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Chapter 1Introdu
tionMany real systems from very di�erent �elds, su
h as food webs [1�3℄, theele
tri
al power grids, the so
ial entanglement of a
quaintan
es [4℄, the WordWideWeb or the Internet [5�7℄, were almost intra
table just a few years ago dueto both their large number of individuals and the 
omplexity of the patternof 
onne
tions among them. They all have been re
ently 
hara
terized asnetworks [8�13℄, opening a new and very promising subje
t for resear
hers allover the world.In a few words, a network 
an be de�ned as a set of nodes or individuals,and a set of 
onne
tions or links that represent some kind of physi
al or ab-stra
t relationship among them. Spe
i�
ally, a network 
an be 
onsidered 
om-plex if it has a pattern of 
onne
tions highly non trivial. These systems havefound in Graph Theory a useful tool that allow to study, analyse, reprodu
eand des
ribe them a

urately, extra
ting some 
ommon stru
tural features to
hara
terize and organize them a

ordingly. And surprisingly enough, mostof real networked systems seem to share some of these stru
tural features, re-gardless their parti
ular origin, thus entitling this new dis
ipline, far beyondsimple ane
dotal fa
ts.Other real examples are neural networks of animals [14℄ (where the nodesare neurons, and links represent 
hemi
al synapses), 
ellular and metaboli
networks [15℄ (where nodes stand for the di�erent mole
ules or metabolites thattake part on the system of 
hemi
al rea
tions, and a link between two of themmeans that one is the rea
tive and the other one is its produ
t), the networkof a
tors in Hollywood (two a
tors have a link if they have worked togetherin a �lm), the 
o-authorship and 
itation networks of s
ientists (similarly, twos
ientist will share a link if they have a 
ommon paper, or two papers will havea link between them if one 
ites the other, respe
tively), the air transportationnetwork (nodes stand for airports and links represent dire
t �ights between an



2 Chapter 1. Introdu
tionorigin and a destination) or the network of sexual human 
onta
ts (where alink binds two human beings that have had sex together).On the other hand, the fa
t that all of them have 
omplex stru
tures hasbeen proven to strongly a�e
t the out
ome of the great variety pro
esses that
an take pla
e on top of them, in 
omparison with well-mixed situations oreven latti
e underlying stru
tures. Thus, it modi�es sometimes drasti
ally theassumptions as well as the 
on
lusions one 
an make from su
h systems. Forexample, the dynami
s of disease spreading is very di�erent depending on theso
ial stru
ture one 
onsiders for the propagation pro
ess (and so are the mea-sures that should be taken in order to e�e
tively �ght it o�), or when dealingwith tra�
 jams in the road-network or on the Internet, it is also essential toknow the topology underneath, in order to design e�e
tive strategies.In �gure 1.1 we show some other examples of real networks: (a) representsthe email network from the members of the Universitat Rovira i Virgili (Spain),where we 
an 
learly see di�erent bran
hes (or 
ommunities), 
orrespondingto di�erent departments and areas within those departments [16℄, (b) is thenetwork that 
ombines lo
al metropolitan 
ommuters and long-range airlinetravelers during a global epidemi
 [17℄, and (
) shows the New Testament so
ialnetwork (http://www.esv.org/blog/2007/01/mapping-nt-so
ial-networks/).The �rst attempts to model su
h real networks were over-simplifying: lat-ti
es and regular random networks [18℄ were foremost used to try to en
apsu-late some of the basi
 
hara
teristi
s of these 
omplex networks. In a latti
e,the individuals are arranged at regular distan
es in one, two or three spa-tial dimensions, with a �xed number of neighbors (or 
oordination number).On the other hand, random graphs are just a set of individuals with aleatory
onne
tions among them, but without any order or periodi
ity. One 
an only
hara
terize the distribution of probability for the number of those 
onne
tionsin the system by a Poisson distribution, so there is a well-de�ned mean value,or it 
an also be given by a Dira
-delta, whi
h means that every element inthe system has exa
tly the same number of neighbors. Nonetheless, the 
on-
ept of dimensionality is hard to de�ne in random graphs, and also in 
omplexnetworks in general.Obviously, and despite its undeniable importan
e as �rst attempts in thematter, these kind of models are unrealisti
 representations of real systems.Due to its la
k of a

ura
y, they fail to explain some features su
h as thewell-know small-world or six degrees phenomenon [19, 20℄. Roughly speaking,it implies that any two individuals in the network are likely to be 
onne
tedthrough a very short sequen
e of intermediate a
quaintan
es. This has beenthe subje
t of ane
dotal observation and folklore for a long time: often we meeta stranger and dis
over, astonished, that we have an a
quaintan
e in 
ommon.
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(a) (b)

(
)Figure 1.1: Some examples of real networks: (a) the email network from the Universi-dad Rovira-Virgili (Spain) [16℄, (b) the network of lo
al metropolitan 
ommuters andlong-range airline travelers during a global epidemi
 [17℄ and (
) the New Testamentso
ial network (obtained from the homepage of the English Standard Version Bible:http://www.esv.org/blog/2007/01/mapping-nt-so
ial-networks/).



4 Chapter 1. Introdu
tionNonetheless, it �nally be
ame a signi�
ant area of study in the so
ial s
ien
es,in large part through the striking experiments by Stanley Milgram in the 1960's[21℄. Later on, it has been shown that many other real networked systems, su
has te
hnologi
al or biologi
al ones, display often this feature.Besides, in these so
ial networks, it is very likely that two di�erent friendsof a person have also met (high 
lustering 
oe�
ient). Moreover, these twoproperties usually appear simultaneously in real networks, so both should betaken into a

ount if one wants to model reality with some a

ura
y. Onthe one hand, latti
es a
hieve the se
ond property, but not the �rst one, andfor random topologies, it happens the other way around. Thus the next stepwas to try to model a network that 
ombines both features, and the Small-word network [10℄ does it. This parti
ular model was the �rst one to en
losesimultaneously the two properties of real networked systems mentioned before,and it works as follows: departing from a regular latti
e, and by randomlyrewiring a 
ertain per
entage of the links, the network gets some short
utsbetween otherwise distant nodes, so they will have a low value for the averagepath length, like random graphs, but still with a high value of the 
lustering
oe�
ient, like latti
es.As an ulterior improvement in realism at modeling, one 
an 
onsider yetanother very 
ommon feature among real networks, that is the heterogeneityin the number of 
onne
tions a node has: we all know people that are reallypopular, and some other people that are in
urably unso
iable. In the same way,there are a few very important airports and a lot of medium and even moresmall ones. None of the previous models a

ounted for this parti
ular feature,and were the so-
alled S
ale-free (SF) networks the ones that did it. Thisparti
ular kind of networks, have a power-law degree distribution (it is, theprobability of �nding a node with k neighbors), P (k) ∼ k−γ , with 2 < γ < 3.Usually, real networks are not stri
tly power-lawed, but they do present somedegree of heterogeneity.As we have already mentioned, there are very di�erent 
ontexts wherenetworks 
an appear (zoology, bio
hemistry, so
iology, te
hnology...) and sothe pro
esses that will take pla
e on top of them 
an be very di�erent as well:from disease or rumor spreading to syn
hronization dynami
s, tra�
 jams and
ooperation. This last one is parti
ularly interesting for us, sin
e there are
ountless examples of 
ooperation in Nature: 
ell 
ooperate to form tissues,organs 
ooperate to form living organisms, and of 
ourse, when it 
omes togroups of individuals, very 
omplex phenomena 
an arise: they 
an 
ooperatewithin a family to raise their o�spring, form hunting parties, form allian
es,sti
k together in order to redu
e the risk of predation, and in general, to formso
ieties...



5However, why 
ooperation emerges and survives in hostile environments,when defe
ting is a mu
h more pro�table sort-term strategy, is a question thatstill remains open.A lot of resear
hers are 
urrently trying to answer that 
hallenging question,at least partially, and some key ideas have been pointed out so far, su
h as kinsele
tion or the ne
essity of prote
ting the o�spring or the family in general(for obvious evolutionary reasons, or as the geneti
ist and evolutionary biologisJ.B.S. Haldane said: 'I will jump into the river to save two brothers or eight
ousins'), the bene�t of 
ooperating with someone you will probably meet againin the future (dire
t re
ipro
ity) or if you gain some (good) reputation be
auseof it (indire
t re
ipro
ity, see [22℄ and referen
es therein). On the other hand,for repeated-en
ounter situations, where individuals have some kind of memoryof the past or even plans for the future, there are some 
omplex strategies that
an be more su

essful than others...Game theory attempts to mathemati
ally 
apture the behavior of su
hindividuals in strategi
 situations, in whi
h their su

ess in making 
hoi
es(that is measured in terms of bene�ts) depends on the 
hoi
es of others. Evo-lutionary Game Theory is a bran
h of Game Theory that studies the timeevolution of large populations of individuals who repeatedly play a game andare exposed to evolutionary pressures (sele
tion and repli
ation, with or with-out mutation), and it has been proven to be the mathemati
al framework todeal with questions su
h as the problem of evolution of 
ooperation. Spe
i�-
ally, the Prisoner's Dilemma game has been widely used [22�30℄ as a perfe
tmetaphor for the study of 
ooperation among individuals, where it is 
learlymore pro�table to defe
t regardless the opponent's strategy, but also it wouldbe better for the two adversaries if both of them de
ided to 
ooperate, insteadof defe
ting.We are interested in 
ooperation on very simple s
enarios: when individ-uals have no memory or plan for the future at all, and they do not re
ognizetheir families nor have reputations to keep. Thus, we want to study the merelystru
tural fa
tors that 
an help 
ooperation in a given situation. Spe
i�
ally,we have 
on
ern over analyzing the reasons why 
ooperation seems to be en-han
ed not only by spatial stru
ture su
h as latti
es [31�33℄, but in parti
ular,by heterogeneity in the distribution of 
onne
tions [34�45℄, as opposed to whathappens in more regular environments, like random graphs.Therefore, in the �rst part of this Thesis, we will address the problem ofthe maintenan
e of 
ooperation in 
omplex stati
 topologies, 
omparing thedynami
s on top of two fundamental kind of networks: random and s
ale-free. We will model the issue of 
hoosing between 
ooperation and defe
tionthat individuals have to make via the paradigmati
 and well-known Prisoner's



6 Chapter 1. Introdu
tionDilemma game. This is a very simple 2× 2 game, where there are two playerswho 
an 
hoose between two distin
t strategies: 
ooperate and defe
t. Anddepending on its strategy and its opponent's 
hoi
e, they will get an a

uratelyde�ned bene�t (usually given by a payo� matrix). Essentially, the problem isthat, given the payo� matrix of this game, to defe
t is the safest strategy,regardless the one the opponent 
hooses, but, if both de
ided to 
ooperate,they would get higher payo� than if both of them defe
t (hen
e, the dilemma).Thus, we will study how 
ooperators and defe
tors in the system, sponta-neously and after a transient period of time, arrange themselves at a mi
ro-s
opi
 level, giving rise to very di�erent organization patterns, whi
h will be atthe root of the distin
t levels of average 
ooperation a
hieved in the networks.On the other hand, we are well aware that real networks are not stati
entities at all: not only there 
an be di�erent dynami
s evolving on top ofthem, but also the stru
ture of the network itself usually 
hanges over time.New nodes 
an enter the system, others 
an disappear and also new 
onne
-tions 
an be established or erased. Moreover, the pro
esses that take pla
e ontop of them 
an shape the topology, and the other way around as well. So,we 
onsider that a natural next step in our study of 
ooperation in 
omplexnetworks should be a model where the dynami
s and the growth of the net-work are entangled. In this way, the se
ond part of this Thesis will be devotedto developing two di�erent models of growing networks that re�e
t some ofthe 
hara
teristi
s of an evolving real network. Thus, in both our models, theout
ome of the dynami
s will be taken into a

ount for the growth. Spe
i�-
ally, the dynami
s will be again the Prisoner's Dilemma game, and the payo�obtained by the nodes will a�e
t its 
apability of attra
ting links from thenew
omers. Nonetheless, the two models di�er in the kind of dependen
e be-tween the probability of atta
hment of the new nodes with the payo� of thosealready present in the system, and, on the other hand, the way a node evalu-ates if it will keep its 
urrent strategy or not, by 
omparing with its neighborswill also be di�erent in both models. Besides, we will analyse, along withthe average levels of 
ooperation a
hieved in every 
ase, the stru
tures that
an emerge from these 
ombined pro
esses, depending on the spe
i�
 values ofthe parameters of the system. And in order to do that, we will measure therelevant topologi
al magnitudes, su
h as the degree distribution, the averagepath length and the 
lustering 
oe�
ient of the resulting networks. Moreover,we will establish some 
omparisons between the results obtained with thesemodels, when the �nal size is a
hieved, and those known for �xed-size stati
networks, su
h as Erdös-Rényi (ER) random networks, Barabási-Albert (BA)s
ale-free networks and random s
ale-free networks.



Chapter 2Some basi
 
on
epts onComplex Networks and GamesSin
e this Thesis is mainly devoted to the study of one parti
ular game, namelythe Prisoner's Dilemma, on 
omplex networks (stati
 ones in the �rst part ofit, and two more sophisti
ated models that 
ombine the growth with the playin the se
ond), we 
onsider that it is useful to state and explain �rst somenotions on both networks and games. So, in this 
hapter, we want to providejust a few very basi
 
on
epts and de�nitions on Complex Networks and GameTheory that we will use later on during the full elaboration of this Thesis. Wehope they will help setting the basis to understand our work perfe
tly, so thereader will not need any external help to 
omprehend, and also it will serveas an introdu
tion to the two fundamental 
omponents on whi
h this Thesisis based.2.1 Complex NetworksThe study of 
omplex networks is a relatively re
ent �eld, and it has beeninspired by the observation of many real systems, su
h as biologi
al, so
ialor te
hnologi
al ones. In the �rst part of this 
hapter we want to give a fewexamples of real networks, just to motivate the study of su
h stru
tures, byestablishing its ubiquity in natural and arti�
ial systems. Then, we will givesome of the basi
 de�nitions needed in order to properly des
ribe networks[12℄, su
h as the degree of a node, the degree distribution of a network, the
lustering 
oe�
ient or the average path length. On the other hand, we willalso explain some useful models for building di�erent kinds of graphs, su
h asthe Erdös and Rényi (ER), the Barabási-Albert (BA) or the Small-World by



8 Chapter 2. Some basi
 
on
epts on Complex Networks and GamesWatts and Strogatz model. Finally, we will mention some of the many possiblepro
esses that 
an take pla
e on top of 
omplex networks.2.1.1 Examples of real networksAs it has been pointed out along the Introdu
tion of this Thesis, many real sys-tems [9, 11, 12℄ 
an be des
ribed as 
omplex networks, and this relatively newapproa
h 
an provide new insights to better understanding, and tools to dealwith unsolved problems. In very di�erent �elds, su
h as biology, immunology,so
iology, te
hnology or e
onomi
s, there are plenty of examples of networks.In every parti
ular �eld, both the nodes and the links of the networks willrepresent 
ompletely di�erent things, but the fa
t that this kind of stru
turesare so ubiquitous in Nature, is surprising and very promising.One 
an 
onsider te
hnologi
al stru
tures, su
h as the air transportationnetworks for a parti
ular region or for the whole planet, where the nodes areairports and the links represent dire
t �ights between them, the road networks
onne
ting 
ities or the power grids that supply ele
tri
ity to a 
ountry, withits power stations represented by nodes and the links standing for the wires.There is also the WWW, where nodes are web pages 
onne
ted by hiperlinks,and the Internet (see �gure 2.1 (Left)), made up of billions of hosts, physi
ally
onne
ted among them. Sin
e modern so
ieties depend strongly on these in-frastru
tures, it is obviously very important to have detailed information aboutthem, in order to be able to predi
t its behavior or a
t 
orre
tly during a 
risis.In biology, there are several examples as well, like food webs on an e
osys-tem (see �gure 2.1 (Right)), or in a more basi
 level, the metaboli
 networksof di�erent pro
esses. On the other hand, maybe some of the more tangled
omplex networks one 
an 
onsider (from the point of view of both number ofinter
onne
tions and variability over time) are those that des
ribe so
ial rela-tionships, where nodes are people, and links represent some kind of intera
tion:from groups of mere friends, people with similar interests or 
ollaborators insome parti
ular �eld [16, 46℄ (s
ienti�
 
ollaborations or 
itations, or networksof musi
ians that play together regularly,...), to sexual 
onta
t networks or newglobal phenomena like Fa
ebook, MySpa
e or Twitter. It 
ould be be
ause ofthe 
omplex nature of the human being itself, that su
h so
ial stru
tures 
anbe often so fas
inating.On the other hand, we want to point out that, when dealing with realnetworks one has to take into 
onsideration that the available data 
an (andprobably will) have mistakes: there 
an be missing or spurious nodes or links.Some e�ort has been put to try to obtain the 'real network' and its topologi
alproperties out of the observational data (see for example [47℄).
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(a) (b)

(
)Figure 2.1: (a) Gene regulation network for the My
oba
terium Tuberulosis. Everynode represent a gene, and the links stand for the regulation relationship betweena trans
ription fa
tor and the 
orrespondent regulated gene. Di�erent 
olors meandi�erent 
hara
ter of the genes, as far as regulation dynami
s is 
on
ern. (J. Sanz etal. 2010, in preparation.) (b) Food web of the Caribbean 
oral reef lo
ated in thePuerto Ri
o Virgin Islands. Node 
olor represents trophi
 level: red nodes representbasal spe
ies, su
h as plants and detritus, orange nodes represent intermediate spe
ies,and yellow nodes represent top spe
ies or primary predators. Links 
hara
terize theintera
tion between two nodes, and the width of the link attenuates down the trophi

as
ade, so a link is thi
ker at the predator end and thinner at the prey end (Originalimage from [1℄, and generated by FoodWeb3D).(
) Visualization of a portion of theInternet, using over 5 · 106 edges. The 
olors represent di�erent geographi
al regions.In the inset it is shown a parti
ular node and its neighborhood. (Original image from'The Opte Proje
t': http://www.opte.org ).
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on
epts on Complex Networks and GamesFinally, the kind of pro
esses that will take pla
e on top of them 
an bevery diverse (syn
hronization, tra�
 of information or something else, diseaseor rumor spreading, games,...), but it is very useful to be able to 
hara
terizethem stru
turally as pre
isely as possible �rst, trying to �nd out what are themain and more relevant features all of them share, if any. Moreover, as we willsee later on, the stru
ture will be a key fa
tor in the out
ome of any pro
essor dynami
s that will take pla
e on top of su
h stru
tured systems. Thus, wewill address next the topologi
al 
hara
terization of 
omplex networks.2.1.2 De�nitionsA network is a set of items (
alled nodes, points or verti
es), with some 
on-ne
tions between them (links, lines or edges). A 
omplex network is a networkwith non-trivial topologi
al features, i.e. its stru
ture is irregular and 
omplex-as opposed to latti
es, for example, that present total spatial regularity-, orthey 
an even evolve in time, adding or losing nodes and/or links.Mathemati
ally, we 
an represent a network using graph theory. A graph
G = (N ,L), 
onsists of two sets, N and L, where N = {n1, n2, ..., nN} are thenodes, and L = {l1, l2, ..., lK} are the links. Obviously, N is the total numberof nodes of the network, and K is the total number of links, whi
h has to bea non-negative number, whose maximum is N(N − 1)/2 (when the graph is
omplete, i.e. every node is 
onne
ted to everyone else). A spe
i�
 node ofthe network is denoted by a label i in the set N . On the other hand, everylink 
onne
ts a pair of elements of N , i and j, and is denoted by lij . Thereby,the pair of nodes i and j are 
alled adja
ents or neighbors. The usual way ofrepresenting a network graphi
ally is by drawing a dot for every node and aline for every link that 
onne
ts a pair of nodes. In addition to this, we 
analso de�ne a subgraph G′ = (N ′,L′), of the graph G = (N ,L), if N ′ ⊆ N and
L′ ⊆ L. A spe
ial 
ase would be the subgraph of all the neighbors of a givennode i and its 
orresponding links, denoted by Gi. On the other hand, a graphis said to be 
onne
ted if, for every pair of nodes i and j, there is a path to gofrom one to the other. If there is not su
h a path for at least one pair of nodes,then the graph will be dis
onne
ted or un
onne
ted, and it will have therefore,two or more dis
onne
ted subgraphs.Besides, another very useful way of representing a network is by using thematri
ial representation. Given a graph G = (N ,L), the adja
en
y matrix Aijis a N × N square matrix, whose entry aij (i, j = 1, 2, ..., N) is equal to 1when the link lij exists, and zero otherwise. Nonetheless, for implementationor pra
ti
al purposes, we 
an use the 
onne
tivity matrix Cij of the graph, thatis a Nxkmax matrix, where kmax is the maximum 
onne
tivity of the nodes



2.1. Complex Networks 11of the graph, and where the row i of it 
ontains all the neighbors of the node
i (ordered usually, but not ne
essarily, from the �rst to the last to 
onne
twith it when 
onstru
ting the network). And we 
an also de�ne a matrix ofthe pairs of neighbors, Dij , whi
h is a Lx2 matrix, whose entries dl1 and dl2are the pairs of nodes that are neighbors, with (l = 1, 2, ..., L), and being Lthe total number of links in the network. The de�nition of these two matri
esis not for rigorous mathemati
al purposes, but nonetheless, they will be veryuseful in order to implement them on programs and numeri
al simulations.Degree of a node and degree distribution of a networkThe degree or 
onne
tivity of a node is the number of neighbors it has. Usingthe adja
en
y matrix, we 
an formally de�ne the degree of a node as:

ki =
∑

j∈N

aij (2.1)If the graph is dire
ted, then ki will have two 
omponents: the ingoing links
kini =

∑

j aij and the outgoing links kouti =
∑

j aji, so the total degree will be
ki = kini + kouti .On the other hand, the main and most basi
 topologi
al 
hara
terizationof the whole network is the degree distribution. We 
an de�ne the degreedistribution of the graph, P (k), as the fra
tion of nodes in the network thathave 
onne
tivity k, or equivalently, the probability that a node randomly
hosen from the network has k neighbors. For example, random graphs (alsoknown as 'one-peaked' or 'single-s
aled') have a Poissonian degree distribution,while the P (k) for a so-
alled s
ale-free network is a power law.For dire
ted graphs, we will have two di�erent distributions, P (kin) and
P (kout).Thus, the mean degree of the graph, 〈k〉 is the �rst moment of the degreedistribution:

〈k〉 =
∑

k

kP (k) (2.2)Furthermore, the se
ond moment of the distribution, 〈k2〉 is the measure ofthe �u
tuations of the 
onne
tivity distribution. As we will see later on, 〈k2〉diverges in the limit of in�nite graph size for s
ale-free graphs for 
ertainvalues of the exponent of the power-law distribution, whi
h is a very interestingproperty, that a�e
ts greatly the out
ome of the dynami
s that 
an take pla
eon top of su
h topologies. For an un
orrelated graph, i.e. if the degree of everynode is 
ompletely independent of its neighbors', then the degree distribution
P (k) is enough to des
ribe the statisti
al properties of the network. But if
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on
epts on Complex Networks and Gamesthe network is 
orrelated, as it usually happens in many real systems, thenthe probability that a node of degree k has a neighbor with 
onne
tivity k′,depends on k. In that way, we 
an de�ne the 
onditional probability P (k′|k),that a node with 
onne
tivity k has a neighbor with 
onne
tivity k′. We 
analso 
al
ulate the average degree of the nearest neighbor of nodes with degree
k, given by:

knn(k) =
∑

k′

k′P (k′|k) (2.3)So when the network is un
orrelated, obviously, we have that knn(k) is in-dependent of k, and equal to knn(k) = 〈k2〉/〈k〉, but when it is 
orrelated,then we 
an have assortative networks, if knn(k) is an in
reasing fun
tion of
k, or disassortative ones, when knn(k) is a de
reasing fun
tion of k. The �rst
ase implies that nodes tend to be linked with others with similar 
onne
tivity,whereas in the se
ond one, the highly 
onne
ted ones are mostly linked to thepoorly 
onne
ted ones.Weighted and dire
ted networksDepending on the kind of intera
tion a link des
ribes within the network, it
an be weighted or non-weighted, dire
ted or non-dire
ted, and so will be thenetwork, obviously.If all the intera
tions in the network are alike, or in other words, when alink only establishes the presen
e of an intera
tion between two nodes, then thenetwork is non-weighted. Otherwise, if there are di�erent types of intera
tions,for example, some more important, or more frequent than others, then thelinks are weighted, and so is the graph. In this 
ase, in addition to give theset of nodes and links of the network, we need to spe
ify also the weight ofevery link in order to de�ne a graph. So now we have: G = (N ,L,W), where
W = {w1, w2, ..., wK} is the set of weights, that are real numbers atta
hedto the 
orresponding links. Usually, they will be positive numbers, so thehigher the value, the stronger the link between the pair of nodes, but alsonegative links have been used, des
ribing some kind of repulsive intera
tion,for example [48℄. On the other hand, if a link lij represents that i intera
ts with
j and vi
e versa, then it is 
alled undire
ted, but if in a system i 
an intera
twith j without j intera
ting ne
essarily with i, then in order to des
ribe it
orre
tly, we need dire
ted links. In this 
ase, the adja
en
y matrix will not besymmetri
, in general.
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Figure 2.2: Examples of the lo
al 
lustering 
oe�
ient (of the blue node) for di�er-ent 
onne
ting situations. It is 
omputed as the proportion of 
onne
tions amongits neighbors whi
h are a
tually realized (thi
k bla
k lines) and the number of allpossible 
onne
tions, whi
h in this parti
ular example, is three. For every situation,the missing links are represented with dashed red lines.Average path length, Betweenness and Clustering 
oe�
ientGiven a parti
ular network, it would be interesting to know the minimumdistan
e (geodesi
s) between every pair of nodes, i.e. the sortest path lengths.The knowledge of this information 
on
erning a network 
an be useful for somepro
esses that 
ould take pla
e on top on it, for example information tra�
on the Internet, or rumor spreading on a so
ial 
lub, in order to work the bestthey 
an. Thus, we 
an de�ne a square matrix D, of size N ×N , whose entry
dij is the minimum distan
e between the nodes i and j. On the one hand, themaximum of these dij is 
alled the diameter of the graph, but a more usefulmagnitude to 
hara
terize the network, is the average path length, de�ned asthe mean value of the geodesi
s between every pair of nodes in the network:

L =
1

N(N − 1)

∑

i,j∈N ,i6=j

dij (2.4)One 
an also ask how important or '
entral' a parti
ular node is in a graph,meaning how many sortest paths, or geodesi
s, go through it. Thus, we 
angive a measure of the 
entrality of a node, by de�ning its betweenness:
bi =

∑

j,k∈N ,j 6=k

njk(i)

nij
, (2.5)where njk is the total number of geodesi
s 
onne
ting the nodes j and k, and

njk(i) is the number of geodesi
s 
onne
ting the nodes j and k that go throughthe node i.The betweenness is a useful magnitude when 
onstru
ting 
ommunity de-te
tion algorithms [49, 50℄.
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Figure 2.3: Diagram with some examples of networks, spe
i�
ally random (a), s
ale-free (b) and hierar
hi
al ones (
), and its 
orresponding plots of the 
lustering 
oef-�
ient versus the degree of the nodes. This dependen
e is a power-law for the hier-ar
hi
al stru
tures, while for the other two types, it is 
learly independent. Original�gure from [51℄.Clustering, or transitivity of a node, is a measure of how many trianglesare on the graph, or in other words, how likely is that, if a node i has twoneighbors, say j and k, then the nodes j and k are also linked to ea
h other.First, given a node i and the subgraph of its ki neighbors, Gi, we 
an de�nethe lo
al 
lustering 
oe�
ient of node i as the ratio between the a
tual numberof edges in the subgraph, ei, and the maximum possible number of them in Gi:
ci =

2ei
ki(ki − 1)

=

∑

j,m aijajmami

ki(ki − 1)
(2.6)where aij are the entries of the adja
en
y matrix, de�ned at the beginning ofthis se
tion. On �gure 2.2 we show a diagram of how to 
al
ulate it for threevery simple 
ases.Similarly, we 
an de�ne the 
lustering 
oe�
ient of the whole network, asthe average of ci over all the nodes in it:

C =
1

N

∑

j∈N

ci (2.7)Noti
e that, by de�nition, both the lo
al and the global 
lustering 
oe�
ientsatisfy: 0 ≤ ci ≤ 1 and 0 ≤ C ≤ 1. As we will see, SF networks have lowvalues for the average path length, but relatively high values for the 
lustering
oe�
ient, while random topologies have low values for both magnitudes.
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Figure 2.4: All the possible 3-noded motifs on a dire
ted network.Finally, is worth mentioning that a power-law dependen
e of the 
lustering
oe�
ient with the degree of the node (C ∼ k−1) is typi
al of a hierar
hi
alorganization on the network, whi
h implies that sparsely 
onne
ted nodes arepart of highly 
lustered areas, with 
ommuni
ation between these di�erenthighly 
lustered neighborhoods being maintained by a few hubs (see �gure2.3).Motifs and Communities on networksA motif is a n-noded pattern of 
onne
tions (a subgraph) in a network thatappears at a mu
h higher rate than expe
ted in a randomized version of thesame network (see se
tion 5.1 for a detailed explanation of the randomizingpro
edure). Some real networks, su
h as the metaboli
 ones, display 
hara
ter-isti
 motifs, that seem to be spe
i�
 of ea
h kind of network. On �gure 2.4 weshow as an example, all the possible motifs for a 3-noded dire
ted subgraph.Note that the number of n-noded motifs in
reases rapidly with n.On the other hand, we 
an de�ne a 
ommunity within a network G =

(N ,L), as a subgraph G′ = (N ′,L′) or a set of nodes, that are mu
h more 
on-ne
ted among themselves than with other nodes outside the 
ommunity. Usingjust the sense that the intra-
ommunity 
onne
tions are denser than the inter-
ommunity ones is of 
ourse a qualitative way of des
ribing it. Nonetheless,to be able to dete
t su
h stru
tures e�
iently, a magnitude has been intro-du
ed to determine whether of not a partition of a network into 
ommunitiesis a

urate enough: the modularity.Given an arbitrary network, and an arbitrary partition of it into Nc '
om-munities' (and this time, by this term we mean arti�
ial 
ommunities, just away to part the graph), we 
an build a Nc ×Nc matrix whose entries eij arethe ratio between the number of links starting at a node in 
ommunity i andending at a node in 
ommunity j, and the total number of links present on the
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Pajek PajekFigure 2.5: Some examples of a network with (left) and without (right) 
ommunitystru
ture, both with N = 256 nodes. Original data of the 
ommunity network 
reatedby Dr. L. Izquierdo (http://luis.izqui.org/
ommunities/redes.zip)network (so the sum of any row or 
olumn, ai = ∑

j eij , is the fra
tion of links
onne
ted to the 
ommunity i).In the 
ase of a random partition of the network i.e., if it does not 
or-respond to the a
tual 
ommunity stru
ture, or also if the network itself doesnot have a 
ommunity stru
ture (see �gure 2.5 for some examples of networkswith and without 
ommunity stru
ture), then the fra
tion of links within 
om-munities 
an be estimated as the probability that a link begins at a node inpartition i, ai, multiplied by the fra
tion of links that end at a node in parti-tion i, also ai, so the expe
ted number of intra-
ommunity links is just aiai.We also know the a
tual fra
tion of links ex
lusively within a partition, eii, sonow we 
an 
ompare the two values, and thus, we 
an de�ne the modularityfor a spe
i�
 partition of our network as [49℄:
Q =

Nc
∑

i

(eii − a2ij) (2.8)Obviously, the 
loser to 1 the value of the modularity is, the more a

urate thepartition we have made of the network into 
ommunities. It is worth noti
ingthat it is possible to �nd partitions of random networks that display relativelyhigh values of modularity (up to Q ∼ 0.2). The reason for this is that randomgraphs do have some 
ommunity stru
ture, just due to �u
tuations. Moreover,it is important to stress that the presen
e of 
ommunities on a network 
an notbe dete
ted just via its degree distribution, so we 
an have two graphs with thesame P (k), one of them with 
ommunity stru
ture, and the other one withoutit.
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an easily realize that the spa
e of possible partitions of a given net-work into 
ommunities is huge, so in order to e�e
tively explore the lands
apeof values of Q, and �nd an a

urately enough partition, we will need the helpof some optimization te
hniques. For some very ni
e works on di�erent 
om-munity dete
tion algorithms, see [49, 50, 52, 53℄ and referen
es therein.Finally, we want to mention that it is also possible to 
onsider 
omplextopologies with hierar
hi
al stru
ture, it is to say, networks that have 
ommu-nities within the 
ommunities. In this situation, we deal with several levelsof des
ription of the stru
ture of the system (multis
ale representation) [54℄.Also, one 
an have a system with 
ommunities, where there is some degreeof overlapping among them. This fa
t will make it harder to be a

uratelydete
ted [55℄.2.1.3 Some network modelsIn this se
tion we want to present just a few models for growing networks.Spe
i�
ally, we will address the models to build two of the most used kindof networks: the ER and the BA model for random and s
ale-free networksrespe
tively, sin
e we will use them often, later on in this Thesis, and also thewell-known Small-World model by Watts and Strogatz. On the other hand, wewill explain the Gardeñes-Moreno (GM) model, whi
h interpolates betweenthe ER and the BA model, be
ause we will use it also in some 
hapters to
ome, namely 3 and 4.The ER modelErdös and Rényi proposed a model (ER) [18℄ to generate random graphs with
N nodes and K links, where the term random refers to the disordered nature ofthe arrangement of links between di�erent nodes. There are two possible waysof 
onstru
ting su
h networks: in the �rst one, we start with N dis
onne
tednodes and 
hoose K pairs randomly, to link them with a probability 0 < p < 1,avoiding multiple 
onne
tions between two nodes, and also self-links. Thealternative pro
edure is to start with N dis
onne
ted nodes, and link everypossible 
ouple with probability 0 < p < 1. While the �rst option gets di�erentnetworks with exa
tly K links and an average degree of 〈k〉 = 2K/N , these
ond, gets networks with di�erent number of 
onne
tions, an average degree
〈k〉 = p(N − 1), and the probability of having exa
tly K links in an parti
ularrealization of the network is pK(1− p)N(N−1)/2−K . Nonetheless, both models
oin
ide in the limit of large N , or thermodynami
 limit. The probability of�nding a node with a large 
onne
tivity de
reases exponentially with K, soverti
es with large 
onne
tivity are pra
ti
ally absent.
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Figure 2.6: Diagram of the ER model for random networks with N = 20 nodes.If one starts in
reasing the value of the probability of 
onne
tion, from
p = 0 (nodes totally dis
onne
ted) to p = 1 (
omplete graph), there is aninteresting 
hange of behavior for the 
riti
al value pc = 1/N , so if p < pc,the graph is not 
onne
ted (it has no 
omponent of size greater than O(lnN)),if p > pc, then the graph has a 
omponent of O(N), and the transition at
pc has the typi
al features of a se
ond phase transition. On the other hand,the probability of having a node with k = ki 
onne
tions follows the Binomialdistribution:

P (k = ki) = Ck
N−1p

k(1− p)N−1−k (2.9)where pk is the probability of having k edges, (1− p)N−1−k is the probabilityof the absen
e of the remaining (N − k) links, and Ck
N−1 is the number ofdi�erent ways of sele
ting the end points of these k nodes. Noti
e that, sin
eall nodes of the networks are equivalent, this probability P (k = ki) is also theprobability of 
hoosing randomly a node with ki neighbors. In the limit oflarge N and �xed 〈k〉, the degree distribution of the network 
an be a

uratelydes
ribed by the Poisson distribution:

P (k) = e−〈k〉 〈k〉k
k!

(2.10)Moreover, for this parti
ular topology, the dependen
e of the 
lustering
oe�
ient with the size of the system N is given by:
〈C〉ER = p = 〈k〉/N (2.11)and the average path length, on the other hand shows a dependen
e given by:

〈L〉ER ∼ lnN

ln〈k〉 (2.12)Noti
e that the value of the 
lustering 
oe�
ient tends to zero in the limit oflarge N . It is also important to point out that this model produ
es homoge-neous random graphs, whi
h do not share some topologi
al features with the
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Figure 2.7: Diagram of the random rewiring pro
edure for interpolating betweena one-dimensional latti
e and a random network in the Small-world model. Thenetworks have N = 20 nodes and k = 4. Original �gure from [10℄.real networks, for example, they have low values of the 
lustering 
oe�
ient,and do not show any 
orrelations between nodes.Small-world networksA graph in whi
h, although most pairs of nodes are not dire
tly 
onne
tedto ea
h other, they 
an nonetheless be in tou
h by a small number of stepsis 
alled Small-world network, sin
e it 
aptures this so-
alled phenomenon ofstrangers being linked by a mutual a
quaintan
e (also known as six degreesof separation [19�21℄). Some properties of real networks 
an be well modeledusing Small-world networks, for example so
ial networks, gene networks or theInternet. Nonetheless, it is important to keep in mind that 'small-world' isa 
on
ept that in
ludes several kind of systems: empiri
al data [56℄ suggestthe existen
e of three 
lasses of small-world topologies, as far as its degreedistribution is 
on
ern: s
ale-free networks, broad-s
ale or trun
ated s
ale-freenetworks, and single-s
ale or random networks.The �rst Small-world network model was proposed by D.J. Watts and S.Strogatz [10℄, and it interpolates between a regular graph and a random graph,depending on one parameter p ∈ [0, 1], without altering neither the numberof nodes nor the number of 
onne
tions per node of the original graph. Thisis a random graph generation model that produ
es networks with Small-worldproperties, possessing short average path length and high 
lustering 
oe�
ientprovided the adequate range of the parameter p (see �gure 2.8).
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on
epts on Complex Networks and GamesDeparting from a one-dimensional regular latti
e or a ring, where ea
h nodehas exa
tly the same number of neighbors, z, we rewire every link with a proba-bility p, avoiding multiple 
onnexions between two nodes and self-
onne
tionstoo. In another version of the model, we depart from the ring, where ea
hnode has exa
tly z neighbors, and we add a link between every pair of nodes,with probability p, instead of rewiring the existing links. Regarding the degreedistribution, for p = 0 we have P (k) = δ(k − z), where z is the 
oordinationnumber of the latti
e (z = 4 in the 
ase shown in �gure 2.7); whereas for �nitevalues of p ∈ (0, 1], P (k) still has a peak around z, but it obviously gets broaderas p in
reases. For the 
ases where p ∈ (0, 1], the probability of �nding a nodewith a large 
onne
tivity de
reases exponentially with k, as it happen for ERrandom networks, so verti
es with large 
onne
tivity are pra
ti
ally absent aswell. For p = 0 we keep the initial ring stru
ture, whi
h has high values bothfor the 
lustering 
oe�
ient (C ∼ 3/4), but also for the average path length(L ∼ N/(2k) ≫ 1).On the other hand, for p = 1 we have a random network -though, to be rig-orous, in the se
ond version, there are not any nodes with 
onne
tivity k < z/2,as there would be in a random network built with a me
hanism su
h as ER-.Its average path length is short (L ≈ Lrandom ∼ lnN
lnk ), but whose value for the
lustering 
oe�
ient is also low (C ≈ Crandom ∼ k/n ≪ 1). Nonetheless, thereis an intermediate region of p where we 
an get a network with both features, ahigh value for the 
lustering 
oe�
ient and a short average path length. Thisis due to the presen
e of long-range 
onne
tions or short
uts introdu
ed bythe rewiring pro
edure. Noti
e that the introdu
tion of these short
uts makesthe average path length drop, not only for the pair of nodes involved, but forall their neighbors too. Moreover, the removal of some links from a neighbor-hood due to the rewiring pro
ess, does not a�e
t the 
lustering 
oe�
ient toodrasti
ally, so it remains unaltered for small values of p . 0.01 (see �gure 2.8).In other words, during the dropping of L(p)/L(0), the 
lustering C(p)/C(0)remains almost unaltered, whi
h means that this transition to the Small-worldis undete
table on a lo
al level.Regarding the dependen
e of the small-world behavior with the size of thesystem, it has been shown [57℄ that the emergen
e of this regime o

urs for avalue of p that approa
hes zero as N diverges.The BA modelBoth the Small-world model and the ER model, explained previously, althoughare most undoubtedly very useful and insightful, display two important featuresthat make them very di�erent from the real networks. The �rst one is the



2.1. Complex Networks 21

Figure 2.8: Average path length and Clustering 
oe�
ient for the Small-world model,as a fun
tion of the probability of rewiring p, normalized by their respe
tive values forthe ring, i.e. when p = 0. Noti
e that the x-axis is shown in logarithmi
 s
ale. Thegraphs have N = 103 nodes and 〈k〉. The data shown is the average over 20 di�erentrewiring pro
edures. Original �gure from [10℄.assumption that the whole system is present from the very beginning, it is tosay, that the network has a �xed size N and it does not grow be
ause no newnodes are added. In 
ontrast, it has been observed that most real networks areopen systems, and they get new verti
es that 
onne
t with the ones alreadypresent, so the number N keeps in
reasing throughout the lifetime of the graph.The se
ond one is the supposition that the probability that two verti
es are
onne
ted is uniform. Again, in 
ontrast, most real networks show 
learly apreferential atta
hment: usually, the more 
onne
ted a node is, the more easilyit will get even more neighbors due to the 
onne
tions from new nodes.The Barabási-Albert (BA) [8℄ is a model for building s
ale-free networksthat is based on two fundamental ingredients: preferential atta
hment, i.e. theassumption that the likelihood of re
eiving new edges in
reases with the node'sdegree, and growth. A
tually, variants of the model, with just one of the twoingredients have been tried, but neither of them gets networks with power-law distributions. This was a model originally inspired on the growth of theWorld Wide Web, and, as we have already mentioned, the idea behind it isthat the highly 
onne
ted nodes get new links at a higher rate than the lower
onne
ted ones or, in other words, the 
at
hphrase 'ri
h get ri
her ' [58℄ (alsoknown in so
iology as the Matthew e�e
t [59℄), a phenomenon easily found onreal systems).We start with a little 
ore of m0 dis
onne
ted nodes, and at ea
h time step
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t = 1, 2, 3, ..., N −m0, a new node i is added to the system with m ≤ m0 linksto existing nodes. The probability that an existing node j gets one of the linksfrom the new
omer is proportional to its own 
onne
tivity, kj , in a linear way:

Πj =
kj

∑

l kl
(2.13)Sin
e every new node links to m other nodes, at any given moment t, thenetwork has N(t) = m0 + t nodes and K(t) = mt links. Besides, for largetimes, the average degree of the network is 〈k〉 = 2m. The degree distributionof these networks is a power law, P (k) ∼ k−γ , with γ = 3. These s
ale-free degree distributions imply that there are a lot of nodes with just a few
onne
tions, and a small number of nodes with a very high 
onne
tivity. Thesehighly 
onne
ted nodes are 
alled hubs and they usually play an important rolein most dynami
al pro
esses that 
an take pla
e on the system, as we will seewith some detail during this Thesis. Besides, the degree distribution P (k) ofthe BA networks is independent of time, and thus independent of the size ofthe system, indi
ating that despite its 
ontinuous growth, the system organizesitself into a s
ale-free stationary state.The dependen
e of the 
lustering 
oe�
ient with the size of the system Nis approximately a power law, given by:

〈C〉BA ∼ N−0.75 (2.14)The average path length, on the other hand shows a dependen
e given by:
〈L〉BA ∼ lnN

ln(lnN)
. (2.15)The value of the average path length in BA networks is smaller than in ERnetworks for any value of N , so obviously, the heterogeneous topologies helpbringing the nodes together more than the homogeneous ones. On the other,hand, 
omparing the values for the 
lustering 
oe�
ient, the 
orrespondingvalues for the BA networks are about �ve times higher than for ER networks,and this fa
tor even in
reases slightly with the size of the system. Moreover, itis worth pointing out the existen
e of the so-
alled age 
orrelations [13, 60, 61℄among nodes for the s
ale-free topologies, whi
h means that the older nodes,i.e. the ones that appear �rst on the system, are more likely to end up beinghubs, just by 
onstru
tion, while the later a node appears, probably, the lower
onne
tivity it will get.We 
onsider that it is important to stress again that SF networks builtvia this BA pro
edure have very low values for the 
lustering 
oe�
ient, when
omparing with real networks, so we must admit that this kind of topologies
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e the degree distribution of those systems, but 
an not do thesame for the 
lustering 
oe�
ient. Along these lines, there have been someother models that, based on BA, tried to put a remedy to this fa
t. For exam-ple, the work by P. Holme and B.J. Kim [62℄, presents a model for 
onstru
tingSF networks with tunable 
lustering 
oe�
ient. In few words, this model startswith a set of m0 un
onne
ted nodes and adds a new one to it every time step,up to N . Ea
h one of the new nodes laun
hes m ≤ m0 links. The probabilityof an existing node i to re
eive the �rst link of a new
omer j is proportional toits 
onne
tivity ki, but for the remaining m− 1 links that the new node j hasto establish, there is a probability p to laun
h them to a (randomly sele
ted)neighbor of i, and a probability (1 − p) to laun
h them following the originalpreferential atta
hment rule. In this way, the family of networks we obtainhave all exa
tly the same power-law degree distribution P (k) ∼ k−3, but thehigher the value of the probability p, the higher the value of the 
lustering
oe�
ient (it 
an easily a
hieve values of 0.5, when we re
all that for BA,it tends to zero as N in
reases, so the order of magnitude of a typi
al value
an be around 10−2 for N = 103). For the parti
ular 
ase p = 0, we re
overthe original BA model, obviously. Moreover, with this Holme-Kim model, the
lustering 
oe�
ient is independent of the size of the system, as opposed towhat happens with BA, where it de
reases with N , as we have seen. On theother hand, it is also worth mentioning that, one may think that, by in
reasing
p, the average path length of the �nal stru
ture will de
rease, sin
e some linksthat would help shortening it by linking to nodes far apart, are now linkingnodes in the same neighborhood. As it turns out, the value of the average pathin
reases slightly with the probability p, but the dependen
e with the size ofthe system remains logarithmi
, so we do not lose the 'small-world' propertywith this model.Finally, we also want to remark two points regarding preferential atta
h-ment. First, other me
hanisms for building SF networks have been proposed[63℄, that are not based on growth and preferential atta
hment like the BAmodel is. Instead, an intrinsi
 �tness (from a given probability distribution)is assigned to ea
h node in the system, and then pairs of them are linked to-gether, a

ording to a fun
tion of their �tness. And se
ond, if one 
ombinesgrowth, preferential atta
hment and some aging me
hanism or introdu
es a
ost per link, then one will obtain SF topologies with a 
uto� on the degreedistribution, or even make the s
ale-free regime disappears altogether [56℄.The GM modelThe Gardeñes-Moreno is a model [64℄ that interpolates between Erdös-Rényirandom networks and Barabási-Albert s
ale-free networks as far as the degree
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Figure 2.9: Degree distributions for several networks, obtained for the shown valuesof the parameter α with the GM model, interpolating between the random (α = 1.0)and the s
ale-free (α = 0.0) graphs. The size of the system is Ω = 5 · 103 and
〈k〉 = 2m = 4. Every point is the average over 103 di�erent realizations.distribution is 
on
erned, through a tunable parameter α, so it generates a one-parameter family of networks. This parameter α ∈ [0, 1] determines the degreeof heterogeneity of the network, whose �nal size will be Ω. Thus, α = 0 givesrise to s
ale-free networks and α = 1 to random graphs, and for in-betweenvalues, the topology will have an intermediate degree of heterogeneity.The pro
edure to generate these networks is as follows: we start with asmall fully 
onne
ted 
ore ofm0 nodes, and a set U(0) of (Ω−m0) dis
onne
tednodes. At ea
h time step, a new node j from the set U(0) is 
hosen, and itmakes a link in two possible ways: with a probability α, it atta
hes to anyother node i from the whole set of Ω− 1 nodes with uniform probability:

Πuniform
i =

1

Ω− 1
(2.16)and with probability 1−α, it establishes a link following a preferential atta
h-ment (PA) strategy. This means that the probability for any other node i toget atta
hed to node j is a fun
tion of its 
onne
tivity, in a way given by:

ΠPA
i =

k̂i
pa

+Ai
∑

l∈Ω(k̂l
pa

+Al)
(2.17)where k̂ipa is the in
oming PA degree of the node i, that is, those links re
eivedby i when other node laun
hes (in average) (1 − α)m links following the PA
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tiveness (or �tness) the newnode has when it is introdu
ed in the 
onne
ted 
omponent (either be
auseit is 
hosen at random by any node or be
ause it is laun
hing its m outgoinglinks over the rest of nodes). This asso
iated parameter is zero if the node i isnot in the 
onne
ted set and is Ai = A if it is linked to other nodes, i.e., if itbelongs to N(t). Thus, the preferential atta
hment is strongly 
orrelated withthe simultaneous uniform random linking, and, on the other hand, it is linearwith the in
oming PA degree of the node k̂i
pa. Next, we repeat the linkingpro
edure another m − 1 times for the same node j, and then we repeat thewhole pro
ess altogether for the rest of the nodes, i.e., for another U = Ω−m0more time steps.On �gure 2.9 we show the degree distribution for some networks obtainedwith the GM model, for several values of the parameter α but the same size Ωand average 
onne
tivity k. Noti
e that the transition between heterogeneousand homogeneous topologies is smooth, as α in
reases.2.1.4 Pro
esses on networksSo far in this 
hapter, we have studied some general topologi
al properties ofnetworks, as well as some well-known widely-used models, and some real ex-amples too. Nonetheless, we have to keep in mind that the ultimate goal ofstudying these stru
tures, is to �nally be able to model, des
ribe and predi
tthe di�erent dynami
s that 
an take pla
e on top of them. Those in
lude awide and varied 
olle
tion, su
h as disease [11, 12, 65�71℄ or rumor spreading,syn
hronization [12, 72�76℄, di�usion, tra�
 information and 
ongestion, net-work sear
h and navigation, per
olation, robustness against random failuresor targeted atta
ks [77, 78℄, 
ultural dissemination, opinion formation or lan-guage dynami
s [79℄, and games [42℄. In this se
tion, it is not our intentionto go exhaustively though all of them at all (for some very ni
e reviews onthe subje
t, see [11, 12, 42, 76℄), but just to brie�y examine a few of them,as an example, des
ribing some the most popular models or approa
hes thathave been proposed, and also pointing out the di�eren
es introdu
ed by theunderlying topology on the out
ome of the dynami
s, in 
omparison to the
ase of a well-mixed situation or a latti
e.Disease spreadingEpidemi
 spreading is a very interesting and obviously very important obje
tof study [11, 12, 65�71℄. The aim in this �eld is not only to understand theme
hanisms through whi
h diseases spread on a population, but also to design
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Figure 2.10: S
hemati
 representation of the SIR model.strategies to 
ontrol them, and to be able to prote
t the population fromendemi
 situations.Spe
i�
ally, Compartmental Models in epidemiology stand for some modelsthat, in order to des
ribe the progress of an epidemi
 in a large population
omprising many di�erent individuals, redu
e su
h population diversity to afew key 
hara
teristi
s whi
h are relevant to the infe
tion under 
onsideration.For example, for most 
ommon 
hildhood diseases, su
h as the 
hi
kenpox,that 
onfer long-lasting immunity it makes sense to divide the population intothose who are sus
eptible to the disease, those who are infe
ted and those whohave re
overed and are therefore immune. Thus, one 
an ignore the rest of theinformation about the population, su
h as age distribution or ra
e, be
auseit is irrelevant for the model. These subdivisions of the population are 
alled
ompartments.In parti
ular, one of the more used (and at the same time simple) modelsto study disease spreading is the SIR model. It 
onsiders that the populationis 
ompartmentalized into three possible states: Sus
eptible, Infe
ted (andinfe
tious), and Re
overed (or removed), so a sus
eptible individual 
an getinfe
ted with a 
ertain probability if it is in dire
t 
onta
t with an infe
tedone, and in turn, an infe
ted individual re
overs (or dies) with a di�erent
ertain probability, not being able to get infe
ted again in any 
ase. Thissimple model des
ribes many infe
tious diseases, su
h as measles, mumps andrubella. On �gure 2.10 we show a simple s
heme for the dynami
s of thismodel. Of 
ourse, there are other models mu
h more sophisti
ated, that takeinto a

ount other intermediate states in the infe
tious pro
ess, su
h as laten
y,infe
ted asymptomati
 individuals or va

ination (see for example [80, 81℄).As a �rst approximation, one 
an 
onsider the homogeneous mixing hy-pothesis, whi
h assumes that people with whom a sus
eptible individual has
onta
t are 
hosen at random from the whole population. This is a strong andsomehow questionable assumption, sin
e it does not take into a

ount lo
al de-tails, su
h as individual diversity on the number of a
quaintan
es, 
ommunitystru
ture or geographi
 
onstri
tions. And, on the other hand, one should takeinto a

ount that some illness like the 
ommon 
old, 
an be modeled a

uratelyenough as a random-
onta
t pro
ess, ignoring the so
ial stru
ture underneath,while it has been proved than for some others, su
h as the venereal diseases,
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an not even des
ribe them using a random degree distribution for thepopulation, but a s
ale-free, so in these 
ases, the stru
ture is essential.Nonetheless, this approximation made by the SIR model allows us to de-s
ribe analiti
ally the behavior of the models simply by using ordinary di�er-ential equations for the densities of individuals in ea
h 
ompartment:
ds(t)

dt
= −λk̄ρ(t)s(t) ,

dρ(t)

dt
= −µρ(t) + λk̄ρ(t)s(t) , (2.18)

dr(t)

dt
= µρ(t) ,where s(t), ρ(t) and r(t) are respe
tively, the fra
tion of sus
eptible, infe
tedand re
overed individuals on the population at time t, so s(t)+ρ(t)+ r(t) = 1.On the other hand, one sus
eptible individual be
omes infe
ted (if in 
onta
twith another infe
ted one) with a probability λ, an infe
ted individual re
ov-ers (or dies) with a probability µ, and k̄ stands for the 
onne
tivity of thepopulation, assumed exa
tly the same for everyone.The most relevant predi
tion of this model is the existen
e of a non-zeroepidemi
 threshold,

λc = 1/k̄ (2.19)so if λ > λc, the disease spreads and infe
ts a �nite fra
tion of the population,and if λ < λc, the total number of infe
ted individuals (the so-
alled epidemi
in
iden
e, de�ned as r∞ = limt→∞r(t)) is in�nitesimally small in the limit ofa large population.On the left panel of �gure 2.11 we show an example of time evolution ofthe dynami
s for a meaningful set of the parameters, namely, for λ = 0.94,
µ = 1.0, k̄ = 6 and using as inital 
onditions: s(0) ≃ 1, ρ(0) ≃ 0 and r(0) ≃ 0.On the right panel, it is shown the dependen
e of the epidemi
 in
iden
e withthe infe
tion probability λ.To deal with situations where the population is not well-mixed, or as wehave mentioned before, the nature of the disease itself does not allow us totreat the pattern of intera
tions as homogeneous, we will need to represent thesystem as a graph, where nodes are the individuals (belonging, as usual, to oneof the three possible states: Sus
eptible, Infe
ted or Re
overed), and links arethe intera
tions through whi
h a sus
eptible node 
an be
ome infe
ted, if it hasanother infe
ted node as a neighbor. So now, we want study the SIR pro
esson an un
orrelated heterogeneous network (with generi
 degree distribution
P (k) and a �nite average 
onne
tivity 〈k〉). We will study sk(t), ρk(t) and
rk(t), meaning the time evolution of the fra
tions of sus
eptible, infe
ted and
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s (left) for λ = 0.94, µ = 1.0, k̄ = 6and taking s(0) ≃ 1, ρ(0) ≃ 0 and r(0) ≃ 0 as initial 
onditions, and the dependen
eof the epidemi
 in
iden
e (right) with the probability of infe
tion, λ for µ = 1.0 and
k̄ = 6.re
overed individuals, respe
tively, within a 
onne
tivity 
lass k, and with thenormalization 
ondition sk(t) + ρk(t) + rk(t) = 1 for any given 
onne
tivity
lass and time instant. The global magnitudes are now given by the averageover all the 
lasses of 
onne
tivity present on the graph, so, for example, thetotal fra
tion of infe
ted individuals on the population at a given time t is:
ρk(t) =

∑

k P (k)ρk(t). Here it is important to noti
e that the network is
onsidered stati
, so P (k) does not 
hange over time.The equations for the evolution of the three 
ompartments are similar toequations 2.18, but now we di�erentiate among 
onne
tivity 
lasses:
dsk(t)

dt
= −λksk(t)Θ(t),

dρk(t)

dt
= −µρk(t) + λksk(t)Θ(t), (2.20)

drk(t)

dt
= µρk(t),where Θ(t) is the probability of a given link to point towards an infe
ted node,and is given by:

Θ(t) =

∑

k kP (k)ρk(t)

〈k〉 . (2.21)Noti
e that this probability is the same for any node we 
onsider, so it doesnot take into a

ount any possible 
orrelations between the 
onne
tivity of thenodes.
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an get that there is an epidemi
 threshold, given by:
λc =

〈k〉
〈k2〉 (2.22)below whi
h the epidemi
 in
iden
e is zero, and above whi
h it has a �nitevalue. As we 
an see, this threshold depends inversely on the 
onne
tivity�u
tuations of the network the disease is spreading on, so for a system whosetopology has a �nite value, 〈k2〉, su
h as a random graph, then we get athreshold with a �nite value as well (and, therefore a standard phase transitionsituation). However, for s
ale-free networks, we know that their 
onne
tivity�u
tuations 〈k2〉 diverge when N → ∞, whi
h implies a vanishing epidemi
threshold for in
reasingly larger systems.The absen
e of a threshold in s
ale-free topologies is an important resultthat di�ers drasti
ally from the one obtained for random networks or well-mixed s
enarios, and it should be taken into a

ount, for instan
e, for preven-tion or va

ination strategies to be used by the health authorities, in order toe�
iently �ght o� an epidemi
.On the other hand, it is also worth noti
ing that real networks, even whenthey present some degree of heterogeneity on the 
onne
tions, do have a �nitesize, and thus an e�e
tive threshold, depending on its 〈k〉 and 〈k2〉. Nonethe-less, this value is usually very small for a large enough population, and is
onsiderably smaller than the one for a random graph of the same size.With regard to immunization strategies on s
ale-free topologies, we 
anpoint out that random va

ination is not e�e
tive, sin
e there is always anon-zero epidemi
 in
iden
e, even for very high va

ination ratios among thepopulation. Nonetheless, targeted immunization, i.e., va

inating the most
onne
ted individuals in a population, 
an give better results. On the otherhand, is not always realisti
 to assume that the number of 
onne
tions of anode on a real network 
an be known. A possible solution to this problem isthe va

ination of random a
quaintan
es of random 
hosen individuals, sin
ethe probability of rea
hing a parti
ular node by following a randomly 
hosenedge is proportional to its degree.Finally, we 
an say that for 
orrelated networks it has been found that thequalitative behavior is the same as for un
orrelated networks, although thereare some quantitative di�eren
es: on the one hand, while the likelihood of anepidemi
 outbreak is not modi�ed when taking into a

ount positive 
orrela-tions, the epidemi
 in
iden
e is smaller than in networks without 
orrelations,and on the other hand, the diseases 
an live longer in assortative topologies.
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hronizationSyn
hronization [12, 72�76℄ is a self-organized phenomenon where a set ofindividuals, initially a
ting on their own, gradually be
ome more similar intheir deeds, without any appointed leader or environmental external signal toguide them. In this way, after some time, they start behaving under the samepattern, showing, if not total, at least some identi�able level of 
lo
king: theybe
ame 'in syn
'. There are many examples of syn
hronization in natural andhuman systems: 
ri
kets 
hirping in a summer night, neurons �ring at thesame pa
e, kids playing or singing along on spur of the moment, or groups ofwomen living together, whose periods syn
hronize,...A simple model has been used often in order to address syn
hronization:the Kuramoto model. It approa
hes the problem 
onsidering a mean �eldapproximation, where every individual is an os
illator, and they are all sup-posed to intera
t to everyone else through a purely sinusoidal 
oupling, so thegoverning equations for ea
h one of them is given by:
θ̇i = ωi +

K

N

N
∑

j=1

sin(θj − θi) (2.23)where K is the 
oupling 
onstant, ωi is the natural frequen
y of the os
illator
i, and the fa
tor 1/N is in
orporated to make sure that the system behaves
orre
tly in the thermodynami
 limit. The natural frequen
ies are assumedto be distributed a

ording to some unimodal and symmetri
 fun
tion, whosemean frequen
y is Ω.The 
olle
tive behavior of the whole system is des
ribed by the ma
ros
opi

omplex order parameter:

r(t)eiφ(t) =
1

N

N
∑

j=1

eiθj(t) (2.24)so the modulus 0 ≤ r ≤ 1 measures the phase 
oheren
e of the population,whereas φ(t) is the average phase. The value r ≃ 0 
orresponds to the la
kof syn
hronization (the os
illators move in
oherently) and r ≃ 1 to the 
asewhere almost the whole system is in syn
 (their phases are lo
ked). It 
an bederived the existen
e of a 
riti
al value, Kc, for the 
oupling, whi
h separates a'disordered' from an 'ordered' regime. In this se
ond regime (when K ≥ Kc),there are two types of long term behavior: a group of os
illators for whi
h
|ωi| ≤ Kr, that are phase-lo
ked at frequen
y Ω, and the rest of them, with
|ωi| > Kr, that are drifting around the 
ir
le, sometimes a

elerating andsometimes rotating at lower frequen
ies.
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Figure 2.12: Squemati
 representation of the di�erent paths to syn
hronization dis-played for SF (bottom) and ER (top) networks (higher values of the 
ouplingstrength are shown from left to right. Original �gure from [72℄.If one should in
lude some kind of stru
ture in the population in order togive an a

ount of the 
omplex intera
tion patterns among individuals, then,instead of equation 2.23, one needs to 
onsider an extension of it:
θ̇i = ωi +

N
∑

j=1

σijaij sin(θj − θi) (2.25)where σij a

ounts for the spe
i�
 
oupling strength between individuals i and
j, and aij is the adja
en
y matrix of the network.The mean �eld approa
h for 
omplex networks 
onsiders that every os
il-lator is in�uen
ed by the lo
al �eld 
reated in its neighborhood, so the lo
alorder parameter is proportional to the 
onne
tivity of the node, ki. It 
an beobtained the 
riti
al 
oupling for this situation:

σc = Kc
〈k〉
〈k2〉 . (2.26)It is to say, we get a res
aled 
riti
al value for the all-to-all topology, Kc,by the ratio between the mean 
onne
tivity of the parti
ular network and its�u
tuations. So on
e again, it is 
lear that for random networks there will bea threshold, but for (in�nite) SF networks, this 
riti
al value will tend to zero.Besides, it is important to point out that no exa
t analyti
al results for theKuramoto model on general 
omplex networks are available up to date, butone 
an always numeri
ally simulate its dynami
s. These simulations [72, 75℄
on�rm the theoreti
al predi
tions, sin
e they have shown that the onset ofsyn
hronization �rst o

urs for SF, and as the topology be
omes more homo-geneous, the 
riti
al point moves to larger values, and the system seems tobe less syn
hronizable. On the other hand, the parti
ular paths to syn
hro-nization [72, 76℄ are also very di�erent depending on the underlying stru
ture
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epts on Complex Networks and Games(see �gure 2.12): in SF networks, links and nodes are in
orporated togetherto the largest of the syn
hronized 
lusters, while for homogeneous topologies,what are added are links between nodes already belonging to su
h 
luster,making the route to 
omplete syn
hronization a 'sharper' pro
ess, somehow.In other words, in the presen
e of hubs, a giant 
omponent of syn
hronizedpair of os
illators forms and grows by re
ruiting nodes linked to them, whileon the 
ontrary, in homogeneous stru
tures, many small 
lusters �rst appearand then group together.Cultural disseminationA very interesting aspe
t of human intera
tions is how people from di�erent
ultures, when they meet, 
an relate to ea
h other, 
hanging some of theirown 
ultural traits in the pro
ess. If two individuals do not share any 
ulturalfeatures, it will be probably very hard for them to 
ommuni
ate and intera
t,but if they do have initially something in 
ommon (like some interests, hob-bies, goals or even an aversion against something), they may start some kindof relationship. Moreover, it makes sense to assume that the more similar theyare before meeting ea
h other, the more likely it is for them to intera
t andbe
ome even more similar after that (homophili
). As a result, not only indi-viduals, but also so
ieties 
hange over time due to this me
hanism of 
ulturalin�uen
e. Nonetheless, one 
ould expe
t that these so
ieties be
ame homo-geneous (global) as far as 
ulture is 
on
ern, but as it turns out, sometimesthey do not. Instead, su
h intera
tions 
an give rise to di�erent groups withpra
ti
ally nothing in 
ommon, surprisingly enough.Sin
e R. Axelrod proposed an agent-based model [82℄ to address the issueof 
ultural dissemination in 1997, mu
h e�ort has been put on studying thesekind of pro
esses [79, 83�88℄. We generally 
onsider that an individual's 
ulture
an be represented in terms of a set of attributes, su
h as language, religion,te
hnology, style of dress, literary preferen
es, sport preferen
es, and so on.Thus, an individual 
an be represented with a ve
tor ~Vi = (v1i , v
2
i , ..., v

F
i ), with

i = 1, 2, ..., N , and where F is the total number of features that de�ne a 
ulture.Ea
h one of these 
omponents 
an take only Q integer values, or 
ultural traits,and we assume that Q is the same for the F features. It is worth noti
ing thatwithin this model, we do not 
onsider as '
ultural' those features an individual
an not 
hange, for example skin 
olor or physi
al 
onstitution. Besides, we
onsider our so
iety as pla
ed in a latti
e of size L×L = N , where individualswill intera
t only with their neighbors.On
e we have randomly distributed the initial values for all the featuresof every individual in the system, the 
ultural intera
tion dynami
s is de�ned
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tFigure 2.13: (left) Dependen
e of the largest 
luster of global 
ultural 
onsensuswith the number of traits per feature for a 50× 50 node square latti
e with a 4-nodeneighborhood (blue), ER random network (green) and BA s
ale-free network (red),and always for F = 10. The last two topologies have 〈k〉 = 6 and N = 103 nodes.Every point is the average of 100 independent realizations. (right) Several examplesof time evolution of the relative number of blo
ked links. The underlying topology isa SF network made up of N = 103 nodes and 〈k〉 = 6 and for a �xed value of F = 10.as follows: every time step, an individual i is randomly 
hosen and one of itsneighbors j, is also randomly sele
ted. One measures the overlap between their
ultural ve
tors, given by:
Sij =

1

F

F
∑

l=1

δ(vli − vlj) (2.27)where δ(x) = 1 if x = 0 and δ(x) = 1 otherwise. If these two individuals aretotally di�erent (Sij = 0) or exa
tly the same (Sij = 1), then nothing happensand the link between them is blo
ked. But if it is not the 
ase, Sij ∈ (0, 1), thenthe link is 'a
tive', and we take the value of the overlap Sij as the probabilitythat one of them imitates the other in one of the other features they havedi�erent. Obviously, the more similar they are, the higher the probability ofbe
oming even 
loser through intera
tion.Letting the system evolve, it will eventually rea
h a frozen state, meaningthat all the links between individuals are blo
ked. A useful order parame-ter is the relative size of the largest 
ultural 
luster, Smax, it is to say, thelargest group of individuals that share the values for all their 
ultural features.A

ording to some studies on latti
es [83, 85, 87, 89℄, when F > 2, a nonequilibrium �rst-order phase transition from order to disorder is observed as afun
tion of the number of traits Q (the 
ontrol parameter). There is a 
riti
alvalue, so if Q < Qc, the �nal state of the system 
orresponds to Smax ∼ 1, aglobal, homogeneous state, while if Q > Qc, then Smax ≪ 1, a polarized state
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Figure 2.14: Time evolution (relative to the �nal 
onsensus time T ) of the largest
luster of 
ultural 
onsensus at global (left) and at feature (right) level for a valueof F = 10 in SF networks made up of N = 4 · 103, with average 
onne
tivity 〈k〉 = 6.with di�erent 
ultural domains arises (see �gure 2.13 (left)). This transitiongets sharper as the size of the system in
reases.Analyzing the time evolution of the relative number of blo
ked links (see�gure 2.13 (right)), it 
an be seen that there is a non-zero initial value, dueto just random assignment of the traits, that drops qui
kly as the dynami
sstarts, and individuals begin intera
ting. Then, this magnitude remains verylow for a 
onsiderable amount of time, to �nally rise up to the �nal value,
orresponding with the rapid rise of Smax(t). This re�e
ts the fa
t that, whilethe individuals have almost nothing in 
ommon, the system seems to spend alot of time in that state, unable to get an agreement, but on
e the individualsshare some values for the features, then the �nal state is rapidily a
hieved.Noti
e that every realization shown in �gure 2.13 (right) rea
hes its �nalstate at its parti
ular '
onsensus time', sin
e it is an sto
hasti
 pro
ess.If we 
onsider now that the pattern of intera
tions is given by a �nite
omplex network [83℄, instead of by a latti
e, the general pi
ture of the phasetransition remains unaltered (see �gure 2.13 (left)), but with a higher value for
Qc (even higher for SF than for random networks, but qualitatively similar).On the other hand, re
ent studies [88℄ have shown that, one 
an analysethe 
ultural evolution pro
ess towards the �nal state, from a global point ofview (it is to say, 
onsidering the ma
ros
opi
 level of 
onsensus in the systemthough Smax), but also from a feature level. It means that at any given time,we 
onsider F layers or subgraphs of the original graph G. In the subgraph
Gf (t), two individuals are 
onne
ted if they are physi
ally 
onne
ted in G, andif they share the value of the feature f at that pre
ise instant of time. In thisway, we 
an observe how 
ultural 
onsensus evolve in every layer, Sf

max, and



2.2. Games 35we get to dis
over that there are some relevant di�eren
es between the twoapproa
hes: while for the global 
onsensus point of view, the system remainsapparently unordered for a large fra
tion of the simulation time, to �nally getorganized very qui
kly (�gure 2.14 (left)), the organization at a feature levelstarts mu
h earlier. A
tually, Sf
max in
reases monotonously over time from thevery beginning (�gure 2.14 (right)).Finally, it is also worth mentioning that there are many other works withdi�erent variations of the Axelrod model [79℄, in
luding for example noise[90℄, an external �eld [91℄, rewiring of the 
onne
tions between nodes [92℄ oreven movility of the individuals [93℄, 
ombining the original Axelrod model for
ultural dissemination with the original S
helling model of so
ial segregation[94℄.2.2 GamesA game 
an be 
onsidered as a formal abstra
tion of so
ial intera
tions betweenindividuals. There must be at least two de
ision makers (or players), who 
an
hoose between at least two di�erent a
tions (also 
alled strategies). It is worthstressing that a player does not need a brain in order to adopt a strategy, on the
ontrary, they 
an be very simple agents: ba
teria, for example, have the basi

apa
ities to play games, sin
e they are highly responsive to 
ertain aspe
tsof their -
hemi
al- environment, and they 
an respond di�erently dependingon the a
tions of their neighbors, the behavior 
an a�e
t the �tness of othersand vi
e versa, and �nally, the 
onditional strategies 
an be inherited by theo�spring [25℄. The out
ome of the intera
tion depends on the strategy everyplayer adopts. Thus, Game Theory is a bran
h of applied Mathemati
s thattries to 
apture these situations and it is usually 
onsidered to have its origin in1944 with the work of J. von Neumann and O. Morgenstern [95℄. Histori
ally,Game Theory has been used in very di�erent �elds, su
h as e
onomi
s, biology,politi
al s
ien
e or so
iology, and there are two main di�erent approa
hes:Classi
 Game Theory and Evolutionary Game Theory, whi
h made di�erentassumptions about the systems.Classi
 Game Theory formally studies how rational players should behavein order to obtain the maximum possible bene�t or payo�. Nonetheless, one
ould easily obje
t to the 
on
ept of 'rational player' as an a

urate representa-tion of real individuals in a so
ial or biologi
al 
ontext. 'Rational player' meansthat its only goal and motivation is to maximize its bene�ts, given its beliefabout its opponent's strategy, but there are plenty of real situations where thea
tions of the players do not seem to aim a maximum payo�.
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on
epts on Complex Networks and GamesEvolutionary Game Theory [27, 96, 97℄ was originated in 1973 with J. May-nard Smith and G. R. Pri
e works, and it studies the time evolution of largepopulations of individuals who repeatedly play a game and are exposed to se-le
tion and repli
ation (with or without mutation). Their strategies are �xed,and usually, the en
ounters between the individuals are supposed to happenat random, in a 'well-mixed' situation, so there is no so
ial stru
ture behind it(everyone intera
ts with everyone else), and it allows for the analyti
al treat-ment of the problem. Thus, the probability of intera
ting with an individualthat uses strategy i is proportional to the fra
tion of individuals that are usingthat parti
ular strategy in the system at the moment, xi. The payo�s fromall these intera
tions are added up, and su

ess in the game is interpreted asreprodu
tive su

ess. Thus, payo� means �tness in the Darwinian way: thestrategies that perform better, reprodu
e faster, whi
h 
an be straightforwardlyinterpreted as natural sele
tion.In this se
tion we intend to establish just a few useful 
on
epts and results inClassi
al Game Theory, always keeping in mind that our goal is to understandthe problem of 
ooperation. Then we will move on to the approa
h given byEvolutionary Game Theory, and �nally, we will point out some me
hanismsthat have been introdu
ed to explain the survival of 
ooperation observed inseveral natural and so
ial systems, spe
ially, the di�eren
es in the out
ome ofa game when dealing with a stru
tured population, it is to say, when we havean underlying topology.2.2.1 Classi
al Game TheoryIn Classi
al Game Theory (CGT), we 
onsider that intera
ting individuals 
an
hoose a strategy -or a way to a
t- among a well-de�ned set of them. A gameis 
alled normal-form if it is determined by a payo� matrix. Thus, for instan
ein a 2×2 game, we have two players and two di�erent strategies A and B, andthen depending on their parti
ular 
hoi
es, the bene�ts the players will obtainare given by the payo� matrix:
(

A B

A a b

B c d

) (2.28)This means that, for instan
e, when a player uses strategy A against a playerusing also A, it get a payo� equal to a, when a player uses strategy A againsta player using a strategy B, it get a payo� equal to b, and so on. We saythat strategy A dominates strategy B, if a > c and b > d. In that situation,no matter what strategy your opponent uses, it is better always to use A.Conversely, B dominates A, if a < c and b < d.



2.2. Games 37Now, in a general 
ase of a N×N payo� matrix U , if we denote the N purestrategies by R1, R2, ...RN , then the simplex SN of the linear 
onbinations ofpure strategies:
SN =

{

p = (p1, p2, ...pN ) : pi ≥ 0 and
∑

i

pi = 1

} (2.29)is the set of mixed strategies. A mixed strategy 
an be seen as the one used by aplayer that 
hooses strategy Ri with a probability pi, where i = 1, 2, ...N . The
N vertexes of the simplex SN are the N pure strategies, while the interior of thesimplex is the set of 
ompletely mixed strategies, it is to say, those for whi
h
pi > 0 ∀i. The boundaries of the simplex, on the other hand, 
orrespond tomixed strategies that must have ne
essarily one of the probabilities set to zero.We 
an 
al
ulate the bene�t of a p-strategist against a q-strategist as:

pUq =
∑

i,j

piuijqj (2.30)and the set of strategies for whi
h the apli
ation p → pUq a
hieves its maxi-mum value is 
alled best responses to q.A strategy q is 
alled a Nash Equilibrium (originally 
alled 'equilibrium forn-person games' by J. Nash in 1950 in [98℄) if it is the best response to itself.This means that if two individuals are both using a strategy that is a NashEquilibrium, then neither of them 
an unilaterally deviate form that strategyand in
rease its payo�. Moreover, a Nash Equilibrium is 
alled Stri
t if it is theonly best response to itself, therefore ∀p 6= q it is full�lled that pUq < qUq. If
q is a Nash Equilibrium, then there is a 
onstant c that satis�es that (Uq)i ≤ c,and from this result 
an be derived that a Nash Equilibrium is always a purestrategy.A strategy p̂ is Evolutionary Stable if ∀p ∈ SN with p 6= p̂ the inequity:

pU(ǫp+ (1− ǫ)p̂) < p̂U(ǫp+ (1− ǫ)p̂) (2.31)is ful�lled ∀ǫ > 0, as long as it is smaller than a 
ertain appropriate invasionthreshold ǭ(p). It 
an be proven the following logi
 
hain:Stri
t Nash Equilibrium → Evolutionary Stable Strategy → Nash Equilib-rium.Let's now 
onsider again a parti
ular set of 2 × 2 games. We 
an analyzethe possible out
omes within the CGT framework. We 
onsider two di�erentstrategies: 
ooperate (C) and defe
t (D), and the 
orrespondent payo� matrix:
(

C D

C R S

D T P

) (2.32)
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on
epts on Complex Networks and GamesDepending on the relative ordering of the parameters, we 
an mention threegames:
• The Hawks and Doves (or Snow Drift or Chi
ken) game [41, 99�101℄ ful-�lles T > R > S > P . Players are referred to as greedy, sin
e they preferunilateral defe
tion to mutual 
ooperation (T > R). In this situation, Cis the best response for D, and vi
e versa, so one should always try to
hoose the opposite of what the opponent does, in order to maximize thebene�ts.
• The Stag Hunt game [102, 103℄ satis�es R > T > P > S. Playersprefer mutual defe
tion to unilateral 
ooperation (S < P ), resulting inan intrinsi
 fear of individuals to 
ooperate. In this situation, C is thebest response for C, and D is the best response for D, or in other words,both are Nash equilibria, so it is better always to try to play the samestrategy as your opponent.
• The Prisoner's Dilemma game [23�25, 27, 104, 105℄, for whi
h T > R >

P > S, both tensions des
ribed above are in
orporated at on
e, so isthe most di�
ult situation for 
ooperation to arise. In this s
enario, Ddominates C. No matter what strategy your opponent uses, it is betteralways to defe
t.2.2.2 Evolutionary Game TheoryWithin the Theory of Evolution, the 
entral a
tor of an evolutionary systemis the repli
ator. A repli
ator is an entity that possesses the ability of making
opies of itself. It 
an be a gene, an organism, a strategy in a game, a parti
ularbelief or opinion, a te
hnique or any other 
ultural trait in general. A repli
atorsystem is a set of repli
ators in a parti
ular environment, with some kind ofintera
tion among the individuals. An evolutionary dynami
s of a repli
atorsystem is a pro
ess of 
hange over time on the repli
ator fre
uen
y distribution,in su
h a way that the strategies with higher bene�ts reprodu
e at a faster pa
e.Let us 
onsider that the population is divided into n types of individuals
E1, E2, ...En with fre
uen
ies (or relative abundan
es) x1, x2, ...xn respe
tively.The �tness (or expe
ted number of des
endants) fi of the type Ei will beassumed to be a fun
tion ot the 
omposition of the whole population. If thepopulation is big enough, and the individuals of a generation are supossed tomeet and intera
t 
ontinuously and at random (well-mixed s
enario), then we
an 
onsider that the state of the system x(t) evolves in the simplex Sn asa derivable fun
tion of time. The in
rease of the rate ẋi/xi of the type Enis a measure of its su

ess, in the Darwinian evolutionary sense of the term.
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an express this su

ess as the di�eren
e between the �tness fi of thistype and the average �tness of the population, f̄(x) =
∑

i xifi(x), and thusdes
ribe the evolution of every type in the population using the Repli
atorEquation [97, 106�108℄:
ẋi = xi[fi(x)− f̄(x)] (2.33)with i = 1, 2, ..., n. It is easy to see that the simplex Sn is invariant underthese equations, so if x(0) ∈ Sn, then x(t) ∈ Sn∀t > 0. Moreover, the fa
es ofthe simplex are also invariant: if one or several strategies are not present at agiven moment t0 of the evolution of the system, then they will never be for any

t1, with t1 > t0. In the 
ase of having mixed strategies, we 
an also obtain the
orrespondent Repli
ator Equation. If there is a game with N pure strategies
R1, R2, ...RN and a N ×N payo� matrix U , then a strategy is a point in thesimplex SN , and the E1, E2, ...En types of individuals present in the system
orrespond to n points p1, p2, ...pn ∈ SN .The state of the whole population is given by the frequen
ies xi of the types
Ei. The bene�ts of a pi-strategist playing against a qi-strategist is given by
aij = piUpj , and thus, the �tness fi of the type Ei is fi(x) = ∑

j aijxj = (Ax)i.A state x̂ ∈ Sn is a Nash Equilibrium if xAx̂ ≤ x̂Ax̂, ∀x ∈ Sn, and it 
an beproven that if x̂ is a Nash Equilibrium, then it is an equilibrium point of theRepli
ator Equation. A state x̂ ∈ Sn is said evolutionary stable if ∀x 6= x̂in an environment of x̂ it is ful�lled that x̂Ax > xAx. The same way, it
an be proven that if ŝ is an evolutionary stable state, then it is a point ofasimptoti
ally stable equilibrium of the Repli
ator Equation (but the re
ipro
alresult is not ne
essarily true).Repli
ator Equation for 2× 2 gamesFor the parti
ular 
ase of a 2 × 2 simetri
 game, we will have again that thegeneri
 payo� matrix is given by:
(

A B

A a b

B c d

) (2.34)And a

ording to the Evolutionary Game Theory, we should 
onsider thatthe �tness of an individual playing a 
ertain strategy depends on the fra
tionof individuals that play every strategy (it is to say, the so-
alled frequen
y-dependent sele
tion), so if the ve
tor ~x = (xA, xB) represents the 
ompositionof the population, in terms of the two possible strategies, and we denote respe
-tively, fA(~x) and fB(~x) the �tness of both of them. The sele
tion dynami
s
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an be written as
ẋA = xA[fA(~x)− φ]

ẋB = xB [fB(~x)− φ] (2.35)where φ = xAfA(~x) + xBfB(~x) is the average �tness of the entire popula-tion. Obviously, sin
e xA + xB = 1, we 
an 
onsider x ≡ xA and 1− x ≡ xB ,and then we 
an rewrite the previous di�erential equation 2.35 in a simplerway as:
ẋ = x(1− x)[fA(x)− fB(x)] (2.36)It 
an be easily shown that x = 0 is a stable equilibrium if fA(0) < fB(0),and 
onversely, x = 1 is a stable equilibrium if fA(1) > fB(1). On the otherhand, any interior value of x ∈ (0, 1) is a stable equilibrium x∗ if the �rstderivative of the �tness fun
tions satis�es f ′

a(x
∗) < f ′

b(x
∗).In parti
ular we 
an 
al
ulate the expe
ted �tness of an individual playing

A or B respe
tively, in the well-mixed s
enario explained before as:
fA = axa + bxb

fB = cxa + dxb (2.37)so if we again introdu
e this expression for the �tness in 2.35 we obtain:
ẋ = x(1− x)[(a− b− c+ d)x+ b− d] (2.38)Depending on the relative ordering of the 
oe�
ients of the payo� matrix,we 
an have di�erent situations for the sele
tion dynami
s [26, 105, 109℄:(a) A dominates B, if a > c and b > d. No matter what strategy youropponent uses, it is better always to use A, and sele
tion will lead to a�nal state where all players are A.(b) B dominates A, if a < c and b < d. No matter what strategy youropponent uses, it is better always to use B, and sele
tion will lead to a�nal state where all players are B.(
) A and B are bistable, if a > c and b < d. In this situation, A is the bestresponse for A, and B is the best response for B, so it is better alwaysto try to play the same strategy as your opponent. There is an unstableequilibrium at x∗ = d−b

a−b−c+d , and depending on the initial fra
tion ofevery strategy, the system will 
onverge to all-A (if x(0) > x∗) or all-B(if x(0) < x∗).
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oexist, if a < c and b > d. In this situation, A is the bestresponse for B, and vi
e versa, so one should always try to 
hoose theopposite of what the opponent does. Sele
tion will make the system
onverge to the interior equilibrium x∗ = d−b
a−b−c+d .(e) A and B are neutral, if a = c and b = d. No matter what a
tionyou 
hoose, you will always win exa
tly the same as your opponent, sosele
tion will not modify the initial fra
tion of every strategy, but thiss
enario is obviously not very interesting for us.And some other usefull 
on
epts are:(a) Strategy A is 
alled risk-dominant if a+ b > c+ d, and then strategy Bhas a basin of attra
tion smaller than 1/2.(b) Strategy A is 
alled pareto-e�
ient if a > d.(
) Strategy A is advantageous if a+ 2b > c+ 2d, and then strategy B hasa basin of attra
tion smaller than 1/3.As a parti
ular example of 2 × 2 game, we have the Prisoner's Dilemma(see 2.32), that has been widely used to study the phenomenon of 
ooperationin very di�erent �elds, from biology to so
iology or e
onomi
s. It is obviousthat defe
tion is the best response, regardless the opponent's (it is in fa
t, theonly Nash equilibrium), despite the fa
t that, if both 
ooperate, then they willwin more than if both defe
t.Thus, both in a Classi
 Game Theory aproa
h, and in an Evolutionary
ontext using the Repli
ator Equation we obtain straightforwardly an all-Dstate, sin
e defe
tors have higher payo� than 
ooperators. Cooperation 
annot survive in a well-mixed situation, it is inevitable. In fa
t, there are a greatdeal of examples of this well-mixed or transitory-pairing enviroments in Nature,whi
h lead to non-
ooperative or exploiting situations for the individuals, onthe 
ontrary to what usually happens with stable pairing, or even mutualismbetween di�erent spe
ies [25℄.Finite populationsAdditionally, one 
an wonder what happens to the dynami
s in the very real-isti
 
ase of �nite populations (noti
e that we still do not take into a
ount aninternal stru
ture). In this 
ase, in order to des
ribe the evolution of a N-sizedpopulation, a sto
hasti
 theory is needed, and we 
al
ulate �xation probabili-ties for the di�erent possible strategies [105, 110℄, instead of equilibrium states
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on
epts on Complex Networks and Gamesof the system. The probability of �xation of strategy B is the probability of asingle mutant B to invade an entire population of A-players.In order to approa
h this situation, we 
an use, among other sto
hasti
pro
esses, the Moran pro
ess [111℄, whi
h 
ould be a �nite-N analogue to theRepli
ator Equation. It is a birth-death pro
ess that des
ribes the probabilisti
dynami
s in a �nite population of 
onstant size N in whi
h two strategies Aand B are 
ompeting for dominan
e. In ea
h time step, a random individualis 
hosen for reprodu
tion and a random individual is 
hosen for death; thusensuring that the population size remains 
onstant. To model sele
tion, onetype has to have a higher �tness (
onsidered 
onstant) and is thus more likelyto be 
hosen for reprodu
tion. The same individual 
an be 
hosen for deathand for reprodu
tion in the same step. It is worth mentioning that in �nitepopulations, even if all di�erent strategies had the same �tness, all but onetype will eventually go extin
t. This prin
iple is 
alled neutral drift. Thus,sin
e 
oexisten
e is not possible, there are as many absorbing states as di�erentstrategies at the beginning. In a population on sizeN made up ofA individuals,we 
an 
al
ulate [105℄ the probability of �xation of another strategy B (it isto say, the probability for a single neutral mutant to take over the entirepopulation), and it is given by 1/N . It means that when dealing with �nitepopulations, just due to random drift, a mutant (with the same �tness as themajority strategy) 
an invade the system, whi
h is a very di�erent out
omefrom the in�nite-population s
enario, where having the same �tness meant
oexisten
e of di�erent strategies. In the same way, the probability of endingup in an all-B state, just due to random drift, when starting with i ≤ Nindividual playing B in a population of A is i/N . On the other hand, if amutant B has a relative �tness r, with respe
t to the A players, it 
an beproven [105℄ that its probability of �xation is then ρ = 1−1/r
1−1/rN

. Noti
e thatin this s
enario, there is always a nen-zero probability that a mutant strategy
an invade and take over the whole population, even though it is opposed bysele
tion [112℄.2.2.3 Evolution of CooperationAs we have seen previously, neither within the Classi
 or the EvolutionaryGame approa
h, 
an 
ooperation survive. Nonetheless, there are plenty ofexamples of real situations where 
ooperators arise and thrive, so there mustbe some me
hanisms behind it. Over the years, �ve main ideas [26℄ have beenproposed to help understand this phenomenon: kin sele
tion, dire
t re
ipro
ity,indire
t re
ipro
ity, group sele
tion and network re
ipro
ity.A

ording to Hamilton [24℄, natural sele
tion 
an favor 
ooperation if the
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ipient of an altruisti
 a
t are geneti
 relatives. More pre
isely,Hamilton's rule establishes that the 
oe�
ient of relatedness, r, must ex
eedthe 
ost-to-bene�t ratio of the altruisti
 a
t, it is to say: r > c/b. This
oe�
ient r is de�ned as the probability of sharing a gene (it is equal to 1/2for siblings, equal to 1/8 for 
ousins,...). This theory is 
alled Kin Sele
tion, butobviously it 
an not help understand 
ooperation among unrelated individuals,or even members of di�erent spe
ies.Trivers proposed the Dire
t Re
ipro
ity me
hanism. Let us assume thatthere are repeated en
ounters [23℄ of a the Prisoner's Dilemma Game betweenthe same two individuals, and every time they 
an 
hoose to be 
ooperatorsor defe
tors. The idea is that if I 
ooperate in this round of the game, maybe you will 
ooperate in the next one. When 
onsidering the repeated gameon a whole population, it 
an be proven that dire
t re
ipro
ity leads to theevolution of 
ooperation only if the probability of another en
ounter betweenthe same two individuals, w, ex
eeds the 
ost-to-bene�t ratio of the altruisti
a
t: w > b/c.Let us now 
onsider the following s
enario: among a population, two in-dividuals meet on
e, one of them is in the position of helping the other one(this help is suppossed to be less 
ostly for the donor than bene�
ial for there
eiver), but there is no possibility for dire
t re
ipro
ation, but helping otherswill establish a good reputation whi
h will be rewarded by others. In this way,when de
iding how to a
t, one will take into 
onsideration the 
onsequen
es fortheir reputation. Moreover, the next step 
an be to take into 
onsideration theopponents' reputation, in order to de
ide whether or not he deserves our help,and how it will a�e
t our own. This theory 
onstitutes Indire
t Re
ipro
ity[22, 113℄, and when applied to human behavior, it 
an help understand theorigin of moral and so
ial norms.We 
an take into a

ount that sele
tion not only a
ts on individuals, butalso in groups. A simple model for Group Sele
tion is as follows [114℄: thepopulation is divided into di�erent groups, and individuals 
ooperate insideits own group, while defe
tors do not help anyone. Individuals reprodu
eproportional to its �tness and the o�spring belongs to the same group as thean
estors. When a group rea
hes 
ertain size, it 
an split in two, makinganother group disappear, in order to preserve the total size of the population
onstant. In a mixed group, a defe
tor reprodu
es faster than a 
ooperator,but groups of pure 
ooperators split faster than those of pure defe
tors. Forthe limit of weak sele
tion and 
onsidering the 
ase of rare group splitting, it
an be obtained that, if n is the maximum group size and m is the number ofgroups, then Group Sele
tion allows evolution of 
ooperation, provided that:
b/c > 1 + (n/m), where b/c is the 
ost-to-bene�t ratio.
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on
epts on Complex Networks and GamesFinally, one 
an realize that the Evolutionary approa
h for the PD gamealways leads to all-D situations, but it 
onsiders a well-mixed s
enario, it is tosay, at any given time, every individual has equal probabilities to intera
t witheveryone else. Nonetheless we know that this is a very unrealisti
 assumption,sin
e groups and so
ieties have usually some kind of internal stru
ture. Inother words, there is a well de�ned pattern of intera
tions among individuals,so every one of them has a �xed number of neighbors. It has been shownthat spatial stru
ture a�e
ts greatly the out
ome of an evolutionary dynami
s,allowing 
ooperators to survive in many situations. Spe
i�
ally, 
ooperatorsform network 
lusters, where they help ea
h other. The analyti
al treatment ofthis problem is hard, and many times, even impossible, but it has been foundthat this Network Re
ipro
ity 
an favor 
ooperation if b/c > k, where k standsfor the average number of 
onne
tions of the individuals in the population.Prisoner's Dilemma game on stru
tured populationsA

ording to what we have seen previously, one of the me
hanisms that helpspromote 
ooperation is Network Re
ipro
ity, and it happens to be also theone we will be interested during this Thesis, so the natural next step for us,in order to build more realisti
 models of so
ial or biologi
al intera
tions, isto 
onsider some sort of underlying stru
ture, in a

ount for the parti
ularpattern of relationships between individuals (that 
an di�er greatly from oneto another). The �rst attempts to model su
h so
ial stru
ture for the Pris-oner's Dilemma game 
onsidered the individuals pla
ed in a regular latti
e[31�33, 115�118℄. Those studies found that spatial stru
ture a�e
ts greatly theout
ome of su
h dynami
s. Spe
i�
ally, by making the agents play just with asmall number of �xed neighbors, we 
an make 
ooperation and defe
tion 
oex-ist, or even enhan
e 
ooperation. In fa
t, when dealing with games in spatialstru
ture populations, the equilibria among strategies are no longer ne
essar-ily 
hara
terized by their having equal average payo�. Instead, the asymptoti
equilibrium properties are now determined by 'lo
al relative payo�s', and notby global averages [33℄. It was also found for the PD in latti
es, that under
ertain symmetri
al initial 
onditions for the distribution of strategies, 
ertainvalues of the temptation to defe
t b, and as long as we use deterministi
 updat-ing rules, kaleidos
opi
 
arpet-like 
haoti
ally-
hanging spatial patterns arise[31, 32℄. Moreover, it has been found that there is a 
riti
al phase transition inthe Prisoner's Dilemma game in latti
es that falls into the same universality
lass than dire
ted per
olation [118℄.Some e�ort was put also on the analyti
al study of how di�erent kind ofstru
tures 
an favor �xation of the strategies or, on the 
ontrary, favor neutraldrift , expli
itly 
al
ulating to that end the 
orresponding probabilities of �x-
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ular topologies, su
has stars, paths, downstreams, upstreams or funnels [105, 108, 119℄. Moreover,striking results in terms of survival of 
ooperation were found for random andSF networks, but for su
h general stru
tures, no expli
it 
al
ulations 
an beperformed, so one needs to rely totally on simulations. In this area, a greatdeal of e�ort has been put too, and as a very general remark, it 
an be saidthat the 
omplex topologies behind the intera
tions among a given popula-tion a�e
t the out
ome of any pro
ess [65, 66, 72, 76�78, 120℄ -not only games[31, 42, 108, 119℄- to a large extent. Spe
i�
ally, as we will see with somedetail in 
hapter 3, when it 
omes to the Prisoner's Dilemma game on 
om-plex networks, a large number of studies [34�36, 38, 39, 99℄ have pointed outthat 
ooperation bene�ts from heterogeneity. It is to say, it has mu
h better
han
es to survive in s
ale-free than in random topologies, for the same givenvalue of the parameters of the game.





Part IEvolutionary Dynami
s onStati
 Complex Networks





Presentation of Part IIn this �rst part of the Thesis, we want to fo
us on the e�e
t that thetopology of intera
tions among the 
onstituents of a given 
omplex systemhas on the evolutionary dynami
s that takes pla
e on top of it. On the onehand, the individuals of the system form a 
omplex network [8�13, 61, 121℄,that 
ould represent a very simple version of a so
iety or a so
ial organization[16, 46℄ of humans or other spe
ies. On the other hand, the kind of dynami
swe will be taking into 
onsideration is di
tated by Evolutionary Game Theory[27, 96, 97, 105℄. We will fo
us on the situation in whi
h nodes representindividuals engaged with their neighbors in a 
ertain (2 × 2) game, using a
ertain strategy that 
an be updated after every round of the game, dependingon the out
ome of it. In other words, the out
ome of the game, meaning thea

umulated payo� every node gets in a single round, will a�e
t the probabilityof maintaining or 
hanging its strategy for the next round of the game. This
an also be interpreted in terms of evolutionary �tness and reprodu
tion of theindividuals: instead of 
onsidering individuals of a population that update theirstrategies for the next round of the game, one 
an also think of the bene�tsof an individual in terms of its reprodu
tive su

ess or �tness, meaning theprobability of its o�spring to be present in the system in the next generation,using its very same strategy [25℄. In this way, we are not spe
ially interestedin the evolution of a parti
ular node, but in the entire population as a whole.To this end, we will measure the proportion of the di�erent strategies that arepresent in the stationary state of the dynami
s, as well as its mi
ros
opi
alorganization within the network.Spe
i�
ally, in 
hapter 3 we will study in detail the out
ome of the (weak)Prisoner's Dilemma game [22�30, 104, 105℄ on top of 
omplex networks [31�33, 115�117℄, 
omparing the results obtained mainly for two kind of topologies:ER [18℄ and BA [8℄ networks. We will also 
onsider the same dynami
s on topof some other systems with intermediate degree of heterogeneity. On the onehand, in order to 
on�rm and understand the well-established fa
t that 
ooper-ation is enhan
ed by the heterogeneity of the underlying graph [34�45℄, we willlook into the mi
ros
opi
 organization of 
ooperation in the stationary state,studying the formation of 
lusters for both strategies. We will �nd that thisorganization is quite di�erent depending on the kind of network we are deal-ing with. We will also analyze the level of 
ooperation for every 
onne
tivity
lass, for the 
ase of heterogeneous graphs, �nding there a plausible explana-tion for the high levels of 
ooperation these parti
ular stru
tures 
an sustain.On the other hand, we will show the asymptoti
 existen
e of pure strategistsand �u
tuating individuals. Moreover, we will prove it by using a simpli�ed



50but general enough 
ase of a graph (Dipolar Model), where some analyti
al
al
ulations 
an be performed.In 
hapter 4 we will expand all these studies not only to the general Pris-oner's Dilemma, but also to the Hawks and Doves game [22, 37, 41, 99�101, 122�126℄, 
omparing the results with the ones found previously for theweak Prisoner's Dilemma. Analogously to 
hapter 3, we will study the station-ary state of the system, the level of 
ooperation it 
an a
hieve, the mi
ros
opi
organization of the di�erent strategies and the formation of strategi
 
lusters.All of it will be 
onsidered depending as usual, on the underlying topology,remarking the di�eren
es found not only between homogeneous and heteroge-neous graphs, but also between the Prisoner's Dilemma game and the Hawksand Doves game.In 
hapter 5, we want to address the issue of 
ooperation in random s
ale-free networks, 
omparing the level of 
ooperation obtained in su
h 
orrelation-free heterogeneous topologies with those 
orresponding to the BA networks, inorder to 
on�rm the role that the 
orrelations among nodes [13, 45, 60, 61℄ mayplay on the sustenan
e of a 
ertain level of 
ooperation in the system [34, 36℄.On the other hand, we will propose a degree-based mean-�eld approa
h to tryto explain the out
ome of the Prisoner's Dilemma dynami
s on top of randomSF networks. We will make further a 
ompartmentalization of the fra
tion of
ooperators and defe
tors into di�erent 
onne
tivity 
lasses, to formulate a setof di�erential equations for the time evolution of the fra
tion of 
ooperators inea
h degree 
lass. The idea behind this approa
h is inspired by several worksfo
used on the study of disease spreading on an heterogeneous population,using a similar theoreti
al framework [65�67℄. Thus, we will 
ompare theanalyti
al results with the 
onventional numeri
al simulations performed ontop of su
h random SF graphs. We will analyze this in a general 
ase, wherewe will �nd that the theoreti
al approximation and the numeri
al simulationsdo not agree. However, we will also explore some parti
ular initial 
onditions,where 
ooperators are not pla
ed initially at random, but o

upying the largestdegrees of 
onne
tivity (targeted 
ooperation). In this latter 
ase we will beable to reprodu
e (up to an extent) the results from a simulation on top ofrandom SF graphs using these analyti
al 
al
ulations.Finally, in 
hapter 6 we will propose a more realisti
 s
enario for a pop-ulation with a 
omplex pattern of 
onne
tions engaged in an evolutionarydynami
s su
h as the Prisoner's Dilemma. The set of individuals will form anetwork of so
ial 
onta
ts, namely a s
ale-free graph, and will play the gamewith their neighbors as usual. Nonetheless, we will 
onsider a restri
tion inthe number of intera
tions a node 
an sustain in every round of the game. Toour knowledge, there are not any works addressing this parti
ular issue, apart



51from [35℄, where a 
uto� is imposed to the degree distribution of a SF network.However, we will not pro
eed by altering the degree distribution of the under-lying topology. Instead, we will for
e the nodes to 
hoose randomly a di�erentsele
tion among its topologi
al neighbors for every round of the game. In thisway, we want to a
knowledge the fa
t that the amount of energy and time anindividual 
an spend intera
ting with its neighbors is �nite, so the number ofa
quaintan
es it intera
ts with per unit of time should not be given just by itstopologi
al 
onne
tivity, but it also should be subje
t to some kind of pra
ti
allimitations. We will �nd some striking results that point out that in a situationwith some degree of restri
tion in the number of intera
tions allowed per nodeand per round of the game, 
ooperation 
an be enhan
ed even more than in anunrestri
ted s
ale-free s
enario, when parti
ipation 
osts are also introdu
edin the formulation of the evolutionary game.





Chapter 3The Prisoner's Dilemma onStati
 Complex NetworksThe PD game has been frequently used [22, 24, 25, 27, 28℄ when trying to modelthe emergen
e of 
ooperative behavior in a so
ial or biologi
al system. Thequestions of why and how 
ooperation arises and survives in an environmentwhere it is 
learly more expensive for the individual than defe
tion in the shortterm have been subje
t of intense resear
h for quite some time, and the PDturned out to be a very useful tool for this aim. One of the aspe
ts that havebeen pointed out as a responsible for the survival of 
ooperation is, amongothers, the so-
alled network re
ipro
ity [26℄. Several studies have shown that
ooperation 
an be greatly promoted by pla
ing the individuals of a populationon the nodes of a network of 
onta
ts, instead of letting them intera
t in a well-mixed situation, where no asymptoti
 
ooperation exists. First, some e�ortwas put on studying the PD on regular latti
es, �nding that, as long as the
onne
tivity of the nodes was not to high, 
ooperation a
tually got a 
han
eat survival (however, when the number of neighbors in
reases, the situationresemblan
es more and more an all-to-all s
enario, and 
ooperation dies outagain). Next, PD was studied in 
omplex topologies [31, 34�36, 38�45℄, in anattempt to model more a

urately the pattern of 
onne
tions of a real system,and this is pre
isely the problem we will 
onsider in this 
hapter of the Thesis.In this way, we want to address the dependen
e of the PD dynami
s ontop of 
omplex networks. As we have already advan
ed, we are interestedin 
hara
terizing the �nal equilibrium state that the system a
hieves whenimplementing the dynami
s of su
h stru
tures, namely random and SF graphs,paying spe
ial attention not only to the asymptoti
 level of 
ooperation, butmore important, to the mi
ros
opi
 organization of the strategies. This isa
tually, as we will see in detail, the key point of the di�eren
es found between



54 Chapter 3. The Prisoner's Dilemma Game on Stati
 Complex Networksboth topologies when it 
omes to the average level of 
ooperation. We willalso take 
are of other aspe
ts of the dynami
s, su
h as the dependen
e of the�nal level of 
ooperators in the system with the initial fra
tion of them, or thedistribution of strategies a

ording to the di�erent 
lasses of 
onne
tivity forSF networks.3.1 The modelThe Prisoner's Dilemma is a two-player game de�ned in its more general formby the payo� matrix (see se
tion 2.2):
(

C D

C R S

D T P

) (3.1)where the element aij is the payo� re
eived by an i-strategist when playingagainst a j-strategist, with i = 1 meaning 
ooperator (C), and i = 2 defe
tor(D). Thus, both re
eive R (Reward) under mutual 
ooperation and P (Punish-ment) under mutual defe
tion, while a 
ooperator re
eives S (Su
ker's Payo�)when 
onfronted to a defe
tor, whi
h in turn re
eives T (Temptation to de-fe
t).The payo� ordering is given by T > R > P > S. Under these 
onditions,defe
tion is the best response regardless the opponent's strategy. Indeed, in awell-mixed population of N repli
ators, i.e. where every individual intera
tswith everyone else, the defe
tion strategy is unbeatable and rea
hes �xation.However, if individuals only intera
t with its ki neighbors, as di
tated by theunderlying network of 
onta
ts, it hass been proven the asymptoti
 survival of
ooperation for T ≥ R on di�erent types of 
omplex topologies [31, 34�36, 38�45℄.Following several studies [31, 33, 34, 36, 127℄, we set the PD payo�s to
R = 1 (so the reward for 
ooperating �xes the payo� s
ale), T = b > 1,
P = 0 (no bene�t under mutual defe
tion), and P − S = ǫ → 0+. Thislast 
hoi
e pla
es us in the very frontier of PD game, or the 'weak' Prisoner'sDilemma. It has the e�e
t of not favoring any strategy when playing againstdefe
tors (while being advantageous to play defe
tion against 
ooperators).Small positive values of the parameter ǫ ≪ 1 leads to no qualitative di�eren
esin the results [127℄, so the limit ǫ → 0+ is agreed to be 
ontinuous.The dynami
 rule is spe
i�ed as follows: ea
h time step is thought of asone generation of the dis
rete evolutionary time, where every node i of thesystem plays with its nearest ki neighbors (given by the underlying network)and a

umulates the payo�s obtained during the round, say Pi. As Evolution-ary Game Theory approa
h di
tates, the bene�t an agent gets from the game



3.1. The model 55should be interpreted as its �tness in the Darwinian sense of reprodu
tive su
-
ess [25, 126℄. Spe
i�
ally, we 
onsider that individuals are then allowed tosyn
hronously 
hange their strategies by 
omparing the payo�s they a

umu-lated in the previous generation with that of a neighbor j 
hosen at random.If Pi > Pj , player i keeps the same strategy for the next time step, when it willplay again with all of its neighborhood. On the 
ontrary, whenever Pj > Pi, iadopts the strategy of j with probability
Πi→j =

Pj − Pi

max{ki, kj}b
(3.2)Following previous studies, we 
alled this updating rule Repli
ator-like [27, 28,34, 35, 97, 101℄, be
ause it is obviously similar to the Repli
ator Equation(see se
tion 2.2.2): the probability of 
hanging strategy is proportional to thedi�eren
e of payo�s of the nodes involved, and it is normalized by the maximumpayo� a node 
an get, i.e., b times its 
onne
tivity. Note also that this dynami
rule, though sto
hasti
, does not allow the adoption of irrational strategy, i.e.,

Πi→j = 0 whenever Pj ≤ Pi.Regarding the syn
hrony of the strategy updating of the individuals inthe population (also understood as dis
rete time), it is worth mentioning herethat we have not found signi�
ant di�eren
es when 
omparing to asyn
hronousupdating (also known as sequential updating or 
ontinuous time), and thusin good agreement with previous �ndings for this parti
ular PD game andRepli
ator-like rule [99℄, in spite of the fa
t that one 
an always argue thatsyn
hronous or asyn
hronous updating more a

urate in order to des
ribe dif-ferent biologi
al or so
ial s
enarios, respe
tively [33℄.Let's now spe
ify pre
isely the family of networks on top of whi
h the evo-lutionary PD game is evolving. Strategists are lo
ated on the verti
es of a �xedgraph of average 
onne
tivity 〈k〉 = 4. The heterogeneity of the networks is
ontrolled by tuning a single parameter α, a

ording to the re
ipe introdu
ed byGardeñes-Moreno (GM) in [64℄. As we explained in detail in subse
tion 2.1.3,the GM model 
reates a network by 
ombining the me
hanisms of preferentialatta
hment with probability α and uniform random linking with probability
1− α. Thus, in this model, when α = 0 the generated networks are of the ER[18℄ 
lass of random graphs, and when α = 1 they are of the BA [8℄ s
ale-freenetworks 
lass. On the other hand, networks with an intermediate degree ofheterogeneity 
an be built with 0 < α < 1. We will study the dynami
s ontop of su
h networks with intermediate heterogeneity at the end of this 
hapter(see se
tion 3.9), but for now, we will fo
us just on the extreme 
ases α = 0 and
α = 1. It is also worth stressing that the di�erent topologies we will 
ompareduring this 
hapter have always the same number of nodes, N , and average
onne
tivity 〈k〉.
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 Complex Networks3.2 Dynami
 equilibriumOn
e the network has rea
h its full size N , the initial strategy of every node israndomly set, with a probability of being a 
ooperator ρ0 = 0.5 (note that ρ0 isalso the initial fra
tion of 
ooperation on the system), and then the dynami
sstarts. We let the system evolve for 5·103 time steps or generations, after whi
hwe 
he
k whether the equilibrium has been rea
hed. To do so, we observe thetime evolution of the fra
tion of 
ooperators, c(t), during a time window of
103 generations. If the slope of c(t) is smaller than 10−2, then we 
onsider theequilibrium has been rea
hed. Otherwise, we let the system evolve 5 ·103 moregenerations, after whi
h, we will evaluate the equilibrium 
onditions again.We show several examples of temporal evolution of the system in �gure 3.1.The behavior during the transient time of the fra
tion of 
ooperators in thesystem 
an be understood as follows: as we have said, the system starts with afra
tion of ρ0 
ooperators, randomly distributed on the network. The defe
torstake advantage of this initial situation, getting very high payo� exploiting its
ooperator neighbors, and for
ing other nodes to imitate them. Therefore,thelevel of 
ooperation drops initially. However, after a few more time steps, thedefe
tors are surrounded by more defe
tors, and they 
an not get bene�ts any-more, while 
ooperators start 
lustering themselves, and providing payo� fromone another. Thus, 
ooperators self-organize and hold a non-negle
table levelof 
ooperation on the network. As it 
an be seen in �gure 3.1, the ma
ros
opi
behavior of the system towards its dynami
al equilibrium is qualitatively verysimilar, regardless the underlying topology. Nevertheless, as we will explainlater in detail in se
tion 3.7, the mi
ros
opi
 organization of 
ooperators anddefe
tors when the equilibrium has been rea
hed is very di�erent dependingon the network, and it is spe
ially non-trivial for BA networks.From any initial 
ondition for the whole system {si(t = 0)} (with i =

1, ..., N , and where si = 1 if node i is an instantaneous 
ooperator and si = 0if it is a defe
tor in that step), and after many generations, the instantaneousfra
tion of 
ooperators, given by
c(t) = N−1

N
∑

i=1

si(t) (3.3)in the sto
hasti
 traje
tory, {si(t)}, �u
tuates around a well-de�ned meanvalue 〈c〉. In turn, this average value of 
ooperation 
an be de�ned as follows:
〈c〉 = 1

T

t0+T
∑

τ=t0

c(τ) , (3.4)where t0 is the transient period, and T is the period of time during whi
h weobserve the system, on
e it has rea
hed the equilibrium. Thus, this average
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Figure 3.1: Several examples of the temporal evolution of the level of 
ooperationin the system for ER (a) and SF (b) networks as a fun
tion of b. The size of thenetworks is N = 4 · 103 nodes and average 
onne
tivity 〈k〉 = 4.level of 
ooperation depends only on the value of the parameter b, and theinitial fra
tion of 
ooperators ρ0 (and also on the topology of the system, aswe will see). The average level of 
ooperation 〈c〉 is 
omputed as the average of
〈c〉 over 103 independent realizations with di�erent initial 
onditions (di�erentrandom distributions of a �xed value for the fra
tion ρ0 of 
ooperators, as wellas network realizations).It is worth mentioning that the time s
ale of mi
ros
opi
 invasion pro
esses,it is to say, the pa
e of the updating rule for any given node, is 
ontrolled by

β−1 = max{ki, kj}b , (3.5)whi
h is essentially determinded by the highest 
onne
tivity of the pair ofnodes we take under 
onsideration. This makes that the very high payo� ofa hub (due to its very high k) is balan
ed by β ∝ k−1 [34�36℄, with the sidee�e
t that the invasion pro
esses from and to hubs are slowed down, if hub's(and neighbor's) payo� is mu
h smaller than its 
onne
tivity k. On the other
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 Complex Networkshand, the transient time t0 should be greater than 
hara
teristi
 �xation timesfor the nodes, if one is interested in measuring observable quantities asso
iatedto the dynami
al equilibrium.3.3 Pure Strategists and �u
tuating individualsAfter the transient time t0 has passed, we establish a 104 time step window dur-ing whi
h we measure the relevant magnitudes of the system. This pro
edureallows us to s
rutinize in depth the mi
ros
opi
 temporal evolution of 
oop-eration as well as to 
hara
terize how its lo
al patterns are formed. We notethat individual's strategies asymptoti
ally (i.e. t > t0) follow three di�erentbehaviors. Let P (x, t) be the probability that a node adopts the strategy x atany time t > t0. We say that an element i of the population is pure 
ooperator(PC) if P (si = 1, t) = 1, i.e., it plays as 
ooperator in all generations after thetransient time. Conversely, pure defe
tors (PD) are those individuals for whi
h
P (si = 0, t) = 1. And there is a third set, 
onstituted by �u
tuating nodes (F)whi
h are those that are neither pure 
ooperators nor pure defe
tors, so theyspend alternatively some time as 
ooperators and some time as defe
tors. Thisset is what was �rst 
alled 'unsatis�ed elements' by Abramson and Kupermanin [39℄.From now on, we denote by ρC = 〈µ(PC)〉 the measure (relative size)of the set of pure 
ooperators (averaged over initial 
onditions and networkrealizations), by ρD = 〈µ(PD)〉 that of the set of pure defe
tors, and by
ρF = 〈µ(F )〉 that of the set of �u
tuating strategists. At any given timeduring the simulation, the relation between the fra
tions ρC + ρD + ρF = 1must be ful�lled by the system, obviously.On the other hand, the ma
ros
opi
 average level of 
ooperation 〈c〉 
an bewritten as:

〈c〉 = ρC + ρF 〈TC〉 (3.6)where 〈TC〉 is the average proportion of time spent by the �u
tuating subpop-ulation as 
ooperators (see se
tion 3.6 for further details).In the �gure 3.2 we show the fra
tion of pure strategists and �u
tuatingindividuals, and the average level of 
ooperation as a fun
tion of b, for BAand ER networks. As one 
ould expe
t, both the average level of 
ooperationand the fra
tion of pure 
ooperators de
rease as the temptation to defe
t bin
reases, as 
ooperation gets more and more expensive. The �u
tuating indi-viduals are present in the network only for a range of intermediate values of b,during whi
h, the 
ooperation in the system depends almost entirely on them,be
ause there are not pure 
ooperators anymore.
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b bFigure 3.2: Fra
tion ρC of pure 
ooperators (Red Area), fra
tion ρD of pure defe
tors(Blue Area), fra
tion ρF of �u
tuating nodes (Green Area) and the average level of
ooperation 〈c〉 in the system (Solid bla
k line) as a fun
tion of b for ER networks(Left) and BA networks (Rigth). The size of the networks is N = 4 · 103 nodes andaverage 
onne
tivity 〈k〉 = 4.Regarding the di�erent topologies, we 
on�rm that BA networks 
an holdhigher levels of 
ooperation than ER networks, even for quite big values of b[34�37℄. As we 
an see in �gure 3.2, for random topologies, the average levelof 
ooperation is equal to 1 until it drops quite abruptly around b = 1.2, andit disappears almost 
ompletely for b > 1.8. For SF networks on the otherhand, the 
ooperation starts de
reasing slightly but very soon (for values of

b & 1), but its main drop takes pla
e for higher values (around b = 1.6), and,moreover, the 
ooperation survives with mu
h higher values of the temptationto defe
t, approximately until b = 3. It is interesting to stress again that forvalues next to b = 1, the level of 
ooperation is ρC = 1 for ER networks i.e.,all the nodes in the system are pure 
ooperators, but it is slightly lower for SF,sin
e there are already a few �u
tuating individuals. Nevertheless, this levelof ρC will hold on longer before the main fall in SF, while it will drop fasterfor ER. This fall of ρC is present for both topologies, but it is very sharp forER, so ρC drops to zero when b = 1.3, while for SF is smoother, permittingthe system to keep a small but non-null value of ρC until b = 2.5.3.4 Dipolar Network ModelAs we have seen, the asymptoti
 state of evolutionary dynami
s on networksis often not a stati
 equilibrium 
on�guration under the Repli
ator rule forthe update of the strategies. On the 
ontrary, we have shown that there is anasymptoti
 partition of the graph into three sets, namely, pure 
ooperators,pure defe
tors, and �u
tuating individuals. This last group experien
e 
y
les
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F

2 1

C

Figure 3.3: S
hemati
 representation of the Dipolar model network. Nodes 1 and 2are 
onne
ted to all nodes in F . Node 2 is also linked to all nodes in C. Conne
tionsinside F and C are arbitrary. The 
olors represent a set of 2nF di�erent initial
on�gurations. As we usually do, blue stands for defe
tor and red for 
ooperator,while green means arbitrary strategy.of invasion by the 
ompeting strategies.In order to prove the generality of these results, we make a little digressionnow, and present a model that mimi
s a lo
al environment of a heterogeneousgraph, with simpli�
ations that allow analyti
al 
al
ulations for a better in-sight. On the other hand, it is perhaps the minimal (though general enough)network model where the partition into PC, PD and F 
an be rigorously proved,illustrating thus the dynami
al organization of 
ooperation in heterogeneousgraphs.Let's 
onsider the s
hemati
 graph in �gure 3.3, 
omposed of the followingelements:(a) A 
omponent F of nF nodes with arbitrary 
onne
tions among them.(b) A node, say Node 1, that is 
onne
ted to all the nodes in F and has noother links.(
) A 
omponent C of nC nodes with arbitrary 
onne
tions among them.(d) A node, say Node 2, that is 
onne
ted to all the nodes in F and C, butnot to Node 1.Let's also 
onsider the set of initial 
onditions de�ned by: (i) Node 1 is adefe
tor, (ii) Node 2 is a 
ooperator, and (iii) all nodes in 
omponent C are
ooperators. Note that this 
hoi
e allows 2nF di�erent initial 
on�gurations.
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ient 
onditions (see below), this is aninvariant set for the evolutionary dynami
s.If we 
onsider that the nodes are engaged on the Prisoner's Dilemma game,with the spe
i�
 
hoi
es for the parameters of the payo� matrix detailed inse
tion 3.1, then the payo� of a 
ooperator node i in F is given by:
PC
i = kCi + 1 + ǫ(ki − kCi + 1) , (3.7)where ki is the number of its neighbors in F and kCi ≤ ki is the number ofthose that are 
ooperators. The payo� of Node 1 is then

P1 ≥ (kCi + 1)b . (3.8)For the PD game, where ǫ < 0 for the general 
ase, the inequality P1 > PC
ialways holds, so Node 1 will always be a defe
tor. Thus, a su�
ient 
onditionfor P1 > PC

i is b > 1 + ǫ(kF + 1), where kF (< nF ) is the maximal degreein 
omponent F , i.e. the maximal number of links that a node in F shareswithin F .The payo� of a defe
tor node i in F is
PD
i = (kCi + 1)b , (3.9)where kCi is the number of its 
ooperator neighbors in F , while the payo� ofNode 2 is

P2 = nC + nF ǫ+ nC
F (1− ǫ) , (3.10)where nC

F ≤ nF is the number of 
ooperators in F . Thus, a su�
ient 
onditionfor P2 > PD
i is nC > Int(b(kF + 1) − nF ǫ). With this requisite, Node 2will always be a 
ooperator, whi
h in turn implies that all the nodes in the
omponent C will remain always 
ooperators.This argument proves that provided the su�
ient 
onditions

nC > Int(b(kF + 1)− ǫnF ),

b > 1 + ǫ(kF + 1), (3.11)hold, the set of initial 
onditions de�ned by (i), (ii), and (iii) is an invariantset: any sto
hasti
 traje
tory starting in the set remains there. Moreover,as no equilibrium 
on�guration is in
luded in this set, one 
on
ludes that notraje
tory from this set evolves to an equilibrium 
on�guration. While nodesin C and Node 2 are permanent 
ooperators, and Node 1 is a permanentdefe
tor, nodes in F are for
ed to �u
tuate: at every time step, a defe
tor in
F has a positive probability to be invaded by the 
ooperation strategy, and atthe same time, a 
ooperator in F has a positive probability of being invaded by
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 Complex Networksthe defe
tion strategy. In other words, every 
on�guration in the set of initial
onditions is rea
hable (in one time step) from any other, thus it is almost surethat it will be rea
hed (ergodi
ity).In any sto
hasti
 traje
tory starting from the set of initial 
onditions ex-plained previously, the network is partitioned into three subsets: a set of pure
ooperator nodes, a set of pure defe
tor nodes and a set of �u
tuating indi-viduals. The �u
tuations inside the subpopulation F re�e
t the 
ompetitionfor invasion among two non-neighboring hubs with �xed opposite strategiesin their 
ommon neighborhood, a lo
al situation that o

urs in heterogeneousnetworks. It is also a s
hemati
 model for the 
ompetition for in�uen
e of twopowerful superstru
tural institutions like "mass media", politi
al parties, orlobbies on a target population.Let's now obtain some exa
t results for the simplest 
hoi
e of topologyof 
onne
tions inside the �u
tuating set, namely kF = 0. It means that inthis 
ase ea
h node in F is only 
onne
ted to Nodes 1 and 2. Note that thesu�
ient 
onditions for �xation of defe
tion at Nodes 1 and 2 are respe
tively,
b > 1 + ǫ, and nC > b− ǫnF .Denoting by c(t) the instantaneous fra
tion of 
ooperators in F , the payo�sof Nodes 1 and 2 are

P1 = bcnF , P2 = nC + cnF + ǫ(1− c)nF ,and the payo�s of a 
ooperator node and a defe
tor node in F are respe
tively
PC = 1 + ǫ , PD = b .Then one �nds for the one-time-step probability ΠCD of invasion of a 
oop-erator node in F , it is to say, the probability of a node in F to 
hange from
ooperator to defe
tor
ΠCD =

cb− (1 + ǫ)/nF

2∆
, (3.12)where ∆ = max{b, b − ǫ}. And on the other hand, using the simplifyingnotation A = ǫ+ (nC − b)/nF and B = 1 + nC/nF we get

ΠDC =
A+ c(1 − ǫ)

2∆B
, (3.13)for the probability of invasion of a defe
tor node in F , meaning analogously,the probability of 
hanging from defe
tor to 
ooperator. Note that A > 0be
ause Node 2 
an not be invaded.In this way, the expe
ted fra
tion of 
ooperators at time t+ 1 is:

c(t+ 1) = c(t)(1 −ΠCD) + (1− c(t))ΠDC ,
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onne
tivity 
lasses on SF networks 63and provided nF ≫ 1, the fra
tion of 
ooperators c in F evolves a

ording tothe di�erential equation
ċ = (1− c)ΠDC − cΠCD ,whi
h after insertion of Eqs. 3.12 and 3.13 be
omes

ċ = f(c) ≡ A0 +A1c+A2c
2 , (3.14)where the 
oe�
ients are

A0 =
A

2∆B

A1 =
1− ǫ−A+B(1 + ǫ)/nF

2∆B

A2 = −1− ǫ+ bB

2∆B
.One 
an easily 
he
k (A0 > 0 and A2 < 0) that there is always one positiveroot c∗ of f(c), whi
h is the asymptoti
 value for any initial 
ondition 0 ≤

c(0) ≤ 1 of equation 3.14. Thus, 
ooperation is never driven to extin
tion evenfor large values of the temptation to defe
t b.Ba
k to the general 
ase, i.e. arbitrary stru
ture of 
onne
tions in F ,it should be emphasized that the su�
ient 
onditions expressed in equations3.11 do not impose bounds on the network's average 
onne
tivity 〈k〉, that
an take on arbitrarily large values independent of the game parameters. Thisresult di�ers from the bound on 〈k〉 reported in [26, 38℄ for di�erent sto
hasti
updating rules in the weak sele
tion limit.3.5 Distribution of the strategies among 
onne
tivity
lasses on SF networksIn order to understand the role of the heterogeneity of SF networks on theasymptoti
 behavior of the dynami
s, we will study the fra
tion of pure 
oop-erators, pure defe
tors and �u
tuating nodes, within every 
lass of 
onne
tivity,that we denote by ρkC , ρkD and ρkF , respe
tively. Note that the total fra
tion ofea
h type of individuals in the system 
an be written as:
ρα =

∑

k

P (k)ρkα (3.15)with α = C,D,F , and being P (k) the degree distribution. Re
all that ρC +

ρD + ρF = 1, and also ρkC + ρkD + ρkF = 1. Thus, in �gure 3.4 we represent the
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Figure 3.4: Strategists proportion by 
lasses of 
onne
tivity. Color-
oded densitiesof pure 
ooperator (Left) and �u
tuating individuals (Rigth) as a fun
tion of kand b for BA networks. The size of the networks is N = 4 · 103 nodes and average
onne
tivity 〈k〉 = 4.fra
tion of pure 
ooperators and �u
tuating nodes as a fun
tion of the degreeof 
onne
tivity of the node and the temptation to defe
t, b. It 
an be seen thatthere are very di�erent areas: �rst of all, for 1 < b ≤ 1.7, the pure 
ooperators
ontrol the system, with values of ρC = 0.9, while there is only a small fra
tionof �u
tuating strategists, among the nodes with medium or low 
onne
tivity.When 1.7 < b < 2, the pure 
ooperators de
rease to ρC = 0.1, being set onlyon the high 
onne
tivity nodes, while the �u
tuating individuals take over thelow 
lasses, up to k ≤ 11. There is a third region, where the �u
tuating nodesinvade higher and higher 
lasses of 
onne
tivity as b in
reases, with the pure
ooperators still o

upying the very high ones (for example, for b = 2.9, onlythe hubs remain being 
ooperators). Finally, for even higher values of b, ρDstarts in
reasing at the expense of ρF , but interestingly enough, it does soquite independently of the degree of 
onne
tivity. This has to do with the fa
tthat defe
tors 
an not take advantage of the heterogeneity of the system, aswe will explain in detail next, so this defe
tor invasion for high values of b is
onsequently independent of the degree of the nodes.The preferential �xation of pure 
ooperators at nodes with high degree kwhen 
ooperation is very expensive 
an be understood by the following plau-sible argument [35, 36, 45℄: a ne
essary though non su�
ient 
ondition for anode i to be a pure 
ooperator at a given time t is that the number kCi of in-stantaneous 
ooperators in its neighborhood (i.e., the payo� of i in the 
urrent
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onne
tivity 
lasses on SF networks 65round, sin
e R = 1 and S = 0) must be greater than the 
urrent payo� of anyinstantaneous defe
tor neighbor j, that is, kCi > bkCj . This 
ondition is 
learlyfavored when the 
ooperator node i belongs to a high k 
lass and its �u
tuatingneighbors j belong to lower k 
lasses. This argument is 
onsistent providedthat heterogeneous topologies in general either have not degree-degree 
orrela-tions, so that the neighbors of a node of degree k have no preferential degrees,or they are assortative, i.e., neighbors of high degree nodes have preferentiallyalso high degrees. Spe
i�
ally, SF networks used here, built via preferentialatta
hment using the GM model [64℄, do have age-
orrelations, whi
h meansthat the oldest nodes of a network are usually the hubs, and moreover, theyare inter
onne
ted, sin
e they formed the initial 
ore of size mo from whi
h thewhole system was grown. This parti
ular feature enhan
es even more 
ooper-ation, so if one destroys su
h age-
orrelations, by rewiring the stru
ture andpreserving the degree distribution, the average level of 
ooperation a
hievedby the system will su�er an important drop, as we will see with some detail in
hapter 5.The �xation of pure 
ooperation on hubs yields as a byprodu
t of thestabilization of 
ooperation around them. If we set a 
ooperator on a hub,it will get very high payo�, be
ause it has very high 
onne
tivity, and it willmake a lot of its neighbors to imitate its strategy. Thus, an all-
ooperating-area will be 
reated around the hub, from whi
h every 
ooperator involved willget high bene�ts too (spe
ially the hub, of 
ourse), making its situation verystable. It is to say, the imitation of a su

essful 
ooperator hub by its neighborsreinfor
es its future su

ess, then favoring the �xation of 
ooperation in highly
onne
ted nodes. Nonetheless, if a hub is o

upied by a defe
tor, it will gethigh bene�ts at the beginning, due to its high 
onne
tivity, exploiting all its
ooperator neighbors. But this will make more and more of them to imitateit, 
reating an all-defe
tor-area around the hub, where nobody will get anybene�ts at all (re
all that a defe
tor against another defe
tor gets P = 0). Andso the hub will stop getting high payo� too, eventually be
oming sus
eptibleof being invaded by a 
ooperator. In that way, the imitation of a su

essfuldefe
tor hub undermines its future su

ess, so that defe
tion 
annot take long-term advantage from degree heterogeneity. In a stati
 topology s
enario it isimpossible for a defe
tor to persist on a hub in the long term. Nonetheless,when dealing with growing heterogeneous stru
tures, a very di�erent pi
ture
an arise, as we will see in 
hapter 7).We also want to point out that, as we show on the left panel of Fig.3.4, fora �xed given value of b > 2, ρkC varies rather qui
kly from 0 to 1 in a smallinterval of values of k 
entered around some b-dependent value k∗(b), so thatthe nodes with degree k > k∗(b) are mostly pure 
ooperators and those withdegree k < k∗(b) are mostly �u
tuating (see right panel, 2 < b < 2.9). In
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 Complex Networksthe absen
e of degree-degree 
orrelations the degree distribution density in theneighborhood of a given node is independent of the node degree, and thus theproportion of 
ooperators in the neighborhood of a given node is that of thewhole network. This implies that the ne
essary 
ondition for a pure 
ooperator
i, stated previously (kCi > bkCj ), be
omes ki > bkj , where j is the �u
tuatingneighbor of i with highest degree, say kj ≃ k∗. Now, a small in
rease ∆b makesthose pure 
ooperators i ful�lling (b+∆b)k∗ > ki > bk∗ to be
ome �u
tuating,so that ∆k∗ ≃ k∗∆b. With these 
onditions one 
on
ludes that k∗(b) growsexponentially with b, k∗(b) ∝ exp(b). The linear shape of the bright-
olor linein the (b, log k) plane at the left panel of Fig.3.4, for b > 2, ni
ely 
on�rms thispredi
tion, thus supporting the validity of the heuristi
 argument.Finally, we want to mention that the invasion pro
ess of defe
tors as thetemptation to defe
t in
reases on a SF topology 
ould be quite di�erent if wewere dealing with stru
tures with a high level of 
lustering 
oe�
ient. As it hasbeen investigated in [128℄, the existen
e of a high number of triangular relationswithin a SF network makes 
ooperation resilient for even higher values of b onthe one hand, but also makes the invasion of defe
tors quite independent ofthe degree 
lasses. It is to say, defe
tors invade homogeneously all the 
lassesof 
onne
tivity almost at the same time, whi
h makes the plot 〈c〉(b) mu
hsharper.3.6 Cooperation times of the �u
tuating set on SFnetworksWe have noted that the �u
tuating subpopulation in the dipolar model (seese
tion 3.4) is su
h that any �u
tuating individual has a positive probability of
hanging strategy in one time step, so that the dynami
s is ergodi
 in the set ofall 
on�gurations 
ompatible with the partition. This is not ne
essarily the 
asein a general heterogeneous network, being perfe
tly possible that a �u
tuatingnode at a given time has a null one-time-step probability of invasion, but apositive n-time-steps probability for some n > 1; thus, ergodi
ity in the set of
on�gurations 
ompatible with the partition is neither ensured nor dis
arded.In SF graphs ea
h �u
tuating individual is wired to (and then 
ould be in-vaded by) a di�erent number of �u
tuating individuals, and (eventually) purestrategists, so that one should expe
t that the fra
tion of time TC it spendsas 
ooperator di�ers widely from node to node. The lower panel of �gure 3.5shows the average fra
tion of time T k

C a �u
tuating node of degree k spends
ooperating. The average of these quantities ∑k P (k)T k
C in the subpopulation

F , de�nes the parameter 〈TC〉 that appears in equation 3.6, i.e. the average
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Figure 3.5: Cooperation times in the �u
tuating set. Permanen
e times τC of the
ooperation strategy of a �u
tuating node (Top) and the fra
tion of time TC it
ooperates (Bottom) as a fun
tion of the node's degree k and the game parameter bfor BA networks and ǫ = 0. The size of the networks is N = 4 ·103 nodes and average
onne
tivity 〈k〉 = 4.
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 Complex Networksindividual 
ontribution of �u
tuating nodes to the ma
ros
opi
 index of 
oop-eration 〈c〉. To avoid misunderstandings 
on
erning the relative importan
eof the 
ontribution of 
onne
tivity 
lasses to 〈c〉, it is important to bear inmind both, the power-law dependen
e of P (k) and the right panel of �gure3.4, showing the fra
tion ρkF of �u
tuating nodes inside the 
lass of degree k.Given that TC is a proportion of time, it does not provide information onthe time s
ales of the invasion 
y
les that �u
tuating nodes experien
e. Therandom variable τC (
ooperation permanen
e time) is de�ned as the time spentas 
ooperator by a �u
tuating node in ea
h 
y
le. For the dipolar network,when kF = 0, the one time step invasion probabilities, ΠCD and ΠDC (equa-tions 3.12 and 3.13), be
ome time independent in the asymptoti
 regime. Thenone 
an 
ompute the probability that the 
ooperation strategy remains for atime τC ≥ 1 at a �u
tuating node, simply as
P (τC) = ΠCD(1−ΠCD)

τC−1 . (3.16)In a similar way, the distribution density P (τD) of defe
tion permanen
e timesis obtained as
P (τD) = ΠDC(1−ΠDC)

τD−1 . (3.17)Thus the distribution densities of both strategies permanen
e times are expo-nentially de
reasing. For example, at ǫ = 0, i.e. at the border between thePD and the HD game, if one further assumes that the relative size µ(F ) ofthe 
omponent F is large enough, i.e. µ(F ) → 1, and µ(C) → 0, one ob-tains that the stationary solution of equation 3.14 behaves as c∗ ≃ (b + 1)−1near the limit µ(F ) → 1. The distribution density P (τC) of the 
ooperationpermanen
e times of a �u
tuating node, as a fun
tion of the parameter b isthus
P (τC) = (2b+ 1)−1

(

2b+ 1

2b+ 2

)τC

, (3.18)and the distribution density P (τD) of defe
tion permanen
e times
P (τD) = (2b(b + 1)− 1)−1

(

2b(b+ 1)− 1

2b(b+ 1)

)τD

. (3.19)For SF networks, one expe
ts that the permanen
e times at the �u
tuatingnodes show some 
orrelation with the node's degree. The upper panel of �gure3.5 represents the average permanen
e time, τkC , that �u
tuating nodes ofdegree k remain as 
ooperators as a fun
tion of b and k, for observation timesof 104 generations. We see that 
ooperation permanen
e times are strongly
orrelated with degree: highest τC 's o

ur along the line k∗(b) of maximaldegree in the �u
tuating set.
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 mi
ros
opi
 organization of the 
ooperation 69As we have mentioned before, the heterogeneity of so
ial 
onta
ts in SFnetworks provides lo
al environments where 
ooperation has a distin
tive se-le
tive advantage at high degree nodes. This not only enhan
es the size ofthe subpopulation where �xation of 
ooperation o

urs, but also enlarges theaverage total fra
tion of time of 
ooperation in the �u
tuating subpopulation.3.7 Dynami
 mi
ros
opi
 organization of the 
oop-erationWe would like to a
hieve now a better understanding of the important di�er-en
es found between the random and the SF topologies, and in order to dothat, we will perform a mi
ros
opi
 study of the dynami
 organization of thesystem. First of all, we need to de�ne the 
on
ept of 
luster or 
ore of nodesfor both strategies. A 
ooperator 
luster (CC) is a 
onne
ted 
omponent (asubgraph) fully and permanently o

upied by 
ooperator strategy si = 1, i.e.,by pure 
ooperators so that P (si(t) 6= 1,∀t > t0,∀i ∈ CC) = 0. Analogously,a defe
tor 
luster (DC) is the subgraph whose elements are pure defe
tors,namely, when the 
ondition P (si(t) 6= 0,∀t > t0,∀i ∈ CD) = 0 is ful�lled. Itis easy to see that a CC 
annot be in dire
t 
onta
t with a DC, but with a
loud of �u
tuating elements that 
onstitutes the frontier between these two
ores. Note that a CC is stable if none of its elements has a defe
tor neighbor
oupled to more than kC/b 
ooperators where kC is the number of 
ooperatorslinked to the element. Thus, the stability of a CC is 
learly enhan
ed by a highnumber of 
onne
tions among pure 
ooperators, whi
h implies abundan
e of
y
les in the CC. This mi
ros
opi
 stru
ture of 
lusters is at the root of thedi�eren
es found in the levels of 
ooperation for both networks and explainswhy 
ooperative behavior is more su

essful in SF networks than in homoge-neous topologies. In fa
t, as far as loops are 
on
erned, the main di�eren
ebetween the two topologies is that the number of small 
y
les of length L,
NL, are given by (〈k〉 − 1)L and (logN)L, respe
tively [129�131℄. Therefore,it is more likely that SF networks develop a CC than ER ones. This has beentested numeri
ally by looking at the probability that at least one 
ooperator
ore exists. The results [45℄ indi
ate that this probability remains equal to 1for SF networks even for b < 2 and that it approa
hes zero for large values of
b. On the 
ontrary, for ER networks, the same probability departs from 1 andshows a sudden drop to zero for b = 2.Thus, we will fo
us now on the number of 
lusters of 
ooperators Ncc andthe number of 
lusters of defe
tors Ncd for both topologies. In �gure 3.6 weshow the dependen
e of Ncc and Ncd with b for ER and BA networks. The �rstand most relevant resut we noti
e 
on
erns the number of 
ooperator 
ores:
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Figure 3.6: Number of 
lusters of 
ooperators (Left) and number of 
lusters of defe
-tors (Right) as a fun
tion of the parameter b for both ER and BA topologies. Thesize of the network is N = 4 · 103 with average 
onne
tivity 〈k〉 = 4, and ea
h pointshown is the average of 103 di�erent realizations of the game and the network.while for ER graphs Ncc there is a wide region of b where there are several
lusters of 
ooperators, for the SF networks the number of 
ooperator 
lustersis always 1, no matter the value of b, they always form a single 
ore. We havealso veri�ed that the 
ooperator 
ore in SF networks 
ontains the hubs, whi
hare the ones that sti
k together the whole 
luster, that would otherwise bedis
onne
ted. This important di�eren
e greatly 
ontributes to the well-knownadvantage of 
ooperators in SF networks, 
omparing with ER. Looking at theorganization of pure defe
tors, one 
an see that there are important di�eren
esdepending on the topology, too. In ER networks, pure defe
tors �rst appeardistributed in several 
lusters that later 
oales
e to form a single 
ore for valuesof b < 2, it is to say, before the whole system is invaded by defe
tors. Con-versely for SF topologies, defe
tors are organized in several 
lusters, ex
eptwhen they �nally o

upy the whole system 
ompletely. This latter behaviorresults from the role that hubs play: as they are the most robust against defe
-tor's invasion, highly 
onne
ted individuals survive as pure 
ooperators untilthe fra
tion ρC vanishes, thus keeping around them a highly robust 
ooperator
ore that loses more and more elements of its outer layer when b in
reases,until 
ooperation is �nally defeated by defe
tion. In �gure 3.7 we show thedependen
e of the number of 
lusters of defe
tors Ncd as a fun
tion of thefra
tion ρD of defe
tors present in the system (realize that this last magnitudeobviously in
reases with b).We have summarized in 3.8 the pi
ture obtained from the analyses performed.Clearly, two di�erent paths 
hara
terize the emergen
e (or breakdown) of 
o-operation. Starting at b = 1 all individuals in both topologies are playing aspure 
ooperators. However, for b > 1, the pure 
ooperative level in SF net-
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Figure 3.7: Dependen
e of the number of 
lusters of defe
tors Ncd with the fra
tion ofpure defe
tors in the system ρD for both SF and ER topologies (note that, in general,though ρD in
reases with b, the same value of ρD for both topologies 
orresponds todi�erent values of b). The size of the network is N = 4 ·103 with average 
onne
tivity
〈k〉 = 4, and ea
h point shown is the average of 103 di�erent realizations of the gameand the network.

Figure 3.8: S
hemati
 representation of the di�erent paths from total 
ooperation tototal defe
tion as b in
reases, for ER and BA topologies.
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 Complex Networksworks drops below 1 and the population is 
onstituted by pure 
ooperatorsforming a single CC, as well as by a 
loud of �u
tuating individuals. As bis further in
reased, the size of the 
ooperation 
ore de
reases and some ofthe �u
tuating nodes turn into pure defe
tors. These defe
tors are grouped inseveral 
lusters around the �u
tuating layer (re
all that pure 
ooperators andpure defe
tors are never put in dire
t 
onta
t). For even larger payo�s, the
ooperator 
ore is redu
ed to a small loop tying together a few individuals,among whi
h is highly likely to �nd the hubs, while the 
ores of pure defe
torsgain in size. Finally, pure 
ooperators and �u
tuating elements are invadedby defe
tors an a single N-sized defe
tor 
ore is formed. On the 
ontrary, theoriginal N-sized 
ooperator 
ore survives for higher values of b when it 
omesto ER graphs. However, when b grows, this 
luster splits into several 
ooper-ator 
ores that are in a �ood of �u
tuating elements. Larger payo�s �rst giverise to several defe
tor 
ores that by 
oales
en
e form an outer layer that isseparated from a single 
entral 
ore of 
ooperators by individuals of �u
tuatingstrategies. Finally, for b = 2, an N-sized defe
tor 
ore 
omes out as well.3.8 Dependen
e on the initial 
onditionsSo far, we have studied the evolution of the PD dynami
s on the system start-ing always from an initial fra
tion of 
ooperators equal ρ0 = 0.5, i.e., at thebeginning of every simulation, ρ0N nodes have been 
hosen randomly as 
oop-erators on the network, on average. In other words, the initial probability forany node to be a 
ooperator has been 0.5. Now we want to address the issue of
hanging this initial 
ooperation fra
tion, so it 
an vary between 0 < ρ0 < 1.We want to analyse the possible in�uen
e of ρ0 on the �nal equilibrium stateof the system, for all the range of values of the parameter b and we also wantto make a 
omparison between the two topologies, as usual, ER and SF net-works. Besides, it is important to 
larify, however, that the distribution of
ooperators, given by ρ0 will still be made randomly among the nodes.The variation with the game parameter b of the stationary (asymptoti
)average 
ooperation, 〈c〉(b), for several values of ρ0, is shown in �gure 3.9 forER graphs and BA networks. And as we 
an see, 〈c〉 depends on ρ0 generallyspeaking, in su
h a way that in
reases with it, but this dependen
e is di�erentfor random and SF topologies. When b ∼ 1, the behavior of 〈c〉 for bothtopologies is quite independent from ρ0 , be
ause there is not a big di�eren
ebetween being a 
ooperator or a defe
tor as far as payo�s is 
on
erned. Thisis also the 
ase when b is bigger enough to make the whole system defe
t. Butthere is a wide range of intermediate values of b where this behavior dependson the heterogeneity of the graph.
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Figure 3.9: Average 
ooperation level in ER (Left) and SF (Rigth) networks as afun
tion of b for several �xed initial 
on
entrations of 
ooperators ρ0 as indi
ated.The size of the networks is N = 4 · 103 nodes and average 
onne
tivity 〈k〉 = 4. Thes
ale-free network is a BA graph whose P (k) ∼ k−3. Every point shown is the averageof 103 di�erent realizations of the game and the network.In the 
ase of ER networks, di�erent initial 
on
entrations ρ0 produ
e afamily of 
urves that mainly di�ers in their tails, so the larger the value of
ρ0, the slower the de
ay of 〈c〉 as b in
reases (as we will see next, this is in
orresponden
e with the perfe
t saturation of 〈c〉(ρ0) at �xed b, �gure 3.10).On the other hand, in BA networks the e�e
ts of di�erent initial 
onditionsare appre
iated in the whole range of b values. We thus see that degree hetero-geneity not only favors the survival of 
ooperation, but also makes the value ofthe average 
ooperation, at �xed b value, more dependent on initial 
onditions.In order to study these di�eren
es more thoroughly, we plot these sameresults as 〈c〉 vs. ρ0 for several values of the (�xed) parameter b. As it 
an beseen in �gure 3.10, 〈c〉 typi
ally in
reases with ρ0 until saturation is rea
hedmu
h before ρ0 approa
hes 1. One observes that saturation o

urs sooner forsmaller values of b. These features are 
ommon for both 
lasses of networks.However, some details of the 〈c〉(ρ0) 
urves are di�erent: �rst, for ER networks,the departure from zero of 〈c〉(ρ0) o

urs, as b in
reases, only above some b-dependent threshold value of the initial fra
tion of 
ooperators; on the 
ontrary,for BA networks 〈c〉(ρ0) departs from zero as soon as ρ0 > 0, at all values of
b inside the 
oexisten
e region between both strategies. Se
ond, saturation ismore perfe
t for ER networks, while for BA graphs the plateau in the 〈c〉(ρ0)
urve has some small positive slope. It is interesting to 
onsider these results inthe light of those found for the Prisoner's Dilemma in regular square latti
es,where the proportion of C and D tends to depend on the starting proportionfor relatively small values of b, but for larger b the proportions are essentiallyindependent of the initial 
on�guration [33℄.
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Figure 3.10: Average 
ooperation level in ER networks (Left) and BA networks(Rigth) as a fun
tion of the initial 
on
entration ρo for several values of b as indi
ated.The size of the networks is N = 4 · 103 nodes and average 
onne
tivity 〈k〉 = 4 andea
h point shown is the average of 103 di�erent realizations of the game and thenetwork.Let's now fo
us on the relation between the fra
tion of pure strategists (ρCand ρD) and the parameter b. As stated in the se
tion 3.2 (and [45℄), for anyasymptoti
 traje
tory there is a partition of the network into three sets, namelythe set PC of pure 
ooperator nodes, the set PD of pure defe
tor nodes, andthe set F of �u
tuating nodes. The behavior of ρC and ρD versus the gameparameter b is plotted in �gure 3.11 for di�erent initial 
ooperator 
on
entra-tions. The �rst remarkable result is that in ER networks, the density of pure
ooperators does not depend on ρ0 for the whole range of b values, in sharp
ontrast with the above mentioned results for the tails of the average level of
ooperation 〈c〉(b) (�gure 3.9). It is worth re
alling that, as we have dis
ussedin se
tion 3.6, there are two additive 
ontributions to the average fra
tion 〈c〉of 
ooperators, namely the measure ρC of the set of pure 
ooperators, andthe overall fra
tion of time 〈TC〉 spent by �u
tuating nodes as 
ooperators,weighted by the relative size ρF = 〈µ(F )〉 of the �u
tuating set (see equation??). Though the �rst 
ontribution is, for ER networks, independent of ρ0,the se
ond one does indeed depend on the initial 
onditions, as inferred from�gure 3.9 and the relation ρC + ρD + ρF = 1. High initial 
on
entrations of
ooperators favor the �u
tuating set F at the expense of pure defe
tors, whilethe number of nodes where �xation of 
ooperative strategy o

urs remainsapparently una�e
ted. Thus, ρC is being mainly determined by the networkstru
tural features. For example, in our simulations, for large values of b where
ρC is very small, we have observed that the pure 
ooperator nodes form 
y
les.The �xation of 
ooperation in these stru
tures is assured if none of their ele-ments is linked to a �u
tuating individual that, while playing as a defe
tor, is
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tion of pure strategists in ER (Left) and SF (Rigth) networks asa fun
tion of b and several values of ρ0. The size of the system is N = 4 · 103 nodes,with average 
onne
tivity 〈k〉 = 4. Every point shown is the average of 103 di�erentrealizations.
oupled to more than kC/b 
ooperators, where kC is the number of 
ooperatorsatta
hed to the element. The number of su
h stru
tures is �nite in ER graphs,but as soon as their verti
es are o

upied by 
ooperators, they will be immuneto defe
tors invasion.The right panel of �gure 3.11 shows the results obtained for BA net-works. Regarding the proportion of pure 
ooperators, one may di�erentiatetwo regimes: For b < 1.7, there is a moderate dependen
e of ρC on ρ0, while

ρC is almost independent of ρ0 for larger values of b. This behavior 
orre-lates well with our observations (se
tion 3.5) on the distribution of strategistsinside the degree 
lasses. In the �rst range of b values, pure 
ooperators arepresent in all k-
lasses and �u
tuating individuals are almost homogeneouslydisseminated over low-to-intermediate k 
lasses. However, for b > 1.7, thereis a b-dependent value of k, say k∗, su
h that k-
lasses are fully o

upied bypure 
ooperators if k > k∗ while basi
ally no pure 
ooperators are found inlower k-
lasses. In the se
ond range of b values, where the degree-strategy 
or-relations are strong, the in�uen
e of ρ0 on the asymptoti
 proportion of pure
ooperators is very small.As dis
ussed in previous paragraphs, while the proportion of pure 
oop-erators is either independent (ER) or slightly dependent (BA) on initial 
on-
entration ρ0, the measures of the other sets in the partition, F and PD, areindeed more in�uen
ed by the initial 
onditions. The dependen
e of the fra
-tion of pure defe
tors ρD with ρ0 for BA and ER networks is qualitatively thesame, that is, the proportion of pure defe
tors is favored (at the expense of the�u
tuating set) by a higher initial proportion of defe
tors. This is 
onsistent
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Figure 3.12: Dependen
e with b of the number of 
luters of 
ooperators (Ncc) anddefe
tors (Ndc) for both BA networks (Top) and ER graphs (Bottom), and fordi�erent values of ρ0. The size of the system is N = 4 · 103 nodes, with average
onne
tivity 〈k〉 = 4. Every point shown is the average of 103 di�erent realizations.with the la
k of degree preferen
e (
orrelation) of pure defe
tors, whi
h 
annottake distin
tive advantage of degree inhomogeneity: the higher their instan-taneous payo�, the more likely they invade neighboring nodes, whi
h has thee�e
t of diminishing their future payo�.Finally, we analyze the 
onne
tedness of the pure strategists sets, as mea-sured by the number of 
ooperator 
ores Ncc, and defe
tor 
ores Ndc. As wehave shown in se
tion 3.7 for BA networks and ρ0 = 0.5, for all values of bwhere PC is not an empty set, it is 
onne
ted, i.e. Ncc = 1. Looking at�gure 3.12, it 
an be said that this result turns out to be independent of ρ0:there is only one 
ooperator 
ore in BA networks, whi
h 
ontains always themost 
onne
ted nodes or hubs, for any initial fra
tion of 
ooperators. Thegrouping of pure 
ooperators into a single 
onne
ted set PC allows to keep asigni�
ant fra
tion of pure 
ooperators isolated from 
onta
ts with �u
tuatingnodes. This "Eden of 
ooperation" inside PC provides a safe sour
e of bene�tsto the individuals in the frontier, reinfor
ing the resilien
e to invasion of the
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tors, on the 
ontrary, do not bene�t from grouping together,and the set PD appears fragmented into several defe
tor 
ores. Note that forvalues of b ≃ 1, where the set PD is empty, Ndc = 0, while for very high valuesof b defe
tion rea
hes �xation in the whole network, so that Ndc = 1. Thus,
Ndc(b) must in
rease �rst and then de
rease to 1. In �gure 3.12 we show the
omputed Ndc(b) 
urves for BA networks for several values of ρ0. It is remark-able that these 
urves almost 
ollapse, in spite of the fa
t that the fra
tion ρDof pure defe
tors does indeed depend on ρ0 (see �gure 3.11). This fa
t suggeststhat it is the size of the defe
tor 
lusters, what 
hanges with b, not its number,for the 
ase of BA stru
tures.In �gure 3.12 we also show the number of 
lusters Ncc(b) and Ndc(b) for ERgraphs, and for di�erent �xed values of ρ0. Regarding the number of 
ooperator
ores, �rst we noti
e that the pi
ture des
ribed in se
tion 3.7 for the 
ase
ρ0 = 0.5 still holds when it 
omes to other values of the inital proportion of
ooperators, it is to say, in general both 
ooperators and defe
tors form severalun
onne
ted 
lusters. We also see that ex
ept in the small range 1.4 < b < 1.6,the di�erent 
urves Ncc(b) 
oin
ide, in fair agreement with the independen
eof ρC on initial 
onditions. Note that in the small interval where they do not
oin
ide, the fra
tion ρC of pure 
ooperators is below 1%, for all values of ρ0.On the other hand, we see that for higher initial proportion ρ0 of 
ooperators,the set PD is more fragmented and also that Ndc rea
hes its maximal valuesat higher values of b.3.9 In�uen
e of the degree of heterogeneity of thenetworkAs we established at the beginning of this 
hapter, we have been 
omparingthe results of the PD dynami
s and its mi
ros
opi
al organization for the ex-treme 
ases of the GM model, i.e., for random and SF topologies only. Now itis the time to analyse the possible di�eren
es for intermediate degrees of het-erogeneity. In order to inspe
t in detail how the results depend on the degreedistribution of the network, we monitor the same magnitudes studied previ-ously just for SF and random topologies, but now when the value of α variesbetween 0 and 1 (we will also in
lude the extreme values, for better under-standing). As we have mentioned before, the GM model builds networks withdi�erent degree of heterogeneity, depending only on the parameter α ∈ [0, 1],in su
h a way that makes the networks less heterogeneous as α in
reases andapproa
hes 1.Figure 3.13 shows, from left to the right and from top to bottom, the
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α=1.0Figure 3.13: Average level of 
ooperation (Top left) and densities of pure 
ooperators(Top right) and pure defe
tors (Bottom) as a fun
tion of b for di�erent values of

α. α = 0 
orresponds to a BA network while α = 1 generates an ER graph. In this
ase, the networks are made up of N = 2 ·103 nodes and average 
onne
tivity 〈k〉 = 4.Every point shown is the average of 103 di�erent realizations.average level of 
ooperation 〈c〉, the density of pure 
ooperators ρC and thedensity of pure defe
tors ρD as a fun
tion of b for several values of α. In this
ase, the initial distribution of 
ooperators was set again to ρ0 = 0.5, i.e., at
t = 0 the nodes have the same probability to 
ooperate or to defe
t. Theresults show that indeed the densities of pure strategists and the average levelof 
ooperation do depend on α. Therefore, the role played by the underlyingtopology is 
on�rmed: the more homogeneous the graph is, the smaller thelevel of 
ooperation in the system for a �xed value of the temptation to defe
t
b. Moreover, the transition for di�erent values of α is absolutely smooth andthe systems do not exhibit any abrupt 
rossover from one kind of behavior(α = 0) to the other (α = 1).We have also explored how nodes where strategies have rea
hed �xation areorganized into 
lusters of 
ooperation and defe
tion as a fun
tion of α. Figure3.14 summarizes our 
omputational simulations for the number of 
ooperator
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Figure 3.14: Number of 
ooperator 
ores for di�erent networks de�ned by the valueof α as a fun
tion of the density of nodes that are not pure 
ooperators 1− ρC . Thenetworks are made up of N = 2 ·103 nodes and average 
onne
tivity 〈k〉 = 4, and ea
hpoint shown is the average of 103 di�erent realizations of the game and the network.
ores. In this 
ase, we have represented Ncc as a fun
tion of (1 − ρC), thatobviously grows with b. We do it this way in order to have a 
ommon referen
efor di�erent values of α until 
ooperation breaks down, so the 
omparison iseasier. The observed dependen
e of Ncc with α is again smooth and no abrupt
hange in the behavior of this magnitude o

urs. It is worth stressing that assoon as the underlying network departs from the limit α = 0 
orrespondingto a BA s
ale-free network, the number of CC slightly di�ers from 1. Thismeans that some realizations give rise to more than one 
luster of CC. Theprobability to have su
h realizations is very small, but in prin
iple, they arepossible. As α is further in
reased towards one, it is 
lear that pure 
ooperatorsdo not organize anymore into a single 
luster. We think that this deviation isdue to the fa
t that when α > 0 the exponent γ of the underlying network,whi
h still is a s
ale-free degree distribution, is larger that 3. It is known thatthis value of γ marks the frontier of two di�erent behaviors when dynami
alpro
esses are run on top of 
omplex heterogeneous networks. This is the 
ase,for instan
e, of epidemi
 spreading. For 2 < γ ≤ 3, the se
ond moment ofthe degree distribution P (k) diverges in the thermodynami
 limit, while it is�nite for γ > 3. As the 
riti
al properties of the system are determined bythe ratio between the �rst (that remains �nite for γ > 2) and the se
ondmoment, the divergen
e of the latter when N → ∞ and 2 < γ ≤ 3, makesthe epidemi
 threshold null. On the 
ontrary, when the pro
ess takes pla
ein networks whose γ > 3, the epidemi
 threshold is re
overed, although no
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 Complex Networkssingular behavior is asso
iated to the 
riti
al point [66, 67℄. We expe
t that asimilar phenomenology is behind the results shown in �gure 3.14.3.10 Con
lusionsIn this 
hapter we have studied the in�uen
e of the topology on the dynami
s,spe
i�
ally, the di�eren
es between ER and SF networks when implementingthe Prisoner's Dilemma on top of them. On the one hand, we have measuredthe mean levels of 
ooperation as a fun
tion of the one free parameter of ourmodel, the temptation to defe
t, b, as well as the dependen
e with the initialproportion of 
ooperators present on the system, and we have also 
he
kedthe distribution of the 
ooperation among the 
onne
tivity 
lasses, for the SFnetworks. On the other hand, we have shown and analyti
ally proved that thereis always a partition of the network into three di�erent sets of individuals, asfar as strategies are 
on
erned, and we have also determined that two di�erentpatterns of 
ooperative behavior, determined by the underlying stru
ture, 
anbe 
learly identi�ed.We have found that the evolution of 
ooperation in 
omplex topologiesshows a very ri
h stru
tural and dynami
al behavior. For values of the temp-tation to defe
t b 
lose to one, ER networks outperform SF topologies, but thepresen
e of hubs and the relative abundan
e of small loops in SF networks re-vert the behavior of the level of 
ooperation for intermediate to large values ofpayo�s. The reason why SF networks 
an hold mu
h higher levels 
ooperationthan ER, even when the temptation to defe
t makes it very expensive, is thatheterogeneous populations o�er to the 
ooperative strategy the opportunityof positive feedba
k evolutionary me
hanisms making 
ooperation the �ttestoverall strategy, in spite of not being the best reply to itself in one-time step.Besides, we have found that regardless of the topology and even the valuesof the parameters of the model, there are always three di�erent 
lasses of ini-dividuals a

ording to their asymptoti
 stategies: the set of pure 
ooperators
PC, pure defe
tors PD and �u
tuating individuals F , and we have developeda simple but very useful analyti
al model that mimi
s the 
ompetition for in-vasion of two highly 
onne
ted nodes in order to prove the existen
e of thispartition of the network in a general 
ase.Regarding the mi
ros
opi
 organization of the system, we have found im-portant di�eren
es between ER and SF: we have measured the number of 
lus-ters of 
ooperators, and shown that, while in SF networks, 
ooperators formalways one single 
luster (its relative size depending obviously on the value ofthe temptation to defe
t), in homogeneous topologies, they form several dis-
onne
ted 
lusters, and therefore they are 'an easy target' for the atta
ks of
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lusions 81the defe
tors. Nonetheless, the number of 
lusters of defe
tors is always morethan one, in general, for both ER and SF networks.Here, we have also shown that the enhan
ement of 
ooperation due tothe heterogenity of the pattern of 
onne
tions among agents is robust againstvariations of initial 
onditions (meaning di�erent initial 
on
entrations of 
o-operators, ρ0 but always randomly distributed on the population). While boththe measure of the 
ooperator set PC where 
ooperation rea
hes �xation, andits 
onne
tedness properties are either independent or only slightly dependenton ρ0, the measure of the �u
tuating set F and the defe
tor set PD wheredefe
tion is �xed show a 
lear dependen
e of initial 
onditions, for defe
tion
annot pro�t from degree heterogeneity. On the other hand, the 
hara
ter-isti
s of the asymptoti
 evolutionary states of the PD analyzed here, show asmooth variation when the heterogeneity of the network of inter
onne
tionsis one-parametri
 tuned from Poissonian to s
ale-free, demonstrating a strong
orrelation between heterogeneity and 
ooperation enhan
ement.Finally, though the numeri
al results presented here 
orrespond mostly tonetwork sizes N = 4 ·103, we have studied also larger networks up to N = 104,with no qualitative di�eren
es in the results. The in
rease of network size,while keeping 
onstant the average degree 〈k〉, turns out to be bene�
ial for
ooperation, due to the fa
t that it has the e�e
t of in
reasing the maximal de-gree, and thus the range of degree values. This further 
on�rms how e�
iently
ooperation takes advantage from degree heterogeneity.





Chapter 4Other Games on Stati
Complex NetworksIn the last 
hapter, we have been dis
ussing in some detail the dynami
s andmi
ros
opi
al organization of the the so-
alled weak Prisoner's Dilemma Game[42℄ on stati
 
omplex networks, where the payo� of a 
ooperator against adefe
tor was �xed to S = 0 (stri
tly speaking, for this value of S, we are reallyat the border between the Prisoner's Dilemma game and the Hawks and Doves-HD- game). In this 
hapter we want to address very brie�y the issue of otherevolutionary games on graphs.Given the usual payo� matrix for the 2× 2 games:
(

C D

C R S

D T P

) (4.1)and on
e we have �xed R = 1 and P = 0, we have four di�erent games,depending on the relative ordering of the parameters (the �rst three of whi
hare interesting well-known so
ial dilemmas) [22, 125, 126℄:
• The Stag Hunt game [102, 103℄, with R > T > P > S, is a 
oordinationgame and both strategies are stri
t Nash equilibria. Players prefer mutualdefe
tion to unilateral 
ooperation (S < P ), resulting in an intrinsi
 fearof individuals to 
ooperate.
• The Hawks and Doves (or Snow Drift or Chi
ken) game [37, 41, 99�101, 122�124℄, with T > R > S > P , where players are referred toas greedy, sin
e they prefer unilateral defe
tion to mutual 
ooperation(T > R). This is an anti-
oordination game, sin
e the best strategy foran individual is the opposite to its opponent's.
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• The Prisoner's Dilemma game, for whi
h T > R > P > S, and whereboth tensions des
ribed above are in
orporated at on
e, so is the mostdi�
ult situation for 
ooperation to arise.
• The Harmony game, for whi
h R > S > T > P , so that mutual 
ooper-ation is the best option here. Thus, this game does not represent a veryinteresting 
ase of study for us.On �gure 4.1 we sket
h the disposition of all of them on the T − S plane.As we explained in se
tion 2.2, Evolutionary Game Theory predi
t that
ooperation 
an not survive when playing the Prisoner's Dilemma game onwell-mixed populations, whereas there is an interior equilibrium in the Hawksand Doves game, so the system will end up in a situation where a 
ertainproportion of both strategies is present. Nonetheless, we also know of theimportant di�eren
es introdu
ed by the topology on the weak PD game. Nowwe will study and 
ompare the 
ases of a general Prisoner's Dilemma game andthe Hawks and Doves game on 
omplex networks. Our approa
h will be verysimilar to the one used in 
hapter 3, it is to say, we will study the asymptoti
equilibrium state of the system, given by the average level of 
ooperation,when engaged in general PD game and HD, respe
tively, on top of a 
omplexnetwork 
omparing homogeneous and heterogeneous topologies. Then we willfo
us on the partition of the graph into several sets, and also on the numberand distribution of 
lusters of the di�erent strategies. Finally, we will lookinto the level of 
ooperation among the di�erent 
onne
tivity 
lasses for SFtopologies. On the one hand, we want to study a more generalized Prisoner'sDilemma game, it is to say, situations with other values of the payo� parameter

S < 0, to test the results found in the pre
eding 
hapter. And on the otherhand, we will analyse the behavior of the system when playing another 2 × 2game, namely the Hawks and Doves game, and we will 
ompare the out
omeof the game for both s
enarios.We have used here the same dynami
 rule as in the previous 
ase of theweak Prisoner's Dilemma (
hapter 3), it is, at ea
h time every node i of thesystem plays with its nearest ki neighbors, given by the underlying network,and a

umulates the payo�s Pi obtained during the round. Then, individualsare allowed to syn
hronously 
hange their strategies by 
omparing the pay-o�s they a

umulated in the previous generation with the one obtained by arandomly 
hosen neighbor j. In this way, if Pi > Pj , player i keeps the samestrategy for the next round of the game, when it will play again with all of itsneighborhood. On the 
ontrary, whenever Pj > Pi, i adopts the strategy of jwith probability [27, 28, 34, 35, 97, 101℄:
Πi→j = β(Pj − Pi) (4.2)
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Figure 4.1: S
hemati
 representation of the di�erent games on the T − S plane.
where β−1 =max{ki, kj}∆, and ∆ is the maximum possible di�eren
e betweenthe parameters of the payo� matrix, it is to say ∆ = T (given that S ≥ 0 forthe Hawks and Doves game). For the weak Prisoner's Dilemma studied before,it was also ∆ = T , but for a more general 
ase of this parti
ular game, with
S < 0, it will be ∆ = T − S. This probability is proportional to the di�eren
eof payo�s of the nodes involved, and it is normalized by the maximum payo� anode 
an get. Re
all that, though it is sto
hasti
, the Repli
ator-like rule doesnot allow the adoption of irrational strategy, i.e. Πi→j = 0 whenever Pj ≤ Pi.In other words, a node will never adopt the strategy of a neighbor whose payo�was worse than its in the former round of the game.As we did in 
hapter 3, the dynami
s evolves on top of ER [18℄ or BA[8℄ networks, i.e. strategists are lo
ated on the verti
es of a �xed graph thatdi
tates the pattern of so
ial intera
tions of the population. The size of thesystem is N = 4 · 103 nodes, and the average 
onne
tivity of the networks is
〈k〉 = 4. On
e the network has rea
hed its full size N , the initial strategy ofevery node is randomly set, with a probability of being a 
ooperator equal to
ρ0 = 0.5 and then the dynami
s starts. We let the system evolve for 5 · 103time steps or generations, after whi
h we 
he
k whether the equilibrium hasbeen rea
hed. As usual, we again observe the system during a time window of
103 generations. If the slope of C(t) is smaller than 10−2, then we 
onsider theequilibrium has been rea
hed. Otherwise, we let the system evolve for another
5 · 103 more generations, after whi
h, we evaluate it again. The results thatwe show are usually the average of 103 di�erent realizations of networks andinitial 
onditions, ex
ept we state otherwise.
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Figure 4.2: Color-
oded average level of 
ooperation (Top left), fra
tion of pure
ooperators (Top right), �u
tuating individuals (Bottom left) and pure defe
tors(Bottom right) for ER networks.4.1 Average level of 
ooperation, and fra
tions ofpure strategists and �u
tuating individualsAs we have already mentioned, we set R = 1 and P = 0, and explore thedynami
s for a 
ontinuum of values of S and T . So the �gures we present nextwill in
lude a 
omparison of the general Prisoner's Dilemma game (S < 0) andthe Hawks and Doves game (S > 0) at on
e.The �rst result we present is that the asymptoti
 existen
e of the partitionof the networks into pure strategists and �u
tuating individuals (see se
tion3.3) is a general result for the games studied in this 
hapter. In �gure 4.2 weshow the 
olor-
oded average level of 
ooperation rea
hed for the system afterthe transient period, as well as the fra
tions of pure strategists and �u
tuatingindividuals for ER topologies. On the other hand, in �gure 4.3 we representthe same magnitudes for BA networks.We also 
on�rm that the dependen
e of the dynami
s on the parameter Sis smooth, there is not an abrupt 
hange of behavior around the line S = 0.Or in other words, we were entitled to use the weak Prisoner's Dilemma, �xingand eliminating the parameter S, instead of using a more stri
t version of
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Figure 4.3: Color-
oded average level of 
ooperation (Top left), fra
tion of pure
ooperators (Top right), �u
tuating individuals (Bottom left) and pure defe
tors(Bottom right) for BA networks.the game, be
ause the results do not 
hange drasti
ally with small variationsaround S . 0.For a �xed value of the temptation to defe
t T and for both topologies,the more expensive being a 
ooperator against a defe
tor gets (i.e., S goingfrom positive to negative values), the lower the average level of 
ooperation.On the other hand, the fra
tion of pure 
ooperators ρC does not show a strongdependen
e with S neither for BA nor ER networks. Pure defe
tors take overthe whole system for a wide range of the parameters studied (half of the S−Tplane represented, on the ER 
ase). As expe
ted, the value of T for whi
h allthe nodes are pure defe
tors de
reases as S does so, sin
e lower values of Sor higher values of T make 
ooperation more expensive. The most importantresult is that there are not always �u
tuating players present on the systemfor any given value of the parameters. Obviously, if S < 0 and T is highenough, all nodes are pure defe
tors, and if T is low, all individuals a
t aspure 
ooperators, no matter what the value of S is. However, there is also anintermediate area of parameters for whi
h the �u
tuating nodes o

upy almostthe entire system, being responsible for the maintenan
e of the average levelof 
ooperation shown on the system.If we look at �gures 4.2, we observe that the frontier between PC and F



88 Chapter 4. Other Games on Stati
 Complex Networksis almost S-independent, but the frontier between F and PD does depend onthe parameter S. This makes that the transition in T from total 
ooperationto total defe
tion also S-dependent: for high values of S, this transition issmooth, while for negative values of S it is quite sharp, suggesting an almostimmediate 
onversion of the nodes of the system from PC to PD.Regarding the in�uen
e of the topology, as one 
ould expe
t, both theaverage level of 
ooperation and the fra
tion of pure 
ooperators are higherfor BA than for ER networks. We also see that the fra
tion of �u
tuatingindividuals (when present) is larger in the ER networks, and the limits of thearea for whi
h they are present are more 
learly drawn in this 
ase.
4.2 Number of Clusters of Cooperators and Defe
-torsUsing the same de�nition of Cluster presented in the se
tion 3.7, we 
onsidera 
ooperator 
luster (CC) as a 
onne
ted 
omponent (subgraph) fully andpermanently o

upied by 
ooperator strategy si = 1, i.e. 
omposed of pure
ooperators so that P (si(t) 6= 1,∀t > t0,∀i ∈ CC) = 0. Analogously, adefe
tor 
luster (DC) is the subgraph whose elements are pure defe
tors,it is,a subgraph where the 
ondition P (si(t) 6= 0,∀t > t0,∀i ∈ DC) = 0 is ful�lled.In �gure 4.4 we show the number of 
lusters of 
ooperators Ncc and defe
-tors Ndc as a fun
tion of T for several dis
rete values of the parameter S andfor both ER and BA topologies in both the Hawks and Doves (S > 0) andthe general Prisoner's Dilemma game (S < 0). As we 
an see, on
e again thegeneral result obtained previously for the weak Prisoner's Dilemma (se
tion3.7) holds in these s
enarios: while 
ooperators form several 
lusters on ERtopologies, for the BA networks, as long as 
ooperators survive in the system,they remain together forming one single 
luster whi
h always in
ludes mostof the higher 
onne
ted nodes, making thus the system mu
h stronger to theatta
ks of the defe
tors. Those, on the other hand, always form more thanone 
luster, in general, on both random and s
ale-free networks. This behaviorof the mi
ros
opi
 organization of the strategies in the system for the Hawksand Doves and the general Prisoner's Dilemma is not very surprising, sin
eit is proven to be basi
ally due to the underlying topology, and it de�nitelyse
ures the robustness of the results presented in se
tion 3.7, and highlightsthe di�eren
es between homogeneous and heterogeneous networks.
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Figure 4.4: Number of 
lusters of 
ooperators Ncc and defe
tors Ncd as a fun
tion of
T for the Hawks and Doves game (Top panels) and the general Prisoner's Dilemma
ase (Bottom panels), for both ER and BA topologies. The size of the networks is
N = 4000 nodes and average 
onne
tivity 〈k〉 = 4. Every point shown is the averageof 5 · 102 values
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 Complex Networks4.3 Distribution of the 
ooperation among the de-grees of 
onne
tivityWe 
an study the role of heterogeneity on the dynami
s of both PF and HDgames by plotting the probability of a node with degree k of being a 
ooperator,
ρkC , in a similar way as we did in se
tion 3.5. Re
all that the total fra
tion ofpure 
ooperators in the system 
an be written as:

ρC =
∑

k

P (k)ρkC (4.3)with P (k) being the degree distribution, and where the relations ρC+ρD+ρF =

1 and ρkC + ρkD + ρkF = 1 are ful�lled. As one 
an see in �gure 4.5, when T issmall enough, all nodes are 
ooperators, regardless of their 
onne
tivity, but as
T in
reases, nodes with medium degree are less likely to be 
ooperators, whilethe higher 
lasses remain as 
ooperators until the value of T is su
h that levelof 
ooperation vanishes in the system 
ompletely. This is in perfe
t agreementwith the results found for the weak Prisoner's Dilemma [35, 36, 45℄, and shownin se
tion 3.5. As we 
ommented in detail in that se
tion, the reason whythe 
ooperation 
an survive for SF topologies is due to the existen
e of thehubs, whi
h are inter
onne
ted, play as 
ooperators, and surround themselvesby more 
ooperators, 
reating a ni
e environment of 
ooperation (or 'Eden')where other 
ooperator nodes with lower degree 
an get bene�ts from it, andresist the atta
ks of the defe
tors. On the other hand, defe
tors 
an not takeadvantage of the heterogeneity of the network, be
ause they are not stable inthe long term when set in a hub.4.4 Con
lusionsIn this 
hapter we wanted to 
he
k whether or not some of the importantprevious results exposed in 
hapter 3 for the weak Prisoner's Dilemma (it is,when S = 0) still hold for the more general 
ases, and even for other two-strategy game, spe
i�
ally the Hawks and Doves.As we have seen, given the payo� matrix of the game, the parameter or-dering for the Prisoner's Dilemma is T > R > P > S, while for the Hawks andDoves game, it is T > R > S > P . So, although in both 
ases players preferunilateral defe
tion to mutual 
ooperation, the di�eren
e between them is thatin the �rst 
ase, the worst strategy is to 
ooperate against a defe
tor, whilein the se
ond setting, it is to mutually defe
t. As usual, we have �xed theparameters P = 0 and R = 1, so to have two free parameters, the temptationto defe
t, T and the su
ker's payo�, S. In this way, for a �xed value of T > 1,
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Figure 4.5: Probability of �nding a Pure Cooperator of degree k in SF networksfor di�erent values of the parameter T . (a) S=-0.2 and (b) S=-0.1 
orrespond toPrisoner's Dilemma s
enarios, while (
) S=0.1 and (d) S=0.2 are Hawks and Dovesituations. The networks have N = 2 · 103 nodes.if S < 0, we are playing Prisoner's Dilemma, while if S > 0, we are playingHawks and Doves. Cooperation gets more expensive every time T in
reasesor if S de
reases. On the general Prisoner's Dilemma (meaning, for values of
S < 0 stri
tly, instead of the weak limit, S = 0), we have 
he
ked that thedependen
e with the parameter S is smooth, there are no abrupt 
hanges, butnonetheless, there are some di�eren
es. In parti
ular, for a �xed value of thetemptation to defe
t, the more negative S gets, the more expensive the 
oop-eration is, so both the mean value of 
ooperation, 〈c〉, and the level of pure
ooperators, ρC , de
rease. And also the level of �u
tuating individuals, ρF ,drops remarkably, while obviously, the level of pure defe
tors, ρD, in
reases.In this situation, sin
e the levels of F are low, the transition from pure 
o-operation to pure defe
tion as T in
reases is quite sharp. On the other handfor Hawks and Doves (S > 0) the 
ooperation is less expensive than for thePrisoner's Dilemma and the same value of T , so both the mean value of 
oop-eration 〈c〉, and the fra
tion of pure 
ooperators ρC are obviously higher thanin the Prisoner's Dilemma s
enario, and the level of �u
tuating individuals,
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ρF , is also mu
h higher. In fa
t, when S > 0, there is a wide region of the
S − T plane where �u
tuating individuals 
learly take over the entire system,and this makes the transition from pure 
ooperation to pure defe
tion as Tin
reases smooth.Regarding the in�uen
e of the underlying topology, we 
an 
on�rm thatthe heterogeneity of the network always favors the 
ooperation for both games:
〈c〉 and ρC are mu
h higher for SF than for ER networks, while the �u
tuatingand pure defe
tors are less present on heterogeneous systems. We have 
he
kedthe mi
ros
opi
 organization of the 
ooperation on the system as well, and wehave found that the results shown in se
tion 3.7 still hold both for the generalPrisoner's Dilemma 
ase and the Hawks and Doves: while for SF topologies,
ooperators organize into just one single 
luster, for ER they form several.Thus, in the �rst 
ase the system 
an hold mu
h higher levels of 
ooperationeven when it is very expensive (for high values of T or negative values of S). Onthe other hand, the defe
tors always organize into several 
lusters, in general,regardless the underlying topology.Finally, if we look at the distribution of the 
ooperation a
ross the 
on-ne
tivity 
lasses in SF networks, we 
an see that, as we have proved previ-ously for the weak Prisoner's Dilemma 
ase, when 
ooperation is not expen-sive (T < 1.5), pra
ti
ally the whole system plays as a 
ooperator, but when itgets more expensive, the defe
tors start taking over the medium 
lasses, whilethe high 
lasses remain un
onquered as long as 
ooperation 
an survive. Thishierar
hi
al organization is preserved for all the values of S explored.To summarize, in this 
hapter, we have proven the robustness and strengthof the important results previously shown in 
hapter 3. We have proved that allof them hold for a wide range of parameters, spe
ially the important di�eren
esregarding the topology and the mi
ros
opi
 organization of the system.



Chapter 5The Prisoner's Dilemma Gameon Random S
ale-Free NetworksAs it has been well established in previous 
hapters, when implementing thePrisoner's Dilemma (PD) game on top of 
omplex networks, s
ale-free (SF)topologies greatly enhan
e 
ooperation [34�45℄, 
omparing with other topolo-gies as ER networks. It is also well known that the heterogeneity on the degreedistribution of these stru
tures is a 
ru
ial fa
tor in order to a
hieve su
h highlevels of 
ooperation in the system. More spe
i�
ally, the hubs, or nodes withthe highest 
onne
tivity, a
t always as 
ooperators, surrounding themselveswith middle-
lass 
ooperators, and 
reating a unique 
luster (or 'Eden') of 
o-operation that is able to resist the atta
k of defe
tors, even when 
ooperationgets really expensive. Nonetheless, up to now we have only fo
used on the BAmodel [8℄, among other SF network models available in literature (for a qui
kreview of some of them, see [12, 63℄). BA SF networks have some 
orrelationsby 
onstru
tion, the so-
alled age-
orrelations [11, 13, 61℄. It means that oldernodes, the ones that arrived earlier to the system when it is being built areinter
onne
ted, sin
e they formed the original 
ore of nodes, and besides, theseolder nodes usually be
ome hubs as the network grows. The existen
e of age-
orrelations 
an be found in some real systems also, su
h as the 
ollaborationor 
itation networks, or the 'old boy' network, made up of former students ofthe Ivy League that now work at the top investment banks [9℄.In this 
hapter we want to study the evolution of 
ooperation in 'totallyrandom' SF stru
tures, it is to say, without any kind of 
orrelations. Wepresume that these age-
orrelations among the highly 
onne
ted individuals ofBA networks enhan
e 
ooperation [34, 36℄, by making the single 
ooperator
luster even more robust to the possible invasion of defe
tors. Thus, now it isour intention to analyse the situation when 
onsidering the same PD dynami
s
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ale-Free Networkstaking pla
e on top of a randomized version of BA topologies. Our �rst goalin the study of su
h random SF networks is to 
he
k if the deletion of thehub-to-hub links a�e
ts indeed the stru
ture of 
ooperation observed in BAnetworks, explaining qualitatively the drop in the 
ooperation level as a breakdown of the 
ohesive arrangement of 
ooperators.We want to study in detail the stru
ture of 
ooperation in random SFnetworks, and in order to do so, on the one hand we will perform our usualnumeri
 simulations. Spe
i�
ally, we will perform a rewiring pro
ess of theSF networks obtained by means of the BA model, whi
h is a pro
edure thatdestroys any kind of 
orrelations present in the original system [13℄, preservingthe 
onne
tivity of every node, and therefore the original degree distribution,and then we will implement the usual PD dynami
s. On the other hand, wewill also address the problem analyti
ally, by using a degree-based mean-�eldapproximation in order to try and in
orporate the heterogeneity in the numberof so
ial 
onta
ts of individuals in the Repli
ator Equation [97, 106�108℄ (seealso se
tion 2.2.2). To this end, we will make a further 
ompartmentalizationof the strategists in degree-
lasses, by de�ning the fra
tion of 
ooperators anddefe
tors with degree k, so we will have an equation for the evolution of the
ooperation in every 
lass of 
onne
tivity k. Finally, we will 
ompare the resultsobtained with both methods, dis
ussing whether or not this approximation isa

urate enough to explain some of the basi
 behaviors of the 
ooperation inthe system.5.1 Numeri
al Simulations on Random S
ale-Free Net-worksTo study the stru
ture and dynami
s of 
ooperation in random SF networkswe have performed a rewiring pro
ess [132℄ of SF networks built via BA me
h-anism. As we have already seen in 
hapter 2.1.3, the BA model 
onsiders thatthe network is grown from an initial 
ore of m0 nodes, in
orporating a newnode to the network every time step. Besides, every new node laun
hes m linksto the nodes already present in the growing network, following a preferentialatta
hment rule, i.e., the probability of re
eiving a link from the new nodeis proportional to the degree of the nodes. The networks generated using theBA model have a power-law degree distribution, P (k) ∼ k−γ , with γ = 3 but,at the same time, they possess important features that make them di�erentfrom random SF networks 
onstru
ted by means of purely statisti
al algo-rithms su
h as the Molloy-Reed 
on�gurational model [133℄. These di�eren
esare the previously mentioned age-
orrelations that have as a 
onsequen
e theinter
onne
tion of highly-
onne
ted elements or hubs. The links between hubs
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Figure 5.1: S
hemati
 representation of the rewiring pro
ess of two pairs of nodes.have been shown to play a 
ru
ial role in the survival of 
ooperation [34, 36℄,sin
e when they are removed the 
ooperation level de
reases notably.The rewiring pro
ess is made as follows (see �gure 5.1): let i and j be a pairof neighbors, so they share a link, and let be m and n be another pair of nodeslinked together. Then we inter
hange the i − j and the m − n links, in su
ha way that in the �nal state, i− n and m− j are the new pairs of neighbors.Of 
ourse, we make sure that i 6= j 6= m 6= n, to avoid double links andauto-links, i.e., links that 
onne
t a node with itself. We repeat the pro
ess Ntimes, 
he
king that the �nal networks have a unique 
onne
ted 
omponent.As we have mentioned before, following this rewiring s
heme destroys any kindof 
orrelations present in the original network preserving the degree sequen
eof the graph, and thus keeping the same degree distribution (P (k) ∼ k−3) asin the original BA network.On
e the network is rewired, we perform the numeri
al simulation of theevolutionary dynami
s di
tated by the Prisoner's Dilemma, whose payo� ma-trix is given, as usual, by:
(

C D

C R S

D T P

) (5.1)where we set, again P = S = 0, R = 1, T = b > 1, so we only have to dealwith one 
ontrol parameter, the temptation to defe
t b [31, 34, 127℄.In the initial 
on�guration of the system, the probabilities of being a
ooperator or a defe
tor are the same (ρ0 = 0.5), and the strategists arerandomly distributed a
ross the network. On the other hand, we will usethe same updating rule as in previous 
hapters, that is, the Repli
ator-like[27, 27, 28, 34, 35, 97, 101℄, so player i adopts the strategy of its neighbor j
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Figure 5.2: Comparison of the levels of 
ooperation a
hieved in the stationary statefor ER, BA and random SF networks, as a fun
tion of the temptation to defe
t b. Allnetworks are made up of N = 4 · 103 nodes and have an average 
onne
tivity 〈k〉 = 4.Every point shown is the average over 103 di�erent realizations.for the next game round with probability:
Πi→j = β(Pj − Pi) (5.2)where Pi and Pj are their 
orrespondent payo�s from the last round of thegame, and with β = (max{ki, kj}b)−1.The details of the numeri
al analysis are similar to those in previous 
hap-ters: the networks we generated have N = 4 ·103 nodes and an average 
onne
-tivity 〈k〉 = 4. We let the system evolve until a stationary regime is rea
hed.This stationary regime is 
hara
terized by an average level of 
ooperation 〈c〉,that is the fra
tion of C players in the network, 〈c〉 = c/N . To 
ompute 〈c〉 welet the dynami
s evolve over a transient time τ0 = 5 ·103, and we further evolvethe system over time windows of τ = 103 generations. In ea
h time window,we 
ompute the average value and the �u
tuations of c(t). When the �u
tu-ations are less than or equal to 1/

√
N , we stop the simulation and 
onsiderthe average 
ooperation obtained in the last time window as the asymptoti
average 
ooperation 〈c〉. In order to make an extensive sampling of initial 
on-ditions and network realizations we have performed 103 independent numeri
alsimulations for ea
h value of the temptation to defe
t b studied, and averageda

ordingly the values 〈c〉 found in the realizations.First of all, in �gure 5.2 we show a 
omparison of the levels of 
ooperationa
hieved by su
h random SF networks, as well as original BA and ER topolo-gies, and as it 
an be seen, our results 
on�rm previous �ndings: the removal
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al Simulations on Random S
ale-Free Networks 97of age-
orrelations makes random SF networks mu
h less robust to defe
tionthan BA networks [35, 36℄, so the level of 
ooperation drops substantially. Onthe other hand, in �gure 5.3(a) we have also plotted the average level of 
o-operation 〈c〉 as a fun
tion of b, as well as the level of pure strategists and�u
tuating individuals present on the network. It is to say, on these topologieswe have also found that on the stationary regime, there is a partition of thenetwork into pure strategists (pure 
ooperators PC and pure defe
tors PD),and �u
tuating individuals (F ). Noti
e that the partition of the system intopure strategists and �u
tuating individuals has been made following the same
riteria as in se
tion 3.3. As one 
ould expe
t, the fra
tion PC de
reases with
b, the �u
tuating take over the network for a wide range of medium valuesof b, and the PD �nally invade the system for large values of the parameter.Nonetheless, the fra
tion of PC is remarkably lower than that for the 
ase ofBA networks or even ER topologies, whereas the �u
tuating individuals dom-inate the system for a wider range of b, so the level of 
ooperation is almostex
lusively due to them. This is a very di�erent s
enario from those studiedfor BA SF networks (
ompare with �gure 3.2).Moreover, in �gure 5.3(b) we have plotted the number of 
ooperator 
lus-ters Ncc and defe
tor 
lusters Ndc as a fun
tion of b, using to that aim thesame de�nition as in se
tion 3.7, a 
ooperator (defe
tor) 
luster is a 
onne
tedsubgraph 
omposed of nodes that are pure 
ooperators (defe
tors). The �rstdi�eren
e with respe
t to BA networks is that here we �nd realizations withmore than one 
ooperator 
luster, whereas for BA networks, the number of
lusters was always exa
tly Ncc = 1, as long as 〈c〉(b) > 0. This di�eren
eexplains the drop in the 
ooperation level previously observed [34℄: the morefragmented the 
ooperators are arranged, the less sour
es of bene�ts they �ndin their surroundings and the larger is the probability to be invaded by theinstantaneous defe
tors that are in 
onta
t with them. Regarding the defe
tor
lusters we observe the same pi
ture as in BA networks: PD are arranged inseveral 
lusters when they start to invade the network (b & 2). The numberof defe
tor 
lusters de
reases as they start to grow in size and glue together,and �nally 
ollapse into a single one, when all the network has been totallyinvaded by pure defe
tors.We have also 
he
ked the probability that a node of degree k is a 
ooperatorin the stationary regime. Our numeri
al simulations show that, in agreementwith previous numeri
al observations we have made in BA networks (see se
tion3.5), high degree nodes are more likely to a
t as 
ooperators than intermediateor low degree individuals.Summing up, in random SF networks the fragmentation of the 
oopera-tor 
lusters together with the extremely low fra
tion of pure 
ooperators and
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Figure 5.3: (a) Average level of 
ooperation 〈c〉 as a fun
tion of the temptation todefe
t b in random SF graphs. The panel also shows the 
orresponding dependen
eof the fra
tion of pure 
ooperators (PC), pure defe
tors (PD) and �u
tuating (F)players. (b) Average number of 
ooperator 
lusters Ncc and defe
tor 
lusters Ndcas a fun
tion of b. The networks are made up of N = 4 · 103 nodes and an average
onne
tivity 〈k〉 = 4. Every point shown is the average over 103 di�erent realizations.



5.2. The degree-based mean �eld approximation 99the prevalen
e of �u
tuating individuals not only makes the average level of
ooperation drop in 
omparison with that same PD dynami
s on top of BAnetworks, but also lead to an organization of 
ooperation that is quite di�erentto that observed in BA SF networks. Therefore, we 
an 
on�rm that the highlevel of 
ooperation that BA SF networks 
an hold is not only due to its degreedistribution, buy also due to the so-
alled age-
orrelations that link togetherthe hubs.5.2 The degree-based mean �eld approximationThe random SF graphs used in the simulations above are free of any kind of
orrelation between the properties (age, degree, et
...) of two adja
ent nodes.Therefore, it is amenable to study analyti
ally the evolution of the 
ooperationby 
onsidering a similar approa
h to that used for disease spreading pro
essesin 
omplex networks [65�67℄ with arbitrary degree distributions and no 
or-relations. To in
orporate the heterogeneity in the number of so
ial 
onta
tsof individuals we make a further 
ompartmentalization of the strategists indegree-
lasses. In this sense, we label ck and dk the fra
tions of 
ooperatorsand defe
tors with degree k, respe
tively, so that the total number of 
ooper-ators and defe
tors will be:
c = N

∑

k

P (k)ck , (5.3)
d = N

∑

k

P (k)dk . (5.4)Obviously the relation ck + dk = 1 holds, and, instead of des
ribing the evolu-tion of the fra
tion of 
ooperators in the population via the well-known Repli-
ator Equation [97, 106�108℄, we 
an write now the evolution of the fra
tionof 
ooperators with degree k as:
ċk = (1− ck)Π

DC
k − ckΠ

CD
k , (5.5)where ΠDC

k is the probability that a defe
tor of degree k 
hanges its strategyto 
ooperation, and analogously, ΠCD
k is the probability that a 
ooperator ofdegree k 
hange its strategy to defe
tion.Assuming that the network has no degree-degree 
orrelations, and followingthe repli
ator-like update rule (5.2), we 
an write the probabilities ΠDC

k and
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ΠCD

k as
ΠDC

k =
∑

k′

k
′

P (k
′

)

〈k〉 β Θ
[

PC
k′

− PD
k

]

ck′ , (5.6)
ΠCD

k =
∑

k′

k
′

P (k
′

)

〈k〉 β Θ
[

PD
k′

− PC
k

]

(1− ck′ ) , (5.7)where the fun
tion Θ[x] is de�ned as Θ[x] = x if x > 0 and Θ[x] = 0 otherwise.Besides, PC
k and PD

k are the payo�s obtained by a 
ooperator and a defe
torof degree k respe
tively, and 
an be written as
PC
k = k

∑

k′

k
′

P (k
′

)

〈k〉 ck′ = kl c , (5.8)
PD
k = b · klc , (5.9)where lc is the probability that a node has a 
ooperator neighbor. Now we 
aninsert the above two expressions (5.8) and (5.9) in equations 5.7 and 5.6 and�nally write the evolution equation of the fra
tion of 
ooperators with degree

k (5.5) as
ċk = (1− ck)

∑

k′>bk

k
′

P (k
′

)

〈k〉 β lc(k
′ − bk)ck′

− ck
∑

k′>bk

k
′

P (k
′

)

〈k〉 β lc(bk
′ − k)(1 − ck′ )

− ck

bk
∑

k′>k/b

k
′

P (k
′

)

〈k〉 β lc(bk
′ − k)(1− ck′ ) , (5.10)where we have separated the 
ontributions to the transition C→D that 
omefrom neighbors with k

′

> bk and k
′

< bk, so that it is 
lear that the numberof degree 
lasses that parti
ipate in the transition C→D is larger than thosethat in�uen
e the 
hange D→C.We have numeri
ally solved the set of equations 5.10 using both power-lawand a Poisson distribution for the generi
 expression of the degree distribu-tion P (k). As initial 
onditions, we have used a homogeneous distribution of
ooperators and defe
tors for all the degree 
lasses: ck(t = 0) = a ∀k where
a is a random variable homogeneously distributed between [0, 1]. This way,the initial fra
tion of 
ooperation is ρ0 = 0.5, in agreement with the numeri
alexperiments shown in the previous se
tions.Unfortunately, the numeri
s 
learly showed that the total 
ooperation al-ways de
ays to zero when b > 1, thus failing to explain the 
ooperation levels
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ooperation 101observed in the numeri
al simulations in both random SF networks and ERgraphs. Nonetheless, this result is 
onsistent with previous �ndings, whi
hhave shown that the mean-�eld approximation 
an not explain satisfa
torythe observed survival of 
ooperation. However, in the next se
tion we willstudy the behavior of the system when it starts from a very spe
i�
 set ofinitial 
onditions: the targeted 
ooperation.5.3 Targeted 
ooperationWe have failed to use the degree-based mean �eld approximation to explainthe observed non-zero level of 
ooperation when simulating the PD dynami
son top of random SF networks. Now we study a very parti
ular 
ase for bothrandom SF network simulations and our degree-based mean-�eld approxima-tion with a parti
ular set of initial 
onditions. As we will see next, the resultsshow that at least, if not in perfe
t agreement, the two 
ases bare some resem-blan
e on the qualitative behavior of both the time evolution C(t) towards thestationary state and the �nal state a
hieved by the state, expressed throughthe dependen
e 〈c〉(b).It is important to stress that the main assumption behind the above mean�eld approa
h is that the average level of 
ooperation inside a degree-
lass, ck,is a proper magnitude for des
ribing the state of the nodes within this degree.In parti
ular, this assumption is stri
tly 
orre
t when ck is either 1 or 0. Thismotivated us to study the solution of equations 5.10 using a parti
ular set ofinitial 
onditions that we have 
alled the targeted 
ooperation, and that areexplained next.We de�ne targeted 
ooperation as a set of initial 
onditions for the systemdes
ribed by 5.10, where ck(t = 0) = 1 if k > k∗ and ck(t = 0) = 0 if k < k∗.It is to say, all nodes whose 
onne
tivity is higher than a given value k∗ areset initially as 
ooperators, while all those with lower number of neighborswill be defe
tors. We have 
arefully explored the solutions of equations 5.10when P (k) is a power-law degree distribution. To this end, we have 
onsideredpower-law distributions with several values of the exponent γ, and we havealso used di�erent values for the degree threshold k∗. The numeri
al solutionof equations 5.10 reveals that, in this 
ase, the 
ooperation survives for b > 1,rea
hing a stationary value that depends on both the value of b and that ofthe threshold k∗. In �gure 5.4 we show the time evolution of the averagelevel of 
ooperation for several values of b and k∗ = 2 and k∗ = 3. Thedegree distribution in the �gure is a power-law with γ = 3. The solutionsshow that the larger k∗ and/or b are, the lower the 
ooperation level is, whi
hmakes perfe
t sense, sin
e they imply, respe
tively that the number of initial
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Figure 5.4: Time evolution of the fra
tion of 
ooperators 〈c〉(t) obtained solvingequation 5.10 when targeted 
ooperation is used as initial 
onditions and being P (k)a power-law with γ = 3. The di�erent 
urves 
orrespond to several values of b, asshown in the bottom of the �gure. The targeted 
ooperation used 
orrespond to (a)
k∗ = 2 and (b) k∗ = 3. Noti
e the log-log representation of the axes.
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Figure 5.5: Several examples of the time evolution of the random SF network numeri-
al simulations for targeted 
ooperation. All the 
ases shown in the (Left) panel have
k∗ = 20, while those in the (Right) one, 
orrespond to simulations with a �xed valueof b = 1.2. The networks are made of N = 4 · 103 nodes, with average 
onne
tivity
〈k〉 = 4 and γ = 3. Noti
e the log-log representation of the axes.
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Figure 5.6: The average level of 
ooperation 〈c〉 as a fun
tion of the temptation todefe
t b, for several values of the degree threshold k∗ for numeri
al simulations ontop of random SF networks with targeted 
ooperation. The networks are made of
N = 4 · 103 nodes, with average 
onne
tivity 〈k〉 = 4 and γ = 3.
ooperators is lower, or that the 
ooperation itself gets more expensive.On the other hand, it is interesting to 
ompare these results with the valuesobtained for our 
onventional simulations on top of random SF networks (see�gure 5.5). We see that the behavior of both systems are relatively alike, as faras time evolution of the 
ooperation is 
on
erned (but, of 
ourse, the evolutionof the random SF networks displays �nite size �u
tuations). As it 
an be seenin the (Left) panel of �gure 5.5, for a �xed value of k∗ and for low or mediumvalues of b, the level of 
ooperation in
reases with time, until it gets its �nalvalue (whi
h depends inversely on b), and for higher values of b, the level of
ooperation on the system eventually goes to zero. Conversely, if we �x thevalue of b ((Right) panel of �gure 5.5), the bigger the k∗, the lower the �nallevel of 
ooperation the system 
an a
hieve. Besides, in �gure 5.6 we show thedependen
e of the level of 
ooperation 〈c〉 with both the temptation to defe
t
b and with the value of the threshold k∗.5.4 Dependen
e with the exponent of the power-lawdistributions for the mean �eld approximationReturning now to the degree-based mean-�eld approa
h, it is interesting tostudy in detail the e�e
t of the threshold k∗ over the asymptoti
 level of 
oop-eration. In parti
ular, we 
an fo
us on the minimum amount of degree 
lasses
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Figure 5.7: Phase diagram k∗c (b). The three 
urves 
orrespond to di�erent power-law distributions (namely, γ = 4, 3 and 2). Ea
h 
urve k∗c (b) represent the borderbetween two di�erent asymptoti
 regimes for the evolution of equations 5.10 withtargeted 
ooperation: The area below the 
urves 
orrespond to the points (b, k∗)where targeted 
ooperation yield nonzero asymptoti
 level of 
ooperation. Conversely,the area above the 
urves 
orrespond to the targeted initial 
onditions for whi
h theevolution of equations 5.10 yields 〈c〉 → 0.
that we have to �ll initially with 
ooperators so that 
ooperation is able tosurvive asymptoti
ally in the system. We have 
arefully explored di�erent setsof initial 
onditions 
orresponding to di�erent values of k∗. Starting from alow value of k∗ we have solved equations 5.10 and 
omputed the �nal level of
ooperation 〈c〉. If 〈c〉 > 0 we in
rease the value of k∗ and solve again thesystem 5.10. This pro
ess is iterated until we rea
h a value k∗c for whi
h 
oop-eration �nally vanishes. The 
riti
al value k∗c represents the minimal amount of
ooperator degree 
lasses needed at time 0 to sustain asymptoti
ally a nonzerolevel of 
ooperation. In �gure 5.7 we have plotted the fun
tions k∗c (b) for threepower-law degree distributions (γ = 2, 3 and 4). Obviously, we observe thatas the 
ooperation gets more and more expensive, it is ne
essary to �ll moredegree 
lasses to assure a nonzero level of 
ooperation. More interestingly, weshow that the heterogeneity of the network (or in other words, a lower valuefor the exponent γ in the degree distribution P (k)) in
reases the value of k∗c .This result is related to the fa
t that �lling a given amount of degree 
lasses ismore e�
ient (more nodes are initially set as 
ooperators) when the networkis more heterogeneous.
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ooperation initial 
onditions 1055.5 Comparison between simulations and mean-�eldapproximation for the targeted 
ooperation ini-tial 
onditionsWe 
an say that the mean �eld approa
h represents a useful tool for sub-stituting 
omputationally expensive numeri
al simulations to a given extent.However, how a

urate are the results of the solutions of equations 5.10 when
ompared to numeri
al simulations with targeted 
ooperation as the initial
ondition? To 
he
k the reliability of the degree-based mean �eld approa
h inthe 
ontext of targeted 
ooperation we have 
omputed the diagram 〈c〉(b) forrandom SF networks with γ = 3 using two di�erent sets of initial 
onditions
orresponding to k∗ = 3 and 4. In �gure 5.8 we show the results of the numer-i
al simulations 
ompared to the results obtained by solving equations 5.10.Obviously, the agreement is not 
omplete but we 
an say that the dependen
eof the level of 
ooperation with the temptation to defe
t b follows the samequalitative behavior and the 
ooperation tends to zero (〈c〉 & 0) around thesame values of b.The values of b for whi
h 〈c〉 = 0 in ea
h of the 
urves of the �gures areobviously related to the values k∗c . Our results show that, although the level of
ooperation starts de
reasing earlier (for lower values of b), the 
urves 〈c〉(b)obtained from numeri
al simulations on top of random SF networks 
an holdlarger values of b with 〈c〉 > 0 than the system des
ribed by equations 5.10.On the other hand, the numeri
al simulations yield very low (but yet non-zero) values of 〈c〉 for those values of b for whi
h 
ooperation asymptoti
allyvanishes solving equations 5.10. The drop of the level of 
ooperation is mu
hmore abrupt for the mean-�eld s
enario. Therefore, this mean �eld approa
hseems to be, at least, of help to study the behavior of k∗c (b) and the asymptoti
level of 
ooperation of the system when targeted 
ooperation is initially pla
edin the system.Regarding general (i.e. non-targeted 
ooperation type of) initial 
onditionsfor the degree-based mean �eld equations 5.10, some 
omments are in order.For both, power-law and Poisson degree distributions P (k), random uniformlydistributed values for ck(t = 0), as well as �xed value ck(t = 0) = 0.5 (mim-i
king the initial 
onditions in the numeri
al simulations of previous se
tion),led to asymptoti
 zero level of 
ooperation as soon as b > 1. This suggeststhat, generi
ally speaking, mean �eld approa
hes (even in generalized forms,as equations 5.10) to the evolutionary dynami
s of prisoner's dilemma gameson graphs are likely bound to fail to a

ount for the numeri
ally observed sur-vival of 
ooperation. This would be in agreement with some previous results[134℄ on a parti
ular type of arti�
ial networks that allow a rigorous analysis
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Figure 5.8: Evolution of the asymptoti
 level of 
ooperation 〈c〉 obtained when (i)solving the mean �eld (MF) equations 5.10 and (ii) 
omputed through numeri
alsimulations (NS) of the evolutionary dynami
s on top of a random SF network. Thedegree distribution used is a power-law with γ = 3. In both 
ases we have set targeted
ooperation as initial 
onditions for the evolutionary dynami
s. We have used k∗ = 3and 4.of the issue. To put it in plain terms, the network re
ipro
ity me
hanisms[26℄ that enhan
e the evolutionary survival of 
ooperation in network settingsseem to be out of rea
h from the (homogeneity) mean �eld assumptions, in thesense that they are asso
iated in an essential way to �u
tuations of averagedquantities, like ck whi
h are the basi
 des
riptors in mean �eld approa
hes.Besides, the existen
e of loops and 
y
les is also a me
hanism able to promote
ooperation that is overlooked by the mean-�eld approa
h.5.6 Con
lusionsS
ale-free networks have been re
ently shown as the graphs that better pro-mote 
ooperation. In this 
hapter we have shown that the power-law degreedistribution 
annot be 
onsidered as the only root for the promotion of 
oop-eration. At varian
e with the BA networks, the SF graphs 
onsidered in this
hapter are free of any kind of node-node 
orrelation. The �rst 
on
lusion ofour study is that we 
on�rm the previous �nding pointing out the fa
t that
ooperation de
ays when no 
orrelations are present in the network. Moreover,we have shown that the organization of 
ooperation is dramati
ally di�erentfrom that of the BA network, showing that 
ooperators 
an arrange in morethan one 
luster, in
reasing the probability of being invaded by defe
tors. Inother words, the �xation of 
ooperation is mu
h lower than in SF networks
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lusions 107with 
orrelations, thus 
ompleting the pi
ture provided by other studies where
orrelations were added into SF networks [128, 135℄ enhan
ing the promotionof 
ooperation of BA networks. On the one hand, our study in random SFnetworks 
an be 
onsidered as the null model for the study of the 
ooperationin other types of SF graphs. Besides, our results highlight the importan
e oftaking into a

ount other stru
tural properties beyond the degree distributionof the network [136℄ in order to 
apture the me
hanisms that help to �xate
ooperation in real 
omplex networks.The se
ond part of the 
hapter presents a degree-based mean �eld ap-proa
h to study analyti
ally networks with arbitrary degree distribution andno degree-degree 
orrelations (su
h as random SF networks). The approa
h re-lies on a degree 
ompartmentalization of 
ooperators and defe
tors strategists.We have shown that, 
ontrary to di�usion dynami
s where a similar approa
hhas been applied [65�67℄, the degree-based mean �eld equations do not work
orre
tly when general initial 
onditions are applied, sin
e no asymptoti
 levelof 
ooperation is observed when the temptation to defe
t is larger than the re-ward to 
ooperation (b > R = 1). On the other hand, when a parti
ular set ofinitial 
onditions is used (
onsisting in pla
ing all the 
ooperators in the higherdegree 
lasses of the network) the solution of the mean �eld yields a non zerolevel of 
ooperation for a number of targeted initial 
on�gurations. The resultsobtained in this latter 
ontext qualitatively agree with those obtained whenextensive numeri
al simulations on top of random SF graphs are performed.As a 
on
lusion, the results presented in this 
hapter 
omplete the studiesabout the Prisoner's Dilemma on top of SF networks showing that node-node
orrelations play a key role for sustaining a high level of 
ooperation. In thisline, the wrong fun
tioning of the degree-based mean �eld approa
h further
on�rms that heterogeneity is not the unique responsible of enhan
ing 
oop-eration. The presen
e of features that are beyond the s
ope of this mean �eldformulation (even in un
orrelated graphs) su
h as 
y
les or loops seems to beat the root of 
ooperation enhan
ement.





Chapter 6The Prisoner's Dilemma gameon S
ale-Free networks withlimited number of intera
tionsIt has been widely studied in the literature how on 
omplex networks, namely,far from the well-mixed assumption or regular latti
es [31℄, 
ooperation hasmu
h better 
han
es to survive, even when it gets very expensive [36, 38, 40,119℄. Spe
i�
ally, it has been proved that heterogeneity not only reprodu
esmu
h better some topologi
al features of the so
ial systems [11, 12℄, su
h asthe degree distribution, but also greatly favors 
ooperation. This happens,as we have seen in some detail in 
hapter 3, thanks to the formation of onesingle 
luster, 
entered on the inter
onne
ted 
ooperator hubs, that 
reatea 'supporting system' for the individuals, in order to resist invasions fromdefe
tors [34, 37℄. Nonetheless, when modeling some aspe
ts of the behavior ofindividuals in a so
iety using evolutionary games on 
omplex networks, usuallythe number of intera
tions a node establishes in every round is 
onsidered equalto the number of topologi
al neighbors it has. This widely used assumptiondoes not take into a

ount real 
onstrains su
h as the limited amount of timeto deal with so
ial a
quaintan
es nor the energy it 
osts to the node to payattention to ea
h of its neighbors.In this 
hapter we analyze a more realisti
 s
enario in whi
h agents arelimited to intera
t with a given number of neighbors during ea
h round of thegame. In parti
ular, we are interested on studying the e�e
t of su
h a restri
-tion in the number of intera
tions per round of the evolutionary Prisoner'sDilemma game on s
ale-free networks. In this sense, some e�ort has been puton studying the e�e
t of restri
ting the maximum number of possible 
onta
tsa node 
an have, due to the �nite resour
es of the node, but in a di�erent way
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ale-Free networks with limitednumber of intera
tionsthan the approa
h we propose now. In [35℄, the level of 
ooperation a
hievedby the system is studied when the SF networks have a 
uto� at a 
ertain valuefor the 
onne
tivity, kcutoff , so there will be no nodes with a number of 
on-ne
tions above that given value. In this s
enario, it was found that the levelof 
ooperation remains high enough even for an important 
uto� of the degreedistribution (up to a value kcutoff > 20 for a network made up of N = 104nodes), and what is more, some slight improvement 
an be found in the av-erage 
ooperation as the value kcutoff de
reases, as long as it is larger than a
ertain threshold kcutoff . 20.It is also worth mentioning, that a di�erent approa
h but in the samedire
tion of restri
ting somehow the available resour
es for a node has beenused when dealing with the Publi
 Goods Game. In [137℄, Santos et. al.
ompared the level of 
ooperation in the system for two s
enarios: a �xed-
ost-per-individual situation, when a node with 
onne
tivity k 
ontributes c/(k+1)in every one of the (k+1) rounds of the game, and a �xed-
ost-per-intera
tionwhere it 
ontributes c in every round of the game, regardless of its 
onne
tivity.They found that the former situation promotes 
ooperation more than thelatter, due to the introdu
tion of an extra sour
e of heterogeneity, apart fromthe topologi
al one. Namely, this diversity in the amount that every node
ontributes to the 
ommon goods has been proved to be bene�
ial for theoverall level of 
ooperation in the system.Nonetheless, we want to address this restri
tion from a di�erent angle:the degree distribution of the topologi
al substrate remains untou
hed, it isto say, the PD dynami
s will take pla
e on top of unaltered BA s
ale-freenetworks. However, every node i of the network, even when it has ki topologi
al
onne
tions, will be only allowed to establish k∗ intera
tions per round of thegame among its neighbors. This restri
tion will spe
ially a�e
t those nodeshaving a large topologi
al 
onne
tivity, the hubs, that will only play with asmall fra
tion of their otherwise large number of neighbors, while it will nota�e
t at all those nodes with a very low 
onne
tivity. We will analyse the
onsequen
es that limiting the number of game mates may have on the globaldynami
s of the system, and more pre
isely on the average level of 
ooperation,
omparing the results with the well-known 
ase of a standard framework inwhi
h every node plays every round of the game with all its neighbors, asdi
tates the underlying topology.One should also keep in mind that the formulation of the Prisoner's Dilemmathat will be used in this 
hapter is di�erent from the one used in previous 
hap-ters. It means that the spe
i�
 values of the 
oe�
ients of the payo� matrixwill be di�erent, but not their relative ordering. In this way, now, instead ofhaving the temptation to defe
t, b as the (only) free parameter, we will have



6.1. The model 111the ratio b/c, between the bene�t of playing against a 
ooperator and the 
ostof being one. This parti
ular formulation will be used again in 
hapter 8.6.1 The modelWe use s
ale-free networks built via the Barabási-Albert (BA) preferentialatta
hment model [8℄. As we have already explained (see se
tion 2.1.3), thewell-known BA model is based on growth and preferential atta
hment, andstarting from a small set of m0 fully 
onne
ted nodes, every time step we adda new node j to the network. This new node will atta
h to m of the existingnodes. The probability that a link from node j 
onne
ts to an existing node
i is proportional to its degree, Pi =

ki∑
l kl

. This pro
edure 
ontinues until thenetwork rea
hes its �nal size N . The degree distribution of su
h networks is apower-law, P (k) ∼ k−γ with an exponent γ = 3, and the average 
onne
tivityis 〈k〉 = 2m. In our 
ase, we have used networks with N = 4 · 103 nodes andan average value for the 
onne
tivity 〈k〉 = 4.We 
onsider that every node on the network is a player whose initial strat-egy, 
ooperator (C) or defe
tor (D), is randomly assigned with equal probability
ρ0 = 0.5. Next, we go over every node, for
ing them to 
hoose, also randomly,
k∗ among its ki topologi
al neighbors, so we get an 'e�e
tive 
onne
tivity ma-trix' for the 
urrent round of the game. Obviously, if ki ≤ k∗ for a parti
ularnode i, then it 
hooses all its neighbors to play with them every single time,but if ki > k∗, then it will play only with some of them, making a di�erentsele
tion every round. Noti
e that, in order to preserve the symmetry of theintera
tions, if node i 
hooses node j, it means that j also 
hooses i straight-away (apart from those 
orresponding k∗ neighbors that j has 
hosen or it will
hoose to mate when its time 
omes), so the real e�e
tive 
onne
tivity of thenodes is not stri
tly k∗, but it is in general keffi & k∗.We 
an 
al
ulate the dependen
e of the e�e
tive 
onne
tivity keffi withthe topologi
al 
onne
tivity of a node ki. To this aim we distinguish betweenthose nodes having ki ≤ k∗ and those with ki > k∗. For the former groupwe trivially have keffi = ki while for the se
ond set we have keffi = k∗ + kini .In this latter 
ase kini stands for the number of extra 
onne
tions a node igets from being sele
ted by other neighbors not 
ontained in its own set of k∗sele
ted neighbors. We 
an write the expression for the extra kini game matesas:

kini = ki





∑

k′6k∗

P (k′|ki) +
∑

k′>k∗

k∗

k′
P (k′|ki)



 , (6.1)where P (k′|k) is the 
onditional probability that a node of degree k is 
on-
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tions

Figure 6.1: Comparison of the a
tual topologi
al 
onne
tivity of the nodes, ki, andtheir e�e
tive 
onne
tivity, keffi , and the approximate expression, for three �xedvalues of k∗ = 5, k∗ = 10 and k∗ = 30 (a single realization of the network per ea
h).The lines are for the theoreti
al estimation (equation 6.4).ne
ted with a node of degree k′. Assuming that the network is un
orrelated(as the BA network) we have P (k′|k) = k′P (k′)/〈k〉. Taking the 
ontinuousapproximation for the degree we 
an write equation 6.1 as
kini ≈ ki

〈k〉

[

∫ k∗

k0

k′P (k′)dk′ + k∗
∫ ∞

k∗
P (k′)dk′

]

, (6.2)where k0 is the minimum degree of the network. Solving the right hand side ofthe above equation for a s
ale-free network, P (k) = (γ−1)kγ−1
0 k−γ , we obtain:

kini ≈ ki(γ − 1)kγ−1
0

〈k〉

[

k2−γ
0 − (k∗)2−γ

γ − 2
+

(k∗)2−γ

γ − 1

]

. (6.3)In our parti
ular 
ase we have networks with γ = 3, 〈k〉 = 4 and k0 = 2,therefore the e�e
tive 
onne
tivity for those nodes with ki > k∗ reads
keffi ≈ k∗ + ki(1−

1

k∗
) . (6.4)In order to 
he
k the above approximation, we plot in �gure 6.1 the fun
tion

keffi (ki), along with the pairs of values (ki, keffi ) obtained in a single realizationof the network when k∗ = 5, k∗ = 10 and k∗ = 30, respe
tively. From the �gureit be
omes 
lear that the agreement with equation 6.4 is good.
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e all the nodes have sele
ted their 
urrent e�e
tive neighborhood, keffi ,they play a round of the PD game with every single one of them, and a

u-mulate their 
orresponding bene�ts πi , a

ording to the payo� matrix of thePrisoner's Dilemma game [38, 108, 138℄ we are using, given by:
(

C D

C b− c −c

D b 0

)

∼
(

C D

C b/c− 1 −1

D b/c 0

) (6.5)where c is the 
ost of being a 
ooperator, and b is the bene�t of playing againstone (obviously, the larger the ratio b/c gets, the 
heaper it be
omes to be a
ooperator). Immediately afterwards, in order to update its strategy, everynode i 
ompares its own payo� πi with the payo� of one of its neighbors, πj ,randomly 
hosen from the 
urrent e�e
tive neighborhood. For the probabilitythat i imitates j's strategy for the next round of the game, and followingprevious works [102, 110, 116, 118, 139℄, we have 
hosen the so-
alled Fermifun
tion from Statisti
al Physi
s, given by:
Pi→j =

1

1 + ew(πi−πj)
, (6.6)where w is a parameter that a

ounts for the importan
e of the relative di�er-en
e of payo�s on the 
hange of strategy of node i. Noti
e that, for w → ∞,the probability Pi→j strongly depends on the di�eren
e of payo� between thetwo nodes involved, so with a very high probability, if πi < πj , i will imitate j,and if πi > πj , i will not imitate j. But on the other hand, when w → 0, onegets that the probability of 
hanging strategies is Pi→j = 1/2, independentlyof the values of the payo�s (in this 
ase we have the so-
alled random driftevolution of the system). We 
an also interpret this situation as a total loss ofinformation: the individuals know nothing at all about their neighbors, so theyde
ide by tossing a 
oin [118℄. The results shown on this work 
orrespond onlyto the value w = 1. Nonetheless, we have 
he
ked that they are quite robustby testing out other values for w we get qualitatively the same out
omes.We iterate the above dis
rete-time dynami
s for a number of time steps,until the system rea
hes the �nal stati
 state. As oppose to what happenedwith the repli
ator dynami
s used in previous 
hapters, where 
ooperation anddefe
tion 
ould 
oexist in the asymptoti
 state whi
h, moreover, �u
tuated ingeneral around a well de�ne mean value of 
ooperation 〈c〉(b), now, due to thisparti
ular 
hoi
e for the probability fun
tion (6.6), the �nal state of the systemwill be one of the two absorbing states: all-C or all-D [110℄. As we have seen,with this probability we allow irrational 
hanges of strategy, so that a node willalways have a non-zero probability of adopting the neighbor's strategy, evenwhen the neighbor's payo� is smaller than its own. It is worth noti
ing that
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Figure 6.2: Average level of 
ooperation as a fun
tion of the ratio b/c for the 
aseof restri
ted number of 
onne
tions without frustration. The SF networks are madeup of N = 4 · 103 nodes, and the average 
onne
tivity is 〈k〉 = 4. Every point is theaverage over 500 di�erent realizations.this a�e
ts the dynami
s of the system in su
h a way that it will always endup on one of the two possible absorbing states. Therefore, one should interpretthe average level of 
ooperation, for a parti
ular set of the parameters b/c and
w, as the fra
tion of realizations in whi
h the system ends up in the all-C state,instead of the average fra
tion of 
ooperators present in the stationary stateof the system.It is worth stressing that the neighborhood a node sele
ts to play oneround of the game with, is also the one used to 
hoose the node to 
ompareits bene�ts, but for the next round, all the nodes will sele
t a di�erent newe�e
tive neighborhood (ex
ept, of 
ourse, those with ki ≤ k∗, that play withthe same opponents). This neighborhood sele
tion pro
edure is quite expensivein terms of 
omputational time. And, in addition to this, the fa
t that thesystem must a
hieve eventually one of the two absorbing states, makes thetime evolution of the dynami
s remarkably slow, spe
ially, for the range of b/cvalues 
orresponding to intermediate values of 〈c〉.6.2 Average level of 
ooperationIn �gure 6.2 we plot the level of 
ooperation 〈c〉 as a fun
tion of the ratio
b/c, for di�erent values of the restri
tion k∗. Obviously, as one 
an easilyexpe
t, the larger the value of b/c is, the 
heaper being a 
ooperator is, and
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Figure 6.3: Average level of 
ooperation as a fun
tion of the restri
tion k∗ for di�erentvalues of the ratio b/c. The SF networks are made up of N = 4 · 103 nodes, and theaverage 
onne
tivity is 〈k〉 = 4. Every point is the average over 2 · 103 di�erentrealizations.
thus the larger the average level of 
ooperation the system 
an a
hieve. Onthe other hand, we have found a surprising and non-trivial dependen
e ofthe level of 
ooperation 〈c〉 with the value of the restri
tion for the numberof 
onne
tions k∗. From �gure 6.2 for some low values of b/c, i.e., when
ooperation is relatively expensive, the larger level of 
ooperation is a
hievedwhen no restri
tion is imposed to the 
onne
tivity of the nodes, but for largervalues of the ratio b/c, the opposite trend o

urs, and a network with somelevel of 
onne
tivity restri
tion performs better than the original one, meaningthat it a
hieves larger levels of 
ooperation. Of 
ourse, those 
ases with a toorestri
tive value for k∗ . 10, always perform worse, regardless of the value ofthe ratio. Noti
e that by setting k∗ = N we a
tually mean that every node iplays always with all its ki topologi
al neighbors.As a matter of fa
t, if we represent the level of 
ooperation as a fun
tionof k∗ for a �xed value of the ratio b/c, we obtain a non-monotonous behavior(see �gure 6.3), where moreover, the optimum value of k∗, i.e. the value thatyields the larger level of 
ooperation for a �xed b/c, seems to in
rease as the
ooperation gets more expensive.
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ale-Free networks with limitednumber of intera
tions6.3 Imposing a more tight 
onne
tivity restri
tionAs we have already mentioned, the �rst pro
edure we have 
hosen for therestri
tion of the number of intera
tions per node and per round of the game,
k∗, is not as stri
t as one would like, and does not guarantee the value k∗ forevery node with ki > k∗ present on the network. On the 
ontrary, and due tothe need of symmetry, keffi turns out to be larger than k∗, in general. In orderto obtain a more severe restri
tion, while preserving the symmetry 
onditionfor the intera
tion between nodes, we propose now a di�erent method.This se
ond sele
tion s
heme works as follows: starting with the nodes oflower degree for a given network, we make them 
hoose its k∗ neighbors (or
ki < k∗ if ne
essary), among its topologi
al 
onne
tions, but now, we keeptra
k of the number of possible 
onne
tions still available for every node, usinga tagging system, so all the nodes start with its label set to li = k∗ if ki > k∗,and li = ki if ki ≤ k∗, and every time an e�e
tive 
onne
tion between nodes
i and j is made, we rest one unit to the labels li and lj . Thus, if one node
i intends to 
hose another node j whose label is already set to lj = 0, thenthis pi
k will not be allowed, even if node i 
an not establish 
onne
tions withanyone else. When this situation happens, we say that node i gets frustrated.We repeat this pro
ess for all the in
reasingly 
onne
ted nodes, ending upwith the hubs, and then, as usual, everyone plays a round of the game with its
urrent e�e
tive neighborhood, and a

umulates its bene�ts πi. Then everyone of them 
ompares this value πi with that 
orresponding to a neighbor,randomly 
hosen among their keffi , and de
ide whether or not they 
hangetheir strategy with the same probability used before. All the nodes 
hangetheir strategy syn
hronously.Noti
e that we have obviously 
hosen to start from the lowly 
onne
tednodes, and not the other way around in order not to margin poorly 
onne
tednodes due to the restri
tion pro
edure, so they would not get the 
han
e toplay. It is also worth mentioning that we have 
he
ked the 'average level offrustration' for the nodes on the network at a given round of the game, de�nedas the fra
tion between the sum of labels di�erent from zero present on the sys-tem on
e the assignment pro
ess has �nished (i.e. the number of 
onne
tionsthat were not able to be established, and remain 'unused', although they wereallowed), and the maximum possible number of 
onne
tions the whole networkwould have made with the restri
tion k∗ but without frustration. This qualityalways yields values under ten per
ent for any set of the parameters of thesystem. So we 
onsider that this method, though not perfe
t and somehowmore arti�
ial than the �rst one, is a good approa
h to this non-trivial prob-lem of restri
ting the number of 
onne
tions to a 
onstant value on a s
ale-freeunderlying topology.
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Figure 6.4: Average level of 
ooperation as a fun
tion of the ratio b/c for the 
ase ofrestri
ted number of 
onne
tions with frustration. The SF networks are made up of
N = 4 ·103 nodes, and the average 
onne
tivity is 〈k〉 = 4. Every point is the averageover 500 di�erent realizations.

Figure 6.5: Average level of 
ooperation as a fun
tion of the restri
tion k∗ for di�erentvalues of the ratio b/c for the 
ase of restri
ted number of 
onne
tions with frustration.The SF networks are made up of N = 4 · 103 nodes, and the average 
onne
tivity is
〈k〉 = 4. Every point is the average over 2 · 103 di�erent realizations.
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ale-Free networks with limitednumber of intera
tionsSimilarly to what we have done in the previous se
tion, we show now in�gure 6.4 the level of 
ooperation as a fun
tion of the ratio b/c for severalvalues of the restri
tion k∗ for the 
ase of restri
ted number of 
onne
tionswith frustration. It 
an be seen that they are quite similar to those presentedfor the 
ase without it, with mainly one quantitative di�eren
e: the valueof b/c needed to maintain the same level of 
ooperation is larger, it is tosay, the 
ooperation is in general more expensive in this se
ond s
enario withfrustration.But as far as the qualitative demeanor is 
on
erned, we 
an say that thisse
ond model behaves in the same way as the �rst one, so when we representthe level of 
ooperation as a fun
tion of k∗ for a �xed value of the ratio (see�gure 6.5), we also �nd a non-monotonous dependen
e whi
h 
learly indi
atesthat, in order to a
hieve the highest level of 
ooperation for a �xed value ofthe parameters of the payo� matrix, it is better to restri
t the number ofintera
tions to a 
ertain extent.In order to understand better the origin of this optimum value for thenumber of intera
tions, k∗opt, when playing the Prisoner's Dilemma game with
osts, we will next 
he
k it for two other di�erent s
enarios: �rst, we will
hange the payo� matrix to its form without 
ost, and se
ond, we will keepthe 
ost-bene�t ratio but we will adopt another updating rule, namely, theRepli
ator rule. By introdu
ing these 
hanges in our original model, we wantto determine the 
ru
ial fa
tor for the observed optimum in the number ofintera
tions.In this way, let us now 
onsider the Prisoner's Dilemma game with theFermi updating rule, but with the formulation without 
ost per 
ooperation,given by the following payo� matrix:
(

C D

C R S

D T P

)

=

(

C D

C 1 0

D b 0

) (6.7)where we �x, as usual, R = 1 and P = S = 0. In �gure 6.6 we show the averagelevel of 
ooperation in the system as a fun
tion of the restri
tion k∗, for di�erentvalues of the temptation to defe
t, b. In this 
ase, we 
an 
learly see that, forany �xed value of b, the system renders the highest value of 
ooperation forthe unrestri
ted situation i.e., for k∗ = 4 · 103 (not expli
itly shown). So,
omparing �gure 6.6 with �gure 6.5 or 6.3, we 
an dedu
e that the reasonwhy su
h an optimum, k∗opt, exists is due to a ne
essary 
ompromise everynode has to establish between the 
ost of 
ooperating with all its neighborsand the bene�ts obtained in those intera
tions. It is reasonable to think that,even if all neighbors are 
ooperators, it will be very expensive to pay a 
ost to
ooperate with all of them, so the bene�ts will de
rease. On the other hand,
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Figure 6.6: Average level of 
ooperation as a fun
tion of the mate limitation, k∗, forthe 
ase of a restri
tion in the number of 
onne
tions without frustration, and usingthe Fermi updating rule and the formulation of the Prisoner's Dilemma without 
ostfor 
ooperation. The SF networks are made up of N = 4 · 103 nodes, and the average
onne
tivity is 〈k〉 = 4. Every point is the average over 200 di�erent realizations.if one intera
ts with too few of its neighbors, the 
ost will be low, but so willbe the bene�t.Finally, as a further 
he
k, let us 
onsider the se
ond 
hange to our model:the Prisoner's Dilemma game with 
ost and a the Repli
ator updating rule.We show in �gure 6.7 the result of our simulations, and we 
an see that theoptimum, k∗opt, reappears in this s
enario, though it is not so pronoun
ed as inthe 
ase with Fermi-like updating rule for any value of the ratio b/c. We 
an
on
lude that the root of this optimum is indeed in the use of a 
ost formulationof the Prisoner's Dilemma.6.4 Con
lusionsIn this 
hapter we have studied a realisti
 -but almost unexplored until now-s
enario where the number of intera
tions that a node 
an establish per roundof the game are restri
ted to a maximum value k∗, regardless of its topologi
al
onne
tivity of the nodes. We have studied two di�erent me
hanisms to per-form su
h restri
tion. The �rst method does not need any global information,sin
e every node 
hooses its k∗ game mates and it just guarantees the symme-try of the intera
tions. However, as it turned out, this is not a stri
t restri
tion,sin
e the a
tual 
onne
tivity of some of the nodes is in general keffi & k∗. The
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ale-Free networks with limitednumber of intera
tions

Figure 6.7: Average level of 
ooperation as a fun
tion of the mate limitation, k∗, forthe 
ase of a restri
tion in the number of 
onne
tions without frustration, and usingthe Repli
ator updating rule and the formulation of the Prisoner's Dilemma with
ost for 
ooperation. The SF networks are made up of N = 4 · 103 nodes, and theaverage 
onne
tivity is 〈k〉 = 4. Every point is the average over at least 200 di�erentrealizations.se
ond one is somehow more arti�
ial, sin
e one needs some global knowledgeof the network (pre
isely the degree of every node) in order to pro
eed. Buton the other hand, it imposes stri
tly the restri
tion of having k∗ game mates.We have studied the e�e
t of su
h restri
tions on s
ale-free networks andfound that the results are qualitatively the same for both methods. In parti
-ular, we have fo
us on the level of 
ooperation a
hieved by the system at thestationary state, 
omparing the results with those for the Prisoner's Dilemmagame on the original BA s
ale-free networks. Our main result is that for arange of values of the 
ost-bene�t b/c ratio of the payo� matrix, the highestlevels of 
ooperation are a
hieved when some 
onne
tivity restri
tion is im-posed on the network, i.e., the larger levels of 
ooperation do not o

ur for theoriginal unrestri
ted BA s
ale-free network s
enario, but for a more realisti
situation, where every node 
an engage on a round of the game just with a 
er-tain number of neighbors k∗, that is in general, lower than its real topologi
al
onne
tivity ki.This is a quite surprising result, sin
e previous studies always have pointedout the well-known enhan
ement of 
ooperation due to heterogeneity of the un-derlying topology. Here we have 
lari�ed that this is only true up to a 
ertainextent: although heterogeneity does greatly favor 
ooperation, when 
ompar-ing it with the 
ase of random networks, the restri
tion of for
ing the nodes



6.4. Con
lusions 121to play just with k∗ < ki of its neighbors in every round of the game seemsto lead to even larger levels of 
ooperation in some regions of the parameterspa
e of the ratio b/c.We also showed that the existen
e of this optimum, k∗opt, was due to the the
ompromise of a node between the 
ost of 
ooperating with all the neighborsand the bene�ts obtained from those intera
tions. In order to 
on�rm thishypothesis, we simulated the dynami
s for two other s
enarios: in the �rst one,we kept the updating rule, but we 
hanged the formulation of the dilemma,using a payo� matrix where the 
ost per 
ooperation is zero. As we expe
ted,now the highest values of 
ooperation a
hieved by the system o

ur when thereis no limitation to the number of intera
tions. On the other hand, if we 
onsiderthe dynami
s with a di�erent updating rule, namely the Repli
ator rule, but wekeep the 
ost-bene�t ratio formulation, then the optimum value k∗opt appearsagain. In 
on
lusion, the results shown in this 
hapter point out that theparti
ular formulation 
hosen when implementing the Prisoner's Dilemma ontop of 
omplex topologies will introdu
e important di�eren
es in the out
omeof the dynami
s, spe
ially in realisti
 s
enarios as the one proposed here.





Part IIEvolutionary Dynami
s onGrowing Complex Networks





Presentation of Part IIIn this se
ond part of the Thesis, we will fo
us on the study of the 
ouplingbetween the growth of a 
omplex topology and the dynami
s taking pla
esimultaneously on top of it.As we have been seeing, a great deal of e�ort has been aimed to studythe in�uen
e of a (stati
) 
omplex topologies on the out
ome of several games[26, 34�37, 37�45, 140℄. Spe
ially the PD, being a paradigmati
 example of
ooperative-defe
tive intera
tion, has been proved to be a very useful toolwhen trying to explain the reasons why su
h a expensive behavior as 
ooper-ation 
an arise and survive in a population. On the other hand, it has beenproven for many real networked systems in a wide variety of 
ontexts thattopology greatly a�e
ts dynami
s but also the other way around ([141℄ andreferen
es therein), establishing thus a feedba
k loop. In this way, when it
omes spe
i�
ally to Evolutionary Game Theory on non-stati
 graphs, someni
e works [125, 138, 142, 143℄ have tried to 
onsider a more 
omplex situa-tion, as far as the stru
ture is 
on
erned, by pla
ing the dynami
s on a N-sizednetwork whose links are being rewired, a

ording to some dynami
s-dependentrules (adaptative networks), or even using two di�erent networks, one for theintera
tion, the other one for the 
omparison pro
edure. Nonetheless, to ourknowledge, the attempt we have made is the �rst to aim a growing stru
ture,where this growth is entangled somehow with the dynami
s of the nodes. Wehave developed two models to address this issue, and in both of them the par-ti
ular dynami
s evolving in the population is the PD game. However, thereare some important di�eren
es between the spe
i�
s of ea
h one.Thus, in 
hapter 7 we introdu
e the �rst model, for whi
h we will 
on-sider that the probability of atta
hment is a linear fun
tion of the �tness ofthe 
hosen node. On the other hand, the strategy updating rule we will use isRepli
ator-like. During this 
hapter, we will study the di�erent topologies that
an arise depending on the values of the relevant parameters of the system.Spe
i�
ally, we will be able to build random and SF networks. We will studythe dynami
al organization of 
ooperation among 
onne
tivity 
lasses for het-erogeneous stru
tures obtained with our model, 
omparing these results withthe well-known ones for SF BA networks, and trying to explain the di�eren
esfound. Also, we will 
he
k the average level of 
ooperation a
hieved by ournetworks, in two instants: when the growth has just stopped, and some timelater, after letting the population play the same game, but without addingnew individuals. We will �nd that the stru
tures built via this �rst model 
ansupport, when used as stati
 substrate for the PD game, higher levels of 
oop-eration than the 
elebrated BA SF networks [34�36℄. Besides, we will 
ompare



126these levels of 
ooperation with those for a rewired version of the resultanttopology, and we will be able to make some 
on
lusions about the adequa
y ofthe networks our model gives rise to, when it 
omes to supporting 
ooperation.Moreover, we have found that the stru
tures obtained with this model sharesome topologi
al features with real systems, su
h as the power-law dependen
eof the 
lustering 
oe�
ient with the degree of the nodes, 
ompatible with hier-ar
hi
al organizations. So we 
onsider that our work 
an help understand theorigin of these heterogeneous networks from an evolutionary point of view.In 
hapter 8 we propose a se
ond model, that is a little di�erent from the�rst one, but always within the framework of an interdependen
e between thegrowth and the dynami
s. Thus, we 
onsider again that the nodes are playingthe PD game, although with another formulation, but now, the strategy up-dating rule is di
tated by a Fermi-like fun
tion, whi
h allow irrational 
hangesof strategy, it is to say, it is possible to imitate a neighbor with worse payo�.As we will see, the introdu
tion of this Fermi probability will a�e
t greatly the�nal state of the system, when it 
omes to the levels of 
ooperation. Moreover,the probability of atta
hment we will use in this se
ond model is exponentialwith the �tness of the nodes, instead of linear, whi
h permits the appearing ofnot only random and s
ale-free stru
tures, buy also star-like ones, with nodesthat are 'super-hubs'. Apart from the degree distribution and the �nal levelsof 
ooperation in the system, we are also interested in analyzing whether 
o-operation bene�ts from the growth pro
ess or just from the resulting 
omplexstru
ture, and to that aim, we will look again into both the level of 
ooperationafter �nishing the growth and after letting the system evolve for some time. Wewill also 
onsider the 
ase of using the full grown network as a stati
 substrate,and letting the dynami
s evolve after reinitializing the level of 
ooperation to50% of ea
h strategy, randomly distributed. In this department, we will �ndsome remarkable di�eren
es between the two models, sin
e for this se
ond one
ooperation turns out not to get promoted when using the resulting topologiesas stati
 substrate for the dynami
s.



Chapter 7Complex Networks fromEvolutionary PreferentialAtta
hmentIn this 
hapter we analyze the growth and formation of 
omplex networks by
oupling the network formation rules to the dynami
al states of the elementsof the system. As we have already mentioned, some me
hanisms have beenproposed for 
onstru
ting 
omplex s
ale-free networks similar to those observedin natural, so
ial and te
hnologi
al systems from purely topologi
al arguments(for instan
e, using a preferential atta
hment rule or any other rule availablein the literature [11, 12℄). As those works do not in
lude information on thespe
i�
 fun
tion or origin of the network, it is very di�
ult to dis
uss theorigin of the observed networks on the basis of those models, hen
e motivatingthe question we are going to address. The fa
t that the existing approa
hes
onsider separately the two dire
tions of the feedba
k loop between the fun
tionand form of a 
omplex system demands for a new me
hanism where the networkgrows 
oupled to the dynami
al features of its 
omponents. Our aim here is tointrodu
e for the �rst time an attempt in this dire
tion, by linking the growthof the network to the dynami
s taking pla
e among its nodes.Our model 
ombines two ideas in a novel manner: preferential atta
hmentand evolutionary game dynami
s. Indeed, with the problem of the emergen
eof 
ooperation as a spe
i�
 appli
ation in mind, we 
onsider that the nodesof the network are individuals involved in a so
ial dilemma and that new-
omers are preferentially linked to nodes with high �tness, the latter beingproportional to the payo�s obtained in the game. In this way, the �tness ofan element is not imposed as an external 
onstraint [63, 144℄, but rather it isthe result of the dynami
al evolution of the system. At the same time, the
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hmentnetwork is not exogenously imposed as a stati
 and rigid stru
ture on top ofwhi
h the dynami
s evolves, but instead it grows from a small seed and a
-quires its stru
ture during its formation pro
ess. Finally, we stress that this isnot yet another preferential atta
hment model, sin
e the quantity that favorslinking of new nodes has no dire
t relation with the instantaneous topology ofthe network. In fa
t, as we will see, the main result of this interplay is the for-mation of homogeneous or heterogeneous networks (depending on the values ofthe parameters of our system) that share a number of topologi
al features withreal world networks su
h as a high 
lustering and degree-degree 
orrelations.Thus, the model we propose not only explains why heterogeneous networks areappropriate to sustain 
ooperation, but also provides an evolutionary me
h-anism for their origin. On the other hand, we will �nd that there are someimportant and quite surprising di�eren
es between the networks we build usingthis model, and SF topologies, as far as the mi
ros
opi
 organization of thedynami
s is 
on
erned.7.1 The modelOur model naturally in
orporates an intrinsi
 feedba
k between dynami
s andtopology. In this way, the growth of the network starts at time t = 0 with a
ore of m0 fully 
onne
ted nodes, whose initial strategy is 
ooperation. Newelements are in
orporated to the network and atta
hed tom existing nodes witha probability that depends on the dynami
s of ea
h node. On the other hand,the parti
ular dynami
s we 
onsider is di
tated by the Prisoner's Dilemma(PD) game [145℄. Initially, every node adopts with the same probability one ofthe two available strategies, 
ooperation C or defe
tion D. At equally spa
edtime intervals (denoted by τD) ea
h node i of the network plays with its ki(t)neighbors and the obtained payo�s are 
onsidered to be the measure of itsevolutionary �tness, fi(t). There are three possible situations for ea
h pairof nodes linked together in the network, as far as the out
ome of the game is
on
erned: (i) if two 
ooperators meet, both re
eive R, when (ii) two defe
torsplay, both re
eive P , while (iii) if a 
ooperator and a defe
tor 
ompete, theformer re
eives S and the latter obtains T . The ordering of the four payo�sis the following: T = b > R = 1 > P = S = 0, where we haver �xed thevalue of the three parameters as usual [31, 34, 127℄, when 
onsidering the weakPrisoner's Dilemma game (see 
hapter 3). Thus, the temptation to defe
t bremains as the unique free parameter of the dynami
s. After playing, everynode i 
ompares its evolutionary �tness (payo�) with that 
orresponding to arandomly 
hosen neighbor j. Then, if fi(t) ≥ fj(t), node i keeps its strategyfor the next round of the game, but if fj(t) > fi(t) node i adopts the strategy



7.1. The model 129of player j with probability [27, 28, 34, 35, 45, 97, 101℄
Pi =

fj(t)− fi(t)

b ·max [ki(t), kj(t)] . (7.1)The growth of the network pro
eeds by adding a new node with m links tothe preexisting ones at equally spa
ed time intervals (denoted by τT ), and theprobability that a node i in the network re
eives one of the m new links is
Πi(t) =

1− ǫ+ ǫfi(t)
∑N(t)

j=1 (1− ǫ+ ǫfj(t))
, (7.2)where N(t) is the size of the network at time t, and the parameter ǫ ∈ [0, 1)
ontrols the weight of the �tness fi(t) [112℄ during the growth of the network.Provided that ǫ > 0, nodes with fi(t) 6= 0 are preferentially 
hosen.The growth of the network as de�ned above is thus linked to the evolution-ary dynami
s that is simultaneously evolving in the system, and it is 
ontrolledon the one hand by the parameter ǫ, but also by the two time s
ales, τT and

τD, asso
iated to both pro
esses. Therefore, equation 7.2 
an be viewed as an`Evolutionary Preferential Atta
hment' (EPA) me
hanism. Depending on thevalue of ǫ, we 
an have two extreme situations:(i) When ǫ ≃ 0, referred to as the weak sele
tion limit [26℄, the networkgrowth is independent of the evolutionary dynami
s as all nodes haveroughly the same probability of attra
ting new links.(ii) Alternatively, in the strong sele
tion limit, ǫ → 1, the �ttest players(highest payo�s) are mu
h more likely to attra
t the links from new
om-ers.Between the above situations, there is a 
ontinuum of intermediate values thatwill give rise to a wide range of in-between behaviors.We have 
arried out numeri
al simulations of the model exploring the (ǫ, b)-spa
e. It is worth mentioning that we have also explored di�erent time relations
τD/τT , but for the time being, we fo
us on the results obtained when τD/τT >

1, namely, the network growth is faster than the evolutionary dynami
s. Lateron we will dis
uss the e�e
ts asso
iated to other time ratios. Taking τT = 1as the referen
e time, networks are generated by adding nodes every timestep, while they play at dis
rete times given by τD. As τD > τT , the linkingpro
edure is done with the payo�s obtained the last time the nodes played.All results reported have been averaged over at least 103 realizations, and thenumber of links of a new
omer is taken to bem = 2 (so the average 
onne
tivitywill be 〈k〉 = 2m = 4), whereas the size of the initial 
ore is m0 = 3.
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Figure 7.1: Degree distribution of the topologies 
reated for �xed values of b = 1.5(Top left) and b = 2.5 (Top right), and �xed values of ǫ = 0.3 (Bottom left) and
ǫ = 0.99 (Bottom right). The networks are made up of N = 103 nodes, with average
onne
tivity 〈k〉 = 4, and τD = 10τT . Every point is the average of 300 independentrealizations.7.2 Degree Distribution and Average Level of Coop-erationThe dependen
e of the degree distribution on ǫ and b is shown in �gure 7.1.As it 
an be seen, the weak sele
tion limit produ
es homogeneous networks
hara
terized by a tail that de
ays exponentially fast with k. Alternatively,when ǫ is large, s
ale-free networks arise. Although this might a priori beexpe
ted from the de�nition of the growth rules, this needs not be the 
ase:indeed, it must be taken into a

ount that in a one-shot PD game, defe
tionis the best strategy regardless of the opponent's strategy. However, if thenetwork dynami
s evolves into a state in whi
h all players (or a large part ofthe network) are defe
tors, they will often play against themselves and theirpayo�s will be redu
ed (we re
all that P = 0). The system's dynami
s willthen end up in a state 
lose to an all-D 
on�guration rendering fi(t) = 0 ∀i ∈
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Figure 7.2: Color-
oded average level of 
ooperation in the system 〈c〉 right at theend of the EPA pro
edure, it is to say, when the �nal size is a
hieved as a fun
tion ofthe temptation to defe
t b and the sele
tion pressure ǫ. The networks are made up of
103 nodes with average 
onne
tivity 〈k〉 = 4 and τD = 10τT .
[1, N(t)] in equation 7.2. From this point on, new nodes would atta
h randomlyto other existing nodes (see equation 7.2) and therefore no hubs 
an 
ome out.This turns out not to be the 
ase, whi
h indi
ates that for having some degreeof heterogeneity, a nonzero level of 
ooperation is needed. Conversely, theheterogeneous 
hara
ter of the system provides a feedba
k me
hanism for thesurvival of 
ooperators that would not over
ome defe
tors otherwise.In �gure 7.1 we also show the dependen
e of the degree of heterogeneity ofthe networks with the temptation to defe
t, and we found out that only in thestrong sele
tion limit, it depends slightly on b. On the other hand, for smallvalues of ǫ, there is not any dependen
e of the degree distribution on b, be
ausein this s
enario the dynami
s does not play a relevant role on the atta
hment,on the 
ontrary, it is almost random.Regarding the out
ome of the dynami
s, we have also represented the aver-age level of 
ooperation 〈c〉, as a fun
tion of the two model parameters ǫ and b.The �gure 7.2 shows that as ǫ grows for a �xed value of b & 1, the level of 
o-operation in
reases. In parti
ular, in the strong sele
tion limit 〈c〉, the systemattains its maximum value. This is a somewhat 
ounterintuitive result as inthe limit ǫ → 1, new nodes are preferentially linked to those with the highestpayo�s, whi
h for the PD game, should 
orrespond to defe
tors. However, thepopulation a
hieves the highest value of 〈c〉. On the other hand, higher lev-els of 
ooperation are a
hieved in heterogeneous rather than in homogeneous
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Figure 7.3: Probability Pc(k) that a node with 
onne
tivity k plays as a 
ooperatorfor di�erent values of b in the strong sele
tion limit (ǫ = 0.99) at the end of the growthof a network with N = 103 nodes and average 
onne
tivity 〈k〉 = 4.topologies, whi
h is 
onsistent with previous �ndings [34, 45, 119℄.7.3 Degree Distribution among 
ooperatorsIn this se
tion we want to study the dependen
e between strategy and degree of
onne
tivity, 
omparing this results with those obtained for the stati
 SF s
e-nario, where we re
all that 
ooperators o

upy always the highest and medium
lasses of 
onne
tivity, while defe
tors are not stable when setting on the hubs(se
tion 3.5). As we will show, the interplay between the lo
al stru
ture of thenetwork and the hierar
hi
al organization of 
ooperation seems to be highlynontrivial, and quite di�erent from what has been reported for stati
 s
ale-freenetworks [34, 45℄. In �gure 7.3 one 
an see that, surprisingly enough, as thetemptation to defe
t in
reases, the likelihood that 
ooperators o

upy the hubsde
reases. Indeed, during network growth, 
ooperators are not lo
alized nei-ther at the hubs nor at the lowly 
onne
ted nodes, but in intermediate degree
lasses. It is important to realize that this is a new e�e
t that arises fromthe 
ompetition between network growth and the evolutionary dynami
s. Inparti
ular, it highlights the di�eren
es between the mi
ros
opi
 organizationin the steady state for the PD game in stati
 networks and that found whenthe network is evolving.To address this interesting and previously unobserved phenomenon, wehave developed a simple analyti
al argument that 
an help understand the
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ooperators 133reasons behind it. Let kci be the number of 
ooperator neighbors of a givennode i. Its �tness is fd
i = bkci , if node i is a defe
tor, and f c

i = kci , if it isa 
ooperator. The value of kci is expe
ted to 
hange be
ause of two fa
tors.On the one hand, due to the network growth (node a

retion �ow, at a rateof one new node ea
h time unit τT ) and on the other hand, due to imitationpro
esses di
tated by equation 7.1, that take pla
e at a pa
e τD. As it hasbeen mentioned before, we will fo
us on the 
ase in whi
h τD is mu
h largerthan τT , for now. Thus, the expe
ted in
rease of �tness is:
∆fi = ∆flowfi +∆evolfi, (7.3)where ∆flowfi means the variation of �tness in node i due to the new
omers�ow, and ∆evolfi stands for the 
hange in �tness due to 
hanges of neighbors'strategies. The above expression leads to an expe
ted in
rease in kci given by:

∆kci = kci (t+ τD)− kci (t) = ∆flowk
c
i +∆evolk

c
i . (7.4)On the other hand, the expe
ted in
rease of degree of node i in the intervalof time (t, t+ τD) only has the 
ontribution from new
omer �ow, and re
allingthat new nodes are generated with the same probability to be 
ooperators ordefe
tors, i.e, ρ0 = 0.5, it will take the form:

∆ki = ∆flowki = 2∆flowk
c
i . (7.5)If the �tness (hen
e 
onne
tivity) of node i is high enough to attra
t asigni�
ant part of the new
omer �ow, the �rst term in equation 7.3 dominatesat short time s
ales, and then the hub's degree ki in
reases exponentially.Conne
tivity patterns are then dominated by the growth by preferential at-ta
hment, ensuring, as in the BA model [8℄, that the network will have a SFdegree distribution. Moreover, the rate of in
rease of the 
onne
tivity:

∆flowk
c
i =

1

2
mτD

fi
∑

j fj
(7.6)is larger for a defe
tor hub by a fa
tor b, be
ause of its larger �tness, and thenone should expe
t hubs to be mostly defe
tors, as 
on�rmed by the resultsshown in �gure 7.3. This small set of most 
onne
ted defe
tor nodes attra
tsmost of the new
omer �ow.On the 
ontrary, for nodes of intermediate degree, say of 
onne
tivity m ≪

ki ≪ kmax, the term ∆flowfi in equation 7.3 
an be negle
ted, in other words,the arrival of new nodes is a rare event, so for a large time s
ale, we havethat k̇i = 0. Note that if k̇i(t) = 0 for all t in an interval t0 ≤ t ≤ t0 + T , thesize of the neighborhood is 
onstant during that whole interval T , and thus the
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hmentevolutionary dynami
s of strategies through imitation is ex
lusively responsiblefor the strategi
 �eld 
on�guration in the neighborhood of node i. During theseperiods, the probability distribution of strategies in the neighborhood of node
i approa
hes that of a stati
 network. Thus, re
alling that the probabilityfor this node i of intermediate degree to be a 
ooperator is large in the stati
regime [45℄ (see also se
tion 3.5), we then arrive to the 
on
lusion that for thesenodes the density of 
ooperators must rea
h a maximum, in agreement with�gure 7.3. Of 
ourse, it is 
lear that this s
enario 
an be o

asionally subje
tto sudden avalan
he-type perturbations following "pun
tuated equilibrium"patterns in the rare o

asions in whi
h a new node arrives.Furthermore, our simulations show that these features of the shape of the
urve Pc(k) are indeed preserved as time goes by, giving further support tothe above argument based on time s
ale separation and 
on�rming that ourunderstanding of the me
hanisms at work in the model is 
orre
t.7.4 Clustering Coe�
ient and Degree-degree 
orre-lationsApart from the degree distribution, we are also interested in exploring othertopologi
al features emerging from the intera
tion between network growthand the evolutionary dynami
s in our EPA networks. Namely, we will fo
us ontwo important topologi
al measures that des
ribe the existen
e of nontrivialtwo-body an three-body 
orrelations: the degree-degree 
orrelations and the
lustering 
oe�
ient respe
tively. We will show that the networks generated bythe EPA model display both hierar
hi
al 
lustering and disassortative degree-degree 
orrelations.7.4.1 Clustering 
oe�
ientThe 
lustering 
oe�
ient of a given node i, cci, expresses the probability thattwo neighbors j and m of node i, are also 
onne
ted. The value of cci isobtained by 
ounting the a
tual number of edges, denoted by ei, in Gi, thesubgraph indu
ed by the ki neighbors of i, and dividing this number by themaximum possible number of edges in Gi:

cci =
2ei

ki(ki − 1)
. (7.7)The 
lustering 
oe�
ient of a given network, CC is 
al
ulated by averagingthe individual values {cci} a
ross the network nodes, CC =

∑

i cci/N . There-fore, the 
lustering 
oe�
ient CC measures the probability that two di�erent
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NFigure 7.4: (Left) Clustering 
oe�
ient CC as a fun
tion of b and ǫ. (Right) S
alingof CC with the network size for several values of b in the strong sele
tion limit(ǫ = 0.99). The networks are made up ofN = 103 nodes and have average 
onne
tivity
〈k〉 = 4.neighbors of a same node, are also 
onne
ted to ea
h other. In the left panelof �gure 7.4 we show the value of CC as a fun
tion of b and ǫ. In this �gurewe observe that it is in the strong sele
tion limit where the largest values of
CC are obtained. Therefore, in this regime, not only highly heterogeneousnetworks are obtained but the nodes also display a large 
lusterization intoneighborhoods of densely 
onne
ted nodes. In the right panel of �gure 7.4 weshow the s
aling of the 
lustering with the network size CC(N) in the strongsele
tion limit. In this 
ase we observe that for b ≥ 2.5 the value of CC isstationary while when b < 2.5 the addition of new nodes in the network tendsto de
rease its 
lustering.We now fo
us on the dependen
e of the 
lustering 
oe�
ient CC with thedegree of the nodes, k, in the strong sele
tion limit (ǫ = 0.99). Interestinglyenough, we show in �gure 7.5 that the dependen
e of CC(k) is 
onsistentwith a hierar
hi
al organization expressed by the power law CC(k) ∼ k−β ,a statisti
al feature found to des
ribe many real-world networks [12℄. Thebehavior of CC(k) in �gure 7.5 
an be understood by re
alling that in s
ale-free networks, 
ooperators are not extinguished even for large values of b if theyorganize into 
lusters of 
ooperators that provide the group with a stable sour
eof bene�ts [45℄. But to understand this feature in detail, let us assume that anew node j arrives to the network: sin
e the atta
hment probability dependson the payo� of the re
eiver, node j may link either to a defe
tor hub or to anode belonging to a 
ooperator 
luster. In the �rst s
enario, it will re
eive lesspayo� than the hub, so it will sooner or later imitate its strategy, and thereforewill get trapped playing as a defe
tor with a payo� equal to fj = 0. Thus,node j will not be able to attra
t any links during the subsequent networkgrowth. On the other hand if it atta
hes to a 
ooperator 
luster and forms
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Figure 7.5: Dependen
e of the 
lustering 
oe�
ient CC(k) ∼ k−β with the nodes'degree for di�erent values of b in the strong sele
tion limit (ǫ = 0.99). The networksare made up of N = 103 nodes and average 
onne
tivity 〈k〉 = 4. The straight line isan eye guide that 
orresponds to k−1.a triad with m elements of the 
ooperator 
luster, two di�erent out
omes arepossible, depending on its initial strategy: if it plays as a defe
tor, the triadmay eventually be invaded by defe
tors an may end up in an state where thenodes have no 
apa
ity to re
eive new links. But if it plays as a 
ooperator,the group will be reinfor
ed, both in its robustness against defe
tor atta
ksand in its overall �tness to attra
t new links.To sum up, playing as a 
ooperator while taking part in a su

essful (high�tness) 
ooperator 
luster reinfor
es its future su

ess, while playing as a de-fe
tor undermines its future �tness and leads to dynami
ally and topologi
allyfrozen stru
tures (it is to say, with fi = 0), so defe
tion 
annot take long-term advantage from 
ooperator 
lusters. Therefore, 
ooperator 
lusters thatemerge from 
ooperator triads to whi
h new 
ooperators are atta
hed 
an then
ontinue to grow if more 
ooperators are attra
ted or even if defe
tors atta
hto the nodes whose 
onne
tivity veri�es k > mb. Moreover, the stability of
ooperator 
lusters and its global �tness grow with their size, spe
ially fortheir members with higher degree, and naturally favors the formation of triadsamong its 
omponents. Thus, it follows from the above me
hanism that a nodeof degree k is a vertex of (k − 1) triangles, and then
CC(k) =

k − 1

k(k − 1)/2
= 2/k , (7.8)
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h is exa
tly the sort of fun
tional form for the 
lustering 
oe�
ient wehave found (�gure 7.5).7.4.2 Degree-degree 
orrelationsNow we turn the attention to the degree-degree 
orrelations of EPA networks.Degree-degree 
orrelations are de�ned by the 
onditional probability, P (k
′ |k),that a node of degree k is 
onne
ted with a node of degree k

′ . However, sin
ethe 
omputation of this probability yields very noisy results, it is di�
ult toassess whether degree-degree 
orrelations exist in a given network topology. Auseful measure to over
ome this te
hni
al di�
ulty is to 
ompute the averagedegree of the neighbors of nodes with degree k, Knn(k), that is related withthe probability P (k|k′

) as
Knn(k) =

∑

k′

k
′

P (k
′ |k) . (7.9)In networks without degree-degree 
orrelations the fun
tion Knn(k) is �atwhereas for degree-degree 
orrelated networks the fun
tion is approximatedby Knn ∼ kν and the sign of the exponent ν reveals the nature of the 
orre-lations. For assortative networks ν > 0 and nodes are 
onne
ted to neighborswith similar degrees. On the other hand, for disassortative networks ν < 0,and high degree nodes tend to be surrounded by low degree nodes.In �gure 7.6 we plot several fun
tions Knn(k) 
orresponding to di�erentvalues of b in the strong sele
tion limit. We observe that for all the 
asesthere exist negative 
orrelations that make highly 
onne
ted nodes to be morelikely 
onne
ted to poorly 
onne
ted nodes and vi
eversa. Therefore the EPAtopologies are disassortative while this behavior is enhan
ed as the temptationto defe
t, b, in
reases as observed from the slope of the 
urves in the log-logplot. This disassortative nature of EPA networks will be of relevan
e whenanalyzing the results presented in the following se
tion.7.5 Dynami
s on stati
 networks 
onstru
ted usingthe EPA modelUp to this se
tion we have analyzed the topology and the dynami
s of theEPA networks while the growing pro
ess takes pla
e. Now we adopt a di�erentperspe
tive by 
onsidering the networks as stati
 substrates while studying theevolutionary dynami
s of the nodes. This approa
h will be done in di�erentways allowing us to have a deeper insight on the EPA networks and theirrobustness.
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Figure 7.6: Degree-degree 
orrelations among the nodes of the EPA networks. Weplot the average nearest-neighbors degree Knn(k) of a node of degree k for severalvalues of the parameter b used to generate the networks. The networks are generatedwith ǫ = 0.99, and have N = 4 · 103 nodes and average 
onne
tivity 〈k〉. Note thatnegative 
orrelations imply that hubs are not likely to be 
onne
ted to ea
h other.7.5.1 Stopping growth and letting evolutionary dynami
s evolveTo 
on�rm the robustness of the networks generated by Evolutionary Preferen-tial Atta
hment, let us 
onsider the realisti
 situation that after in
orporatinga large number of parti
ipants, the network growth stops when a given size
N is rea
hed, and after that, only evolutionary dynami
s takes pla
e. Thequestion we aim to address here is: will the 
ooperation observed during the
oevolution pro
ess resist?In �gure 7.7, we 
ompare the average level of 
ooperation 〈c〉 when thenetwork just 
eased growing with the same quantity 
omputed after allowingthe evolutionary dynami
s to evolve many more time steps without atta
hingnew nodes, 〈c〉∞. The green area indi
ates the region of the parameter b wherethe level of 
ooperation in
reases with respe
t to that at the moment the net-work stops growing. On the 
ontrary, the red zone shows that beyond a 
ertainvalue, bc, of the temptation to defe
t the 
ooperative behavior does not surviveand the system dynami
s evolves to an all-D state. Surprisingly the 
oopera-tion is enhan
ed by the growth stop for a wide range of b values pointing outthat the 
ooperation levels observed during growth are very robust. Moreover,the value of bc appears to in
rease with the intensity of sele
tion ǫ in agree-
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Figure 7.7: Degree of 
ooperation when the last node of the network is in
orporated,
〈c〉, and the average fra
tion of 
ooperators observed when the system is time-evolved
〈c〉∞ after the network growth ends. The four panels show these measures for severalvalues of ǫ. From top to bottom and left to right we show ǫ = 0.5, 0.75, 0.9 and 0.99(strong sele
tion limit. The networks are made up of N = 103 nodes with average
onne
tivity 〈k〉 = 4 and τD = 10τT . Every point is the average over 103 realizations.ment with the in
rease of the degree heterogeneity of the substrate network.These results highlight the phenomenologi
al di�eren
e between playing thePD game simultaneously to the growth of the underlying network and playingon �xed stati
 networks.7.5.2 E�e
ts of randomizations in the evolutionary dynami
sNow, in order to gain more insight in the relation between network topologyand the supported level of 
ooperation, we study the evolution of 
ooperationwhen network growth is stopped and we make di�erent randomizations of boththe lo
al stru
ture and the strategies of the nodes. In parti
ular, in �gure 7.8,we show the asymptoti
 level of 
ooperation when the following randomizationsare made after the growth is stopped: (i) the stru
ture of the EPA networkis randomized by rewiring its links while preserving the degree of ea
h node;(ii) the stru
ture of the network is kept inta
t but the strategies of the nodesare reassigned while preserving the global fra
tion of 
ooperation (strategy



140 Chapter 7. Complex Networks from Evolutionary Preferential Atta
hment
 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2  2.5

<
c>

bFigure 7.8: Cooperation levels at the end of the growth pro
ess and after letting thenetwork relax as a fun
tion of b. The original network was grown up to N = 4 · 103nodes with ǫ = 0.99 and average 
onne
tivity 〈k〉 = 4, and the asymptoti
 
oopera-tion levels are 
omputed 107 time steps afterwards. Full 
ir
les show the 
ooperationlevel when the network stops growing. The other 
urves show the asymptoti
 
o-operation when the stru
ture of the network has been randomized (triangles), whenthe strategies of the nodes have been reassigned randomly (squares) and with bothrandomizations pro
esses (diamonds).
randomization); and (iii) when the two former randomization pro
edures are
ombined.As it 
an be seen from �gure 7.8, the 
ru
ial fa
tor for the 
ooperationin
rement during the size-�xed period of the dynami
s is the stru
ture of theseEPA networks, sin
e its randomization leads to a de
rease of 
ooperation atlevels far away from those of the original one or even of a BA SF network[8, 12℄. This drop of 
ooperation when randomizing the stru
ture is in goodagreement with previous �ndings in 
omplex topologies, spe
i�
ally, for stati
BA networks [35, 36℄ (see also se
tion 5.1). On the other hand, the strategyrandomization does not prevent high levels of 
ooperation, thus 
on�rmingthat the governing fa
tor of the network behavior is the stru
ture arising fromthe 
o-evolutionary pro
ess. Moreover, the asymptoti
 level of 
ooperation inthis 
ase (squares in �gure 7.8) is larger that those observed when the networkis simply let to evolve without any randomization (C∞ in �gure 7.7). Thisresult points out that using a random initial 
ondition for the strategies di�ersstrongly from starting from a 
on�guration where degrees and strategies are
orrelated as a result of the EPA model (�gure 7.3). We will 
ome ba
k to thispoint in se
tion 7.7.
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Figure 7.9: Cooperation levels in ER, BA, and our Evolutionary Preferential Atta
h-ment network models, as a fun
tion of the temptation parameter b. The EPA networkis built up using the model des
ribed in the main text for b = 2.1 and ǫ = 0.99. Allnetworks are made up of N = 103 nodes, with average 
onne
tivity 〈k〉 = 4, and everypoint shown is the average over 103 independent realizations.7.5.3 EPA networks as substrates for evolutionary dynami
sThe high levels of 
ooperation observed when applying a random initial 
on�g-uration for the strategies to EPA networks motivate the question on whetherEPA networks are best suited to support 
ooperative behavior than other well-known models. In order to answer this question, we 
onsider our EPA networkswhen used as stati
 substrates for the evolutionary dynami
s and 
ompare withthe 
ases of both Barabási-Albert [8℄ and Erd®s-Re«yi (ER) [18℄ graphs. Tothis aim, we take a parti
ular example of our model networks, grown with
b = 2.1 and ǫ = 0.99, and run the evolutionary dynami
s starting from aninitial 
on�guration with 50% 
ooperators and defe
tors pla
ed at random.The average level of 
ooperation as a fun
tion of the temptation to defe
t isrepresented in �gure 7.9 together with the diagrams for BA and ER networks.Surprisingly, the plot shows that the EPA network remarkably enhan
es thesurvival of 
ooperation for all the values of b studied. Therefore, the atta
h-ment pro
ess followed by EPA networks is seen to be more e�
ient than theBA preferential atta
hment model studied in [34, 37, 45℄. Obviously, the rootsof this behavior 
annot be found in the degree distribution, P (k), but in thehigh levels of 
lustering [128℄ and the disassortative mixing [135℄ shown above.It is worth mentioning here that we have performed an study of the asymp-toti
 state of the system, and we have 
omputed the fra
tions of pure strategistand �u
tuating individuals (as we have de�ned them in se
tion 3.3), on
e the
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hmentnetwork has grown to its �nal size. But sin
e there are not very new results, wewill not dis
uss them right now. Instead, we will show them as a 
omparisonwith the 
ase τD = τT , in se
tion 7.8. We just 
on�rm here the existen
e of thepartition of the (stati
) EPA network into the usual sets of pure 
ooperators,pure defe
tors and �u
tuating individuals.7.6 Time evolution of the Pc(k) after network growthAs it has been well established before, SF topologies are able to sustain higherlevels of 
ooperation than random stru
tures, due to the mi
ros
opi
al organi-zation of the strategies [34, 45℄. In parti
ular, it has been shown that in thoseheterogeneous settings the hubs always play as 
ooperators being surroundedby a unique 
luster of 
ooperators, while defe
tors 
annot take advantage ofhigh 
onne
tivity, and thus o

upy medium and low degree 
lasses. Nonethe-less, in our EPA stru
tures, we have observed (se
tion 7.3) that during networkgrows, some hubs play as defe
tors, thus implying a very di�erent s
enario thanthat of stati
 heterogeneous networks.In this se
tion we turn again to the situation in whi
h the network growthhas stopped (and no randomization is made) to study the roots of the in
rementof the asymptoti
 level of 
ooperation observed in �gure 7.7.To this aim we look at the temporal evolution of the probability that anode of degree k is a 
ooperator, Pc(k), on
e the network growth has 
eased.As we have observed in se
tion 7.3, the growth pro
ess leads to a 
on
entrationof 
ooperators at intermediate degree nodes, explained from the fa
t that whilethe network is growing, new
omers join in with the same probability of being
ooperators or defe
tors. In this situation, defe
tors have an evolutionary ad-vantage as they get higher payo�s from 
ooperator new
omers. Although these
ooperators will subsequently 
hange into defe
tors and stop providing payo�for the original defe
tor, the stable sour
e of fresh 
ooperator nodes enteringthe network 
ompensates for this e�e
t. However, when the growth stops whilethe dynami
s 
ontinues, we observe that low degree nodes are rapidly takenover by 
ooperators, and after 104 time steps they are mainly 
ooperators. Onthe 
ontrary, hubs are mu
h more resistant to 
hange, and even after 107 timesteps not all of them have 
hanged into 
ooperators (revealed by those values
Pc(k) = 0 in �gure 7.10).The persisten
e of hub defe
tors is a very intriguing observation, in 
ontrastwith previous �ndings in stati
 SF networks [34, 36, 45℄ (see also 
hapter3), for whi
h hubs are always 
ooperators or, in other words, a defe
tor hubis unstable. As we have widely explain in 
hapter 3, this o

urs be
ause a
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Figure 7.10: Probability of being a 
ooperator as a fun
tion of the degree at the endof the Evolutionary Preferential Atta
hment pro
ess, 104 time steps later, and 107time steps later, for b = 2.2 and ǫ = 0.99.defe
tor sitting on a hub will rapidly 
onvert its neighbors to defe
tors, whi
hin turn leaves it with zero payo�; subsequently, if one of its neighbors turnsba
k to 
ooperation, the hub will eventually follow. It seems, however, thatthe 
oupling of evolutionary game dynami
s with the network growth leads toa stru
tural and dynami
al 
on�guration that stabilizes the defe
tors on hubs.The unexpe
ted result that �gure 7.10 shows is that defe
tor hubs 
an alsobe asymptoti
ally stable on
e the network growth has 
eased, i.e., it be
amestati
. Indeed, we have observed in our simulations that hubs are defe
torsfor as long as the dynami
s 
ontinues (at least, t = 107 extra time steps after�nishing growing the network). However, it is important to stress that not allrealizations of the pro
ess end up with defe
tor hubs. For low values of b, thisis pra
ti
ally never the 
ase and almost no realizations produ
e defe
tors at thehubs, but, as b in
reases, the per
entage of realizations where this phenomenonis observed in
reases rapidly.In se
tion 7.3 we have dis
ussed why a hub 
an be a defe
tor while thenetwork is growing, be
ause it takes advantage of the new
omer �ow, gettinghigh bene�ts from them. Nevertheless, the surprising fa
t that defe
tor hubsmay have very long lives on the stati
 regime, may be the relevant featurefor the behavior of the network resulting from the growth pro
ess, and it isimportant to fully understand the reason for su
h a slow dynami
s. We 
laimthat it 
an be tra
ed ba
k to the payo� stru
ture of the network, so in se
tion
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hment7.7, we will analyse it in detail.7.7 Mi
ros
opi
 roots of 
ooperation after networkgrowthHaving identi�ed the 
oexisten
e of 
ooperator and defe
tor hubs, we nextstudy why this 
on�guration seems to be asymptoti
ally stable and why thehubs are not invaded by opposite strategies. In �gure 7.11, we present anexample taken from a single realization of the pro
ess. Had we plot the resultsof payo�s averaged over realizations, we would not have been able to obtainthis pi
ture, be
ause in that 
ase payo�s are seemingly very di�erent in theregion of large degree, as a 
onsequen
e of the statisti
al properties of ournetworks, in whi
h hubs do exist but their degree and payo� depend on thespe
i�
 realization. As 
an be seen, the payo� grows approximately as a powerlaw, fk ∼ kα; however, the key point here is not this law but the fa
t thatthe payo�s for defe
tors and 
ooperators of the same degree are very similar.In view of the strategy update rule (equation 7.1), it be
omes 
lear that theevolution must be very slow. Moreover, if we take into a

ount the role ofthe degree in that expression, we see that hubs have a very low probability to
hange their strategies, whatever they may be.Considering now the disassortative nature of the degree-degree 
orrela-tions (�gure 7.6) we 
an explain how these dynami
al 
on�gurations 
an bepromoted by the stru
ture of the network. The large dissasortativity of EPAnetworks suggests that hubs are mostly surrounded by low degree nodes andnot dire
tly 
onne
ted to other hubs. Instead, the 
onne
tion with hubs ismade in two steps (i.e. via a low degree node). This lo
al 
on�guration re-sembles that of the so-
alled Dipole Model [134℄, a 
on�guration in whi
h twohubs (not dire
tly 
onne
ted) are in 
onta
t with a large amount of 
ommonneighbors whi
h in turn are low degree nodes. In this 
on�guration, it 
an beshown analyti
ally that the two hubs 
an 
oexist asymptoti
ally with oppositestrategies, provided that the hub playing as 
ooperator is in 
onta
t with anadditional set of nodes playing as 
ooperators, for this will provide the hubswith a stable sour
e of bene�ts. On the 
ontrary, defe
tor hubs are only 
on-ne
ted to the set of nodes that are also in 
onta
t with the 
ooperator hubs. Inthis setting, the low degree individuals atta
hed to both hubs experien
e 
y-
les of 
ooperation and defe
tion (we 
all them �u
tuating individuals, be
ausetheir strategies 
an never get �xed) due to the high payo�s obtained by thehubs. If su
h a lo
al 
on�guration for the strategies of hubs and their leavesarises, neither of the two hubs will take over the set of �u
tuating individuals,nor the latter will invade the hubs as they are mainly lowly 
onne
ted nodes
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Figure 7.11: Average payo�s of 
ooperators and defe
tor nodes at the end of networkgrowth (t = 0) as a fun
tion of their degrees, k, for a realization of the EvolutionaryPreferential Atta
hment model with b = 1.8. Note that the similarity between 
oop-erators' and defe
tors' payo�s implies that imitation events take pla
e on a long times
ale.with small payo�s.In order to test if the grown networks exhibit lo
al dipole-like stru
tures,we have measured the 
onne
tivity of the neighbors of defe
tor and 
ooperatorhubs, whi
h we represent in �gure 7.12. The �gure undoubtedly shows thathighly 
onne
ted nodes playing as defe
tors are mainly 
onne
ted to poorly
onne
ted 
ooperators (a
ting as the set of �u
tuating strategists), whereas
ooperator hubs are 
onne
ted to ea
h other and also to a signi�
ant fra
tionof lowly 
onne
ted nodes. This fully 
on�rms that, in 
ontrast to all previousresults, there is a stru
ture allowing the resilien
e of defe
tor hubs, and more-over, it gives rise to a situation quite similar to that des
ribed by the DipoleModel.7.8 Other τD/τT time relationsDuring this whole 
hapter, we have always worked with a time relation betweenthe dynami
s and the growth of the network equal to τD = 10τT , meaningthat the network grows in ten at the time, and then one single round of thedynami
s takes pla
e. We have studied the degree distributions that 
an arisefrom this Evolutionary Preferential Atta
hment me
hanism, as well as the
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tivity matrix of 
ooperators with defe
tors (Top) and of 
ooper-ators with themselves (Bottom) for a single realization of the pro
ess. The element
(i, j) is set to 1 (bla
k square in the �gure) when a link between a defe
tor (
ooperator)of degree i and a 
ooperator (
ooperator) of degree j exists, respe
tively.
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Figure 7.13: Degree distribution for �xed values of b = 1.5 (Top left) and b = 2.5(Top right), and �xed values of ǫ = 0.3 (Bottom left) and ǫ = 0.99 (Bottomright). The networks are made up of N = 103 nodes, with average 
onne
tivity
〈k〉 = 4, and τD = τT . Every point is the average of 300 di�erent realizations.levels of 
ooperation, 
omparing them with some well-known 
ases, su
h asBA s
ale-free or ER random stati
 networks. Nevertheless, it is interestingto explore the behavior of the system for other time ratios. Spe
i�
ally, nowwe will explore brie�y the 
ase when both time s
ales are exa
tly the same
τD = τT , i.e., starting with a small 
ore of nodes fully 
onne
ted, we add anew node at a time and then we make the system play one round of the game.We will 
ompare the results with the τD = 10τT s
enario.Thus, in �gure 7.13 we show some degree distributions obtained for thisparti
ular time relation, and as we 
an see, there are some qualitative di�er-en
es between this 
ase and the one with τD = 10τT one (see �gure 7.1 to
ompare them). First of all, if we look at the two upper panels, we 
an seethat the dependen
e of P (k) with ǫ and for a �xed value of the temptation todefe
t is less 
lear in this 
ase, while it was obvious and very gradual for the
τD = 10τT s
enario. Also, when ǫ = 0.99, the networks that arise from thepro
ess have very fat-tailed degree distributions (even more so for high values
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hment

Figure 7.14: Average level of 
ooperation and fra
tions of pure strategists and �u
-tuating individuals as a fun
tion of b, for τD = τT (Left) and τD = 10τT (Right),both for ǫ = 0.0 (weak sele
tion limit). The networks are made up of N = 103 nodes,with average 
onne
tivity 〈k〉 = 4. Every point is the average of 300 independentrealizations.of the parameter b), whi
h means that there are 'super-hubs' present in thesystem, whi
h were not in the previous 
ase. On the other hand, there is amore pronoun
ed dependen
e on the parameter b, for a �xed value of ǫ (bottompanels of �gure 7.13), while for the τD = 10τT 
ase, the degree distributionswere almost b-independent.In order to 
hara
terize better the behavior of the system when the timerelation is τD = τT , we also need to look at the level of 
ooperation, 
omparingthe 〈c〉(b) 
urves, as well as the fra
tions of pure strategist and �u
tuatingindividuals for several 
ases. But �rst of all, we need to point out an impor-tant di�eren
e between the present s
enario and the one studied in previousse
tions. In the situation with τD = 10τT , we observed that the �nal state ofthe system was, in general, �u
tuating around a well-de�ned value of 
oopera-tion, so the interpretation of the magnitude 〈c〉 was the fra
tion of 
ooperationpresent in the network in the stationary state. Nonetheless, for the 
ase weare studying now, the situation is di�erent, sin
e the system always rea
hesan all-C or an all-D state. Thus, one shoud interpret 〈c〉 as the fra
tion ofrealizations for whi
h the system ends up in an all-C state. Now, as we 
ansee in �gures 7.14 and 7.15 for both extreme values of ǫ, the weak and strongsele
tion limits, the average level of 
ooperation is remarkably lower for the
ase of τD = τT . This fa
t 
an be understood as follows: if we start with asmall 
ore of nodes fully 
onne
ted, and the networks grows very slowly (sin
ethe time relation is now τD = τT ), the situation is in many ways similar toa well-mixed s
enario, where it has been proved that the 
ooperation 
an notsurvive [25, 104, 105, 115℄ (see se
tion 2.2.2). On the 
ontrary, if the network
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Figure 7.15: Average level of 
ooperation and fra
tions of pure strategists and �u
tu-ating individuals as a fun
tion of b, for τD = τT (Left) and τD = 10τT (Right), bothfor ǫ = 0.99 (strong sele
tion limit). The networks are made up of N = 103 nodes,with average 
onne
tivity 〈k〉 = 4. Every point is the average of 300 independentrealizations.grows faster (for example, when the relation τD = 10τT is ful�lled), the 
oop-eration has better 
han
es to survive, due to the stru
ture of the graph. We
an also noti
e that the level of �u
tuating individuals is lower for the τD = τTsituation, sin
e the pure defe
tors start invading the network mu
h earlier, itis to say, for mu
h lower values of the temptation to defe
t. We have also triedother time relations, su
h as 10τD = τT , it is, a new node is added, and thenthe system plays 10 rounds of the game. Obviously, in this 
ase we have foundthe same well-mixed e�e
t than in the τD = τT but enhan
ed: the level of
ooperation drops even more, be
ause this new s
enario promotes 
ooperationeven less than the previous one.
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hment7.9 Con
lusionsIn this 
hapter we have presented a model in whi
h the rules governing theformation of the network are linked to the dynami
s of its 
omponents. Themodel provides an evolutionary explanation for the origin of the two most
ommon types of networks found in natural systems. Thus, when the sele
tionpressure is weak, homogeneous networks arise, whereas strong sele
tion pres-sure gives rise to s
ale-free networks. A remarkable fa
t is that the proposedevolution rule gives rise to 
omplex networks that share many topologi
al fea-tures with those measured in real systems, su
h as the power law dependen
eof the 
lustering 
oe�
ient with the degree of the nodes. Interestingly, our re-sults make it 
lear that the mi
ros
opi
 dynami
al organization of strategistsin evolutionarily grown networks is very di�erent from the 
ase in whi
h thepopulation evolves on stati
 networks. Namely, there 
an be hubs playing asdefe
tors during network growth, while 
ooperators o

upy mainly the mid-dle 
lasses. It is worth stressing that the level of 
ooperation during networkgrowth rea
hes the largest values for the strong sele
tion limit in whi
h thenew
omers laun
h their links to those �ttest elements of the system.Furthermore, the generated networks are robust in the sense that after thegrowth pro
ess stops, the dynami
al behavior keeps its 
hara
ter. Moreover,we have shown that for most 
ases the 
ooperative behavior arising in thesenetworks exhibits a great resilien
e, in the sense that it does not de
rease for awide range of parameters upon stopping the growth pro
ess, and, in most 
ases,it even displays a large in
rease of the 
ooperation level. We have also shownthat the non-trivial topologi
al patterns of EPA networks are the roots for su
henhan
ement of the 
ooperation. In parti
ular, we have shown that rewiringthe links while keeping the degree distribution (thus destroying any kind of
orrelations between nodes) yields a dramati
 de
rease of the levels of 
oop-eration. On the other hand, a randomization of the strategies does not a�e
tthe asymptoti
 levels of 
ooperation. Therefore, the ability of EPA networksto promote the resilien
e of 
ooperation is rooted in the 
orrelations 
reatedduring network formation via the 
oevolution with evolutionary dynami
s.Finally, maybe the most important di�eren
e we have found between thenetworks grown with our model and the stati
 SF 
ase, is the dynami
 stabi-lization of defe
tors on hubs. We have shown that these defe
tor hubs 
an beextremely long-lived due to the similarity of payo�s between 
ooperators anddefe
tors arising from the 
o-evolutionary pro
ess. Moreover, we have beenable to link the payo� distribution to the network stru
ture. In parti
ular, weshow that the disassortative nature of EPA networks together with the for-mation of lo
al dipole-like stru
tures [134℄ (and see also se
tion 3.4) duringnetwork growth is responsible for the �xation of defe
tion in hubs.



Chapter 8Complex Networks from otherDynami
-dependentAtta
hment rulesIn this 
hapter, we will keep on addressing the issue of the entanglement be-tween the growth of a 
omplex stru
ture and the dynami
s that is taking pla
eon top of it simultaneously, in su
h a way that the out
ome of the game, mean-ing the bene�ts the nodes get out of the intera
tion, will a�e
t the probabilityof the existing nodes to attra
t a link from a new
omer. So we will work witha model similar to the one introdu
ed in 
hapter 7, but with two importantdi�eren
es: on the one hand, the dependen
e of the probability of atta
hmentwill be exponential with the �tness of the nodes, instead of linear. On theother hand, we will also modify the imitation rule to a Fermi-like fun
tion,instead of using a Repli
ator-like probability, so irrational 
hanges of strategywill be allowed now, meaning that a node 
an imitate a neighbor whose payo�is lower than its own.The approa
h we will take here will be a little di�erent too. Sin
e thismodel has one more parameter than the one exposed in 
hapter 7, instead ofpresenting it at on
e, 
onsidering simultaneously all the e�e
ts, we will study�rst a 
ase where the dynami
s has no e�e
t on the growth, just to separatethe two 
ontributions, and then we will take the dynami
s into 
onsideration,too.In the model we presented here, new individuals establish 
onne
tions tothe existing individuals, and the new
omers 
an either 
onne
t to m arbitraryindividuals or preferentially atta
h to those that have been su

essful playersin the past, depending on the values of the 
orresponding parameter. Su

ess



152 Chapter 8. Complex Networks from other Dynami
-dependent Atta
hment rulesis based on the 
umulated payo� π from an evolutionary game, whi
h ea
hindividual plays with all its neighbors on the network. Although for the modelitself we do not need to spe
ify the kind of game or the number of strategies,we will use the two-strategy Prisoner's Dilemma, as in 
hapter 7. However,the formulation of the game, it is to say, the values of the 
oe�
ients of thepayo� matrix, will be di�erent. We will use the 
ost-bene�t ratio approa
h,like we did in 
hapter 6.8.1 The modelWe start from a small 
omplete network of m0 individuals with one strategy.Subsequently, new individuals arrive and form 
onne
tions to existing individ-uals. Evolutionary dynami
s pro
eeds in the following way: At ea
h time step,every individual j plays with all its neighbors and obtains an a

umulatedpayo� πj . All players 
hoose then syn
hronously between their old strategyand the strategy of a randomly sele
ted neighbor. In this way, player j willadopt the strategy of its neighbor i with probability [102, 110, 116, 118, 139℄:
Tj→i =

1

1 + eβ(πj−πi)
(8.1)where β is the intensity of sele
tion. Obviously, with probability (1 − Tj→i),node j will sti
k to its old strategy. This updating rule is usually 
alled Fermirule, sin
e it is based on the Fermi distribution fun
tion from Statisti
al Me-
hani
s. The parameter β, whi
h in Physi
s means inverse of temperature, 
anbe here also interpreted as noise asso
iated with errors in the de
ision makingpro
ess [146℄. Thus, depending on the value of this parameter, we 
an havenow di�erent limiting situations:

• For β ≪ 1, sele
tion is weak and the game is only a linear 
orre
tion torandom strategy 
hoi
e, it is to say, a random drift pro
ess.
• For strong sele
tion, β → ∞, node j will always adopt a better strategyand it will never adopt a worse strategy (imitation dynami
s).It is important to stress that, by using this strategy updating rule, we allowindividuals to be irrational, in the sense that they 
an adopt a strategy thatperforms worse than its own 
urrent one.Every τ time steps, a new individual with a random strategy is addedto the system. It means that when τ ≪ 1, several nodes are added beforeone round of the dynami
s takes pla
e on the system, and when τ ≫ 1, thenetwork grows very slowly and the game dynami
s 
an bring the system 
lose



8.1. The model 153to equilibrium before a new node is added. The new individual establishes mlinks to preexisting nodes, whi
h are 
hosen preferentially a

ording to theirperforman
e in the game in the last time step. Node j is 
hosen as gamepartner with probability:
pj =

e+απj

∑N(t)
l=1 e+απl

(8.2)where N(t) is the number of nodes that already exist when the new nodeis added at time t. The remaining m − 1 links are added in the same way,ex
luding double links, as usual. Again, one should realize that di�erent 
asesare possible, depending on the value of the parameter α:
• For α = 0, the new
omer atta
hes to a randomly 
hosen existing node.
• For small α, atta
hment is approximately linear with payo�.
• For high α, the new
omers will make 
onne
tions to only very few nodeswith high payo�s.
• In the limit α → ∞, all new
omers will always atta
h to the m mostsu

essful players.Besides, sin
e m links and a single node are added at ea
h τ time step, theaverage degree of the network at a given moment is:

m0(m0 − 1)12 +m t
τ

m0 +
t
τ

(8.3)where t is the number of time steps that has passed. Throughout this 
hapter,we will use m = 2 (therefore, 〈k〉 = 4) and m0 = 3.
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-dependent Atta
hment rules8.1.1 A simpli�
ation of the modelAs we have mentioned previously, in order to fully understand this model andthe di�erent 
ontributions ea
h feature makes to the �nal out
ome, we want tofo
us on the simplest 
ase, in whi
h ea
h intera
tion leads to the same payo�,whi
h we set to one. Or in other words, it would 
orrespond to a game whoseentries of the payo� matrix were all equal: it does not make any di�eren
ewhi
h strategy you or your opponent may 
hoose. Then, the payo�s πj arejust the number of intera
tions an individual has, i.e. the degree kj of the node(note that normalizing by the degree of the node would essentially wash outthe e�e
t of the topology at this point [36, 135℄).Thus, evolutionary dynami
s of strategies has no 
onsequen
es and thus,the topology is independent of β. This allows us to dis
uss the growth dynami
swithout any 
ompli
ations arising from the dynami
s of strategies. We haveseveral simple limiting 
ases:
• For α = 0, the new
omer atta
hes at random to a pre-existing node.This leads to a network in whi
h the probability that a node has k linksde
ays exponentially, similar to ER networks. In this 
ase, topology isindependent of strategies for all intensities of sele
tion β, even when indi-viduals play di�erent strategies leading to di�erent payo�s. Nonetheless,whenever α > 0, there is an interplay between topologi
al dynami
s andstrategy dynami
s.
• For α ≪ 1, we 
an linearize the probability of atta
hment pj , and weobtain:

pj =
α−1 + kj

∑N
k=1 (α

−1 + kk)
. (8.4)Thus, we re
over the linear preferential atta
hment model introdu
ed byDorogovtsev et al [60℄. When strategies di�er in their payo�s, then notonly the degree, but also the strategy of the nodes and their neighborswill in�uen
e the probability to atta
h to a node.

• When α is large, we will typi
ally observe a network in whi
h m of the
m0 nodes of the initial 
omplete network will be 
onne
ted to almost allnodes that have been added during the growth stage. The emergen
e ofthese super-hubs is due to the nonlinearity in equation 8.2.Examples for the network stru
tures in these limiting 
ases are given in�gure 8.1. As it is shown, for α = 0, random networks are generated. Onthe other hand, when α in
reases, some degree of heterogeneity appears inthe resulting stru
ture, whereas for α = 1, the probability of atta
hment is so
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Figure 8.1: Networks for a game in whi
h both strategies have identi
al payo�s, su
hthat the payo� is given by the degree of a node. The left hand side shows the degreedistributions of networks of size N = 104, while the right hand side shows snapshotsof networks of N = 100 nodes. (a) For α = 0.0, the degree distribution de
aysexponentially. (b) For α = 0.1, some highly 
onne
ted nodes appear in the networkand the degree distribution begins to resemble a power-law. (
) Already for α = 1.0,the vast majority of nodes (>99.9 %) has only two links. In addition, 〈k〉 = 2m = 4 ofthe m0 = 3 initial nodes are 
onne
ted to almost all other nodes. Degree distributionsare obtained from an average over 102 networks of size N = 104. Note that the x-axisis linear in (a), but logarithmi
 in (b) and (
).
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-dependent Atta
hment rulesstrongly dependent of the 
onne
tivity, that it ex
lusively bene�ts m amongthe m0 initial nodes, that be
ome super-hubs, and so the model always givesrise to star-like stru
tures.Next, we will go ba
k to evolutionary games in whi
h the payo� per intera
-tion is no longer 
onstant, but depends on the strategies of the two intera
tingindividuals. In general, su
h an interplay of evolutionary dynami
s of thestrategies and the payo�-preferential atta
hment will 
hange the stru
ture ofthe network.8.2 Degree DistributionAfter this brief study of a simpli�ed version, let's now address the whole modelagain. The dynami
s we will 
onsider here is on
e again the Prisoner's Dilemma[23, 26, 145℄, where the two players 
an 
hoose between two possible strategies:
ooperation (C) and defe
tion (D). But as we have mentioned before, in this
ase, the values of the 
oe�
ients of the payo� matrix will be di�erent fromthose we used mainly in previous 
hapters, although the relative ordering ofthem must remain the same. Namely, the parameter that 
hara
terizes howexpensive 
ooperation is, 
ompared with defe
tion, will be the ratio b/c, insteadof using the temptation to defe
t b. In this way, we will 
onsider that there isa 
ost c for 
ooperation, whereas a 
ooperative a
t from an intera
tion partnerleads to a bene�t b (> c). Thus, the lower the value of b/c is, the more expensivethe 
ooperation is. The payo� matrix of the game 
an be written as:
(

C D

C b− c −c

D b 0

)

∼
(

C D

C b/c− 1 −1

D b/c 0

) (8.5)No matter what the opponent does, defe
tion always leads to a higher payo�,be
ause b > b − c and 0 > −c, thus sel�sh, rational players should defe
t.Similarly, if the payo� determines reprodu
tive �tness, evolution will lead tothe spread of defe
tion. However, the payo� for mutual defe
tion is smallerthan the payo� for mutual 
ooperation (b − c > 0) and thus players fa
e adilemma. One way to resolve it is to 
onsider stru
tured populations in whi
hplayers only intera
t with their neighbors [31℄. Here, we follow this line ofresear
h and 
onsider in addition growing populations, as dis
ussed above.Sin
e there is an intera
tion between strategy dynami
s and network growth,the topology of the system will obviously 
hange under sele
tion. So, in �gure8.2, we show how it 
hanges with the bene�t to 
ost ratio b/c, the intensityof sele
tion β and the atta
hment parameter α for the parti
ular dynami
s ofthe Prisoner's Dilemma game. From �gure 8.2, it is 
lear that the in�uen
e of
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Figure 8.2: Impa
t of the game dynami
s on the degree distribution at the end ofnetwork growth. Left 
olumn 
orresponds to α = 0.1, while the right one is for α = 1.The networks are made of N = 103 nodes, with average 
onne
tivity 〈k〉 = 2m = 4,
m0 = 3, and τ = 0.1. All values are obtained from the average of 103 di�erentrealizations.
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-dependent Atta
hment rulesthe game on the degree distribution is relatively weak, for small degrees a 
leardi�eren
e is only found for large α and small b/c. The distribution of the rela-tively few nodes with many 
onne
tions, however, is more sensitive to 
hangingeither b/c or β. Moreover, as we have already learn from the simpli�ed versionof the model in subse
tion 8.1.1, for a value α = 1 we have stru
tures wheresuper-hubs are present, regardless of the values of the other two parametersof the system, b/c and β. On the other hand, for more moderate values of
α, we 
an observe some di�eren
es in the topologies arising from the model,depending on the values of the two other mentioned parameters. Thus, fora �xed value of the ratio bene�t-
ost, some di�erent degree distributions ap-pear, depending on β. We 
an also say that, in general, almost all stru
turesobtained have fat-tailed P (k). We 
an see that there is not a very importantdependen
e of the degree distribution with b/c, whi
h was also the 
ase of themodel presented in 
hapter 7.
8.3 Average Level of Cooperation as a fun
tion of theparameters of the systemTypi
ally, we are interested in the promotion of 
ooperation on di�erent net-work stru
tures, so �gure 8.3 shows the average level of 
ooperation for strongsele
tion as a fun
tion of τ and for several �xed values of the ratio b/c. Itturns out that payo� preferential atta
hment in
reases the level of 
oopera-tion in the system signi�
antly 
ompared to random atta
hment. We wantto point out here that, although we do not show it, this e�e
t is also presentfor weak sele
tion, but less pronoun
ed. On the other hand, we observe that
ooperation gets higher levels for small values of τ , i.e. when many nodesare added before dynami
s takes pla
e and strategies are 
hanged (whi
h isin good agreement with the results obtained in 
hapter 7, where we showedthat the equivalent time relation τD = 10τT promotes 
ooperation mu
h morethan when τD = τT ). Indeed, this parti
ular 
hoi
e for the time ratio putsthe system further from equilibrium, whereas the 
ase of large τ means thatstrategies have been equilibrated at least lo
ally before the next new individualwith a random strategy is added to the system. Note that for τ larger thana 
ertain value (τ . 1), 
ooperation levels be
ome independent of τ , whi
hpoints out that playing just on
e after a given number of new players havebeen in
orporated is enough to rea
h a dynami
al equilibrium.
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Figure 8.3: The average level of 
ooperation under strong sele
tion (β = 1) and α = 1,depending on the time s
ale of atta
hment, τ . Cooperation bene�ts most from smallvalues of τ , i.e. when many new nodes are added before players update their strategies.For random atta
hment (α = 0, inset) 
ooperation does not emerge, only for highbene�t to 
ost ratios a few 
ooperators prevail. The networks are made of N = 103nodes, with average 
onne
tivity 〈k〉 = 2m = 4, m0 = 3, and all values are obtainedfrom the average of 102 di�erent realizations.8.4 Average Level of Cooperation after the growthhas �nishedNow, we intend to fo
us on analyzing the level of 
ooperation the systema
hieves on
e the growth has �nished, it is to say, when the individuals ofthe network just play the game, but no new nodes are added anymore. Asin most stru
tured populations, 
ooperators that are disadvantageous in thePrisoner's Dilemma in well-mixed population bene�t from the spatial stru
ture.Of 
ourse, this e�e
t is larger when 
ooperation be
omes more pro�table, i.e.when the bene�t to 
ost ratio b/c in
reases. It turns out that for weak payo�preferential atta
hment (small α), the promotion of 
ooperation is relativelyweak and levels of 
ooperation beyond 50 % are only rea
hed when 
ooperationis very pro�table (see �gure 8.4). However, when the probability to atta
h tothe most su

essful nodes be
omes large (large α), then the average fra
tionof 
ooperators be
omes larger, approa
hing one when the bene�t to 
ost ratio
b/c is large.Interestingly, for small b/c ratios, the abundan
e of 
ooperators de
reaseswith in
reasing β, whereas it in
reases with the intensity of sele
tion for large
b/c ratios. The existen
e of a threshold for intermediate b/c 
an be illustrated
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hment rules
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Figure 8.4: The average level of 
ooperation 〈c〉 104 time steps after the network stopsgrowing. For α = 0.1 (Left) the level of 
ooperation ex
eeds 50 % only for very highbene�t to 
ost ratios b/c. For α = 1.0 (Right), the abundan
e of 
ooperators issigni�
antly higher. Even for neutral strategy dynami
s (β = 0), payo� preferentialatta
hment 
an lead to high levels of 
ooperation in this 
ase. The networks are madeof N = 103 nodes, with average 
onne
tivity 〈k〉 = 2m = 4, m0 = 3, and τ = 0.1. Allvalues are obtained from the average of 103 di�erent realizations.as follows for large α: assume that we start from m0 fully 
onne
ted 
ooperatornodes. For τ < 1, we add 1/τ nodes with m = 2 links, half of whi
h aredefe
tors and half 
ooperators, on average. All new players intera
t only withthe initial 
ooperator nodes, su
h that an initial 
ooperator will on averageobtain m
m0τ

new links. Thus, the payo� of a new defe
tor is mb. The averagepayo� of an initial 
ooperator is (b− c)(m0 −1+ 1
2

m
m0τ

)− c12
m

m0τ
. Both payo�sare identi
al for

b

c
=

1
τ + m0(m0−1)

m

1
2τ −m0 +

m0(m0−1)
m

. (8.6)For large values of b/c, 
ooperators will dominate in the very beginning of net-work growth. The threshold in
reases with τ and de
reases withm0: the largerthe initial 
ooperator 
luster and the more nodes are added before strategiesare updated, the easier it is for 
ooperation to spread initially. This argumentshows qualitatively that a 
rossover in the abundan
e of 
ooperators shouldexist, and therefore that above a 
ertain threshold, it is easier for 
ooperationto spread. Only in the very beginning of network growth, this argument willhold quantitatively.In general, the average level of 
ooperation 
an be based on two very dif-ferent s
enarios: either it is the fra
tion of realizations of the pro
ess thatultimately ends in full 
ooperation, or it is the average abundan
e of 
ooper-ators in a network in whi
h both 
ooperators and defe
tors are present. This



8.5. Probability of �xation 161also happened in the model we presented in 
hapter 7: when the time relationwas τD = 10τT , the average level of 
ooperation 〈c〉 must be interpreted as thefra
tion of 
ooperators present in the system in the stationary state, whereasfor τD = τT , the whole network always ends up in a state all-C or all-D, so
〈c〉 means the fra
tion of realizations for whi
h the system a
hieves the all-Cstate.For any �nite intensity of sele
tion β, we have Tj→i > 0, regardless of thepayo�s. Thus, after growth has stopped, our dynami
s des
ribes a Markov
hain with two absorbing states in whi
h all players follow one of the twostrategies. Therefore, ultimately one of the two strategies will go extin
t, in
ontrast to evolutionary pro
esses that do not allow disadvantageous strategiesto spread. In other words, using this model, the systems will always end upwhether on an all-C or on an all-D state. Nonetheless, it is important toremark that the time to extin
tion 
an be
ome very large, in parti
ular whenthe intensity of sele
tion is high or the population size is large [110, 139, 147℄.
8.5 Probability of �xationNow, we want to analyze this issue numeri
ally, and in order to do that, we
ompute the probability that �xation (for either 
ooperation or defe
tion) o
-
urs within 104 time steps after the network has stopped growing, during whi
honly the dynami
s takes pla
e on the system, but no new nodes are added (see�gure 8.5). For small α, the results follow the intuition from well-mixed pop-ulations: Fixation within this time is more likely if the intensity of sele
tionis weaker. With in
reasing bene�t to 
ost ratio, �xation times in
rease, so�xation within the �rst 104 time steps be
omes less and less likely. For large
α, however, �xation is faster for strong sele
tion (large β) for a wide range ofparameters. Only when the b/c ratio is very high, �xation times are very largeunder strong sele
tion. This is based on the pe
uliar stru
ture of the networkobtained for large α. In addition, we observe an area in �gure 8.5 where the�xation time in
reases slightly before it de
reases again, i.e. the probability for�xation in the �rst 104 time steps has a minimum. Interestingly, this o

ursfor the range of b/c ratios where the average levels of 
ooperation interse
t at50 % for the di�erent intensities of sele
tion. In this parameter region, neither
ooperators nor defe
tors are 
learly favored. Thus, both of them spread ini-tially. When the abundan
e of both strategies is approximately the same in thebeginning, then it will be more di�
ult to 
ompletely wipe out one strategylater. Thus, the in
reased time of �xation in the parameter region where theabundan
e of 
ooperation be
omes 50% makes intuitive sense.
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Figure 8.5: The probability of �xation for one strategy within 104 time steps aftergrowth has stopped as a fun
tion of the atta
hment parameter: (Left) α = 0.1 and(Right) α = 1, for di�erent intensities of sele
tion β. The networks are made up of
N = 103 nodes, with average 
onne
tivity 〈k〉 = 2m = 4, m0 = 3 and τ = 0.1. Everypoint is the average over 103 independent realizations.8.6 Level of 
ooperation after re-initializing the strate-giesFinally, we want to fo
us on studying what happens when the network stopsgrowing: Does 
ooperation bene�t from growth or only from topology? Typ-i
ally, one would expe
t that defe
tors pro�t from growth, be
ause there is asteady �ow of new 
ooperators that they 
an potentially exploit. Thus, 
o-operation should in
rease if the game dynami
s pro
eeds on the fully grown,stati
 network (in fa
t, this was the result we obtained in 
hapter 7). In 
on-trast to that 
ase, here we have 
hanged the game dynami
s in su
h a way thatindividuals sometimes 
an also adopt a worse strategy (irrational 
hanges). Ithas been shown in previous works that this apparently small 
hange 
an signif-i
antly de
rease the level of 
ooperation [108℄. The overall level of 
ooperationdrops signi�
antly and is only higher than 50% if 
ooperation is very pro�table.Indeed, we haver found that with this model, the level of 
ooperation now de-
ays on
e the network no longer grows (see �gure 8.6). This means that in the
urrent 
ase, 
ooperators, not defe
tors, bene�t from the 
ontinuous supply ofnew players, so when the stru
ture stops growing, they stop getting su
h highbene�ts, and their proportion in the system drops a little.Thus, it makes sense to ask whether the topologies that are obtained fromthe network growth are powerful promoters of 
ooperation at all. This 
an betested, as we did in se
tion 7.5, by taking the fully grown stru
ture as a stati
substrate, and run the game dynami
s on that �xed topology with initially
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Figure 8.6: The average level of 
ooperation in three 
ases: on
e the network isfully grown (drawn in blue), after the game dynami
s has pro
eeded 104 additionalsteps beyond the growth phase of the network (in red), and 104 time steps after thefully grown network has been re-initialized with random strategies (in yellow). Theintensity of sele
tion is (a) β = 0.01, (b) β = 0.1, and (
) β = 0.5, respe
tively. Thenetworks are made up of N = 103, with m0 = 3, average 
onne
tivity 〈k〉 = 2m = 4and τ = 0.1. Every point is the average over 102 di�erent realizations, and α = 0.1in all 
ases.
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-dependent Atta
hment rulesrandom strategies, 50% 
ooperators and 50 % defe
tors. Interestingly enough,this does not lead to any signi�
ant enhan
ement of the level of 
ooperation, onthe 
ontrary, 
ooperators almost disappear from the system after 104 steps ofthe dynami
s, on
e the re-initialization has been made (see �gure 8.6). Thus,our model of network growth based on payo� preferential atta
hment itselfleads to 
omparably high levels of 
ooperation, while the resulting topologyalone, used as a stati
 substrate, does not support 
ooperation at all in thePrisoner's Dilemma.8.7 Con
lusionsIn this 
hapter, we have studied another dynami
al model for evolutionarygame dynami
s in a growing, network-stru
tured population [141℄. In 
ontrastto most models for evolutionary games on dynami
al networks that 
onsidera 
onstant population size [40, 45, 138, 142, 148�150℄, these networks grow.Nonetheless, individuals 
annot break links and 
annot 
ontrol dire
tly howmany new individuals will establish 
onne
tions with them. The two main
hanges we have made in this new model, with respe
t to the evolutionarypreferential atta
hment studied in 
hapter 7, are on the one hand, that nowthe probability of atta
hment is exponential with the payo� of the node, and onthe other hand, that we allow irrational strategy 
hanges, by using a Fermi-likefun
tion for the probability of 
hanging the strategy.One important di�eren
e that has been found is that under strong Payo�Preferential Atta
hment (α = 1), the topology of the networks generated aredominated by the presen
e of a few super-hubs, whi
h attra
t most of the linksof the rest of the nodes. The existen
e of very few hubs and a large numberof lowly 
onne
ted nodes in network models have been widely reported before[151℄. In fa
t, it has been shown that when networks are grown following anon-linear preferential atta
hment rule of the sort pj =
kνj

∑N
l=1

kν
l

, with ν > 1,star like stru
tures are obtained [152℄. Here, we have shown that the samekind of networks 
an be produ
ed when the dynami
s driving the atta
hmentpro
ess is dominated by the most su

essful players.Even when Payo� Preferential Atta
hment is not too strong (for instan
e,for α = 0.1), super-hubs emerge, a 
lear mark that su

essful players are likelyto attra
t many of the links of the new nodes. If new
omers preferentiallyatta
h to the su

essful players in the game, then high levels of 
ooperationare possible. But this 
ooperation depends on the growth of the network,the population stru
ture alone would not lead to su
h high levels of 
oopera-tion. Thus, payo� preferential atta
hment di�ers from the usual promotion of
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ooperation in stru
tured populations. In parti
ular, it has been shown thatheterogeneous stati
 stru
tures favor 
ooperative behavior due to the existen
eof hubs. However, as Fig. 8.6 shows, the presen
e of super-hubs is not enoughto sustain 
ooperation in the networks grown following the s
heme dis
ussedhere.In other models, the probability to adopt a strategy that performs worsethan your own is zero [34, 134℄ (see also some previous 
hapters). In parti
ulartogether with syn
hronous updating of strategies, this 
an lead to evolutionarydeadlo
ks, i.e. situations in whi
h both strategies stably 
oexist. Here, we haveadopted an update s
heme in whi
h individuals sometimes adopt a strategythat performs worse. Due to the presen
e of su
h irregular moves, sooner orlater (often mu
h later) one strategy will rea
h �xation. It is to say, the �nalstate of the systems dis
ussed here will be inevitably all-C or all-D. However,when β and the ratio b/c are large enough, both 
ooperation and defe
tion 
an
oexist for a very long time.We also want to remark that our growth me
hanism has another interestingfeature: it has been shown that the average level of 
ooperation obtained instati
, s
ale-free networks, is robust to a wide range of initial 
onditions (see
hapter 3). However, for the networks grown using the Payo� PreferentialAtta
hment, the initial average number of 
ooperators in the neighborhood ofthe super-hubs determines the fate of 
ooperation in the whole network, leadingto a mu
h more sensitive dependen
e on the initial 
onditions of the system.This has been proved by the huge drop of 
ooperation in the system aftersome time steps, on
e we have reinitialized the strategies randomly among theindividuals when the full size had been a
hieved. From this point of view, theweak dependen
e on the initial 
onditions reported in stati
 s
ale-free networksis not trivial.Finally, we point out that it would be of further interest to study the modeldis
ussed here with other 2 × 2 games. As we have shown, the game dynam-i
s seems to have a weak impa
t on the stru
ture of the resulting networks.Whether or not this holds in general will elu
idate the question of the in�uen
eof di�erent games on the network formation pro
ess.In summary, the model studied in this 
hapter shows that the interplaybetween the game dynami
s and the network growth leads to 
omplex networkstru
tures. Moreover, not only the stru
ture of the intera
tion network isimportant for the evolution of 
ooperation, but also the parti
ular way thisstru
ture has been obtained. Our work shows that playing while growing 
anlead to radi
ally di�erent results with respe
t to the most studied 
ases in whi
hgame dynami
s pro
eeds in stati
 networks (whi
h is in fa
t a 
on
lusion wealso made when studying the model of 
hapter 7).
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