graph model using socio-demographic data. In particular, we will take
into account the demographic structure of the population as well as their mixing patterns.
As previously mentioned, these patterns are highly dependent on the age of the individual.
Thus, age will be the key ingredient in this model. Besides, we will arrange individuals
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with similar age in layers, building a multilayer network. As we shall see in section 3.4 this
will facilitate the study of disease spreading on these networks. However, in this section we
will only focus on the methodology used to build said networks.

2.6.1 Theoretical framework

Demographic studies usually classify individuals into age groups, also known as age
brackets, instead of using their exact value. Hence, mixing patterns are often given in the
form of number of contacts between individuals in age group X with individuals in age group
Y. For this reason, we will consider that the population is divided into L layers, one for each
age group. The number of nodes in each layer will be set according to the demographic
structure of the population under study. We will denote by nα the set of individuals
contained in layer α or, equivalently, with age contained in age bracket α (henceforth,
individual with age α). Thus, the total number of nodes will be N =

∑L
α=1 |nα|.

Besides the demographic structure of the population, we will suppose that the only
information we have is the number of (undirected) links of individual i in layer α to
individuals in layer β. As a consequence, the quantity that we want to preserve is the
layer-to-layer degree, kβi,α =

∑
j∈nβ aij (the procedure to extract this information from

real data will be described in section 2.6.2). An schematic representation of the system is
depicted in figure 2.9.

Layer 1

Layer 2

Layer 3

i

k3  = 1

k2  = 2

k1  = 2

i,1

i,1

i,1

Figure 2.9: Schematic of a multilayer network with age-dependent contacts.
Each layer represents one age bracket [almin, almax), so that individuals set in layer l are
between almin and almax years old. Links can be inside layers, representing contacts with
individuals within the same age bracket, and across layers, representing contacts with
individuals of different age. For instance, node i has two links in layer 1, two links to layer
2 and one link in layer 3 so that {kβi,α} = {kβi,1} = {2, 2, 1}.

Under these assumptions, the Hamiltonian of the graph reads

H(G, θ) =

L∑
α=1

L∑
β=1

∑
i∈nα

θβi,αk
β
i,α , (2.56)
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which can be rewritten in a more useful way after some algebra,

H(G, θ) =
L∑
α=1

L∑
β=1

∑
i∈nα

θβi,α
∑
j∈nβ

aij =
L∑
α=1

∑
i∈nα

N∑
j=1

θβi,αaij

=
N∑
i=1

N∑
j=1

θβi,αaij =
∑
i<j

(θβi,α + θαj,β)aij .

(2.57)

In the derivation of equation (2.57) we have used the fact that node i only belongs to
layer α. This is not the case in general multilayer networks, where one node can be present
in more than one layer. However, in this particular case, as an individual can only have
one age, it can only belong to one layer. Note that this also implies that this problem
can be mapped into the one of building single layer exponential random graphs with fixed
community structure and degree sequence [146].

Now, the probability of finding any graph G in the ensemble will be

P (G|θ) =
e−

∑
i<j(θ

β
i,α+θαj,β)aij∑

G e
−

∑
i<j(θ

β
i,α+θαj,β)aij

=
∏
i<j

(
e−θ

β
i,αe−θ

α
j,β

)aij
1 + e−θ

β
i,αe−θ

α
j,β

=
∏
i<j

(xβi,αx
α
j,β)aij

1 + xβi,αx
α
j,β

=
∏
i<j

p
aij
ij (1− pij)1−aij ,

(2.58)

where, similarly to previous sections, we have defined the auxiliary variable xβi,α ≡ e
−θβi,α

and the probability of having a link between node i and j as

pij ≡
xβi,αx

α
j,β

1 + xβi,αx
α
j,β

. (2.59)

Note that the shape of equation (2.58) is equivalent to the one of undirected binary
networks, section 2.4.1. Hence, to sample networks from this ensemble we can simply
perform sequential Bernoulli trials on each pair of nodes.

Lastly, to obtain the value of xβi,α we only need to maximize the log-likelihood which in
this case reads

L(θ) = ln
∏
i<j

p
aij
ij (1− pij)1−aij

=
N∑
i=1

N∑
j=i+1

aij ln
xβi,αx

α
j,β

1 + xβi,αx
α
j,β

+ (1− aij) ln
1

1 + xβi,αx
α
j,β

=
N∑
i=1

N∑
j=i+1

aij ln
(
xβi,αx

α
j,β

)
− ln

(
1 + xβi,αx

α
j,β

)

=

N∑
i=1

L∑
β=1

kβi,α lnxβi,α −
N∑
i=1

N∑
j=i+1

ln
(

1 + xβi,αx
α
j,β

)
.

(2.60)

Thus, the process is analogous to the one we have seen in sections 2.4.1, 2.4.2 and 2.5.1.
Indeed, once the constraints have been established, we need to maximize the log-likelihood
to obtain the appropriate values of θβi,α. Then, we can get the probability of two nodes
being connected from equation (2.59). Lastly, we can perform measurements over the
whole ensemble using the full P (G|θ) or sample networks using independent Bernoulli
trials on each pair of nodes. In the following section we will describe how we can obtain
the values of the constraints, kβi,α, from real data.
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2.6.2 Data description
The key ingredient of the proposed methodology is the number of links a node i has

within its layer, α, and to each of the other layers, β, denoted as kβi,α. In order to generate
realistic distributions of this quantity, we would need the probability distribution of a
node with age a to contact k individuals of age a′, P (k, a, a′). Fortunately, there are some
empirical studies that provide enough information to do so, such as the POLYMOD study
[143].
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Figure 2.10: Mixing patterns of the Italian population. The population has been
divided into two groups: children (individuals aged 18 or less) and adults (individuals aged
19 or more). In A the distribution of the number of contacts between the different groups
is shown. The fitted curve corresponds to a negative binomial distribution parameterized
with mean µ and shape θ. In B the total number of contacts, regardless of the age of
the individual, is shown. As in A, the fitted curve corresponds to a negative binomial
distribution. Besides, the matrix on the right represents the probability that an individual
in age group a (rows) contacts with an individual in age group a′ (columns).

In the POLYMOD study volunteers from eight different European countries were
asked to provide information about who they contacted during a given period of time. In
particular, the information that is relevant for our interests is the age of the participant, a,
and the age of the person contacted, a′. Then, aggregating this data, we can obtain the
distribution of the number of contacts that an average person of age a has with people of
age a′, P (k, a, a′). In figure 2.10A we show this distribution for the case of Italy, which
was one of the most complete surveys of the study.

To facilitate the visualization of the results, we have chosen to classify individuals,
following previous literature [144], into two age groups: children (aged 18 or less) and
adults (aged 19 or more). Then, we have measured the number of contacts each child
had with other children (top-left distribution) and with adults (top-right distribution).
Similarly, on the bottom row we show the contact distribution of adults with children
(bottom-left) and of adults with other adults (bottom-right). All empirical distributions
have been fitted to a negative binomial distribution, which is one of the most common
methods for analyzing count response surveys1 [147].

However, this data has some drawbacks, such as the problem of reciprocity. In a
completely closed population (and with perfect measurement instruments), for each contact

1Count data is usually modeled in physics as a Poisson distribution, whose mean equals its variance. In
count data involving humans, however, this is not usually the case. Thus, negative binomial distributions are
used instead, as their variance can be larger than the mean. This special characteristic of these distributions
is known as overdispersion.
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that a child reports with an adult we should get a report of and adult contacting a child.
But, as in this survey the population was not closed, that is, people participating in the
survey could report contacts with people not participating in it, the reciprocity condition
is not always satisfied. This is a well known problem in the study of mixing patterns of the
population and there are several techniques used to solve it, such as the pairwise correction
[148]. Thus, we will perform an assumption that will allow us to leverage all the techniques
that have already been developed to work with age-contact matrices.

Indeed, from now on, we will suppose that the probability of having k contacts is
independent of the age of both individuals involved in it. That is, P (k, a, a′) ≈ P (k)P (a, a′).
Note that with this assumption we have separated the mixing patterns of the population,
P (a, a′), from the main topological characteristic of networks, the degree distribution P (k).
This has two main advantages. First, this will allow us to directly input into the model
mixing contact matrices, which are more common in the literature than the whole survey
data. Second, we will be able to test the effect of different degree distributions. This
situation will be further analyzed in section 3.4.

In figure 2.10B we show the necessary information to build P (k, a, a′) under this
assumption. As we can see, the average number of contacts of any individual in the Italian
population is close to 21. Interestingly, this number can vary greatly. For instance, while
Italy was the country with the highest number of reported contacts, Germany was the
one with the fewest daily contacts, 8. Regarding P (a, a′), it is important to note that
the matrix is not symmetric per se, but this is due to the fact that age groups are not
equally sized. Indeed, if we suppose that all groups have the same degree distribution,
the reciprocity condition implies that NaP (a, a′) = Na′P (a′, a), where Na represents the
number of individuals with age a.

Summing up, to obtain kβi,α we simply need to sample k from the desired degree
distribution for each node i of age α. Then, we can distribute this value across layers using
a multinomial distribution with probability parameters P (α, β).

2.6.3 Age contact networks
We will finish this section demonstrating the full process of generating one age contact

network, which can be divided in three steps:

1. Data collection and standardization: the first step is to obtain demographic
structure, mixing patterns and degree distribution of the population under considera-
tion. Standardization in this context refers to deciding the number of age groups in
the system and modifying the distributions accordingly.

As in the previous section, we will focus on Italy in the year 2005, which is when
the POLYMOD study took place. Besides, we will consider that there are still
only two groups, children and adults. Under these circumstances, according to the
demographic structure of the country, 18% of the nodes must be set in the age group
of children while the other 82% must belong to the adults group. The P (a, a′) matrix
as well as the degree distribution will be the ones shown in figure 2.10B.

Next, we need to decide the number of nodes in our network. In this case, we will
set this number equal to N = 103. Hence, there will be 180 nodes and 819 nodes in
layers 1 and 2 respectively. Once this is set, we can extract suitable values of kβi,α
for each node i from the P (k, a, a′) distribution as explained in the previous section.
These will be the constraints in our model.

2. Determination of the ensemble: once the constraints are set, the next step is
to maximize the log-likelihood defined in (2.60) to obtain the proper values of xβi,α.
These can be used to build the ensemble of networks using (2.58).
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Figure 2.11: Synthetic Italian age contact network. A) depicts a random network
obtained from the ensemble. The size of the nodes is proportional to their degree. The
layer on the bottom corresponds to nodes classified as children, while the layer on top
corresponds to adults. The difference in group size is due to the demographic structure of
the country. B) Comparison of the average degree of each node obtained from averaging
104 networks sampled from the ensemble to the imposed constraint. The 95% confidence
interval of the distribution is shown in gray for each node.

3. Network sampling: the last step is to randomly sample as many networks as
desired from the ensemble. This can be easily done by performing a Bernoulli trial
over each pair of nodes i and j with probability of success given by pij as defined in
equation (2.59).

For this example, we have sampled 104 networks from the ensemble. In figure 2.11A we
show one of the sampled networks. As it can be seen, the network is divided in two layers.
Nodes in the bottom layer represent children while the ones on top adults. As imposed by
the demographic constraints, there are many more nodes in the adults layer than in the
children layer. To confirm that the sampled networks successfully preserve the rest of the
constraints, in figure 2.11B we plot the average value of kβi,α in the set of 104 networks (y
axis) against the value imposed by the data (x axis). Clearly, all nodes are close to the
identity line, indicating that the conditions were successfully maintained.

This example demonstrates that we now have all the tools required to generate realistic
contact networks with age related data. In section 3.4 we will use this framework to build
networks for different countries and periods of time, and we will measure the impact that
incorporating this kind of data can have on disease dynamics.
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3
The law of mass action: animals collide

Infectious diseases have been an unpleasant companion of humankind for millions
of years. Yet, crowd epidemic diseases could have only emerged within the past 11,000
years, following the rise of agriculture. The ability to maintain large and dense human
populations, as well as the close contact with domestic animals, allowed the most deadly
diseases to be sustained unlike when human populations were sparse [149].

Perhaps the most-well documented epidemic outbreak in ancient times is the plague of
Athens (430-427 BCE) that caused the death of Pericles and killed around 30% of Athens
population [150]. The fact that some diseases were contagious was probably well-known
way before that. For instance, it has been claimed that in the 14th century BCE the
Hittites sent rams infected with tularemia to their enemies to weaken them [151] and there
are evidences of quarantine-like isolation of leprous individuals in the Biblical book of
Leviticus. Yet, it was thought that diseases were caused by miasma or “bad air” for over
2,000 years. It was not until the end of the XIX century that it was finally discovered that
microorganisms were the cause of diseases [152].

The advent of modern epidemiology is usually attributed to John Snow who in the mid
of the XIX century traced back the origin of a cholera epidemic in the city of London [153].
However, mathematical methods were not firmly introduced until the beginning of the XX
century1. Already in 1906 Hamer showed that “an epidemic outbreak could come to an end
despite the existence of large numbers of susceptible persons in the population, merely on
a mechanical theory of numbers and density” [156]. Although it was thanks to the works
by Ross, Kermack and McKendrick that finally a mechanistic theory of epidemics was
developed as an analogy to the law of mass-action. In particular, it was McKendrick who
gave the title to this chapter when he said in a lecture in 1912: “consider a type of epidemic
which is spread by simple contact from human being to human being [...] The rate at
which this epidemic will spread depends obviously on the number of infected animals, and
also on the number of animals that remain to be infected - in other words the occurence of
a new infection depends on a collision between an infected and uninfected animal” [157].

The next 50 years were mostly devoted to establishing the mathematical foundations
of epidemiology. The problem was that this process was mostly done by mathematicians
and statisticians, who were more interested in the theoretical implications of the models
rather than in their application to data [158]. This situation changed during the 1980s
when Anderson and May, coming from a background in zoology and ecology respectively,
started to collaborate with biologists and mathematicians, bridging the gap between data
and theory [63]. During the 1990s graphs where introduced in epidemiological models,
challenging the classical assumption of homogeneous mixing (that we will discuss in section
3.1), and brought physicists into the field attracted by the similarity of some concepts with
phase transitions in non-equilibrium systems [159].

1A noteworthy exception is the work by Daniel Bernoulli in 1766, although he was just too ahead of his
time. Furthermore, some authors claim that the credit for creating the first modern disease transmission
model should go to Pyotr Dimitrievich Enko. Unfortunately, even though he published his work as early
as 1889, he wrote it in russian and thus it became largely unnoticed for the majority of the scientific
community until it was translated by the middle of the XX century (see [154, 155] for a nice introduction
to the early days of mathematical epidemiology).
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The latest developments of epidemic modeling are based on incorporating more and more
data. For instance, the Global Epidemic and Mobility (GLEaM) framework incorporates
demographic data of the whole world with short-range and long-range mobility data as
the basis of its epidemic model, allowing for the simulation of world-wide pandemics [160].
Similarly, to properly study the spreading of Zika virus it is necessary to take into account
the dynamics of mosquitoes, temperature, demographics and mobility, attached to the
disease dynamics of the own virus [161]. Multiple sources of data are also being used in the
study of vaccination, either to devise efficient administration strategies, including economic
considerations [162], or to properly understand how they actually work [163]. Even more,
of particular interest nowadays is analyzing the interplay between processes that have been
deeply studied in complex systems such as game theory, behavior diffusion and epidemic
processes.

Herd immunity, a term coined by Topley and Wilson in 1923 albeit with the completely
opposite meaning to the current one [164], refers to the fact that it is possible to have
a population where diseases cannot spread even if only a fraction of the individuals are
immune to it. Firstly calculated theoretically in 1970 by Smith [165], it has been the subject
of great interest as it allows to completely immunize a population even if there are members
who cannot be administered a vaccine due to their medical conditions [166]. Unfortunately,
the great successes achieved by vaccination are now endangered by people who refuse to
vaccinate their children, which also affects those kids who cannot be vaccinated but should
have been protected by herd immunity [167].

For instance, measles requires 95% of the population to be vaccinated for herd immunity
to work. This was achieved in the U.S. by the end of the past century, being declared
measles free in 2000. Similarly, the UK was declared measles free in 2017. Yet, the World
Health Organization (WHO) removed this status from the UK in August 2019 [168], and
the U.S. is facing a similar fate as so far in 2019 they have reported the greatest number
of cases since 1992 [169]. Both phenomena have been attributed to anti-vaccine groups,
whose behavior can be studied from the point of view of game theory. But there are more
ingredients into play. In particular, if the risk of infection is regarded low, maybe thanks to
herd immunity, the motivation to become vaccinated can decrease. This behavior can then
be spread among adults, a process that will be clearly coupled with the disease dynamics.
Thus, a holistic view of the whole problem is needed, something that can only be done
under the lenses of complex systems [134].

In this context, rather than extending the mathematical formalism that is already well
established, we pushed forward our knowledge about disease dynamics by adding data
and revisiting some of the assumptions classically made either for simplicity or lack of
information. For this reason, rather than giving a whole mathematical introduction and
then visiting each contribution, we will organize them in a way that roughly follows the
historical development of mathematical epidemiology, explaining in each section the basic
ideas and then showing how we challenged those assumptions.

We will begin in section 3.1 with the most basic approach to disease dynamics. That is,
humans are gathered in closed populations in which every individual can contact every other,
very much like particles colliding in a box. This simple premise, known as homogeneous
mixing, can be slightly improved by considering individuals to be part of smaller groups,
with correspondingly different patterns of interaction. This is the classical approach to
introduce the age structure of the population, for which experimental data exist. We will,
however, go one step further and analyze the problem of projecting this data into the
future, taking into account the demographic evolution of society. This part of the thesis
will be thus based on the publication:

• S. Arregui, A. Aleta, J. Sanz, and Y. Moreno, Projecting social contact matrices to
different demographic structures, PLoS Comput. Biol., vol. 14, pp. 1–18, Dec 2018.
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Our next step will be to introduce, in section 3.2, one of the cornerstone quantities
of modern epidemiology, the basic reproduction number, R0. We will revisit its original
definition and challenge it using data-driven population models, demonstrating that some
of the assumptions that have been made since its conception are not entirely correct. This
corresponds to the work:

• Q.-H. Liu, M. Ajelli, A. Aleta, S. Merler, Y. Moreno, and A. Vespignani, Measurability
of the epidemic reproduction number in data-driven contact networks, Proc. Natl.
Acad. Sci. U.S.A., vol. 115, pp. 12680–12685, Dec 2018

Then, in section 3.3 we will finally introduce networks into the picture. We will show
some of the counter-intuitive consequences of this and, again, challenge some of the most
basic assumptions. In particular, disease dynamics are often implemented on single layer
undirected networks, but we will show that directionality can play a crucial role on the
dynamics, with particular emphasis on multilayer networks. We will follow the article

• X. Wang, A. Aleta, D. Lu, and Y. Moreno, Directionality reduces the impact of
epidemics in multilayer networks, New J. Phys., vol. 21, p. 093026, Sep 2019

of which I am first co-author.
We will finish this chapter in section 3.4 analyzing the age-contact networks that we

generated in section 2.6, chapter 2. The objective of this part will be to show the different
approaches than can be followed depending on the available data and their impact in the
outcome of the dynamics. This will be based on the work

• A. Aleta, G. Ferraz de Arruda, and Y. Moreno, Generating data-driven age contact
networks, In preparation, 2019

3.1 A basic assumption: homogeneous mixing
The starting point of this discussion is going to be precisely the own introduction of

the paper by Kermack and McKendrick published in 1927 that is regarded as the starting
point of modern epidemiological models [172]. Even if over 90 years have passed, any text
written today about the subject would start roughly in the same way:

“The problem may be summarised as follows: One (or more) infected person is intro-
duced into a community of individuals, more or less susceptible to the disease in question.
The disease spreads from the affected to the unaffected by contact infection. Each infected
person runs through the course of his sickness, and finally is removed from the number of
those who are sick, by recovery or by death. The chances of recovery or death vary from day
to day during the course of his illness. The chances that the affected may convey infection
to the unaffected are likewise dependent upon the stage of the sickness. As the epidemic
spreads, the number of unaffected members of the community becomes reduced. Since the
course of an epidemic is short compared with the life of an individual, the population may
be considered as remaining constant, except in as far as it is modified by deaths due to the
epidemic disease itself. In the course of time the epidemic may come to an end. [...] [This]
discussion will be limited to the case in which all members of the community are initially
equally susceptible to the disease, and it will be further assumed that complete immunity
is conferred by a single infection.”

For the shake of clarity we can summarize some of the implicit assumptions in the
previous paragraph, plus some more that were introduced in other parts of the paper, as
[173]:

1. The disease is directly transmitted from host to host.

2. The disease ends in either complete immunity or death.
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3. Contacts are according to the law of mass-action.

4. Individuals are only distinguishable by their health status.

5. The population is closed.

6. The population is large enough to be described with a deterministic approach.

In this section we will explore the effect of relaxing assumptions 3 and 4. Note that
these two assumptions can be regarded as an approximation when no sufficient data about
the whereabouts of the population are known. Now, however, we have much more data
available than they did and thus in section 3.2 we will be able to completely remove
assumption 4. Similarly, in sections 3.3 and 3.4 we will suppress assumptions 2 and 3.
Besides, except for this introduction, throughout the chapter we will disregard assumption
6, but we will always respect the 1st and 5th ones.

With modern terminology, models in which individuals are only distinguishable by their
health status are known as compartmental models. In these models, it is supposed that each
individual belongs to one and only one compartment (class, in Kermack and McKendrick
terms). Compartments are a tool to encapsulate the complexity of infections in a simple
way. Hence, an individual that is completely free from the disease but can be infected
is said to be in the susceptible state (S), one that can spread the disease is said to be
infected (I) and one that can neither be infected nor infect is said to be removed (R) either
because is immune or dead. This classification is known as the SIR model. This framework,
however, is quite flexible and it is possible to incorporate as many compartments as needed,
depending on the disease under study, reaching hundreds of compartments in the most
sophisticated models [174]. In particular, in section 3.1.2, we will introduce the exposed
(E) state to classify individuals that have been infected but are not yet infectious.

The six assumptions, after some algebra, lead to the original equation proposed by
Kermack and McKendrick (albeit with slightly updated notation),

dS(t)

dt
= S(t)

∫ ∞
0

A(τ)
dS(t− τ)

dt
dτ , (3.1)

where S(t) denotes the number of individuals in the susceptible compartment - henceforth
number of susceptibles - at time t and A(τ) is the expected infectivity of an individual
that became infected τ units of time ago [172, 173].

To obtain A(τ), we define φ(τ) as the rate of infectivity of an individual that has
been infected for a time τ . Similarly, we define ψ(τ) as the rate of removal, either by
immunization or death. Let us denote by v(t, τ) the number of individuals that are infected
at time t and have been infected for a period of length τ . If we divide time into separate
intervals ∆t, such that the infection takes places only at the instant of passing from one
interval to the next, the following relation holds:

v(t, τ) = v(t−∆t, τ −∆t)(1− ψ(τ −∆t))

= v(t− 2∆t, τ − 2∆t)(1− ψ(τ −∆t))(1− ψ(τ − 2∆t))

= v(t− τ, 0)B(τ) ,

(3.2)

so that, if ∆t is small enough,

B(τ) = (1− ψ(τ −∆t))(1− ψ(τ − 2∆t)) . . . (1− ψ(0))

≈ e−ψ(τ−∆t)e−ψ(τ−2∆t) . . . e−ψ(0)

≈ e−
∫ τ
0 ψ(a)da .

(3.3)

Hence,
A(τ) = φ(τ)B(τ) = φ(τ)e−

∫ τ
0 ψ(a)da , (3.4)
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which defines the original shape of the Kermack and McKendrick model.
However, in the literature it is common to present as the Kermack and McKendrick

model the special case they analyze in their paper in which both the infectivity and removal
rates are constant. Indeed, if we set φ(τ) = β and ψ(τ) = µ,

A(τ) = βe−
∫ τ
0 µda = βe−µτ , (3.5)

and defining the number of infected individuals at time t as

I(t) ≡ − 1

β

∫ ∞
0

A(τ)
dS(t− τ)

dt
dτ , (3.6)

equation 3.1 reads
dS(t)

dt
= −βI(t)S(t) . (3.7)

If we now derive expression (3.6), using Leibniz’s rule,

dI(t)

dt
= −dS(t)

dt
−
∫ t

−∞

∂

∂t
e−µ(t−τ) dS(τ)

dt
dτ

= −dS(t)

dt
+ µ

∫ ∞
0

e−µτ
dS(t− τ)

dt
dτ

= βI(t)S(t)− µI(t) ,

(3.8)

together with the fact that the population, N , is closed, S(t) + I(t) +R(t) = N , we obtain
the system of equations 

dS(t)

dt
= −βI(t)S(t)

dI(t)

dt
= βI(t)S(t)− µI(t)

dR(t)

dt
= µI(t)

(3.9)

which is the model that is usually introduced as the Kermack-McKendrick, even though
we have seen that their original contribution was much more general [175].

Equation (3.9) is also often used to introduce epidemic models in the literature as it
constitutes one of the most basic models. As we are considering that every individual can
contact every other this model is also known as the homogeneous mixing model [159, 176].
However, it should be noted that sometimes a slightly different version of this set of
equations is presented. Indeed, if we define the fraction of susceptible individuals in the
population as s(t) ≡ S(t)/N , and similarly with the others, note that the expression for
the evolution of infected individuals is

di(t)

dt
= βNi(t)s(t)− µi(t) . (3.10)

Hence, the larger the population, the faster the spreading. This is known as the density
dependent approach. However, we can formulate a very similar model in which we define
the infectivity rate as φ(τ) = β/N , so that

di(t)

dt
= βi(t)s(t)− µi(t) (3.11)

is independent of N . This latter approach is called frequency dependent and is probably
the most common one in the literature of epidemic processes on networks. Both approaches
are valid and depend on the specific disease that is being modeled, see [177] for a deeper
discussion of this matter.
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Despite the simplicity of this model, it provides two very powerful insights about disease
dynamics. The first one is related to the reasons that account for the termination of an
epidemic. Until the publication of this model, the most accepted explanations in medical
circles were that an epidemic stopped either because all susceptible individuals had been
removed or because during the course of the epidemic the virulence of the organism causing
the disease decreased gradually [178]. Yet, this model shows that with a fixed virulence
(β) it is possible to reach states in which the epidemic fades out even if there are still
susceptible individuals. To demonstrate this, although some approximations can be done
to show this behavior (there is no closed form solution of the model), for our purposes it
suffices to show a numerical solution, figure 3.1A.
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Figure 3.1: Basic results of the homogeneous mixing model. In panel A the
evolution of the set of equations (3.9) as a function of time with β = 0.16 and µ = 0.10 is
shown. It is possible to reach a disease free state with a fraction of susceptible individuals
larger than 0. In panel B the total fraction of recovered individuals in equilibrium conditions
as a function of β/µ is shown. For simplicity the frequency dependent approach has been
used so that the threshold is 1.

At this point a clarification might be in order. During the introduction we said that
Hamer had already showed in 1906 that it was possible for an epidemic to end despite the
existence of large number of susceptible persons in the population. However, the difference
resides in that Hamer proposal was based on data about measles, while this model is
formulated without any specific disease in mind. Indeed, although clearly influenced by
Hamer’s and Ross’ works, one of the great achievements of Kermack and McKendrick was
to establish a formulation based only on mechanistic principles, regardless of the specific
properties of the disease. Nonetheless, the most important result of this model has not
been discussed yet, the epidemic threshold.

Suppose that in a completely susceptible population we introduce a tiny amount of
infected individuals so that s(t = 0) ≡ s0 = 1− ε and i(t = 0) ≡ i0 = ε with ε→ 0. If we
linearize equation (3.10) around this point, we have

di(t)

dt
≈ βNi0s0 − µi0 , (3.12)

which only grows if βN − µ > 0. Hence, there exists a minimum susceptible population at
the initial state below which an epidemic cannot take place, the epidemic threshold:

Nc >
µ

β
. (3.13)
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Note that the formulation of this threshold can vary slightly according to the characteristics
of the model. For instance, in the frequency dependent approach, equation (3.11), the
epidemic threshold is defined by

β

µ
> 1 , (3.14)

which is independent of N . The existence of this threshold is numerically demonstrated
in figure 3.1B, where the final fraction of recovered individuals as a function of the ratio
β/µ is shown. Regardless of the specific shape of the condition, the message is that it is
possible to explain why an epidemic might not spread in a population of fully susceptible
individuals. Moreover, it also provides a mechanism to fight diseases before they spread.
Indeed, in equation 3.13 we have simply considered that S0 = N , but if we were able
to immunize a fraction of the population so that S0 < µ/β then the epidemic could not
take place. In other words, we would have conferred the population the herd immunity
discussed in the beginning of the chapter.

3.1.1 Introducing the age compartment
Since the establishment of epidemiology as a science, a lot of attention has been devoted

to the study of measles as its recurring patterns puzzled physicians and mathematicians
alike. The distinguishing characteristic of measles epidemics is that they had a very regular
temporal pattern with periodic outbreaks of the disease, as shown in figure 3.2. As this
disease affects specially the children and also conveys permanent immunity to those who
have suffered it, analyzing the time evolution over large time-scales to obtain the patterns
required the inclusion of age in the models. Nevertheless, with the basic model that we
have analyzed we can already propose a plausible explanation for this behavior. Indeed,
we know that if the amount of susceptibles in the population is below a given threshold,
the epidemic cannot take place. Thus, it seems reasonable to think that once the epidemic
fades-out, there is a period in which there are not enough susceptibles for it to appear
again. Yet, when new children are born, the amount of susceptibles will increase, possibly
going above the threshold and therefore allowing a new outbreak.

A similar explanation was already proposed by Soper in 1929 [179], although it only
matched the observations qualitatively, not quantitatively. It was Barlett who, in 1957,
finally provided a quantitative explanation of the phenomenon [180]. Besides the details
that we have already discussed, in his proposal he added a new factor that we have not
mentioned yet. He proposed that the problem of previous models was that they were
deterministic, an approximation that is only valid in very large populations. However, it
was observed that the periodicity of measles not only depended on the size of the city,
but it was specially so in small towns. In physical terms, we would say that there were
finite size effects, tearing down assumption 6 (see section 3.1). Thus, he proposed to use a
stochastic model for which he could not obtain a closed form solution, so he had to resort
to an “electronic computer”. Nowadays the use of stochastic computational simulations
are much more common than the deterministic approach. The reasons why this approach
is more favorable are out of the scope of this thesis (see, for instance [154, 181, 182, 183]
for a discussion) but we will leverage this opportunity to say that in the following sections
we will mostly work with stochastic simulations, rather than deterministic approaches.
Before concluding the discussion about Barlett’s paper, we find worth highlighting that
it was presented during a meeting of the Royal Statistical Society, in 1956, after which
a discussion followed. In said discussion, Norman T. J. Bailey said “One of the signs of
the times is the use of an electronic computer to handle the Monte Carlo experiments.
Provided they are not made an excuse for avoiding difficult mathematics, I think there is a
great scope for such computers in biometrical work”. And indeed there was, as 25 years
later Mr. Bailey was appointed Professor of Medical Informatics [184].

Returning to our discussion, it is not surprising, then, that McKendrick already
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Figure 3.2: Measles epidemics in New York from 1906 to 1948. This figure
represents the number of reported cases of measles in the city of New York from 1906
to 1948 with a biweekly resolution. There are some gaps due to missing reports. Data
obtained from [185].

introduced age in his models in 1926 [186], one year before the publication of the full
model that we have already explored. However, to introduce age we will use a slightly
more modern formulation that will simplify the analysis. In particular, we need to revisit
assumption 4, i.e., individuals are only distinguishable by their health status.

Let us state that individuals can now be identified both by their health status and their
age. Hence, we have to add more compartments to the model, one for each age group and
health status combination. In other words, rather than having three compartments, S, I,R,
we now have 3 times the number of age brackets considered, i.e. Sa, Ia, Ra being a the
age bracket the individuals belong to (see 2.6 for the definition of age bracket). Moreover,
we will suppose that the disease dynamics is much faster than the demographic evolution
of the population. The only thing left is to decide how to go from one compartment to
another:

• For the rate of infectivity, we will define an auxiliary expression that will facilitate
the discussion. By inspection of equation (3.9), we can define the force of infection
[178] as

λ(t) ≡ φ(τ)I(t) = βI(t) , (3.15)

which does not depend on any characteristic of the individual. Hence, we can simply
incorporate age by modifying the force of infection so that

λ(t, a) =
∑
a′

φ(τ, a, a′)Ia′(t) . (3.16)

This way, both the age of the individual that is getting infected (a) and the age of
all other individuals (

∑
a′) are taken into account. Furthermore, we can separate

φ(τ, a, a′) into two components: one accounting for the rate of contacts between
individuals of age a and a′ and another one accounting for the likelihood that such
contacts lead to an infection. Hence,

φ(τ, a, a′) ≡ C(a, a′)β(a, a′) . (3.17)

Recalling section 2.6, the term C(a, a′) can be obtained from the contact surveys
that we have already studied. On the other hand, we will suppose that the likelihood
of infection is independent of the age so that β(a, a′) = β.
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• For the rate of recovery, we will assume that it is independent of the age of the
individual, i.e. µ(a) = µ.

Under these assumptions, the homogeneous mixing model with age dependent contacts
reads 

dSa(t)

dt
= −

∑
a′

βC(a, a′)Ia′(t)Sa(t)

dIa(t)

dt
=
∑
a′

βC(a, a′)Ia′(t)Sa(t)− µIA(t)

dRa(t)

dt
= µIa(t)

(3.18)

Despite its simplicity, this model is still widely used today, specially in the context of
metapopulations2 [144]. Even more, as in all compartmental models, it is straightforward
to extend it to include more complex dynamics. For instance, we can add the exposed
state so that individuals that get infected remain in a latent state for a certain amount of
time before showing symptoms and being able to infect others. This model, known as the
SEIR model, can be used to describe influenza dynamics [188]

dSa(t)

dt
= −

∑
a′

βC(a, a′)Ia′(t)Sa(t)

dEa(t)

dt
=
∑
a′

βC(a, a′)Ia′(t)Sa(t)− σEa(t)

dIa(t)

dt
= σEa(t)− µIa(t)

dRa(t)

dt
= µIa(t)

. (3.19)

The new parameter, σ, accounts for the rate at which an individual from the latent state
goes to the infectious state, in a similar fashion as µ does for the transition from I to R.
This model will be the focus of the last part of this section.

3.1.2 Changing demographics
I call myself a Social Atom - a small speck on the surface of society.

(“Memoirs of a social atom”, William E. Adams)

As we discussed earlier, for a long period of time the developments in mathematical
epidemiology were disconnected from data, at least until Anderson and May arrived to the
field in the late 1980s. It is not so surprising, then, that even though age was incorporated
into models since the beginning of the discipline, we had to wait until the late 1990s to get
experimental data of age mixing patterns.

The first attempt to quantify the mixing behavior responsible for infections transmitted
by respiratory droplets or close contact (which are the ones best suited to be studied with
homogeneous mixing models) was the pioneering work by Edmunds et al. in 1997 [189].
Their results, however, can hardly be extrapolated as they only analyzed a population
consisting of 62 individuals coming from two British universities. The first large-scale
experiment to measure these patterns was conducted by Mossong et al. in 2008 [143]. In
their study, they measured the age-dependent contact rates in eight European countries
(Belgium, Finland, Germany, Great Britain, Italy, Luxembourg, Netherlands and Poland),

2A metapopulation is a set of populations that are spatially separated but can exchange individuals.
Within each subpopulation any plausible disease dynamics can be implemented, although usually the
homogeneous mixing approach is used [187].
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as part of the European project Polymod, using contact diaries. In the next years other
authors followed the route opened by Mossong et al. and measured the age-dependent
social contacts of countries such as China [190], France [191], Japan [192], Kenya [193],
Russia [194], Uganda [195] or Zimbabwe [196], as well as the Special Administrative Region
of Hong Kong [197], greatly expanding the available empirical data.

These experiments provide us with the key ingredient required for the introduction
of age compartments into the models, the age contact matrix, C. There are, however, a
couple of ways of defining this matrix that are equivalent under certain transformations.
We define the matrix in extensive scale, C, as the one in which each element Ci,j contains
the total number of contacts between two age groups i and j. It is trivial to see that given
this definition there must be reciprocity in the system, i.e.,

Ci,j = Cj,i (3.20)

A similar definition can be obtained if instead of accounting for all the contacts between
two groups we want to capture the average number of contacts that a single individual of
group i will have with individuals in group j:

Mi,j =
Ci,j
Ni

, (3.21)

where Ni is the number of individuals in group i. We call the matrix in this form the
intensive scale. This is the usual format in which this matrix is given. In this case,
reciprocity is fulfilled if

Mi,jNi = Mj,iNj . (3.22)

This last expression rises an interesting question. The reciprocity relation depends on
the population in each age bracket, Ni. Thus, if the matrix M was measured in year y,
we have that Mi,j(y)Ni(y) = Mj,i(y)Nj(y). However, if we want to use this matrix in a
different year, that is, with a different demographic structure due to the inherent evolution
of the population, reciprocity will no longer be fulfilled, i.e.

Mi,j(y)Ni(y
′) 6= Mj,i(y)Nj(y

′) , (3.23)

unless the population has not changed. This is a major problem because there are diseases
whose temporal dynamics are comparable to the ones of the demographic evolution. For
instance, Tuberculosis is a disease in which age is particularly important and the incubation
period ranges from 1 to 30 years [198]. Hence, to properly forecast the evolution of
Tuberculosis in a population it is strictly necessary to project somehow these age-contact
matrices into the future [148]. Even for diseases that have much shorter dynamics, such as
influenza, this is a relevant problem because given how costly these experiments are, it is
unpractical to repeat them every few years to obtain updated matrices. As a consequence,
if we simply want to study the impact of influenza this year, more than 10 years after the
work by Massong et al., we need to devise a way to properly update them.

Figure 3.3 exemplifies, for Poland and Zimbabwe, the error we would make if we do
not adapt M and blindly use it with demographic structures that are different than the
original. We define the reciprocity error as

E =

∑
i,j>i |Ci,j − Cj,i|
0.5 ·

∑
i,j Ci,j

=

∑
i,j>i |Mi,jNi −Mj,iNj |

0.5 ·
∑

i,jMi,jNi
, (3.24)

to quantify the fraction of links that are not reciprocal. The two countries under consider-
ation have very different demographic patterns, both in the past and in the future, and yet
we can see that the error is quite large in both of them.
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Figure 3.3: Reciprocity error as a function of time in Poland and Zimbabwe.
For each country, in the top plots the demographic structures of 1950 and 2050 are compared
to the one existing when the contact matrices were measured. In the bottom plot the
reciprocity error as a function of time is shown. For the matrix to be correct in different
years the error should be 0, but that only happens in the year when the data was collected.

The problem is that both Ci,j and Mi,j implicitly contain information about the
demographic structure of the population at the time they were measured. To solve this
problem, we define the intrinsic connectivity matrix as

Γi,j = Mi,j
N

Nj
. (3.25)

This matrix corresponds, except for a global factor, to the contact pattern in a “rectangular”
demography (a population structure where all age groups have the same density). Hence,
it does not have any information about the demographic structure of the population.

In figure 3.4A we show the instrinsic connectivity matrices for each of the 16 regions
enumerated previously. Interestingly, the contact patterns are quite different from region to
region. To facilitate the comparison, in figure 3.4B we plot the fraction of connectivity that
corresponds to young individuals (less than 20 years old) as a function of the assortativity
of each matrix as defined by Newman [74] (this quantity is an adaptation of the Pearson
correlation coefficient so that it is equal to 1 if individuals tend to contact those who are
like them, -1 in the opposite case and 0 if the pattern is completely uncorrelated). We can
see that regions with similar demographic structures and culture tend to cluster together,
although it is not possible to disentangle which is the precise cause leading to one pattern
or the other.

With this matrix we can now easily compute M at any other time, as long as we know
the demographic structure of the population at that time:

Mi,j(y
′) = Γi,j

N(y′)

Nj(y′)
= Mi,j(y)

N(y)Nj(y
′)

Nj(y)N(y′)
. (3.26)

In our case, we will obtain this data from the UN population division database, which
contains information of both the past demographic structures and their projections to 2050
for the whole world [199].

We conclude this section addressing how this correction impacts disease modeling. To
this end, we simulate the spreading of an influenza-like disease both with and without
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Figure 3.4: Age contact matrices from 16 regions. A) Intrinsic connectivity matrix,
Γi,j , of each region. There is not a standard definition of age brackets and thus each study
had its own definition. For comparison purposes, we have adapted the data to 15 age
brackets: [0, 5), [5, 10), . . . , [65, 70),+70. B) Proportion of connectivity corresponding to
individuals younger than 20 versus the assortativity coefficient of each matrix.

corrections on the matrix. We choose influenza because it is a short-cycle disease so that
we can assume that the population structure is constant during each simulated outbreak.
Besides, it can be effectively modeled using the SEIR model presented in 3.1.1.

To parameterize the model we use the values of an influenza outbreak that took
place in Belgium in the season 2008/2009 [144]. Thus, individuals can catch the disease
with transmissibility rate β per-contact with an infectious individual. The value of β is
determined in each simulation so that the basic reproductive number is equal to 2.12 using
the next generation approach (this procedure will be explained in more detail in section
3.2) [144, 200]. Once infected, individuals remain on a latency state for σ−1 = 1.1 days
on average. Then, they become infectious for µ−1 = 3 days on average, period when they
can transmit the infection to susceptible individuals. After that, they recover and become
immune to the disease. We use a discrete and stochastic model with the population divided
into 15 age classes, whose mixing is given by the age contact matrix M . To sum up:

• The probability of an individual belonging to age group i to get infected is

pS→E = β
∑
j

Mi,j

Nj
Ij . (3.27)

• Once in the latent state, the probability of entering the infected state is

pE→I = σ . (3.28)

• Finally, an infected individual will recover with probability

pI→R = µ . (3.29)

Under these conditions, we compute the predicted size of the epidemic, i.e., R(t→∞),
in years 2000 and 2050. In figure 3.5 we present the results. In particular, in A we show the
difference between the predicted size of the epidemic in 2050 versus the one in 2000 using
the same M matrix in both years. In almost all countries the final size of the epidemic is
smaller in 2050, except for China and the African countries in which it increases. However,
in B we repeat the analysis but using the adapted values of M(y′) obtained using (3.26). In
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this case, in general, the situation is reversed. Most countries have larger epidemics, except
for the African ones. Even more, in countries such as China and Japan the difference is
quite large, close to 20%.
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Figure 3.5: Predictions of influenza incidence in 2050 with demographic cor-
rections. In both plots the black horizontal line starts at the median age of each region
in the year 2000 and ends with a bullet point with the predicted value in 2050. Color bars
denote the relative variation of incidence over the same period. In A the predictions are
computed using the original contact matrices collected from the surveys. In B the proposed
demographic corrections are applied to the matrices.

Summarizing, to create more realistic models we need to incorporate empirically
measured data. However, blindly using data without thinking whether it can be applied
to the specific system we are studying is not adequate. In the particular case of social
mixing matrices, we have seen that even if we keep studying the same country, just moving
a few years away from the moment in which the experiment took place dramatically affects
the reciprocity of the contacts. This, in turn, leads to important differences in the global
incidence for influenza-like diseases, as we have shown in our analysis of the SEIR model.
Even more, since there are different intrinsic connectivity patterns across countries, it is
possible that there exists a time evolution of this quantity. Indeed, if we believe that the
intrinsic pattern is a consequence of the culture of the country, it seems logical to think
that an evolving culture will also have evolving intrinsic connectivity patterns. Although
predicting how society will change in the future is currently impossible, this should be
taken into account as a limitation in any forecast for which heterogeneity in social mixing
is a key element.

3.2 The basic reproduction number
One of the cornerstones of modern epidemiology is the basic reproduction number,

R0, defined as the expected number of individuals infected by a single infected person
during her entire infectious period in a population which is entirely susceptible. From this
definition, it is clear that if R0 < 1, then, each infected individual will produce, on average,
less than one infection. Therefore, the disease will not be able to be sustained in the
population. Conversely, if R0 > 1 the disease will be able to propagate to a macroscopic
fraction of the population. Hence, this simple dimensionless quantity is informing us of
three key aspects of a disease: (1) whether the disease will be able to invade the population,
at least initially; (2) a way to determine which control measures, and at what magnitude,
would be the most effective, i.e., which ones will reduce R0 below 1; (3) to gauge the risk
of an epidemic in emerging infectious diseases [201].
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Interestingly, despite its importance, this quantity was not originated in epidemiology.
The concept of R0, and its notation, was formalized by Dublin and Lotka, in 1925, in the
context of demography3 [203]. The similitude of the concept in both fields is obvious, in
one it measures the number of new infections per infected while in the other the number of
births per female. Yet, in epidemiology the concept was mostly unknown until Anderson
and May popularized it 60 years later in the Dahlem conference [204] (see [205] for a nice
historical discussion on why it took so long for this concept to mature in epidemiology).

It might be enlightening to introduce the mathematical definition from the point of
view of demography. Consider a large population. Let Fd(a) be the survival function, i.e.,
the probability for a new-born individual to survive at least to age a, and let b(a) denote
the average number of offspring that an individual will produce per unit of time at age a.
The function n(a) ≡ b(a)Fd(a) is called the reproduction function. Hence, the expected
future offspring of a new-born individual, R0, is [206]

Rdemo0 ≡
∫ ∞

0
n(a)da =

∫ ∞
0

b(a)Fd(a)da . (3.30)

The translation of this definition to epidemiology is straightforward. First, note that
the reproduction function at age a is equivalent to the expected infectivity of an individual
who was infected τ units of time ago, A(τ) (see equation 3.4). There is, however, one crucial
difference. While in demography it is possible to “create” new individuals regardless of the
size of the rest of the population, in epidemiology the creation of new individuals depends
both on the infectivity and on the amount of susceptible individuals in the population.
Hence,

R0(η) ≡
∫

Ω
S(ξ)

∫ ∞
0

A(τ, ξ, η)dτdξ . (3.31)

This rather cryptic expression is the most general definition of this quantity [207],
although we will see in a moment simpler ones. The expression should be read as follows:
the value of R0 for individuals in an infectious state η is equal to the sum of all individuals
in a susceptible state characterized by ξ, of size Ω, times the infectivity of individuals in
said state η who where infected τ steps ago and can infect individuals in state ξ.

In the particular case of the SIR model under the density dependent approach, equation
(3.9), the basic reproduction number is simply

R0 = S0

∫ ∞
0

A(τ)dτ = S0

∫ ∞
0

βe−µτdτ

=
βS0

µ
,

(3.32)

where S0 is the number of susceptible individuals at the beginning of the infection, which
in the absence of immunized individuals is equal to N . Recall that the linear stability
analysis of the SIR model (3.12) yields,

i(t) = i0e
βN−µ , (3.33)

which only grows if βN > µ. In other words, R0 defines precisely the epidemic threshold
that we found in the previous section, i.e.,

R0 =
βN

µ
> 1 , (3.34)

3In the original paper at a certain point the authors expand a quantity using Taylor’s theorem an
introduce the notation Rn =

∫∞
0

anp(a)m(a)dA. Then, they determine the ratio between the total births in
two successive generations to be

∫∞
0

p(a)m(a)dA, which is equal to R0 according to the previous definition.
Thus, the subscript 0 historically would represent the 0-th moment of the distribution. In modern literature,
however, the subscript is interpreted as referring to the “very beginning” of the epidemic [154]. Note also
that R0 is usually pronounced R naught in Britain and R zero in the U.S. [202].
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as heuristically discussed at the beginning of this section. In the frequency dependent
approach, which is more common in the network science literature as we shall see in 3.3,
the basic reproduction number4 is

R0 =
β

µ
> 1 . (3.35)

To obtain an explicit expression for R0 with more complex compartmental models, an
alternative approach to linear stability analysis is the next generation matrix as proposed
by Diekmann in 1990 [207] and further elaborated by van den Driessche and Watmough in
2002 [200]. Briefly, the idea is to study the stability of the disease free state, x0. To do so,
we restrict the model to those compartments with infected individuals and separate the
evolution due to new individuals getting infected, F , and the transitions resulting for any
other reason,

dxi(t)

dt
= Fi(x)− Vi(x) , (3.36)

where x = (x1, . . . , xm) denotes the m infected states in the model. If we now define

F =

[
∂Fi(x0)

∂xj

]
and V =

[
∂Vi(x0)

∂xj

]
, (3.37)

the next generation matrix is FV −1 and the basic reproductive number can be obtained as

R0 = ρ(FV −1) (3.38)

where ρ denotes the spectral radius [208]. In particular, for the model considered in section
3.1.2, the next generation matrix reads

Ki,j =
β

µ

Mi,j

Nj
. (3.39)

This expression can be used to ensure that, regardless of the values of Mi,j and Nj , the
starting point of the dynamics is the same. For this reason, when we wanted to address
the differences in incidence consequence of the changing demographics, we fitted β so that
the spectral radius of (3.39) was always R0 = 2.12.

It is worth pointing out that R0 clearly depends on the model we choose for the
dynamics. As a consequence, even though its epidemiological definition is completely
independent from models (number of secondary infections per infected individual in a
fully susceptible population), its mathematical formulation is not univocal. Ideally, if in a
disease outbreak we knew who infected whom, we would be able to obtain the exact value
of R0. In reality, however, this information is seldom available. Hence, to compute it, one
often relies on aggregated quantities, such as β and µ in equation (3.35). The problem is
that if we assume that a disease can be modeled within a specific framework, we cannot
directly compare the value obtained for R0 with the ones measured for other diseases unless
the exact same model has been used to obtain it. This is one of the observations that will
motivate our work, which we will describe in section 3.2.3.

3.2.1 Measuring R0

Measuring R0 is not an easy task, specially in the case of emergent diseases for which
fast forecasts are required. An accurate estimation of its value is crucial to planning for the

4Although the notation R0 is well established, there is not an agreement on how to call this quantity.
Exchanging the word reproduction for reproductive is common in the literature, as well as using rate or
ratio instead of number. Although the differences are minimal, note that rate is clearly wrong as it is not a
rate but a (dimensionless) ratio [206].
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control of an infection, but usually the only available information about the transmissibility
of a new infectious disease is restricted to the daily count of new cases. Fortunately, it
is possible, under certain conditions, to obtain an expression for R0 as a function of that
data.

Following [209], we will assume that in the beginning of a disease outbreak the growth
of the number of infected individuals is exponential. Hence, the number of new infected
individuals at time t will be equal to the number of new infected individuals τ time units
ago, multiplied by the exponential growth,

dS(t)

dt
=

dS(t− τ)

dt
erτ (3.40)

where r denotes the growth rate. Inserting this expression in (3.1) with t→ 0,

dS(t)

dt
= S(t = 0)

∫ ∞
0

A(τ)
dS(t)

dt
e−rτdτ ⇒ 1 = S0

∫ ∞
0

A(τ)e−rτdτ (3.41)

At this point it might be enlightening to return once again to the demographic simile.
In equation (3.30) we saw that the total number of offspring of a person could be obtained
integrating n(a) (rate of reproduction at age a) over the whole lifespan of the individual.
Thus, we can define the distribution of the age a person has when she has a child as

g′(a) =
n(a)∫∞

0 n(a)da
=

n(a)

Rdemo0

. (3.42)

If we take the “age” of an infection to be the time since the infection, we can define an
analogous quantity in epidemiology,

g(τ) =
S0A(τ)

R0
, (3.43)

called generation interval distribution. In this case this distribution is the probability
distribution function for the time from infection of an individual to the infection of a
secondary case by that individual. Going back to (3.41) we now have

1

R0
=

∫ ∞
0

g(τ)e−rτdτ . (3.44)

According to this last expression, the shape of the generation interval distribution
determines the relation between the basic reproduction number R0 and the growth rate r.
In all the models explored so far, we assumed that both the rate of infection β and the
rate of leaving the infectious stage µ were constant. Hence, it follows that the duration
of a generation interval is specified as an exponential distribution with mean Tg = 1/µ.
Under these assumptions the basic reproduction number is then

R0 =

(∫ ∞
0

µe−µτe−rτdτ

)−1

=

(
µ

r + µ

)−1

= 1 + rTg .

(3.45)

This relation between the growth rate and the generation time was already proposed by
Dietz in 1976 [210], although only in the specific case of the SIR model. Equation (3.44),
however, allows for the calculation of R0 in more complex scenarios, such as non constant
µ [209]. Despite its limitations, this expression is widely used in the literature due to its
simplicity. Indeed, Tg is often considered to be simply the inverse of the recovery rate,
which is relatively easy to measure. Thus, r can be obtained by fitting a straight line to
the cumulative number of infections as a function of time, see (3.40).
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There are, however, several problems with this procedure. First, we stated that the
exponential growth is valid during the early phase of an outbreak, but there is no way to
know how long is that in general. As a consequence, when one fits a straight line to the
data, some heuristics have to be used to determine which points to use. Even more, if the
dynamics is really fast there might be just a few valid points. Given the stochasticity of
the process, this might lead to poor estimates of the growth rate.

Besides, there are some caveats on the exponential growth assumption. For instance,
it has been observed that for some diseases such as AIDS/HIV the early growth is sub-
exponential [211]. Likelihood based methods in which the early exponential growth is not
needed were thus proposed [212, 213]. But even for diseases in which it might be a good
approximation, there is the problem of susceptible depletion. Indeed, if the population
is infinite, each infected individual will be always able to reach an infinite amount of
susceptibles. But this is not true in real situations, forbidding the exponential growth to
be sustained for too long. Hence, methods that account for this depletion during the initial
phase had also to be developed [214, 215].

It should be clear by now that despite the widespread use of this parameter, it is far
from being perfectly understood, specially in the presence of real world data. Yet, we can
go one step further and generalize the definition of R0 to the effective reproduction number,
R(t).

3.2.2 The effective reproduction number
The effective reproduction number, R(t), is defined as the average number of secondary

cases generated by an infectious individual at time t. Hence, we are relaxing the hypothesis
of a fully susceptible population that we gave at the beginning of section 3.2.

This parameter is obviously better suited for studying the impact of protection measures
taken after the detection of an epidemic, as it can be defined at any time. If R(t) < 1,
it seems reasonable to say that the epidemic is in decline and may be regarded as being
under control at time t. Furthermore, in section 3.1.1 we saw that diseases such as measles
have periodic outbreaks and also convey immunity to those who have suffered it. Thus,
when a new outbreak starts the population is not completely susceptible, invalidating one
of the conditions in the definition of R0 [216].

To provide a mathematical definition of R(t) [217], we can revisit equation (3.32) and
define

R(t) = S(t)

∫ ∞
0

A(τ)dτ , (3.46)

which leads to

R(t) =
S(t)

S0
R0 . (3.47)

According to this expression, in a closed population, the value of R(t) should monoton-
ically decrease. As expected, this has been observed in computational simulations [216],
even in the case of sub-exponential growth [218]. However, this is not always the case if
one tries to obtain R(t) from real data [219]. In particular, Walling and Teunis studied
the severe acute respiratory syndrome (SARS) epidemic from 2003 and observed several
local maxima in the evolution of the effective reproduction number, which they attributed
to “super-spread events” in which certain individuals infected unusually large numbers
of secondary cases [220]. This was also found in other diseases, signaling that the whole
complexity of real systems cannot be completely captured with simple homogeneous models
[221]. For this reason, the next section will be devoted to our contribution in the study
of the effect that more heterogeneous population distributions have on the reproduction
numbers.
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3.2.3 Measurability of the epidemic reproduction number
Of course, there had been plenty of diseases, long before humans had been

around. But humans had definitely created Pestilence. They had a genius for
crowding together, for poking around in jungles, for setting the midden so handily
next to the well. Pestilence was, therefore, part human, with all that this entailed.

(“Thief of time”, Terry Pratchett)

The fundamental role that households play in the spreading of epidemics has been
acknowledged for a long time. Early estimations of influenza spreading already showed
that the probability of getting infected from someone living in your household or someone
from the community were quite different. Even more, it was shown that children were
twice more likely to get the infection from the community than adults, signaling that the
places that children visit and the own heterogeneity of household members are fundamental
in the disease dynamics [222]. In a more recent study, data from a real epidemic in a
small semi-rural community was analyzed, with schools added explicitly into the picture.
As expected, it was observed that their role is key in the spreading of the disease. But,
even more interesting, the authors calculated a reproduction number for each population
structure and found it to be smaller or of the order of 1, meaning that for an outbreak to
be sustained a complex interplay between those structures must take place [223].

In order to introduce the concept of households into the models analyzed so far, we
need to revisit once again the assumption of full homogeneity. Most theoretical approaches
in this line, since the seminal work of Ball et al. in 1997 [224], have focused on what is
known as models with two levels of mixing. In these models, a local homogeneous mixing
in small environments (such as households) is set over a background homogeneous mixing
of the whole population. This can be further extended by adding other types of local
interactions, such as schools or workplaces. An individual can thus belong at the same
time to two or more local groups. For this reason, they are also known as overlapping
group models [225]. This allows for the definition of several basic reproduction numbers,
one for the community and the rest for local interactions, which in turn can be used to
devise efficient vaccination strategies [226, 227]. Other studies have also proposed that the
generation time can differ from within households and the community [228].

However, theoretical studies have been mostly focused on the early phase of the
epidemics because it is more mathematically tractable. Yet, we have seen in the previous
section that R(t) can provide very important insights to understand the dynamics of
real diseases. For this reason, statistical methods have been developed to analyze R(t)
[138, 229]. Unfortunately, for these methods, disentangling the role that each structure
of the system plays is challenging due to the lack of microscale data on human contact
patterns for large populations. Note also that due to the typically small size of households,
stochastic effects are highly important.

In this work our objective is to shed some light into the mechanisms behind disease
dynamics in heterogeneous populations. To do so, we study the evolution of R(t) and Tg
with data-driven stochastic micro-simulations of an influenza-like outbreak on a highly
detailed synthetic population. The term “micro” refers to the fact that we will keep track of
each individual in the population, allowing us to reconstruct the entire transmission chain.
The great advantage of this method is that it allows for the computation of R(t) from its
own epidemiological definition, without requiring any mathematical approximation.

Our synthetic population is composed by 500,000 agents, representing a subset of the
Italian population. This population model, developed by Fumanelli et al. [145], divides
the system into the four settings where influenza transmission occurs, namely households,
schools, workplaces and the general community [230]. Henceforth we will refer to these
settings as layers for the similarity of this construction to the multilayer networks we saw
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in section 2.1.35; a visualization of the model is shown in 3.6A. The household layer is
composed by nH disconnected components, each one representing one household. The
amount of individuals inside each household is determined by sampling from the actual
Italian household size distribution, as well as their age. Then, by sampling from the
multinomial distribution of schooling and employment rates by age, each individual might
be also assigned to a school or workplace. Both the number and size of workplaces and
schools is also sampled from the actual Italian distribution. As in the household layer, each
of the nS schools and nW workplaces are disconnected from the rest in their respective
layers. Lastly, all individuals are allowed to interact with each other in the community
layer, encapsulating the background global interaction. To highlight the heterogeneity of
the system, in figure 3.6B the size distribution of the places each individual belongs to is
shown. Note that while most households contain 2-3 individuals and most schools are close
to 1,000 students, workplaces cover a much wider range of sizes.
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Figure 3.6: Model structure of a synthetic population organized in schools,
households and workplaces. A) Visualization of the overlapping system, with individu-
als being able to interact locally in multiple contexts. B) Distribution of the structure size
each individual belongs to. C) Illustration of the transmission process with an example of
how to calculate the reproduction number and generation interval.

The influenza-like transmission dynamics are defined through the susceptible, infected,
removed (SIR) compartmental model that we have been analyzing under diverse assump-
tions. We simulate the transmission dynamics using a stochastic process for each individual,
keeping track of where she contracted the disease, who is in contact with and so on. In order
to resemble an influenza-like disease, the local spreading power in each layer is calibrated
in such a way that the fraction of cases in the four layers is in agreement with literature
values (namely, 30% of all influenza infections are linked to transmission occurring in the
household setting, 18% in schools, 19% in workplaces and 33% in the community [231]).

5Even though we have not discussed yet on how to introduce networks in epidemic modeling, note that
an homogeneous population is equivalent to a complete network in which every node is connected to every
other node. Hence, these overlapping structures can also be regarded as a multiplex network in which each
node can be in more than one layer
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Hence, the probability that individual j infects i in layer l is

β = wl , (3.48)

as long as j is infected, i is susceptible and both belong to the same component in layer l.
Moreover, we set the values of wl such that the basic reproduction number is R0 = 1.3
[232]. Finally, the removal probability, µ, is set so that the removal time is 3 days [233].

The epidemic starts with a fully susceptible population in which we set just one
individual as infected. Thanks to the microscopic detail of the model, we can thus compute
the basic reproduction number directly as the number of infections that said first individual
produces before recovery. Its counterpart over time, the effective reproduction number,
R(t), is measured using the average number of secondary cases generated by an infectious
individual at time t. Similarly, we also define the effective reproduction number in layer
l, Rl(t), as the average number of secondary infections generated by a typical infectious
individual in layer l:

Rl(t) =

∑
i∈I(t)Dl(i)

|I(t)|
, (3.49)

where I(t) represents the set of infectious individuals that acquired the infection at
time t and Dl(i) the number of infections generated by infectious node i in layer l with
l ∈ L = {H,S,W,C}. With this expression we can obtain the overall reproductive number
as

R(t) =
∑
l∈L

Rl(t) . (3.50)

The generation time Tg is defined as the average time interval between the infection
time of infectors and their infectees. Hence, analogously to the reproduction number, we
define the generation time in layer l as

Tgl =

∑
i∈I(t)

∑
j∈I′l(i)

(τ(j)− t)∑
i∈I(t)Dl(i)

, (3.51)

where I ′l(i) denotes the set of individuals that i infected in layer l and τ(j) is the time
when node j acquired the infection. Therefore, the overall generation time Tg(t) reads

Tg(t) =

∑
l∈L
∑

i∈I(t)

∑
j∈I′l(i)

(τ(j)− t)∑
l∈L
∑

i∈I(t)Dl(i)
. (3.52)

A schematic illustration of the transmission dynamics is shown in figure 3.6C. In that
case, individual 1 gets infected at t = t0, while individuals 2 and 3 are still susceptible.
During the course of her disease individual 1 infects individual 2 at t = t1 and individual 3
at t = t2 before finally getting recovered at t = t3. Thus, her reproduction number is equal
to 2 and her generation time is 1.5, supposing that ti+1− ti = 1. In fact, in our simulations
we will set ∆t = 1 day. Due to the stochasticity of the process, each realization might result
in an outbreak of different length. Hence, the time evolution of each simulation is aligned
so that the peak of the epidemic is exactly at t = 0. The results for the reproduction
number and generation time are shown in figure 3.7.

We find that R(t) increases over time in the early phase of the epidemic, starting from
R0 = 1.3 to a peak of about 2.5 (figure 3.7A). In contrast, in the homogeneous model
(dashed line), which lacks the typical structures of human populations, R(t) is nearly
constant in the early epidemic phase and then rapidly declines before the epidemic peak
(t = 0), as predicted by the classical theory. The non-constant phase of R(t) implies that
R0 loses its meaning as a fundamental indicator in favor of R(t). In figure 3.7B we show
an analogous analysis of the measured generation time in the data-driven model. In this
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Figure 3.7: Fundamental epidemiological indicators. A) Top: mean R(t) of data-
driven model (solid line) compared to the solution under a completely homogeneous
population (dashed line). The colored area shows the density distribution of R(t) values
obtained in single realizations of the model. Bottom: the reproductive number is broken
down in the four layers. B) As A but for the generation time. In all cases the simulations
have been aligned at the peak of the epidemic.

case, we find that Tg is considerably shorter than the infectious period (3 days), with a
more marked shortening near the epidemic peak. Once again, in the homogeneous model
(dashed line) the behavior predicted by the classical theory is recovered.

A closer look at the transmission process in each layer helps to understand the origin
of the deviations from classical theory. Specifically, we see that R(t) tends to peak in the
workplace layer, and to some extent also in the school layer. In the community layer, on
the other hand, the behavior is much closer to what is expected in a classical homogeneous
population. We also find that Tg is remarkably shorter in the household layer than in all
other layers. This could simply be due to a depletion of susceptibles. To illustrate this,
suppose that an infected individual in a household of size 3 infected one of the other two.
Then, during the next time step both will compete to infect the last susceptible, something
that does not happen in large populations. This would lead to a shorter generation time
simply because she is unable to infect other members, even if she is still infected. This
evidence calls for considering within household competition effects when analyzing empirical
data of the generation time.

To further understand the reasons of the diverse trends observed in each layer, in figure
3.8 we analyze the effect that the size of the components has on the dynamics. In figure
3.8A we study the attack rate (final fraction of removed individuals, i.e., individuals that
suffered the infection at some point) as a function of the site size, distinguishing the three
layers. The results indicate that the spreading is much more important in large buildings,
but we know that they are scarce (see figure 3.6B). Hence, it seems that the initial growth
of the epidemic might stop once the big components have been mostly infected. This is
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Figure 3.8: Attack rate as a function of site size. A) Fraction of individuals
belonging to each place that contracted the disease, not necessarily in said setting. B) Solid
line: average size of places in which there is at least one new infection in each time step,
broken down in three layers. Dashed line: expected size if there is at least one infection in
every place.

corroborated in figure 3.8B, where the average size of buildings with at least one infection
is shown. The situation is thus clear. In the classical model not only it is assumed that all
population is initially susceptible, but also that it is in contact with the first infected since
the beginning. In heterogeneous populations, however, the first infected individual has
only a handful of local contacts, diminishing its infectious power. Then, as the epidemic
progresses more and more susceptibles enter into play, increasing the amount of individuals
that can be infected. Yet, sooner or later the components will run out of susceptibles, even
if there is still a large fraction available in the rest of the system. This, in turn, leads to a
more abrupt descent than what is expected in the classical approximation.

These results clearly highlight how the heterogeneity of human interactions (i.e.,
clustering in households, schools and workplaces) alters the standard results of fundamental
epidemiological indicators, such as the reproduction number and the generation time.
Furthermore, they call into question the measurability of R0 in realistic populations, as well
as its adequacy as an approximate descriptor of the epidemic dynamics. Lastly, our study
suggests that epidemic inflection points, often ascribed to behavioral changes or control
strategies, could also be explained by the natural contact structure of the population.
Hopefully, this analysis will open the path to developing better theoretical frameworks, in
which some of the most fundamental assumptions of epidemiology have to be revisited.
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3.3 The epidemic threshold fades out
In epidemiology attention has historically been restricted to biological factors. We

began this chapter stating that individuals were just indistinguishable particles interacting
according to the mass action law. However, throughout the following sections, we have
shown that when this oversimplification is relaxed many interesting phenomena arise. In
this section we shall go one step further and completely remove what we called assumptions
3 and 4: mass action and indistinguishability. To distinguish individuals, we will assign to
each of them an index, i. Then, we will allow individuals to spread the disease only to
those with whom they have some kind of contact (e.g. they are friends), which we will
encode in links. In other words, we are finally going to introduce networks into the picture.

It is rather difficult to establish the origin of what we may call disease spreading on
networks or network epidemiology. Probably, one of the earliest attempts is the work
by Cochran, in 1936 [234], in which he studied the propagation of a disease in a small
plantation of tomatoes. Although his work might be better described as statistical analysis,
the reason to consider it one of the precursors of the spreading on networks is that, as
Kermack and McKendrick had done roughly 10 years before, his assumptions were all
mechanistic rather than based on the knowledge of the particular problem. This is clearly
seen in how he introduced the model: “We suppose that in the first [day] each plant in the
field has an equal and independent chance p of becoming infected, and that in the second
[day] a plant which is next to a diseased plant has a probability s of being infected by
it, healthy plants which are not next to a diseased plant remaining healthy”. In modern
terminology, the plants were arranged in a lattice structure and could infect their first
neighbors with probability s. The assumptions are particularly strong because he knew
that the disease was propagated by an insect, but decided to create a very general model.

During the next couple of decades, lattice systems were quite popular in physics,
geography and ecology. Then, in the 1960s the interest in studying the spatial spread of
epidemics started to grow (see the introduction of [235] for a nice overview) with three
main approaches. In the first, the agents that could be infected were set in the center
of a certain tessellation of space and could only infect/be infected by their neighbors.
This is the closest approach to the modern study of epidemics on networks, but it was
not so popular as it was mainly used to study plant systems [236]. The most popular
approach was to distribute individuals continuously in space with some chosen density.
This led to the study of diffusion processes, focusing on the interplay between velocity and
density [237]. The third approach was based on what we briefly defined in section 3.1.1
as metapopulations. Recall that in a metapopulation individuals are arranged in a set
of sub-populations. Within each sub-population usually homogeneous mixing is applied
and it is also allowed to have individuals migrating from one sub-population to another.
Hence, the idea was to simulate the fact that people (or animals) live in a certain place
where they can contract the disease, and then travel to a different area and spread it to its
inhabitants [183]. Note, however, that in none of these methods we are taking into account
any sociological factors of the population.

In the beginning of the 1980s some results pointing into the direction of introducing
more complex networks started to appear. In particular, von Bahr and Martin-Löf in
1980 [238] and Grassberger in 1983 [239] (in the context of percolation) showed that the
classical SIR model on a homogeneous population could be related to the ER graph model
that we saw in section 2.1.2. Indeed, suppose that we have a set of individuals under the
homogeneous mixing approach and simulate an epidemic. Next, if an individual i infects
another individual j, we establish a link between them. If the probability of this event is
really low, the epidemic will not take place. Conversely, for large probabilities most nodes
will be randomly connected. This is precisely how we defined the ER model, with the only
difference being that the probability p of establishing a link will be a function of both the
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probability of infecting someone, β, and that of getting recovered, µ. Note, however, that
they did not implement a disease dynamics on a network, but rather extracted the network
from the results of the dynamics.

Roughly at the same time, the gonorrhea rates rose precipitously. To understand the
dynamics of this venereal disease, it was recognized that some sort of nonrandom mixing
of the population had to be incorporated to the models. The first attempts were based on
separating the contact process and the spreading process [240]. Indeed, going back to the
definition of the SIR model, we defined the rate of infectivity (3.5) as φ(τ) = β/N (under
the frequency approach). We can simply define β = cβ′ where c is the contact rate between
individuals and β′ the probability of spreading the disease given that a contact has taken
place. For simplicity, we can remove the apostrophe and simply write φ(τ) = cβ/N . With
this definition the epidemic threshold would read

cβ

µ
> 1⇒ β

µ
>

1

c
. (3.53)

This expression is giving us a very powerful insight about how to combat diseases.
Supposing that β and µ are fixed, as they mostly depend on the characteristics of the
pathogen, the best way to prevent and epidemic is to reduce the number of contacts as
much as possible. A similar result was obtained in the context of vector-borne diseases,
in which the number of vectors (e.g. mosquitoes) play the role of the number of contacts
[241].

The next step was the introduction of mixing matrices, the same approach that we
followed to incorporate age into the SIR model in section 3.1.1. Recall that the idea was
to divide the population into smaller groups according to some characteristics (e.g. gender
or age) and establish some rules governing the interaction between those groups encoded
in a contact matrix (hence the name of mixing matrices). Typically, both the group
definitions and the mixing function were very simple. In the context of venereal diseases,
the most common characteristic used to form groups was activity level. This approach
was popularized by Hethcote and Yorke in 1984 [242] in their modeling of gonorrhea
dynamics using the core group: a group of highly sexually active individuals who are
efficient transmitters interacted with a much larger noncore group. They showed that with
less than 2% of the population in the core group, this model lead to 60% of the infections
to be caused directly by core members. Yet, the world of epidemiology was about to be
shaken by a new virus that would defy all these assumptions, HIV.

3.3.1 The decade of viruses
The emergence of HIV in the early 1980s forced scientists to pay even more attention to

the role of selective mixing. In 1986, in one of the earliest attempts to model this disease
[243], Anderson and May summarized the challenges that sexually transmitted diseases
(STDs) presented in contrast to other more common infectious diseases such as measles:

1. For STDs only sexually active individuals need to be considered as candidates of the
transmission process, in contrast to simple “mass action” transmission models.

2. The carrier phenomenon, in which certain individuals harbor asymptomatic infection,
is important for many STDs.

3. Many STDs induce little or no acquired immunity. In the case of HIV, the situation
is probably more complex since persistence without symptoms might be lifelong.

4. The transmission of most STDs is characterized by a high degree of heterogeneity
generated by great variability in sexual habits among individuals within a given
community.
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They concluded their introduction with a sentence that we would like to highlight,
although its full meaning will not be understood until the end of this section: “This set of
characteristics - virtual absence of a threshold density of hosts for disease-agent persistence,
long-lived carriers of infection, absence of lasting immunity, and a great heterogeneity in
transmission - give rise to infectious diseases that are well adapted to persist in small
low-density aggregations of people”.

Clearly, the homogeneous mixing approach was not valid anymore and heterogeneity
had to enter into play. However, there was a huge problem, they did not have any data. Up
to that point, epidemiologists had focused on the biological factors of diseases, completely
ignoring the heterogeneity of human interactions. Yet, the importance that they had in
HIV transmission sprouted a series of studies that would finally shed some light in the
contact patterns of human populations. In particular, during the first years of the HIV
epidemic, it was observed that homosexual males accounted for 70-80% of the known cases,
and thus most efforts were devoted to study said community. The earliest studies found
that the distribution of the number of sexual partners had a high mean, but also a very
large variance6.

This observation led them to the formulation of a model that could account for this
huge heterogeneity (a variance much larger than the mean). They focused on a closed
population of homosexual males and divided it into sub-groups of size Ni, whose members
on average had i new sexual partners per unit time. Under these assumptions, the SIR
model reads 

dSi(t)

dt
= −iλSi

dIi(t)

dt
= iλSi − µIi

dRi(t)

dt
= µIi(t)

, (3.54)

where the infection probability per partner, λ, was given by

λ = β

∑
i iIi∑
iNi

. (3.55)

At first glance it might seem that the model has not changed that much, as it is just the
standard SIR model with i contacts. However, considering that the population is divided
into several groups with heterogeneous contact patterns leads to a result that 15 years
latter would become one of the cornerstones of network science. According to Anderson
and May, in this model the early rate of exponential growth, Λ, is defined as

Λ = β
〈i2〉
〈i〉
− µ . (3.56)

Hence, the epidemic only grows if
β

µ
>
〈i〉
〈i2〉

, (3.57)

which we can arrange to look like equation (3.53),

β

µ
>

1

c′
with c′ =

〈i2〉
〈i〉

. (3.58)

Thus, for epidemiological purposes, the effective value of the average number of new
partners per unit time is not the mean of the distribution, but rather it is the ratio of

6Actually, the shape of the distribution was the same as the ones we saw in figure 2.10 when we studied
age contact patterns. The high heterogeneity of human interactions is clearly not restricted to sexual
activity.
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the mean square to the mean. In other words, this result reflects the disproportionate
role played by individuals in the most active groups, who are both more likely to acquire
infection and more likely to spread it [244].

In parallel, Boltz, Blancard and Krüger started to develop in 1986 a series of complex
computational models that allowed them to introduce many more factors into the dynamics
[245]. They said that the principal weaknesses of the standard epidemiological models
when applied to HIV infection were:

• They describe, through mass action dynamics, permanent potential contact between
all members of the groups involved.

• The behavior is uniform over each group. To account for nonuniform behavior, a
subdivision into sub-groups has to be done at the prize of a higher dimensionality of
the systems of differential equations.

• They cannot directly take into account partners.

• Time delays, age dependencies and time dependent rates are not easily incorporated.

• They do not represent the true contact structure of the population.

Hence, they proposed to use “random graphs and discrete time stochastic processes to
model the epidemic dynamics of sexually transmitted diseases”. This is one of the earliest
(if not the first) attempts to clearly study disease dynamics on networks.

Their models were highly detailed. For instance, they considered eleven groups of
individuals: homosexual males, bisexual males, heterosexual males, heterosexual females,
heterosexual females having contact with bisexual males, male intravenous drugs users,
female intravenous drug users, prostitutes, prostitutes who are also intravenous drug users
and hemophiliacs (clearly way beyond the simple model of only homosexuals that was
being studied analytically in those days). Even more, they could track the behavior of
single individuals. But this level of detail also posed the problem of acquiring a huge
amount of data to parameterize the models that, admittedly, they did not have at that
time. In any case, this represented a huge step forward in the direction of highly detailed
computational models, as the one we presented in section 3.2.3.

Yet, data was about to arrive. Already in 1985 Klovdahl [246], inspired by the networks
that sociologist had been studying since the 1930s, studied the information provided by
a small sample of 40 patients with AIDS and reconstructed their social network. He
proposed that a “network approach” could be a key element to understand the nature and
spread of the disease. Some years later, in 1994 [247], together with some collaborators,
he designed a larger experiment to obtain the social network of a small city in Colorado.
Their approach was to initially target individuals with higher risk of contracting HIV,
such as prostitute women and injecting drug users, and trace as many contacts (of any
kind) as they could. Their results showed that a lot of people were much closer to HIV
infection than expected, implying that a small change (e.g. reducing condom use) could
quickly reach individuals who were not directly connected with people infected with HIV.
To demonstrate the importance of a network perspective in epidemiology they gave a
very simple example: suppose that one individual is infected with HIV and reports sexual
relationships with two people and a social relation with another one. Commonly, health
professionals would only worry about the first two, disregarding the latter. However, if that
third individual happens to by highly central in the network (i.e., having a large degree or
betweenness, using the terminology of chapter 2), an eventual infection could lead to an
“explosion” of disease. Hence, their claim was that under a network perspective addressing
the distance to the disease and the centrality of individuals was as important as being
actually infected with HIV.
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Clearly the concept of networks was starting to gain momentum in epidemiology,
although it was not always clear what was part of the epidemic model and which elements
came just from the topology of the network (see [57] and the references therein). A
noteworthy exception is the work by Andersson in 1997 [248] in which he studied an
epidemic process on a random graph, this time from an analytical point of view, and
concluded that the basic reproduction number was

R0 = p1

(
〈X2〉
〈X〉

− 1

)
, (3.59)

where X denotes the number of links a certain node has. Thus, there is a clear dependency
on the topology of the networks, regardless its specific shape. The similarity with the
expression that Anderson and May obtained 10 years before is clear (equation (3.57)), the
only difference is the −1 factor (and the fact that he set µ = 1). The reasons why these
two expressions are so similar, and why this expression contains a −1 will come clear in
a moment. But first, we need to go back in time a little bit to have a look at what was
happening in the emerging field of cybersecurity.

On November 3, 1983, the first computer virus was conceived as an experiment to be
presented at a weekly seminar on computer security. A virus, in this context, is a computer
program that can “infect” other programs by modifying them to include a possibly evolved
copy of itself. Thus, if the programs communicate with other computers, the viruses
can spread through the whole network. During this decade, the internet started to grow,
connecting more and more computers through a huge network. Hence, viruses imposed a
clear threat [249]. Soon after, in 1988, Murray proposed that the propagation of computer
viruses could be studied using epidemiology tools7 [250]. Then, in 1991, Kephart and
White tried to apply epidemic models to study the propagation of viruses, but quickly
realized that the homogeneous mixing approach was not suited for computers, as they were
connected through networks [251]. Hence, they applied the model on a random directed
graph and showed that the probability of having an epidemic depended on the connectivity
of the network. When connectivity was high, they recovered the classical results of Kermack
and McKendrick obtained under the homogeneous mixing approach. Conversely, when
connectivity was really low the probability quickly decreased. However, they were unable
to mathematically show this and had to rely on simulations (we can hypothesize that if
they had been aware of the results found for venereal diseases they might had been able to
do it, because their observation is essentially explained by equation (3.53), but it seems
highly unlikely that computer scientists were interested in such a specific sub-field back
then). Yet, there was something odd. During the 1990s Kephart and collaborators collected
virus statistics from a population of several hundred thousand PCs. They observed that
there was a huge amount of viruses that survived for a really long time, but also that their
spreading was quite low and reached only a small fraction of the population, contrary to
the expected exponential growth predicted by epidemiology (see section 3.2.1) [252]. The
only possibility, according to the theory, was that the infection and recovery parameters
associated with each virus were really close to the epidemic threshold, yielding low growth
but still some persistence. Yet, this regularity seemed highly unlikely and they advocated
to further account the network patterns as possible reasons behind this discrepancy.

With this context, we will now finally be able to realize why disease dynamics has
been one of the main areas of research in network science and, at the same time, why

7Despite the great leap forward that his proposal represented, one could argue that he might have been
a bit naive when he concluded the paper saying: “All this having been said, I am sanguine. God is still
in his heaven. The environment is generally benign. The community is resilient. Most individuals are
acceptably polite, orderly and well behaved. On the list of vulnerabilities in our complex society, this one is
distinguished primarily by its novelty. Unlike some of the more intractable ones, this one will yield to good
will. In the face of genuine evil intent, I prefer it to plastic explosives in power plants.”
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networks became so successful in a relatively short period of time. In 1999 Albert et al.
measured the topology of the World Wide Web, considering each document as a node and
their hyperlinks to other documents as links. Surprisingly, the degree distribution of such
network did not follow the Poisson distribution of random graphs but rather a power law
distribution [253]. In section 2.1.2 we defined scale-free networks as those networks whose
degree distribution followed a power law. Moreover, we showed that if the exponent of the
distribution is in the interval γ ∈ (2, 3), the average of the distribution is finite but the
second moment of the distribution diverges if the system size tends to infinity.

In 2001 Pastor-Satorras and Vespignani studied the behavior of an SIS model on a
network, in an attempt to answer the questions posed by Kephart [254]. The SIS model,
which we have not talked about yet, is simply the SIR model but once an individual is
cured instead of going into the removed compartment she is sent back to the susceptible
one. Hence, the equation describing the process is

dI(t)

dt
=

β

N
S(t)I(t)− µI(t) , (3.60)

with S(t) + I(t) = N . However, as they wanted to apply it on a network they had to keep
track of the state of each node, yielding a system of N coupled equations,

dpi(t)

dt
= β[1− pi(t)]

∑
j

aijpj(t)− µpi(t) , (3.61)

where pi(t) denotes the probability that node i is infected at time t. This system does
not have a closed form solution and, besides, it depends on the adjacency matrix of the
network (the term aij). Hence, they followed a mean-field approach and supposed that the
behavior of nodes with the same degree k would be similar. Under this assumption, the
system is reduced to

dρk(t)

dt
= β[1− ρk(t)]kΘ− µρk(t) , (3.62)

where ρk is the density of infected individuals with degree k and Θ is the probability that
any given link points to an infected node.

The stationary solution (i.e. dtρk(t) = 0) yields

ρk =
kβΘ

µ+ kβΘ
, (3.63)

denoting that the higher the node connectivity, the higher the probability to be infected.
Now, in the absence of correlations the probability that a randomly chosen link in the
network is attached to a node with s links is proportional to sP (s), where P (s) denotes
the probability of having degree s. Hence,

Θ =
∑
k

kP (k)ρk∑
s sP (s)

. (3.64)

Combining (3.63) and (3.64),

Θ =
∑
k

kP (k)∑
s sP (s)

· kβΘ

µ+ kβΘ
. (3.65)

Besides the trivial solution ρk = 0, ρk > 0 will be a solution of the system as long as

β

µ

〈k2〉
〈k〉

> 1 , (3.66)
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which can be identified as the basic reproduction number of the system. Better still, we
can put all parameters relating to the disease in one side and all the ones coming from the
network in the other so that

R0 =
β

µ
>
〈k〉
〈k2〉

. (3.67)

Hence, the epidemic threshold is not 1 anymore. Instead, it is a function of the
connectivity of the network. But remember that the pourpose of the model was to study
disease propagation on computer networks which, according to Albert et al., were not only
scale-free but also had an exponent of γ = 2.45 [253]. Thus, in the internet 〈k2〉 → ∞,
implying that equation (3.67) is actually

R0 >
〈k〉
〈k2〉

→ 0 . (3.68)

In other words, the epidemic threshold fades out. Moreover, two months later Liljeros et
al. showed that the network of human sexual contacts was also scale free [255].

This result is the answer to all the questions that have arisen throughout this section.
First, it explains why so many computer viruses were able to persist without growing
exponentially. Indeed, if the epidemic threshold had been 1 then they all had to be
really close to 1. However, as it tends to 0, they can be anywhere between 0 and 1, be
able to infect a macroscopic fraction of the population and at the same time doing it
slowly. It is also worth highlighting that from very different approaches Anderson and May
obtained essentially the same result (3.57). The reason is simply that in the mean-field
approximation we have neglected the connections and only considered groups of nodes
with k neighbors, which is equivalent to Anderson and May groups of individuals making
i new sexual partners per unit time. Even more, if we add the fact that the network of
sexual contacts is scale free, we finally understand the reason behind the virtual absence
of a threshold they were talking about in the 1980s. Furthermore, this result refutes the
hypothesis of the core-noncore gonorrhea model. In order to have two distinct groups,
the sexual contact network should have a binomial degree distribution, but it does not.
Nevertheless, the idea was not completely wrong as the role of the core is played by the
nodes with large degree, the hubs of the network.

Furthermore, note that to obtain expression (3.67) the only property of the network
that we have used is that it is uncorrelated. Whence, it can be used to study any network
that we desire. In particular, in the case of random graphs the degree distribution is
Poisson, implying that 〈k2〉 = 〈k〉2 + 〈k〉. Thus, for those networks the epidemic threshold
is simplified to

R0 =
β

µ
>

1

〈k〉+ 1
, (3.69)

which is the result obtained by the earliest studies of gonorrhea propagation (3.53) (except
for the +1, but its role will be elucidated in a moment). In other words, we can say that the
problem in those models is that they implicitly assumed a random contact network when
they should have used a scale free network instead. In figure 3.9 we show a comparison of
the final size of the epidemic as a function of R0 between ER networks, SF networks and
the homogeneous mixing approach.

Note that most of the ideas had been around for years, but did not get that much
attention. We could argue that what really made the difference in the case of the work by
Pastor-Satorras and Vespignani was the use of data. Indeed, many theoretical approaches
can be proposed, but without experimental data it is not possible to really gauge their
importance. Thus, once again, this highlights how incorporating more data into already
existing models can make the difference.
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Figure 3.9: Epidemic threshold and topology. Total fraction of recovered individuals
in equilibrium conditions as a function of β/µ. In the homogeneous mixing approach the
epidemic threshold is 1. When the SIR model is implemented in a random network with
〈k〉 = 3 the epidemic threshold is 1/3 (3.71). Conversely, in a SF network with 〈k〉 = 3 and
〈k2〉 = 113 the epidemic threshold is 0.03. Note that the size of the network is N = 104,
with a maximum degree of kmax =

√
N to avoid correlations (see chapter 2). Hence, the

threshold does not vanish completely, as it is supposed to be 0 only the limit of N →∞.

To conclude, we should address why the equation obtained by Anderson and May for
the SIR model did not have a −1 factor (3.57), the one from Andersson also for the SIR
model did (3.59) and the one from Pastor-Satorras and Vespignani for the SIS model did
not (3.67). The first observation is that in the SIS model on a network, it is possible that
if i infects j, then i recovers and j infects i. This cannot happen in the SIR model, so for
a node of degree k only k − 1 links can transmit the disease,

Θ =
∑
k

(k − 1)P (k)ρk∑
s sP (s)

, (3.70)

leading to the threshold [256]

RSIR
0 >

〈k〉
〈k2〉 − 〈k〉

. (3.71)

Which explains the discrepancy between (3.59) and (3.67). Lastly, note that in the case
of Anderson and May they did not consider a fixed structure, such as a network, but
rather that at each time step every individual would seek i new sexual partners. Thus, the
correction accounting where the disease came from does not apply to their model.

3.3.2 The generating function approach
There are multiple techniques that can be used to solve the system (3.61) and obtain

the value of the epidemic threshold (see [159, 256] for a review). In this section we will

72



describe an approach introduced by Newman in 2002 inspired by percolation [257], based
on the use of generating functions, that is specially suited to analyze directed networks.
This is the methodology that we will use in section 3.3.3 to study disease propagation in
directed multiplex networks.

Although for the moment we are only interested in undirected networks, we will
introduce the methodology considering that the networks might have both directed and
undirected links [258], as this will be the approach used in section 3.3.3. Hence, suppose
that the probability that a random node of the network has j incoming links, l outgoing
links and m undirected links is pjlm. The generating function of the distribution will be

G(x, y, z) =

∞∑
j=0

∞∑
l=0

∞∑
m=0

pjlmx
jylzm . (3.72)

As long as pjlm is normalized this function has the property G(1, 1, 1) = 1 and

〈kd〉 =
dG(1, 1, 1)

dx
≡ G(1,0,0)(1, 1, 1) , (3.73)

where 〈kd〉 is the average number of incoming links in the network. As for any incoming
link there has to be also an outgoing link,

〈kd〉 =
dG(1, 1, 1)

dy
≡ G(0,1,0)(1, 1, 1) = G(1,0,0)(1, 1, 1) . (3.74)

Lastly, for the undirected links

〈ku〉 =
dG(1, 1, 1)

dz
≡ G(0,0,1)(1, 1, 1) . (3.75)

A related quantity that will be needed for the derivation is the generating function
of the excess degree distribution, which is the degree distribution of nodes reached by
following a randomly chosen link, without considering the one we came along. Note that if
we choose a node at random, its degree will depend on pk, however if we follow a link the
probability will be higher the more links the node has, kpk. Thus, the generating function
obtained by following a directed link is

Hd(x, y, z) =

∑
jlm jx

j−1ylzm∑
jkm jpjlm

=
1

〈kd〉
G(1,0,0)(x, y, z) , (3.76)

similarly if we follow a directed link in the reverse direction,

Hr(x, y, z) =

∑
jlm lx

jyl−1zm∑
jkm lpjlm

=
1

〈kd〉
G(0,1,0)(x, y, z) , (3.77)

and lastly if we follow an undirected link,

Hu(x, y, z) =

∑
jlmmx

jylzm−1∑
jkmmpjlm

=
1

〈ku〉
G(0,0,1)(x, y, z) . (3.78)

The next step is to take into account that the disease will not be transmitted through
all the links. Indeed, we define the probability of a link “being infected” in the sense that
node i transmits the disease to j using that link as T (regardless of it being directed or
undirected). Hence, the probability of a node having exactly a of the j links emerging from
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it infected is given by the binomial distribution
(
j
a

)
T a(1−T )j−a. Under these assumptions,

the generating function is modified so that

G(x, y, z;T ) =
∑
jlm

pjlm

[
j∑

a=0

(
j

a

)
(Tx)a(1− T )j−a

l∑
b=0

(
l

b

)
(Ty)b(1− T )l−b

m∑
c=0

(
m

c

)
(Tz)c(1− T )m−c

]
=
∑
jlm

pjlm(1− T + Tx)j(1− T + Ty)l(1− T + Tz)m

= G(1 + (x− 1)T, 1 + (y − 1)T, 1 + (z − 1)T ) .

(3.79)

Analogously, the generating functions for the distribution of infected links of a node
reached by following randomly chosen links are:

Hf (x, y, z;T ) = Hf (1 + (x− 1)T, 1 + (y − 1)T, 1 + (z − 1)T )

Hr(x, y, z;T ) = Hr(1 + (x− 1)T, 1 + (y − 1)T, 1 + (z − 1)T )

Hu(x, y, z;T ) = Hu(1 + (x− 1)T, 1 + (y − 1)T, 1 + (z − 1)T ) .

(3.80)

The fundamental quantity that we want to obtain is the number s of nodes contained
in an outbreak that begins at a randomly selected node. Let g(w, T ) be the generating
function for the probability that a randomly chosen node belongs to a group of infected
nodes of a given size:

g(w;T ) =
∑
s

Ps(T )ws . (3.81)

To solve it, we also need to evaluate the probability that a randomly chosen link leads to a
node belonging to a group of infected nodes of given size. The generating function of the
distribution reads

hd(w;T ) =
∑
t

Pt(T )wt . (3.82)

H G
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t  Layer

2
nd  Layer

...

Figure 3.10: Scheme of the generating function approach. Left: The generating
function of the excess degree, H, gives the distribution of links (directed and undirected)
of a node reached by following a random link. Right: As the infection starts in a node,
the generating function of the node’s degree, G, has to be used. Hence, G(H(x)) gives the
distribution of links in the first layer, G(H(H(x)) in the second layer, etc.
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This expression satisfies a condition of the form

hd(w;T ) = wHd(1, hd(w;T ), hu(w;T )) . (3.83)

Similarly, in the case of undirected links,

hu(w;T ) = wHu(1, hd(w;T ), hu(w;T )) . (3.84)

With the expressions (3.80) and these two last equations, we have completely defined
the distribution of t. It follows (see figure 3.10) that if the disease starts at a randomly
chosen node the distribution is

g(w;T ) = wG(1, hd(w;T ), hu(w;T )) , (3.85)

yielding an average size of outbreaks of

〈s〉 =
∑
s

sPs(T ) =
dg(w;T )

dw

∣∣∣∣
w=1

. (3.86)

Performing the derivatives and setting w = 1 we obtain

g′ = 1 +G(0,1,0)h′d +G(0,0,1)h′u

h′d = 1 +H
(0,1,0)
d h′d +H

(0,0,1)
d h′u

h′u = 1 +H(0,1,0)
u h′d +H(0,0,1)

u h′u ,

(3.87)

where we have dropped the arguments of the functions for readability. Inserting these
equations in (3.86) we obtain

〈s〉 = 1 +
G(0,1,0)

(
1−H(0,1,0)

d +H
(0,1,0)
u

)
(

1−H(0,1,0)
d

)(
1−H(0,0,1)

u

)
−H(0,1,0)

u H
(0,0,1)
d

+
G(0,0,1)

(
1−H(0,0,1)

d +H
(0,0,1)
u

)
(

1−H(0,1,0)
d

)(
1−H(0,0,1)

u

)
−H(0,1,0)

u H
(0,0,1)
d

.

(3.88)

Note that this expression diverges if(
1−H(0,1,0)

d

)(
1−H(0,0,1)

u

)
−H(0,1,0)

u H
(0,0,1)
d = 0 . (3.89)

In other words, equation (3.89) sets the condition for the epidemic threshold. The last step
is to note that

G(1,0,0)(1, 1, 1;T ) = TG(1,0,0)(1, 1, 1) , (3.90)

and similarly for the rest of equations. Hence, equation (3.89) reads(
1− TH(0,1,0)

d

)(
1− TH(0,0,1)

u

)
− T 2H(0,1,0)

u H
(0,0,1)
d = 0 , (3.91)

where now the arguments of the functions are (1, 1, 1) instead of (1, 1, 1;T ).

In the particular case of undirected networks this expression further simplifies to

1− TH(0,0,1)
u = 0⇒ T =

1

H
(0,0,1)
u

. (3.92)
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To rewrite this expression in a more familiar format we can calculate the explicit

dependency of H
(0,0,1)
u as a function of the network topology:

H(0,0,1)
u (1, 1, 1) =

1

〈k〉
d

dz
G(0,0,1)(1, 1, 1) =

1

〈k〉
d2

dz2

∑
m

pmz
m

∣∣∣∣∣
z=1

=
1

〈k〉
∑
m

m(m− 1)pm =
1

〈k〉
(
〈k2〉 − 〈k〉

)
.

(3.93)

Therefore, the epidemic threshold is

T =
〈k〉

〈k2〉 − 〈k〉
. (3.94)

3.3.3 Directionality reduces the epidemic threshold in directed multiplex net-
works

And the “cosmological principles” were, I fear, dogmas that should not have been
proposed. (Karl Popper)

As we saw in chapter 2, network science constitutes a whole field of research on its
own. Therefore, any advance in the understanding of networks in general might also
have its applications in the study of disease spreading on networks. In particular, we can
investigate the dynamics of diseases on the multilayer networks we introduced in section
2.1.3 [259]. One option can be to have the same network pattern in all layers but different
dynamics on each of them, such as modeling the spreading of two interacting diseases in
the same population [260] or the interplay between information and disease spreading that
we discussed in the introduction [261]. On the other hand, we can have the same dynamics
in all layers but diverse interaction patterns in each of them, in a similar fashion as our
model of section 3.2.3.

In this work we will focus on the latter, i.e., the same dynamics in the whole system
but different networks in the layers. Even more, we will consider that the networks can
have directed links, something that is usually disregarded in epidemic models (note that
adding direction to links implies that more data is necessary than just knowing that
there is a relationship between two agents). Some relevant examples of the importance
of the directionality in this context are the case of meerkats in which transmission varies
between groomers and groomees [262] and even in the transmission of HIV that we
have briefly discussed, as male-to-female transmission is 2.3 times greater than female-to-
male transmission [120]. Similarly, when addressing the problem of diseases that can be
transmitted among different species, it is important to account for the fact that they might
be able to spread from one type of host to the other, but not the other way around. For
instance, the bubonic plague can be endemic in rodent populations and spread to humans
under certain conditions. If it evolves to the pneumonic form, it may then spread from
human to human [263]. Analogously, Andes virus spreads within rodent populations, but
it can be transmitted to humans and then spread via person-to-person contacts [264].

Recall that in multilayer networks there are two types of links: intralayer (those
contained within layers) and interlayer (those connecting nodes set in different layers). Our
objective is to understand how the epidemic threshold is influenced by the directionality
of both intralayer and interlayer links. In particular, we will consider multiplex networks
composed by two layers with either homogeneous or heterogeneous degree distributions
in the layers (i.e., ER or SF networks). Besides, we will analyze several combinations
of directionality: (i) Directed layer - Undirected interlinks - Directed layer (DUD); (ii)
Directed layer - Directed interlinks - Directed layer (DDD); and Undirected layer - Directed
interlinks - Undirected layer (UDU). For the sake of comparison, we will also include the
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standard scenario, namely, (iv) Undirected layer - Undirected interlinks - Undirected layer
(UUU). We will implement a susceptible-infected-susceptible (SIS) model on these networks
and study the evolution of the epidemic threshold as a function of the directionality
and the coupling strength between layers. In addition, we will derive analytically the
epidemic threshold using generating functions (see 3.3.2) to obtain theoretical insights on
the underlying mechanisms driving the dynamics of these systems.

First, we implement stochastic SIS dynamics on the two layer multiplex networks. Note
that as there are two types of links, we can associate a different spreading probability
to each of them: the interlayer spreading probability, γ, and the intralayer spreading
probability, β [265]. Accordingly, a node can transmit the disease with probability β to
those susceptible neighbors contained in the same layer and with probability γ to those
set in the other layer. As a consequence, the epidemic threshold will depend on both
parameters. Thus, henceforth we will define the epidemic threshold as βc and explore its
value as a function of γ (note that previously we defined the epidemic threshold as the
ratio β/µ, but in this case we will keep fixed the value of µ for simplicity).

In the simulations, all the nodes are initially susceptible. The spreading starts when
one node is set to the infectious state. Then, at each time step, each infected node spreads
the disease through each of its links with probability β if the link is contained in a layer
and with probability γ if the link connects nodes in different layers. Besides, each infected
node recovers with probability µ at each time step. The simulation runs until a stationary
state for the number of infected individuals is reached.

To determine the epidemic threshold we fix the value of γ and run the simulation over
multiple values of β, repeating 103 times the simulation for each of those values. The
minimum value of β at which, on average, the number of infected individuals in the steady
state is greater than one determines the value of the epidemic threshold. This procedure is
then repeated for several values of γ to obtain the dependency of βc with the spreading
across layers. Lastly, this dependency is evaluated for 100 realizations of each network
considered in the study and their βc(γ) curves are averaged.

For the cases in which the interlinks are directed, we need to add another parameter to
the model. If all the links were to point in the same direction, the epidemic threshold would
be trivially the one of the source layer and thus the multiplex structure would play no role.
For this reason, for each directed link connecting layers u and v we set the directionality
to be u → v with probability p and u ← v with probability (1 − p). Consequently, in
networks with directed interlinks the epidemic threshold will be given as a function of this
probability p.

The results, figure 3.11, signal that the consequences of changing the directionality of
some links is completely different for SF and ER networks. In particular, in 3.11A, we can
see that for networks with 〈k〉 = 6 the epidemic threshold is very similar in both UUU
and DUD configurations. This effect is again seen for denser networks, 〈k〉 = 12, implying
that it is the directionality of the interlinks, and not the one of the links contained within
layers, the main driver of the epidemic in these networks. On the other hand, in figure
3.11B we can see that this behavior is not replicated in SF networks. Certainly, there
is a large difference between the curves of the UUU and DUD configurations, implying
that the directionality of intralinks is much more important in this type of networks. A
similar pattern is observed in figures 3.11C and 3.11D, in which the interlinks are directed.
Moreover, in all the cases considered the epidemic threshold is always lower for those
configurations with undirected links within the layers, compared to those in which those
links are directed, given the same interlink directionality.

To get further insights into the mechanisms driving this behavior we proceed to compute
analytically the epidemic threshold. We introduced the generating function of the network,
equation (3.72), saying that it accounts for the probability of having j incoming links, l

77



0.000

0.004

0.008

0.012

0.016

0.020

0.00 0.05 0.10 0.15 0.20
γ

β c
UUU <k>=6
UUU <k>=12
DUD <k>=6
DUD <k>=12

ERA

0.000

0.004

0.008

0.012

0.016

0.020

0.00 0.05 0.10 0.15 0.20
γ

β c

UUU <k>=7.85
UUU <k>=18.50
DUD <k>=7.85
DUD <k>=18.50

SFB

0.000

0.004

0.008

0.012

0.016

0.020

0.00 0.05 0.10 0.15 0.20
γ

β c

UDU <k>=6
UDU <k>=12
DDD <k>=6
DDD <k>=12

ERC

0.000

0.004

0.008

0.012

0.016

0.020

0.00 0.05 0.10 0.15 0.20
γ

β c

UDU <k>=7.85
UDU <k>=18.50
DDD <k>=7.85
DDD <k>=18.50

SFD

Figure 3.11: Epidemic threshold in directed multilayer networks according to
SIS simulations. Several configurations of networks are considered: A) ER networks
with undirected interlinks; B) SF networks with undirected interlinks; C) ER networks
with directed interlinks; D) SF networks with directed interlinks. In all cases µ = 0.1 the
number of nodes is N = 2 · 104 and for each directionality configuration there are two sets
of networks with different average degree as shown in the legend. In the networks with
directed interlinks p = 0.5.

outgoing links and m undirected links. However, in this case the directionality of links
within the layers is always the same (we do not mix directed and undirected links). Hence,
we can use j as an indicator for directed links when we have directed intralinks, or we
can regard it as the number of undirected links otherwise. This frees m to be used for
the interlinks. In other words, the generating function will now be G(x, z) if the network
has the shape UXU and G(x, y, z) if it is DXD, with z representing the links connecting
different layers.

Analogously, the definition of the generating function for the excess distribution (3.76)
does not change. The first difference is encountered when we want to obtain the probability
of a link being infected. In the previous case, we set said probability equal to T in all links,
but now we have β for links within layers and γ for links across layers. Thus, we keep T as
the probability of a link within layers being infected, and denote the probability of the
other set of links being infected as Tuv. With these definitions equation (3.79) now reads

G(x, y, z;T, Tuv) = G(1 + (x− 1)T, 1 + (y − 1)T, 1 + (z − 1)Tuv) . (3.95)

Next, we introduced the generating function used to calculate the probability that a
randomly chosen link belongs to the group of infected nodes. We distinguished hd and hu
if the links were directed or undirected respectively. In this case, as the directionality is
the same, what we need to define is h1 if the link is in layer 1, h2 if it is in layer 2, h12 if it

78



+...
{ {

{ {

{ { +

+...
{ {

{ {

{ { +{ { = +h
12

+...
{ {{ { +{ { = +

h
1

+...{ { + { {

{ { = +h
2

{ { = +

h21

Figure 3.12: Scheme of the generating function on multilayer networks. Recur-
sive relation of generating functions for the size distribution of outbreaks by following a
link in layer 1, h1, from 1 to 2, h12, in layer 2, h2, and from 2 to 1, h21.

is a link going from layer 1 to layer 2 and h21 if it is going from layer 2 to layer 1. The
recursive relations in this case (see figure 3.12) read

h1(w;T, Tuv) = wH1(1, h1(w;T, Tuv), h12(w;T, Tuv);T, Tuv)

h2(w;T, Tuv) = wH2(1, h2(w;T, Tuv), h21(w;T, Tuv);T, Tuv)

h12(w;T, Tuv) = wH12(1, h2(w;T, Tuv), h21(w;T, Tuv);T, Tuv)

h21(w;T, Tuv) = wH21(1, h1(w;T, Tuv), h12(w;T, Tuv);T, Tuv) .

(3.96)

Then, the generating function for the distribution of the size of an outbreak starting in
a randomly chosen node in layer 1 is

g(w;T, Tuv) = wG(1, h1(w;T, Tuv), h12(w;T, Tuv);T, Tuv) . (3.97)

Leading to the expression of the average size of an outbreak:

〈s〉 =
∑
s

sPs(T ) =
dg(w;T, Tuv)

dw

∣∣∣∣
w=1

= 1 +G(0,1,0)h′1 +G(0,0,1)h′12 .

(3.98)

As in the previous case, this equation diverges when the denominator is equal to 0.
Hence, after some algebra, the condition that establishes the epidemic threshold reads

0 =
[(

1−H(0,1,0)
1

)(
1−H(0,0,1)

12 H
(0,0,1)
21

)
−H(0,0,1)

1 H
(0,0,1)
12 H

(0,1,0)
21

]
·
[(

1−H(0,1,0)
2

)(
1−H(0,0,1)

12 H
(0,0,1)
21

)
−H(0,0,1)

2 H
(0,0,1)
21 H

(0,1,0)
12

]
−H(0,0,1)

1 H
(0,0,1)
2 H

(0,1,0)
12 H

(0,1,0)
21 .

(3.99)

Note that this expression works for all the configurations we are considering in this work,
given that we choose the proper values of Hx. For instance, for the DUD configuration we
have

H
(0,1,0)
1 = H

(0,1,0)
2 = T 〈k〉

H
(0,0,1)
1 = H

(0,0,1)
2 = T 〈k〉

H
(0,1,0)
12 = H

(0,1,0)
21 = Tuv

H
(0,0,1)
12 = H

(0,0,1)
21 = Tuv

(3.100)
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yielding

Tc =
1− Tuv
〈k〉

. (ER-DUD)

Similarly, we can obtain the epidemic threshold for the rest of the configurations:

Tc =
1− Tuv

〈k〉+ 1− Tuv
, (ER-UUU)

Tc =
2

〈k〉(2 +m+
√
m(m+ 8))

, (ER-DDD)

where m = p(1− p)T 2
uv,

Tc =
2(1 + 〈k〉) +m′ −

√
m′(4 + 8〈k〉+m′)

2((1 + 〈k〉)2 −m′〈k〉)
, (ER-UDU)

with m′ = 〈k〉p(1 − p)T 2
uv. These results were simplified thanks to the property 〈k2〉 =

〈k〉2 + 〈k〉 of Poisson distributions. For the case of SF, on the other hand, we cannot do this
simplification and thus some expressions will depend on both moments of the distribution:

Tc =
1− Tuv
〈k〉

, (DUD-SF)

Tc =
〈k〉(1− Tuv)

〈k2〉(1− Tuv) + 〈k〉2Tuv
, (UUU-SF)

Tc =
2

〈k〉(2 +m+
√
m(m+ 8))

, (DDD-SF)

where m = p(1− p)T 2
uv, and lastly

Tc =
2〈k2〉〈k〉+ 〈k〉2

(
〈k〉m−

√
m(4〈k2〉+ 〈k〉2(4 +m))

)
2(〈k2〉2 − 〈k〉4m)

. (UDU-SF)

These expressions closely match the results obtained in the simulations, figure 3.13.
Again, we can observe that the value of the epidemic threshold of the DUD configuration in
SF networks tends to the value of the UUU configuration for large values of the spreading
probability across layers, mimicking the behavior of ER networks. Hence, in general, we
can conclude that the directionality (or lack of) of the interlinks is the main driver of the
epidemic spreading process. The exception is the limit of small spreading from layer to
layer as in this scenario the directionality of interlinks makes SF networks much more
resilient. Altogether, the conclusion is that directionality reduces the impact of disease
spreading in multilayer systems.

It is worth point out that these results are not only relevant for the situations we
have described in this chapter so far. One particularly interesting and open challenge is
to quantify the effects that the interplay between different social networks could have on
spreading dynamics. The theoretical framework developed here is particularly suited to
study this and similar challenges related to the spreading of information in social networks.
On one hand, because social links are not always reciprocal [266], specially in online systems
in which a user is not necessarily followed by her followings. Besides, disease-like models
have been widely used to study information dissemination [259, 267]. For this reason, we
have analyzed the dependence of the epidemic threshold with the inter-spreading rate in a
real social network composed by two layers, figure 3.14A. The first layer of the multilayer
system is made up by the directed set of interactions in a subset of users of the now defunct
FriendFeed platform, whereas the second layer is defined by the directed set of interactions
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Figure 3.13: Epidemic threshold in directed multilayer networks, simulations
vs. theory. A) Comparison between the results of the stochastic simulations (points)
and the theoretical predictions (lines) for the ER set of networks. B) As A) but for SF
networks.

of those same users in Twitter. Even though this multiplex network corresponds to a
DUD configuration, we have also explored the other configurations that we have studied.
Note that in contrast to the synthetic networks used so far, in this network the layers
have different average degree. In particular, the FriendFeed layer has 4,768 nodes and
29,501 directed links, resulting in an average out-degree of 6.19 while the Twitter layer is
composed by 4,786 nodes and 40,168 directed links, with an average out-degree of 8.42.
Nevertheless, their degree distributions are both heavy tailed, resembling the power law
structure of SF networks, although the maximum degree in the FriendFeed network is
much larger than in the Twitter network [268].
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Figure 3.14: Epidemic threshold in a multilayer social system. Epidemic threshold
obtained from simulations in a multiplex network composed by users of two different social
platforms: FriendFeed and Twitter. The original network, panel A, has directed intralinks
and undirected interlinks, corresponding to a DUD configuration. Nevertheless, to explore
the effects of directionality in a real scenario, the four discussed configurations are considered
in panel B. For those configurations with directed interlinks we set p = 0.5.

The results, figure 3.14B, confirm the findings of synthetic networks. In particular,
configurations with some directionality are always more resilient against the spreading.
Consequently, information travels much more easily in undirected systems than in directed
systems. This is particularly worrisome given that even though Twitter can be modeled as
a directed network, social networks such as Facebook and Whatsapp should be modeled
using undirected configurations and, recently, these two platforms were identified as one of
the main sources of misinformation spreading [269].
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In summary, we have seen the importance that networks have in shaping disease
dynamics. Hence, as more data becomes available, our network models should be improved
in order to better account for the real mechanisms behind such a dynamics. To this end, in
this section we have developed a framework that allows studying disease-like processes in
multilayer networks with, possibly, directed links. This represents an important step towards
the characterization of diffusion processes in interdependent systems. Our results show
that directionality has a positive impact on the system’s resistance to disease propagation.
Furthermore, we have seen that the way in which interconnected social networks are coupled
can determine their ability to spread information. Hence, the insights obtained in this
work can be applied to a plethora of systems and show that more emphasis should be put
in studying the role of interlinks and directionality in diffusion processes.

3.4 Age and network structures
The problems that we have studied in this chapter have shown us that, when we

consider no longer that humans are particles, the dynamics of an epidemic can change
dramatically. Note that the mass action approximation was just a handy tool to overcome
either the scarcity of data in the past or the analytical intractability of some formulations.
However, nowadays we have both enough data and computational power to introduce many
more details in the dynamics.

It is now time to return to where we left at the end of chapter 2. In section 2.6.3 we
introduced a mathematical framework that allowed us to create networks in which both
the degree distribution and the age contact patterns of the population could be taken into
account. With all the information we have gathered about disease dynamics, we can finally
analyze the implications of this choice.

In the following, we will consider four different scenarios depending on the data that
one may have at her disposal:

1. Homogeneous mixing with 〈C〉: suppose that the only data available is the average
number of contacts and individual may have. In this case, we would be in the same
situation as in the studies of gonorrhea that we presented in section 3.3. According
to equation (3.53) the epidemic threshold in this situation is

β

µ
=

1

〈C〉
. (3.101)

2. Homogeneous mixing with age contact patterns: if data about the mixing patterns
of the population is available, we can improve the model by creating multiple
homogeneous mixing groups, one for each age bracket, as we discussed in section 3.1.1.
Note that this formulation is similar to the one that Anderson and May introduced for
studying interacting groups with different activity patterns, equation (3.54). Hence,
the epidemic threshold, according to equation (3.57), should be

β

µ
=
〈C〉
〈C2〉

. (3.102)

3. Network information: if we have only information about the network structure, the
epidemic threshold is given by (3.71),

β

µ
=

〈k〉
〈k2〉 − 〈k〉

. (3.103)

4. Network and age information: if we are able to obtain information about both the
network structure and the age mixing patterns of the population, we can build the
network of interactions using the techniques introduced in section 2.6.3.
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Figure 3.15: Phase diagram for different amounts of data. We compare the total
number of recovered individuals as a function of the ratio β/µ for four models, each one
determined by the amount of data used. In the homogeneous scenario the only information
is 〈C〉 = 6.18 which yields an epidemic threshold of approximately 0.16. Next, we extract
the information about the age mixing patterns of Belgium in 2005 from the polymod
study [143] and weight the matrix so that the average number of contacts is also 6.18.
This, in turn, produces 〈C2〉 = 40.37 yielding an epidemic threshold slightly over 0.15. To
model the network structure we have assumed that the degree distribution follows a power
law with 〈k〉 = 6.18 and 〈k2〉 = 102.27, resulting in a threshold of 0.06. Lastly, we have
combined this network distribution with the data from Belgium to build the age contact
network.

To properly compare the four situations we will set in all of them the same average
number of contacts, which we denote by 〈C〉 when there is no network information and by
〈k〉 when there is. Next, we perform numerical simulations of these scenarios, using the
SIR model introduced so far (with the adequate modifications depending on the amount of
data available), to compare the evolution of the epidemic size as a function of the ratio
β/µ, figure 3.15.

We can clearly see the effect that the heterogeneity of the network introduces in the
system. For the homogeneous scenario and the homogeneous with information about the
mixing patterns, the epidemic threshold is almost the same. However, when we introduce
a network with a power law degree distribution, the heterogeneity in the contacts is much
larger, yielding a smaller epidemic threshold. Thus, it seems that from this point of view it
is more important to be able to collect data about the contact structure of the population
than from the age mixing patterns.

On the other hand, note that there are many diseases which can affect differently an
individual depending on her age. This effect was particularly important, for instance, in the
2009 H1N1 pandemic [170]. Furthermore, age is one of the factors used to classify people
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Figure 3.16: Comparison of attack rate per age group. In A we compare the
number of recovered individuals in each age bracket in the model with age and network
structure against the model with information of the network structure, so that positive
values imply that the attack was larger in the model with more information, and vice
versa. In B the comparison is done between the model with all the information and the
homogeneous with age mixing patterns. Note that to compare similar situations a value of
β = 0.21 has been chosen, as it is the value in which the three dynamics intersect in figure
3.15.

into risk groups, which in turn are the main targets of vaccination campaigns. Hence, even
if, according to figure 3.15, knowledge of the age structure does not seem too important,
once we look closer into the dynamics of the system the situation changes.

To illustrate this, in figure 3.16, we compare the attack rate of each group in the
different models. In particular, in panel A we show the relative change on the amount
of recovered individuals per age group between the model with all the information and
the model that only considers the network structure. As we can see, the complete model
has higher attack rates in teenagers, while having much lower attack rates among the
elderly. Thus, even if the total attack rate in both situations is the same, if the decision to
administer a vaccine is only based on the network structure we would be making a big
mistake.

Conversely, adding the network information to the age mixing matrices has a smaller
effect, indicating that from this point of view it is more important to collect data about
the age mixing patterns of the population than from the network structure. Note that the
network structure in these models is not extracted from data. Hence, the differences that
we can see in panel B do not have any specific interpretation rather than that the power
law distribution that we chose is responsible for those differences.

To summarize, it is clear that the more data we have, the better, as long as we use it
properly and fully understand it. Yet, if for some reason we need to choose which data we
need to collect, it is important to know the final application, as it is not straightforward
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to say which information is more valuable. In particular, we have seen that the network
structure has dramatic effects on both the epidemic threshold and the incidence of the
epidemic. But, on the other hand, having information about the mixing patterns of the
population might be more valuable in some situations, such as determining risk groups for
vaccination.
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4
Diving into the anthill

Mathematical regularities arise in the human world as soon as one shifts the attention
from the individual to the collective [270]. In human societies there are transitions from
disorder to order, like the spontaneous formation of a common language or the emergence
of consensus about a specific issue. There are further examples of scaling, self-organization
and universality. These macroscopic phenomena naturally call for a statistical approach to
social behavior in which the basic constituents of the system are not particules but humans
[271]. In fact, in 1842, Auguste Comte, credited as the father of sociology, already divised
this possibility: “Now that the human mind has grasped celestial and terrestial physics,
mechanical and chemical, organic physics, both vegetable and animal, there remains one
science, to fill up the series of sciences of observation - social physics. This is what men
have now most need of [...]” [19].

Despite the early observations in the XIX century about the possible existence of social
physics, this area of research is still in its infancy. To understand why this is so, it might be
enlightening to look at how research progressed in other areas of physics. For instance, in
the XVI century Tycho Brahe recorded the position of celestial objects with unprecedented
accuracy and quantity. After his death, his assistant Johannes Kepler analyzed his data
and extracted the three basic laws describing planetary movement that bear his name.
These, in turn, inspired Newton in the formulation, by the end of the XVII century, of
the laws of motion and universal gravitation. It could be argued, then, that despite the
great advances in sociology of the last century, we have just arrived to the first step of the
process. That is, we are finally gathering data with unprecedented accuracy and quantity.
To demonstrate it, and fully comprehend the paradigm shift that this represents, we can
take the example of rumors.

During the second World War, the attention of social scientists was forcibly drawn to
the subject of rumors. Not only it became aparent that wartime rumors impaired public
morale and confidence, but it could also be used as a weapon of enemy propaganda. Initially,
research was focused on understanding the psychology of rumors, interpreting them as
something belonging to the individual. For instance, in 1944 Knapp defined a rumor as “a
proposition for belief of topical reference disseminated without official verification”. He
even proposed that to control rumors the people had to be well informed, have confidence
in their leaders and even that authorities should prevent idleness, monotony and personal
disorganization as rumors - he said - do not thrive among purposeful, industrious and busy
people [272]. Soon after, in 1948, Allport and Postman slightly modified Knapp’s definition
and said that a rumor was “ a proposition for belief, passed along from person to person,
usually by word of mouth, without secure standards of evidence being present”1

To study this spreading process, they performed several experiments. However, they
were already aware of the limitations that in-lab experiments had in the particular context

1We have emphasized the crucial change in the definition. Rumor was no longer just something, it
was something that spread from person to person. The obvious similarities of this definition with disease
dynamics led Daley and Kendall to propose in 1964 that the spread of a rumor in a closed community
should resemble the spread of an epidemic. Furthermore, they adapted the SIR model presented in chapter
3 to this context using ignorants, spreaders and stiflers [273].
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of rumors. For instance, they had to oversimplify rumors in order to track them. Further,
the intrinsic motivation of spreading a rumor is lost if you are inside a lab and a scientist
is telling you to do it, being the willingness to spread substituted by the willingness to
cooperate with the experimenter. They also noted that outside the laboratory the narrator
tends to add color to her story, but inside the laboratory the teller feels that her reputation
is at stake and does her best to transmit it in the most precise way. Moreover, they usually
worked with groups of six or seven individuals.

In contrast, in 2018 Vosoughi et al. were able to investigate the diffusion of more
than 126,000 true and false news stories within a population of 3 million people using
Twitter data [274]. They found that false news spread farther, faster, deeper and more
broadly than the truth, something that clearly could not have been studied 50 years before.
Furthermore, they also investigated the role that bots in charge of systematically spreading
false news could play in the spreading, but found that even though they accelerated a
bit the spreading, they did not affect their total reach. Yet, few months latter, Shao
et al. analyzed a much broader set of news, with almost 400,000 thousand articles and
found evidence that bots do play a key role in spreading low-credibility content [275]. This
contradiction is a sign that new data sources not only provide information that was not
accessible before, with unprecedented accuracy and quantity, but that they also represent
a subject worth of study on their own.

In this context, in section 4.1 we will study the dynamics of a Spanish online discussion
board, Forocoches, with the objective of disentangling how its microscopic properties lead
to our macroscopic observations. This will be based on the work

• A. Aleta, J. O’Brien, J. Gleeson, and Y. Moreno, Dynamics of discussion threads in
online boards: the case of Forocoches, In preparation, 2019.

As McFarland et al. noted, not only these new platforms might be interesting on their
own, but also give raise to new social phenomena that could not take place without digital
intermediation. For example, some years ago people were simply technically unable to
share photos on the scale and frequency they do today. These technologically enabled social
transactions are a specific category of behaviors, some which may affect, in turn, offline
social dynamics and structures. Hence, data generated on digitally-mediated platforms
represent new categories of social action, not different from other phenomena of sociological
interest [66].

Along these lines, we will conclude this section analyzing crowd dynamics in a digital
setting. In particular, we will analyze the dynamics that emerged in an event that took
place on February 2014, in which nearly a million players joined together and played a
crowd controlled game, i.e., a game in which the character of the videogame was controlled
simultaneously by all players. Clearly, this type of event was completely unattainable, at
least with such magnitude, without the Internet. Yet, we will see that patterns that are
common in the offline world had their reflection on this event. This section will be based
on the work

• A. Aleta and Y. Moreno, The dynamics of collective social behavior in a crowd
controlled game, EPJ Data Sci., vol. 8, pp. 1–16, Jun 2019.

Besides, as we shall see, not only the two systems that we will explore are interesting on
their own, but they will also allow us to discuss the dynamics that emerges when humans
come together in groups. Since the late XIX century the concept of group has received a
lot of attention from psychologists and sociologists as it was observed that a group is not
just the addition of the individuals that compose it. The appearance of the Internet, rather
than breaking the boundaries that lead naturally to groups, has allowed the formation of
new and larger groups - as some sort of virtual ant colonies.
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4.1 Online discussion boards
A discussion board, or Internet forum, is an online discussion site where people can

hold conversations in the form of posted messages [278]. These platforms are hierarchically
organized in a tree-like structure. Each forum can contain a set of sub-forums dedicated to
specific topics. Then, inside each sub-forum users can begin a new conversation by opening
a thread. In turn, other users can participate in the conversation by sending posts to the
thread.

In the last decade, social networks have revolutionized the way we interact with each
other. Yet, Internet forums precede modern online social networks by several decades.
The precursors of forums date from the late 1970s, although the first proper Internet
forum as we know them today was the World-Wide Web Interactive Talk created in 1994
[279]. As Rheingold noted in 1993, in these platforms virtual communities were created,
exceeding the limits of the offline world [280]. He stated that the main characteristics
of these communities were the fact that they belonged to the cyberspace, that they were
based on public discussion and that personal relationships could be developed among the
participants. Of these aspects, probably the most characteristic one is the fact that there
are no physical boundaries in these communities, allowing people from all over the world to
come together. This already raised the interest of several researchers during the late 1990s
and early 2000s [281], although we find particularly interesting the thoughts of the jurist
Cass R. Sunstein [282]. In 1999, he published a work on group polarization and stated
that:

“Many people have expressed concern about processes of social influence on the Internet.
The general problem is said to be one of fragmentation, with certain people hearing more and
louder versions of their own preexisting commitments, thus reducing the benefits that come
from exposure to competing views and unnoticed problems. But an understanding of group
polarization heightens these concerns and raises new ones. A ‘plausible hypothesis is that
the Internet-like setting is most likely to create a strong tendency toward group polarization
when the members of the group feel some sense of group identity’. If certain people are
deliberating with many like-minded others, views will not be reinforced but instead shifted
to more extreme points. This cannot be said to be bad by itself - perhaps the increased
extremism is good - but it is certainly troublesome if diverse social groups are led, through
predictable mechanisms, toward increasingly opposing and ever more extreme views. It is
likely that processes of this general sort have threatened both peace and stability in some
nations; while dire consequences are unlikely in the United States, both fragmentation and
violence are predictable results. As we have seen, group polarization is intensified if people
are speaking anonymously and if attention is drawn, though one or another means, to group
membership. Many Internet discussion groups have precisely this feature. It is therefore
plausible to speculate that the Internet may be serving, for many, as a breeding group for
extremism.”

These words predicted, for instance, the problem of echo chambers - people only viewing
information in social networks coming from those who think like them [283] -, the role
of the Internet in the arab spring [284] or the appearance of extremist groups - such as
incels [285] - roughly 20 years ahead and when the Internet was, in comparison with today,
still in its infancy. Admittedly, his views were probably based on the large amount of
research performed on group polarization that was carried out during the XX century.
Psychologists, sociologists, economists, politicians... the fact that groups are not just the
addition of individuals had already attracted the interest of scientists coming from very
diverse fields.

The previous examples show that these discussion platforms are worth being studied on
their own. But bear in mind that these systems also provide tons of valuable data about
how people interact that can, in turn, be used to test hypothesis about social behavior
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that were put forward in other contexts. For instance, in 2005 Berger and Heath proposed
the concept of idea habitats [286]. They argued that ideas have a set of environmental
cues that prime people to think about them and to believe it may be relevant to pass
along. Although their definition of habitat is quite broad (for instance, the current season
is one of the cues building the habitat), we can clearly see that human groups in general,
and online groups in particular, can be examples of habitats. Moreover, they said that to
really test their ideas they would need a “perfect but unobtainable database” such as a
“searchable database of all conversations”. Even though discussion platforms do not posses
all the information, as discussions might be influenced by external factors, it might be
possible to find examples of conversations that only make sense within a particular online
system. In such a case, the system would surely represent a database of all conversations.
In fact, in section 4.1.1 we will see one example along these lines.

This data can also help us understand how culture disseminates and evolves. In 1985,
Sperber proposed that culture could be studied under the lenses of epidemiology - as
something that propagates. Yet, he doubted that mathematical models were ever going to
be needed to model cultural transmission [287]. Few years later, in 1997, Axelrod presented
his seminal work on cultural dissemination. With a very simple mathematical model, he
demonstrated that social influence, contrary to the expectations, could naturally lead to
cultural polarization rather than homogenization [288]. The accelerated rate at which
online platforms evolve, in comparison to their offline counterparts, can be used to test
these assumptions in the light of data. Furthermore, the boundary between the online and
offline culture is getting thinner now that all cultural expressions and personal experiences
are shared across the internet. Thus, this data can be used to study the evolution of the
new culture that is being formed, the culture of real virtuality in Castells terms [72].

To conclude this introduction, we can give yet another example of the opportunities that
having such large amounts of data represent. In 2010 Onnela and Reed-Tsochas studied
the popularity of all Facebook applications that were available when the data was collected
[289]. This, they claimed, removed the sampling bias that was usually present in the studies
of social influence, in which only successful products were actually taken into account.
By doing so, they discovered that the popularity of those applications was governed by
two very different regimes: an individual one in which social influence plays no role and
a collective one in which installations were clearly influenced by the behavior of others.
They proposed that this type of studies could be extrapolated to other online systems. For
instance, they gave the example of the (back then) online book retailer Amazon and the
online DVD rental service Netflix, which allowed their users to rate their products. This
would lead to an endogenously generated social influence, at a rate unprecedented in the
offline world, with important economic consequences. Actually, the fact that consumers
were influenced by opinions found in the Internet was something that already attracted
the attention of researchers in the early 2000s in, precisely, the context of Internet forums
[290].

It should be clear the wide range of possibilities that analyzing discussion boards
provide. Yet, the following sections will have much more modest goals. Our objective is to
understand the dynamics of the board which, in turn, should help us to study much more
complex phenomena such as social influence in the future.

4.1.1 Description of Forocoches
+++ Divide By Cucumber Error. Please Reinstall Universe And Reboot +++

(“Hogfather”, Terry Pratchett)

Forocoches is a Spanish discussion board created in 2003 to talk about cars2. Back
in those days it was common to have forums of very diverse topics, unlike modern social

2To put this date into perspective, Facebook was created in 2004, although its Spanish version was not
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networks in which all the information is gathered in the same place. This fact can easily
be constated by looking at the name of the subsections that compose the board, table 4.1.
However, the discussions in the forum evolved throughout the years with more and more
people gathering in the General subsection. Nowadays, this subsection contains over 80%
of all the posts in the board and the discussions cover many topics that have nothing to do
with cars, as it can be seen in figure 4.1.

General Area Technical Area & Info

General Mechanics

Electronics/Informatics Car-Audio

Employment Insurances

Travels Traffic/Radars

Meetings Tuning

InverForo

ForoCoches Area Gaming Area

ForoCoches Cars games

Competition Online games

Electric cars Commercial Area

Classic cars PIVE 8 Plan

Minivans Buy & Sell - Professional

4x4 and SUVs Buy & Sell Area

Modeling Buy & Sell - Engine

Trucks/Vans/Buses Buy & Sell - Audio/Tuning

Motorbikes Buy & Sell - Electronics

Buy & Sell - General

Table 4.1: Subsections of the board (translated from Spanish). Most of the terms are
related to cars, but the distribution of posts across the board is very heterogeneous with
80% of all the messages posted in the General subsection.

A remarkable aspect of the forum is that since 2009 people can not register freely as
in most social networks. Instead, to be able to create an account an invitation from a
previous member is needed, and they were quite limited for a few years. Currently, there
are some commercial campaigns that grant invitations making it slightly easier to obtain
one, but in any case it is a much more closed community than common social networks in
which anyone can create a new account. Note also that despite this fact the board has
grown continuously since its creation, figure 4.2A.

Before going any further we should briefly describe the functioning of the board. As in
other discussion boards, the information is organized in a tree-like structure. Each section
is composed by a set of subsections. In each subsection, a new discussion can be started by
opening a thread. Then, users can send posts to continue said discussion. From now own,
we will restrict ourselves to the study of the General subsection, as it is the one with a
broader set of topics and it is also the most active one as stated previously.

In the General subsection all threads that have received a new post within the last

released until 2008 [291]. Similarly, Twitter was created in 2006 and its Spanish version was released in
late 2009 [292].
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2003 2016

Figure 4.1: Topic evolution in Forocoches. Worclouds of the words used as thread
titles. In 2003 the most common words were related to cars. Some of them refer to
particular car models: alfa (alfa romeo), golf (Volkswagen golf), leon (seat leon), etc.
Others represent car parts, technologies or accessories: tdi (turbocharged direct injection),
cv (horsepower), llantas (rims), aceite (oil), cd, dvd, mp3... On the other hand, in 2016 the
most common words refer to a broader set of topics. There are terms related to politics
(pp, psoe, podemos and ciudadanos which were the main political parties in Spain in that
year), technology (amazon, xiaomi, pc, iphone...), games (ps4, juego, pokemon...) to name
a few.

24 hours are visible, although they are organized in a set of pages containing 40 threads
each (very much like Google results). The threads appear in reverse chronological order,
that is, the first thread is the one which received a new post most recently. Note that this
is completely different from other social platforms in which the information is organized
according to the liking of the user or related to her followers/friends. Thus, this should
remove the problem of echo chambers that we mentioned previously, as people are shown
all the information that is in the board regardless of whether it is suited to their likes or
not. Although, admittedly, there could still be a bias due to the forum only containing a
certain type of information, at least it is much easier to analyze, since it is not necessary
to have precise data about the behavior of each single user.

Inside each thread, posts are organized in chronological order, being the first post the
one that initiated the conversation and the last one the most recent one. Posts can contain
text, images or videos. Besides, it is possible to cite a previous post in the thread (or in
another thread). This does not modify the ordering of the posts, nor adds any points or
likes to it. Indeed, unlike other platforms there are not any measures of popularity of posts,
such as retweets or favorites. It should be noted that each thread can only contain up to
2,000 posts. Once the limit is reached the thread gets automatically closed and if users
want to continue with the conversation they need to start a new thread. Nevertheless, the
great majority of threads never reach that limit. This fact is shown in figure 4.2B, where
the distribution of the threads sizes is plotted.

Posts can only be sent by people that registered an account in the forum. An account
has a nickname associated, as well as possibly a profile picture and some more information
about the user. Unlike social networks, it is not possible to automatically track the activity
of other users by following them or being friends (although it is always possible to go to

92



0

5⋅105

106

1.5⋅106

20
03

-03

20
04

-03

20
05

-03

20
06

-03

20
07

-03

20
08

-03

20
09

-03

20
10

-03

20
11

-03

20
12

-03

20
13

-03

20
14

-03

20
15

-03

20
16

-03

Date

N
um

be
r o

f n
ew

 p
os

ts

A

0

10-1

10-2

10-3

10-4

10-5

10-6

100 101 102 103

Thread popularity

P(
x)

data
fit

B

Figure 4.2: Statistics of Forocoches. A) Number of new posts per month as a function
of time. The activity in the forum has increased continuously since its creation in 2003. B)
Distribution of thread popularity measured as number of posts per thread. The distribution
can be fitted by a lognormal distribution (which is commonly found in online social media
[293, 294]) with parameters µ = 2.79 and σ = 1.25.

their profile and check their latest posts). Thus, this system does not posses an explicit
social network and thus the interactions between individuals should be based more on
the topic than on social factors. Yet, we should emphasize that even if there is not an
explicit underlying network like the ones we can find in social networks, it would be possible
to construct networks that provide insights about the characteristics of the system. For
instance, it would be possible to consider that users are nodes and that two users should be
linked if they participate in the same thread. Further, these links could be weighted by the
number of times this event occurs. Then, it would be possible to study how the information
flows in the system or whether there are some underlying structures that might be hidden,
such as groups of users that tend to always discuss about the same ideas together.

At this point, we should give some more details about the size of the board. Figure
4.2A shows that as of 2016 the forum received more than 1.5 million posts per month.
According to the most recent statistics provided by the board, that number is now over
4 million. There are over 5 million threads, 340 million posts and 800 thousand users
registered [295]. Although these numbers pale in comparison with the large social networks
that are spread all over the world, note that in this case 90% of the traffic comes from
Spain. This has some interesting consequences. On the one hand, it is much smaller than
other social networks, making it easier to analyze but, at the same time, it is large enough
to convey robust statistics. Moreover, the fact that the traffic comes mostly from Spain
also facilitates the study of Spanish events without the sampling biases that arise when
one uses the geo-location of users to determine where they come from in social media such
as Twitter [296, 297].

Interestingly, it is possible to find remarkable similarities between Forocoches and other
Internet platforms like Twitter. For instance, in figure 4.3, we show the daily activity
patterns in both systems. In the case of Forocoches the data refers to the year 2015, while
in Twitter it represents the tweets sent by people who had their geo-location activated
and sent the tweets from within the United Kingdom during a week of October in 2015.
As expected, both systems reflect the offline activity patterns of the population, with
lower activities during the night. Yet, even though both systems exhibit a pattern that we
could call double peaked, one at lunch time and another one at the beginning of the night,

93



there are clear differences that might be related to the sociological characteristics of both
countries. Again, this highlights that it is possible to extract much more information from
these datasets that what it might seem at first glance.
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Figure 4.3: Daily activity of users in online social networks. A) Average number
of posts sent as a function of time during 2015 in Forocoches. B) Average number of tweets
sent as a function of time in October 2015 by users who had their geo-location activated
and sent them from within the United Kingdom.

Another example of the possibilities that the study of these systems bring is shown in
figure 4.4. The emergence of new social contexts has enabled slang to abound on the web
[298]. Although it is not possible to track the whole evolution of terms that are used all
over the Internet, it is possible to find words that only have meaning in a certain context.
In this particular case, we show two examples of terms that have meaning only within
the board. The interesting thing about them is not their meaning but the fact that it is
possible to track their whole evolution, something that obviously cannot be done in the
offline world [299]. This information can then be used to study the dynamics of the cultural
evolution of language [300]. In other words, we have the database of all conversations that
Berger and Heath needed to test their hypothesis of cultural habitats.

Our goals are, however, much more modest for this part of the thesis. Our objective is
to understand the mechanics behind the macroscopic behavior of the forum, which in turn
should help us in the future to study more specific characteristics of the system such as the
ones described so far. The starting point will be the following observation. Threads that
have been inactive for over 24 hours are not removed like in other boards. Even though
they are not present anymore in the list that can be directly accesed from the front page,
they can still be accessed either by having their link or by finding them using Google or
the own search engine of the forum. Nevertheless, it has been observed that, in Google,
over 90% of the users do not go beyond the first page of results [301]. Hence, it seems
reasonable to assume that users will tend to focus on the 40 threads that are on the front
page. Thus, given that the more recently a thread has received a post, the most likely it is
to be found in the first positions, we hypothesize that the dynamics of the forum should
follow some sort of self-exciting process. In particular, we will focus on non-homogeneous
Poisson processes, which have yielded satisfactory results when used to study other online
social platforms, such as Twitter [302] and Reddit [303] (see [304] for a recent review on
other applications of these processes).
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Figure 4.4: Evolution of slang in Forocoches. Usage of two memes in posts as a
function of time. A) The term “288” originated when a user started a thread on the 8th of
April of 2011 with the title “48÷ 2(9 + 3) =????”, prompting people to give their answer.
A debate on whether the division or the multiplication had to be performed first arose,
with 288 being the solution if the division is performed first. After that thread the term
became a meme that is used as a joke to answer questions related to numbers. B) The
term “din” originated in a thread started on the 30th of May of 2010. The first person to
answer the thread (after the person that created it) wrote “DIN del POST” (din of the
post) probably due to a mistake (the letter d is next to f , which would be used to write
fin, end). From that point on, the term gained popularity as a way of saying that someone
posted an argument that answered the question being discussed.

4.1.2 Introduction to inhomogeneous Poisson processes

In general, point processes are used to describe the random distribution of points in a
given mathematical space. In our case, this mathematical space will be the positive real
line, so that events will be distributed across time. Moreover, we are not interested in the
specific distribution of each event but rather on their cumulative count, as our objective is
to elucidate the mechanisms leading to thread growth. In this case, point processes can be
described as counting processes [305].

A counting process is a stochastic process defined by the number of events that have
been observed (arrived) until time t, N(t) with t ≥ 0. Thus, N(t) ∈ N0, N(0) = 0 and
it is a right-continuous step function with increments of size +1. Further, we denote by
Hu with u ≥ 0 the history of the arrivals up to time u. It is completely equivalent to
refer to this process as a point process defined by a sequence of ordered random variables
T = {t1, t2, . . .}.

These processes are characterized by the conditional intensity function, which reflects
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the expected rate of arrivals conditioned on Ht:

λ(t|Ht) = lim
h→0

P{N(t, t+ h] > 0|Ht}
h

. (4.1)

The most common example of these processes is the homogeneous Poisson process,
in which the conditional intensity is constant. Using equation (4.1) this can be properly
defined as

P{N(t, t+ h] = 1|Ht} = λh+ o(h)

P{N(t, t+ h] > 1|Ht} = o(h)

P{N(t, t+ h] = 0|Ht} = 1− λh+ o(h)

⇒ λ(t|Ht) = λ ,

(4.2)

with λ > 0. An interesting consequence of this definition is that the distance between two
consecutive points in time is an exponential random variable with parameter λ. This, in
turn, implies that the distribution is memoryless, i.e., the waiting time (or interarrival
time) until the next event does not depend on how much time has elapsed.

Conversely, a Poisson process is said to be inhomogeneous when the conditional intensity
depends on time:

P{N(t, t+ h] = 1|Ht} = λ(t)h+ o(h)

P{N(t, t+ h] > 1|Ht} = o(h)

P{N(t, t+ h] = 0|Ht} = 1− λ(t)h+ o(h)

⇒ λ(t|Ht) = λ(t) .

(4.3)

In this section, we are interested in a specific type of inhomogeneous Poisson processes
known as self-exciting or Hawkes processes, as introduced by Alan G. Hawkes in 1971 [306].
In these processes the conditional intensity not only depends on time, but also on the
whole history of the event. Hence, it is given by

λ(t) = λ0(t) +

∫ t

0
φ(t− s)dNs . (4.4)

The first term of this equation is the background intensity of the process while φ(t− s) is
the excitation function. This way, the conditional intensity depends on all previous events
in a way that is determined by the excitation function. Henceforth, we may refer to the
function φ(t− s) as the kernel of the process.

Although the function φ(t− s) can take almost any form, to gain some intuition about
these processes a convenient choice is the exponential function. In fact, that was the
function that Hawkes used to illustrate his paper. Hence, if φ(t− s) = α exp(−β(t− s)),
we can rewrite equation (4.4) as

λ(t) = λ0(t) +

∫ ∞
0

αe−β(t−s)dNs = λ0(t) +
∑
ti<t

αe−β(t−ti) , (4.5)

where the constant α can be interpreted as the instantaneous excitation of the system
when a new event arrives and β as the rate at which said arrival’s influence decays.

In figure 4.5 we show an example of the intensity obtained using an exponential kernel.
As it can be seen, every time a new event arrives, the intensity is incremented by a factor α
leading to new, clustered, arrivals. Then the intensity decays at rate β until it reaches the
value of the background intensity. It is worth remarking that events in Hawkes processes
tend to be clustered, i.e., the interarrival time is not independent as in homogeneous
processes.
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Figure 4.5: Conditional intensity function of a self-exciting process. Simulation
of a Hawkes process with exponential kernel, λ0 = 1, α = 1 and β = 2. The curve shows
the value of the conditional intensity, while dots mark the moments at which a new event
arrived.

This figure can also be used to introduce a different interpretation of the process.
Suppose that the stream of immigrants arriving to a country forms a homogeneous Poisson
process with rate λ0. Then, each individual can produce zero or more children independently
of one another but following a simple inhomogeneous Poisson process (without excitation).
The global arrival of new people to the country would then follow a Hawkes process. In
the terminology of the forum, we could say that new posts arrive to the thread at a rate
λ0(t), which might depend on time because the activity of the users changes during the
day (as we saw in figure 4.3), and that each of those posts sprout themselves a sequence of
new posts until the thread disappears from the front page (its intensity gets back to the
background intensity).

In branching terminology, this immigration-birth representation describes the Galton-
Watson process that we briefly discussed in the introduction, albeit with a modified time
dimension [307]. In this context, it is possible to define the branching ratio of the process
as

n =

∫ ∞
0

φ(t)dt =

∫ ∞
0

αe−βsds =
α

β
, (4.6)

which is the average number of offspring generated by each point event [308]. Both the
definition of this parameter and its shape should ring some bells. Indeed, this expression is
equivalent to the definition of the basic reproduction number that we saw in section 3.2. In
fact, the SIR model can be studied as a Hawkes process [309]. Actually, the study of point
processes has partially its origin in the demographic problems studied by mathematicians
during the beginning of XX century such as Lotka, who was also the one that introduced
the concept of the basic reproductive number in demography as discussed in section 3.2
[305].

A particularly successful application of Hawkes processes was introduced by Ogata in
1988 in the context of earthquakes [310]. Specifically, he used Hawkes processes to describe
the occurrence of major earthquakes and the aftershocks that follow them, although he
chose a different kernel. He proposed that the intensity should decay following a power law
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so that
λ(t) = λ0(t) +

∑
i<ti

α

(t− ti + c)1+β
. (4.7)

Interestingly, he named his model for seismology the Epidemic-Type Aftershock Sequence
model (ETAS).

The contribution of Ogata was not simply the introduction of the model to seismology.
What really made his work outstanding was that, in a time where most researchers on
point processes were mainly focused on their theoretical properties, he established a road
map for how to apply point process models to real data using a formal likelihood-based
inference framework [311]. The next section will be devoted to this issue.

4.1.3 Fitting Hawkes processes
If our intuition is correct, the arrival of posts to threads in Forocoches should be well

described by a self-exciting process. In order to test this hypothesis we need two ingredients.
First, we have to estimate the parameters that would yield the observed time sequence of
a given thread. Then, we need to measure the quality of the model.

To estimate the set of parameters describing a thread we will use maximum likelihood
estimation [312]. Suppose that {t1, t2, . . . , tn} is a realization over time [0, T ] from a point
process with conditional intensity function λ(t). The likelihood of the process as a function
of the set of parameters θ can be expressed as

L(θ) =

[
n∏
i=1

λ(ti|θ)

]
exp

(
−
∫ T

0
λ(u|θ)du

)
, (4.8)

and the log-likelihood is thus given by

l(θ) = lnL(θ) =

n∑
i=1

ln[λ(ti|θ)]−
∫ T

0
λ(u|θ)du . (4.9)

For simplicity, we will assume that the background intensity is either zero or constant,
so that λ0(t) ≡ λ0. Hence, in the particular case of an exponential kernel, equation (4.5),
the log-likelihood reads

l = −λ0t+
α

β

n∑
i=1

[
e−β(tn−ti) − 1

]
+

n∑
i=1

ln[λ0 + αA(i)] , (4.10)

where A(i) = e−β(ti−ti−1)(1+A(i−1)) with A(0) = 0. As there is no closed form solution, it
is necessary to numerically obtain the maximum of this function. Fortunately, this recursive
relation greatly reduces the computational complexity of the problem. For this reason
exponential kernels or power law kernels with exponential cut-off are the preferred choice
in the analysis of high frequency trading [313]. Nevertheless, to speed up the computation,
it is convenient to also calculate the derivatives of the log-likelihood:

∂l

∂λ0
= −tn +

n∑
i=1

1

λ0 + αA(i)

∂l

∂α
=

n∑
i=1

A(i)

λ0 + αA(i)
+

1

β

n∑
i=1

[
e−β(tn−ti) − 1

]
∂l

∂β
=

n∑
i=1

αA′(i)

λ0 + αA(i)
− α

β2

n∑
i=1

[
e−β(tn−ti) − 1

]
+
α

β

n∑
i=1

[
−(tn − ti)e−β(tn−ti)

]
,

(4.11)

where A′(i) = e−β(ti−ti−1) [−(ti − ti−1)(1 +A(i− 1)) +A′(i− 1)] and A′(0) = 0.
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Similarly, the log-likelihood for the power law kernel defined in equation (4.7) can be
expressed as

l = −λ0t−
α

β

n∑
i=1

(
1

cβ
− 1

(tn − ti + c)β

)
+

n∑
i=1

ln

λ0 +
i∑

j=1

α

(ti − tj + c)1+β

 . (4.12)

In this case the computation of the kernel for long time sequences is more costly. The
gradient for this expression reads

∂l

∂λ0
= −tn +

n∑
i=1

1

λ0 + αA(i)

∂l

∂α
=

n∑
i=1

A(i)

λ0 + αA(i)
− 1

β

n∑
i=1

(
1

cβ
− 1

(tn − ti + c)β

)
∂l

∂β
=

n∑
i=1

−αLA(i)

λ0 + αA(i)
+

α

β2

n∑
i=1

(
1

cβ
− 1

(tn − ti + c)β

)
+
α

β

(
ln(c)

cβ
− ln(tn − ti + c)

(tn − ti + c)β

)
∂l

∂c
= −

n∑
i=1

α(1 + β)A′(i)

λ0 + αA(i)
+ α

n∑
i=1

(
1

cβ+1
− 1

(tn − ti + c)β+1

)
(4.13)

with A(i) =
∑i

j=1(ti − tj + c)−1−β, LA(i) =
∑i

j=1 ln(ti − tj + c)(ti − tj + c)−1−β and

A′(i) =
∑i

j=1(ti − tj + c)−2−β.
With these expressions we can easily estimate the set of parameters that would fit each

thread in our dataset. To asses the quality of the fit, a common approach is to use tools
as the Akaike information criterion (AIC) [314]. However, as already noticed by Ogata,
AIC and related methods can provide information about which is the best model of all the
ones being considered, but it does not say anything about whether there is a better model
outside that set. Fortunately, there is a better option.

Suppose that the point process data {ti} are generated by the conditional intensity
λ(t). We define the compensator of the counting process as

Λ(t) =

∫ t

0
λ(s)ds , (4.14)

which in the case of the exponential kernel is equal to

Λ(tk) = λ0tk −
α

β

k−1∑
i=1

[
e−β(t−ti) − 1

]
, (4.15)

and for the power law kernel is

Λ(tk) = λ0tk +
α

β

k−1∑
i=1

(
1

cβ
− 1

(tk − ti + c)β

)
. (4.16)

With this definition we can now enunciate the random time change theorem [315].
If {t1, t2, . . . , tk} is a realization over time [0, T ] from a point process with conditional
intensity function λ(t), then the transformed points {t∗1, t∗2, . . . , t∗k} given by t∗i = Λ(ti) form
a Poisson process with unit rate.

Therefore, if the estimated conditional intensity λ(t|θ) is a good approximation to the
true λ(t), then the transformed points t∗i should behave according to a Poisson process
with unit rate. To test if the series forms a Poisson process we will check two of their main
properties:
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Figure 4.6: Fitting Hawkes processes to Forocoches threads. Each panels shows
the fraction of threads that successfully pass all the tests described in section 4.1.3 with
different kernel choices. A) Exponential kernel with constant background intensity. B)
Power law kernel with constant background intensity. C) Homogeneous Poisson process.
D) Power law kernel without background intensity.

• Independence: the interarrival times of the transformed points, τ∗i = t∗i − t∗i−1 should
be independent. This can be tested using the Ljung-Box test. The null hypothesis
of this test is that the data presents no auto-correlations (in other words, they are
independent). If the p-value is higher than 0.05 then the hypothesis cannot be
discarded and thus the data might be independent.

• Unit rate: if the values of {τ∗i } are extracted from an exponential with unit rate then
the quantity xk = 1 − e−τ∗k is uniformly distributed in the interval [0, 1]. We can
test this hypothesis using the Kolmogorov-Smirnov (KS) and Anderson-Darling (AD)
tests.

Only if the estimated λ(t|θ) passes all these tests we will accept that it is correctly
describing the evolution of a thread as a Hawkes process with the kernel under consideration.
With these tools we are finally ready to asses if the dynamics of the board can be captured
by these processes or not.

4.1.4 The dynamics of the board
We consider all threads that started between 01-01-2011 and 01-01-2012 with 10 or

more posts, which represent nearly 230,000 different conversations. To each thread we fit:
a homogeneous Poisson process; a Hawkes process with exponential kernel and constant
background intensity; with power law kernel and constant background intensity; and with
power law kernel without background intensity.

In figure 4.6 we show the fraction of threads that successfully pass all the tests for each
kernel choice. For the moment we are not asking which model is better, only which one
can fit the largest amount of threads. As we can see, both the exponential kernel and
the power law kernel with constant background are able to model 75% of the threads. In
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contrast, an homogeneous Poisson model can only explain 25% of the threads and a power
law kernel without background intensity only a tiny fraction of roughly 5%.
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Figure 4.7: Best model as a function of external factors. For each thread that
is successfully described by any of the processes that we are considering, we select the
model that better fits the data using BIC. In panel A we show the distribution of those
threads as a function of their popularity, i.e., their number of posts. In panel B we show
the distribution as a function of the time length of the thread instead, i.e., the difference
in minutes between the last and first posts.

These results partially confirm our hypothesis, as the dynamics of most threads can
be well described with Hawkes processes. However, to fully understand the mechanisms
underlying this system we need to address the question of what is the difference between
those threads that are correctly described and those that are not. In order to do so, we
first determine which is the best model for each thread. We choose to asses this using
the Bayesian information criterion (BIC) as it penalizes more those models with several
parameters than AIC. This is quite important given that each choice of the kernel yields a
different amount of parameters.

In figure 4.7A we plot the distribution of thread size (total number of posts) distin-
guishing which model is better fitted to each thread. The results are quite interesting.
First, the power law kernel without background intensity can only fit a tiny fraction of
very short threads, signaling that the background activity of the forum is very important.
Then, we find that the threads that can be fitted by a homogeneous model tend to be also
rather small. In order to be able to explain larger threads, either the exponential or the
power law kernels with background intensity are needed. Lastly, the longest threads cannot
be described using these models.

These observations seem to point out in a similar direction as in the Facebook work
that we discussed in 4.1. Indeed, in that setting, it was observed that there was a transition
between a regime in which popularity was completely independent from the collective
action of users and a regime in which social influence was important. In a similar fashion,
we find that small threads can be studied as homogeneous Poisson processes, i.e., the
arrival of new posts is independent of the ones that are already there. Conversely, once
social influence comes into play, threads can reach a larger amount of popularity.

The only thing left is to disentangle why the most popular threads cannot be captured
by these models. To do so, in figure 4.7B we show the distribution of thread duration,
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measured as the time elapsed between the very first post and the last one, as a function
of which model better fits the thread. In this case we can see that those threads better
fitted by a homogeneous Poisson model are those that last only for a few minutes. Once
their length is over a few hours, the exponential kernel is needed. For even longer threads,
a slower decay rate is needed, hence the power law fits better. Lastly, threads that are
exceptionally long cannot be fitted by any of these models. This is, however, not surprising.

Recall that in figure 4.3 we saw that the daily patterns of activity highly depend on the
time of the day. Hence, it is to be expected that when a thread last for over a few hours,
the effects that this activity can have in the background intensity start to be noticeable.
Yet, we have considered that the background intensity is constant, something that clearly
goes against this observation. Hence, to be able to explain the behavior of longer threads,
a background intensity that is somehow proportional to the activity of the forum would be
needed.

In conclusion, we have seen that data from discussion boards conveys a large array of
opportunities for research. We have focused on disentangling the underlying dynamics of
the system, for which we have proposed that a self-exciting process would be adequate.
The results presented in this section signal that this hypothesis is correct, showing that
there are two regimes in the forum: one in which activity is essentially random and one
in which social influence plays a key role. However, in order to be able to completely
characterize all types of threads, more complex models, such as background intensities that
depend on the hour of the day, would be needed.

4.2 The dynamics of a crowd controlled game
The intelligence of that creature known as a crowd is the square root of the

number of people in it. (“Jingo”, Terry Pratchett)

Collective phenomena have been the subject of intense research in psychology and
sociology since the XIX century. There are several ways in which humans gather to perform
collective actions, although observations suggest that most of them require some sort of
diminution of self-identity [316]. One of the first attempts to address this subject was
Le Bon’s theory on the psychology of crowds in which he argued that when people are
part of a crowd they lose their individual consciousness and become more primitive and
emotional thanks to the anonymity provided by the group [317]. In the following decades,
theories of crowd behavior such as the convergence theory, the emergent norm theory or
the social identity theory emerged. These theories shifted away from Le Bon’s original
ideas, introducing rationality, collective norms and social identities as building blocks of
the crowd [318, 319].

The classical view of crowds as an irrational horde led researchers to focus on the study
of crowds as something inherently violent, and thus, to seek for a better understanding
and prediction of violence eruption, or at least, to develop some strategies to handle them
[320]. However, the information era has created a new kind of crowd, as it is no longer
necessary to be in the same place to communicate and take part of collective actions.
Indeed, open source and “wiki” initiatives, as well as crowdsourcing and crowdworking,
are some examples of how crowds can collaborate online in order to achieve a particular
objective [321, 322]. Although this offers a plethora of opportunities, caution has to be
taken because, as research on the psychology of crowds has shown, the group is not just
the simple addition of individuals [323]. For example, it has been observed that the group
performance can be less efficient than the sum of the individual performances if they had
acted separately [324]. What are the conditions for this to happen and whether the group
is more than the individuals composing it are two current challenges of utmost importance
if, for instance, one wants to use online crowds as a working force.
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To be able to unlock the potential of collective intelligence, a deeper understanding of
the functioning of these systems is needed [325]. Examples of scenarios that can benefit
from further insights into crowd behavior include new ways to reach group decisions, such
as voting, consensus making or opinion averaging, as well as finding the best strategies to
motivate the crowd to perform some task [326]. Regarding the latter, as arbitrary tasks
usually are not intrinsically enjoyable, to be able to systematically execute crowdsourcing
jobs, some sort of financial compensation is used [327]. This, however, implies dealing
with new challenges, since many experiments have demonstrated that financial incentives
might undermine the intrinsic motivation of workers or encourage them to only seek for
the results that are being measured, either by focusing only on them or by free-riding
[328, 329, 330]. A relevant case is given by platforms such as Amazon’s Mechanical Turk,
that allow organizations to pay workers that perform micro-tasks for them, and that
have already given rise to interesting questions about the future of crowd work [331]. In
particular, its validity to be used for crowdsourcing behavioral research has been recently
called into question [332].

Notwithstanding the previous observations, it is possible to find tasks that are in-
trinsically enjoyable by the crowd due to their motivational nature, which is ultimately
independent of the reward [330]. This is one of the basis of online citizen science. In these
projects, volunteers contribute to analyze and interpret large datasets which are later used
to solve scientific problems [333]. To increase the motivation of the volunteers, some of
these projects are shaped as computer games [334]. Examples range from the study of
protein folding [335] to annotating people within social networks [336] or identifying the
presence of cropland [337].

It is thus clear that to harness the full potential of crowds in the new era, we need
a deeper understanding of the mechanisms that drive and govern the dynamics of these
complex systems. To this aim, here we study an event that took place in February 2014
known as Twitch Plays Pokémon (TPP). During this event, players were allowed to control
simultaneously the same character of a Pokémon game without any kind of central authority.
This constituted an unprecedented event because in crowd games, each user usually has
its own avatar and it is the common action of all of them what produces a given result
[338]. Due to its novelty, in the following years it sprouted similar crowd controlled events
such as The Button in 2015 [339] or Reddit r/place in 2017 [340, 341]. Similarly to those
which came after it, TPP was a completely crowd controlled process in which thousands
of users played simultaneously for 17 days, with more than a million different players
[342]. TPP is specially interesting because it represents an out of the lab social experiment
that became extremely successful based only on its intrinsic enjoyment and, given that
it was run without any scientific purpose in mind, it represents a natural, unbiased (i.e.,
not artificially driven) opportunity to study the evolution and organization of crowds.
Furthermore, the whole event was recorded in video, the messages sent in the chat window
were collected and both are available online3 [343]. Hence, in contrast to the offline crowd
events that were studied during the last century, in this case we possess a huge amount of
information of both the outcome of the event but, even more important, the evolution of
the crowd during the process.

3The chat logs can have either seconds (YYYY-MM-DD HH:MM:SS) or minute (YYYY-MM-DD
HH:MM) resolution. The game started on February 12, 2014 at 23:16:01 UTC, but the first log recorded
corresponds to February 14, 2014 at 08:16:19 GMT+1. Besides, the log data between February 21, 2014
at 04:25:54 GMT+1 and 07:59:22 GMT+1 is missing. We extracted the position of the tug of war meter
that will be described in section 4.2.3 as well as the game mode active at each time from the videos using
optical character recognition techniques.
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4.2.1 Description of the event
On February 12, 2014, an anonymous developer started to broadcast a game of Pokémon

Red on the streaming platform Twitch. Pokémon Red was the first installment of the
Pokémon series, which is the most successful role playing game (RPG) franchise of all time
[344]. The purpose of the game was to capture and train creatures known as Pokémons in
order to win increasingly difficult battles based on classical turn-based combats. However,
as Pokémon Go showed in the summer of 2016, the power of the Pokémon franchise goes
beyond the classical RPG games and is still able to attract millions of players [345].

On the other hand, Twitch is an online service for watching and streaming digital
video broadcast. Its content is mainly related to video games: from e-sports competitions
to professional players games or simply popular individuals who tend to gather large
audiences to watch them play, commonly known as streamers. Due to the live nature of
the streaming and the presence of a chat window where viewers can interact among each
other and with the streamer, in these type of platforms the relationship between the media
creator and the consumer is much more direct than in traditional media [346]. Back in
February 2014, Twitch was the 4th largest source of peak internet traffic in the US [347]
and nowadays, with over 100 million unique users, it has become the home of the largest
gaming community in history [348].

The element that distinguished this stream from the rest was that the streamer did not
play the game. Instead, he set up a bot in the chat window that accepted some predefined
commands and forwarded them to the input system of the video game. Thus, anyone could
join the stream and control the character by just writing one of those actions in the chat.
Although all actions were sent to the video game sequentially, it could only perform one at
a time. As a consequence, all commands that arrived while the character was performing
a given action (which takes less than a second) did not have any effect. Thus, it was a
completely crowd controlled game without any central authority or coordination system in
place. This was not a multiplayer game, this was something different, something new [349].

Due to its novelty, during the first day the game was mainly unknown with only a few
tens of viewers/players and as a consequence little is known about the game events of that
day [350]. However, on the second day it started to gain viewers and quickly went viral,
see figure 4.8. Indeed, it ramped up from 25,000 new players on day 1 (note that the time
was recorded starting from day 0 and thus day 1 in game time actually refers to the second
day on real time) to almost 75,000 on day 2 and an already stable base of nearly 10,000
continuous players. Even though there was a clear decay on the number of new users after
day 5, the event was able to retain a large user base for over two weeks. This huge number
of users imposed a challenge on the technical capabilities of the system, which translated
in a delay of between 20 and 30 seconds between the stream and the chat window. That is,
users had to send their commands based on where the player was up to 30 seconds ago.

Although simple in comparison to modern video games, Pokémon Red is a complex
game which can not be progressed effectively at random. In fact, a single player needs,
on average, 26 hours to finish the game [351]. Nevertheless, only 7 commands are needed
to complete the game. There are 4 movement commands (up, right, down and left), 2
actions commands (a and b, accept and back/cancel) and 1 system button (start which
opens the game’s menu). As a consequence the gameplay is simple. The character is moved
around the map using the four movement commands. If you encounter a wild Pokémon
you will have to fight it with the possibility of capturing it. Then, you will have to face
the Pokémons of trainers controlled by the machine in order to obtain the 8 medals needed
to finish the game. The combats are all turn-based so that time is not an important factor.
In each turn of a combat the player has to decide which action to take for which the
movement buttons along with a and b are used. Once the 8 medals have been collected
there is a final encounter after which the game is finished. This gameplay, however, was
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Figure 4.8: Popularity of the stream. Number of new users that arrived each day.
The histogram is fitted to a gamma distribution with parameters α = 2.66 and β = 0.41.
Note that this reflects those users who inputted at least one command, not the number of
viewers. In the inset we show the total number of users who sent at least 1 message each
hour, regardless on whether they were new players or not.

much more complex during TPP due to the huge number of players sending commands at
the same time and the lag present in the system.

A remarkable aspect of the event is that actions that would usually go unnoticed, such
as selecting an object or nicknaming a Pokémon, yielded unexpected outcomes due to the
messy nature of the gameplay. The community embraced these outcomes and created a
whole narrative around them in the form of jokes, fan art and even a religion-like movement
based on the judeo-christian tradition [352] both in the chat window and in related media
such as Reddit. Although these characteristics of the game are outside of the scope of this
thesis, it is another example of the new possibilities that digital systems bring in relation
to the study of naming conventions and narrative consensus [353]. As we saw in section
4.1.1, language can evolve in digital platforms, with users developing new words that do
not have any meaning outside the habitat where they were created. Not only it is a sign
of the sociological richness of these systems, but also they might provide clues about the
origin and evolution of slang in the offline world.

Returning to the discussion about the gameplay, even if it was at a slower peace,
progress was made. Probably the first thing that comes to ones mind when thinking on
how progressing was possible is the famous experiment by Francis Galton in which he
asked a crowd to guess the weight of an ox. He found that the average of all estimates of
the crowd was just 0.8% higher than the real weight [354]. Indeed, if lots of users were
playing, the extreme answers should cancel each other and the character would tend to
move towards the most common command sent by the crowd. Note, however, that as they
were not voting, actions deviating from the mean could also be performed by pure chance.
In general, this did not have great effects but as we will see in section 4.2.2 there were
certain parts of the game where this was extremely relevant.

It is worth stressing that, to form a classical wise crowd, some important elements are
needed, such as independence [355]. That is, the answer of each individual should not be
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influenced by other people in the crowd. In our case, this was not true, as the character
was continuously moving. Indeed, the big difference of this crowd event to others is that
opinions had effect in real time, and hence, people could see the tendency of the crowd and
change its behavior accordingly. Theoretical [356] and empirical studies [357] have shown
that a minority of informed individuals can lead a näıve group of animals or humans to a
given target in the absence of direct communication. Even in the case of conflict in the
group, the time taken to reach the target is not increased significantly [357] which would
explain why it only took the crowd 10 times more to finish the game than the average
person. Although this amount may seem high, as we shall see later, the crowd got stuck
in some parts of the game for over a day, increasing the time to finish. However, if those
parts were excluded, the game progress can be considered to be remarkably fast, despite
the messy nature of the gameplay.

As a matter of fact, the movement of the character on the map can be probably
better described as a swarm rather than as a crowd. Classical collective intelligence, such
as the opinions of a crowd obtained via polls or surveys, has the particularity stated
previously of independence but, in addition, asynchrony. It has been shown that when
there is no independence, that is, when users can influence each other, as long as the
process is asynchronous the groups decisions will be distorted by social biasing effects [358].
Conversely, when the process is synchronous, mimicking natural swarms, these problems
can be corrected [359]. Indeed, by allowing users to participate in decision making processes
in real time with feedback about what the rest is doing, in some sort of human swarm, it is
possible to explore more efficiently the decision space and reach more accurate predictions
than with simple majority voting [360]. Admittedly, the interaction in the online world
is so different that maybe the term crowd cannot be straightforwardly applied to online
gatherings. In fact, it has recently been suggested that online crowds might be better
described as swarms as something in-between crowds and networks [361].

Even though the characteristics described so far already make this event very interesting
from the research point of view, on the sixth day the rules were slightly changed, which
made the dynamics even richer. After the swarm had been stuck in a movement based
puzzle for almost 24 hours, the developer took down the stream to change the code. Fifteen
minutes later the stream was back online but this time commands were not executed right
away. Instead, they were added up and every 10 seconds the most voted command was
executed. In addition, it was possible to use compound commands made of up to 9 simple
commands such as a2 or aleftright which would correspond to executing a twice or a,
left and right respectively. Thus, the swarm became a crowd with a majority rule to
decide which action to take. As it waited 10 seconds between each command, progress was
slow and, twenty minutes after, that time was reduced to 5 seconds. However, the crowd
did not like this system and started to protest by sending start9 which would open and
close the menu repeatedly impeding any movement. This riot, as it was called, lasted for 8
minutes (figure 4.9), moment when the developer removed the voting system. However, two
hours later the system was modified again. Two new commands were added: democracy
and anarchy, which controlled some sort of tug of war voting system over which rules to
use. If the fraction of people voting for democracy went over a given threshold, the game
would start to tally up votes about which action to take next. If not, the game would
be played using the old rules. This system split the community into “democrats” and
“anarchists” who would fight for taking control of the game. Therefore, the system would
change between a crowd-like movement and a swarm-like movement purely based on its
own group interactions. We will analyze this situation in section 4.2.3.

4.2.2 The ledge
On the third day of the game, the character arrived to the area depicted in figure 4.10

(note that the democracy/anarchy system we just described had not been introduced yet).
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Figure 4.9: Introduction of the voting system. Command distribution after the
first introduction of the voting system. Once the system was back online votes would tally
up over a period of 10 seconds. After 15 minutes the system was brought down to reduce
this time to 5 seconds. This, however, did not please the crowd and it started to protest.
The first start9 was sent at 5d9h8m but went almost unnoticed. Few minutes after, it was
sent again but this time it got the attention of the crowd. In barely 3 minutes it went
from 4 start9 per minute to over 300, which stalled the game for over 8 minutes. The
developer brought down the system again and removed the voting system, introducing the
anarchy/democracy system a few hours later.

Each node of the graph represents a tile of the game. The character starts on the light blue
node on the left part of the network and has to exit through the right part, an event that
we will define as getting to one of the light blue nodes on the right. The path is simple
for an average player but it represented a challenge for the crowd due to the presence
of the yellow L-nodes. These nodes represent ledges which can only be traversed going
downwards, effectively working as a filter that allows flux only downwards. Thus, one good
step will not cancel a bad step, as the character would be trapped down the ledge and will
have to find a different path to go up again. For this reason, this particular region is highly
vulnerable to actions deviating from the norm, either caused by mistake or performed
intentionally by griefers, i.e., individuals whose only purpose is to annoy other players and
who do so by using the mechanisms provided by the game itself [362, 363] (note that in
social contexts these individuals are usually called trolls [364]). Indeed, there are paths
(see red nodes in figure 4.10) where only the command right is needed and which are next
to a ledge so that the command down, which is not needed at all, would force the crowd
to go back and start the path again. Additionally, the existence of the lag described in
section 4.2.1 made this task even more difficult.

In figure 4.11A we show the time evolution of the amount of messages containing each
command (the values have been normalized to the total number of commands sent each
minute) since the beginning of this part until they finally exited. First, we notice that
it took the crowd over 15 hours to finish an area that can be completed by an optimal
walk in less than 2 minutes. Then, we can clearly see a pattern from 2d18h30m to the first
time they were able to reach the nodes located right after the red ones, approximately
3d01h10m: when the number of rights is high the number of lefts is low. This is a signature
of the character trying to go through the red nodes by going right, falling down the ledge,
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Figure 4.10: Network representation of the ledge area. It is possible to go from
each node to the ones surrounding it using the commands up, right, down and left. The
only exception are the yellow nodes labeled L which correspond to ledges. If the character
tries to step on one of those nodes it will be automatically sent to the node right below it,
characteristic that is represented by the curved links connecting nodes above and below
ledges. Light blue nodes mark the entrance and exit of the area and red nodes highlight
the most difficult part of the path. Note that as the original map was composed by discrete
squared tiles this network representation is not an approximation but the exact shape of
the area.

and going left to start over. Once they finally reached the nodes after the red path (first
arrival) they had to fight a trainer controlled by the game, combat which they lost and as
a consequence the character was transported outside of the area and they had to enter and
start again from the beginning. Again, we can see a similar left-right pattern until they
got over that red path for the second time, which in this case was definitive.

The ledge is a great case study of the behavior of the crowd because the mechanics
needed to complete it is very simple (just moving from one point to another), which
facilitates the analysis. But, at the same time, it took the players much longer to finish this
area than what is expected for a single player. To address all these features, we propose
a model aimed at mimicking the behavior of the crowd. Specifically, we consider a n-th
order Markov Chain so that the probability of going from state xm to xm+1 depends only
on the state xm−n, thus accounting for the effect of the lag of the dynamics. Furthermore,
the probabilities of going from one state to another will be set according to the behavior of
the players in the crowd.

To define these probabilities, we first classify the players in groups according to the
total number of commands they sent in this period: G1, users with 1 or 2 commands (46%
of the users); G2, 3 or 4 commands (18%); G3, between 5 and 7 commands (13%); G4,
between 8 and 14 commands (12%); G5, between 15 and 25 commands (6%); and G6, more
than 25 commands (5%). These groups were defined so that the total number of messages
sent by the first three is close to 50,000 and 100,000 for the other three (if we had selected
the same value for all of them, either we would have lost resolution in the small ones or
we would have obtained too many groups for the most active players). Interestingly, the
time series of the inputs of each of these groups are very similar. Actually, if we remove
the labels of the 42 time series and cluster them using the euclidean distance, we obtain 7
clusters, one for each command. Even more, the time series of each of the commands are
clustered together, figure 4.11B. In other words, the behavior of users with medium and
large activities are not only similar to each other, but they are also equivalent to the ones
coming from the aggregation of the users who only sent 1 or 2 commands.

In this context we could argue that users with few messages tend to act intuitively as
they soon lose interest. According to the social heuristics hypothesis [365], fast decisions
tend to increase cooperation, which in this case would mean trying to get out of the
area as fast as possible. Similarly, experiments have shown that people with prosocial
predispositions tend to act that way when they have to make decisions quickly [366]. Thus,
users that send few commands might tend to send the ones that get the character closer

108



Combat First arrival
Combat

Second arrival

0.0

0.1

0.2

0.3

2d17h10m 2d18h30m 2d20h10m 2d21h50m 2d23h30m 3d01h10m 3d02h50m 3d04h10m 3d05h50m 3d07h30m

Time

Fr
ac

tio
n 

of
 in

pu
t

← → ↑ ↓ a b startA

4

10

100

1000

3000

1 10 20 30 40 50 60 70 80

Random noise (%)

M
ea

n 
tim

e 
[h

ou
rs

]

4

10

100

1000

6000

1 10 20 30 40 50 60 70

Random noise (%)

1s
t p

er
ce

nt
ile

 [m
in

ut
es

] Griefers (%)
0
1
2
3
4
5
6
7
8
9
10

C

G1.a
G2.a
G3.a
G4.a
G5.a
G6.a
G1.b
G2.b
G3.b
G5.b
G4.b
G6.b
G2.↓
G1.↓
G3.↓
G5.↓
G4.↓
G6.↓
G1.start
G2.start
G3.start
G4.start
G5.start
G6.start
G6.←
G4.←
G5.←
G2.←
G1.←
G3.←
G3.↑
G4.↑
G5.↑
G6.↑
G1.↑
G2.↑
G6.→
G3.→
G4.→
G5.→
G1.→
G2.→B

Figure 4.11: Study of the ledge event. A) Time evolution of the fraction of commands
sent each minute. Note that a single player should be able to finish this area in a few
minutes, but the crowd needed 15 hours. The time series has been smoothed using moving
averages. B) Hierarchical clustering of the time series of each group of users. C) Left:
Mean time needed to exit the area according to our model as a function of the fraction of
griefers and noise in the system. Right: 1st percentile of the time needed to exit the area,
note that the y axis is given in minutes instead of hours.

to the exit, which would explain why without being aware of it, they behave as those
users that tried to progress for longer. However, coordination might not be so desirable
in this occasion. The problem with players conforming with the majoritarian direction
or mimicking each other is that they will be subject to herding effects [367, 368] which in
this particular setting can be catastrophic due to the lag present in the system. Indeed, if
we set the probabilities in our model so that the next state in the transition is always the
one that gets you closer to the exit but with 25 seconds of delay (that is, the probability
of going from state xm to xm+1 is the probability of going from xm−n to the state which
follows the optimal path), the system gets stuck in a loop and is never able to reach the
exit.

Nevertheless, the chat analysis shows that players were not perfectly coordinated. Thus,
to make our model more realistic we consider that each time step there are 100 users with
different behaviors introducing commands. In particular, we consider variable quantities of
noisy users who play completely at random, griefers who only press down to annoy the
rest of the crowd and the herd who always sends the optimal command to get to the exit.
The results, figure 4.11C, show that the addition of noise to the herd breaks the loops and
allows the swarm to get to the exit. In particular, for the case with no griefers we find
that with 1 percent of users adding noise to the input the mean time needed to finish this
part is almost 3,000 hours. However, as we increase the noise, time is quickly reduced
with an optimal noise level of around 40% of the swarm. Conversely, the introduction of
griefers in the model, as expected, increases the time needed to finish this part in most
cases. Interestingly though, for low values of the noise, the addition of griefers can actually
be beneficial for the swarm, allowing the completion of this area in times compatible to the
observed ones. Indeed, by breaking the herding effect, griefers are unintentionally helping
the swarm to reach their goal.

Whether the individuals categorized as noise were producing it unintentionally or doing
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it on purpose to disentangle the crowd (an unknown fraction of users were aware of the
effects of the lag and they tried to disentangle the system [369]) is something we can not
analyze because, unfortunately, the resolution of the chat log in this area is in minutes
and not in seconds. We can, however, approximate the fraction of griefers in the system
thanks to the special characteristics of this area. Indeed, as most of the time the command
down is not needed −on the contrary, it would destroy all progress−, we can categorize
those players with an abnormal number of downs as griefers. To do so, we take the users
that belong to G6 (the most active ones) and compare the fraction of their inputs that
corresponds to down between each other. We find that 7% have a behavior that could be
categorized as outlier (the fraction of their input corresponding to down is higher than 1.5
times the inter quartile range). More restrictively, for 1% of the players, the command
down represents more than half of their inputs. Both these values are compatible with the
observed time according to our model, even more if we take into account that the model is
more restrictive as we consider that griefers continuously press down (not only near the red
nodes). Thus, we conclude that users deviating from the norm, regardless of being griefers,
noise or even very smart individuals, were the ones that made finishing this part possible.

4.2.3 The politics of the crowd
As we already mentioned, on the sixth day of the game the input system was modified.

This resulted in the start9 riot that led to the introduction of the anarchy/democracy
system. From this time on, if the fraction of users sending democracy, out of the total
amount of players sending the commands anarchy or democracy, went over 0.75 (later
modified to 0.80) the game would enter into democracy mode and commands would be
tallied up for 5 seconds. Then, the meter needed to go below 0.25 (later modified to 0.50)
to enter into anarchy mode again. Note that these thresholds were set by the creator of
the experiment.
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Figure 4.12: Overview of start9 protests throughout the game. A) Fraction of
input corresponding to the start9 command. B) Fraction of users who where in the original
start9 riot (inset, total number of protesters each day). There were start9 protests 10 days
after the first one even though less than 10% of the protesters had been part of the first
one.

The introduction of the voting system was mainly motivated by a puzzle where the
crowd had been stuck for over 20 hours with no progress. Nonetheless, even in democracy
mode, progress was complex as it was necessary to retain control of the game mode plus
taking into account lag when deciding which action to take. Actually, the tug of war
system was introduced at the middle of day 5, yet the puzzle was not fully completed until
the beginning of day 6, over 40 hours after the crowd had originally arrived to the puzzle.
One of the reasons why it took so long to finish it even after the introduction of the voting
system is that it was very difficult to enter into democracy mode. Democracy was only
“allowed” by the crowd when they were right in front of the puzzle and they would go into
anarchy mode quickly after finishing it. Similarly, the rest of the game was mainly played
under anarchy mode. Interestingly, though, we find that there were more “democrats” in
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the crowd (players who only voted for democracy) than “anarchists” (players who only
voted for anarchy). Out of nearly 400,000 players who participated in the tug of war
throughout the game, 54% were democrats, 28% anarchists and 18% voted at least once
for both of them. Therefore, the introduction of this new system did not only split the
crowd into two polarized groups with, as we shall see, their own norms and behaviors, but
also created non trivial dynamics between them.
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Figure 4.13: Politics of the crowd. Days 6 (top) and 8 (bottom). In every plot the
gray color denotes when the game was played under anarchy rules and the green color when
it was played under democracy rules. The polar plots represent the evolution of the fraction
of votes corresponding to anarchy/democracy while distinguishing if the user previously
voted for anarchy or democracy: first quadrant, votes for anarchy coming from users who
previously voted for anarchy (A→ A); second quadrant, votes for democracy coming from
anarchy (A→ D); third quadrant, votes for democracy coming from democracy (D → D);
fourth quadrant, votes for anarchy coming from democracy (D → A). In the other plots
we show the evolution of the total number of votes for anarchy or democracy as a function
of time normalized by its maximum value (orange) as well as the position of the tug of
war meter (blue). When the meter goes above 0.75 the system enters into democracy
mode (green) until it reaches 0.25 (these thresholds were latter changed to 0.80 and 0.50
respectively) when it enters into anarchy mode (gray) again. The gap in the orange curve
in panel D is due to the lack of data in that period.

The first question that arises is what might have motivated players to join into one
group or the other. From a broad perspective, it has been proposed that one of the key
ingredients behind video game enjoyment is the continuous perception of one’s causal
effects on the environment, also known as effectance [370], thanks to their immediate
response to player inputs. In contrast, a reduction of control, defined as being able to
influence the dynamics according to one’s goals, does not automatically lower enjoyment
[371]. This might explain why some people preferred anarchy. Under its rules, players saw
that the game was continuously responding to inputs, even if they were not exactly the
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ones they sent. On the other hand, with democracy, control was higher at the expense
of effectance, as the game would only advance once every 5 seconds. The fact that some
people might have preferred anarchy while others democracy is not surprising as it is well
known that different people might enjoy different aspects of a game [372]. In the classical
player classification proposed by Bartle [373] for the context of MUDs (multi-user dungeon,
which later evolved into what we now today as MMORPGs - massively multiplayer online
role-playing games) he already distinguished four types of players: achievers, who focus
on finishing the game (who in our context could be related to democrats); explorers, who
focused on interacting with the world (anarchists); socializers, who focused on interacting
with other players (those players who focused on making fan art and developing narratives);
and killers, whose main motivation was to kill other players (griefers). Similarly, it has been
seen in the context of FPSs (first person shooters) that player-death events, i.e., loosing a
battle, can be pleasurable for some players (anarchists) while not for others (democrats)
[374].

However, when addressing the subject of video games entertainment, it is always
assumed that the player has complete control over the character, regardless of whether it
is a single player game or a competitive/cooperative game. TPP differs from those cases in
the fact that everyone controlled the same character. As a consequence, enjoyment is no
longer related to what a player, as a single individual, has done but rather to what they, as
a group, have achieved. From the social identity approach perspective this can be described
as a shift from the personal identity to the group identity. This shift would increase
conformity to the norms associated to each group but as the groups were unstructured
their norms would be inferred from the actions taken by the rest of the group [318]. New
group members would then perform the actions they saw appropriate for them as members
of the group, even if they might be seen as antinormative from an outside perspective [375].
This key component of the theory is clearly constated in the behavior of the anarchists.
Indeed, every time the game entered in democracy mode, anarchists started to send start9
as a form of protest, hijacking the democracy. Interestingly, this kept happening even
though most of the players who were in the original protest did not play anymore (see
figure 4.12). Thus, newcomers adopted the identity of the group even if they had not
participated in its conception. Even more, stalling the game might have been regarded as
antisocial behavior from the own anarchists point of view when they were playing under
anarchy rules, but when the game entered into democracy mode it suddenly turned into
an acceptable behavior, something that is predicted by the theory.

To further explore the dynamics of these two groups, we next compare two different
days: day 6 and day 8. Day 6 was the second day after the introduction of the anar-
chy/democracy dynamics and there were not any extremely difficult puzzles or similar
areas where democracy might have been needed. On the other hand, day 8 was the day
when the crowd arrived to the safari zone, which certainly needed democracy mode since
the available number of steps in this area is limited (i.e., once the number of steps taken
inside the area exceeds 500, the player is teleported to the entrance of the zone). We must
note that, contrary to what we observed in section 4.2.2, in this case commands coming
from low activity users are not equivalent to the ones coming from high activity users. In
particular, low activity users tend to vote much more for democracy (see figure 4.14). As a
consequence, although if we only take out the users with just 1 vote the position of the
meter is unaffected, if we remove users with less than 10 votes the differences start to be
noticeable. As such, it would not be adequate to remove low activity users in general from
the analysis. Our results are summarized in figure 4.13.

One of the most characteristic features of groups is their polarization [282, 376]. The
problem in the case we are studying is that as players were leaving the game while others
were constantly coming in, it is not straightforward to measure polarization. The fact that
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Figure 4.14: Tug of war commitment. Hypothetical meter position of the political
tug of war if only votes from commited players - those who sent at least 2 votes (top) or 10
votes (bottom) throughout the whole game - are taken into account (blue) and if only votes
from visitors - only one vote (top) or less than 10 (bottom) - are taken into account (red).
In contrast to the ledge event, the behavior of users who sent few commands clearly differs
from the ones with several commands. Visitors had a clear tendency towards democracy,
while committed players preferred anarchy.

the number of votes for democracy could increase at a given moment did not mean that
anarchists changed their opinion, it could be that new users were voting for democracy
or simply that players who voted for anarchy stopped voting. Then, to properly measure
polarization we consider 4 possible states for each user. They are defined by both the
current vote of the player and the immediately previous one (note that we have removed
players who only voted once, but this does not affect the measure of the position of the
meter, see figure 4.14A): A→ A, first anarchy then anarchy; A→ D, first anarchy then
democracy; D → D, first democracy then democracy; D → A, first democracy then
anarchy. As we can see in figures 4.13A and 4.13C the communities are very polarized,
with very few individuals changing their votes. The fraction of users changing from anarchy
to democracy is always lower than 5%, which indicates that anarchists form a very closed
group. Similarly, the fraction of users changing from democracy to anarchy is also very
low, although there are clear bursts when the crowd exits democracy mode. This reflects
that those who changed their vote from anarchy to democracy do so to achieve a particular
goal, such as going through a mace, and once they achieve the target they instantly lose

113



interest in democracy.

With such degree of polarization the next question is how was it possible for the
crowd to change from one mode to the other. To do so, we shift our attention to the
number of votes. In figure 4.13B we can see that every time the meter gets above the
democracy threshold it is preceded by an increase in the total number of votes. Then,
once under democracy mode, the total number of votes decays very fast. Finally, there
is another increment before entering again into anarchy mode. Thus, it seems that every
time democrats were able to enter into their mode they stopped voting and started playing.
This let anarchists regain control even though they were less users, leading to a sharp decay
of the tug of war meter. Once they exited democracy mode, democrats started to vote
again to try to set the game back into democracy mode. In figure 4.13D we can see initially
a similar behavior in the short periods when democracy was installed. However, there is a
wider area were the crowd accepted the democracy, this marks the safari zone mentioned
previously. Interestingly, we can see how democrats learned how to keep their mode active.
Initially there was the same drop on users voting and on the position of the meter seen in
the other attempts. This forced democrats to keep voting instead of playing, which allowed
them to retain control for longer. Few minutes later the number of votes decays again
but in this case the position of the meter is barely modified probably due to anarchists
finally accepting that they needed democracy mode to finish this part. Even though they
might have implicitly accepted democracy, it is worth noting that the transitions A→ D
are minimum (figure 4.13C). Finally once the mission for which the democracy mode was
needed finished, there is a sharp increment in the fraction of transitions D → A.

4.2.4 The challenges of digital crowds
In this section we have analyzed a crowd based event where nearly 1 million users

played a game with the exact same character. Remarkably, the event was not only highly
successful in terms of participants but also in length, lasting for over two weeks. As we
discussed in the introduction of section 4.2, motivating a crowd to complete a project is
not an easy task. Yet, this event is an example that this can happen even in the absence
of any material reward, signaling once again that online crowds have their own rules which
might depart from what has been studied in the offline world.

Although the overall success of the event is probably due to a mixture of many factors,
there is one that we can extract from the chat logs which is quite interesting. The game
was disordered, progress was slower than if played individually, and often really bad actions
were taken (such as mistakenly releasing some of the strongest Pokémons) which might
have led to frustration. Indeed, by looking at the stretchable words sent by the users
[377] it is possible to measure the frustration the players felt during the event, figure
4.15. Although usually frustration has a negative connotation, in the context of games
it has been observed that frustration and stress can be pleasurable as they motivate
players to overcome new challenges [378]. Actually, there is a whole game genre known
as “masocore” (a portmanteau of masochism and hardcore) which consists of games with
extremely challenging gameplay built with the only purpose of generating frustration on
the players [379]. Similarly, there are games which might be simpler but that have really
difficult controls and strange physics, such as QWOP, Surgeon Simulator or Octodad,
which are also built with the sole aim of generating frustration [380]. Thus, the mistakes
performed by the crowd might have not been something dissatisfactory but completely the
opposite, they might have been the reason why this event was so successful.

One of the particularly frustrating areas was the ledge, a part of the game that can be
completed in a few minutes but that took over 15 hours to complete. We have seen that
in this area the behavior of low and high activity users is quite similar, even though they
might have been unaware of it. Besides, we have built a model to explain how the crowd
was able to finally exit this part and shown how a minority - either in the form of griefers,
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Figure 4.15: Measures of frustration. A) Players expressed their frustration by
adding more times the letter o when they wanted to say no. Even though frustration was
present throughout the event, it was incremented after the events of what is known as
Bloody Sunday. B) Distribution of the number of o. Interestingly, the relationship is not
linear as the word noo tends to appear less than nooo or noooo, which indicates that when
players were frustrated they overexpressed it. C) Number of messages containing the word
why per hour. This indicates that many players did not understand the actions of the
crowd, which probably made them feel frustrated.

smart users or simply näıve individuals - can lead the crowd to a successful outcome, even
in the lack of consensus. Note also that the fact that they only needed roughly 1/3 of the
time to traverse the area on their second attempt compared to their first one might be
a signal of the crowd learning how to break the herding effect. Unfortunately, with just
two observations we cannot test this hypothesis. It would be interesting, though, to design
experiments inspired by this event with the purpose of measuring if the crowd is able to
learn and, if it does so, how long does it take, what would happen if a fraction of the crowd
is substituted by new players, etc.

To conclude this section, we have also analyzed the effects that the introduction of a
voting system had in the crowd. We have seen how the crowd was split into two groups
and we have been able to explain the behavior of these groups using the social identity
approach. We saw how norms could last within groups longer than their own members,
as predicted by the theory. Note that this theory was introduced during the 1980s, way
before Internet was as widespread as it is today, and still it can be applied, at least in this
case, to online groups. Hence, despite the many differences that exist between the online
and offline worlds, maybe they are not that far apart after all.
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5
Conclusions

Do you know the saying “The whole is greater than the sum of the parts?” It is
an insane statement. It is a nonsense. But now I believe that it is true.

(“Thief of Time”, Terry Pratchett)

We began this thesis showing that usually science advances in small steps, rather than
in big leaps. This observation is even truer for complex systems, where a unified theory
does not exist yet (if it ever does) and all we have is a collection of short stories.

In chapter 2 we focused on studying one of the most important tools used in complex
systems, networks. In particular, we addressed the problem of how to create adequate null
models for a network as a function of the availability of data. Recall that the most näıve
approximation is to use random graphs, as something to compare the real network against.
However, this procedure has two main drawbacks. First, it is possible that the microscopic
structure of the network is such that it yields higher order structures not present in random
graphs. Although this is clearly valuable information, it might fool us into thinking that
the system under consideration evolved to specifically create those structures. Instead, it
is possible that they are just a direct consequence of lower order properties, which should
then be the focus of our research.

The other main issue is that, as networks can be used in a huge amount of systems
with very diverse characteristics, comparing a real network with a completely random
graph might lead us to think that the network is stranger than it actually is. For instance,
it has been observed that in friendship networks the number of triangles (i.e., if A and
B are friends and B and C also, then A and C are friends too) is much larger than in
random networks. This is indeed an important property of these networks. Yet, if we were
given a new friendship network, we might not be interested in measuring if the number of
triangles is larger than expected at random, because we already know that it will probably
be. Instead, it might be more enlightening to check if that number is higher than in other
friendship networks, or in a null model that reflects the common characteristics of these
networks. This example can be extended to a lot of different systems. As a consequence,
there is almost one null model for each application that we can think of.

When we wanted to study the anomalies present in the betweenness centrality of trans-
portation networks, we could have created a null model that specifically took into account
the characteristics of these systems, such as the population living in each municipality, their
size, etc. Instead, we chose to follow the framework inspired by Jaynes of seeing statistical
physics as a problem of information, which yielded the exponential random graph model.
This more general framework allowed us to determine that the observed anomalies were
just a consequence of the weight distribution. Hence, rather than wondering why these
networks exhibit those anomalies, the focus should be on studying the mechanisms leading
to those weight distributions. Furthermore, this study also highlighted the importance of
having the proper amount of data.

We concluded the chapter applying the formalism to create multilayer contact networks
using data of both the contact distribution of individuals and their age mixing patterns.
We showed how said information can be extracted from real datasets and introduced into
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the model to generate realistic contact networks. Note that in this case we did not want to
create a null model for comparison processes, but rather to build networks in an unbiased
way given the available data. Thus, another advantage of the exponential random graph
model is that it unifies several problems into one unique framework.

In chapter 3, we focused on the mathematical study of epidemic spreading. We followed
the historical development of the field, from the simplest approximation to highly detailed
models. Moreover, at each step, we observed the influence of including more data in the
models. In the first case, we saw that the challenge of incorporating data is not only
restricted to the problem of obtaining it, but that it is also really important to be aware of
its characteristics. In particular, we saw that the age contact matrices cannot be näıvely
applied to any population, as they already encode implicitly some information about it.
Thus, if the population changes, the matrices also have to change.

Next, we created a highly realistic numerical model for the spreading of influenza-like
diseases and showed that common theoretical assumptions might not be good enough to
capture the complexity of the process. In particular, we observed that the definition of
one of the most important quantities in epidemiology, the basic reproduction number,
does not successfully capture the real dynamics of the epidemic. The reason was that the
mathematical definition relies on several assumptions that are invalidated by data.

On the other hand, the third study was focused on extending the theoretical models
of disease spreading in multilayer networks to the case in which the direction of the
links is known. We showed that populations in which the underlying network possesses
some directionality are more resilient against an epidemic that those that are completely
undirected. Admittedly, thanks to online social platforms, it is much easier to obtain this
information for social systems. Nevertheless, the basic formulation can be easily adapted
to analyze the spreading of information. Hence, our results also imply that the role that
platforms in which the communication is undirected can play a very different role from the
ones that are directed.

Lastly, we analyzed the consequences of using different epidemic models as a function
of data availability, with particular emphasis on the networks that we created at the end of
chapter 2. We saw that the more data we have, the better, but that for some applications
the simplest models with less data can also provide valuable information. In particular,
even though knowledge of the underlying network is crucial to determine the epidemic
threshold, information on the age structure of the population is essential for the correct
definition of risk groups.

To conclude, in chapter 4, we analyzed two examples of collective social behavior using
data extracted from very different sources. First, we showed that Hawkes processes can be
effectively used for the analysis of online boards such as Forocoches. Furthermore, we were
able to distinguish two different types of activity, one that was independent from the rest of
the users and another one in which the social component of the process was indispensable.
We finished the chapter studying an online crowd event, Twitch Plays Pokémon. We saw
that despite its unique characteristics, some properties of the online crowd were similar
to the ones that offline crowds exhibit signaling, once again, that modern societies are
intertwined with the online world.

To sum up, we have overviewed a tiny fraction of the field of complex systems, with
special emphasis on the role that new data can have in problems ranging from the most
theoretical work to highly realistic computer simulations. We hope that this collection of
short stories will show the huge diversity of problems that are still open in the field of
complex systems and, at the same time, shed some light on them.
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5.1 Future work
There are multiple ways in which the results presented in this thesis can be extended,

either to deepen our knowledge of particular systems or to increase our global understanding
of complex systems. Some of them have already started, while others are currently just
projects.

In chapter 2, we focused on studying the exponential random graph model. Despite
its many advantages, it is important to bear in mind that it also has its drawbacks. For
instance, the computational resources needed for numerically obtaining the parameters of
the model can be quite large, depending on the size and characteristics of the networks.
Furthermore, there are currently many researchers, coming from very different fields, who
want to use networks but lack the technical background needed to understand this model.
For this reason, one of the next steps will be to summarize all the possible null models
found in the literature, systematically studying their advantages and disadvantages. The
objective of this work will be to provide a reference to those researchers working on complex
systems who might not be used to study networks and, hence, are not aware of the pitfalls
that simple techniques can have.

Regarding chapter 3, note that the main driver of the four studies was data: (1) how to
handle data; (2) theory vs data-driven simulations; (3) improving theories in light of new
data; and (4) combining data. Thus, in future works we will continue to explore new data
sources, sometimes using them to improve theoretical approaches, at other times to create
more realistic simulations in which many different types of data can be combined. For
instance, we are currently studying a new dataset which contains information about the
daily routines of workers in a hospital, with the objective of devising effective strategies for
the reduction of the spreading of health care associated infections.

Lastly, in chapter 4, we saw two examples of online collective behavior. For the case
of Forocoches, there is still a lot of work to do. Regarding its dynamics, we can add
non-constant background intensities to better characterize the behavior of threads, or
explore further the relation between the success of a thread and its content (or the users
that participate in it). Furthermore, the data itself can also be used to study the creation
and evolution of memes as we hinted, or as a complement for the analysis of events that are
currently mainly studied using data from Twitter. On the other hand, the work of Twitch
Plays Pokémon can be considered, for the moment, closed, although it has sprouted some
ideas about mimicking the rules of the game in simpler settings, in order to be able to
perform controlled experiments on the behavior and organization of crowds. Nevertheless,
this chapter has also shown that there are many new research opportunities in online
systems, sometimes with connections to the “classical” offline world, but at other times
with completely different characteristics. We will be vigilant, and as new data appears and
new phenomena are uncovered, we will explore them.
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D. H. Hall, and S. W. Emmons, Whole-animal connectomes of both Caenorhabditis
elegans sexes, Nature, vol. 571, pp. 63–71, Jul 2019.

[113] F. Reif, Fundamentals of statistical and thermal physics. McGraw-Hill, Inc., 1965.

[114] M. Kardar, Statistical Physics of Particles. Cambridge University Press, 2007.

[115] W. T. Grandy, Foundations of Statistical Mechanics. D. Reidel Publishing Company,
1987.
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F. Players, Algorithm discovery by protein folding game players, Proc. Natl. Acad.
Sci. U.S.A., vol. 108, pp. 18949–18953, Nov 2011.

[336] M. Bernstein, D. Tan, G. Smith, M. Czerwinski, and E. Horvitz, Collabio: A Game
for Annotating People within Social Networks, in UIST09, Oct 2009.

[337] C. F. Salk, T. Sturn, L. See, S. Fritz, and C. Perger, Assessing quality of volunteer
crowdsourcing contributions: lessons from the Cropland Capture game, Int. J. Digital
Earth, vol. 9, pp. 410–426, Apr 2016.

[338] A. Birke, H. Schoenau-Fog, and L. Reng, Space Bugz!: A Smartphone-controlled
Crowd Game, in Proceeding of the 16th International Academic MindTrek Conference,
MindTrek ’12, (New York, NY, USA), pp. 217–219, ACM, 2012.

[339] Description of The Button event, https://perma.cc/HLV8-NTBL. Accessed: 2019-08.

[340] T. F. Müller and J. Winters, Compression in cultural evolution: Homogeneity and
structure in the emergence and evolution of a large-scale online collaborative art
project, PLoS One, vol. 13, Sep 2018.

[341] J. Rappaz, M. Catasta, R. West, and K. Aberer, Latent Structure in Collaboration:
The Case of Reddit r/place, arXiv, 2018.

[342] Guinness World Records 2015 Gamer’s Edition. Guinness Book, Nov 2014.

[343] Chat logs and videos of the whole event, https://archive.org/. Accessed: 2019-08.

140

https://dx.doi.org/10.1109/EMR.2010.5559142
https://dx.doi.org/10.1145/1600150.1600175
https://dx.doi.org/10.1257/jel.37.1.7
https://dx.doi.org/10.1111/j.0956-7976.2004.00757.x
https://dx.doi.org/10.1162/003355300554917
https://dx.doi.org/10.1145/2441776.2441923
https://dx.doi.org/10.1016/j.jesp.2017.01.006
https://dx.doi.org/10.1016/j.jesp.2017.01.006
https://dx.doi.org/10.1109/MCSE.2015.65
https://dx.doi.org/10.1109/MCSE.2015.65
https://dx.doi.org/10.1109/MC.2006.196
https://dx.doi.org/10.1073/pnas.1115898108
https://dx.doi.org/10.1145/1622176.1622195
https://dx.doi.org/10.1145/1622176.1622195
https://dx.doi.org/10.1080/17538947.2015.1039609
https://dx.doi.org/10.1080/17538947.2015.1039609
https://dx.doi.org/10.1145/2393132.2393176
https://dx.doi.org/10.1145/2393132.2393176
https://perma.cc/HLV8-NTBL
https://dx.doi.org/10.1371/journal.pone.0202019
https://dx.doi.org/10.1371/journal.pone.0202019
https://dx.doi.org/10.1371/journal.pone.0202019
https://arxiv.org/abs/1804.05962
https://arxiv.org/abs/1804.05962
https://archive.org/


[344] Pokémon passes 300 million games sold, https://perma.cc/DC6H-GTMV. Accessed:
2019-08.

[345] T. Althoff, R. W. White, and E. Horvitz, Influence of Pokémon Go on Physical
Activity: Study and Implications, J. Med. Internet Res., vol. 18, p. e315, Dec 2016.
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A
Resumen en español

En el último cuarto del siglo XX se cuestionó la visión reduccionista que hab́ıa pre-
dominado en el desarrollo de la f́ısica hasta entonces. En su lugar, se propuso que los
sistemas se organizan en jerarqúıas de forma que el nivel superior tiene que seguir las
reglas del nivel inferior y, al mismo tiempo, puede exhibir sus propias leyes, las cuales no
pueden inferirse a partir de las de sus componentes fundamentales. Esta observación llevó
a la creación de un nuevo campo conocido como sistemas complejos. No obstante, esta
nueva visión no estaba restringida a sistemas puramente f́ısicos. Se observó que sistemas
muy diferentes provenientes de una gran cantidad de campos distintos, desde ecoloǵıa a
socioloǵıa o economı́a, pod́ıan ser analizados como sistemas complejos. Es más, permitió a
los f́ısicos contribuir con sus conocimientos y herramientas al desarrollo de la investigación
en dichas áreas.

En esta tesis abordamos problemas de tres áreas de los sistemas complejos: redes, que
son una de las principales herramientas matemáticas utilizadas para estudiar sistemas
complejos; difusión de epidemias, que ha sido uno de los campos en los que la aplicación
de una perspectiva de sistemas complejos ha resultado más exitosa; y el estudio del
comportamiento colectivo, el cual ha atráıdo una gran atención en los últimos años dado
la gran cantidad de datos que están ahora disponibles gracias a las redes sociales. De
hecho, los datos serán también el hilo conductor de la discusión sobre las otras dos áreas
previamente mencionadas. En particular, usamos nuevas fuentes de información para
desafiar algunas de las asunciones clásicas que se han hecho tanto en el estudio de las redes
como en el desarollo de los modelos de difusión de epidemias.

En el caso de las redes, estudiamos el problema de los modelos nulos utilizando
herramientas provenientes de la f́ısica estad́ıstica. Gracias a ello, demostramos que anomaĺıas
encontradas en algunas redes pueden ser simplemente una consecuencia de una excesiva
simplificación de los modelos utilizados para estudiarlas. A continuación, extendemos este
marco para generar redes de contacto para el estudio de la propagación de epidemias en
poblaciones en las que tanto la estructura de contactos como la distribución de edad de la
población son importantes.

Posteriormente, seguimos el desarrollo histórico de la epidemioloǵıa matemática y
repasamos las asunciones que se hicieron cuando no hab́ıa suficientes datos sobre el
verdadero comportamiento de este tipo de sistemas. Mostramos que una de las cantidades
más utilizadas en este tipo de estudios, el basic reproduction number, no está adecuadametne
definido en sistemas reales. De forma similar, extendemos el marco teórico utilizado para
estudiar la propagación de epidemias en redes dirigidas a sistemas multicapa. Además,
mostramos que el reto de incorporar datos a los modelos no está restringido únicamente
al problema de obtenerlos, sino que también es muy importante ser conscientes de sus
caracteŕısticas para hacerlo adecuadamente.

Finalmente, conclúımos la tesis estudiando dos ejemplos de comportamiento colectivo
utilizando datos extráıdos de sistemas online. Para ello, utilizamos técnicas que fueron
desarrolladas originalmente para estudiar otro tipo de sistemas, como la predicción de
terremotos. No obstante, demostramos que también pueden ser utilizados para estudiar
este nuevo tipo de sistemas. Es más, demostramos que a pesar de sus caracteŕısticas únicas,
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poseen propiedades similares a las que han sido observadas en el mundo offline. Esto no
solo implica que las sociedades modernas están entrelazadas con el mundo online, sino que
señala que, si queremos entender los sistemas socio-técnicos, una visión hoĺıstica, como la
propuesta por los sitemas complejos, es indispensable.
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B
Conclusiones en español

Comenzamos esta tesis mostrando que normalmente la ciencia avanza en pequeños
pasos, en lugar de en grandes saltos. Esta observación es todav́ıa más acertada en el caso
de los sistemas complejos, donde una teoŕıa unificada actualmente no existe (si es que lo
hace alguna vez) y todo lo que tenemos es una colección de historias cortas.

En el caṕıtulo 2 nos centramos en estudiar una de las herramientas más importantes
utilizadas para el estudio de los sistemas complejos, las redes. En particular, abordamos el
problema de cómo crear modelos nulos adecuados para redes en función de la cantidad de
datos disponible. Recordemos que la propuesta más simple era utilizar redes aleatorias,
como algo con lo que comparar las redes reales. Sin embargo, este procedimiento tiene
dos grandes desventajas. Primero, es posible que la estructura microscópica de la red
sea tal que resulte en estructuras de orden superior no presentes en las redes aleatorias.
Aunque esto claramente es información útil, puede llevarnos a pensar que el sistema en
consideración evolucionó espećıficamente para crear dichas estructuras. Sin embargo, es
posible que sean simplemente una consecuencia directa de las propiedades de orden inferior,
las cuales deveŕıan ser entonces el objetivo de la investigación.

El otro principal problema es que, dado que las redes puedes ser utilizadas en una gran
variedad de sistemas de caracteŕısticas muy diversas, comparar una red real con una red
completamente aleatoria puede llevarnos a pensar que es más rara de lo que realmente es.
Por ejemplo, se ha observado que en las redes de amistad el número de triángulos (i.e.,
si A y B son amigos y B y C también, entonces A y C son amigos también) es mucho
mayor que en redes aleatorias. Esto es ciertamente una propiedad importante de estas
redes. No obstante, dada una red de amistad, es posible que no estemos interesados en
medir si el número de triángulos es mayor el esperado al azar porque ya sabemos que
seguramente lo será. En su lugar, puede resultar más adecuado comprobar si dicho número
es superior al de otras redes de amistad, o en comparación con modelos nulos que reflejen
las caracteŕısticas comunes de estas redes. Este ejemplo puede ser extendido a una gran
cantidad de sistemas. En consecuencia, hay prácticamente un modelo nulo para cada
aplicación en la que podamos pensar.

Cuando estudiamos las anomaĺıas presentes en la betweenness de redes de transporte,
podŕıamos haber utilizado un modelo nulo que espećıficamente tuviese en cuenta las
caracteŕısticas de estos sistemas, como la población que reside en cada municipalidad, su
tamaño, etc. En su lugar, elegimos seguir el marco inspirado por Jaynes según el cual la
f́ısica estad́ıstica puede ser entendida como un problema de información, lo que resulta en
el modelo de redes aleatorias exponenciales. Este marco general nos permitió determinar
que las anomaĺıas observadas eran simplemente una consecuencia de la distribución de
pesos. Por tanto, en lugar de preguntarnos por qué estas redes muestran estas anomaĺıas,
el objetivo debeŕıa ser estudiar los mecanismos que llevan a dichas distribuciones de pesos.
Es más, este estudio también demostró la importancia de poseer la cantidad adecuada de
datos.

Conclúımos el caṕıtulo aplicando el formalismo para crear redes de contacto multicapa
utilizando tanto datos sorbe la distribución de contactos como sobre los patrones de
interacción por edad. Mostramos que dicha información puede ser extráıda de bases de
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datos reales e introducida en el modelo para generar redes de contacto realistas. Cabe
destacar que en este caso no queŕıamos crear un modelo nulo para realizar comparaciones,
sino para construir redes de forma no sesgada dados los datos disponibles. Por consiguiente,
otra ventaja del modelo de redes aleatorias exponenciales es que unifica varios problemas
bajo una única formulación.

En el caṕıtulo 3, nos centramos en el estudio matemático de la propagación de epidemias.
Seguimos el desarrollo histórico del campo, desde la aproximación más simple hasta los
modelos más detallados. Es más, en cada paso, comprobamos el efecto de incluir más
datos en los modelos. En el primer caso, mostramos que el reto de incorporar datos en los
modelos no se reduce simplemente a conseguir la información, sino que también es muy
importante ser conscientes de sus caracteŕısticas. En particular, vimos que las matrices de
contactos por edad no pueden aplicarse directamente a cualquier población, ya que poseen
información impĺıcita sobre la misma. Por tanto, si la población cambia, las matrices
también deberán cambiar.

A continuación, creamos un modelo númerico altamente realista para estudiar la
propagación de epidemias similares a la gripe y mostramos que las asunciones teóricas
comúnmente aceptadas tal vez no sean lo suficientemente buenas como para capturar
la complejidad del proceso. En particular, observamos que la definición de una de las
cantidades más importantes en epidemioloǵıa, el basic reproduction number, no captura
adecuadamente la verdadera dinámica del sistema. La razón era que la que la definición
matemática se sosteńıa sobre una serie de asunciones que son contradichas por los datos.

Por otra parte, el tercer estudio estaba centrado en extender los modelos teóricos
de propagación de epidemias en redes multicapa al caso en el que la dirección de los
enlaces es conocida. Mostramos que las poblaciones en las que la red de contactos posee
alguna direccionalidad son más resistentes de cara a una epidemia que aquellas que
son completamente no dirigidas. Ciertamente, gracias a las plataformas sociales online,
resulta más sencillo conseguir este tipo de datos para sistemas sociales. En cualquier
caso, la formulación básica puede ser adaptada fácilmente para analizar la propagación
de información. Por tanto, nuestros resultados también implican que el papel que pueden
jugar las plataformas en las que la comunicación es no dirigida es muy diferente del que
pueden jugar las que son dirigidas.

Finalmente, analizamos las consecuencias de usar diferentes modelos de epidemias en
función de la disponibilidad de datos, con particular énfasis en las redes que fueron creadas
al final del caṕıtulo 2. Mostramos que cuantos más datos, mejor, pero que para algunas
tareas los modelos más simples con menos datos también pueden aportar información
relevante. En concreto, aunque conocimiento sobre la red de contactos subyacente es crucial
para determinar el epidemic threshold, tener información sobre la estructura de edad de la
población es crucial para definir correctamente los grupos de riesgo.

Para concluir, en el caṕıtulo 4, analizamos dos ejemplos de comportamiento colectivo
utilizando datos extráıdos de fuentes muy diferentes. Primero, mostramos que los procesos
de Hawkes pueden ser utilizados de forma efectiva para el análisis de foros de discusión
online como Forocoches. Además, fuimos capaces de distinguir dos tipos muy diferentes de
actividad, uno que era independiente de la actividad del resto de usuarios y otra en la que
el componente social del proceso es indispensable. Terminamos el caṕıtulo estudiando un
evento de masas online, Twitch Plays Pokémon. Observamos que a pesar de sus singulares
caracteŕısticas, algunas de las propiedades de los grupos online son similares a las de los
grupos offline mostrando, una vez más, que las sociedades modernas están interlazadas
con el mundo online.

En resumen, hemos revisado una pequeña fracción de los sistemas complejos, con
especial énfasis en el rol que las nuevas fuentes de datos pueden tener en problemas que
van desde los trabajos más teóricos a simulaciones computacionales altamente detalladas.
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Confiamos en que esta colección de historias cortas mostrará la gran diversidad de problemas
que siguen abiertos en el campo de los sistemas complejos y, al mismo tiempo, arrojará
algo de luz sobre ellos.

B.1 Perspectivas
Existen múltiples formas en las que los resultados de esta tesis pueden ser extendidos,

algunas de ellas para incrementar nuestro conocimiento sobre sistemas particulares y otras
para aumentar nuestro entendimiento global de los sistemas complejos. Actualmente
algunas ideas ya han comenzado a desarrollarse, mientras que otras son simplemente
proyectos.

En el caṕıtulo 2 nos centramos en estudiar el modelo de redes aleatorias exponen-
ciales. A pesar de sus grandes ventajas, es importante tener en cuenta que también
posee algunos inconvenientes. Por ejemplo, los recursos computacionales necesarios para
obtener numéricamente los parámetros del modelo pueden ser muy elevados, en función
del tamaño y las caracteŕısticas de las redes. Además, actualmente existen numersos
investigadores, provenientes de muy diversas áreas, que quieren utilizar redes pero que
carecen del conocimiento técnico necesario para poder entender este modelo. Por ello, uno
de nuestros próximos proyectos será hacer una gran revisión de los modelos nulos que
existen en la literatura, estudiando sistemáticamente sus ventajas y desventajas. El objetivo
de este trabajo será servir de referencia a aquellos investigadores trabajando en sistemas
complejos que no estén acostumbrados a estudiar redes y que, por tanto, desconocen los
inconvenientes que las técnicas más simples poseen.

En cuanto al caṕıtulo 3, cabe destacar que el hilo conductor de los cuatro estudios
eran los datos: (1) cómo manejar los datos; (2) teoŕıa frente a simulaciones basadas en
datos; (3) mejorar las teoŕıas a la luz de nuevos datos; y (4) combinar datos. Por tanto,
en futuros trabajos seguiremos explorando nuevas fuentes de datos, a veces utilizándolas
para mejorar los modelos teóricos, otras veces para crear simulaciones más realistas en
las que múltiples fuentes de datos sean combinadas. Por ejemplo, actualmente estamos
trabajando con un nuevo conjunto de datos que posee información sobre las rutinas diarias
de los trabajadores en un hospital, con el objetivo de diseñar estrategias efectivas para la
reducción de la propagación de las infecciones asociadas con la atención sanitaria.

Finalmente, en el caṕıtulo 4, vimos dos ejemplos de comportamientos colectivo online.
En el caso de Forocoches, todav́ıa hay mucho trabajo por hacer. En lo que respecta
a su dinámica, podemos añadir intensidades de fondo no constantes para caracterizar
más adecuadamente el comportamiento de los hilos, o explorar más a fondo la relación
entre el éxito de un hilo y su contenido (o con los usuarios que participan en él). Es
más, estos datos pueden ser utilizados también para estudiar la creación y evolución de
memes que brevemente hemos mencionado, o como complemento para el análisis de eventos
que actualmente se estud́ıan principalmente usando datos de Twitter. Por otra parte,
el trabajo de Twitch Plays Pokémon puede ser considerado, por el momento, cerrado,
aunque ha dado lugar a una serie de ideas sobre imitar las reglas del juego en sistemas más
sencillos, con el objetivo de realizar experimentos controlados sobre el comportamiento y
la organización de los grupos humanos. No obstante, este caṕıtulo ha mostrado también
las numerosas oportunidades de investigación que existen los sistemas online, en ocasiones
conectadas con el mundo offline “clásico”, en otras con caracteŕısticas completamente
diferentes. Estaremos vigilantes y cuando lleguen nuevos datos y se descubran nuevos
fenómenos , los exploraremos.
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