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Chapter 1IntrodutionMany real systems from very di�erent �elds, suh as food webs [1�3℄, theeletrial power grids, the soial entanglement of aquaintanes [4℄, the WordWideWeb or the Internet [5�7℄, were almost intratable just a few years ago dueto both their large number of individuals and the omplexity of the patternof onnetions among them. They all have been reently haraterized asnetworks [8�13℄, opening a new and very promising subjet for researhers allover the world.In a few words, a network an be de�ned as a set of nodes or individuals,and a set of onnetions or links that represent some kind of physial or ab-strat relationship among them. Spei�ally, a network an be onsidered om-plex if it has a pattern of onnetions highly non trivial. These systems havefound in Graph Theory a useful tool that allow to study, analyse, reprodueand desribe them aurately, extrating some ommon strutural features toharaterize and organize them aordingly. And surprisingly enough, mostof real networked systems seem to share some of these strutural features, re-gardless their partiular origin, thus entitling this new disipline, far beyondsimple anedotal fats.Other real examples are neural networks of animals [14℄ (where the nodesare neurons, and links represent hemial synapses), ellular and metabolinetworks [15℄ (where nodes stand for the di�erent moleules or metabolites thattake part on the system of hemial reations, and a link between two of themmeans that one is the reative and the other one is its produt), the networkof ators in Hollywood (two ators have a link if they have worked togetherin a �lm), the o-authorship and itation networks of sientists (similarly, twosientist will share a link if they have a ommon paper, or two papers will havea link between them if one ites the other, respetively), the air transportationnetwork (nodes stand for airports and links represent diret �ights between an



2 Chapter 1. Introdutionorigin and a destination) or the network of sexual human ontats (where alink binds two human beings that have had sex together).On the other hand, the fat that all of them have omplex strutures hasbeen proven to strongly a�et the outome of the great variety proesses thatan take plae on top of them, in omparison with well-mixed situations oreven lattie underlying strutures. Thus, it modi�es sometimes drastially theassumptions as well as the onlusions one an make from suh systems. Forexample, the dynamis of disease spreading is very di�erent depending on thesoial struture one onsiders for the propagation proess (and so are the mea-sures that should be taken in order to e�etively �ght it o�), or when dealingwith tra� jams in the road-network or on the Internet, it is also essential toknow the topology underneath, in order to design e�etive strategies.In �gure 1.1 we show some other examples of real networks: (a) representsthe email network from the members of the Universitat Rovira i Virgili (Spain),where we an learly see di�erent branhes (or ommunities), orrespondingto di�erent departments and areas within those departments [16℄, (b) is thenetwork that ombines loal metropolitan ommuters and long-range airlinetravelers during a global epidemi [17℄, and () shows the New Testament soialnetwork (http://www.esv.org/blog/2007/01/mapping-nt-soial-networks/).The �rst attempts to model suh real networks were over-simplifying: lat-ties and regular random networks [18℄ were foremost used to try to enapsu-late some of the basi harateristis of these omplex networks. In a lattie,the individuals are arranged at regular distanes in one, two or three spa-tial dimensions, with a �xed number of neighbors (or oordination number).On the other hand, random graphs are just a set of individuals with aleatoryonnetions among them, but without any order or periodiity. One an onlyharaterize the distribution of probability for the number of those onnetionsin the system by a Poisson distribution, so there is a well-de�ned mean value,or it an also be given by a Dira-delta, whih means that every element inthe system has exatly the same number of neighbors. Nonetheless, the on-ept of dimensionality is hard to de�ne in random graphs, and also in omplexnetworks in general.Obviously, and despite its undeniable importane as �rst attempts in thematter, these kind of models are unrealisti representations of real systems.Due to its lak of auray, they fail to explain some features suh as thewell-know small-world or six degrees phenomenon [19, 20℄. Roughly speaking,it implies that any two individuals in the network are likely to be onnetedthrough a very short sequene of intermediate aquaintanes. This has beenthe subjet of anedotal observation and folklore for a long time: often we meeta stranger and disover, astonished, that we have an aquaintane in ommon.



3

(a) (b)

()Figure 1.1: Some examples of real networks: (a) the email network from the Universi-dad Rovira-Virgili (Spain) [16℄, (b) the network of loal metropolitan ommuters andlong-range airline travelers during a global epidemi [17℄ and () the New Testamentsoial network (obtained from the homepage of the English Standard Version Bible:http://www.esv.org/blog/2007/01/mapping-nt-soial-networks/).



4 Chapter 1. IntrodutionNonetheless, it �nally beame a signi�ant area of study in the soial sienes,in large part through the striking experiments by Stanley Milgram in the 1960's[21℄. Later on, it has been shown that many other real networked systems, suhas tehnologial or biologial ones, display often this feature.Besides, in these soial networks, it is very likely that two di�erent friendsof a person have also met (high lustering oe�ient). Moreover, these twoproperties usually appear simultaneously in real networks, so both should betaken into aount if one wants to model reality with some auray. Onthe one hand, latties ahieve the seond property, but not the �rst one, andfor random topologies, it happens the other way around. Thus the next stepwas to try to model a network that ombines both features, and the Small-word network [10℄ does it. This partiular model was the �rst one to enlosesimultaneously the two properties of real networked systems mentioned before,and it works as follows: departing from a regular lattie, and by randomlyrewiring a ertain perentage of the links, the network gets some shortutsbetween otherwise distant nodes, so they will have a low value for the averagepath length, like random graphs, but still with a high value of the lusteringoe�ient, like latties.As an ulterior improvement in realism at modeling, one an onsider yetanother very ommon feature among real networks, that is the heterogeneityin the number of onnetions a node has: we all know people that are reallypopular, and some other people that are inurably unsoiable. In the same way,there are a few very important airports and a lot of medium and even moresmall ones. None of the previous models aounted for this partiular feature,and were the so-alled Sale-free (SF) networks the ones that did it. Thispartiular kind of networks, have a power-law degree distribution (it is, theprobability of �nding a node with k neighbors), P (k) ∼ k−γ , with 2 < γ < 3.Usually, real networks are not stritly power-lawed, but they do present somedegree of heterogeneity.As we have already mentioned, there are very di�erent ontexts wherenetworks an appear (zoology, biohemistry, soiology, tehnology...) and sothe proesses that will take plae on top of them an be very di�erent as well:from disease or rumor spreading to synhronization dynamis, tra� jams andooperation. This last one is partiularly interesting for us, sine there areountless examples of ooperation in Nature: ell ooperate to form tissues,organs ooperate to form living organisms, and of ourse, when it omes togroups of individuals, very omplex phenomena an arise: they an ooperatewithin a family to raise their o�spring, form hunting parties, form allianes,stik together in order to redue the risk of predation, and in general, to formsoieties...



5However, why ooperation emerges and survives in hostile environments,when defeting is a muh more pro�table sort-term strategy, is a question thatstill remains open.A lot of researhers are urrently trying to answer that hallenging question,at least partially, and some key ideas have been pointed out so far, suh as kinseletion or the neessity of proteting the o�spring or the family in general(for obvious evolutionary reasons, or as the genetiist and evolutionary biologisJ.B.S. Haldane said: 'I will jump into the river to save two brothers or eightousins'), the bene�t of ooperating with someone you will probably meet againin the future (diret reiproity) or if you gain some (good) reputation beauseof it (indiret reiproity, see [22℄ and referenes therein). On the other hand,for repeated-enounter situations, where individuals have some kind of memoryof the past or even plans for the future, there are some omplex strategies thatan be more suessful than others...Game theory attempts to mathematially apture the behavior of suhindividuals in strategi situations, in whih their suess in making hoies(that is measured in terms of bene�ts) depends on the hoies of others. Evo-lutionary Game Theory is a branh of Game Theory that studies the timeevolution of large populations of individuals who repeatedly play a game andare exposed to evolutionary pressures (seletion and repliation, with or with-out mutation), and it has been proven to be the mathematial framework todeal with questions suh as the problem of evolution of ooperation. Spei�-ally, the Prisoner's Dilemma game has been widely used [22�30℄ as a perfetmetaphor for the study of ooperation among individuals, where it is learlymore pro�table to defet regardless the opponent's strategy, but also it wouldbe better for the two adversaries if both of them deided to ooperate, insteadof defeting.We are interested in ooperation on very simple senarios: when individ-uals have no memory or plan for the future at all, and they do not reognizetheir families nor have reputations to keep. Thus, we want to study the merelystrutural fators that an help ooperation in a given situation. Spei�ally,we have onern over analyzing the reasons why ooperation seems to be en-haned not only by spatial struture suh as latties [31�33℄, but in partiular,by heterogeneity in the distribution of onnetions [34�45℄, as opposed to whathappens in more regular environments, like random graphs.Therefore, in the �rst part of this Thesis, we will address the problem ofthe maintenane of ooperation in omplex stati topologies, omparing thedynamis on top of two fundamental kind of networks: random and sale-free. We will model the issue of hoosing between ooperation and defetionthat individuals have to make via the paradigmati and well-known Prisoner's



6 Chapter 1. IntrodutionDilemma game. This is a very simple 2× 2 game, where there are two playerswho an hoose between two distint strategies: ooperate and defet. Anddepending on its strategy and its opponent's hoie, they will get an auratelyde�ned bene�t (usually given by a payo� matrix). Essentially, the problem isthat, given the payo� matrix of this game, to defet is the safest strategy,regardless the one the opponent hooses, but, if both deided to ooperate,they would get higher payo� than if both of them defet (hene, the dilemma).Thus, we will study how ooperators and defetors in the system, sponta-neously and after a transient period of time, arrange themselves at a miro-sopi level, giving rise to very di�erent organization patterns, whih will be atthe root of the distint levels of average ooperation ahieved in the networks.On the other hand, we are well aware that real networks are not statientities at all: not only there an be di�erent dynamis evolving on top ofthem, but also the struture of the network itself usually hanges over time.New nodes an enter the system, others an disappear and also new onne-tions an be established or erased. Moreover, the proesses that take plae ontop of them an shape the topology, and the other way around as well. So,we onsider that a natural next step in our study of ooperation in omplexnetworks should be a model where the dynamis and the growth of the net-work are entangled. In this way, the seond part of this Thesis will be devotedto developing two di�erent models of growing networks that re�et some ofthe harateristis of an evolving real network. Thus, in both our models, theoutome of the dynamis will be taken into aount for the growth. Spei�-ally, the dynamis will be again the Prisoner's Dilemma game, and the payo�obtained by the nodes will a�et its apability of attrating links from thenewomers. Nonetheless, the two models di�er in the kind of dependene be-tween the probability of attahment of the new nodes with the payo� of thosealready present in the system, and, on the other hand, the way a node evalu-ates if it will keep its urrent strategy or not, by omparing with its neighborswill also be di�erent in both models. Besides, we will analyse, along withthe average levels of ooperation ahieved in every ase, the strutures thatan emerge from these ombined proesses, depending on the spei� values ofthe parameters of the system. And in order to do that, we will measure therelevant topologial magnitudes, suh as the degree distribution, the averagepath length and the lustering oe�ient of the resulting networks. Moreover,we will establish some omparisons between the results obtained with thesemodels, when the �nal size is ahieved, and those known for �xed-size statinetworks, suh as Erdös-Rényi (ER) random networks, Barabási-Albert (BA)sale-free networks and random sale-free networks.



Chapter 2Some basi onepts onComplex Networks and GamesSine this Thesis is mainly devoted to the study of one partiular game, namelythe Prisoner's Dilemma, on omplex networks (stati ones in the �rst part ofit, and two more sophistiated models that ombine the growth with the playin the seond), we onsider that it is useful to state and explain �rst somenotions on both networks and games. So, in this hapter, we want to providejust a few very basi onepts and de�nitions on Complex Networks and GameTheory that we will use later on during the full elaboration of this Thesis. Wehope they will help setting the basis to understand our work perfetly, so thereader will not need any external help to omprehend, and also it will serveas an introdution to the two fundamental omponents on whih this Thesisis based.2.1 Complex NetworksThe study of omplex networks is a relatively reent �eld, and it has beeninspired by the observation of many real systems, suh as biologial, soialor tehnologial ones. In the �rst part of this hapter we want to give a fewexamples of real networks, just to motivate the study of suh strutures, byestablishing its ubiquity in natural and arti�ial systems. Then, we will givesome of the basi de�nitions needed in order to properly desribe networks[12℄, suh as the degree of a node, the degree distribution of a network, thelustering oe�ient or the average path length. On the other hand, we willalso explain some useful models for building di�erent kinds of graphs, suh asthe Erdös and Rényi (ER), the Barabási-Albert (BA) or the Small-World by



8 Chapter 2. Some basi onepts on Complex Networks and GamesWatts and Strogatz model. Finally, we will mention some of the many possibleproesses that an take plae on top of omplex networks.2.1.1 Examples of real networksAs it has been pointed out along the Introdution of this Thesis, many real sys-tems [9, 11, 12℄ an be desribed as omplex networks, and this relatively newapproah an provide new insights to better understanding, and tools to dealwith unsolved problems. In very di�erent �elds, suh as biology, immunology,soiology, tehnology or eonomis, there are plenty of examples of networks.In every partiular �eld, both the nodes and the links of the networks willrepresent ompletely di�erent things, but the fat that this kind of struturesare so ubiquitous in Nature, is surprising and very promising.One an onsider tehnologial strutures, suh as the air transportationnetworks for a partiular region or for the whole planet, where the nodes areairports and the links represent diret �ights between them, the road networksonneting ities or the power grids that supply eletriity to a ountry, withits power stations represented by nodes and the links standing for the wires.There is also the WWW, where nodes are web pages onneted by hiperlinks,and the Internet (see �gure 2.1 (Left)), made up of billions of hosts, physiallyonneted among them. Sine modern soieties depend strongly on these in-frastrutures, it is obviously very important to have detailed information aboutthem, in order to be able to predit its behavior or at orretly during a risis.In biology, there are several examples as well, like food webs on an eosys-tem (see �gure 2.1 (Right)), or in a more basi level, the metaboli networksof di�erent proesses. On the other hand, maybe some of the more tangledomplex networks one an onsider (from the point of view of both number ofinteronnetions and variability over time) are those that desribe soial rela-tionships, where nodes are people, and links represent some kind of interation:from groups of mere friends, people with similar interests or ollaborators insome partiular �eld [16, 46℄ (sienti� ollaborations or itations, or networksof musiians that play together regularly,...), to sexual ontat networks or newglobal phenomena like Faebook, MySpae or Twitter. It ould be beause ofthe omplex nature of the human being itself, that suh soial strutures anbe often so fasinating.On the other hand, we want to point out that, when dealing with realnetworks one has to take into onsideration that the available data an (andprobably will) have mistakes: there an be missing or spurious nodes or links.Some e�ort has been put to try to obtain the 'real network' and its topologialproperties out of the observational data (see for example [47℄).



2.1. Complex Networks 9

(a) (b)

()Figure 2.1: (a) Gene regulation network for the Myobaterium Tuberulosis. Everynode represent a gene, and the links stand for the regulation relationship betweena transription fator and the orrespondent regulated gene. Di�erent olors meandi�erent harater of the genes, as far as regulation dynamis is onern. (J. Sanz etal. 2010, in preparation.) (b) Food web of the Caribbean oral reef loated in thePuerto Rio Virgin Islands. Node olor represents trophi level: red nodes representbasal speies, suh as plants and detritus, orange nodes represent intermediate speies,and yellow nodes represent top speies or primary predators. Links haraterize theinteration between two nodes, and the width of the link attenuates down the trophiasade, so a link is thiker at the predator end and thinner at the prey end (Originalimage from [1℄, and generated by FoodWeb3D).() Visualization of a portion of theInternet, using over 5 · 106 edges. The olors represent di�erent geographial regions.In the inset it is shown a partiular node and its neighborhood. (Original image from'The Opte Projet': http://www.opte.org ).



10 Chapter 2. Some basi onepts on Complex Networks and GamesFinally, the kind of proesses that will take plae on top of them an bevery diverse (synhronization, tra� of information or something else, diseaseor rumor spreading, games,...), but it is very useful to be able to haraterizethem struturally as preisely as possible �rst, trying to �nd out what are themain and more relevant features all of them share, if any. Moreover, as we willsee later on, the struture will be a key fator in the outome of any proessor dynamis that will take plae on top of suh strutured systems. Thus, wewill address next the topologial haraterization of omplex networks.2.1.2 De�nitionsA network is a set of items (alled nodes, points or verties), with some on-netions between them (links, lines or edges). A omplex network is a networkwith non-trivial topologial features, i.e. its struture is irregular and omplex-as opposed to latties, for example, that present total spatial regularity-, orthey an even evolve in time, adding or losing nodes and/or links.Mathematially, we an represent a network using graph theory. A graph
G = (N ,L), onsists of two sets, N and L, where N = {n1, n2, ..., nN} are thenodes, and L = {l1, l2, ..., lK} are the links. Obviously, N is the total numberof nodes of the network, and K is the total number of links, whih has to bea non-negative number, whose maximum is N(N − 1)/2 (when the graph isomplete, i.e. every node is onneted to everyone else). A spei� node ofthe network is denoted by a label i in the set N . On the other hand, everylink onnets a pair of elements of N , i and j, and is denoted by lij . Thereby,the pair of nodes i and j are alled adjaents or neighbors. The usual way ofrepresenting a network graphially is by drawing a dot for every node and aline for every link that onnets a pair of nodes. In addition to this, we analso de�ne a subgraph G′ = (N ′,L′), of the graph G = (N ,L), if N ′ ⊆ N and
L′ ⊆ L. A speial ase would be the subgraph of all the neighbors of a givennode i and its orresponding links, denoted by Gi. On the other hand, a graphis said to be onneted if, for every pair of nodes i and j, there is a path to gofrom one to the other. If there is not suh a path for at least one pair of nodes,then the graph will be disonneted or unonneted, and it will have therefore,two or more disonneted subgraphs.Besides, another very useful way of representing a network is by using thematriial representation. Given a graph G = (N ,L), the adjaeny matrix Aijis a N × N square matrix, whose entry aij (i, j = 1, 2, ..., N) is equal to 1when the link lij exists, and zero otherwise. Nonetheless, for implementationor pratial purposes, we an use the onnetivity matrix Cij of the graph, thatis a Nxkmax matrix, where kmax is the maximum onnetivity of the nodes



2.1. Complex Networks 11of the graph, and where the row i of it ontains all the neighbors of the node
i (ordered usually, but not neessarily, from the �rst to the last to onnetwith it when onstruting the network). And we an also de�ne a matrix ofthe pairs of neighbors, Dij , whih is a Lx2 matrix, whose entries dl1 and dl2are the pairs of nodes that are neighbors, with (l = 1, 2, ..., L), and being Lthe total number of links in the network. The de�nition of these two matriesis not for rigorous mathematial purposes, but nonetheless, they will be veryuseful in order to implement them on programs and numerial simulations.Degree of a node and degree distribution of a networkThe degree or onnetivity of a node is the number of neighbors it has. Usingthe adjaeny matrix, we an formally de�ne the degree of a node as:

ki =
∑

j∈N

aij (2.1)If the graph is direted, then ki will have two omponents: the ingoing links
kini =

∑

j aij and the outgoing links kouti =
∑

j aji, so the total degree will be
ki = kini + kouti .On the other hand, the main and most basi topologial haraterizationof the whole network is the degree distribution. We an de�ne the degreedistribution of the graph, P (k), as the fration of nodes in the network thathave onnetivity k, or equivalently, the probability that a node randomlyhosen from the network has k neighbors. For example, random graphs (alsoknown as 'one-peaked' or 'single-saled') have a Poissonian degree distribution,while the P (k) for a so-alled sale-free network is a power law.For direted graphs, we will have two di�erent distributions, P (kin) and
P (kout).Thus, the mean degree of the graph, 〈k〉 is the �rst moment of the degreedistribution:

〈k〉 =
∑

k

kP (k) (2.2)Furthermore, the seond moment of the distribution, 〈k2〉 is the measure ofthe �utuations of the onnetivity distribution. As we will see later on, 〈k2〉diverges in the limit of in�nite graph size for sale-free graphs for ertainvalues of the exponent of the power-law distribution, whih is a very interestingproperty, that a�ets greatly the outome of the dynamis that an take plaeon top of suh topologies. For an unorrelated graph, i.e. if the degree of everynode is ompletely independent of its neighbors', then the degree distribution
P (k) is enough to desribe the statistial properties of the network. But if



12 Chapter 2. Some basi onepts on Complex Networks and Gamesthe network is orrelated, as it usually happens in many real systems, thenthe probability that a node of degree k has a neighbor with onnetivity k′,depends on k. In that way, we an de�ne the onditional probability P (k′|k),that a node with onnetivity k has a neighbor with onnetivity k′. We analso alulate the average degree of the nearest neighbor of nodes with degree
k, given by:

knn(k) =
∑

k′

k′P (k′|k) (2.3)So when the network is unorrelated, obviously, we have that knn(k) is in-dependent of k, and equal to knn(k) = 〈k2〉/〈k〉, but when it is orrelated,then we an have assortative networks, if knn(k) is an inreasing funtion of
k, or disassortative ones, when knn(k) is a dereasing funtion of k. The �rstase implies that nodes tend to be linked with others with similar onnetivity,whereas in the seond one, the highly onneted ones are mostly linked to thepoorly onneted ones.Weighted and direted networksDepending on the kind of interation a link desribes within the network, itan be weighted or non-weighted, direted or non-direted, and so will be thenetwork, obviously.If all the interations in the network are alike, or in other words, when alink only establishes the presene of an interation between two nodes, then thenetwork is non-weighted. Otherwise, if there are di�erent types of interations,for example, some more important, or more frequent than others, then thelinks are weighted, and so is the graph. In this ase, in addition to give theset of nodes and links of the network, we need to speify also the weight ofevery link in order to de�ne a graph. So now we have: G = (N ,L,W), where
W = {w1, w2, ..., wK} is the set of weights, that are real numbers attahedto the orresponding links. Usually, they will be positive numbers, so thehigher the value, the stronger the link between the pair of nodes, but alsonegative links have been used, desribing some kind of repulsive interation,for example [48℄. On the other hand, if a link lij represents that i interats with
j and vie versa, then it is alled undireted, but if in a system i an interatwith j without j interating neessarily with i, then in order to desribe itorretly, we need direted links. In this ase, the adjaeny matrix will not besymmetri, in general.
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Figure 2.2: Examples of the loal lustering oe�ient (of the blue node) for di�er-ent onneting situations. It is omputed as the proportion of onnetions amongits neighbors whih are atually realized (thik blak lines) and the number of allpossible onnetions, whih in this partiular example, is three. For every situation,the missing links are represented with dashed red lines.Average path length, Betweenness and Clustering oe�ientGiven a partiular network, it would be interesting to know the minimumdistane (geodesis) between every pair of nodes, i.e. the sortest path lengths.The knowledge of this information onerning a network an be useful for someproesses that ould take plae on top on it, for example information tra�on the Internet, or rumor spreading on a soial lub, in order to work the bestthey an. Thus, we an de�ne a square matrix D, of size N ×N , whose entry
dij is the minimum distane between the nodes i and j. On the one hand, themaximum of these dij is alled the diameter of the graph, but a more usefulmagnitude to haraterize the network, is the average path length, de�ned asthe mean value of the geodesis between every pair of nodes in the network:

L =
1

N(N − 1)

∑

i,j∈N ,i6=j

dij (2.4)One an also ask how important or 'entral' a partiular node is in a graph,meaning how many sortest paths, or geodesis, go through it. Thus, we angive a measure of the entrality of a node, by de�ning its betweenness:
bi =

∑

j,k∈N ,j 6=k

njk(i)

nij
, (2.5)where njk is the total number of geodesis onneting the nodes j and k, and

njk(i) is the number of geodesis onneting the nodes j and k that go throughthe node i.The betweenness is a useful magnitude when onstruting ommunity de-tetion algorithms [49, 50℄.
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Figure 2.3: Diagram with some examples of networks, spei�ally random (a), sale-free (b) and hierarhial ones (), and its orresponding plots of the lustering oef-�ient versus the degree of the nodes. This dependene is a power-law for the hier-arhial strutures, while for the other two types, it is learly independent. Original�gure from [51℄.Clustering, or transitivity of a node, is a measure of how many trianglesare on the graph, or in other words, how likely is that, if a node i has twoneighbors, say j and k, then the nodes j and k are also linked to eah other.First, given a node i and the subgraph of its ki neighbors, Gi, we an de�nethe loal lustering oe�ient of node i as the ratio between the atual numberof edges in the subgraph, ei, and the maximum possible number of them in Gi:
ci =

2ei
ki(ki − 1)

=

∑

j,m aijajmami

ki(ki − 1)
(2.6)where aij are the entries of the adjaeny matrix, de�ned at the beginning ofthis setion. On �gure 2.2 we show a diagram of how to alulate it for threevery simple ases.Similarly, we an de�ne the lustering oe�ient of the whole network, asthe average of ci over all the nodes in it:

C =
1

N

∑

j∈N

ci (2.7)Notie that, by de�nition, both the loal and the global lustering oe�ientsatisfy: 0 ≤ ci ≤ 1 and 0 ≤ C ≤ 1. As we will see, SF networks have lowvalues for the average path length, but relatively high values for the lusteringoe�ient, while random topologies have low values for both magnitudes.
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Figure 2.4: All the possible 3-noded motifs on a direted network.Finally, is worth mentioning that a power-law dependene of the lusteringoe�ient with the degree of the node (C ∼ k−1) is typial of a hierarhialorganization on the network, whih implies that sparsely onneted nodes arepart of highly lustered areas, with ommuniation between these di�erenthighly lustered neighborhoods being maintained by a few hubs (see �gure2.3).Motifs and Communities on networksA motif is a n-noded pattern of onnetions (a subgraph) in a network thatappears at a muh higher rate than expeted in a randomized version of thesame network (see setion 5.1 for a detailed explanation of the randomizingproedure). Some real networks, suh as the metaboli ones, display harater-isti motifs, that seem to be spei� of eah kind of network. On �gure 2.4 weshow as an example, all the possible motifs for a 3-noded direted subgraph.Note that the number of n-noded motifs inreases rapidly with n.On the other hand, we an de�ne a ommunity within a network G =

(N ,L), as a subgraph G′ = (N ′,L′) or a set of nodes, that are muh more on-neted among themselves than with other nodes outside the ommunity. Usingjust the sense that the intra-ommunity onnetions are denser than the inter-ommunity ones is of ourse a qualitative way of desribing it. Nonetheless,to be able to detet suh strutures e�iently, a magnitude has been intro-dued to determine whether of not a partition of a network into ommunitiesis aurate enough: the modularity.Given an arbitrary network, and an arbitrary partition of it into Nc 'om-munities' (and this time, by this term we mean arti�ial ommunities, just away to part the graph), we an build a Nc ×Nc matrix whose entries eij arethe ratio between the number of links starting at a node in ommunity i andending at a node in ommunity j, and the total number of links present on the
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Pajek PajekFigure 2.5: Some examples of a network with (left) and without (right) ommunitystruture, both with N = 256 nodes. Original data of the ommunity network reatedby Dr. L. Izquierdo (http://luis.izqui.org/ommunities/redes.zip)network (so the sum of any row or olumn, ai = ∑

j eij , is the fration of linksonneted to the ommunity i).In the ase of a random partition of the network i.e., if it does not or-respond to the atual ommunity struture, or also if the network itself doesnot have a ommunity struture (see �gure 2.5 for some examples of networkswith and without ommunity struture), then the fration of links within om-munities an be estimated as the probability that a link begins at a node inpartition i, ai, multiplied by the fration of links that end at a node in parti-tion i, also ai, so the expeted number of intra-ommunity links is just aiai.We also know the atual fration of links exlusively within a partition, eii, sonow we an ompare the two values, and thus, we an de�ne the modularityfor a spei� partition of our network as [49℄:
Q =

Nc
∑

i

(eii − a2ij) (2.8)Obviously, the loser to 1 the value of the modularity is, the more aurate thepartition we have made of the network into ommunities. It is worth notiingthat it is possible to �nd partitions of random networks that display relativelyhigh values of modularity (up to Q ∼ 0.2). The reason for this is that randomgraphs do have some ommunity struture, just due to �utuations. Moreover,it is important to stress that the presene of ommunities on a network an notbe deteted just via its degree distribution, so we an have two graphs with thesame P (k), one of them with ommunity struture, and the other one withoutit.



2.1. Complex Networks 17One an easily realize that the spae of possible partitions of a given net-work into ommunities is huge, so in order to e�etively explore the landsapeof values of Q, and �nd an aurately enough partition, we will need the helpof some optimization tehniques. For some very nie works on di�erent om-munity detetion algorithms, see [49, 50, 52, 53℄ and referenes therein.Finally, we want to mention that it is also possible to onsider omplextopologies with hierarhial struture, it is to say, networks that have ommu-nities within the ommunities. In this situation, we deal with several levelsof desription of the struture of the system (multisale representation) [54℄.Also, one an have a system with ommunities, where there is some degreeof overlapping among them. This fat will make it harder to be auratelydeteted [55℄.2.1.3 Some network modelsIn this setion we want to present just a few models for growing networks.Spei�ally, we will address the models to build two of the most used kindof networks: the ER and the BA model for random and sale-free networksrespetively, sine we will use them often, later on in this Thesis, and also thewell-known Small-World model by Watts and Strogatz. On the other hand, wewill explain the Gardeñes-Moreno (GM) model, whih interpolates betweenthe ER and the BA model, beause we will use it also in some hapters toome, namely 3 and 4.The ER modelErdös and Rényi proposed a model (ER) [18℄ to generate random graphs with
N nodes and K links, where the term random refers to the disordered nature ofthe arrangement of links between di�erent nodes. There are two possible waysof onstruting suh networks: in the �rst one, we start with N disonnetednodes and hoose K pairs randomly, to link them with a probability 0 < p < 1,avoiding multiple onnetions between two nodes, and also self-links. Thealternative proedure is to start with N disonneted nodes, and link everypossible ouple with probability 0 < p < 1. While the �rst option gets di�erentnetworks with exatly K links and an average degree of 〈k〉 = 2K/N , theseond, gets networks with di�erent number of onnetions, an average degree
〈k〉 = p(N − 1), and the probability of having exatly K links in an partiularrealization of the network is pK(1− p)N(N−1)/2−K . Nonetheless, both modelsoinide in the limit of large N , or thermodynami limit. The probability of�nding a node with a large onnetivity dereases exponentially with K, soverties with large onnetivity are pratially absent.
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Figure 2.6: Diagram of the ER model for random networks with N = 20 nodes.If one starts inreasing the value of the probability of onnetion, from
p = 0 (nodes totally disonneted) to p = 1 (omplete graph), there is aninteresting hange of behavior for the ritial value pc = 1/N , so if p < pc,the graph is not onneted (it has no omponent of size greater than O(lnN)),if p > pc, then the graph has a omponent of O(N), and the transition at
pc has the typial features of a seond phase transition. On the other hand,the probability of having a node with k = ki onnetions follows the Binomialdistribution:

P (k = ki) = Ck
N−1p

k(1− p)N−1−k (2.9)where pk is the probability of having k edges, (1− p)N−1−k is the probabilityof the absene of the remaining (N − k) links, and Ck
N−1 is the number ofdi�erent ways of seleting the end points of these k nodes. Notie that, sineall nodes of the networks are equivalent, this probability P (k = ki) is also theprobability of hoosing randomly a node with ki neighbors. In the limit oflarge N and �xed 〈k〉, the degree distribution of the network an be auratelydesribed by the Poisson distribution:

P (k) = e−〈k〉 〈k〉k
k!

(2.10)Moreover, for this partiular topology, the dependene of the lusteringoe�ient with the size of the system N is given by:
〈C〉ER = p = 〈k〉/N (2.11)and the average path length, on the other hand shows a dependene given by:

〈L〉ER ∼ lnN

ln〈k〉 (2.12)Notie that the value of the lustering oe�ient tends to zero in the limit oflarge N . It is also important to point out that this model produes homoge-neous random graphs, whih do not share some topologial features with the
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Figure 2.7: Diagram of the random rewiring proedure for interpolating betweena one-dimensional lattie and a random network in the Small-world model. Thenetworks have N = 20 nodes and k = 4. Original �gure from [10℄.real networks, for example, they have low values of the lustering oe�ient,and do not show any orrelations between nodes.Small-world networksA graph in whih, although most pairs of nodes are not diretly onnetedto eah other, they an nonetheless be in touh by a small number of stepsis alled Small-world network, sine it aptures this so-alled phenomenon ofstrangers being linked by a mutual aquaintane (also known as six degreesof separation [19�21℄). Some properties of real networks an be well modeledusing Small-world networks, for example soial networks, gene networks or theInternet. Nonetheless, it is important to keep in mind that 'small-world' isa onept that inludes several kind of systems: empirial data [56℄ suggestthe existene of three lasses of small-world topologies, as far as its degreedistribution is onern: sale-free networks, broad-sale or trunated sale-freenetworks, and single-sale or random networks.The �rst Small-world network model was proposed by D.J. Watts and S.Strogatz [10℄, and it interpolates between a regular graph and a random graph,depending on one parameter p ∈ [0, 1], without altering neither the numberof nodes nor the number of onnetions per node of the original graph. Thisis a random graph generation model that produes networks with Small-worldproperties, possessing short average path length and high lustering oe�ientprovided the adequate range of the parameter p (see �gure 2.8).



20 Chapter 2. Some basi onepts on Complex Networks and GamesDeparting from a one-dimensional regular lattie or a ring, where eah nodehas exatly the same number of neighbors, z, we rewire every link with a proba-bility p, avoiding multiple onnexions between two nodes and self-onnetionstoo. In another version of the model, we depart from the ring, where eahnode has exatly z neighbors, and we add a link between every pair of nodes,with probability p, instead of rewiring the existing links. Regarding the degreedistribution, for p = 0 we have P (k) = δ(k − z), where z is the oordinationnumber of the lattie (z = 4 in the ase shown in �gure 2.7); whereas for �nitevalues of p ∈ (0, 1], P (k) still has a peak around z, but it obviously gets broaderas p inreases. For the ases where p ∈ (0, 1], the probability of �nding a nodewith a large onnetivity dereases exponentially with k, as it happen for ERrandom networks, so verties with large onnetivity are pratially absent aswell. For p = 0 we keep the initial ring struture, whih has high values bothfor the lustering oe�ient (C ∼ 3/4), but also for the average path length(L ∼ N/(2k) ≫ 1).On the other hand, for p = 1 we have a random network -though, to be rig-orous, in the seond version, there are not any nodes with onnetivity k < z/2,as there would be in a random network built with a mehanism suh as ER-.Its average path length is short (L ≈ Lrandom ∼ lnN
lnk ), but whose value for thelustering oe�ient is also low (C ≈ Crandom ∼ k/n ≪ 1). Nonetheless, thereis an intermediate region of p where we an get a network with both features, ahigh value for the lustering oe�ient and a short average path length. Thisis due to the presene of long-range onnetions or shortuts introdued bythe rewiring proedure. Notie that the introdution of these shortuts makesthe average path length drop, not only for the pair of nodes involved, but forall their neighbors too. Moreover, the removal of some links from a neighbor-hood due to the rewiring proess, does not a�et the lustering oe�ient toodrastially, so it remains unaltered for small values of p . 0.01 (see �gure 2.8).In other words, during the dropping of L(p)/L(0), the lustering C(p)/C(0)remains almost unaltered, whih means that this transition to the Small-worldis undetetable on a loal level.Regarding the dependene of the small-world behavior with the size of thesystem, it has been shown [57℄ that the emergene of this regime ours for avalue of p that approahes zero as N diverges.The BA modelBoth the Small-world model and the ER model, explained previously, althoughare most undoubtedly very useful and insightful, display two important featuresthat make them very di�erent from the real networks. The �rst one is the
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Figure 2.8: Average path length and Clustering oe�ient for the Small-world model,as a funtion of the probability of rewiring p, normalized by their respetive values forthe ring, i.e. when p = 0. Notie that the x-axis is shown in logarithmi sale. Thegraphs have N = 103 nodes and 〈k〉. The data shown is the average over 20 di�erentrewiring proedures. Original �gure from [10℄.assumption that the whole system is present from the very beginning, it is tosay, that the network has a �xed size N and it does not grow beause no newnodes are added. In ontrast, it has been observed that most real networks areopen systems, and they get new verties that onnet with the ones alreadypresent, so the number N keeps inreasing throughout the lifetime of the graph.The seond one is the supposition that the probability that two verties areonneted is uniform. Again, in ontrast, most real networks show learly apreferential attahment: usually, the more onneted a node is, the more easilyit will get even more neighbors due to the onnetions from new nodes.The Barabási-Albert (BA) [8℄ is a model for building sale-free networksthat is based on two fundamental ingredients: preferential attahment, i.e. theassumption that the likelihood of reeiving new edges inreases with the node'sdegree, and growth. Atually, variants of the model, with just one of the twoingredients have been tried, but neither of them gets networks with power-law distributions. This was a model originally inspired on the growth of theWorld Wide Web, and, as we have already mentioned, the idea behind it isthat the highly onneted nodes get new links at a higher rate than the loweronneted ones or, in other words, the athphrase 'rih get riher ' [58℄ (alsoknown in soiology as the Matthew e�et [59℄), a phenomenon easily found onreal systems).We start with a little ore of m0 disonneted nodes, and at eah time step
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t = 1, 2, 3, ..., N −m0, a new node i is added to the system with m ≤ m0 linksto existing nodes. The probability that an existing node j gets one of the linksfrom the newomer is proportional to its own onnetivity, kj , in a linear way:

Πj =
kj

∑

l kl
(2.13)Sine every new node links to m other nodes, at any given moment t, thenetwork has N(t) = m0 + t nodes and K(t) = mt links. Besides, for largetimes, the average degree of the network is 〈k〉 = 2m. The degree distributionof these networks is a power law, P (k) ∼ k−γ , with γ = 3. These sale-free degree distributions imply that there are a lot of nodes with just a fewonnetions, and a small number of nodes with a very high onnetivity. Thesehighly onneted nodes are alled hubs and they usually play an important rolein most dynamial proesses that an take plae on the system, as we will seewith some detail during this Thesis. Besides, the degree distribution P (k) ofthe BA networks is independent of time, and thus independent of the size ofthe system, indiating that despite its ontinuous growth, the system organizesitself into a sale-free stationary state.The dependene of the lustering oe�ient with the size of the system Nis approximately a power law, given by:

〈C〉BA ∼ N−0.75 (2.14)The average path length, on the other hand shows a dependene given by:
〈L〉BA ∼ lnN

ln(lnN)
. (2.15)The value of the average path length in BA networks is smaller than in ERnetworks for any value of N , so obviously, the heterogeneous topologies helpbringing the nodes together more than the homogeneous ones. On the other,hand, omparing the values for the lustering oe�ient, the orrespondingvalues for the BA networks are about �ve times higher than for ER networks,and this fator even inreases slightly with the size of the system. Moreover, itis worth pointing out the existene of the so-alled age orrelations [13, 60, 61℄among nodes for the sale-free topologies, whih means that the older nodes,i.e. the ones that appear �rst on the system, are more likely to end up beinghubs, just by onstrution, while the later a node appears, probably, the loweronnetivity it will get.We onsider that it is important to stress again that SF networks builtvia this BA proedure have very low values for the lustering oe�ient, whenomparing with real networks, so we must admit that this kind of topologies



2.1. Complex Networks 23might reprodue the degree distribution of those systems, but an not do thesame for the lustering oe�ient. Along these lines, there have been someother models that, based on BA, tried to put a remedy to this fat. For exam-ple, the work by P. Holme and B.J. Kim [62℄, presents a model for onstrutingSF networks with tunable lustering oe�ient. In few words, this model startswith a set of m0 unonneted nodes and adds a new one to it every time step,up to N . Eah one of the new nodes launhes m ≤ m0 links. The probabilityof an existing node i to reeive the �rst link of a newomer j is proportional toits onnetivity ki, but for the remaining m− 1 links that the new node j hasto establish, there is a probability p to launh them to a (randomly seleted)neighbor of i, and a probability (1 − p) to launh them following the originalpreferential attahment rule. In this way, the family of networks we obtainhave all exatly the same power-law degree distribution P (k) ∼ k−3, but thehigher the value of the probability p, the higher the value of the lusteringoe�ient (it an easily ahieve values of 0.5, when we reall that for BA,it tends to zero as N inreases, so the order of magnitude of a typial valuean be around 10−2 for N = 103). For the partiular ase p = 0, we reoverthe original BA model, obviously. Moreover, with this Holme-Kim model, thelustering oe�ient is independent of the size of the system, as opposed towhat happens with BA, where it dereases with N , as we have seen. On theother hand, it is also worth mentioning that, one may think that, by inreasing
p, the average path length of the �nal struture will derease, sine some linksthat would help shortening it by linking to nodes far apart, are now linkingnodes in the same neighborhood. As it turns out, the value of the average pathinreases slightly with the probability p, but the dependene with the size ofthe system remains logarithmi, so we do not lose the 'small-world' propertywith this model.Finally, we also want to remark two points regarding preferential attah-ment. First, other mehanisms for building SF networks have been proposed[63℄, that are not based on growth and preferential attahment like the BAmodel is. Instead, an intrinsi �tness (from a given probability distribution)is assigned to eah node in the system, and then pairs of them are linked to-gether, aording to a funtion of their �tness. And seond, if one ombinesgrowth, preferential attahment and some aging mehanism or introdues aost per link, then one will obtain SF topologies with a uto� on the degreedistribution, or even make the sale-free regime disappears altogether [56℄.The GM modelThe Gardeñes-Moreno is a model [64℄ that interpolates between Erdös-Rényirandom networks and Barabási-Albert sale-free networks as far as the degree
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Figure 2.9: Degree distributions for several networks, obtained for the shown valuesof the parameter α with the GM model, interpolating between the random (α = 1.0)and the sale-free (α = 0.0) graphs. The size of the system is Ω = 5 · 103 and
〈k〉 = 2m = 4. Every point is the average over 103 di�erent realizations.distribution is onerned, through a tunable parameter α, so it generates a one-parameter family of networks. This parameter α ∈ [0, 1] determines the degreeof heterogeneity of the network, whose �nal size will be Ω. Thus, α = 0 givesrise to sale-free networks and α = 1 to random graphs, and for in-betweenvalues, the topology will have an intermediate degree of heterogeneity.The proedure to generate these networks is as follows: we start with asmall fully onneted ore ofm0 nodes, and a set U(0) of (Ω−m0) disonnetednodes. At eah time step, a new node j from the set U(0) is hosen, and itmakes a link in two possible ways: with a probability α, it attahes to anyother node i from the whole set of Ω− 1 nodes with uniform probability:

Πuniform
i =

1

Ω− 1
(2.16)and with probability 1−α, it establishes a link following a preferential attah-ment (PA) strategy. This means that the probability for any other node i toget attahed to node j is a funtion of its onnetivity, in a way given by:

ΠPA
i =

k̂i
pa

+Ai
∑

l∈Ω(k̂l
pa

+Al)
(2.17)where k̂ipa is the inoming PA degree of the node i, that is, those links reeivedby i when other node launhes (in average) (1 − α)m links following the PA



2.1. Complex Networks 25rule. On the other hand, Ai is an initial attrativeness (or �tness) the newnode has when it is introdued in the onneted omponent (either beauseit is hosen at random by any node or beause it is launhing its m outgoinglinks over the rest of nodes). This assoiated parameter is zero if the node i isnot in the onneted set and is Ai = A if it is linked to other nodes, i.e., if itbelongs to N(t). Thus, the preferential attahment is strongly orrelated withthe simultaneous uniform random linking, and, on the other hand, it is linearwith the inoming PA degree of the node k̂i
pa. Next, we repeat the linkingproedure another m − 1 times for the same node j, and then we repeat thewhole proess altogether for the rest of the nodes, i.e., for another U = Ω−m0more time steps.On �gure 2.9 we show the degree distribution for some networks obtainedwith the GM model, for several values of the parameter α but the same size Ωand average onnetivity k. Notie that the transition between heterogeneousand homogeneous topologies is smooth, as α inreases.2.1.4 Proesses on networksSo far in this hapter, we have studied some general topologial properties ofnetworks, as well as some well-known widely-used models, and some real ex-amples too. Nonetheless, we have to keep in mind that the ultimate goal ofstudying these strutures, is to �nally be able to model, desribe and preditthe di�erent dynamis that an take plae on top of them. Those inlude awide and varied olletion, suh as disease [11, 12, 65�71℄ or rumor spreading,synhronization [12, 72�76℄, di�usion, tra� information and ongestion, net-work searh and navigation, perolation, robustness against random failuresor targeted attaks [77, 78℄, ultural dissemination, opinion formation or lan-guage dynamis [79℄, and games [42℄. In this setion, it is not our intentionto go exhaustively though all of them at all (for some very nie reviews onthe subjet, see [11, 12, 42, 76℄), but just to brie�y examine a few of them,as an example, desribing some the most popular models or approahes thathave been proposed, and also pointing out the di�erenes introdued by theunderlying topology on the outome of the dynamis, in omparison to thease of a well-mixed situation or a lattie.Disease spreadingEpidemi spreading is a very interesting and obviously very important objetof study [11, 12, 65�71℄. The aim in this �eld is not only to understand themehanisms through whih diseases spread on a population, but also to design
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Figure 2.10: Shemati representation of the SIR model.strategies to ontrol them, and to be able to protet the population fromendemi situations.Spei�ally, Compartmental Models in epidemiology stand for some modelsthat, in order to desribe the progress of an epidemi in a large populationomprising many di�erent individuals, redue suh population diversity to afew key harateristis whih are relevant to the infetion under onsideration.For example, for most ommon hildhood diseases, suh as the hikenpox,that onfer long-lasting immunity it makes sense to divide the population intothose who are suseptible to the disease, those who are infeted and those whohave reovered and are therefore immune. Thus, one an ignore the rest of theinformation about the population, suh as age distribution or rae, beauseit is irrelevant for the model. These subdivisions of the population are alledompartments.In partiular, one of the more used (and at the same time simple) modelsto study disease spreading is the SIR model. It onsiders that the populationis ompartmentalized into three possible states: Suseptible, Infeted (andinfetious), and Reovered (or removed), so a suseptible individual an getinfeted with a ertain probability if it is in diret ontat with an infetedone, and in turn, an infeted individual reovers (or dies) with a di�erentertain probability, not being able to get infeted again in any ase. Thissimple model desribes many infetious diseases, suh as measles, mumps andrubella. On �gure 2.10 we show a simple sheme for the dynamis of thismodel. Of ourse, there are other models muh more sophistiated, that takeinto aount other intermediate states in the infetious proess, suh as lateny,infeted asymptomati individuals or vaination (see for example [80, 81℄).As a �rst approximation, one an onsider the homogeneous mixing hy-pothesis, whih assumes that people with whom a suseptible individual hasontat are hosen at random from the whole population. This is a strong andsomehow questionable assumption, sine it does not take into aount loal de-tails, suh as individual diversity on the number of aquaintanes, ommunitystruture or geographi onstritions. And, on the other hand, one should takeinto aount that some illness like the ommon old, an be modeled auratelyenough as a random-ontat proess, ignoring the soial struture underneath,while it has been proved than for some others, suh as the venereal diseases,



2.1. Complex Networks 27one an not even desribe them using a random degree distribution for thepopulation, but a sale-free, so in these ases, the struture is essential.Nonetheless, this approximation made by the SIR model allows us to de-sribe analitially the behavior of the models simply by using ordinary di�er-ential equations for the densities of individuals in eah ompartment:
ds(t)

dt
= −λk̄ρ(t)s(t) ,

dρ(t)

dt
= −µρ(t) + λk̄ρ(t)s(t) , (2.18)

dr(t)

dt
= µρ(t) ,where s(t), ρ(t) and r(t) are respetively, the fration of suseptible, infetedand reovered individuals on the population at time t, so s(t)+ρ(t)+ r(t) = 1.On the other hand, one suseptible individual beomes infeted (if in ontatwith another infeted one) with a probability λ, an infeted individual reov-ers (or dies) with a probability µ, and k̄ stands for the onnetivity of thepopulation, assumed exatly the same for everyone.The most relevant predition of this model is the existene of a non-zeroepidemi threshold,

λc = 1/k̄ (2.19)so if λ > λc, the disease spreads and infets a �nite fration of the population,and if λ < λc, the total number of infeted individuals (the so-alled epidemiinidene, de�ned as r∞ = limt→∞r(t)) is in�nitesimally small in the limit ofa large population.On the left panel of �gure 2.11 we show an example of time evolution ofthe dynamis for a meaningful set of the parameters, namely, for λ = 0.94,
µ = 1.0, k̄ = 6 and using as inital onditions: s(0) ≃ 1, ρ(0) ≃ 0 and r(0) ≃ 0.On the right panel, it is shown the dependene of the epidemi inidene withthe infetion probability λ.To deal with situations where the population is not well-mixed, or as wehave mentioned before, the nature of the disease itself does not allow us totreat the pattern of interations as homogeneous, we will need to represent thesystem as a graph, where nodes are the individuals (belonging, as usual, to oneof the three possible states: Suseptible, Infeted or Reovered), and links arethe interations through whih a suseptible node an beome infeted, if it hasanother infeted node as a neighbor. So now, we want study the SIR proesson an unorrelated heterogeneous network (with generi degree distribution
P (k) and a �nite average onnetivity 〈k〉). We will study sk(t), ρk(t) and
rk(t), meaning the time evolution of the frations of suseptible, infeted and
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k̄ = 6.reovered individuals, respetively, within a onnetivity lass k, and with thenormalization ondition sk(t) + ρk(t) + rk(t) = 1 for any given onnetivitylass and time instant. The global magnitudes are now given by the averageover all the lasses of onnetivity present on the graph, so, for example, thetotal fration of infeted individuals on the population at a given time t is:
ρk(t) =

∑

k P (k)ρk(t). Here it is important to notie that the network isonsidered stati, so P (k) does not hange over time.The equations for the evolution of the three ompartments are similar toequations 2.18, but now we di�erentiate among onnetivity lasses:
dsk(t)

dt
= −λksk(t)Θ(t),

dρk(t)

dt
= −µρk(t) + λksk(t)Θ(t), (2.20)

drk(t)

dt
= µρk(t),where Θ(t) is the probability of a given link to point towards an infeted node,and is given by:

Θ(t) =

∑

k kP (k)ρk(t)

〈k〉 . (2.21)Notie that this probability is the same for any node we onsider, so it doesnot take into aount any possible orrelations between the onnetivity of thenodes.



2.1. Complex Networks 29Again, one an get that there is an epidemi threshold, given by:
λc =

〈k〉
〈k2〉 (2.22)below whih the epidemi inidene is zero, and above whih it has a �nitevalue. As we an see, this threshold depends inversely on the onnetivity�utuations of the network the disease is spreading on, so for a system whosetopology has a �nite value, 〈k2〉, suh as a random graph, then we get athreshold with a �nite value as well (and, therefore a standard phase transitionsituation). However, for sale-free networks, we know that their onnetivity�utuations 〈k2〉 diverge when N → ∞, whih implies a vanishing epidemithreshold for inreasingly larger systems.The absene of a threshold in sale-free topologies is an important resultthat di�ers drastially from the one obtained for random networks or well-mixed senarios, and it should be taken into aount, for instane, for preven-tion or vaination strategies to be used by the health authorities, in order toe�iently �ght o� an epidemi.On the other hand, it is also worth notiing that real networks, even whenthey present some degree of heterogeneity on the onnetions, do have a �nitesize, and thus an e�etive threshold, depending on its 〈k〉 and 〈k2〉. Nonethe-less, this value is usually very small for a large enough population, and isonsiderably smaller than the one for a random graph of the same size.With regard to immunization strategies on sale-free topologies, we anpoint out that random vaination is not e�etive, sine there is always anon-zero epidemi inidene, even for very high vaination ratios among thepopulation. Nonetheless, targeted immunization, i.e., vainating the mostonneted individuals in a population, an give better results. On the otherhand, is not always realisti to assume that the number of onnetions of anode on a real network an be known. A possible solution to this problem isthe vaination of random aquaintanes of random hosen individuals, sinethe probability of reahing a partiular node by following a randomly hosenedge is proportional to its degree.Finally, we an say that for orrelated networks it has been found that thequalitative behavior is the same as for unorrelated networks, although thereare some quantitative di�erenes: on the one hand, while the likelihood of anepidemi outbreak is not modi�ed when taking into aount positive orrela-tions, the epidemi inidene is smaller than in networks without orrelations,and on the other hand, the diseases an live longer in assortative topologies.



30 Chapter 2. Some basi onepts on Complex Networks and GamesSynhronizationSynhronization [12, 72�76℄ is a self-organized phenomenon where a set ofindividuals, initially ating on their own, gradually beome more similar intheir deeds, without any appointed leader or environmental external signal toguide them. In this way, after some time, they start behaving under the samepattern, showing, if not total, at least some identi�able level of loking: theybeame 'in syn'. There are many examples of synhronization in natural andhuman systems: rikets hirping in a summer night, neurons �ring at thesame pae, kids playing or singing along on spur of the moment, or groups ofwomen living together, whose periods synhronize,...A simple model has been used often in order to address synhronization:the Kuramoto model. It approahes the problem onsidering a mean �eldapproximation, where every individual is an osillator, and they are all sup-posed to interat to everyone else through a purely sinusoidal oupling, so thegoverning equations for eah one of them is given by:
θ̇i = ωi +

K

N

N
∑

j=1

sin(θj − θi) (2.23)where K is the oupling onstant, ωi is the natural frequeny of the osillator
i, and the fator 1/N is inorporated to make sure that the system behavesorretly in the thermodynami limit. The natural frequenies are assumedto be distributed aording to some unimodal and symmetri funtion, whosemean frequeny is Ω.The olletive behavior of the whole system is desribed by the marosopiomplex order parameter:

r(t)eiφ(t) =
1

N

N
∑

j=1

eiθj(t) (2.24)so the modulus 0 ≤ r ≤ 1 measures the phase oherene of the population,whereas φ(t) is the average phase. The value r ≃ 0 orresponds to the lakof synhronization (the osillators move inoherently) and r ≃ 1 to the asewhere almost the whole system is in syn (their phases are loked). It an bederived the existene of a ritial value, Kc, for the oupling, whih separates a'disordered' from an 'ordered' regime. In this seond regime (when K ≥ Kc),there are two types of long term behavior: a group of osillators for whih
|ωi| ≤ Kr, that are phase-loked at frequeny Ω, and the rest of them, with
|ωi| > Kr, that are drifting around the irle, sometimes aelerating andsometimes rotating at lower frequenies.
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Figure 2.12: Squemati representation of the di�erent paths to synhronization dis-played for SF (bottom) and ER (top) networks (higher values of the ouplingstrength are shown from left to right. Original �gure from [72℄.If one should inlude some kind of struture in the population in order togive an aount of the omplex interation patterns among individuals, then,instead of equation 2.23, one needs to onsider an extension of it:
θ̇i = ωi +

N
∑

j=1

σijaij sin(θj − θi) (2.25)where σij aounts for the spei� oupling strength between individuals i and
j, and aij is the adjaeny matrix of the network.The mean �eld approah for omplex networks onsiders that every osil-lator is in�uened by the loal �eld reated in its neighborhood, so the loalorder parameter is proportional to the onnetivity of the node, ki. It an beobtained the ritial oupling for this situation:

σc = Kc
〈k〉
〈k2〉 . (2.26)It is to say, we get a resaled ritial value for the all-to-all topology, Kc,by the ratio between the mean onnetivity of the partiular network and its�utuations. So one again, it is lear that for random networks there will bea threshold, but for (in�nite) SF networks, this ritial value will tend to zero.Besides, it is important to point out that no exat analytial results for theKuramoto model on general omplex networks are available up to date, butone an always numerially simulate its dynamis. These simulations [72, 75℄on�rm the theoretial preditions, sine they have shown that the onset ofsynhronization �rst ours for SF, and as the topology beomes more homo-geneous, the ritial point moves to larger values, and the system seems tobe less synhronizable. On the other hand, the partiular paths to synhro-nization [72, 76℄ are also very di�erent depending on the underlying struture



32 Chapter 2. Some basi onepts on Complex Networks and Games(see �gure 2.12): in SF networks, links and nodes are inorporated togetherto the largest of the synhronized lusters, while for homogeneous topologies,what are added are links between nodes already belonging to suh luster,making the route to omplete synhronization a 'sharper' proess, somehow.In other words, in the presene of hubs, a giant omponent of synhronizedpair of osillators forms and grows by reruiting nodes linked to them, whileon the ontrary, in homogeneous strutures, many small lusters �rst appearand then group together.Cultural disseminationA very interesting aspet of human interations is how people from di�erentultures, when they meet, an relate to eah other, hanging some of theirown ultural traits in the proess. If two individuals do not share any ulturalfeatures, it will be probably very hard for them to ommuniate and interat,but if they do have initially something in ommon (like some interests, hob-bies, goals or even an aversion against something), they may start some kindof relationship. Moreover, it makes sense to assume that the more similar theyare before meeting eah other, the more likely it is for them to interat andbeome even more similar after that (homophili). As a result, not only indi-viduals, but also soieties hange over time due to this mehanism of ulturalin�uene. Nonetheless, one ould expet that these soieties beame homo-geneous (global) as far as ulture is onern, but as it turns out, sometimesthey do not. Instead, suh interations an give rise to di�erent groups withpratially nothing in ommon, surprisingly enough.Sine R. Axelrod proposed an agent-based model [82℄ to address the issueof ultural dissemination in 1997, muh e�ort has been put on studying thesekind of proesses [79, 83�88℄. We generally onsider that an individual's ulturean be represented in terms of a set of attributes, suh as language, religion,tehnology, style of dress, literary preferenes, sport preferenes, and so on.Thus, an individual an be represented with a vetor ~Vi = (v1i , v
2
i , ..., v

F
i ), with

i = 1, 2, ..., N , and where F is the total number of features that de�ne a ulture.Eah one of these omponents an take only Q integer values, or ultural traits,and we assume that Q is the same for the F features. It is worth notiing thatwithin this model, we do not onsider as 'ultural' those features an individualan not hange, for example skin olor or physial onstitution. Besides, weonsider our soiety as plaed in a lattie of size L×L = N , where individualswill interat only with their neighbors.One we have randomly distributed the initial values for all the featuresof every individual in the system, the ultural interation dynamis is de�ned
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Sij =

1

F

F
∑

l=1

δ(vli − vlj) (2.27)where δ(x) = 1 if x = 0 and δ(x) = 1 otherwise. If these two individuals aretotally di�erent (Sij = 0) or exatly the same (Sij = 1), then nothing happensand the link between them is bloked. But if it is not the ase, Sij ∈ (0, 1), thenthe link is 'ative', and we take the value of the overlap Sij as the probabilitythat one of them imitates the other in one of the other features they havedi�erent. Obviously, the more similar they are, the higher the probability ofbeoming even loser through interation.Letting the system evolve, it will eventually reah a frozen state, meaningthat all the links between individuals are bloked. A useful order parame-ter is the relative size of the largest ultural luster, Smax, it is to say, thelargest group of individuals that share the values for all their ultural features.Aording to some studies on latties [83, 85, 87, 89℄, when F > 2, a nonequilibrium �rst-order phase transition from order to disorder is observed as afuntion of the number of traits Q (the ontrol parameter). There is a ritialvalue, so if Q < Qc, the �nal state of the system orresponds to Smax ∼ 1, aglobal, homogeneous state, while if Q > Qc, then Smax ≪ 1, a polarized state
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Figure 2.14: Time evolution (relative to the �nal onsensus time T ) of the largestluster of ultural onsensus at global (left) and at feature (right) level for a valueof F = 10 in SF networks made up of N = 4 · 103, with average onnetivity 〈k〉 = 6.with di�erent ultural domains arises (see �gure 2.13 (left)). This transitiongets sharper as the size of the system inreases.Analyzing the time evolution of the relative number of bloked links (see�gure 2.13 (right)), it an be seen that there is a non-zero initial value, dueto just random assignment of the traits, that drops quikly as the dynamisstarts, and individuals begin interating. Then, this magnitude remains verylow for a onsiderable amount of time, to �nally rise up to the �nal value,orresponding with the rapid rise of Smax(t). This re�ets the fat that, whilethe individuals have almost nothing in ommon, the system seems to spend alot of time in that state, unable to get an agreement, but one the individualsshare some values for the features, then the �nal state is rapidily ahieved.Notie that every realization shown in �gure 2.13 (right) reahes its �nalstate at its partiular 'onsensus time', sine it is an stohasti proess.If we onsider now that the pattern of interations is given by a �niteomplex network [83℄, instead of by a lattie, the general piture of the phasetransition remains unaltered (see �gure 2.13 (left)), but with a higher value for
Qc (even higher for SF than for random networks, but qualitatively similar).On the other hand, reent studies [88℄ have shown that, one an analysethe ultural evolution proess towards the �nal state, from a global point ofview (it is to say, onsidering the marosopi level of onsensus in the systemthough Smax), but also from a feature level. It means that at any given time,we onsider F layers or subgraphs of the original graph G. In the subgraph
Gf (t), two individuals are onneted if they are physially onneted in G, andif they share the value of the feature f at that preise instant of time. In thisway, we an observe how ultural onsensus evolve in every layer, Sf

max, and



2.2. Games 35we get to disover that there are some relevant di�erenes between the twoapproahes: while for the global onsensus point of view, the system remainsapparently unordered for a large fration of the simulation time, to �nally getorganized very quikly (�gure 2.14 (left)), the organization at a feature levelstarts muh earlier. Atually, Sf
max inreases monotonously over time from thevery beginning (�gure 2.14 (right)).Finally, it is also worth mentioning that there are many other works withdi�erent variations of the Axelrod model [79℄, inluding for example noise[90℄, an external �eld [91℄, rewiring of the onnetions between nodes [92℄ oreven movility of the individuals [93℄, ombining the original Axelrod model forultural dissemination with the original Shelling model of soial segregation[94℄.2.2 GamesA game an be onsidered as a formal abstration of soial interations betweenindividuals. There must be at least two deision makers (or players), who anhoose between at least two di�erent ations (also alled strategies). It is worthstressing that a player does not need a brain in order to adopt a strategy, on theontrary, they an be very simple agents: bateria, for example, have the basiapaities to play games, sine they are highly responsive to ertain aspetsof their -hemial- environment, and they an respond di�erently dependingon the ations of their neighbors, the behavior an a�et the �tness of othersand vie versa, and �nally, the onditional strategies an be inherited by theo�spring [25℄. The outome of the interation depends on the strategy everyplayer adopts. Thus, Game Theory is a branh of applied Mathematis thattries to apture these situations and it is usually onsidered to have its origin in1944 with the work of J. von Neumann and O. Morgenstern [95℄. Historially,Game Theory has been used in very di�erent �elds, suh as eonomis, biology,politial siene or soiology, and there are two main di�erent approahes:Classi Game Theory and Evolutionary Game Theory, whih made di�erentassumptions about the systems.Classi Game Theory formally studies how rational players should behavein order to obtain the maximum possible bene�t or payo�. Nonetheless, oneould easily objet to the onept of 'rational player' as an aurate representa-tion of real individuals in a soial or biologial ontext. 'Rational player' meansthat its only goal and motivation is to maximize its bene�ts, given its beliefabout its opponent's strategy, but there are plenty of real situations where theations of the players do not seem to aim a maximum payo�.



36 Chapter 2. Some basi onepts on Complex Networks and GamesEvolutionary Game Theory [27, 96, 97℄ was originated in 1973 with J. May-nard Smith and G. R. Prie works, and it studies the time evolution of largepopulations of individuals who repeatedly play a game and are exposed to se-letion and repliation (with or without mutation). Their strategies are �xed,and usually, the enounters between the individuals are supposed to happenat random, in a 'well-mixed' situation, so there is no soial struture behind it(everyone interats with everyone else), and it allows for the analytial treat-ment of the problem. Thus, the probability of interating with an individualthat uses strategy i is proportional to the fration of individuals that are usingthat partiular strategy in the system at the moment, xi. The payo�s fromall these interations are added up, and suess in the game is interpreted asreprodutive suess. Thus, payo� means �tness in the Darwinian way: thestrategies that perform better, reprodue faster, whih an be straightforwardlyinterpreted as natural seletion.In this setion we intend to establish just a few useful onepts and results inClassial Game Theory, always keeping in mind that our goal is to understandthe problem of ooperation. Then we will move on to the approah given byEvolutionary Game Theory, and �nally, we will point out some mehanismsthat have been introdued to explain the survival of ooperation observed inseveral natural and soial systems, speially, the di�erenes in the outome ofa game when dealing with a strutured population, it is to say, when we havean underlying topology.2.2.1 Classial Game TheoryIn Classial Game Theory (CGT), we onsider that interating individuals anhoose a strategy -or a way to at- among a well-de�ned set of them. A gameis alled normal-form if it is determined by a payo� matrix. Thus, for instanein a 2×2 game, we have two players and two di�erent strategies A and B, andthen depending on their partiular hoies, the bene�ts the players will obtainare given by the payo� matrix:
(

A B

A a b

B c d

) (2.28)This means that, for instane, when a player uses strategy A against a playerusing also A, it get a payo� equal to a, when a player uses strategy A againsta player using a strategy B, it get a payo� equal to b, and so on. We saythat strategy A dominates strategy B, if a > c and b > d. In that situation,no matter what strategy your opponent uses, it is better always to use A.Conversely, B dominates A, if a < c and b < d.



2.2. Games 37Now, in a general ase of a N×N payo� matrix U , if we denote the N purestrategies by R1, R2, ...RN , then the simplex SN of the linear onbinations ofpure strategies:
SN =

{

p = (p1, p2, ...pN ) : pi ≥ 0 and
∑

i

pi = 1

} (2.29)is the set of mixed strategies. A mixed strategy an be seen as the one used by aplayer that hooses strategy Ri with a probability pi, where i = 1, 2, ...N . The
N vertexes of the simplex SN are the N pure strategies, while the interior of thesimplex is the set of ompletely mixed strategies, it is to say, those for whih
pi > 0 ∀i. The boundaries of the simplex, on the other hand, orrespond tomixed strategies that must have neessarily one of the probabilities set to zero.We an alulate the bene�t of a p-strategist against a q-strategist as:

pUq =
∑

i,j

piuijqj (2.30)and the set of strategies for whih the apliation p → pUq ahieves its maxi-mum value is alled best responses to q.A strategy q is alled a Nash Equilibrium (originally alled 'equilibrium forn-person games' by J. Nash in 1950 in [98℄) if it is the best response to itself.This means that if two individuals are both using a strategy that is a NashEquilibrium, then neither of them an unilaterally deviate form that strategyand inrease its payo�. Moreover, a Nash Equilibrium is alled Strit if it is theonly best response to itself, therefore ∀p 6= q it is full�lled that pUq < qUq. If
q is a Nash Equilibrium, then there is a onstant c that satis�es that (Uq)i ≤ c,and from this result an be derived that a Nash Equilibrium is always a purestrategy.A strategy p̂ is Evolutionary Stable if ∀p ∈ SN with p 6= p̂ the inequity:

pU(ǫp+ (1− ǫ)p̂) < p̂U(ǫp+ (1− ǫ)p̂) (2.31)is ful�lled ∀ǫ > 0, as long as it is smaller than a ertain appropriate invasionthreshold ǭ(p). It an be proven the following logi hain:Strit Nash Equilibrium → Evolutionary Stable Strategy → Nash Equilib-rium.Let's now onsider again a partiular set of 2 × 2 games. We an analyzethe possible outomes within the CGT framework. We onsider two di�erentstrategies: ooperate (C) and defet (D), and the orrespondent payo� matrix:
(

C D

C R S

D T P

) (2.32)



38 Chapter 2. Some basi onepts on Complex Networks and GamesDepending on the relative ordering of the parameters, we an mention threegames:
• The Hawks and Doves (or Snow Drift or Chiken) game [41, 99�101℄ ful-�lles T > R > S > P . Players are referred to as greedy, sine they preferunilateral defetion to mutual ooperation (T > R). In this situation, Cis the best response for D, and vie versa, so one should always try tohoose the opposite of what the opponent does, in order to maximize thebene�ts.
• The Stag Hunt game [102, 103℄ satis�es R > T > P > S. Playersprefer mutual defetion to unilateral ooperation (S < P ), resulting inan intrinsi fear of individuals to ooperate. In this situation, C is thebest response for C, and D is the best response for D, or in other words,both are Nash equilibria, so it is better always to try to play the samestrategy as your opponent.
• The Prisoner's Dilemma game [23�25, 27, 104, 105℄, for whih T > R >

P > S, both tensions desribed above are inorporated at one, so isthe most di�ult situation for ooperation to arise. In this senario, Ddominates C. No matter what strategy your opponent uses, it is betteralways to defet.2.2.2 Evolutionary Game TheoryWithin the Theory of Evolution, the entral ator of an evolutionary systemis the repliator. A repliator is an entity that possesses the ability of makingopies of itself. It an be a gene, an organism, a strategy in a game, a partiularbelief or opinion, a tehnique or any other ultural trait in general. A repliatorsystem is a set of repliators in a partiular environment, with some kind ofinteration among the individuals. An evolutionary dynamis of a repliatorsystem is a proess of hange over time on the repliator freueny distribution,in suh a way that the strategies with higher bene�ts reprodue at a faster pae.Let us onsider that the population is divided into n types of individuals
E1, E2, ...En with freuenies (or relative abundanes) x1, x2, ...xn respetively.The �tness (or expeted number of desendants) fi of the type Ei will beassumed to be a funtion ot the omposition of the whole population. If thepopulation is big enough, and the individuals of a generation are supossed tomeet and interat ontinuously and at random (well-mixed senario), then wean onsider that the state of the system x(t) evolves in the simplex Sn asa derivable funtion of time. The inrease of the rate ẋi/xi of the type Enis a measure of its suess, in the Darwinian evolutionary sense of the term.



2.2. Games 39Then, we an express this suess as the di�erene between the �tness fi of thistype and the average �tness of the population, f̄(x) =
∑

i xifi(x), and thusdesribe the evolution of every type in the population using the RepliatorEquation [97, 106�108℄:
ẋi = xi[fi(x)− f̄(x)] (2.33)with i = 1, 2, ..., n. It is easy to see that the simplex Sn is invariant underthese equations, so if x(0) ∈ Sn, then x(t) ∈ Sn∀t > 0. Moreover, the faes ofthe simplex are also invariant: if one or several strategies are not present at agiven moment t0 of the evolution of the system, then they will never be for any

t1, with t1 > t0. In the ase of having mixed strategies, we an also obtain theorrespondent Repliator Equation. If there is a game with N pure strategies
R1, R2, ...RN and a N ×N payo� matrix U , then a strategy is a point in thesimplex SN , and the E1, E2, ...En types of individuals present in the systemorrespond to n points p1, p2, ...pn ∈ SN .The state of the whole population is given by the frequenies xi of the types
Ei. The bene�ts of a pi-strategist playing against a qi-strategist is given by
aij = piUpj , and thus, the �tness fi of the type Ei is fi(x) = ∑

j aijxj = (Ax)i.A state x̂ ∈ Sn is a Nash Equilibrium if xAx̂ ≤ x̂Ax̂, ∀x ∈ Sn, and it an beproven that if x̂ is a Nash Equilibrium, then it is an equilibrium point of theRepliator Equation. A state x̂ ∈ Sn is said evolutionary stable if ∀x 6= x̂in an environment of x̂ it is ful�lled that x̂Ax > xAx. The same way, itan be proven that if ŝ is an evolutionary stable state, then it is a point ofasimptotially stable equilibrium of the Repliator Equation (but the reiproalresult is not neessarily true).Repliator Equation for 2× 2 gamesFor the partiular ase of a 2 × 2 simetri game, we will have again that thegeneri payo� matrix is given by:
(

A B

A a b

B c d

) (2.34)And aording to the Evolutionary Game Theory, we should onsider thatthe �tness of an individual playing a ertain strategy depends on the frationof individuals that play every strategy (it is to say, the so-alled frequeny-dependent seletion), so if the vetor ~x = (xA, xB) represents the ompositionof the population, in terms of the two possible strategies, and we denote respe-tively, fA(~x) and fB(~x) the �tness of both of them. The seletion dynamis



40 Chapter 2. Some basi onepts on Complex Networks and Gamesan be written as
ẋA = xA[fA(~x)− φ]

ẋB = xB [fB(~x)− φ] (2.35)where φ = xAfA(~x) + xBfB(~x) is the average �tness of the entire popula-tion. Obviously, sine xA + xB = 1, we an onsider x ≡ xA and 1− x ≡ xB ,and then we an rewrite the previous di�erential equation 2.35 in a simplerway as:
ẋ = x(1− x)[fA(x)− fB(x)] (2.36)It an be easily shown that x = 0 is a stable equilibrium if fA(0) < fB(0),and onversely, x = 1 is a stable equilibrium if fA(1) > fB(1). On the otherhand, any interior value of x ∈ (0, 1) is a stable equilibrium x∗ if the �rstderivative of the �tness funtions satis�es f ′

a(x
∗) < f ′

b(x
∗).In partiular we an alulate the expeted �tness of an individual playing

A or B respetively, in the well-mixed senario explained before as:
fA = axa + bxb

fB = cxa + dxb (2.37)so if we again introdue this expression for the �tness in 2.35 we obtain:
ẋ = x(1− x)[(a− b− c+ d)x+ b− d] (2.38)Depending on the relative ordering of the oe�ients of the payo� matrix,we an have di�erent situations for the seletion dynamis [26, 105, 109℄:(a) A dominates B, if a > c and b > d. No matter what strategy youropponent uses, it is better always to use A, and seletion will lead to a�nal state where all players are A.(b) B dominates A, if a < c and b < d. No matter what strategy youropponent uses, it is better always to use B, and seletion will lead to a�nal state where all players are B.() A and B are bistable, if a > c and b < d. In this situation, A is the bestresponse for A, and B is the best response for B, so it is better alwaysto try to play the same strategy as your opponent. There is an unstableequilibrium at x∗ = d−b

a−b−c+d , and depending on the initial fration ofevery strategy, the system will onverge to all-A (if x(0) > x∗) or all-B(if x(0) < x∗).



2.2. Games 41(d) A and B oexist, if a < c and b > d. In this situation, A is the bestresponse for B, and vie versa, so one should always try to hoose theopposite of what the opponent does. Seletion will make the systemonverge to the interior equilibrium x∗ = d−b
a−b−c+d .(e) A and B are neutral, if a = c and b = d. No matter what ationyou hoose, you will always win exatly the same as your opponent, soseletion will not modify the initial fration of every strategy, but thissenario is obviously not very interesting for us.And some other usefull onepts are:(a) Strategy A is alled risk-dominant if a+ b > c+ d, and then strategy Bhas a basin of attration smaller than 1/2.(b) Strategy A is alled pareto-e�ient if a > d.() Strategy A is advantageous if a+ 2b > c+ 2d, and then strategy B hasa basin of attration smaller than 1/3.As a partiular example of 2 × 2 game, we have the Prisoner's Dilemma(see 2.32), that has been widely used to study the phenomenon of ooperationin very di�erent �elds, from biology to soiology or eonomis. It is obviousthat defetion is the best response, regardless the opponent's (it is in fat, theonly Nash equilibrium), despite the fat that, if both ooperate, then they willwin more than if both defet.Thus, both in a Classi Game Theory aproah, and in an Evolutionaryontext using the Repliator Equation we obtain straightforwardly an all-Dstate, sine defetors have higher payo� than ooperators. Cooperation annot survive in a well-mixed situation, it is inevitable. In fat, there are a greatdeal of examples of this well-mixed or transitory-pairing enviroments in Nature,whih lead to non-ooperative or exploiting situations for the individuals, onthe ontrary to what usually happens with stable pairing, or even mutualismbetween di�erent speies [25℄.Finite populationsAdditionally, one an wonder what happens to the dynamis in the very real-isti ase of �nite populations (notie that we still do not take into aount aninternal struture). In this ase, in order to desribe the evolution of a N-sizedpopulation, a stohasti theory is needed, and we alulate �xation probabili-ties for the di�erent possible strategies [105, 110℄, instead of equilibrium states



42 Chapter 2. Some basi onepts on Complex Networks and Gamesof the system. The probability of �xation of strategy B is the probability of asingle mutant B to invade an entire population of A-players.In order to approah this situation, we an use, among other stohastiproesses, the Moran proess [111℄, whih ould be a �nite-N analogue to theRepliator Equation. It is a birth-death proess that desribes the probabilistidynamis in a �nite population of onstant size N in whih two strategies Aand B are ompeting for dominane. In eah time step, a random individualis hosen for reprodution and a random individual is hosen for death; thusensuring that the population size remains onstant. To model seletion, onetype has to have a higher �tness (onsidered onstant) and is thus more likelyto be hosen for reprodution. The same individual an be hosen for deathand for reprodution in the same step. It is worth mentioning that in �nitepopulations, even if all di�erent strategies had the same �tness, all but onetype will eventually go extint. This priniple is alled neutral drift. Thus,sine oexistene is not possible, there are as many absorbing states as di�erentstrategies at the beginning. In a population on sizeN made up ofA individuals,we an alulate [105℄ the probability of �xation of another strategy B (it isto say, the probability for a single neutral mutant to take over the entirepopulation), and it is given by 1/N . It means that when dealing with �nitepopulations, just due to random drift, a mutant (with the same �tness as themajority strategy) an invade the system, whih is a very di�erent outomefrom the in�nite-population senario, where having the same �tness meantoexistene of di�erent strategies. In the same way, the probability of endingup in an all-B state, just due to random drift, when starting with i ≤ Nindividual playing B in a population of A is i/N . On the other hand, if amutant B has a relative �tness r, with respet to the A players, it an beproven [105℄ that its probability of �xation is then ρ = 1−1/r
1−1/rN

. Notie thatin this senario, there is always a nen-zero probability that a mutant strategyan invade and take over the whole population, even though it is opposed byseletion [112℄.2.2.3 Evolution of CooperationAs we have seen previously, neither within the Classi or the EvolutionaryGame approah, an ooperation survive. Nonetheless, there are plenty ofexamples of real situations where ooperators arise and thrive, so there mustbe some mehanisms behind it. Over the years, �ve main ideas [26℄ have beenproposed to help understand this phenomenon: kin seletion, diret reiproity,indiret reiproity, group seletion and network reiproity.Aording to Hamilton [24℄, natural seletion an favor ooperation if the



2.2. Games 43donor and the reipient of an altruisti at are geneti relatives. More preisely,Hamilton's rule establishes that the oe�ient of relatedness, r, must exeedthe ost-to-bene�t ratio of the altruisti at, it is to say: r > c/b. Thisoe�ient r is de�ned as the probability of sharing a gene (it is equal to 1/2for siblings, equal to 1/8 for ousins,...). This theory is alled Kin Seletion, butobviously it an not help understand ooperation among unrelated individuals,or even members of di�erent speies.Trivers proposed the Diret Reiproity mehanism. Let us assume thatthere are repeated enounters [23℄ of a the Prisoner's Dilemma Game betweenthe same two individuals, and every time they an hoose to be ooperatorsor defetors. The idea is that if I ooperate in this round of the game, maybe you will ooperate in the next one. When onsidering the repeated gameon a whole population, it an be proven that diret reiproity leads to theevolution of ooperation only if the probability of another enounter betweenthe same two individuals, w, exeeds the ost-to-bene�t ratio of the altruistiat: w > b/c.Let us now onsider the following senario: among a population, two in-dividuals meet one, one of them is in the position of helping the other one(this help is suppossed to be less ostly for the donor than bene�ial for thereeiver), but there is no possibility for diret reiproation, but helping otherswill establish a good reputation whih will be rewarded by others. In this way,when deiding how to at, one will take into onsideration the onsequenes fortheir reputation. Moreover, the next step an be to take into onsideration theopponents' reputation, in order to deide whether or not he deserves our help,and how it will a�et our own. This theory onstitutes Indiret Reiproity[22, 113℄, and when applied to human behavior, it an help understand theorigin of moral and soial norms.We an take into aount that seletion not only ats on individuals, butalso in groups. A simple model for Group Seletion is as follows [114℄: thepopulation is divided into di�erent groups, and individuals ooperate insideits own group, while defetors do not help anyone. Individuals reprodueproportional to its �tness and the o�spring belongs to the same group as theanestors. When a group reahes ertain size, it an split in two, makinganother group disappear, in order to preserve the total size of the populationonstant. In a mixed group, a defetor reprodues faster than a ooperator,but groups of pure ooperators split faster than those of pure defetors. Forthe limit of weak seletion and onsidering the ase of rare group splitting, itan be obtained that, if n is the maximum group size and m is the number ofgroups, then Group Seletion allows evolution of ooperation, provided that:
b/c > 1 + (n/m), where b/c is the ost-to-bene�t ratio.



44 Chapter 2. Some basi onepts on Complex Networks and GamesFinally, one an realize that the Evolutionary approah for the PD gamealways leads to all-D situations, but it onsiders a well-mixed senario, it is tosay, at any given time, every individual has equal probabilities to interat witheveryone else. Nonetheless we know that this is a very unrealisti assumption,sine groups and soieties have usually some kind of internal struture. Inother words, there is a well de�ned pattern of interations among individuals,so every one of them has a �xed number of neighbors. It has been shownthat spatial struture a�ets greatly the outome of an evolutionary dynamis,allowing ooperators to survive in many situations. Spei�ally, ooperatorsform network lusters, where they help eah other. The analytial treatment ofthis problem is hard, and many times, even impossible, but it has been foundthat this Network Reiproity an favor ooperation if b/c > k, where k standsfor the average number of onnetions of the individuals in the population.Prisoner's Dilemma game on strutured populationsAording to what we have seen previously, one of the mehanisms that helpspromote ooperation is Network Reiproity, and it happens to be also theone we will be interested during this Thesis, so the natural next step for us,in order to build more realisti models of soial or biologial interations, isto onsider some sort of underlying struture, in aount for the partiularpattern of relationships between individuals (that an di�er greatly from oneto another). The �rst attempts to model suh soial struture for the Pris-oner's Dilemma game onsidered the individuals plaed in a regular lattie[31�33, 115�118℄. Those studies found that spatial struture a�ets greatly theoutome of suh dynamis. Spei�ally, by making the agents play just with asmall number of �xed neighbors, we an make ooperation and defetion oex-ist, or even enhane ooperation. In fat, when dealing with games in spatialstruture populations, the equilibria among strategies are no longer neessar-ily haraterized by their having equal average payo�. Instead, the asymptotiequilibrium properties are now determined by 'loal relative payo�s', and notby global averages [33℄. It was also found for the PD in latties, that underertain symmetrial initial onditions for the distribution of strategies, ertainvalues of the temptation to defet b, and as long as we use deterministi updat-ing rules, kaleidosopi arpet-like haotially-hanging spatial patterns arise[31, 32℄. Moreover, it has been found that there is a ritial phase transition inthe Prisoner's Dilemma game in latties that falls into the same universalitylass than direted perolation [118℄.Some e�ort was put also on the analytial study of how di�erent kind ofstrutures an favor �xation of the strategies or, on the ontrary, favor neutraldrift , expliitly alulating to that end the orresponding probabilities of �x-



2.2. Games 45ation of the strategies on some networks with very partiular topologies, suhas stars, paths, downstreams, upstreams or funnels [105, 108, 119℄. Moreover,striking results in terms of survival of ooperation were found for random andSF networks, but for suh general strutures, no expliit alulations an beperformed, so one needs to rely totally on simulations. In this area, a greatdeal of e�ort has been put too, and as a very general remark, it an be saidthat the omplex topologies behind the interations among a given popula-tion a�et the outome of any proess [65, 66, 72, 76�78, 120℄ -not only games[31, 42, 108, 119℄- to a large extent. Spei�ally, as we will see with somedetail in hapter 3, when it omes to the Prisoner's Dilemma game on om-plex networks, a large number of studies [34�36, 38, 39, 99℄ have pointed outthat ooperation bene�ts from heterogeneity. It is to say, it has muh betterhanes to survive in sale-free than in random topologies, for the same givenvalue of the parameters of the game.





Part IEvolutionary Dynamis onStati Complex Networks





Presentation of Part IIn this �rst part of the Thesis, we want to fous on the e�et that thetopology of interations among the onstituents of a given omplex systemhas on the evolutionary dynamis that takes plae on top of it. On the onehand, the individuals of the system form a omplex network [8�13, 61, 121℄,that ould represent a very simple version of a soiety or a soial organization[16, 46℄ of humans or other speies. On the other hand, the kind of dynamiswe will be taking into onsideration is ditated by Evolutionary Game Theory[27, 96, 97, 105℄. We will fous on the situation in whih nodes representindividuals engaged with their neighbors in a ertain (2 × 2) game, using aertain strategy that an be updated after every round of the game, dependingon the outome of it. In other words, the outome of the game, meaning theaumulated payo� every node gets in a single round, will a�et the probabilityof maintaining or hanging its strategy for the next round of the game. Thisan also be interpreted in terms of evolutionary �tness and reprodution of theindividuals: instead of onsidering individuals of a population that update theirstrategies for the next round of the game, one an also think of the bene�tsof an individual in terms of its reprodutive suess or �tness, meaning theprobability of its o�spring to be present in the system in the next generation,using its very same strategy [25℄. In this way, we are not speially interestedin the evolution of a partiular node, but in the entire population as a whole.To this end, we will measure the proportion of the di�erent strategies that arepresent in the stationary state of the dynamis, as well as its mirosopialorganization within the network.Spei�ally, in hapter 3 we will study in detail the outome of the (weak)Prisoner's Dilemma game [22�30, 104, 105℄ on top of omplex networks [31�33, 115�117℄, omparing the results obtained mainly for two kind of topologies:ER [18℄ and BA [8℄ networks. We will also onsider the same dynamis on topof some other systems with intermediate degree of heterogeneity. On the onehand, in order to on�rm and understand the well-established fat that ooper-ation is enhaned by the heterogeneity of the underlying graph [34�45℄, we willlook into the mirosopi organization of ooperation in the stationary state,studying the formation of lusters for both strategies. We will �nd that thisorganization is quite di�erent depending on the kind of network we are deal-ing with. We will also analyze the level of ooperation for every onnetivitylass, for the ase of heterogeneous graphs, �nding there a plausible explana-tion for the high levels of ooperation these partiular strutures an sustain.On the other hand, we will show the asymptoti existene of pure strategistsand �utuating individuals. Moreover, we will prove it by using a simpli�ed



50but general enough ase of a graph (Dipolar Model), where some analytialalulations an be performed.In hapter 4 we will expand all these studies not only to the general Pris-oner's Dilemma, but also to the Hawks and Doves game [22, 37, 41, 99�101, 122�126℄, omparing the results with the ones found previously for theweak Prisoner's Dilemma. Analogously to hapter 3, we will study the station-ary state of the system, the level of ooperation it an ahieve, the mirosopiorganization of the di�erent strategies and the formation of strategi lusters.All of it will be onsidered depending as usual, on the underlying topology,remarking the di�erenes found not only between homogeneous and heteroge-neous graphs, but also between the Prisoner's Dilemma game and the Hawksand Doves game.In hapter 5, we want to address the issue of ooperation in random sale-free networks, omparing the level of ooperation obtained in suh orrelation-free heterogeneous topologies with those orresponding to the BA networks, inorder to on�rm the role that the orrelations among nodes [13, 45, 60, 61℄ mayplay on the sustenane of a ertain level of ooperation in the system [34, 36℄.On the other hand, we will propose a degree-based mean-�eld approah to tryto explain the outome of the Prisoner's Dilemma dynamis on top of randomSF networks. We will make further a ompartmentalization of the fration ofooperators and defetors into di�erent onnetivity lasses, to formulate a setof di�erential equations for the time evolution of the fration of ooperators ineah degree lass. The idea behind this approah is inspired by several worksfoused on the study of disease spreading on an heterogeneous population,using a similar theoretial framework [65�67℄. Thus, we will ompare theanalytial results with the onventional numerial simulations performed ontop of suh random SF graphs. We will analyze this in a general ase, wherewe will �nd that the theoretial approximation and the numerial simulationsdo not agree. However, we will also explore some partiular initial onditions,where ooperators are not plaed initially at random, but oupying the largestdegrees of onnetivity (targeted ooperation). In this latter ase we will beable to reprodue (up to an extent) the results from a simulation on top ofrandom SF graphs using these analytial alulations.Finally, in hapter 6 we will propose a more realisti senario for a pop-ulation with a omplex pattern of onnetions engaged in an evolutionarydynamis suh as the Prisoner's Dilemma. The set of individuals will form anetwork of soial ontats, namely a sale-free graph, and will play the gamewith their neighbors as usual. Nonetheless, we will onsider a restrition inthe number of interations a node an sustain in every round of the game. Toour knowledge, there are not any works addressing this partiular issue, apart



51from [35℄, where a uto� is imposed to the degree distribution of a SF network.However, we will not proeed by altering the degree distribution of the under-lying topology. Instead, we will fore the nodes to hoose randomly a di�erentseletion among its topologial neighbors for every round of the game. In thisway, we want to aknowledge the fat that the amount of energy and time anindividual an spend interating with its neighbors is �nite, so the number ofaquaintanes it interats with per unit of time should not be given just by itstopologial onnetivity, but it also should be subjet to some kind of pratiallimitations. We will �nd some striking results that point out that in a situationwith some degree of restrition in the number of interations allowed per nodeand per round of the game, ooperation an be enhaned even more than in anunrestrited sale-free senario, when partiipation osts are also introduedin the formulation of the evolutionary game.





Chapter 3The Prisoner's Dilemma onStati Complex NetworksThe PD game has been frequently used [22, 24, 25, 27, 28℄ when trying to modelthe emergene of ooperative behavior in a soial or biologial system. Thequestions of why and how ooperation arises and survives in an environmentwhere it is learly more expensive for the individual than defetion in the shortterm have been subjet of intense researh for quite some time, and the PDturned out to be a very useful tool for this aim. One of the aspets that havebeen pointed out as a responsible for the survival of ooperation is, amongothers, the so-alled network reiproity [26℄. Several studies have shown thatooperation an be greatly promoted by plaing the individuals of a populationon the nodes of a network of ontats, instead of letting them interat in a well-mixed situation, where no asymptoti ooperation exists. First, some e�ortwas put on studying the PD on regular latties, �nding that, as long as theonnetivity of the nodes was not to high, ooperation atually got a haneat survival (however, when the number of neighbors inreases, the situationresemblanes more and more an all-to-all senario, and ooperation dies outagain). Next, PD was studied in omplex topologies [31, 34�36, 38�45℄, in anattempt to model more aurately the pattern of onnetions of a real system,and this is preisely the problem we will onsider in this hapter of the Thesis.In this way, we want to address the dependene of the PD dynamis ontop of omplex networks. As we have already advaned, we are interestedin haraterizing the �nal equilibrium state that the system ahieves whenimplementing the dynamis of suh strutures, namely random and SF graphs,paying speial attention not only to the asymptoti level of ooperation, butmore important, to the mirosopi organization of the strategies. This isatually, as we will see in detail, the key point of the di�erenes found between



54 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networksboth topologies when it omes to the average level of ooperation. We willalso take are of other aspets of the dynamis, suh as the dependene of the�nal level of ooperators in the system with the initial fration of them, or thedistribution of strategies aording to the di�erent lasses of onnetivity forSF networks.3.1 The modelThe Prisoner's Dilemma is a two-player game de�ned in its more general formby the payo� matrix (see setion 2.2):
(

C D

C R S

D T P

) (3.1)where the element aij is the payo� reeived by an i-strategist when playingagainst a j-strategist, with i = 1 meaning ooperator (C), and i = 2 defetor(D). Thus, both reeive R (Reward) under mutual ooperation and P (Punish-ment) under mutual defetion, while a ooperator reeives S (Suker's Payo�)when onfronted to a defetor, whih in turn reeives T (Temptation to de-fet).The payo� ordering is given by T > R > P > S. Under these onditions,defetion is the best response regardless the opponent's strategy. Indeed, in awell-mixed population of N repliators, i.e. where every individual interatswith everyone else, the defetion strategy is unbeatable and reahes �xation.However, if individuals only interat with its ki neighbors, as ditated by theunderlying network of ontats, it hass been proven the asymptoti survival ofooperation for T ≥ R on di�erent types of omplex topologies [31, 34�36, 38�45℄.Following several studies [31, 33, 34, 36, 127℄, we set the PD payo�s to
R = 1 (so the reward for ooperating �xes the payo� sale), T = b > 1,
P = 0 (no bene�t under mutual defetion), and P − S = ǫ → 0+. Thislast hoie plaes us in the very frontier of PD game, or the 'weak' Prisoner'sDilemma. It has the e�et of not favoring any strategy when playing againstdefetors (while being advantageous to play defetion against ooperators).Small positive values of the parameter ǫ ≪ 1 leads to no qualitative di�erenesin the results [127℄, so the limit ǫ → 0+ is agreed to be ontinuous.The dynami rule is spei�ed as follows: eah time step is thought of asone generation of the disrete evolutionary time, where every node i of thesystem plays with its nearest ki neighbors (given by the underlying network)and aumulates the payo�s obtained during the round, say Pi. As Evolution-ary Game Theory approah ditates, the bene�t an agent gets from the game



3.1. The model 55should be interpreted as its �tness in the Darwinian sense of reprodutive su-ess [25, 126℄. Spei�ally, we onsider that individuals are then allowed tosynhronously hange their strategies by omparing the payo�s they aumu-lated in the previous generation with that of a neighbor j hosen at random.If Pi > Pj , player i keeps the same strategy for the next time step, when it willplay again with all of its neighborhood. On the ontrary, whenever Pj > Pi, iadopts the strategy of j with probability
Πi→j =

Pj − Pi

max{ki, kj}b
(3.2)Following previous studies, we alled this updating rule Repliator-like [27, 28,34, 35, 97, 101℄, beause it is obviously similar to the Repliator Equation(see setion 2.2.2): the probability of hanging strategy is proportional to thedi�erene of payo�s of the nodes involved, and it is normalized by the maximumpayo� a node an get, i.e., b times its onnetivity. Note also that this dynamirule, though stohasti, does not allow the adoption of irrational strategy, i.e.,

Πi→j = 0 whenever Pj ≤ Pi.Regarding the synhrony of the strategy updating of the individuals inthe population (also understood as disrete time), it is worth mentioning herethat we have not found signi�ant di�erenes when omparing to asynhronousupdating (also known as sequential updating or ontinuous time), and thusin good agreement with previous �ndings for this partiular PD game andRepliator-like rule [99℄, in spite of the fat that one an always argue thatsynhronous or asynhronous updating more aurate in order to desribe dif-ferent biologial or soial senarios, respetively [33℄.Let's now speify preisely the family of networks on top of whih the evo-lutionary PD game is evolving. Strategists are loated on the verties of a �xedgraph of average onnetivity 〈k〉 = 4. The heterogeneity of the networks isontrolled by tuning a single parameter α, aording to the reipe introdued byGardeñes-Moreno (GM) in [64℄. As we explained in detail in subsetion 2.1.3,the GM model reates a network by ombining the mehanisms of preferentialattahment with probability α and uniform random linking with probability
1− α. Thus, in this model, when α = 0 the generated networks are of the ER[18℄ lass of random graphs, and when α = 1 they are of the BA [8℄ sale-freenetworks lass. On the other hand, networks with an intermediate degree ofheterogeneity an be built with 0 < α < 1. We will study the dynamis ontop of suh networks with intermediate heterogeneity at the end of this hapter(see setion 3.9), but for now, we will fous just on the extreme ases α = 0 and
α = 1. It is also worth stressing that the di�erent topologies we will ompareduring this hapter have always the same number of nodes, N , and averageonnetivity 〈k〉.



56 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networks3.2 Dynami equilibriumOne the network has reah its full size N , the initial strategy of every node israndomly set, with a probability of being a ooperator ρ0 = 0.5 (note that ρ0 isalso the initial fration of ooperation on the system), and then the dynamisstarts. We let the system evolve for 5·103 time steps or generations, after whihwe hek whether the equilibrium has been reahed. To do so, we observe thetime evolution of the fration of ooperators, c(t), during a time window of
103 generations. If the slope of c(t) is smaller than 10−2, then we onsider theequilibrium has been reahed. Otherwise, we let the system evolve 5 ·103 moregenerations, after whih, we will evaluate the equilibrium onditions again.We show several examples of temporal evolution of the system in �gure 3.1.The behavior during the transient time of the fration of ooperators in thesystem an be understood as follows: as we have said, the system starts with afration of ρ0 ooperators, randomly distributed on the network. The defetorstake advantage of this initial situation, getting very high payo� exploiting itsooperator neighbors, and foring other nodes to imitate them. Therefore,thelevel of ooperation drops initially. However, after a few more time steps, thedefetors are surrounded by more defetors, and they an not get bene�ts any-more, while ooperators start lustering themselves, and providing payo� fromone another. Thus, ooperators self-organize and hold a non-negletable levelof ooperation on the network. As it an be seen in �gure 3.1, the marosopibehavior of the system towards its dynamial equilibrium is qualitatively verysimilar, regardless the underlying topology. Nevertheless, as we will explainlater in detail in setion 3.7, the mirosopi organization of ooperators anddefetors when the equilibrium has been reahed is very di�erent dependingon the network, and it is speially non-trivial for BA networks.From any initial ondition for the whole system {si(t = 0)} (with i =

1, ..., N , and where si = 1 if node i is an instantaneous ooperator and si = 0if it is a defetor in that step), and after many generations, the instantaneousfration of ooperators, given by
c(t) = N−1

N
∑

i=1

si(t) (3.3)in the stohasti trajetory, {si(t)}, �utuates around a well-de�ned meanvalue 〈c〉. In turn, this average value of ooperation an be de�ned as follows:
〈c〉 = 1

T

t0+T
∑

τ=t0

c(τ) , (3.4)where t0 is the transient period, and T is the period of time during whih weobserve the system, one it has reahed the equilibrium. Thus, this average



3.2. Dynami equilibrium 57(a)
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Figure 3.1: Several examples of the temporal evolution of the level of ooperationin the system for ER (a) and SF (b) networks as a funtion of b. The size of thenetworks is N = 4 · 103 nodes and average onnetivity 〈k〉 = 4.level of ooperation depends only on the value of the parameter b, and theinitial fration of ooperators ρ0 (and also on the topology of the system, aswe will see). The average level of ooperation 〈c〉 is omputed as the average of
〈c〉 over 103 independent realizations with di�erent initial onditions (di�erentrandom distributions of a �xed value for the fration ρ0 of ooperators, as wellas network realizations).It is worth mentioning that the time sale of mirosopi invasion proesses,it is to say, the pae of the updating rule for any given node, is ontrolled by

β−1 = max{ki, kj}b , (3.5)whih is essentially determinded by the highest onnetivity of the pair ofnodes we take under onsideration. This makes that the very high payo� ofa hub (due to its very high k) is balaned by β ∝ k−1 [34�36℄, with the sidee�et that the invasion proesses from and to hubs are slowed down, if hub's(and neighbor's) payo� is muh smaller than its onnetivity k. On the other



58 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networkshand, the transient time t0 should be greater than harateristi �xation timesfor the nodes, if one is interested in measuring observable quantities assoiatedto the dynamial equilibrium.3.3 Pure Strategists and �utuating individualsAfter the transient time t0 has passed, we establish a 104 time step window dur-ing whih we measure the relevant magnitudes of the system. This proedureallows us to srutinize in depth the mirosopi temporal evolution of oop-eration as well as to haraterize how its loal patterns are formed. We notethat individual's strategies asymptotially (i.e. t > t0) follow three di�erentbehaviors. Let P (x, t) be the probability that a node adopts the strategy x atany time t > t0. We say that an element i of the population is pure ooperator(PC) if P (si = 1, t) = 1, i.e., it plays as ooperator in all generations after thetransient time. Conversely, pure defetors (PD) are those individuals for whih
P (si = 0, t) = 1. And there is a third set, onstituted by �utuating nodes (F)whih are those that are neither pure ooperators nor pure defetors, so theyspend alternatively some time as ooperators and some time as defetors. Thisset is what was �rst alled 'unsatis�ed elements' by Abramson and Kupermanin [39℄.From now on, we denote by ρC = 〈µ(PC)〉 the measure (relative size)of the set of pure ooperators (averaged over initial onditions and networkrealizations), by ρD = 〈µ(PD)〉 that of the set of pure defetors, and by
ρF = 〈µ(F )〉 that of the set of �utuating strategists. At any given timeduring the simulation, the relation between the frations ρC + ρD + ρF = 1must be ful�lled by the system, obviously.On the other hand, the marosopi average level of ooperation 〈c〉 an bewritten as:

〈c〉 = ρC + ρF 〈TC〉 (3.6)where 〈TC〉 is the average proportion of time spent by the �utuating subpop-ulation as ooperators (see setion 3.6 for further details).In the �gure 3.2 we show the fration of pure strategists and �utuatingindividuals, and the average level of ooperation as a funtion of b, for BAand ER networks. As one ould expet, both the average level of ooperationand the fration of pure ooperators derease as the temptation to defet binreases, as ooperation gets more and more expensive. The �utuating indi-viduals are present in the network only for a range of intermediate values of b,during whih, the ooperation in the system depends almost entirely on them,beause there are not pure ooperators anymore.



3.4. Dipolar Network Model 59
b bFigure 3.2: Fration ρC of pure ooperators (Red Area), fration ρD of pure defetors(Blue Area), fration ρF of �utuating nodes (Green Area) and the average level ofooperation 〈c〉 in the system (Solid blak line) as a funtion of b for ER networks(Left) and BA networks (Rigth). The size of the networks is N = 4 · 103 nodes andaverage onnetivity 〈k〉 = 4.Regarding the di�erent topologies, we on�rm that BA networks an holdhigher levels of ooperation than ER networks, even for quite big values of b[34�37℄. As we an see in �gure 3.2, for random topologies, the average levelof ooperation is equal to 1 until it drops quite abruptly around b = 1.2, andit disappears almost ompletely for b > 1.8. For SF networks on the otherhand, the ooperation starts dereasing slightly but very soon (for values of

b & 1), but its main drop takes plae for higher values (around b = 1.6), and,moreover, the ooperation survives with muh higher values of the temptationto defet, approximately until b = 3. It is interesting to stress again that forvalues next to b = 1, the level of ooperation is ρC = 1 for ER networks i.e.,all the nodes in the system are pure ooperators, but it is slightly lower for SF,sine there are already a few �utuating individuals. Nevertheless, this levelof ρC will hold on longer before the main fall in SF, while it will drop fasterfor ER. This fall of ρC is present for both topologies, but it is very sharp forER, so ρC drops to zero when b = 1.3, while for SF is smoother, permittingthe system to keep a small but non-null value of ρC until b = 2.5.3.4 Dipolar Network ModelAs we have seen, the asymptoti state of evolutionary dynamis on networksis often not a stati equilibrium on�guration under the Repliator rule forthe update of the strategies. On the ontrary, we have shown that there is anasymptoti partition of the graph into three sets, namely, pure ooperators,pure defetors, and �utuating individuals. This last group experiene yles
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Figure 3.3: Shemati representation of the Dipolar model network. Nodes 1 and 2are onneted to all nodes in F . Node 2 is also linked to all nodes in C. Connetionsinside F and C are arbitrary. The olors represent a set of 2nF di�erent initialon�gurations. As we usually do, blue stands for defetor and red for ooperator,while green means arbitrary strategy.of invasion by the ompeting strategies.In order to prove the generality of these results, we make a little digressionnow, and present a model that mimis a loal environment of a heterogeneousgraph, with simpli�ations that allow analytial alulations for a better in-sight. On the other hand, it is perhaps the minimal (though general enough)network model where the partition into PC, PD and F an be rigorously proved,illustrating thus the dynamial organization of ooperation in heterogeneousgraphs.Let's onsider the shemati graph in �gure 3.3, omposed of the followingelements:(a) A omponent F of nF nodes with arbitrary onnetions among them.(b) A node, say Node 1, that is onneted to all the nodes in F and has noother links.() A omponent C of nC nodes with arbitrary onnetions among them.(d) A node, say Node 2, that is onneted to all the nodes in F and C, butnot to Node 1.Let's also onsider the set of initial onditions de�ned by: (i) Node 1 is adefetor, (ii) Node 2 is a ooperator, and (iii) all nodes in omponent C areooperators. Note that this hoie allows 2nF di�erent initial on�gurations.



3.4. Dipolar Network Model 61We now prove that, provided some su�ient onditions (see below), this is aninvariant set for the evolutionary dynamis.If we onsider that the nodes are engaged on the Prisoner's Dilemma game,with the spei� hoies for the parameters of the payo� matrix detailed insetion 3.1, then the payo� of a ooperator node i in F is given by:
PC
i = kCi + 1 + ǫ(ki − kCi + 1) , (3.7)where ki is the number of its neighbors in F and kCi ≤ ki is the number ofthose that are ooperators. The payo� of Node 1 is then

P1 ≥ (kCi + 1)b . (3.8)For the PD game, where ǫ < 0 for the general ase, the inequality P1 > PC
ialways holds, so Node 1 will always be a defetor. Thus, a su�ient onditionfor P1 > PC

i is b > 1 + ǫ(kF + 1), where kF (< nF ) is the maximal degreein omponent F , i.e. the maximal number of links that a node in F shareswithin F .The payo� of a defetor node i in F is
PD
i = (kCi + 1)b , (3.9)where kCi is the number of its ooperator neighbors in F , while the payo� ofNode 2 is

P2 = nC + nF ǫ+ nC
F (1− ǫ) , (3.10)where nC

F ≤ nF is the number of ooperators in F . Thus, a su�ient onditionfor P2 > PD
i is nC > Int(b(kF + 1) − nF ǫ). With this requisite, Node 2will always be a ooperator, whih in turn implies that all the nodes in theomponent C will remain always ooperators.This argument proves that provided the su�ient onditions

nC > Int(b(kF + 1)− ǫnF ),

b > 1 + ǫ(kF + 1), (3.11)hold, the set of initial onditions de�ned by (i), (ii), and (iii) is an invariantset: any stohasti trajetory starting in the set remains there. Moreover,as no equilibrium on�guration is inluded in this set, one onludes that notrajetory from this set evolves to an equilibrium on�guration. While nodesin C and Node 2 are permanent ooperators, and Node 1 is a permanentdefetor, nodes in F are fored to �utuate: at every time step, a defetor in
F has a positive probability to be invaded by the ooperation strategy, and atthe same time, a ooperator in F has a positive probability of being invaded by



62 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networksthe defetion strategy. In other words, every on�guration in the set of initialonditions is reahable (in one time step) from any other, thus it is almost surethat it will be reahed (ergodiity).In any stohasti trajetory starting from the set of initial onditions ex-plained previously, the network is partitioned into three subsets: a set of pureooperator nodes, a set of pure defetor nodes and a set of �utuating indi-viduals. The �utuations inside the subpopulation F re�et the ompetitionfor invasion among two non-neighboring hubs with �xed opposite strategiesin their ommon neighborhood, a loal situation that ours in heterogeneousnetworks. It is also a shemati model for the ompetition for in�uene of twopowerful superstrutural institutions like "mass media", politial parties, orlobbies on a target population.Let's now obtain some exat results for the simplest hoie of topologyof onnetions inside the �utuating set, namely kF = 0. It means that inthis ase eah node in F is only onneted to Nodes 1 and 2. Note that thesu�ient onditions for �xation of defetion at Nodes 1 and 2 are respetively,
b > 1 + ǫ, and nC > b− ǫnF .Denoting by c(t) the instantaneous fration of ooperators in F , the payo�sof Nodes 1 and 2 are

P1 = bcnF , P2 = nC + cnF + ǫ(1− c)nF ,and the payo�s of a ooperator node and a defetor node in F are respetively
PC = 1 + ǫ , PD = b .Then one �nds for the one-time-step probability ΠCD of invasion of a oop-erator node in F , it is to say, the probability of a node in F to hange fromooperator to defetor
ΠCD =

cb− (1 + ǫ)/nF

2∆
, (3.12)where ∆ = max{b, b − ǫ}. And on the other hand, using the simplifyingnotation A = ǫ+ (nC − b)/nF and B = 1 + nC/nF we get

ΠDC =
A+ c(1 − ǫ)

2∆B
, (3.13)for the probability of invasion of a defetor node in F , meaning analogously,the probability of hanging from defetor to ooperator. Note that A > 0beause Node 2 an not be invaded.In this way, the expeted fration of ooperators at time t+ 1 is:

c(t+ 1) = c(t)(1 −ΠCD) + (1− c(t))ΠDC ,



3.5. Distribution of the strategies among onnetivity lasses on SF networks 63and provided nF ≫ 1, the fration of ooperators c in F evolves aording tothe di�erential equation
ċ = (1− c)ΠDC − cΠCD ,whih after insertion of Eqs. 3.12 and 3.13 beomes

ċ = f(c) ≡ A0 +A1c+A2c
2 , (3.14)where the oe�ients are

A0 =
A

2∆B

A1 =
1− ǫ−A+B(1 + ǫ)/nF

2∆B

A2 = −1− ǫ+ bB

2∆B
.One an easily hek (A0 > 0 and A2 < 0) that there is always one positiveroot c∗ of f(c), whih is the asymptoti value for any initial ondition 0 ≤

c(0) ≤ 1 of equation 3.14. Thus, ooperation is never driven to extintion evenfor large values of the temptation to defet b.Bak to the general ase, i.e. arbitrary struture of onnetions in F ,it should be emphasized that the su�ient onditions expressed in equations3.11 do not impose bounds on the network's average onnetivity 〈k〉, thatan take on arbitrarily large values independent of the game parameters. Thisresult di�ers from the bound on 〈k〉 reported in [26, 38℄ for di�erent stohastiupdating rules in the weak seletion limit.3.5 Distribution of the strategies among onnetivitylasses on SF networksIn order to understand the role of the heterogeneity of SF networks on theasymptoti behavior of the dynamis, we will study the fration of pure oop-erators, pure defetors and �utuating nodes, within every lass of onnetivity,that we denote by ρkC , ρkD and ρkF , respetively. Note that the total fration ofeah type of individuals in the system an be written as:
ρα =

∑

k

P (k)ρkα (3.15)with α = C,D,F , and being P (k) the degree distribution. Reall that ρC +

ρD + ρF = 1, and also ρkC + ρkD + ρkF = 1. Thus, in �gure 3.4 we represent the
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Figure 3.4: Strategists proportion by lasses of onnetivity. Color-oded densitiesof pure ooperator (Left) and �utuating individuals (Rigth) as a funtion of kand b for BA networks. The size of the networks is N = 4 · 103 nodes and averageonnetivity 〈k〉 = 4.fration of pure ooperators and �utuating nodes as a funtion of the degreeof onnetivity of the node and the temptation to defet, b. It an be seen thatthere are very di�erent areas: �rst of all, for 1 < b ≤ 1.7, the pure ooperatorsontrol the system, with values of ρC = 0.9, while there is only a small frationof �utuating strategists, among the nodes with medium or low onnetivity.When 1.7 < b < 2, the pure ooperators derease to ρC = 0.1, being set onlyon the high onnetivity nodes, while the �utuating individuals take over thelow lasses, up to k ≤ 11. There is a third region, where the �utuating nodesinvade higher and higher lasses of onnetivity as b inreases, with the pureooperators still oupying the very high ones (for example, for b = 2.9, onlythe hubs remain being ooperators). Finally, for even higher values of b, ρDstarts inreasing at the expense of ρF , but interestingly enough, it does soquite independently of the degree of onnetivity. This has to do with the fatthat defetors an not take advantage of the heterogeneity of the system, aswe will explain in detail next, so this defetor invasion for high values of b isonsequently independent of the degree of the nodes.The preferential �xation of pure ooperators at nodes with high degree kwhen ooperation is very expensive an be understood by the following plau-sible argument [35, 36, 45℄: a neessary though non su�ient ondition for anode i to be a pure ooperator at a given time t is that the number kCi of in-stantaneous ooperators in its neighborhood (i.e., the payo� of i in the urrent



3.5. Distribution of the strategies among onnetivity lasses on SF networks 65round, sine R = 1 and S = 0) must be greater than the urrent payo� of anyinstantaneous defetor neighbor j, that is, kCi > bkCj . This ondition is learlyfavored when the ooperator node i belongs to a high k lass and its �utuatingneighbors j belong to lower k lasses. This argument is onsistent providedthat heterogeneous topologies in general either have not degree-degree orrela-tions, so that the neighbors of a node of degree k have no preferential degrees,or they are assortative, i.e., neighbors of high degree nodes have preferentiallyalso high degrees. Spei�ally, SF networks used here, built via preferentialattahment using the GM model [64℄, do have age-orrelations, whih meansthat the oldest nodes of a network are usually the hubs, and moreover, theyare interonneted, sine they formed the initial ore of size mo from whih thewhole system was grown. This partiular feature enhanes even more ooper-ation, so if one destroys suh age-orrelations, by rewiring the struture andpreserving the degree distribution, the average level of ooperation ahievedby the system will su�er an important drop, as we will see with some detail inhapter 5.The �xation of pure ooperation on hubs yields as a byprodut of thestabilization of ooperation around them. If we set a ooperator on a hub,it will get very high payo�, beause it has very high onnetivity, and it willmake a lot of its neighbors to imitate its strategy. Thus, an all-ooperating-area will be reated around the hub, from whih every ooperator involved willget high bene�ts too (speially the hub, of ourse), making its situation verystable. It is to say, the imitation of a suessful ooperator hub by its neighborsreinfores its future suess, then favoring the �xation of ooperation in highlyonneted nodes. Nonetheless, if a hub is oupied by a defetor, it will gethigh bene�ts at the beginning, due to its high onnetivity, exploiting all itsooperator neighbors. But this will make more and more of them to imitateit, reating an all-defetor-area around the hub, where nobody will get anybene�ts at all (reall that a defetor against another defetor gets P = 0). Andso the hub will stop getting high payo� too, eventually beoming suseptibleof being invaded by a ooperator. In that way, the imitation of a suessfuldefetor hub undermines its future suess, so that defetion annot take long-term advantage from degree heterogeneity. In a stati topology senario it isimpossible for a defetor to persist on a hub in the long term. Nonetheless,when dealing with growing heterogeneous strutures, a very di�erent piturean arise, as we will see in hapter 7).We also want to point out that, as we show on the left panel of Fig.3.4, fora �xed given value of b > 2, ρkC varies rather quikly from 0 to 1 in a smallinterval of values of k entered around some b-dependent value k∗(b), so thatthe nodes with degree k > k∗(b) are mostly pure ooperators and those withdegree k < k∗(b) are mostly �utuating (see right panel, 2 < b < 2.9). In



66 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networksthe absene of degree-degree orrelations the degree distribution density in theneighborhood of a given node is independent of the node degree, and thus theproportion of ooperators in the neighborhood of a given node is that of thewhole network. This implies that the neessary ondition for a pure ooperator
i, stated previously (kCi > bkCj ), beomes ki > bkj , where j is the �utuatingneighbor of i with highest degree, say kj ≃ k∗. Now, a small inrease ∆b makesthose pure ooperators i ful�lling (b+∆b)k∗ > ki > bk∗ to beome �utuating,so that ∆k∗ ≃ k∗∆b. With these onditions one onludes that k∗(b) growsexponentially with b, k∗(b) ∝ exp(b). The linear shape of the bright-olor linein the (b, log k) plane at the left panel of Fig.3.4, for b > 2, niely on�rms thispredition, thus supporting the validity of the heuristi argument.Finally, we want to mention that the invasion proess of defetors as thetemptation to defet inreases on a SF topology ould be quite di�erent if wewere dealing with strutures with a high level of lustering oe�ient. As it hasbeen investigated in [128℄, the existene of a high number of triangular relationswithin a SF network makes ooperation resilient for even higher values of b onthe one hand, but also makes the invasion of defetors quite independent ofthe degree lasses. It is to say, defetors invade homogeneously all the lassesof onnetivity almost at the same time, whih makes the plot 〈c〉(b) muhsharper.3.6 Cooperation times of the �utuating set on SFnetworksWe have noted that the �utuating subpopulation in the dipolar model (seesetion 3.4) is suh that any �utuating individual has a positive probability ofhanging strategy in one time step, so that the dynamis is ergodi in the set ofall on�gurations ompatible with the partition. This is not neessarily the asein a general heterogeneous network, being perfetly possible that a �utuatingnode at a given time has a null one-time-step probability of invasion, but apositive n-time-steps probability for some n > 1; thus, ergodiity in the set ofon�gurations ompatible with the partition is neither ensured nor disarded.In SF graphs eah �utuating individual is wired to (and then ould be in-vaded by) a di�erent number of �utuating individuals, and (eventually) purestrategists, so that one should expet that the fration of time TC it spendsas ooperator di�ers widely from node to node. The lower panel of �gure 3.5shows the average fration of time T k

C a �utuating node of degree k spendsooperating. The average of these quantities ∑k P (k)T k
C in the subpopulation

F , de�nes the parameter 〈TC〉 that appears in equation 3.6, i.e. the average
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Figure 3.5: Cooperation times in the �utuating set. Permanene times τC of theooperation strategy of a �utuating node (Top) and the fration of time TC itooperates (Bottom) as a funtion of the node's degree k and the game parameter bfor BA networks and ǫ = 0. The size of the networks is N = 4 ·103 nodes and averageonnetivity 〈k〉 = 4.



68 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networksindividual ontribution of �utuating nodes to the marosopi index of oop-eration 〈c〉. To avoid misunderstandings onerning the relative importaneof the ontribution of onnetivity lasses to 〈c〉, it is important to bear inmind both, the power-law dependene of P (k) and the right panel of �gure3.4, showing the fration ρkF of �utuating nodes inside the lass of degree k.Given that TC is a proportion of time, it does not provide information onthe time sales of the invasion yles that �utuating nodes experiene. Therandom variable τC (ooperation permanene time) is de�ned as the time spentas ooperator by a �utuating node in eah yle. For the dipolar network,when kF = 0, the one time step invasion probabilities, ΠCD and ΠDC (equa-tions 3.12 and 3.13), beome time independent in the asymptoti regime. Thenone an ompute the probability that the ooperation strategy remains for atime τC ≥ 1 at a �utuating node, simply as
P (τC) = ΠCD(1−ΠCD)

τC−1 . (3.16)In a similar way, the distribution density P (τD) of defetion permanene timesis obtained as
P (τD) = ΠDC(1−ΠDC)

τD−1 . (3.17)Thus the distribution densities of both strategies permanene times are expo-nentially dereasing. For example, at ǫ = 0, i.e. at the border between thePD and the HD game, if one further assumes that the relative size µ(F ) ofthe omponent F is large enough, i.e. µ(F ) → 1, and µ(C) → 0, one ob-tains that the stationary solution of equation 3.14 behaves as c∗ ≃ (b + 1)−1near the limit µ(F ) → 1. The distribution density P (τC) of the ooperationpermanene times of a �utuating node, as a funtion of the parameter b isthus
P (τC) = (2b+ 1)−1

(

2b+ 1

2b+ 2

)τC

, (3.18)and the distribution density P (τD) of defetion permanene times
P (τD) = (2b(b + 1)− 1)−1

(

2b(b+ 1)− 1

2b(b+ 1)

)τD

. (3.19)For SF networks, one expets that the permanene times at the �utuatingnodes show some orrelation with the node's degree. The upper panel of �gure3.5 represents the average permanene time, τkC , that �utuating nodes ofdegree k remain as ooperators as a funtion of b and k, for observation timesof 104 generations. We see that ooperation permanene times are stronglyorrelated with degree: highest τC 's our along the line k∗(b) of maximaldegree in the �utuating set.



3.7. Dynami mirosopi organization of the ooperation 69As we have mentioned before, the heterogeneity of soial ontats in SFnetworks provides loal environments where ooperation has a distintive se-letive advantage at high degree nodes. This not only enhanes the size ofthe subpopulation where �xation of ooperation ours, but also enlarges theaverage total fration of time of ooperation in the �utuating subpopulation.3.7 Dynami mirosopi organization of the oop-erationWe would like to ahieve now a better understanding of the important di�er-enes found between the random and the SF topologies, and in order to dothat, we will perform a mirosopi study of the dynami organization of thesystem. First of all, we need to de�ne the onept of luster or ore of nodesfor both strategies. A ooperator luster (CC) is a onneted omponent (asubgraph) fully and permanently oupied by ooperator strategy si = 1, i.e.,by pure ooperators so that P (si(t) 6= 1,∀t > t0,∀i ∈ CC) = 0. Analogously,a defetor luster (DC) is the subgraph whose elements are pure defetors,namely, when the ondition P (si(t) 6= 0,∀t > t0,∀i ∈ CD) = 0 is ful�lled. Itis easy to see that a CC annot be in diret ontat with a DC, but with aloud of �utuating elements that onstitutes the frontier between these twoores. Note that a CC is stable if none of its elements has a defetor neighboroupled to more than kC/b ooperators where kC is the number of ooperatorslinked to the element. Thus, the stability of a CC is learly enhaned by a highnumber of onnetions among pure ooperators, whih implies abundane ofyles in the CC. This mirosopi struture of lusters is at the root of thedi�erenes found in the levels of ooperation for both networks and explainswhy ooperative behavior is more suessful in SF networks than in homoge-neous topologies. In fat, as far as loops are onerned, the main di�erenebetween the two topologies is that the number of small yles of length L,
NL, are given by (〈k〉 − 1)L and (logN)L, respetively [129�131℄. Therefore,it is more likely that SF networks develop a CC than ER ones. This has beentested numerially by looking at the probability that at least one ooperatorore exists. The results [45℄ indiate that this probability remains equal to 1for SF networks even for b < 2 and that it approahes zero for large values of
b. On the ontrary, for ER networks, the same probability departs from 1 andshows a sudden drop to zero for b = 2.Thus, we will fous now on the number of lusters of ooperators Ncc andthe number of lusters of defetors Ncd for both topologies. In �gure 3.6 weshow the dependene of Ncc and Ncd with b for ER and BA networks. The �rstand most relevant resut we notie onerns the number of ooperator ores:
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Figure 3.6: Number of lusters of ooperators (Left) and number of lusters of defe-tors (Right) as a funtion of the parameter b for both ER and BA topologies. Thesize of the network is N = 4 · 103 with average onnetivity 〈k〉 = 4, and eah pointshown is the average of 103 di�erent realizations of the game and the network.while for ER graphs Ncc there is a wide region of b where there are severallusters of ooperators, for the SF networks the number of ooperator lustersis always 1, no matter the value of b, they always form a single ore. We havealso veri�ed that the ooperator ore in SF networks ontains the hubs, whihare the ones that stik together the whole luster, that would otherwise bedisonneted. This important di�erene greatly ontributes to the well-knownadvantage of ooperators in SF networks, omparing with ER. Looking at theorganization of pure defetors, one an see that there are important di�erenesdepending on the topology, too. In ER networks, pure defetors �rst appeardistributed in several lusters that later oalese to form a single ore for valuesof b < 2, it is to say, before the whole system is invaded by defetors. Con-versely for SF topologies, defetors are organized in several lusters, exeptwhen they �nally oupy the whole system ompletely. This latter behaviorresults from the role that hubs play: as they are the most robust against defe-tor's invasion, highly onneted individuals survive as pure ooperators untilthe fration ρC vanishes, thus keeping around them a highly robust ooperatorore that loses more and more elements of its outer layer when b inreases,until ooperation is �nally defeated by defetion. In �gure 3.7 we show thedependene of the number of lusters of defetors Ncd as a funtion of thefration ρD of defetors present in the system (realize that this last magnitudeobviously inreases with b).We have summarized in 3.8 the piture obtained from the analyses performed.Clearly, two di�erent paths haraterize the emergene (or breakdown) of o-operation. Starting at b = 1 all individuals in both topologies are playing aspure ooperators. However, for b > 1, the pure ooperative level in SF net-
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Figure 3.7: Dependene of the number of lusters of defetors Ncd with the fration ofpure defetors in the system ρD for both SF and ER topologies (note that, in general,though ρD inreases with b, the same value of ρD for both topologies orresponds todi�erent values of b). The size of the network is N = 4 ·103 with average onnetivity
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Figure 3.8: Shemati representation of the di�erent paths from total ooperation tototal defetion as b inreases, for ER and BA topologies.



72 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networksworks drops below 1 and the population is onstituted by pure ooperatorsforming a single CC, as well as by a loud of �utuating individuals. As bis further inreased, the size of the ooperation ore dereases and some ofthe �utuating nodes turn into pure defetors. These defetors are grouped inseveral lusters around the �utuating layer (reall that pure ooperators andpure defetors are never put in diret ontat). For even larger payo�s, theooperator ore is redued to a small loop tying together a few individuals,among whih is highly likely to �nd the hubs, while the ores of pure defetorsgain in size. Finally, pure ooperators and �utuating elements are invadedby defetors an a single N-sized defetor ore is formed. On the ontrary, theoriginal N-sized ooperator ore survives for higher values of b when it omesto ER graphs. However, when b grows, this luster splits into several ooper-ator ores that are in a �ood of �utuating elements. Larger payo�s �rst giverise to several defetor ores that by oalesene form an outer layer that isseparated from a single entral ore of ooperators by individuals of �utuatingstrategies. Finally, for b = 2, an N-sized defetor ore omes out as well.3.8 Dependene on the initial onditionsSo far, we have studied the evolution of the PD dynamis on the system start-ing always from an initial fration of ooperators equal ρ0 = 0.5, i.e., at thebeginning of every simulation, ρ0N nodes have been hosen randomly as oop-erators on the network, on average. In other words, the initial probability forany node to be a ooperator has been 0.5. Now we want to address the issue ofhanging this initial ooperation fration, so it an vary between 0 < ρ0 < 1.We want to analyse the possible in�uene of ρ0 on the �nal equilibrium stateof the system, for all the range of values of the parameter b and we also wantto make a omparison between the two topologies, as usual, ER and SF net-works. Besides, it is important to larify, however, that the distribution ofooperators, given by ρ0 will still be made randomly among the nodes.The variation with the game parameter b of the stationary (asymptoti)average ooperation, 〈c〉(b), for several values of ρ0, is shown in �gure 3.9 forER graphs and BA networks. And as we an see, 〈c〉 depends on ρ0 generallyspeaking, in suh a way that inreases with it, but this dependene is di�erentfor random and SF topologies. When b ∼ 1, the behavior of 〈c〉 for bothtopologies is quite independent from ρ0 , beause there is not a big di�erenebetween being a ooperator or a defetor as far as payo�s is onerned. Thisis also the ase when b is bigger enough to make the whole system defet. Butthere is a wide range of intermediate values of b where this behavior dependson the heterogeneity of the graph.
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Figure 3.9: Average ooperation level in ER (Left) and SF (Rigth) networks as afuntion of b for several �xed initial onentrations of ooperators ρ0 as indiated.The size of the networks is N = 4 · 103 nodes and average onnetivity 〈k〉 = 4. Thesale-free network is a BA graph whose P (k) ∼ k−3. Every point shown is the averageof 103 di�erent realizations of the game and the network.In the ase of ER networks, di�erent initial onentrations ρ0 produe afamily of urves that mainly di�ers in their tails, so the larger the value of
ρ0, the slower the deay of 〈c〉 as b inreases (as we will see next, this is inorrespondene with the perfet saturation of 〈c〉(ρ0) at �xed b, �gure 3.10).On the other hand, in BA networks the e�ets of di�erent initial onditionsare appreiated in the whole range of b values. We thus see that degree hetero-geneity not only favors the survival of ooperation, but also makes the value ofthe average ooperation, at �xed b value, more dependent on initial onditions.In order to study these di�erenes more thoroughly, we plot these sameresults as 〈c〉 vs. ρ0 for several values of the (�xed) parameter b. As it an beseen in �gure 3.10, 〈c〉 typially inreases with ρ0 until saturation is reahedmuh before ρ0 approahes 1. One observes that saturation ours sooner forsmaller values of b. These features are ommon for both lasses of networks.However, some details of the 〈c〉(ρ0) urves are di�erent: �rst, for ER networks,the departure from zero of 〈c〉(ρ0) ours, as b inreases, only above some b-dependent threshold value of the initial fration of ooperators; on the ontrary,for BA networks 〈c〉(ρ0) departs from zero as soon as ρ0 > 0, at all values of
b inside the oexistene region between both strategies. Seond, saturation ismore perfet for ER networks, while for BA graphs the plateau in the 〈c〉(ρ0)urve has some small positive slope. It is interesting to onsider these results inthe light of those found for the Prisoner's Dilemma in regular square latties,where the proportion of C and D tends to depend on the starting proportionfor relatively small values of b, but for larger b the proportions are essentiallyindependent of the initial on�guration [33℄.
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Figure 3.10: Average ooperation level in ER networks (Left) and BA networks(Rigth) as a funtion of the initial onentration ρo for several values of b as indiated.The size of the networks is N = 4 · 103 nodes and average onnetivity 〈k〉 = 4 andeah point shown is the average of 103 di�erent realizations of the game and thenetwork.Let's now fous on the relation between the fration of pure strategists (ρCand ρD) and the parameter b. As stated in the setion 3.2 (and [45℄), for anyasymptoti trajetory there is a partition of the network into three sets, namelythe set PC of pure ooperator nodes, the set PD of pure defetor nodes, andthe set F of �utuating nodes. The behavior of ρC and ρD versus the gameparameter b is plotted in �gure 3.11 for di�erent initial ooperator onentra-tions. The �rst remarkable result is that in ER networks, the density of pureooperators does not depend on ρ0 for the whole range of b values, in sharpontrast with the above mentioned results for the tails of the average level ofooperation 〈c〉(b) (�gure 3.9). It is worth realling that, as we have disussedin setion 3.6, there are two additive ontributions to the average fration 〈c〉of ooperators, namely the measure ρC of the set of pure ooperators, andthe overall fration of time 〈TC〉 spent by �utuating nodes as ooperators,weighted by the relative size ρF = 〈µ(F )〉 of the �utuating set (see equation??). Though the �rst ontribution is, for ER networks, independent of ρ0,the seond one does indeed depend on the initial onditions, as inferred from�gure 3.9 and the relation ρC + ρD + ρF = 1. High initial onentrations ofooperators favor the �utuating set F at the expense of pure defetors, whilethe number of nodes where �xation of ooperative strategy ours remainsapparently una�eted. Thus, ρC is being mainly determined by the networkstrutural features. For example, in our simulations, for large values of b where
ρC is very small, we have observed that the pure ooperator nodes form yles.The �xation of ooperation in these strutures is assured if none of their ele-ments is linked to a �utuating individual that, while playing as a defetor, is
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ρC is almost independent of ρ0 for larger values of b. This behavior orre-lates well with our observations (setion 3.5) on the distribution of strategistsinside the degree lasses. In the �rst range of b values, pure ooperators arepresent in all k-lasses and �utuating individuals are almost homogeneouslydisseminated over low-to-intermediate k lasses. However, for b > 1.7, thereis a b-dependent value of k, say k∗, suh that k-lasses are fully oupied bypure ooperators if k > k∗ while basially no pure ooperators are found inlower k-lasses. In the seond range of b values, where the degree-strategy or-relations are strong, the in�uene of ρ0 on the asymptoti proportion of pureooperators is very small.As disussed in previous paragraphs, while the proportion of pure oop-erators is either independent (ER) or slightly dependent (BA) on initial on-entration ρ0, the measures of the other sets in the partition, F and PD, areindeed more in�uened by the initial onditions. The dependene of the fra-tion of pure defetors ρD with ρ0 for BA and ER networks is qualitatively thesame, that is, the proportion of pure defetors is favored (at the expense of the�utuating set) by a higher initial proportion of defetors. This is onsistent



76 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networks
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1  1.5  2  2.5  3  3.5  4

N
cc

b

ρ0=0.1
ρ0=0.2
ρ0=0.4
ρ0=0.8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  1.5  2  2.5  3  3.5  4

N
dc

b

ρ0=0.1
ρ0=0.2
ρ0=0.4
ρ0=0.8

 0

 5

 10

 15

 20

 25

 1  1.2  1.4  1.6  1.8  2

N
cc

b

ρ0=0.1
ρ0=0.2
ρ0=0.4
ρ0=0.8

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  1.2  1.4  1.6  1.8  2

N
dc

b

ρ0=0.1
ρ0=0.2
ρ0=0.4
ρ0=0.8

Figure 3.12: Dependene with b of the number of luters of ooperators (Ncc) anddefetors (Ndc) for both BA networks (Top) and ER graphs (Bottom), and fordi�erent values of ρ0. The size of the system is N = 4 · 103 nodes, with averageonnetivity 〈k〉 = 4. Every point shown is the average of 103 di�erent realizations.with the lak of degree preferene (orrelation) of pure defetors, whih annottake distintive advantage of degree inhomogeneity: the higher their instan-taneous payo�, the more likely they invade neighboring nodes, whih has thee�et of diminishing their future payo�.Finally, we analyze the onnetedness of the pure strategists sets, as mea-sured by the number of ooperator ores Ncc, and defetor ores Ndc. As wehave shown in setion 3.7 for BA networks and ρ0 = 0.5, for all values of bwhere PC is not an empty set, it is onneted, i.e. Ncc = 1. Looking at�gure 3.12, it an be said that this result turns out to be independent of ρ0:there is only one ooperator ore in BA networks, whih ontains always themost onneted nodes or hubs, for any initial fration of ooperators. Thegrouping of pure ooperators into a single onneted set PC allows to keep asigni�ant fration of pure ooperators isolated from ontats with �utuatingnodes. This "Eden of ooperation" inside PC provides a safe soure of bene�tsto the individuals in the frontier, reinforing the resiliene to invasion of the



3.9. In�uene of the degree of heterogeneity of the network 77set. Pure defetors, on the ontrary, do not bene�t from grouping together,and the set PD appears fragmented into several defetor ores. Note that forvalues of b ≃ 1, where the set PD is empty, Ndc = 0, while for very high valuesof b defetion reahes �xation in the whole network, so that Ndc = 1. Thus,
Ndc(b) must inrease �rst and then derease to 1. In �gure 3.12 we show theomputed Ndc(b) urves for BA networks for several values of ρ0. It is remark-able that these urves almost ollapse, in spite of the fat that the fration ρDof pure defetors does indeed depend on ρ0 (see �gure 3.11). This fat suggeststhat it is the size of the defetor lusters, what hanges with b, not its number,for the ase of BA strutures.In �gure 3.12 we also show the number of lusters Ncc(b) and Ndc(b) for ERgraphs, and for di�erent �xed values of ρ0. Regarding the number of ooperatorores, �rst we notie that the piture desribed in setion 3.7 for the ase
ρ0 = 0.5 still holds when it omes to other values of the inital proportion ofooperators, it is to say, in general both ooperators and defetors form severalunonneted lusters. We also see that exept in the small range 1.4 < b < 1.6,the di�erent urves Ncc(b) oinide, in fair agreement with the independeneof ρC on initial onditions. Note that in the small interval where they do notoinide, the fration ρC of pure ooperators is below 1%, for all values of ρ0.On the other hand, we see that for higher initial proportion ρ0 of ooperators,the set PD is more fragmented and also that Ndc reahes its maximal valuesat higher values of b.3.9 In�uene of the degree of heterogeneity of thenetworkAs we established at the beginning of this hapter, we have been omparingthe results of the PD dynamis and its mirosopial organization for the ex-treme ases of the GM model, i.e., for random and SF topologies only. Now itis the time to analyse the possible di�erenes for intermediate degrees of het-erogeneity. In order to inspet in detail how the results depend on the degreedistribution of the network, we monitor the same magnitudes studied previ-ously just for SF and random topologies, but now when the value of α variesbetween 0 and 1 (we will also inlude the extreme values, for better under-standing). As we have mentioned before, the GM model builds networks withdi�erent degree of heterogeneity, depending only on the parameter α ∈ [0, 1],in suh a way that makes the networks less heterogeneous as α inreases andapproahes 1.Figure 3.13 shows, from left to the right and from top to bottom, the
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α. α = 0 orresponds to a BA network while α = 1 generates an ER graph. In thisase, the networks are made up of N = 2 ·103 nodes and average onnetivity 〈k〉 = 4.Every point shown is the average of 103 di�erent realizations.average level of ooperation 〈c〉, the density of pure ooperators ρC and thedensity of pure defetors ρD as a funtion of b for several values of α. In thisase, the initial distribution of ooperators was set again to ρ0 = 0.5, i.e., at
t = 0 the nodes have the same probability to ooperate or to defet. Theresults show that indeed the densities of pure strategists and the average levelof ooperation do depend on α. Therefore, the role played by the underlyingtopology is on�rmed: the more homogeneous the graph is, the smaller thelevel of ooperation in the system for a �xed value of the temptation to defet
b. Moreover, the transition for di�erent values of α is absolutely smooth andthe systems do not exhibit any abrupt rossover from one kind of behavior(α = 0) to the other (α = 1).We have also explored how nodes where strategies have reahed �xation areorganized into lusters of ooperation and defetion as a funtion of α. Figure3.14 summarizes our omputational simulations for the number of ooperator
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Figure 3.14: Number of ooperator ores for di�erent networks de�ned by the valueof α as a funtion of the density of nodes that are not pure ooperators 1− ρC . Thenetworks are made up of N = 2 ·103 nodes and average onnetivity 〈k〉 = 4, and eahpoint shown is the average of 103 di�erent realizations of the game and the network.ores. In this ase, we have represented Ncc as a funtion of (1 − ρC), thatobviously grows with b. We do it this way in order to have a ommon referenefor di�erent values of α until ooperation breaks down, so the omparison iseasier. The observed dependene of Ncc with α is again smooth and no abrupthange in the behavior of this magnitude ours. It is worth stressing that assoon as the underlying network departs from the limit α = 0 orrespondingto a BA sale-free network, the number of CC slightly di�ers from 1. Thismeans that some realizations give rise to more than one luster of CC. Theprobability to have suh realizations is very small, but in priniple, they arepossible. As α is further inreased towards one, it is lear that pure ooperatorsdo not organize anymore into a single luster. We think that this deviation isdue to the fat that when α > 0 the exponent γ of the underlying network,whih still is a sale-free degree distribution, is larger that 3. It is known thatthis value of γ marks the frontier of two di�erent behaviors when dynamialproesses are run on top of omplex heterogeneous networks. This is the ase,for instane, of epidemi spreading. For 2 < γ ≤ 3, the seond moment ofthe degree distribution P (k) diverges in the thermodynami limit, while it is�nite for γ > 3. As the ritial properties of the system are determined bythe ratio between the �rst (that remains �nite for γ > 2) and the seondmoment, the divergene of the latter when N → ∞ and 2 < γ ≤ 3, makesthe epidemi threshold null. On the ontrary, when the proess takes plaein networks whose γ > 3, the epidemi threshold is reovered, although no



80 Chapter 3. The Prisoner's Dilemma Game on Stati Complex Networkssingular behavior is assoiated to the ritial point [66, 67℄. We expet that asimilar phenomenology is behind the results shown in �gure 3.14.3.10 ConlusionsIn this hapter we have studied the in�uene of the topology on the dynamis,spei�ally, the di�erenes between ER and SF networks when implementingthe Prisoner's Dilemma on top of them. On the one hand, we have measuredthe mean levels of ooperation as a funtion of the one free parameter of ourmodel, the temptation to defet, b, as well as the dependene with the initialproportion of ooperators present on the system, and we have also hekedthe distribution of the ooperation among the onnetivity lasses, for the SFnetworks. On the other hand, we have shown and analytially proved that thereis always a partition of the network into three di�erent sets of individuals, asfar as strategies are onerned, and we have also determined that two di�erentpatterns of ooperative behavior, determined by the underlying struture, anbe learly identi�ed.We have found that the evolution of ooperation in omplex topologiesshows a very rih strutural and dynamial behavior. For values of the temp-tation to defet b lose to one, ER networks outperform SF topologies, but thepresene of hubs and the relative abundane of small loops in SF networks re-vert the behavior of the level of ooperation for intermediate to large values ofpayo�s. The reason why SF networks an hold muh higher levels ooperationthan ER, even when the temptation to defet makes it very expensive, is thatheterogeneous populations o�er to the ooperative strategy the opportunityof positive feedbak evolutionary mehanisms making ooperation the �ttestoverall strategy, in spite of not being the best reply to itself in one-time step.Besides, we have found that regardless of the topology and even the valuesof the parameters of the model, there are always three di�erent lasses of ini-dividuals aording to their asymptoti stategies: the set of pure ooperators
PC, pure defetors PD and �utuating individuals F , and we have developeda simple but very useful analytial model that mimis the ompetition for in-vasion of two highly onneted nodes in order to prove the existene of thispartition of the network in a general ase.Regarding the mirosopi organization of the system, we have found im-portant di�erenes between ER and SF: we have measured the number of lus-ters of ooperators, and shown that, while in SF networks, ooperators formalways one single luster (its relative size depending obviously on the value ofthe temptation to defet), in homogeneous topologies, they form several dis-onneted lusters, and therefore they are 'an easy target' for the attaks of



3.10. Conlusions 81the defetors. Nonetheless, the number of lusters of defetors is always morethan one, in general, for both ER and SF networks.Here, we have also shown that the enhanement of ooperation due tothe heterogenity of the pattern of onnetions among agents is robust againstvariations of initial onditions (meaning di�erent initial onentrations of o-operators, ρ0 but always randomly distributed on the population). While boththe measure of the ooperator set PC where ooperation reahes �xation, andits onnetedness properties are either independent or only slightly dependenton ρ0, the measure of the �utuating set F and the defetor set PD wheredefetion is �xed show a lear dependene of initial onditions, for defetionannot pro�t from degree heterogeneity. On the other hand, the harater-istis of the asymptoti evolutionary states of the PD analyzed here, show asmooth variation when the heterogeneity of the network of interonnetionsis one-parametri tuned from Poissonian to sale-free, demonstrating a strongorrelation between heterogeneity and ooperation enhanement.Finally, though the numerial results presented here orrespond mostly tonetwork sizes N = 4 ·103, we have studied also larger networks up to N = 104,with no qualitative di�erenes in the results. The inrease of network size,while keeping onstant the average degree 〈k〉, turns out to be bene�ial forooperation, due to the fat that it has the e�et of inreasing the maximal de-gree, and thus the range of degree values. This further on�rms how e�ientlyooperation takes advantage from degree heterogeneity.





Chapter 4Other Games on StatiComplex NetworksIn the last hapter, we have been disussing in some detail the dynamis andmirosopial organization of the the so-alled weak Prisoner's Dilemma Game[42℄ on stati omplex networks, where the payo� of a ooperator against adefetor was �xed to S = 0 (stritly speaking, for this value of S, we are reallyat the border between the Prisoner's Dilemma game and the Hawks and Doves-HD- game). In this hapter we want to address very brie�y the issue of otherevolutionary games on graphs.Given the usual payo� matrix for the 2× 2 games:
(

C D

C R S

D T P

) (4.1)and one we have �xed R = 1 and P = 0, we have four di�erent games,depending on the relative ordering of the parameters (the �rst three of whihare interesting well-known soial dilemmas) [22, 125, 126℄:
• The Stag Hunt game [102, 103℄, with R > T > P > S, is a oordinationgame and both strategies are strit Nash equilibria. Players prefer mutualdefetion to unilateral ooperation (S < P ), resulting in an intrinsi fearof individuals to ooperate.
• The Hawks and Doves (or Snow Drift or Chiken) game [37, 41, 99�101, 122�124℄, with T > R > S > P , where players are referred toas greedy, sine they prefer unilateral defetion to mutual ooperation(T > R). This is an anti-oordination game, sine the best strategy foran individual is the opposite to its opponent's.
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• The Prisoner's Dilemma game, for whih T > R > P > S, and whereboth tensions desribed above are inorporated at one, so is the mostdi�ult situation for ooperation to arise.
• The Harmony game, for whih R > S > T > P , so that mutual ooper-ation is the best option here. Thus, this game does not represent a veryinteresting ase of study for us.On �gure 4.1 we sketh the disposition of all of them on the T − S plane.As we explained in setion 2.2, Evolutionary Game Theory predit thatooperation an not survive when playing the Prisoner's Dilemma game onwell-mixed populations, whereas there is an interior equilibrium in the Hawksand Doves game, so the system will end up in a situation where a ertainproportion of both strategies is present. Nonetheless, we also know of theimportant di�erenes introdued by the topology on the weak PD game. Nowwe will study and ompare the ases of a general Prisoner's Dilemma game andthe Hawks and Doves game on omplex networks. Our approah will be verysimilar to the one used in hapter 3, it is to say, we will study the asymptotiequilibrium state of the system, given by the average level of ooperation,when engaged in general PD game and HD, respetively, on top of a omplexnetwork omparing homogeneous and heterogeneous topologies. Then we willfous on the partition of the graph into several sets, and also on the numberand distribution of lusters of the di�erent strategies. Finally, we will lookinto the level of ooperation among the di�erent onnetivity lasses for SFtopologies. On the one hand, we want to study a more generalized Prisoner'sDilemma game, it is to say, situations with other values of the payo� parameter

S < 0, to test the results found in the preeding hapter. And on the otherhand, we will analyse the behavior of the system when playing another 2 × 2game, namely the Hawks and Doves game, and we will ompare the outomeof the game for both senarios.We have used here the same dynami rule as in the previous ase of theweak Prisoner's Dilemma (hapter 3), it is, at eah time every node i of thesystem plays with its nearest ki neighbors, given by the underlying network,and aumulates the payo�s Pi obtained during the round. Then, individualsare allowed to synhronously hange their strategies by omparing the pay-o�s they aumulated in the previous generation with the one obtained by arandomly hosen neighbor j. In this way, if Pi > Pj , player i keeps the samestrategy for the next round of the game, when it will play again with all of itsneighborhood. On the ontrary, whenever Pj > Pi, i adopts the strategy of jwith probability [27, 28, 34, 35, 97, 101℄:
Πi→j = β(Pj − Pi) (4.2)
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Figure 4.1: Shemati representation of the di�erent games on the T − S plane.
where β−1 =max{ki, kj}∆, and ∆ is the maximum possible di�erene betweenthe parameters of the payo� matrix, it is to say ∆ = T (given that S ≥ 0 forthe Hawks and Doves game). For the weak Prisoner's Dilemma studied before,it was also ∆ = T , but for a more general ase of this partiular game, with
S < 0, it will be ∆ = T − S. This probability is proportional to the di�ereneof payo�s of the nodes involved, and it is normalized by the maximum payo� anode an get. Reall that, though it is stohasti, the Repliator-like rule doesnot allow the adoption of irrational strategy, i.e. Πi→j = 0 whenever Pj ≤ Pi.In other words, a node will never adopt the strategy of a neighbor whose payo�was worse than its in the former round of the game.As we did in hapter 3, the dynamis evolves on top of ER [18℄ or BA[8℄ networks, i.e. strategists are loated on the verties of a �xed graph thatditates the pattern of soial interations of the population. The size of thesystem is N = 4 · 103 nodes, and the average onnetivity of the networks is
〈k〉 = 4. One the network has reahed its full size N , the initial strategy ofevery node is randomly set, with a probability of being a ooperator equal to
ρ0 = 0.5 and then the dynamis starts. We let the system evolve for 5 · 103time steps or generations, after whih we hek whether the equilibrium hasbeen reahed. As usual, we again observe the system during a time window of
103 generations. If the slope of C(t) is smaller than 10−2, then we onsider theequilibrium has been reahed. Otherwise, we let the system evolve for another
5 · 103 more generations, after whih, we evaluate it again. The results thatwe show are usually the average of 103 di�erent realizations of networks andinitial onditions, exept we state otherwise.
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Figure 4.2: Color-oded average level of ooperation (Top left), fration of pureooperators (Top right), �utuating individuals (Bottom left) and pure defetors(Bottom right) for ER networks.4.1 Average level of ooperation, and frations ofpure strategists and �utuating individualsAs we have already mentioned, we set R = 1 and P = 0, and explore thedynamis for a ontinuum of values of S and T . So the �gures we present nextwill inlude a omparison of the general Prisoner's Dilemma game (S < 0) andthe Hawks and Doves game (S > 0) at one.The �rst result we present is that the asymptoti existene of the partitionof the networks into pure strategists and �utuating individuals (see setion3.3) is a general result for the games studied in this hapter. In �gure 4.2 weshow the olor-oded average level of ooperation reahed for the system afterthe transient period, as well as the frations of pure strategists and �utuatingindividuals for ER topologies. On the other hand, in �gure 4.3 we representthe same magnitudes for BA networks.We also on�rm that the dependene of the dynamis on the parameter Sis smooth, there is not an abrupt hange of behavior around the line S = 0.Or in other words, we were entitled to use the weak Prisoner's Dilemma, �xingand eliminating the parameter S, instead of using a more strit version of
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Figure 4.3: Color-oded average level of ooperation (Top left), fration of pureooperators (Top right), �utuating individuals (Bottom left) and pure defetors(Bottom right) for BA networks.the game, beause the results do not hange drastially with small variationsaround S . 0.For a �xed value of the temptation to defet T and for both topologies,the more expensive being a ooperator against a defetor gets (i.e., S goingfrom positive to negative values), the lower the average level of ooperation.On the other hand, the fration of pure ooperators ρC does not show a strongdependene with S neither for BA nor ER networks. Pure defetors take overthe whole system for a wide range of the parameters studied (half of the S−Tplane represented, on the ER ase). As expeted, the value of T for whih allthe nodes are pure defetors dereases as S does so, sine lower values of Sor higher values of T make ooperation more expensive. The most importantresult is that there are not always �utuating players present on the systemfor any given value of the parameters. Obviously, if S < 0 and T is highenough, all nodes are pure defetors, and if T is low, all individuals at aspure ooperators, no matter what the value of S is. However, there is also anintermediate area of parameters for whih the �utuating nodes oupy almostthe entire system, being responsible for the maintenane of the average levelof ooperation shown on the system.If we look at �gures 4.2, we observe that the frontier between PC and F



88 Chapter 4. Other Games on Stati Complex Networksis almost S-independent, but the frontier between F and PD does depend onthe parameter S. This makes that the transition in T from total ooperationto total defetion also S-dependent: for high values of S, this transition issmooth, while for negative values of S it is quite sharp, suggesting an almostimmediate onversion of the nodes of the system from PC to PD.Regarding the in�uene of the topology, as one ould expet, both theaverage level of ooperation and the fration of pure ooperators are higherfor BA than for ER networks. We also see that the fration of �utuatingindividuals (when present) is larger in the ER networks, and the limits of thearea for whih they are present are more learly drawn in this ase.
4.2 Number of Clusters of Cooperators and Defe-torsUsing the same de�nition of Cluster presented in the setion 3.7, we onsidera ooperator luster (CC) as a onneted omponent (subgraph) fully andpermanently oupied by ooperator strategy si = 1, i.e. omposed of pureooperators so that P (si(t) 6= 1,∀t > t0,∀i ∈ CC) = 0. Analogously, adefetor luster (DC) is the subgraph whose elements are pure defetors,it is,a subgraph where the ondition P (si(t) 6= 0,∀t > t0,∀i ∈ DC) = 0 is ful�lled.In �gure 4.4 we show the number of lusters of ooperators Ncc and defe-tors Ndc as a funtion of T for several disrete values of the parameter S andfor both ER and BA topologies in both the Hawks and Doves (S > 0) andthe general Prisoner's Dilemma game (S < 0). As we an see, one again thegeneral result obtained previously for the weak Prisoner's Dilemma (setion3.7) holds in these senarios: while ooperators form several lusters on ERtopologies, for the BA networks, as long as ooperators survive in the system,they remain together forming one single luster whih always inludes mostof the higher onneted nodes, making thus the system muh stronger to theattaks of the defetors. Those, on the other hand, always form more thanone luster, in general, on both random and sale-free networks. This behaviorof the mirosopi organization of the strategies in the system for the Hawksand Doves and the general Prisoner's Dilemma is not very surprising, sineit is proven to be basially due to the underlying topology, and it de�nitelyseures the robustness of the results presented in setion 3.7, and highlightsthe di�erenes between homogeneous and heterogeneous networks.
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Figure 4.4: Number of lusters of ooperators Ncc and defetors Ncd as a funtion of
T for the Hawks and Doves game (Top panels) and the general Prisoner's Dilemmaase (Bottom panels), for both ER and BA topologies. The size of the networks is
N = 4000 nodes and average onnetivity 〈k〉 = 4. Every point shown is the averageof 5 · 102 values



90 Chapter 4. Other Games on Stati Complex Networks4.3 Distribution of the ooperation among the de-grees of onnetivityWe an study the role of heterogeneity on the dynamis of both PF and HDgames by plotting the probability of a node with degree k of being a ooperator,
ρkC , in a similar way as we did in setion 3.5. Reall that the total fration ofpure ooperators in the system an be written as:

ρC =
∑

k

P (k)ρkC (4.3)with P (k) being the degree distribution, and where the relations ρC+ρD+ρF =

1 and ρkC + ρkD + ρkF = 1 are ful�lled. As one an see in �gure 4.5, when T issmall enough, all nodes are ooperators, regardless of their onnetivity, but as
T inreases, nodes with medium degree are less likely to be ooperators, whilethe higher lasses remain as ooperators until the value of T is suh that levelof ooperation vanishes in the system ompletely. This is in perfet agreementwith the results found for the weak Prisoner's Dilemma [35, 36, 45℄, and shownin setion 3.5. As we ommented in detail in that setion, the reason whythe ooperation an survive for SF topologies is due to the existene of thehubs, whih are interonneted, play as ooperators, and surround themselvesby more ooperators, reating a nie environment of ooperation (or 'Eden')where other ooperator nodes with lower degree an get bene�ts from it, andresist the attaks of the defetors. On the other hand, defetors an not takeadvantage of the heterogeneity of the network, beause they are not stable inthe long term when set in a hub.4.4 ConlusionsIn this hapter we wanted to hek whether or not some of the importantprevious results exposed in hapter 3 for the weak Prisoner's Dilemma (it is,when S = 0) still hold for the more general ases, and even for other two-strategy game, spei�ally the Hawks and Doves.As we have seen, given the payo� matrix of the game, the parameter or-dering for the Prisoner's Dilemma is T > R > P > S, while for the Hawks andDoves game, it is T > R > S > P . So, although in both ases players preferunilateral defetion to mutual ooperation, the di�erene between them is thatin the �rst ase, the worst strategy is to ooperate against a defetor, whilein the seond setting, it is to mutually defet. As usual, we have �xed theparameters P = 0 and R = 1, so to have two free parameters, the temptationto defet, T and the suker's payo�, S. In this way, for a �xed value of T > 1,
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Figure 4.5: Probability of �nding a Pure Cooperator of degree k in SF networksfor di�erent values of the parameter T . (a) S=-0.2 and (b) S=-0.1 orrespond toPrisoner's Dilemma senarios, while () S=0.1 and (d) S=0.2 are Hawks and Dovesituations. The networks have N = 2 · 103 nodes.if S < 0, we are playing Prisoner's Dilemma, while if S > 0, we are playingHawks and Doves. Cooperation gets more expensive every time T inreasesor if S dereases. On the general Prisoner's Dilemma (meaning, for values of
S < 0 stritly, instead of the weak limit, S = 0), we have heked that thedependene with the parameter S is smooth, there are no abrupt hanges, butnonetheless, there are some di�erenes. In partiular, for a �xed value of thetemptation to defet, the more negative S gets, the more expensive the oop-eration is, so both the mean value of ooperation, 〈c〉, and the level of pureooperators, ρC , derease. And also the level of �utuating individuals, ρF ,drops remarkably, while obviously, the level of pure defetors, ρD, inreases.In this situation, sine the levels of F are low, the transition from pure o-operation to pure defetion as T inreases is quite sharp. On the other handfor Hawks and Doves (S > 0) the ooperation is less expensive than for thePrisoner's Dilemma and the same value of T , so both the mean value of oop-eration 〈c〉, and the fration of pure ooperators ρC are obviously higher thanin the Prisoner's Dilemma senario, and the level of �utuating individuals,
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ρF , is also muh higher. In fat, when S > 0, there is a wide region of the
S − T plane where �utuating individuals learly take over the entire system,and this makes the transition from pure ooperation to pure defetion as Tinreases smooth.Regarding the in�uene of the underlying topology, we an on�rm thatthe heterogeneity of the network always favors the ooperation for both games:
〈c〉 and ρC are muh higher for SF than for ER networks, while the �utuatingand pure defetors are less present on heterogeneous systems. We have hekedthe mirosopi organization of the ooperation on the system as well, and wehave found that the results shown in setion 3.7 still hold both for the generalPrisoner's Dilemma ase and the Hawks and Doves: while for SF topologies,ooperators organize into just one single luster, for ER they form several.Thus, in the �rst ase the system an hold muh higher levels of ooperationeven when it is very expensive (for high values of T or negative values of S). Onthe other hand, the defetors always organize into several lusters, in general,regardless the underlying topology.Finally, if we look at the distribution of the ooperation aross the on-netivity lasses in SF networks, we an see that, as we have proved previ-ously for the weak Prisoner's Dilemma ase, when ooperation is not expen-sive (T < 1.5), pratially the whole system plays as a ooperator, but when itgets more expensive, the defetors start taking over the medium lasses, whilethe high lasses remain unonquered as long as ooperation an survive. Thishierarhial organization is preserved for all the values of S explored.To summarize, in this hapter, we have proven the robustness and strengthof the important results previously shown in hapter 3. We have proved that allof them hold for a wide range of parameters, speially the important di�erenesregarding the topology and the mirosopi organization of the system.



Chapter 5The Prisoner's Dilemma Gameon Random Sale-Free NetworksAs it has been well established in previous hapters, when implementing thePrisoner's Dilemma (PD) game on top of omplex networks, sale-free (SF)topologies greatly enhane ooperation [34�45℄, omparing with other topolo-gies as ER networks. It is also well known that the heterogeneity on the degreedistribution of these strutures is a ruial fator in order to ahieve suh highlevels of ooperation in the system. More spei�ally, the hubs, or nodes withthe highest onnetivity, at always as ooperators, surrounding themselveswith middle-lass ooperators, and reating a unique luster (or 'Eden') of o-operation that is able to resist the attak of defetors, even when ooperationgets really expensive. Nonetheless, up to now we have only foused on the BAmodel [8℄, among other SF network models available in literature (for a quikreview of some of them, see [12, 63℄). BA SF networks have some orrelationsby onstrution, the so-alled age-orrelations [11, 13, 61℄. It means that oldernodes, the ones that arrived earlier to the system when it is being built areinteronneted, sine they formed the original ore of nodes, and besides, theseolder nodes usually beome hubs as the network grows. The existene of age-orrelations an be found in some real systems also, suh as the ollaborationor itation networks, or the 'old boy' network, made up of former students ofthe Ivy League that now work at the top investment banks [9℄.In this hapter we want to study the evolution of ooperation in 'totallyrandom' SF strutures, it is to say, without any kind of orrelations. Wepresume that these age-orrelations among the highly onneted individuals ofBA networks enhane ooperation [34, 36℄, by making the single ooperatorluster even more robust to the possible invasion of defetors. Thus, now it isour intention to analyse the situation when onsidering the same PD dynamis



94 Chapter 5. The Prisoner's Dilemma Game on Random Sale-Free Networkstaking plae on top of a randomized version of BA topologies. Our �rst goalin the study of suh random SF networks is to hek if the deletion of thehub-to-hub links a�ets indeed the struture of ooperation observed in BAnetworks, explaining qualitatively the drop in the ooperation level as a breakdown of the ohesive arrangement of ooperators.We want to study in detail the struture of ooperation in random SFnetworks, and in order to do so, on the one hand we will perform our usualnumeri simulations. Spei�ally, we will perform a rewiring proess of theSF networks obtained by means of the BA model, whih is a proedure thatdestroys any kind of orrelations present in the original system [13℄, preservingthe onnetivity of every node, and therefore the original degree distribution,and then we will implement the usual PD dynamis. On the other hand, wewill also address the problem analytially, by using a degree-based mean-�eldapproximation in order to try and inorporate the heterogeneity in the numberof soial ontats of individuals in the Repliator Equation [97, 106�108℄ (seealso setion 2.2.2). To this end, we will make a further ompartmentalizationof the strategists in degree-lasses, by de�ning the fration of ooperators anddefetors with degree k, so we will have an equation for the evolution of theooperation in every lass of onnetivity k. Finally, we will ompare the resultsobtained with both methods, disussing whether or not this approximation isaurate enough to explain some of the basi behaviors of the ooperation inthe system.5.1 Numerial Simulations on Random Sale-Free Net-worksTo study the struture and dynamis of ooperation in random SF networkswe have performed a rewiring proess [132℄ of SF networks built via BA meh-anism. As we have already seen in hapter 2.1.3, the BA model onsiders thatthe network is grown from an initial ore of m0 nodes, inorporating a newnode to the network every time step. Besides, every new node launhes m linksto the nodes already present in the growing network, following a preferentialattahment rule, i.e., the probability of reeiving a link from the new nodeis proportional to the degree of the nodes. The networks generated using theBA model have a power-law degree distribution, P (k) ∼ k−γ , with γ = 3 but,at the same time, they possess important features that make them di�erentfrom random SF networks onstruted by means of purely statistial algo-rithms suh as the Molloy-Reed on�gurational model [133℄. These di�erenesare the previously mentioned age-orrelations that have as a onsequene theinteronnetion of highly-onneted elements or hubs. The links between hubs
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Figure 5.1: Shemati representation of the rewiring proess of two pairs of nodes.have been shown to play a ruial role in the survival of ooperation [34, 36℄,sine when they are removed the ooperation level dereases notably.The rewiring proess is made as follows (see �gure 5.1): let i and j be a pairof neighbors, so they share a link, and let be m and n be another pair of nodeslinked together. Then we interhange the i − j and the m − n links, in suha way that in the �nal state, i− n and m− j are the new pairs of neighbors.Of ourse, we make sure that i 6= j 6= m 6= n, to avoid double links andauto-links, i.e., links that onnet a node with itself. We repeat the proess Ntimes, heking that the �nal networks have a unique onneted omponent.As we have mentioned before, following this rewiring sheme destroys any kindof orrelations present in the original network preserving the degree sequeneof the graph, and thus keeping the same degree distribution (P (k) ∼ k−3) asin the original BA network.One the network is rewired, we perform the numerial simulation of theevolutionary dynamis ditated by the Prisoner's Dilemma, whose payo� ma-trix is given, as usual, by:
(

C D

C R S

D T P

) (5.1)where we set, again P = S = 0, R = 1, T = b > 1, so we only have to dealwith one ontrol parameter, the temptation to defet b [31, 34, 127℄.In the initial on�guration of the system, the probabilities of being aooperator or a defetor are the same (ρ0 = 0.5), and the strategists arerandomly distributed aross the network. On the other hand, we will usethe same updating rule as in previous hapters, that is, the Repliator-like[27, 27, 28, 34, 35, 97, 101℄, so player i adopts the strategy of its neighbor j
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Figure 5.2: Comparison of the levels of ooperation ahieved in the stationary statefor ER, BA and random SF networks, as a funtion of the temptation to defet b. Allnetworks are made up of N = 4 · 103 nodes and have an average onnetivity 〈k〉 = 4.Every point shown is the average over 103 di�erent realizations.for the next game round with probability:
Πi→j = β(Pj − Pi) (5.2)where Pi and Pj are their orrespondent payo�s from the last round of thegame, and with β = (max{ki, kj}b)−1.The details of the numerial analysis are similar to those in previous hap-ters: the networks we generated have N = 4 ·103 nodes and an average onne-tivity 〈k〉 = 4. We let the system evolve until a stationary regime is reahed.This stationary regime is haraterized by an average level of ooperation 〈c〉,that is the fration of C players in the network, 〈c〉 = c/N . To ompute 〈c〉 welet the dynamis evolve over a transient time τ0 = 5 ·103, and we further evolvethe system over time windows of τ = 103 generations. In eah time window,we ompute the average value and the �utuations of c(t). When the �utu-ations are less than or equal to 1/

√
N , we stop the simulation and onsiderthe average ooperation obtained in the last time window as the asymptotiaverage ooperation 〈c〉. In order to make an extensive sampling of initial on-ditions and network realizations we have performed 103 independent numerialsimulations for eah value of the temptation to defet b studied, and averagedaordingly the values 〈c〉 found in the realizations.First of all, in �gure 5.2 we show a omparison of the levels of ooperationahieved by suh random SF networks, as well as original BA and ER topolo-gies, and as it an be seen, our results on�rm previous �ndings: the removal



5.1. Numerial Simulations on Random Sale-Free Networks 97of age-orrelations makes random SF networks muh less robust to defetionthan BA networks [35, 36℄, so the level of ooperation drops substantially. Onthe other hand, in �gure 5.3(a) we have also plotted the average level of o-operation 〈c〉 as a funtion of b, as well as the level of pure strategists and�utuating individuals present on the network. It is to say, on these topologieswe have also found that on the stationary regime, there is a partition of thenetwork into pure strategists (pure ooperators PC and pure defetors PD),and �utuating individuals (F ). Notie that the partition of the system intopure strategists and �utuating individuals has been made following the sameriteria as in setion 3.3. As one ould expet, the fration PC dereases with
b, the �utuating take over the network for a wide range of medium valuesof b, and the PD �nally invade the system for large values of the parameter.Nonetheless, the fration of PC is remarkably lower than that for the ase ofBA networks or even ER topologies, whereas the �utuating individuals dom-inate the system for a wider range of b, so the level of ooperation is almostexlusively due to them. This is a very di�erent senario from those studiedfor BA SF networks (ompare with �gure 3.2).Moreover, in �gure 5.3(b) we have plotted the number of ooperator lus-ters Ncc and defetor lusters Ndc as a funtion of b, using to that aim thesame de�nition as in setion 3.7, a ooperator (defetor) luster is a onnetedsubgraph omposed of nodes that are pure ooperators (defetors). The �rstdi�erene with respet to BA networks is that here we �nd realizations withmore than one ooperator luster, whereas for BA networks, the number oflusters was always exatly Ncc = 1, as long as 〈c〉(b) > 0. This di�ereneexplains the drop in the ooperation level previously observed [34℄: the morefragmented the ooperators are arranged, the less soures of bene�ts they �ndin their surroundings and the larger is the probability to be invaded by theinstantaneous defetors that are in ontat with them. Regarding the defetorlusters we observe the same piture as in BA networks: PD are arranged inseveral lusters when they start to invade the network (b & 2). The numberof defetor lusters dereases as they start to grow in size and glue together,and �nally ollapse into a single one, when all the network has been totallyinvaded by pure defetors.We have also heked the probability that a node of degree k is a ooperatorin the stationary regime. Our numerial simulations show that, in agreementwith previous numerial observations we have made in BA networks (see setion3.5), high degree nodes are more likely to at as ooperators than intermediateor low degree individuals.Summing up, in random SF networks the fragmentation of the oopera-tor lusters together with the extremely low fration of pure ooperators and
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Figure 5.3: (a) Average level of ooperation 〈c〉 as a funtion of the temptation todefet b in random SF graphs. The panel also shows the orresponding dependeneof the fration of pure ooperators (PC), pure defetors (PD) and �utuating (F)players. (b) Average number of ooperator lusters Ncc and defetor lusters Ndcas a funtion of b. The networks are made up of N = 4 · 103 nodes and an averageonnetivity 〈k〉 = 4. Every point shown is the average over 103 di�erent realizations.



5.2. The degree-based mean �eld approximation 99the prevalene of �utuating individuals not only makes the average level ofooperation drop in omparison with that same PD dynamis on top of BAnetworks, but also lead to an organization of ooperation that is quite di�erentto that observed in BA SF networks. Therefore, we an on�rm that the highlevel of ooperation that BA SF networks an hold is not only due to its degreedistribution, buy also due to the so-alled age-orrelations that link togetherthe hubs.5.2 The degree-based mean �eld approximationThe random SF graphs used in the simulations above are free of any kind oforrelation between the properties (age, degree, et...) of two adjaent nodes.Therefore, it is amenable to study analytially the evolution of the ooperationby onsidering a similar approah to that used for disease spreading proessesin omplex networks [65�67℄ with arbitrary degree distributions and no or-relations. To inorporate the heterogeneity in the number of soial ontatsof individuals we make a further ompartmentalization of the strategists indegree-lasses. In this sense, we label ck and dk the frations of ooperatorsand defetors with degree k, respetively, so that the total number of ooper-ators and defetors will be:
c = N

∑

k

P (k)ck , (5.3)
d = N

∑

k

P (k)dk . (5.4)Obviously the relation ck + dk = 1 holds, and, instead of desribing the evolu-tion of the fration of ooperators in the population via the well-known Repli-ator Equation [97, 106�108℄, we an write now the evolution of the frationof ooperators with degree k as:
ċk = (1− ck)Π

DC
k − ckΠ

CD
k , (5.5)where ΠDC

k is the probability that a defetor of degree k hanges its strategyto ooperation, and analogously, ΠCD
k is the probability that a ooperator ofdegree k hange its strategy to defetion.Assuming that the network has no degree-degree orrelations, and followingthe repliator-like update rule (5.2), we an write the probabilities ΠDC

k and
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∑
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∑
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]

(1− ck′ ) , (5.7)where the funtion Θ[x] is de�ned as Θ[x] = x if x > 0 and Θ[x] = 0 otherwise.Besides, PC
k and PD

k are the payo�s obtained by a ooperator and a defetorof degree k respetively, and an be written as
PC
k = k

∑

k′

k
′

P (k
′

)

〈k〉 ck′ = kl c , (5.8)
PD
k = b · klc , (5.9)where lc is the probability that a node has a ooperator neighbor. Now we aninsert the above two expressions (5.8) and (5.9) in equations 5.7 and 5.6 and�nally write the evolution equation of the fration of ooperators with degree

k (5.5) as
ċk = (1− ck)
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〈k〉 β lc(bk
′ − k)(1− ck′ ) , (5.10)where we have separated the ontributions to the transition C→D that omefrom neighbors with k

′

> bk and k
′

< bk, so that it is lear that the numberof degree lasses that partiipate in the transition C→D is larger than thosethat in�uene the hange D→C.We have numerially solved the set of equations 5.10 using both power-lawand a Poisson distribution for the generi expression of the degree distribu-tion P (k). As initial onditions, we have used a homogeneous distribution ofooperators and defetors for all the degree lasses: ck(t = 0) = a ∀k where
a is a random variable homogeneously distributed between [0, 1]. This way,the initial fration of ooperation is ρ0 = 0.5, in agreement with the numerialexperiments shown in the previous setions.Unfortunately, the numeris learly showed that the total ooperation al-ways deays to zero when b > 1, thus failing to explain the ooperation levels



5.3. Targeted ooperation 101observed in the numerial simulations in both random SF networks and ERgraphs. Nonetheless, this result is onsistent with previous �ndings, whihhave shown that the mean-�eld approximation an not explain satisfatorythe observed survival of ooperation. However, in the next setion we willstudy the behavior of the system when it starts from a very spei� set ofinitial onditions: the targeted ooperation.5.3 Targeted ooperationWe have failed to use the degree-based mean �eld approximation to explainthe observed non-zero level of ooperation when simulating the PD dynamison top of random SF networks. Now we study a very partiular ase for bothrandom SF network simulations and our degree-based mean-�eld approxima-tion with a partiular set of initial onditions. As we will see next, the resultsshow that at least, if not in perfet agreement, the two ases bare some resem-blane on the qualitative behavior of both the time evolution C(t) towards thestationary state and the �nal state ahieved by the state, expressed throughthe dependene 〈c〉(b).It is important to stress that the main assumption behind the above mean�eld approah is that the average level of ooperation inside a degree-lass, ck,is a proper magnitude for desribing the state of the nodes within this degree.In partiular, this assumption is stritly orret when ck is either 1 or 0. Thismotivated us to study the solution of equations 5.10 using a partiular set ofinitial onditions that we have alled the targeted ooperation, and that areexplained next.We de�ne targeted ooperation as a set of initial onditions for the systemdesribed by 5.10, where ck(t = 0) = 1 if k > k∗ and ck(t = 0) = 0 if k < k∗.It is to say, all nodes whose onnetivity is higher than a given value k∗ areset initially as ooperators, while all those with lower number of neighborswill be defetors. We have arefully explored the solutions of equations 5.10when P (k) is a power-law degree distribution. To this end, we have onsideredpower-law distributions with several values of the exponent γ, and we havealso used di�erent values for the degree threshold k∗. The numerial solutionof equations 5.10 reveals that, in this ase, the ooperation survives for b > 1,reahing a stationary value that depends on both the value of b and that ofthe threshold k∗. In �gure 5.4 we show the time evolution of the averagelevel of ooperation for several values of b and k∗ = 2 and k∗ = 3. Thedegree distribution in the �gure is a power-law with γ = 3. The solutionsshow that the larger k∗ and/or b are, the lower the ooperation level is, whihmakes perfet sense, sine they imply, respetively that the number of initial
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Figure 5.4: Time evolution of the fration of ooperators 〈c〉(t) obtained solvingequation 5.10 when targeted ooperation is used as initial onditions and being P (k)a power-law with γ = 3. The di�erent urves orrespond to several values of b, asshown in the bottom of the �gure. The targeted ooperation used orrespond to (a)
k∗ = 2 and (b) k∗ = 3. Notie the log-log representation of the axes.
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Figure 5.5: Several examples of the time evolution of the random SF network numeri-al simulations for targeted ooperation. All the ases shown in the (Left) panel have
k∗ = 20, while those in the (Right) one, orrespond to simulations with a �xed valueof b = 1.2. The networks are made of N = 4 · 103 nodes, with average onnetivity
〈k〉 = 4 and γ = 3. Notie the log-log representation of the axes.
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Figure 5.6: The average level of ooperation 〈c〉 as a funtion of the temptation todefet b, for several values of the degree threshold k∗ for numerial simulations ontop of random SF networks with targeted ooperation. The networks are made of
N = 4 · 103 nodes, with average onnetivity 〈k〉 = 4 and γ = 3.ooperators is lower, or that the ooperation itself gets more expensive.On the other hand, it is interesting to ompare these results with the valuesobtained for our onventional simulations on top of random SF networks (see�gure 5.5). We see that the behavior of both systems are relatively alike, as faras time evolution of the ooperation is onerned (but, of ourse, the evolutionof the random SF networks displays �nite size �utuations). As it an be seenin the (Left) panel of �gure 5.5, for a �xed value of k∗ and for low or mediumvalues of b, the level of ooperation inreases with time, until it gets its �nalvalue (whih depends inversely on b), and for higher values of b, the level ofooperation on the system eventually goes to zero. Conversely, if we �x thevalue of b ((Right) panel of �gure 5.5), the bigger the k∗, the lower the �nallevel of ooperation the system an ahieve. Besides, in �gure 5.6 we show thedependene of the level of ooperation 〈c〉 with both the temptation to defet
b and with the value of the threshold k∗.5.4 Dependene with the exponent of the power-lawdistributions for the mean �eld approximationReturning now to the degree-based mean-�eld approah, it is interesting tostudy in detail the e�et of the threshold k∗ over the asymptoti level of oop-eration. In partiular, we an fous on the minimum amount of degree lasses
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Figure 5.7: Phase diagram k∗c (b). The three urves orrespond to di�erent power-law distributions (namely, γ = 4, 3 and 2). Eah urve k∗c (b) represent the borderbetween two di�erent asymptoti regimes for the evolution of equations 5.10 withtargeted ooperation: The area below the urves orrespond to the points (b, k∗)where targeted ooperation yield nonzero asymptoti level of ooperation. Conversely,the area above the urves orrespond to the targeted initial onditions for whih theevolution of equations 5.10 yields 〈c〉 → 0.
that we have to �ll initially with ooperators so that ooperation is able tosurvive asymptotially in the system. We have arefully explored di�erent setsof initial onditions orresponding to di�erent values of k∗. Starting from alow value of k∗ we have solved equations 5.10 and omputed the �nal level ofooperation 〈c〉. If 〈c〉 > 0 we inrease the value of k∗ and solve again thesystem 5.10. This proess is iterated until we reah a value k∗c for whih oop-eration �nally vanishes. The ritial value k∗c represents the minimal amount ofooperator degree lasses needed at time 0 to sustain asymptotially a nonzerolevel of ooperation. In �gure 5.7 we have plotted the funtions k∗c (b) for threepower-law degree distributions (γ = 2, 3 and 4). Obviously, we observe thatas the ooperation gets more and more expensive, it is neessary to �ll moredegree lasses to assure a nonzero level of ooperation. More interestingly, weshow that the heterogeneity of the network (or in other words, a lower valuefor the exponent γ in the degree distribution P (k)) inreases the value of k∗c .This result is related to the fat that �lling a given amount of degree lasses ismore e�ient (more nodes are initially set as ooperators) when the networkis more heterogeneous.



5.5. Comparison between simulations and mean-�eld approximation for the targetedooperation initial onditions 1055.5 Comparison between simulations and mean-�eldapproximation for the targeted ooperation ini-tial onditionsWe an say that the mean �eld approah represents a useful tool for sub-stituting omputationally expensive numerial simulations to a given extent.However, how aurate are the results of the solutions of equations 5.10 whenompared to numerial simulations with targeted ooperation as the initialondition? To hek the reliability of the degree-based mean �eld approah inthe ontext of targeted ooperation we have omputed the diagram 〈c〉(b) forrandom SF networks with γ = 3 using two di�erent sets of initial onditionsorresponding to k∗ = 3 and 4. In �gure 5.8 we show the results of the numer-ial simulations ompared to the results obtained by solving equations 5.10.Obviously, the agreement is not omplete but we an say that the dependeneof the level of ooperation with the temptation to defet b follows the samequalitative behavior and the ooperation tends to zero (〈c〉 & 0) around thesame values of b.The values of b for whih 〈c〉 = 0 in eah of the urves of the �gures areobviously related to the values k∗c . Our results show that, although the level ofooperation starts dereasing earlier (for lower values of b), the urves 〈c〉(b)obtained from numerial simulations on top of random SF networks an holdlarger values of b with 〈c〉 > 0 than the system desribed by equations 5.10.On the other hand, the numerial simulations yield very low (but yet non-zero) values of 〈c〉 for those values of b for whih ooperation asymptotiallyvanishes solving equations 5.10. The drop of the level of ooperation is muhmore abrupt for the mean-�eld senario. Therefore, this mean �eld approahseems to be, at least, of help to study the behavior of k∗c (b) and the asymptotilevel of ooperation of the system when targeted ooperation is initially plaedin the system.Regarding general (i.e. non-targeted ooperation type of) initial onditionsfor the degree-based mean �eld equations 5.10, some omments are in order.For both, power-law and Poisson degree distributions P (k), random uniformlydistributed values for ck(t = 0), as well as �xed value ck(t = 0) = 0.5 (mim-iking the initial onditions in the numerial simulations of previous setion),led to asymptoti zero level of ooperation as soon as b > 1. This suggeststhat, generially speaking, mean �eld approahes (even in generalized forms,as equations 5.10) to the evolutionary dynamis of prisoner's dilemma gameson graphs are likely bound to fail to aount for the numerially observed sur-vival of ooperation. This would be in agreement with some previous results[134℄ on a partiular type of arti�ial networks that allow a rigorous analysis
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Figure 5.8: Evolution of the asymptoti level of ooperation 〈c〉 obtained when (i)solving the mean �eld (MF) equations 5.10 and (ii) omputed through numerialsimulations (NS) of the evolutionary dynamis on top of a random SF network. Thedegree distribution used is a power-law with γ = 3. In both ases we have set targetedooperation as initial onditions for the evolutionary dynamis. We have used k∗ = 3and 4.of the issue. To put it in plain terms, the network reiproity mehanisms[26℄ that enhane the evolutionary survival of ooperation in network settingsseem to be out of reah from the (homogeneity) mean �eld assumptions, in thesense that they are assoiated in an essential way to �utuations of averagedquantities, like ck whih are the basi desriptors in mean �eld approahes.Besides, the existene of loops and yles is also a mehanism able to promoteooperation that is overlooked by the mean-�eld approah.5.6 ConlusionsSale-free networks have been reently shown as the graphs that better pro-mote ooperation. In this hapter we have shown that the power-law degreedistribution annot be onsidered as the only root for the promotion of oop-eration. At variane with the BA networks, the SF graphs onsidered in thishapter are free of any kind of node-node orrelation. The �rst onlusion ofour study is that we on�rm the previous �nding pointing out the fat thatooperation deays when no orrelations are present in the network. Moreover,we have shown that the organization of ooperation is dramatially di�erentfrom that of the BA network, showing that ooperators an arrange in morethan one luster, inreasing the probability of being invaded by defetors. Inother words, the �xation of ooperation is muh lower than in SF networks



5.6. Conlusions 107with orrelations, thus ompleting the piture provided by other studies whereorrelations were added into SF networks [128, 135℄ enhaning the promotionof ooperation of BA networks. On the one hand, our study in random SFnetworks an be onsidered as the null model for the study of the ooperationin other types of SF graphs. Besides, our results highlight the importane oftaking into aount other strutural properties beyond the degree distributionof the network [136℄ in order to apture the mehanisms that help to �xateooperation in real omplex networks.The seond part of the hapter presents a degree-based mean �eld ap-proah to study analytially networks with arbitrary degree distribution andno degree-degree orrelations (suh as random SF networks). The approah re-lies on a degree ompartmentalization of ooperators and defetors strategists.We have shown that, ontrary to di�usion dynamis where a similar approahhas been applied [65�67℄, the degree-based mean �eld equations do not workorretly when general initial onditions are applied, sine no asymptoti levelof ooperation is observed when the temptation to defet is larger than the re-ward to ooperation (b > R = 1). On the other hand, when a partiular set ofinitial onditions is used (onsisting in plaing all the ooperators in the higherdegree lasses of the network) the solution of the mean �eld yields a non zerolevel of ooperation for a number of targeted initial on�gurations. The resultsobtained in this latter ontext qualitatively agree with those obtained whenextensive numerial simulations on top of random SF graphs are performed.As a onlusion, the results presented in this hapter omplete the studiesabout the Prisoner's Dilemma on top of SF networks showing that node-nodeorrelations play a key role for sustaining a high level of ooperation. In thisline, the wrong funtioning of the degree-based mean �eld approah furtheron�rms that heterogeneity is not the unique responsible of enhaning oop-eration. The presene of features that are beyond the sope of this mean �eldformulation (even in unorrelated graphs) suh as yles or loops seems to beat the root of ooperation enhanement.





Chapter 6The Prisoner's Dilemma gameon Sale-Free networks withlimited number of interationsIt has been widely studied in the literature how on omplex networks, namely,far from the well-mixed assumption or regular latties [31℄, ooperation hasmuh better hanes to survive, even when it gets very expensive [36, 38, 40,119℄. Spei�ally, it has been proved that heterogeneity not only reproduesmuh better some topologial features of the soial systems [11, 12℄, suh asthe degree distribution, but also greatly favors ooperation. This happens,as we have seen in some detail in hapter 3, thanks to the formation of onesingle luster, entered on the interonneted ooperator hubs, that reatea 'supporting system' for the individuals, in order to resist invasions fromdefetors [34, 37℄. Nonetheless, when modeling some aspets of the behavior ofindividuals in a soiety using evolutionary games on omplex networks, usuallythe number of interations a node establishes in every round is onsidered equalto the number of topologial neighbors it has. This widely used assumptiondoes not take into aount real onstrains suh as the limited amount of timeto deal with soial aquaintanes nor the energy it osts to the node to payattention to eah of its neighbors.In this hapter we analyze a more realisti senario in whih agents arelimited to interat with a given number of neighbors during eah round of thegame. In partiular, we are interested on studying the e�et of suh a restri-tion in the number of interations per round of the evolutionary Prisoner'sDilemma game on sale-free networks. In this sense, some e�ort has been puton studying the e�et of restriting the maximum number of possible ontatsa node an have, due to the �nite resoures of the node, but in a di�erent way



110 Chapter 6. The Prisoner's Dilemma game on Sale-Free networks with limitednumber of interationsthan the approah we propose now. In [35℄, the level of ooperation ahievedby the system is studied when the SF networks have a uto� at a ertain valuefor the onnetivity, kcutoff , so there will be no nodes with a number of on-netions above that given value. In this senario, it was found that the levelof ooperation remains high enough even for an important uto� of the degreedistribution (up to a value kcutoff > 20 for a network made up of N = 104nodes), and what is more, some slight improvement an be found in the av-erage ooperation as the value kcutoff dereases, as long as it is larger than aertain threshold kcutoff . 20.It is also worth mentioning, that a di�erent approah but in the samediretion of restriting somehow the available resoures for a node has beenused when dealing with the Publi Goods Game. In [137℄, Santos et. al.ompared the level of ooperation in the system for two senarios: a �xed-ost-per-individual situation, when a node with onnetivity k ontributes c/(k+1)in every one of the (k+1) rounds of the game, and a �xed-ost-per-interationwhere it ontributes c in every round of the game, regardless of its onnetivity.They found that the former situation promotes ooperation more than thelatter, due to the introdution of an extra soure of heterogeneity, apart fromthe topologial one. Namely, this diversity in the amount that every nodeontributes to the ommon goods has been proved to be bene�ial for theoverall level of ooperation in the system.Nonetheless, we want to address this restrition from a di�erent angle:the degree distribution of the topologial substrate remains untouhed, it isto say, the PD dynamis will take plae on top of unaltered BA sale-freenetworks. However, every node i of the network, even when it has ki topologialonnetions, will be only allowed to establish k∗ interations per round of thegame among its neighbors. This restrition will speially a�et those nodeshaving a large topologial onnetivity, the hubs, that will only play with asmall fration of their otherwise large number of neighbors, while it will nota�et at all those nodes with a very low onnetivity. We will analyse theonsequenes that limiting the number of game mates may have on the globaldynamis of the system, and more preisely on the average level of ooperation,omparing the results with the well-known ase of a standard framework inwhih every node plays every round of the game with all its neighbors, asditates the underlying topology.One should also keep in mind that the formulation of the Prisoner's Dilemmathat will be used in this hapter is di�erent from the one used in previous hap-ters. It means that the spei� values of the oe�ients of the payo� matrixwill be di�erent, but not their relative ordering. In this way, now, instead ofhaving the temptation to defet, b as the (only) free parameter, we will have



6.1. The model 111the ratio b/c, between the bene�t of playing against a ooperator and the ostof being one. This partiular formulation will be used again in hapter 8.6.1 The modelWe use sale-free networks built via the Barabási-Albert (BA) preferentialattahment model [8℄. As we have already explained (see setion 2.1.3), thewell-known BA model is based on growth and preferential attahment, andstarting from a small set of m0 fully onneted nodes, every time step we adda new node j to the network. This new node will attah to m of the existingnodes. The probability that a link from node j onnets to an existing node
i is proportional to its degree, Pi =

ki∑
l kl

. This proedure ontinues until thenetwork reahes its �nal size N . The degree distribution of suh networks is apower-law, P (k) ∼ k−γ with an exponent γ = 3, and the average onnetivityis 〈k〉 = 2m. In our ase, we have used networks with N = 4 · 103 nodes andan average value for the onnetivity 〈k〉 = 4.We onsider that every node on the network is a player whose initial strat-egy, ooperator (C) or defetor (D), is randomly assigned with equal probability
ρ0 = 0.5. Next, we go over every node, foring them to hoose, also randomly,
k∗ among its ki topologial neighbors, so we get an 'e�etive onnetivity ma-trix' for the urrent round of the game. Obviously, if ki ≤ k∗ for a partiularnode i, then it hooses all its neighbors to play with them every single time,but if ki > k∗, then it will play only with some of them, making a di�erentseletion every round. Notie that, in order to preserve the symmetry of theinterations, if node i hooses node j, it means that j also hooses i straight-away (apart from those orresponding k∗ neighbors that j has hosen or it willhoose to mate when its time omes), so the real e�etive onnetivity of thenodes is not stritly k∗, but it is in general keffi & k∗.We an alulate the dependene of the e�etive onnetivity keffi withthe topologial onnetivity of a node ki. To this aim we distinguish betweenthose nodes having ki ≤ k∗ and those with ki > k∗. For the former groupwe trivially have keffi = ki while for the seond set we have keffi = k∗ + kini .In this latter ase kini stands for the number of extra onnetions a node igets from being seleted by other neighbors not ontained in its own set of k∗seleted neighbors. We an write the expression for the extra kini game matesas:

kini = ki





∑

k′6k∗

P (k′|ki) +
∑

k′>k∗

k∗

k′
P (k′|ki)



 , (6.1)where P (k′|k) is the onditional probability that a node of degree k is on-
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Figure 6.1: Comparison of the atual topologial onnetivity of the nodes, ki, andtheir e�etive onnetivity, keffi , and the approximate expression, for three �xedvalues of k∗ = 5, k∗ = 10 and k∗ = 30 (a single realization of the network per eah).The lines are for the theoretial estimation (equation 6.4).neted with a node of degree k′. Assuming that the network is unorrelated(as the BA network) we have P (k′|k) = k′P (k′)/〈k〉. Taking the ontinuousapproximation for the degree we an write equation 6.1 as
kini ≈ ki

〈k〉

[

∫ k∗

k0

k′P (k′)dk′ + k∗
∫ ∞

k∗
P (k′)dk′

]

, (6.2)where k0 is the minimum degree of the network. Solving the right hand side ofthe above equation for a sale-free network, P (k) = (γ−1)kγ−1
0 k−γ , we obtain:

kini ≈ ki(γ − 1)kγ−1
0

〈k〉

[

k2−γ
0 − (k∗)2−γ

γ − 2
+

(k∗)2−γ

γ − 1

]

. (6.3)In our partiular ase we have networks with γ = 3, 〈k〉 = 4 and k0 = 2,therefore the e�etive onnetivity for those nodes with ki > k∗ reads
keffi ≈ k∗ + ki(1−

1

k∗
) . (6.4)In order to hek the above approximation, we plot in �gure 6.1 the funtion

keffi (ki), along with the pairs of values (ki, keffi ) obtained in a single realizationof the network when k∗ = 5, k∗ = 10 and k∗ = 30, respetively. From the �gureit beomes lear that the agreement with equation 6.4 is good.



6.1. The model 113One all the nodes have seleted their urrent e�etive neighborhood, keffi ,they play a round of the PD game with every single one of them, and au-mulate their orresponding bene�ts πi , aording to the payo� matrix of thePrisoner's Dilemma game [38, 108, 138℄ we are using, given by:
(

C D

C b− c −c

D b 0

)

∼
(

C D

C b/c− 1 −1

D b/c 0

) (6.5)where c is the ost of being a ooperator, and b is the bene�t of playing againstone (obviously, the larger the ratio b/c gets, the heaper it beomes to be aooperator). Immediately afterwards, in order to update its strategy, everynode i ompares its own payo� πi with the payo� of one of its neighbors, πj ,randomly hosen from the urrent e�etive neighborhood. For the probabilitythat i imitates j's strategy for the next round of the game, and followingprevious works [102, 110, 116, 118, 139℄, we have hosen the so-alled Fermifuntion from Statistial Physis, given by:
Pi→j =

1

1 + ew(πi−πj)
, (6.6)where w is a parameter that aounts for the importane of the relative di�er-ene of payo�s on the hange of strategy of node i. Notie that, for w → ∞,the probability Pi→j strongly depends on the di�erene of payo� between thetwo nodes involved, so with a very high probability, if πi < πj , i will imitate j,and if πi > πj , i will not imitate j. But on the other hand, when w → 0, onegets that the probability of hanging strategies is Pi→j = 1/2, independentlyof the values of the payo�s (in this ase we have the so-alled random driftevolution of the system). We an also interpret this situation as a total loss ofinformation: the individuals know nothing at all about their neighbors, so theydeide by tossing a oin [118℄. The results shown on this work orrespond onlyto the value w = 1. Nonetheless, we have heked that they are quite robustby testing out other values for w we get qualitatively the same outomes.We iterate the above disrete-time dynamis for a number of time steps,until the system reahes the �nal stati state. As oppose to what happenedwith the repliator dynamis used in previous hapters, where ooperation anddefetion ould oexist in the asymptoti state whih, moreover, �utuated ingeneral around a well de�ne mean value of ooperation 〈c〉(b), now, due to thispartiular hoie for the probability funtion (6.6), the �nal state of the systemwill be one of the two absorbing states: all-C or all-D [110℄. As we have seen,with this probability we allow irrational hanges of strategy, so that a node willalways have a non-zero probability of adopting the neighbor's strategy, evenwhen the neighbor's payo� is smaller than its own. It is worth notiing that



114 Chapter 6. The Prisoner's Dilemma game on Sale-Free networks with limitednumber of interations

Figure 6.2: Average level of ooperation as a funtion of the ratio b/c for the aseof restrited number of onnetions without frustration. The SF networks are madeup of N = 4 · 103 nodes, and the average onnetivity is 〈k〉 = 4. Every point is theaverage over 500 di�erent realizations.this a�ets the dynamis of the system in suh a way that it will always endup on one of the two possible absorbing states. Therefore, one should interpretthe average level of ooperation, for a partiular set of the parameters b/c and
w, as the fration of realizations in whih the system ends up in the all-C state,instead of the average fration of ooperators present in the stationary stateof the system.It is worth stressing that the neighborhood a node selets to play oneround of the game with, is also the one used to hoose the node to ompareits bene�ts, but for the next round, all the nodes will selet a di�erent newe�etive neighborhood (exept, of ourse, those with ki ≤ k∗, that play withthe same opponents). This neighborhood seletion proedure is quite expensivein terms of omputational time. And, in addition to this, the fat that thesystem must ahieve eventually one of the two absorbing states, makes thetime evolution of the dynamis remarkably slow, speially, for the range of b/cvalues orresponding to intermediate values of 〈c〉.6.2 Average level of ooperationIn �gure 6.2 we plot the level of ooperation 〈c〉 as a funtion of the ratio
b/c, for di�erent values of the restrition k∗. Obviously, as one an easilyexpet, the larger the value of b/c is, the heaper being a ooperator is, and
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Figure 6.3: Average level of ooperation as a funtion of the restrition k∗ for di�erentvalues of the ratio b/c. The SF networks are made up of N = 4 · 103 nodes, and theaverage onnetivity is 〈k〉 = 4. Every point is the average over 2 · 103 di�erentrealizations.
thus the larger the average level of ooperation the system an ahieve. Onthe other hand, we have found a surprising and non-trivial dependene ofthe level of ooperation 〈c〉 with the value of the restrition for the numberof onnetions k∗. From �gure 6.2 for some low values of b/c, i.e., whenooperation is relatively expensive, the larger level of ooperation is ahievedwhen no restrition is imposed to the onnetivity of the nodes, but for largervalues of the ratio b/c, the opposite trend ours, and a network with somelevel of onnetivity restrition performs better than the original one, meaningthat it ahieves larger levels of ooperation. Of ourse, those ases with a toorestritive value for k∗ . 10, always perform worse, regardless of the value ofthe ratio. Notie that by setting k∗ = N we atually mean that every node iplays always with all its ki topologial neighbors.As a matter of fat, if we represent the level of ooperation as a funtionof k∗ for a �xed value of the ratio b/c, we obtain a non-monotonous behavior(see �gure 6.3), where moreover, the optimum value of k∗, i.e. the value thatyields the larger level of ooperation for a �xed b/c, seems to inrease as theooperation gets more expensive.



116 Chapter 6. The Prisoner's Dilemma game on Sale-Free networks with limitednumber of interations6.3 Imposing a more tight onnetivity restritionAs we have already mentioned, the �rst proedure we have hosen for therestrition of the number of interations per node and per round of the game,
k∗, is not as strit as one would like, and does not guarantee the value k∗ forevery node with ki > k∗ present on the network. On the ontrary, and due tothe need of symmetry, keffi turns out to be larger than k∗, in general. In orderto obtain a more severe restrition, while preserving the symmetry onditionfor the interation between nodes, we propose now a di�erent method.This seond seletion sheme works as follows: starting with the nodes oflower degree for a given network, we make them hoose its k∗ neighbors (or
ki < k∗ if neessary), among its topologial onnetions, but now, we keeptrak of the number of possible onnetions still available for every node, usinga tagging system, so all the nodes start with its label set to li = k∗ if ki > k∗,and li = ki if ki ≤ k∗, and every time an e�etive onnetion between nodes
i and j is made, we rest one unit to the labels li and lj . Thus, if one node
i intends to hose another node j whose label is already set to lj = 0, thenthis pik will not be allowed, even if node i an not establish onnetions withanyone else. When this situation happens, we say that node i gets frustrated.We repeat this proess for all the inreasingly onneted nodes, ending upwith the hubs, and then, as usual, everyone plays a round of the game with itsurrent e�etive neighborhood, and aumulates its bene�ts πi. Then everyone of them ompares this value πi with that orresponding to a neighbor,randomly hosen among their keffi , and deide whether or not they hangetheir strategy with the same probability used before. All the nodes hangetheir strategy synhronously.Notie that we have obviously hosen to start from the lowly onnetednodes, and not the other way around in order not to margin poorly onnetednodes due to the restrition proedure, so they would not get the hane toplay. It is also worth mentioning that we have heked the 'average level offrustration' for the nodes on the network at a given round of the game, de�nedas the fration between the sum of labels di�erent from zero present on the sys-tem one the assignment proess has �nished (i.e. the number of onnetionsthat were not able to be established, and remain 'unused', although they wereallowed), and the maximum possible number of onnetions the whole networkwould have made with the restrition k∗ but without frustration. This qualityalways yields values under ten perent for any set of the parameters of thesystem. So we onsider that this method, though not perfet and somehowmore arti�ial than the �rst one, is a good approah to this non-trivial prob-lem of restriting the number of onnetions to a onstant value on a sale-freeunderlying topology.
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Figure 6.4: Average level of ooperation as a funtion of the ratio b/c for the ase ofrestrited number of onnetions with frustration. The SF networks are made up of
N = 4 ·103 nodes, and the average onnetivity is 〈k〉 = 4. Every point is the averageover 500 di�erent realizations.

Figure 6.5: Average level of ooperation as a funtion of the restrition k∗ for di�erentvalues of the ratio b/c for the ase of restrited number of onnetions with frustration.The SF networks are made up of N = 4 · 103 nodes, and the average onnetivity is
〈k〉 = 4. Every point is the average over 2 · 103 di�erent realizations.



118 Chapter 6. The Prisoner's Dilemma game on Sale-Free networks with limitednumber of interationsSimilarly to what we have done in the previous setion, we show now in�gure 6.4 the level of ooperation as a funtion of the ratio b/c for severalvalues of the restrition k∗ for the ase of restrited number of onnetionswith frustration. It an be seen that they are quite similar to those presentedfor the ase without it, with mainly one quantitative di�erene: the valueof b/c needed to maintain the same level of ooperation is larger, it is tosay, the ooperation is in general more expensive in this seond senario withfrustration.But as far as the qualitative demeanor is onerned, we an say that thisseond model behaves in the same way as the �rst one, so when we representthe level of ooperation as a funtion of k∗ for a �xed value of the ratio (see�gure 6.5), we also �nd a non-monotonous dependene whih learly indiatesthat, in order to ahieve the highest level of ooperation for a �xed value ofthe parameters of the payo� matrix, it is better to restrit the number ofinterations to a ertain extent.In order to understand better the origin of this optimum value for thenumber of interations, k∗opt, when playing the Prisoner's Dilemma game withosts, we will next hek it for two other di�erent senarios: �rst, we willhange the payo� matrix to its form without ost, and seond, we will keepthe ost-bene�t ratio but we will adopt another updating rule, namely, theRepliator rule. By introduing these hanges in our original model, we wantto determine the ruial fator for the observed optimum in the number ofinterations.In this way, let us now onsider the Prisoner's Dilemma game with theFermi updating rule, but with the formulation without ost per ooperation,given by the following payo� matrix:
(

C D

C R S

D T P

)

=

(

C D

C 1 0

D b 0

) (6.7)where we �x, as usual, R = 1 and P = S = 0. In �gure 6.6 we show the averagelevel of ooperation in the system as a funtion of the restrition k∗, for di�erentvalues of the temptation to defet, b. In this ase, we an learly see that, forany �xed value of b, the system renders the highest value of ooperation forthe unrestrited situation i.e., for k∗ = 4 · 103 (not expliitly shown). So,omparing �gure 6.6 with �gure 6.5 or 6.3, we an dedue that the reasonwhy suh an optimum, k∗opt, exists is due to a neessary ompromise everynode has to establish between the ost of ooperating with all its neighborsand the bene�ts obtained in those interations. It is reasonable to think that,even if all neighbors are ooperators, it will be very expensive to pay a ost toooperate with all of them, so the bene�ts will derease. On the other hand,
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Figure 6.6: Average level of ooperation as a funtion of the mate limitation, k∗, forthe ase of a restrition in the number of onnetions without frustration, and usingthe Fermi updating rule and the formulation of the Prisoner's Dilemma without ostfor ooperation. The SF networks are made up of N = 4 · 103 nodes, and the averageonnetivity is 〈k〉 = 4. Every point is the average over 200 di�erent realizations.if one interats with too few of its neighbors, the ost will be low, but so willbe the bene�t.Finally, as a further hek, let us onsider the seond hange to our model:the Prisoner's Dilemma game with ost and a the Repliator updating rule.We show in �gure 6.7 the result of our simulations, and we an see that theoptimum, k∗opt, reappears in this senario, though it is not so pronouned as inthe ase with Fermi-like updating rule for any value of the ratio b/c. We anonlude that the root of this optimum is indeed in the use of a ost formulationof the Prisoner's Dilemma.6.4 ConlusionsIn this hapter we have studied a realisti -but almost unexplored until now-senario where the number of interations that a node an establish per roundof the game are restrited to a maximum value k∗, regardless of its topologialonnetivity of the nodes. We have studied two di�erent mehanisms to per-form suh restrition. The �rst method does not need any global information,sine every node hooses its k∗ game mates and it just guarantees the symme-try of the interations. However, as it turned out, this is not a strit restrition,sine the atual onnetivity of some of the nodes is in general keffi & k∗. The
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Figure 6.7: Average level of ooperation as a funtion of the mate limitation, k∗, forthe ase of a restrition in the number of onnetions without frustration, and usingthe Repliator updating rule and the formulation of the Prisoner's Dilemma withost for ooperation. The SF networks are made up of N = 4 · 103 nodes, and theaverage onnetivity is 〈k〉 = 4. Every point is the average over at least 200 di�erentrealizations.seond one is somehow more arti�ial, sine one needs some global knowledgeof the network (preisely the degree of every node) in order to proeed. Buton the other hand, it imposes stritly the restrition of having k∗ game mates.We have studied the e�et of suh restritions on sale-free networks andfound that the results are qualitatively the same for both methods. In parti-ular, we have fous on the level of ooperation ahieved by the system at thestationary state, omparing the results with those for the Prisoner's Dilemmagame on the original BA sale-free networks. Our main result is that for arange of values of the ost-bene�t b/c ratio of the payo� matrix, the highestlevels of ooperation are ahieved when some onnetivity restrition is im-posed on the network, i.e., the larger levels of ooperation do not our for theoriginal unrestrited BA sale-free network senario, but for a more realistisituation, where every node an engage on a round of the game just with a er-tain number of neighbors k∗, that is in general, lower than its real topologialonnetivity ki.This is a quite surprising result, sine previous studies always have pointedout the well-known enhanement of ooperation due to heterogeneity of the un-derlying topology. Here we have lari�ed that this is only true up to a ertainextent: although heterogeneity does greatly favor ooperation, when ompar-ing it with the ase of random networks, the restrition of foring the nodes



6.4. Conlusions 121to play just with k∗ < ki of its neighbors in every round of the game seemsto lead to even larger levels of ooperation in some regions of the parameterspae of the ratio b/c.We also showed that the existene of this optimum, k∗opt, was due to the theompromise of a node between the ost of ooperating with all the neighborsand the bene�ts obtained from those interations. In order to on�rm thishypothesis, we simulated the dynamis for two other senarios: in the �rst one,we kept the updating rule, but we hanged the formulation of the dilemma,using a payo� matrix where the ost per ooperation is zero. As we expeted,now the highest values of ooperation ahieved by the system our when thereis no limitation to the number of interations. On the other hand, if we onsiderthe dynamis with a di�erent updating rule, namely the Repliator rule, but wekeep the ost-bene�t ratio formulation, then the optimum value k∗opt appearsagain. In onlusion, the results shown in this hapter point out that thepartiular formulation hosen when implementing the Prisoner's Dilemma ontop of omplex topologies will introdue important di�erenes in the outomeof the dynamis, speially in realisti senarios as the one proposed here.





Part IIEvolutionary Dynamis onGrowing Complex Networks





Presentation of Part IIIn this seond part of the Thesis, we will fous on the study of the ouplingbetween the growth of a omplex topology and the dynamis taking plaesimultaneously on top of it.As we have been seeing, a great deal of e�ort has been aimed to studythe in�uene of a (stati) omplex topologies on the outome of several games[26, 34�37, 37�45, 140℄. Speially the PD, being a paradigmati example ofooperative-defetive interation, has been proved to be a very useful toolwhen trying to explain the reasons why suh a expensive behavior as ooper-ation an arise and survive in a population. On the other hand, it has beenproven for many real networked systems in a wide variety of ontexts thattopology greatly a�ets dynamis but also the other way around ([141℄ andreferenes therein), establishing thus a feedbak loop. In this way, when itomes spei�ally to Evolutionary Game Theory on non-stati graphs, somenie works [125, 138, 142, 143℄ have tried to onsider a more omplex situa-tion, as far as the struture is onerned, by plaing the dynamis on a N-sizednetwork whose links are being rewired, aording to some dynamis-dependentrules (adaptative networks), or even using two di�erent networks, one for theinteration, the other one for the omparison proedure. Nonetheless, to ourknowledge, the attempt we have made is the �rst to aim a growing struture,where this growth is entangled somehow with the dynamis of the nodes. Wehave developed two models to address this issue, and in both of them the par-tiular dynamis evolving in the population is the PD game. However, thereare some important di�erenes between the spei�s of eah one.Thus, in hapter 7 we introdue the �rst model, for whih we will on-sider that the probability of attahment is a linear funtion of the �tness ofthe hosen node. On the other hand, the strategy updating rule we will use isRepliator-like. During this hapter, we will study the di�erent topologies thatan arise depending on the values of the relevant parameters of the system.Spei�ally, we will be able to build random and SF networks. We will studythe dynamial organization of ooperation among onnetivity lasses for het-erogeneous strutures obtained with our model, omparing these results withthe well-known ones for SF BA networks, and trying to explain the di�erenesfound. Also, we will hek the average level of ooperation ahieved by ournetworks, in two instants: when the growth has just stopped, and some timelater, after letting the population play the same game, but without addingnew individuals. We will �nd that the strutures built via this �rst model ansupport, when used as stati substrate for the PD game, higher levels of oop-eration than the elebrated BA SF networks [34�36℄. Besides, we will ompare



126these levels of ooperation with those for a rewired version of the resultanttopology, and we will be able to make some onlusions about the adequay ofthe networks our model gives rise to, when it omes to supporting ooperation.Moreover, we have found that the strutures obtained with this model sharesome topologial features with real systems, suh as the power-law dependeneof the lustering oe�ient with the degree of the nodes, ompatible with hier-arhial organizations. So we onsider that our work an help understand theorigin of these heterogeneous networks from an evolutionary point of view.In hapter 8 we propose a seond model, that is a little di�erent from the�rst one, but always within the framework of an interdependene between thegrowth and the dynamis. Thus, we onsider again that the nodes are playingthe PD game, although with another formulation, but now, the strategy up-dating rule is ditated by a Fermi-like funtion, whih allow irrational hangesof strategy, it is to say, it is possible to imitate a neighbor with worse payo�.As we will see, the introdution of this Fermi probability will a�et greatly the�nal state of the system, when it omes to the levels of ooperation. Moreover,the probability of attahment we will use in this seond model is exponentialwith the �tness of the nodes, instead of linear, whih permits the appearing ofnot only random and sale-free strutures, buy also star-like ones, with nodesthat are 'super-hubs'. Apart from the degree distribution and the �nal levelsof ooperation in the system, we are also interested in analyzing whether o-operation bene�ts from the growth proess or just from the resulting omplexstruture, and to that aim, we will look again into both the level of ooperationafter �nishing the growth and after letting the system evolve for some time. Wewill also onsider the ase of using the full grown network as a stati substrate,and letting the dynamis evolve after reinitializing the level of ooperation to50% of eah strategy, randomly distributed. In this department, we will �ndsome remarkable di�erenes between the two models, sine for this seond oneooperation turns out not to get promoted when using the resulting topologiesas stati substrate for the dynamis.



Chapter 7Complex Networks fromEvolutionary PreferentialAttahmentIn this hapter we analyze the growth and formation of omplex networks byoupling the network formation rules to the dynamial states of the elementsof the system. As we have already mentioned, some mehanisms have beenproposed for onstruting omplex sale-free networks similar to those observedin natural, soial and tehnologial systems from purely topologial arguments(for instane, using a preferential attahment rule or any other rule availablein the literature [11, 12℄). As those works do not inlude information on thespei� funtion or origin of the network, it is very di�ult to disuss theorigin of the observed networks on the basis of those models, hene motivatingthe question we are going to address. The fat that the existing approahesonsider separately the two diretions of the feedbak loop between the funtionand form of a omplex system demands for a new mehanism where the networkgrows oupled to the dynamial features of its omponents. Our aim here is tointrodue for the �rst time an attempt in this diretion, by linking the growthof the network to the dynamis taking plae among its nodes.Our model ombines two ideas in a novel manner: preferential attahmentand evolutionary game dynamis. Indeed, with the problem of the emergeneof ooperation as a spei� appliation in mind, we onsider that the nodesof the network are individuals involved in a soial dilemma and that new-omers are preferentially linked to nodes with high �tness, the latter beingproportional to the payo�s obtained in the game. In this way, the �tness ofan element is not imposed as an external onstraint [63, 144℄, but rather it isthe result of the dynamial evolution of the system. At the same time, the



128 Chapter 7. Complex Networks from Evolutionary Preferential Attahmentnetwork is not exogenously imposed as a stati and rigid struture on top ofwhih the dynamis evolves, but instead it grows from a small seed and a-quires its struture during its formation proess. Finally, we stress that this isnot yet another preferential attahment model, sine the quantity that favorslinking of new nodes has no diret relation with the instantaneous topology ofthe network. In fat, as we will see, the main result of this interplay is the for-mation of homogeneous or heterogeneous networks (depending on the values ofthe parameters of our system) that share a number of topologial features withreal world networks suh as a high lustering and degree-degree orrelations.Thus, the model we propose not only explains why heterogeneous networks areappropriate to sustain ooperation, but also provides an evolutionary meh-anism for their origin. On the other hand, we will �nd that there are someimportant and quite surprising di�erenes between the networks we build usingthis model, and SF topologies, as far as the mirosopi organization of thedynamis is onerned.7.1 The modelOur model naturally inorporates an intrinsi feedbak between dynamis andtopology. In this way, the growth of the network starts at time t = 0 with aore of m0 fully onneted nodes, whose initial strategy is ooperation. Newelements are inorporated to the network and attahed tom existing nodes witha probability that depends on the dynamis of eah node. On the other hand,the partiular dynamis we onsider is ditated by the Prisoner's Dilemma(PD) game [145℄. Initially, every node adopts with the same probability one ofthe two available strategies, ooperation C or defetion D. At equally spaedtime intervals (denoted by τD) eah node i of the network plays with its ki(t)neighbors and the obtained payo�s are onsidered to be the measure of itsevolutionary �tness, fi(t). There are three possible situations for eah pairof nodes linked together in the network, as far as the outome of the game isonerned: (i) if two ooperators meet, both reeive R, when (ii) two defetorsplay, both reeive P , while (iii) if a ooperator and a defetor ompete, theformer reeives S and the latter obtains T . The ordering of the four payo�sis the following: T = b > R = 1 > P = S = 0, where we haver �xed thevalue of the three parameters as usual [31, 34, 127℄, when onsidering the weakPrisoner's Dilemma game (see hapter 3). Thus, the temptation to defet bremains as the unique free parameter of the dynamis. After playing, everynode i ompares its evolutionary �tness (payo�) with that orresponding to arandomly hosen neighbor j. Then, if fi(t) ≥ fj(t), node i keeps its strategyfor the next round of the game, but if fj(t) > fi(t) node i adopts the strategy



7.1. The model 129of player j with probability [27, 28, 34, 35, 45, 97, 101℄
Pi =

fj(t)− fi(t)

b ·max [ki(t), kj(t)] . (7.1)The growth of the network proeeds by adding a new node with m links tothe preexisting ones at equally spaed time intervals (denoted by τT ), and theprobability that a node i in the network reeives one of the m new links is
Πi(t) =

1− ǫ+ ǫfi(t)
∑N(t)

j=1 (1− ǫ+ ǫfj(t))
, (7.2)where N(t) is the size of the network at time t, and the parameter ǫ ∈ [0, 1)ontrols the weight of the �tness fi(t) [112℄ during the growth of the network.Provided that ǫ > 0, nodes with fi(t) 6= 0 are preferentially hosen.The growth of the network as de�ned above is thus linked to the evolution-ary dynamis that is simultaneously evolving in the system, and it is ontrolledon the one hand by the parameter ǫ, but also by the two time sales, τT and

τD, assoiated to both proesses. Therefore, equation 7.2 an be viewed as an`Evolutionary Preferential Attahment' (EPA) mehanism. Depending on thevalue of ǫ, we an have two extreme situations:(i) When ǫ ≃ 0, referred to as the weak seletion limit [26℄, the networkgrowth is independent of the evolutionary dynamis as all nodes haveroughly the same probability of attrating new links.(ii) Alternatively, in the strong seletion limit, ǫ → 1, the �ttest players(highest payo�s) are muh more likely to attrat the links from newom-ers.Between the above situations, there is a ontinuum of intermediate values thatwill give rise to a wide range of in-between behaviors.We have arried out numerial simulations of the model exploring the (ǫ, b)-spae. It is worth mentioning that we have also explored di�erent time relations
τD/τT , but for the time being, we fous on the results obtained when τD/τT >

1, namely, the network growth is faster than the evolutionary dynamis. Lateron we will disuss the e�ets assoiated to other time ratios. Taking τT = 1as the referene time, networks are generated by adding nodes every timestep, while they play at disrete times given by τD. As τD > τT , the linkingproedure is done with the payo�s obtained the last time the nodes played.All results reported have been averaged over at least 103 realizations, and thenumber of links of a newomer is taken to bem = 2 (so the average onnetivitywill be 〈k〉 = 2m = 4), whereas the size of the initial ore is m0 = 3.
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Figure 7.1: Degree distribution of the topologies reated for �xed values of b = 1.5(Top left) and b = 2.5 (Top right), and �xed values of ǫ = 0.3 (Bottom left) and
ǫ = 0.99 (Bottom right). The networks are made up of N = 103 nodes, with averageonnetivity 〈k〉 = 4, and τD = 10τT . Every point is the average of 300 independentrealizations.7.2 Degree Distribution and Average Level of Coop-erationThe dependene of the degree distribution on ǫ and b is shown in �gure 7.1.As it an be seen, the weak seletion limit produes homogeneous networksharaterized by a tail that deays exponentially fast with k. Alternatively,when ǫ is large, sale-free networks arise. Although this might a priori beexpeted from the de�nition of the growth rules, this needs not be the ase:indeed, it must be taken into aount that in a one-shot PD game, defetionis the best strategy regardless of the opponent's strategy. However, if thenetwork dynamis evolves into a state in whih all players (or a large part ofthe network) are defetors, they will often play against themselves and theirpayo�s will be redued (we reall that P = 0). The system's dynamis willthen end up in a state lose to an all-D on�guration rendering fi(t) = 0 ∀i ∈
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Figure 7.2: Color-oded average level of ooperation in the system 〈c〉 right at theend of the EPA proedure, it is to say, when the �nal size is ahieved as a funtion ofthe temptation to defet b and the seletion pressure ǫ. The networks are made up of
103 nodes with average onnetivity 〈k〉 = 4 and τD = 10τT .
[1, N(t)] in equation 7.2. From this point on, new nodes would attah randomlyto other existing nodes (see equation 7.2) and therefore no hubs an ome out.This turns out not to be the ase, whih indiates that for having some degreeof heterogeneity, a nonzero level of ooperation is needed. Conversely, theheterogeneous harater of the system provides a feedbak mehanism for thesurvival of ooperators that would not overome defetors otherwise.In �gure 7.1 we also show the dependene of the degree of heterogeneity ofthe networks with the temptation to defet, and we found out that only in thestrong seletion limit, it depends slightly on b. On the other hand, for smallvalues of ǫ, there is not any dependene of the degree distribution on b, beausein this senario the dynamis does not play a relevant role on the attahment,on the ontrary, it is almost random.Regarding the outome of the dynamis, we have also represented the aver-age level of ooperation 〈c〉, as a funtion of the two model parameters ǫ and b.The �gure 7.2 shows that as ǫ grows for a �xed value of b & 1, the level of o-operation inreases. In partiular, in the strong seletion limit 〈c〉, the systemattains its maximum value. This is a somewhat ounterintuitive result as inthe limit ǫ → 1, new nodes are preferentially linked to those with the highestpayo�s, whih for the PD game, should orrespond to defetors. However, thepopulation ahieves the highest value of 〈c〉. On the other hand, higher lev-els of ooperation are ahieved in heterogeneous rather than in homogeneous



132 Chapter 7. Complex Networks from Evolutionary Preferential Attahment
b=1.0
b=1.8

b=2.2

b=2.4
b=2.6

b=3.0

k

P(k)c

Figure 7.3: Probability Pc(k) that a node with onnetivity k plays as a ooperatorfor di�erent values of b in the strong seletion limit (ǫ = 0.99) at the end of the growthof a network with N = 103 nodes and average onnetivity 〈k〉 = 4.topologies, whih is onsistent with previous �ndings [34, 45, 119℄.7.3 Degree Distribution among ooperatorsIn this setion we want to study the dependene between strategy and degree ofonnetivity, omparing this results with those obtained for the stati SF se-nario, where we reall that ooperators oupy always the highest and mediumlasses of onnetivity, while defetors are not stable when setting on the hubs(setion 3.5). As we will show, the interplay between the loal struture of thenetwork and the hierarhial organization of ooperation seems to be highlynontrivial, and quite di�erent from what has been reported for stati sale-freenetworks [34, 45℄. In �gure 7.3 one an see that, surprisingly enough, as thetemptation to defet inreases, the likelihood that ooperators oupy the hubsdereases. Indeed, during network growth, ooperators are not loalized nei-ther at the hubs nor at the lowly onneted nodes, but in intermediate degreelasses. It is important to realize that this is a new e�et that arises fromthe ompetition between network growth and the evolutionary dynamis. Inpartiular, it highlights the di�erenes between the mirosopi organizationin the steady state for the PD game in stati networks and that found whenthe network is evolving.To address this interesting and previously unobserved phenomenon, wehave developed a simple analytial argument that an help understand the



7.3. Degree Distribution among ooperators 133reasons behind it. Let kci be the number of ooperator neighbors of a givennode i. Its �tness is fd
i = bkci , if node i is a defetor, and f c

i = kci , if it isa ooperator. The value of kci is expeted to hange beause of two fators.On the one hand, due to the network growth (node aretion �ow, at a rateof one new node eah time unit τT ) and on the other hand, due to imitationproesses ditated by equation 7.1, that take plae at a pae τD. As it hasbeen mentioned before, we will fous on the ase in whih τD is muh largerthan τT , for now. Thus, the expeted inrease of �tness is:
∆fi = ∆flowfi +∆evolfi, (7.3)where ∆flowfi means the variation of �tness in node i due to the newomers�ow, and ∆evolfi stands for the hange in �tness due to hanges of neighbors'strategies. The above expression leads to an expeted inrease in kci given by:

∆kci = kci (t+ τD)− kci (t) = ∆flowk
c
i +∆evolk

c
i . (7.4)On the other hand, the expeted inrease of degree of node i in the intervalof time (t, t+ τD) only has the ontribution from newomer �ow, and reallingthat new nodes are generated with the same probability to be ooperators ordefetors, i.e, ρ0 = 0.5, it will take the form:

∆ki = ∆flowki = 2∆flowk
c
i . (7.5)If the �tness (hene onnetivity) of node i is high enough to attrat asigni�ant part of the newomer �ow, the �rst term in equation 7.3 dominatesat short time sales, and then the hub's degree ki inreases exponentially.Connetivity patterns are then dominated by the growth by preferential at-tahment, ensuring, as in the BA model [8℄, that the network will have a SFdegree distribution. Moreover, the rate of inrease of the onnetivity:

∆flowk
c
i =

1

2
mτD

fi
∑

j fj
(7.6)is larger for a defetor hub by a fator b, beause of its larger �tness, and thenone should expet hubs to be mostly defetors, as on�rmed by the resultsshown in �gure 7.3. This small set of most onneted defetor nodes attratsmost of the newomer �ow.On the ontrary, for nodes of intermediate degree, say of onnetivity m ≪

ki ≪ kmax, the term ∆flowfi in equation 7.3 an be negleted, in other words,the arrival of new nodes is a rare event, so for a large time sale, we havethat k̇i = 0. Note that if k̇i(t) = 0 for all t in an interval t0 ≤ t ≤ t0 + T , thesize of the neighborhood is onstant during that whole interval T , and thus the



134 Chapter 7. Complex Networks from Evolutionary Preferential Attahmentevolutionary dynamis of strategies through imitation is exlusively responsiblefor the strategi �eld on�guration in the neighborhood of node i. During theseperiods, the probability distribution of strategies in the neighborhood of node
i approahes that of a stati network. Thus, realling that the probabilityfor this node i of intermediate degree to be a ooperator is large in the statiregime [45℄ (see also setion 3.5), we then arrive to the onlusion that for thesenodes the density of ooperators must reah a maximum, in agreement with�gure 7.3. Of ourse, it is lear that this senario an be oasionally subjetto sudden avalanhe-type perturbations following "puntuated equilibrium"patterns in the rare oasions in whih a new node arrives.Furthermore, our simulations show that these features of the shape of theurve Pc(k) are indeed preserved as time goes by, giving further support tothe above argument based on time sale separation and on�rming that ourunderstanding of the mehanisms at work in the model is orret.7.4 Clustering Coe�ient and Degree-degree orre-lationsApart from the degree distribution, we are also interested in exploring othertopologial features emerging from the interation between network growthand the evolutionary dynamis in our EPA networks. Namely, we will fous ontwo important topologial measures that desribe the existene of nontrivialtwo-body an three-body orrelations: the degree-degree orrelations and thelustering oe�ient respetively. We will show that the networks generated bythe EPA model display both hierarhial lustering and disassortative degree-degree orrelations.7.4.1 Clustering oe�ientThe lustering oe�ient of a given node i, cci, expresses the probability thattwo neighbors j and m of node i, are also onneted. The value of cci isobtained by ounting the atual number of edges, denoted by ei, in Gi, thesubgraph indued by the ki neighbors of i, and dividing this number by themaximum possible number of edges in Gi:

cci =
2ei

ki(ki − 1)
. (7.7)The lustering oe�ient of a given network, CC is alulated by averagingthe individual values {cci} aross the network nodes, CC =

∑

i cci/N . There-fore, the lustering oe�ient CC measures the probability that two di�erent
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〈k〉 = 4.neighbors of a same node, are also onneted to eah other. In the left panelof �gure 7.4 we show the value of CC as a funtion of b and ǫ. In this �gurewe observe that it is in the strong seletion limit where the largest values of
CC are obtained. Therefore, in this regime, not only highly heterogeneousnetworks are obtained but the nodes also display a large lusterization intoneighborhoods of densely onneted nodes. In the right panel of �gure 7.4 weshow the saling of the lustering with the network size CC(N) in the strongseletion limit. In this ase we observe that for b ≥ 2.5 the value of CC isstationary while when b < 2.5 the addition of new nodes in the network tendsto derease its lustering.We now fous on the dependene of the lustering oe�ient CC with thedegree of the nodes, k, in the strong seletion limit (ǫ = 0.99). Interestinglyenough, we show in �gure 7.5 that the dependene of CC(k) is onsistentwith a hierarhial organization expressed by the power law CC(k) ∼ k−β ,a statistial feature found to desribe many real-world networks [12℄. Thebehavior of CC(k) in �gure 7.5 an be understood by realling that in sale-free networks, ooperators are not extinguished even for large values of b if theyorganize into lusters of ooperators that provide the group with a stable soureof bene�ts [45℄. But to understand this feature in detail, let us assume that anew node j arrives to the network: sine the attahment probability dependson the payo� of the reeiver, node j may link either to a defetor hub or to anode belonging to a ooperator luster. In the �rst senario, it will reeive lesspayo� than the hub, so it will sooner or later imitate its strategy, and thereforewill get trapped playing as a defetor with a payo� equal to fj = 0. Thus,node j will not be able to attrat any links during the subsequent networkgrowth. On the other hand if it attahes to a ooperator luster and forms
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Figure 7.5: Dependene of the lustering oe�ient CC(k) ∼ k−β with the nodes'degree for di�erent values of b in the strong seletion limit (ǫ = 0.99). The networksare made up of N = 103 nodes and average onnetivity 〈k〉 = 4. The straight line isan eye guide that orresponds to k−1.a triad with m elements of the ooperator luster, two di�erent outomes arepossible, depending on its initial strategy: if it plays as a defetor, the triadmay eventually be invaded by defetors an may end up in an state where thenodes have no apaity to reeive new links. But if it plays as a ooperator,the group will be reinfored, both in its robustness against defetor attaksand in its overall �tness to attrat new links.To sum up, playing as a ooperator while taking part in a suessful (high�tness) ooperator luster reinfores its future suess, while playing as a de-fetor undermines its future �tness and leads to dynamially and topologiallyfrozen strutures (it is to say, with fi = 0), so defetion annot take long-term advantage from ooperator lusters. Therefore, ooperator lusters thatemerge from ooperator triads to whih new ooperators are attahed an thenontinue to grow if more ooperators are attrated or even if defetors attahto the nodes whose onnetivity veri�es k > mb. Moreover, the stability ofooperator lusters and its global �tness grow with their size, speially fortheir members with higher degree, and naturally favors the formation of triadsamong its omponents. Thus, it follows from the above mehanism that a nodeof degree k is a vertex of (k − 1) triangles, and then
CC(k) =

k − 1

k(k − 1)/2
= 2/k , (7.8)



7.5. Dynamis on stati networks onstruted using the EPA model 137whih is exatly the sort of funtional form for the lustering oe�ient wehave found (�gure 7.5).7.4.2 Degree-degree orrelationsNow we turn the attention to the degree-degree orrelations of EPA networks.Degree-degree orrelations are de�ned by the onditional probability, P (k
′ |k),that a node of degree k is onneted with a node of degree k

′ . However, sinethe omputation of this probability yields very noisy results, it is di�ult toassess whether degree-degree orrelations exist in a given network topology. Auseful measure to overome this tehnial di�ulty is to ompute the averagedegree of the neighbors of nodes with degree k, Knn(k), that is related withthe probability P (k|k′

) as
Knn(k) =

∑

k′

k
′

P (k
′ |k) . (7.9)In networks without degree-degree orrelations the funtion Knn(k) is �atwhereas for degree-degree orrelated networks the funtion is approximatedby Knn ∼ kν and the sign of the exponent ν reveals the nature of the orre-lations. For assortative networks ν > 0 and nodes are onneted to neighborswith similar degrees. On the other hand, for disassortative networks ν < 0,and high degree nodes tend to be surrounded by low degree nodes.In �gure 7.6 we plot several funtions Knn(k) orresponding to di�erentvalues of b in the strong seletion limit. We observe that for all the asesthere exist negative orrelations that make highly onneted nodes to be morelikely onneted to poorly onneted nodes and vieversa. Therefore the EPAtopologies are disassortative while this behavior is enhaned as the temptationto defet, b, inreases as observed from the slope of the urves in the log-logplot. This disassortative nature of EPA networks will be of relevane whenanalyzing the results presented in the following setion.7.5 Dynamis on stati networks onstruted usingthe EPA modelUp to this setion we have analyzed the topology and the dynamis of theEPA networks while the growing proess takes plae. Now we adopt a di�erentperspetive by onsidering the networks as stati substrates while studying theevolutionary dynamis of the nodes. This approah will be done in di�erentways allowing us to have a deeper insight on the EPA networks and theirrobustness.
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Figure 7.6: Degree-degree orrelations among the nodes of the EPA networks. Weplot the average nearest-neighbors degree Knn(k) of a node of degree k for severalvalues of the parameter b used to generate the networks. The networks are generatedwith ǫ = 0.99, and have N = 4 · 103 nodes and average onnetivity 〈k〉. Note thatnegative orrelations imply that hubs are not likely to be onneted to eah other.7.5.1 Stopping growth and letting evolutionary dynamis evolveTo on�rm the robustness of the networks generated by Evolutionary Preferen-tial Attahment, let us onsider the realisti situation that after inorporatinga large number of partiipants, the network growth stops when a given size
N is reahed, and after that, only evolutionary dynamis takes plae. Thequestion we aim to address here is: will the ooperation observed during theoevolution proess resist?In �gure 7.7, we ompare the average level of ooperation 〈c〉 when thenetwork just eased growing with the same quantity omputed after allowingthe evolutionary dynamis to evolve many more time steps without attahingnew nodes, 〈c〉∞. The green area indiates the region of the parameter b wherethe level of ooperation inreases with respet to that at the moment the net-work stops growing. On the ontrary, the red zone shows that beyond a ertainvalue, bc, of the temptation to defet the ooperative behavior does not surviveand the system dynamis evolves to an all-D state. Surprisingly the oopera-tion is enhaned by the growth stop for a wide range of b values pointing outthat the ooperation levels observed during growth are very robust. Moreover,the value of bc appears to inrease with the intensity of seletion ǫ in agree-



7.5. Dynamis on stati networks onstruted using the EPA model 139

Figure 7.7: Degree of ooperation when the last node of the network is inorporated,
〈c〉, and the average fration of ooperators observed when the system is time-evolved
〈c〉∞ after the network growth ends. The four panels show these measures for severalvalues of ǫ. From top to bottom and left to right we show ǫ = 0.5, 0.75, 0.9 and 0.99(strong seletion limit. The networks are made up of N = 103 nodes with averageonnetivity 〈k〉 = 4 and τD = 10τT . Every point is the average over 103 realizations.ment with the inrease of the degree heterogeneity of the substrate network.These results highlight the phenomenologial di�erene between playing thePD game simultaneously to the growth of the underlying network and playingon �xed stati networks.7.5.2 E�ets of randomizations in the evolutionary dynamisNow, in order to gain more insight in the relation between network topologyand the supported level of ooperation, we study the evolution of ooperationwhen network growth is stopped and we make di�erent randomizations of boththe loal struture and the strategies of the nodes. In partiular, in �gure 7.8,we show the asymptoti level of ooperation when the following randomizationsare made after the growth is stopped: (i) the struture of the EPA networkis randomized by rewiring its links while preserving the degree of eah node;(ii) the struture of the network is kept intat but the strategies of the nodesare reassigned while preserving the global fration of ooperation (strategy
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bFigure 7.8: Cooperation levels at the end of the growth proess and after letting thenetwork relax as a funtion of b. The original network was grown up to N = 4 · 103nodes with ǫ = 0.99 and average onnetivity 〈k〉 = 4, and the asymptoti oopera-tion levels are omputed 107 time steps afterwards. Full irles show the ooperationlevel when the network stops growing. The other urves show the asymptoti o-operation when the struture of the network has been randomized (triangles), whenthe strategies of the nodes have been reassigned randomly (squares) and with bothrandomizations proesses (diamonds).
randomization); and (iii) when the two former randomization proedures areombined.As it an be seen from �gure 7.8, the ruial fator for the ooperationinrement during the size-�xed period of the dynamis is the struture of theseEPA networks, sine its randomization leads to a derease of ooperation atlevels far away from those of the original one or even of a BA SF network[8, 12℄. This drop of ooperation when randomizing the struture is in goodagreement with previous �ndings in omplex topologies, spei�ally, for statiBA networks [35, 36℄ (see also setion 5.1). On the other hand, the strategyrandomization does not prevent high levels of ooperation, thus on�rmingthat the governing fator of the network behavior is the struture arising fromthe o-evolutionary proess. Moreover, the asymptoti level of ooperation inthis ase (squares in �gure 7.8) is larger that those observed when the networkis simply let to evolve without any randomization (C∞ in �gure 7.7). Thisresult points out that using a random initial ondition for the strategies di�ersstrongly from starting from a on�guration where degrees and strategies areorrelated as a result of the EPA model (�gure 7.3). We will ome bak to thispoint in setion 7.7.
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Figure 7.9: Cooperation levels in ER, BA, and our Evolutionary Preferential Attah-ment network models, as a funtion of the temptation parameter b. The EPA networkis built up using the model desribed in the main text for b = 2.1 and ǫ = 0.99. Allnetworks are made up of N = 103 nodes, with average onnetivity 〈k〉 = 4, and everypoint shown is the average over 103 independent realizations.7.5.3 EPA networks as substrates for evolutionary dynamisThe high levels of ooperation observed when applying a random initial on�g-uration for the strategies to EPA networks motivate the question on whetherEPA networks are best suited to support ooperative behavior than other well-known models. In order to answer this question, we onsider our EPA networkswhen used as stati substrates for the evolutionary dynamis and ompare withthe ases of both Barabási-Albert [8℄ and Erd®s-Re«yi (ER) [18℄ graphs. Tothis aim, we take a partiular example of our model networks, grown with
b = 2.1 and ǫ = 0.99, and run the evolutionary dynamis starting from aninitial on�guration with 50% ooperators and defetors plaed at random.The average level of ooperation as a funtion of the temptation to defet isrepresented in �gure 7.9 together with the diagrams for BA and ER networks.Surprisingly, the plot shows that the EPA network remarkably enhanes thesurvival of ooperation for all the values of b studied. Therefore, the attah-ment proess followed by EPA networks is seen to be more e�ient than theBA preferential attahment model studied in [34, 37, 45℄. Obviously, the rootsof this behavior annot be found in the degree distribution, P (k), but in thehigh levels of lustering [128℄ and the disassortative mixing [135℄ shown above.It is worth mentioning here that we have performed an study of the asymp-toti state of the system, and we have omputed the frations of pure strategistand �utuating individuals (as we have de�ned them in setion 3.3), one the



142 Chapter 7. Complex Networks from Evolutionary Preferential Attahmentnetwork has grown to its �nal size. But sine there are not very new results, wewill not disuss them right now. Instead, we will show them as a omparisonwith the ase τD = τT , in setion 7.8. We just on�rm here the existene of thepartition of the (stati) EPA network into the usual sets of pure ooperators,pure defetors and �utuating individuals.7.6 Time evolution of the Pc(k) after network growthAs it has been well established before, SF topologies are able to sustain higherlevels of ooperation than random strutures, due to the mirosopial organi-zation of the strategies [34, 45℄. In partiular, it has been shown that in thoseheterogeneous settings the hubs always play as ooperators being surroundedby a unique luster of ooperators, while defetors annot take advantage ofhigh onnetivity, and thus oupy medium and low degree lasses. Nonethe-less, in our EPA strutures, we have observed (setion 7.3) that during networkgrows, some hubs play as defetors, thus implying a very di�erent senario thanthat of stati heterogeneous networks.In this setion we turn again to the situation in whih the network growthhas stopped (and no randomization is made) to study the roots of the inrementof the asymptoti level of ooperation observed in �gure 7.7.To this aim we look at the temporal evolution of the probability that anode of degree k is a ooperator, Pc(k), one the network growth has eased.As we have observed in setion 7.3, the growth proess leads to a onentrationof ooperators at intermediate degree nodes, explained from the fat that whilethe network is growing, newomers join in with the same probability of beingooperators or defetors. In this situation, defetors have an evolutionary ad-vantage as they get higher payo�s from ooperator newomers. Although theseooperators will subsequently hange into defetors and stop providing payo�for the original defetor, the stable soure of fresh ooperator nodes enteringthe network ompensates for this e�et. However, when the growth stops whilethe dynamis ontinues, we observe that low degree nodes are rapidly takenover by ooperators, and after 104 time steps they are mainly ooperators. Onthe ontrary, hubs are muh more resistant to hange, and even after 107 timesteps not all of them have hanged into ooperators (revealed by those values
Pc(k) = 0 in �gure 7.10).The persistene of hub defetors is a very intriguing observation, in ontrastwith previous �ndings in stati SF networks [34, 36, 45℄ (see also hapter3), for whih hubs are always ooperators or, in other words, a defetor hubis unstable. As we have widely explain in hapter 3, this ours beause a
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Figure 7.10: Probability of being a ooperator as a funtion of the degree at the endof the Evolutionary Preferential Attahment proess, 104 time steps later, and 107time steps later, for b = 2.2 and ǫ = 0.99.defetor sitting on a hub will rapidly onvert its neighbors to defetors, whihin turn leaves it with zero payo�; subsequently, if one of its neighbors turnsbak to ooperation, the hub will eventually follow. It seems, however, thatthe oupling of evolutionary game dynamis with the network growth leads toa strutural and dynamial on�guration that stabilizes the defetors on hubs.The unexpeted result that �gure 7.10 shows is that defetor hubs an alsobe asymptotially stable one the network growth has eased, i.e., it beamestati. Indeed, we have observed in our simulations that hubs are defetorsfor as long as the dynamis ontinues (at least, t = 107 extra time steps after�nishing growing the network). However, it is important to stress that not allrealizations of the proess end up with defetor hubs. For low values of b, thisis pratially never the ase and almost no realizations produe defetors at thehubs, but, as b inreases, the perentage of realizations where this phenomenonis observed inreases rapidly.In setion 7.3 we have disussed why a hub an be a defetor while thenetwork is growing, beause it takes advantage of the newomer �ow, gettinghigh bene�ts from them. Nevertheless, the surprising fat that defetor hubsmay have very long lives on the stati regime, may be the relevant featurefor the behavior of the network resulting from the growth proess, and it isimportant to fully understand the reason for suh a slow dynamis. We laimthat it an be traed bak to the payo� struture of the network, so in setion



144 Chapter 7. Complex Networks from Evolutionary Preferential Attahment7.7, we will analyse it in detail.7.7 Mirosopi roots of ooperation after networkgrowthHaving identi�ed the oexistene of ooperator and defetor hubs, we nextstudy why this on�guration seems to be asymptotially stable and why thehubs are not invaded by opposite strategies. In �gure 7.11, we present anexample taken from a single realization of the proess. Had we plot the resultsof payo�s averaged over realizations, we would not have been able to obtainthis piture, beause in that ase payo�s are seemingly very di�erent in theregion of large degree, as a onsequene of the statistial properties of ournetworks, in whih hubs do exist but their degree and payo� depend on thespei� realization. As an be seen, the payo� grows approximately as a powerlaw, fk ∼ kα; however, the key point here is not this law but the fat thatthe payo�s for defetors and ooperators of the same degree are very similar.In view of the strategy update rule (equation 7.1), it beomes lear that theevolution must be very slow. Moreover, if we take into aount the role ofthe degree in that expression, we see that hubs have a very low probability tohange their strategies, whatever they may be.Considering now the disassortative nature of the degree-degree orrela-tions (�gure 7.6) we an explain how these dynamial on�gurations an bepromoted by the struture of the network. The large dissasortativity of EPAnetworks suggests that hubs are mostly surrounded by low degree nodes andnot diretly onneted to other hubs. Instead, the onnetion with hubs ismade in two steps (i.e. via a low degree node). This loal on�guration re-sembles that of the so-alled Dipole Model [134℄, a on�guration in whih twohubs (not diretly onneted) are in ontat with a large amount of ommonneighbors whih in turn are low degree nodes. In this on�guration, it an beshown analytially that the two hubs an oexist asymptotially with oppositestrategies, provided that the hub playing as ooperator is in ontat with anadditional set of nodes playing as ooperators, for this will provide the hubswith a stable soure of bene�ts. On the ontrary, defetor hubs are only on-neted to the set of nodes that are also in ontat with the ooperator hubs. Inthis setting, the low degree individuals attahed to both hubs experiene y-les of ooperation and defetion (we all them �utuating individuals, beausetheir strategies an never get �xed) due to the high payo�s obtained by thehubs. If suh a loal on�guration for the strategies of hubs and their leavesarises, neither of the two hubs will take over the set of �utuating individuals,nor the latter will invade the hubs as they are mainly lowly onneted nodes



7.8. Other τD/τT time relations 145

10
0

10
1

10
2

k

10
-3

10
-2

10
-1

10
0

10
1

10
2

f k

C
D

Figure 7.11: Average payo�s of ooperators and defetor nodes at the end of networkgrowth (t = 0) as a funtion of their degrees, k, for a realization of the EvolutionaryPreferential Attahment model with b = 1.8. Note that the similarity between oop-erators' and defetors' payo�s implies that imitation events take plae on a long timesale.with small payo�s.In order to test if the grown networks exhibit loal dipole-like strutures,we have measured the onnetivity of the neighbors of defetor and ooperatorhubs, whih we represent in �gure 7.12. The �gure undoubtedly shows thathighly onneted nodes playing as defetors are mainly onneted to poorlyonneted ooperators (ating as the set of �utuating strategists), whereasooperator hubs are onneted to eah other and also to a signi�ant frationof lowly onneted nodes. This fully on�rms that, in ontrast to all previousresults, there is a struture allowing the resiliene of defetor hubs, and more-over, it gives rise to a situation quite similar to that desribed by the DipoleModel.7.8 Other τD/τT time relationsDuring this whole hapter, we have always worked with a time relation betweenthe dynamis and the growth of the network equal to τD = 10τT , meaningthat the network grows in ten at the time, and then one single round of thedynamis takes plae. We have studied the degree distributions that an arisefrom this Evolutionary Preferential Attahment mehanism, as well as the
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Figure 7.13: Degree distribution for �xed values of b = 1.5 (Top left) and b = 2.5(Top right), and �xed values of ǫ = 0.3 (Bottom left) and ǫ = 0.99 (Bottomright). The networks are made up of N = 103 nodes, with average onnetivity
〈k〉 = 4, and τD = τT . Every point is the average of 300 di�erent realizations.levels of ooperation, omparing them with some well-known ases, suh asBA sale-free or ER random stati networks. Nevertheless, it is interestingto explore the behavior of the system for other time ratios. Spei�ally, nowwe will explore brie�y the ase when both time sales are exatly the same
τD = τT , i.e., starting with a small ore of nodes fully onneted, we add anew node at a time and then we make the system play one round of the game.We will ompare the results with the τD = 10τT senario.Thus, in �gure 7.13 we show some degree distributions obtained for thispartiular time relation, and as we an see, there are some qualitative di�er-enes between this ase and the one with τD = 10τT one (see �gure 7.1 toompare them). First of all, if we look at the two upper panels, we an seethat the dependene of P (k) with ǫ and for a �xed value of the temptation todefet is less lear in this ase, while it was obvious and very gradual for the
τD = 10τT senario. Also, when ǫ = 0.99, the networks that arise from theproess have very fat-tailed degree distributions (even more so for high values
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Figure 7.14: Average level of ooperation and frations of pure strategists and �u-tuating individuals as a funtion of b, for τD = τT (Left) and τD = 10τT (Right),both for ǫ = 0.0 (weak seletion limit). The networks are made up of N = 103 nodes,with average onnetivity 〈k〉 = 4. Every point is the average of 300 independentrealizations.of the parameter b), whih means that there are 'super-hubs' present in thesystem, whih were not in the previous ase. On the other hand, there is amore pronouned dependene on the parameter b, for a �xed value of ǫ (bottompanels of �gure 7.13), while for the τD = 10τT ase, the degree distributionswere almost b-independent.In order to haraterize better the behavior of the system when the timerelation is τD = τT , we also need to look at the level of ooperation, omparingthe 〈c〉(b) urves, as well as the frations of pure strategist and �utuatingindividuals for several ases. But �rst of all, we need to point out an impor-tant di�erene between the present senario and the one studied in previoussetions. In the situation with τD = 10τT , we observed that the �nal state ofthe system was, in general, �utuating around a well-de�ned value of oopera-tion, so the interpretation of the magnitude 〈c〉 was the fration of ooperationpresent in the network in the stationary state. Nonetheless, for the ase weare studying now, the situation is di�erent, sine the system always reahesan all-C or an all-D state. Thus, one shoud interpret 〈c〉 as the fration ofrealizations for whih the system ends up in an all-C state. Now, as we ansee in �gures 7.14 and 7.15 for both extreme values of ǫ, the weak and strongseletion limits, the average level of ooperation is remarkably lower for thease of τD = τT . This fat an be understood as follows: if we start with asmall ore of nodes fully onneted, and the networks grows very slowly (sinethe time relation is now τD = τT ), the situation is in many ways similar toa well-mixed senario, where it has been proved that the ooperation an notsurvive [25, 104, 105, 115℄ (see setion 2.2.2). On the ontrary, if the network
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Figure 7.15: Average level of ooperation and frations of pure strategists and �utu-ating individuals as a funtion of b, for τD = τT (Left) and τD = 10τT (Right), bothfor ǫ = 0.99 (strong seletion limit). The networks are made up of N = 103 nodes,with average onnetivity 〈k〉 = 4. Every point is the average of 300 independentrealizations.grows faster (for example, when the relation τD = 10τT is ful�lled), the oop-eration has better hanes to survive, due to the struture of the graph. Wean also notie that the level of �utuating individuals is lower for the τD = τTsituation, sine the pure defetors start invading the network muh earlier, itis to say, for muh lower values of the temptation to defet. We have also triedother time relations, suh as 10τD = τT , it is, a new node is added, and thenthe system plays 10 rounds of the game. Obviously, in this ase we have foundthe same well-mixed e�et than in the τD = τT but enhaned: the level ofooperation drops even more, beause this new senario promotes ooperationeven less than the previous one.



150 Chapter 7. Complex Networks from Evolutionary Preferential Attahment7.9 ConlusionsIn this hapter we have presented a model in whih the rules governing theformation of the network are linked to the dynamis of its omponents. Themodel provides an evolutionary explanation for the origin of the two mostommon types of networks found in natural systems. Thus, when the seletionpressure is weak, homogeneous networks arise, whereas strong seletion pres-sure gives rise to sale-free networks. A remarkable fat is that the proposedevolution rule gives rise to omplex networks that share many topologial fea-tures with those measured in real systems, suh as the power law dependeneof the lustering oe�ient with the degree of the nodes. Interestingly, our re-sults make it lear that the mirosopi dynamial organization of strategistsin evolutionarily grown networks is very di�erent from the ase in whih thepopulation evolves on stati networks. Namely, there an be hubs playing asdefetors during network growth, while ooperators oupy mainly the mid-dle lasses. It is worth stressing that the level of ooperation during networkgrowth reahes the largest values for the strong seletion limit in whih thenewomers launh their links to those �ttest elements of the system.Furthermore, the generated networks are robust in the sense that after thegrowth proess stops, the dynamial behavior keeps its harater. Moreover,we have shown that for most ases the ooperative behavior arising in thesenetworks exhibits a great resiliene, in the sense that it does not derease for awide range of parameters upon stopping the growth proess, and, in most ases,it even displays a large inrease of the ooperation level. We have also shownthat the non-trivial topologial patterns of EPA networks are the roots for suhenhanement of the ooperation. In partiular, we have shown that rewiringthe links while keeping the degree distribution (thus destroying any kind oforrelations between nodes) yields a dramati derease of the levels of oop-eration. On the other hand, a randomization of the strategies does not a�etthe asymptoti levels of ooperation. Therefore, the ability of EPA networksto promote the resiliene of ooperation is rooted in the orrelations reatedduring network formation via the oevolution with evolutionary dynamis.Finally, maybe the most important di�erene we have found between thenetworks grown with our model and the stati SF ase, is the dynami stabi-lization of defetors on hubs. We have shown that these defetor hubs an beextremely long-lived due to the similarity of payo�s between ooperators anddefetors arising from the o-evolutionary proess. Moreover, we have beenable to link the payo� distribution to the network struture. In partiular, weshow that the disassortative nature of EPA networks together with the for-mation of loal dipole-like strutures [134℄ (and see also setion 3.4) duringnetwork growth is responsible for the �xation of defetion in hubs.



Chapter 8Complex Networks from otherDynami-dependentAttahment rulesIn this hapter, we will keep on addressing the issue of the entanglement be-tween the growth of a omplex struture and the dynamis that is taking plaeon top of it simultaneously, in suh a way that the outome of the game, mean-ing the bene�ts the nodes get out of the interation, will a�et the probabilityof the existing nodes to attrat a link from a newomer. So we will work witha model similar to the one introdued in hapter 7, but with two importantdi�erenes: on the one hand, the dependene of the probability of attahmentwill be exponential with the �tness of the nodes, instead of linear. On theother hand, we will also modify the imitation rule to a Fermi-like funtion,instead of using a Repliator-like probability, so irrational hanges of strategywill be allowed now, meaning that a node an imitate a neighbor whose payo�is lower than its own.The approah we will take here will be a little di�erent too. Sine thismodel has one more parameter than the one exposed in hapter 7, instead ofpresenting it at one, onsidering simultaneously all the e�ets, we will study�rst a ase where the dynamis has no e�et on the growth, just to separatethe two ontributions, and then we will take the dynamis into onsideration,too.In the model we presented here, new individuals establish onnetions tothe existing individuals, and the newomers an either onnet to m arbitraryindividuals or preferentially attah to those that have been suessful playersin the past, depending on the values of the orresponding parameter. Suess



152 Chapter 8. Complex Networks from other Dynami-dependent Attahment rulesis based on the umulated payo� π from an evolutionary game, whih eahindividual plays with all its neighbors on the network. Although for the modelitself we do not need to speify the kind of game or the number of strategies,we will use the two-strategy Prisoner's Dilemma, as in hapter 7. However,the formulation of the game, it is to say, the values of the oe�ients of thepayo� matrix, will be di�erent. We will use the ost-bene�t ratio approah,like we did in hapter 6.8.1 The modelWe start from a small omplete network of m0 individuals with one strategy.Subsequently, new individuals arrive and form onnetions to existing individ-uals. Evolutionary dynamis proeeds in the following way: At eah time step,every individual j plays with all its neighbors and obtains an aumulatedpayo� πj . All players hoose then synhronously between their old strategyand the strategy of a randomly seleted neighbor. In this way, player j willadopt the strategy of its neighbor i with probability [102, 110, 116, 118, 139℄:
Tj→i =

1

1 + eβ(πj−πi)
(8.1)where β is the intensity of seletion. Obviously, with probability (1 − Tj→i),node j will stik to its old strategy. This updating rule is usually alled Fermirule, sine it is based on the Fermi distribution funtion from Statistial Me-hanis. The parameter β, whih in Physis means inverse of temperature, anbe here also interpreted as noise assoiated with errors in the deision makingproess [146℄. Thus, depending on the value of this parameter, we an havenow di�erent limiting situations:

• For β ≪ 1, seletion is weak and the game is only a linear orretion torandom strategy hoie, it is to say, a random drift proess.
• For strong seletion, β → ∞, node j will always adopt a better strategyand it will never adopt a worse strategy (imitation dynamis).It is important to stress that, by using this strategy updating rule, we allowindividuals to be irrational, in the sense that they an adopt a strategy thatperforms worse than its own urrent one.Every τ time steps, a new individual with a random strategy is addedto the system. It means that when τ ≪ 1, several nodes are added beforeone round of the dynamis takes plae on the system, and when τ ≫ 1, thenetwork grows very slowly and the game dynamis an bring the system lose



8.1. The model 153to equilibrium before a new node is added. The new individual establishes mlinks to preexisting nodes, whih are hosen preferentially aording to theirperformane in the game in the last time step. Node j is hosen as gamepartner with probability:
pj =

e+απj

∑N(t)
l=1 e+απl

(8.2)where N(t) is the number of nodes that already exist when the new nodeis added at time t. The remaining m − 1 links are added in the same way,exluding double links, as usual. Again, one should realize that di�erent asesare possible, depending on the value of the parameter α:
• For α = 0, the newomer attahes to a randomly hosen existing node.
• For small α, attahment is approximately linear with payo�.
• For high α, the newomers will make onnetions to only very few nodeswith high payo�s.
• In the limit α → ∞, all newomers will always attah to the m mostsuessful players.Besides, sine m links and a single node are added at eah τ time step, theaverage degree of the network at a given moment is:

m0(m0 − 1)12 +m t
τ

m0 +
t
τ

(8.3)where t is the number of time steps that has passed. Throughout this hapter,we will use m = 2 (therefore, 〈k〉 = 4) and m0 = 3.



154 Chapter 8. Complex Networks from other Dynami-dependent Attahment rules8.1.1 A simpli�ation of the modelAs we have mentioned previously, in order to fully understand this model andthe di�erent ontributions eah feature makes to the �nal outome, we want tofous on the simplest ase, in whih eah interation leads to the same payo�,whih we set to one. Or in other words, it would orrespond to a game whoseentries of the payo� matrix were all equal: it does not make any di�erenewhih strategy you or your opponent may hoose. Then, the payo�s πj arejust the number of interations an individual has, i.e. the degree kj of the node(note that normalizing by the degree of the node would essentially wash outthe e�et of the topology at this point [36, 135℄).Thus, evolutionary dynamis of strategies has no onsequenes and thus,the topology is independent of β. This allows us to disuss the growth dynamiswithout any ompliations arising from the dynamis of strategies. We haveseveral simple limiting ases:
• For α = 0, the newomer attahes at random to a pre-existing node.This leads to a network in whih the probability that a node has k linksdeays exponentially, similar to ER networks. In this ase, topology isindependent of strategies for all intensities of seletion β, even when indi-viduals play di�erent strategies leading to di�erent payo�s. Nonetheless,whenever α > 0, there is an interplay between topologial dynamis andstrategy dynamis.
• For α ≪ 1, we an linearize the probability of attahment pj , and weobtain:

pj =
α−1 + kj

∑N
k=1 (α

−1 + kk)
. (8.4)Thus, we reover the linear preferential attahment model introdued byDorogovtsev et al [60℄. When strategies di�er in their payo�s, then notonly the degree, but also the strategy of the nodes and their neighborswill in�uene the probability to attah to a node.

• When α is large, we will typially observe a network in whih m of the
m0 nodes of the initial omplete network will be onneted to almost allnodes that have been added during the growth stage. The emergene ofthese super-hubs is due to the nonlinearity in equation 8.2.Examples for the network strutures in these limiting ases are given in�gure 8.1. As it is shown, for α = 0, random networks are generated. Onthe other hand, when α inreases, some degree of heterogeneity appears inthe resulting struture, whereas for α = 1, the probability of attahment is so
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Figure 8.1: Networks for a game in whih both strategies have idential payo�s, suhthat the payo� is given by the degree of a node. The left hand side shows the degreedistributions of networks of size N = 104, while the right hand side shows snapshotsof networks of N = 100 nodes. (a) For α = 0.0, the degree distribution deaysexponentially. (b) For α = 0.1, some highly onneted nodes appear in the networkand the degree distribution begins to resemble a power-law. () Already for α = 1.0,the vast majority of nodes (>99.9 %) has only two links. In addition, 〈k〉 = 2m = 4 ofthe m0 = 3 initial nodes are onneted to almost all other nodes. Degree distributionsare obtained from an average over 102 networks of size N = 104. Note that the x-axisis linear in (a), but logarithmi in (b) and ().



156 Chapter 8. Complex Networks from other Dynami-dependent Attahment rulesstrongly dependent of the onnetivity, that it exlusively bene�ts m amongthe m0 initial nodes, that beome super-hubs, and so the model always givesrise to star-like strutures.Next, we will go bak to evolutionary games in whih the payo� per intera-tion is no longer onstant, but depends on the strategies of the two interatingindividuals. In general, suh an interplay of evolutionary dynamis of thestrategies and the payo�-preferential attahment will hange the struture ofthe network.8.2 Degree DistributionAfter this brief study of a simpli�ed version, let's now address the whole modelagain. The dynamis we will onsider here is one again the Prisoner's Dilemma[23, 26, 145℄, where the two players an hoose between two possible strategies:ooperation (C) and defetion (D). But as we have mentioned before, in thisase, the values of the oe�ients of the payo� matrix will be di�erent fromthose we used mainly in previous hapters, although the relative ordering ofthem must remain the same. Namely, the parameter that haraterizes howexpensive ooperation is, ompared with defetion, will be the ratio b/c, insteadof using the temptation to defet b. In this way, we will onsider that there isa ost c for ooperation, whereas a ooperative at from an interation partnerleads to a bene�t b (> c). Thus, the lower the value of b/c is, the more expensivethe ooperation is. The payo� matrix of the game an be written as:
(

C D

C b− c −c

D b 0

)

∼
(

C D

C b/c− 1 −1

D b/c 0

) (8.5)No matter what the opponent does, defetion always leads to a higher payo�,beause b > b − c and 0 > −c, thus sel�sh, rational players should defet.Similarly, if the payo� determines reprodutive �tness, evolution will lead tothe spread of defetion. However, the payo� for mutual defetion is smallerthan the payo� for mutual ooperation (b − c > 0) and thus players fae adilemma. One way to resolve it is to onsider strutured populations in whihplayers only interat with their neighbors [31℄. Here, we follow this line ofresearh and onsider in addition growing populations, as disussed above.Sine there is an interation between strategy dynamis and network growth,the topology of the system will obviously hange under seletion. So, in �gure8.2, we show how it hanges with the bene�t to ost ratio b/c, the intensityof seletion β and the attahment parameter α for the partiular dynamis ofthe Prisoner's Dilemma game. From �gure 8.2, it is lear that the in�uene of
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Figure 8.2: Impat of the game dynamis on the degree distribution at the end ofnetwork growth. Left olumn orresponds to α = 0.1, while the right one is for α = 1.The networks are made of N = 103 nodes, with average onnetivity 〈k〉 = 2m = 4,
m0 = 3, and τ = 0.1. All values are obtained from the average of 103 di�erentrealizations.



158 Chapter 8. Complex Networks from other Dynami-dependent Attahment rulesthe game on the degree distribution is relatively weak, for small degrees a leardi�erene is only found for large α and small b/c. The distribution of the rela-tively few nodes with many onnetions, however, is more sensitive to hangingeither b/c or β. Moreover, as we have already learn from the simpli�ed versionof the model in subsetion 8.1.1, for a value α = 1 we have strutures wheresuper-hubs are present, regardless of the values of the other two parametersof the system, b/c and β. On the other hand, for more moderate values of
α, we an observe some di�erenes in the topologies arising from the model,depending on the values of the two other mentioned parameters. Thus, fora �xed value of the ratio bene�t-ost, some di�erent degree distributions ap-pear, depending on β. We an also say that, in general, almost all struturesobtained have fat-tailed P (k). We an see that there is not a very importantdependene of the degree distribution with b/c, whih was also the ase of themodel presented in hapter 7.
8.3 Average Level of Cooperation as a funtion of theparameters of the systemTypially, we are interested in the promotion of ooperation on di�erent net-work strutures, so �gure 8.3 shows the average level of ooperation for strongseletion as a funtion of τ and for several �xed values of the ratio b/c. Itturns out that payo� preferential attahment inreases the level of oopera-tion in the system signi�antly ompared to random attahment. We wantto point out here that, although we do not show it, this e�et is also presentfor weak seletion, but less pronouned. On the other hand, we observe thatooperation gets higher levels for small values of τ , i.e. when many nodesare added before dynamis takes plae and strategies are hanged (whih isin good agreement with the results obtained in hapter 7, where we showedthat the equivalent time relation τD = 10τT promotes ooperation muh morethan when τD = τT ). Indeed, this partiular hoie for the time ratio putsthe system further from equilibrium, whereas the ase of large τ means thatstrategies have been equilibrated at least loally before the next new individualwith a random strategy is added to the system. Note that for τ larger thana ertain value (τ . 1), ooperation levels beome independent of τ , whihpoints out that playing just one after a given number of new players havebeen inorporated is enough to reah a dynamial equilibrium.
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Figure 8.3: The average level of ooperation under strong seletion (β = 1) and α = 1,depending on the time sale of attahment, τ . Cooperation bene�ts most from smallvalues of τ , i.e. when many new nodes are added before players update their strategies.For random attahment (α = 0, inset) ooperation does not emerge, only for highbene�t to ost ratios a few ooperators prevail. The networks are made of N = 103nodes, with average onnetivity 〈k〉 = 2m = 4, m0 = 3, and all values are obtainedfrom the average of 102 di�erent realizations.8.4 Average Level of Cooperation after the growthhas �nishedNow, we intend to fous on analyzing the level of ooperation the systemahieves one the growth has �nished, it is to say, when the individuals ofthe network just play the game, but no new nodes are added anymore. Asin most strutured populations, ooperators that are disadvantageous in thePrisoner's Dilemma in well-mixed population bene�t from the spatial struture.Of ourse, this e�et is larger when ooperation beomes more pro�table, i.e.when the bene�t to ost ratio b/c inreases. It turns out that for weak payo�preferential attahment (small α), the promotion of ooperation is relativelyweak and levels of ooperation beyond 50 % are only reahed when ooperationis very pro�table (see �gure 8.4). However, when the probability to attah tothe most suessful nodes beomes large (large α), then the average frationof ooperators beomes larger, approahing one when the bene�t to ost ratio
b/c is large.Interestingly, for small b/c ratios, the abundane of ooperators dereaseswith inreasing β, whereas it inreases with the intensity of seletion for large
b/c ratios. The existene of a threshold for intermediate b/c an be illustrated
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Figure 8.4: The average level of ooperation 〈c〉 104 time steps after the network stopsgrowing. For α = 0.1 (Left) the level of ooperation exeeds 50 % only for very highbene�t to ost ratios b/c. For α = 1.0 (Right), the abundane of ooperators issigni�antly higher. Even for neutral strategy dynamis (β = 0), payo� preferentialattahment an lead to high levels of ooperation in this ase. The networks are madeof N = 103 nodes, with average onnetivity 〈k〉 = 2m = 4, m0 = 3, and τ = 0.1. Allvalues are obtained from the average of 103 di�erent realizations.as follows for large α: assume that we start from m0 fully onneted ooperatornodes. For τ < 1, we add 1/τ nodes with m = 2 links, half of whih aredefetors and half ooperators, on average. All new players interat only withthe initial ooperator nodes, suh that an initial ooperator will on averageobtain m
m0τ

new links. Thus, the payo� of a new defetor is mb. The averagepayo� of an initial ooperator is (b− c)(m0 −1+ 1
2

m
m0τ

)− c12
m

m0τ
. Both payo�sare idential for

b

c
=

1
τ + m0(m0−1)

m

1
2τ −m0 +

m0(m0−1)
m

. (8.6)For large values of b/c, ooperators will dominate in the very beginning of net-work growth. The threshold inreases with τ and dereases withm0: the largerthe initial ooperator luster and the more nodes are added before strategiesare updated, the easier it is for ooperation to spread initially. This argumentshows qualitatively that a rossover in the abundane of ooperators shouldexist, and therefore that above a ertain threshold, it is easier for ooperationto spread. Only in the very beginning of network growth, this argument willhold quantitatively.In general, the average level of ooperation an be based on two very dif-ferent senarios: either it is the fration of realizations of the proess thatultimately ends in full ooperation, or it is the average abundane of ooper-ators in a network in whih both ooperators and defetors are present. This



8.5. Probability of �xation 161also happened in the model we presented in hapter 7: when the time relationwas τD = 10τT , the average level of ooperation 〈c〉 must be interpreted as thefration of ooperators present in the system in the stationary state, whereasfor τD = τT , the whole network always ends up in a state all-C or all-D, so
〈c〉 means the fration of realizations for whih the system ahieves the all-Cstate.For any �nite intensity of seletion β, we have Tj→i > 0, regardless of thepayo�s. Thus, after growth has stopped, our dynamis desribes a Markovhain with two absorbing states in whih all players follow one of the twostrategies. Therefore, ultimately one of the two strategies will go extint, inontrast to evolutionary proesses that do not allow disadvantageous strategiesto spread. In other words, using this model, the systems will always end upwhether on an all-C or on an all-D state. Nonetheless, it is important toremark that the time to extintion an beome very large, in partiular whenthe intensity of seletion is high or the population size is large [110, 139, 147℄.
8.5 Probability of �xationNow, we want to analyze this issue numerially, and in order to do that, weompute the probability that �xation (for either ooperation or defetion) o-urs within 104 time steps after the network has stopped growing, during whihonly the dynamis takes plae on the system, but no new nodes are added (see�gure 8.5). For small α, the results follow the intuition from well-mixed pop-ulations: Fixation within this time is more likely if the intensity of seletionis weaker. With inreasing bene�t to ost ratio, �xation times inrease, so�xation within the �rst 104 time steps beomes less and less likely. For large
α, however, �xation is faster for strong seletion (large β) for a wide range ofparameters. Only when the b/c ratio is very high, �xation times are very largeunder strong seletion. This is based on the peuliar struture of the networkobtained for large α. In addition, we observe an area in �gure 8.5 where the�xation time inreases slightly before it dereases again, i.e. the probability for�xation in the �rst 104 time steps has a minimum. Interestingly, this oursfor the range of b/c ratios where the average levels of ooperation interset at50 % for the di�erent intensities of seletion. In this parameter region, neitherooperators nor defetors are learly favored. Thus, both of them spread ini-tially. When the abundane of both strategies is approximately the same in thebeginning, then it will be more di�ult to ompletely wipe out one strategylater. Thus, the inreased time of �xation in the parameter region where theabundane of ooperation beomes 50% makes intuitive sense.
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Figure 8.5: The probability of �xation for one strategy within 104 time steps aftergrowth has stopped as a funtion of the attahment parameter: (Left) α = 0.1 and(Right) α = 1, for di�erent intensities of seletion β. The networks are made up of
N = 103 nodes, with average onnetivity 〈k〉 = 2m = 4, m0 = 3 and τ = 0.1. Everypoint is the average over 103 independent realizations.8.6 Level of ooperation after re-initializing the strate-giesFinally, we want to fous on studying what happens when the network stopsgrowing: Does ooperation bene�t from growth or only from topology? Typ-ially, one would expet that defetors pro�t from growth, beause there is asteady �ow of new ooperators that they an potentially exploit. Thus, o-operation should inrease if the game dynamis proeeds on the fully grown,stati network (in fat, this was the result we obtained in hapter 7). In on-trast to that ase, here we have hanged the game dynamis in suh a way thatindividuals sometimes an also adopt a worse strategy (irrational hanges). Ithas been shown in previous works that this apparently small hange an signif-iantly derease the level of ooperation [108℄. The overall level of ooperationdrops signi�antly and is only higher than 50% if ooperation is very pro�table.Indeed, we haver found that with this model, the level of ooperation now de-ays one the network no longer grows (see �gure 8.6). This means that in theurrent ase, ooperators, not defetors, bene�t from the ontinuous supply ofnew players, so when the struture stops growing, they stop getting suh highbene�ts, and their proportion in the system drops a little.Thus, it makes sense to ask whether the topologies that are obtained fromthe network growth are powerful promoters of ooperation at all. This an betested, as we did in setion 7.5, by taking the fully grown struture as a statisubstrate, and run the game dynamis on that �xed topology with initially
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Figure 8.6: The average level of ooperation in three ases: one the network isfully grown (drawn in blue), after the game dynamis has proeeded 104 additionalsteps beyond the growth phase of the network (in red), and 104 time steps after thefully grown network has been re-initialized with random strategies (in yellow). Theintensity of seletion is (a) β = 0.01, (b) β = 0.1, and () β = 0.5, respetively. Thenetworks are made up of N = 103, with m0 = 3, average onnetivity 〈k〉 = 2m = 4and τ = 0.1. Every point is the average over 102 di�erent realizations, and α = 0.1in all ases.



164 Chapter 8. Complex Networks from other Dynami-dependent Attahment rulesrandom strategies, 50% ooperators and 50 % defetors. Interestingly enough,this does not lead to any signi�ant enhanement of the level of ooperation, onthe ontrary, ooperators almost disappear from the system after 104 steps ofthe dynamis, one the re-initialization has been made (see �gure 8.6). Thus,our model of network growth based on payo� preferential attahment itselfleads to omparably high levels of ooperation, while the resulting topologyalone, used as a stati substrate, does not support ooperation at all in thePrisoner's Dilemma.8.7 ConlusionsIn this hapter, we have studied another dynamial model for evolutionarygame dynamis in a growing, network-strutured population [141℄. In ontrastto most models for evolutionary games on dynamial networks that onsidera onstant population size [40, 45, 138, 142, 148�150℄, these networks grow.Nonetheless, individuals annot break links and annot ontrol diretly howmany new individuals will establish onnetions with them. The two mainhanges we have made in this new model, with respet to the evolutionarypreferential attahment studied in hapter 7, are on the one hand, that nowthe probability of attahment is exponential with the payo� of the node, and onthe other hand, that we allow irrational strategy hanges, by using a Fermi-likefuntion for the probability of hanging the strategy.One important di�erene that has been found is that under strong Payo�Preferential Attahment (α = 1), the topology of the networks generated aredominated by the presene of a few super-hubs, whih attrat most of the linksof the rest of the nodes. The existene of very few hubs and a large numberof lowly onneted nodes in network models have been widely reported before[151℄. In fat, it has been shown that when networks are grown following anon-linear preferential attahment rule of the sort pj =
kνj

∑N
l=1

kν
l

, with ν > 1,star like strutures are obtained [152℄. Here, we have shown that the samekind of networks an be produed when the dynamis driving the attahmentproess is dominated by the most suessful players.Even when Payo� Preferential Attahment is not too strong (for instane,for α = 0.1), super-hubs emerge, a lear mark that suessful players are likelyto attrat many of the links of the new nodes. If newomers preferentiallyattah to the suessful players in the game, then high levels of ooperationare possible. But this ooperation depends on the growth of the network,the population struture alone would not lead to suh high levels of oopera-tion. Thus, payo� preferential attahment di�ers from the usual promotion of



8.7. Conlusions 165ooperation in strutured populations. In partiular, it has been shown thatheterogeneous stati strutures favor ooperative behavior due to the existeneof hubs. However, as Fig. 8.6 shows, the presene of super-hubs is not enoughto sustain ooperation in the networks grown following the sheme disussedhere.In other models, the probability to adopt a strategy that performs worsethan your own is zero [34, 134℄ (see also some previous hapters). In partiulartogether with synhronous updating of strategies, this an lead to evolutionarydeadloks, i.e. situations in whih both strategies stably oexist. Here, we haveadopted an update sheme in whih individuals sometimes adopt a strategythat performs worse. Due to the presene of suh irregular moves, sooner orlater (often muh later) one strategy will reah �xation. It is to say, the �nalstate of the systems disussed here will be inevitably all-C or all-D. However,when β and the ratio b/c are large enough, both ooperation and defetion anoexist for a very long time.We also want to remark that our growth mehanism has another interestingfeature: it has been shown that the average level of ooperation obtained instati, sale-free networks, is robust to a wide range of initial onditions (seehapter 3). However, for the networks grown using the Payo� PreferentialAttahment, the initial average number of ooperators in the neighborhood ofthe super-hubs determines the fate of ooperation in the whole network, leadingto a muh more sensitive dependene on the initial onditions of the system.This has been proved by the huge drop of ooperation in the system aftersome time steps, one we have reinitialized the strategies randomly among theindividuals when the full size had been ahieved. From this point of view, theweak dependene on the initial onditions reported in stati sale-free networksis not trivial.Finally, we point out that it would be of further interest to study the modeldisussed here with other 2 × 2 games. As we have shown, the game dynam-is seems to have a weak impat on the struture of the resulting networks.Whether or not this holds in general will eluidate the question of the in�ueneof di�erent games on the network formation proess.In summary, the model studied in this hapter shows that the interplaybetween the game dynamis and the network growth leads to omplex networkstrutures. Moreover, not only the struture of the interation network isimportant for the evolution of ooperation, but also the partiular way thisstruture has been obtained. Our work shows that playing while growing anlead to radially di�erent results with respet to the most studied ases in whihgame dynamis proeeds in stati networks (whih is in fat a onlusion wealso made when studying the model of hapter 7).
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