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Norm violation versus punishment risk in a social model of corruption
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We analyze the onset of social-norm-violating behaviors when social punishment is present. To this aim,
a compartmental model is introduced to illustrate the flows among the three possible states: honest, corrupt,
and ostracism. With this simple model we attempt to capture some essential ingredients such as the contagion
of corrupt behaviors to honest agents, the delation of corrupt individuals by honest ones, and the warning to
wrongdoers (fear like that triggers the conversion of corrupt people into honesty). In nonequilibrium statistical
physics terms, the former dynamics can be viewed as a non-Hamiltonian kinetic spin-1 Ising model. After
developing in full detail its mean-field theory and comparing its predictions with simulations made on regular
networks, we derive the conditions for the emergence of corrupt behaviors and, more importantly, illustrate the
key role of the warning-to-wrongdoers mechanism in the latter.
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I. INTRODUCTION

The existence of social norms whose violation is socially
agreed to deserve some punishment is perhaps one of the
most widespread features across the history of human cultures
and societies, to the point that its absence seems a most
unexpected observation. Not surprisingly, the conceptual
frame of social norm (and its enforcement) is transversal
across socioeconomical disciplines, ranging from experimen-
tal (e.g., human behavior, experimental economy) to deeply
theoretical (e.g., norms ancestry, their evolution and relation
to modern social and political institutions) research [1–10].

A ubiquitous kind of norm-violating practice is corruption;
indeed, corruption is observed in various forms (economical,
political, administrative, etc.), at many scales, and in almost
any geographical and historical coordinates. Though the tol-
erance or punishment of a corrupt act is quite relative to
sociocultural particularities, we will hereafter simply identify
the terms “corrupt” and “deserved-to-be-punished” behavior.

Corruption, explicitly realized as bribery practices in pub-
lic administration, has received academic attention in social
and economical mathematical modeling research [10–17], a
field of much recent interest for interdisciplinary physicists
[18]. Most of this literature is framed in either classical or
evolutionary game theory, a modeling frame for social dy-
namics which is clearly prevalent in modern theoretical eco-
nomics, where, in brief, behaviors are formally represented
by game’s strategies, each earning a payoff, and economic
behavior optimizes benefit. Undoubtedly, greediness is a most
clear incentive to corruption. Thus, game theory [19] seems
the most suited framework to tackle the analysis of corrupt
behaviors, for it combines the calculation of benefits and the
posterior decision-making, i.e., strategic adoption, based on
the obtained benefits.

At least in the simplest game-theoretical settings, the hon-
est vs corrupt behavioral dilemma is somewhat identified

with the cooperator vs defector strategic dilemma, which has
become the standard interpretation of the two-person-two-
strategies normal form of games, such as prisoner’s dilemma,
stag hunt, or hawks and doves, and group games, such as
public goods. Nonetheless, the generalization to n � 3 strate-
gies is needed if punishment (the hallmark of norm violation)
to defectors has to be introduced in a stronger way than a mere
fine to wrongdoers, such as a penalty in their benefit.

From a computational statistical physics perspective,
when modeling the social dynamics of corruption in game-
theoretical terms, one easily runs into the practical difficulties
posed by a large parameter space and/or strategic space that
often render near impractical a desirable thorough analysis
of model computations. The need of a clear-cut analysis of
which ingredients are most relevant and which others are not
increases the need to further simplify the modeling assump-
tions, while simultaneously trying to keep at least some of
those that are essential.

Following this line of thought, we will adopt here an almost
minimalistic approach that leads us to a simple abstract com-
partmental flow [20,21] model of corruption (punishable in-
dividual norm violation) where individuals can transit among
three states: Honest, corrupt, and ostracism (or punished). In
this setting, corrupt behavior is not assumed to be a greedy
strategy in a population game dynamics but a simpler general
formal entity, an infectious state, that nevertheless allows
a game-theoretical perspective. This can be seen from the
consideration that what makes a behavior spread socially to
the point of becoming endemic is the likelihood it is copied,
transmitted, imitated, or diffused following any game dynam-
ics perspective [22,23] that might be found more appropriated,
e.g. adaptive, best response, evolutionary, etc.

The structure of the work is as follows. In Sec. II the
assumptions of the compartmental model are first motivated,
and afterward formulated, as a stochastic population dynamics
where agents can be, at a given time, in any of three possible
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states (the compartments), i.e., a socially inspired non-
Hamiltonian kinetic spin-1 Ising model [24,25]. The model
formulation is made with no restrictive assumptions on the so-
cial structure for the population of agents, where the kinetics
of agent microstates and the network-dependent Markovian
dynamics [26,27] associated to it are defined. Its close con-
nection to compartmental epidemic spreading models, such as
the susceptible-infected-recovered-susceptible (SIRS), along
with some important differences, are also noted at the end of
Sec. II. In fact, those readers familiar with epidemic models
would easily interpret the proposed model of social norm-
violation dynamics as a SIRS model where (a) the transit to
recovery of an infected individual needs susceptible agents
around and, moreover, (b) a direct flow from the infected to
the susceptible compartment is included. This last flow chan-
nel is likely unnatural in epidemic scenarios but is germane to
the norm-violation dynamics that motivates our model.

In Sec. III we analyze with some degree of generality
the mean field, or well-mixed population approximation, dy-
namics of the model, with explicit predictions on the transi-
tions that occur (Sec. III A) when the model parameters are
tuned. Phase diagrams in the three-dimensional (3D) param-
eter space are explicitly shown and analyzed in full detail in
Sec. III B regarding the macrostate transitions. The analysis of
the interesting (SIRS, SIR) limit cases of the model is shown
in Sec. III C as a benchmark for the assessment on which
assumptions determine what specific dynamical effects, inside
the mean-field realm. To validate the results of the mean-field
formulation, in Sec. IV we compare the results obtained in
Sec. III with those from stochastic simulations performed on
top of random and nonrandom regular networks. Finally, in
Sec. V we summarize the main results and discuss issues
concerning its relevance, shortcomings, and potentialities.

II. THE MODEL

When a norm exists, a partition among population
individuals (say, observants and law breakers or honest and
corrupt people) appears. But if, in addition, the corresponding
punishment imposed to those violators that are caught is some
type of “ostracism” (e.g., expulsion from society, exile, and
prison), one has already three possible states for individuals,
say, H (honest), C (corrupt), and O (out of society); it is
useful to think of them as “compartments” containing the cor-
responding fractions, say, 〈H〉, 〈C〉, and 〈O〉, in the population.

To complete the definition of a classical compartmental
flow model, one must also formulate sensible hypothesis on
the population flows among compartments. That means to
postulate a microscopic dynamics. Our modeling assumptions
are summarized in the next items, where general structured (in
terms of social contacts) populations are being considered:

(i) Our first assumption is that corruption is a socially
infective event: Honest individuals become corrupt only by
infection from their corrupt neighbors, at an infection rate
f HC
α , that is a function of their local microstates.

This assumption for the corruption flow, H → C, as we
already stressed in the introductory Sec. I, formalizes the
corrupt behavior as an infective state, a certainly simpler and
less elaborate concept than that of a game strategy, without
excluding its consideration, because it is the (social) infectious
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FIG. 1. Chart flow representation of the model. Four flows be-
tween population compartments are possible. The flow O → H
(reinsertion) occurs at a constant rate r. The flow C → H (conver-
sion) is fueled by the perception of the delation risk that we simply
quantify by 〈O〉. However, only pairwise social contacts C − H
determine the other two flows, say, corruption flow at an infection
rate fα and delation flow at a delation rate fβ .

power of a strategy that allows its diffusion. It is this aspect of
corrupt behavior that this assumption tries to capture in its
simplest form.

(ii) We also assume that the flow C → O is exclusively the
result of the delation of corrupt individuals by their honest
neighbors, at a delation rate f CO

β , also a function of their local
microstates.

Let us note that this flow is not the consequence of,
e.g., administrative inspection or police investigation; Only
interaction with honest agents is the source of this C → O
flow that we call delation (or punishment) flow. Also note that
from the honest agents perspective, delation is not optional.
This avoid the need of introducing subtypes of agent states.

(iii) Our third assumption is that, at a given constant rate
r, the O individuals are reinserted into social population as H
individuals. The flow O → H is called reinsertion flow.

(iv) Finally, we consider a fourth flow, the conversion
flow C → H , which simply incorporates the warning-to-
wrongdoers effect of social punishment. The rate at which this
flow takes place is controlled by the social perception of risk
to be delated, which we simply quantify as the fraction, 〈O〉,
of population in the O compartment.

It is worth emphasizing that corruption and delation flows
are the only ones that have their origin in the pairwise inter-
actions among individuals of the socially active population.
On the contrary, both the reinsertion and conversion flows
do not: The individuals in the O state are socially inactive
(i.e., noninteracting), and we only use its fraction (in the
fourth assumption above, when implementing the warning-to-
wrongdoers effect of social punishment) as the only available
information for the estimation of the level of risk that corrupt
people perceive. In other words, an O agent does not influence
the eventual conversion of its corrupt neighbors more than it
does on other far away corrupt agents. However, it is a sort of
(temporary) hole in the network of contacts among agents.

See Fig. 1 for a chart flow graphical representation of the
model, where our assumptions for the flow between any two
compartments are simply visualized.

To seek for generality, we assume that the interactions
(corruption and delation) among socially active agents define
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transition probabilities for the corresponding compartmental
flows through some functions f HC

α (for corruption of a honest
agent) and f CO

β (for the delation of a corrupt one), whose
argument is the configuration of agent states in the local
neighborhood of the focal agent i, say, {σ j (i)}, where σ j [ j =
1, . . . , k(i)] denotes the state (H , C, or O) of the neighbor j of
i and k(i) is the degree, i.e., the number of neighbors, of the
focal agent i.

Due to our assumption on the corruption flow, that it
originates exclusively from interaction among individuals in
different (H,C) states, the function f HC

α (i, {σ j}), which gives
the transition probability H → C, has to satisfy:

f HC
α (i, {σ j}) = 0 if σ j �= C for all j = 1, . . . , k(i) . (1)

A similar consideration on the delation flow C → O leads
to

f CO
β (i, {σ j}) = 0 if σ j �= H for all j = 1, . . . , k(i) . (2)

We will specify later in this section the particular form, see
Eqs. (4), (5), (6), and (7) below, that we have used for explicit
analytics and computations along the rest of the sections. In
addition, for the sake of simplicity, we will use fα and fβ for
the notation of infection rate and delation rate instead of those
with superscripts HC and CO in the rest of the paper.

A simple scheme for stochastic (MC) direct simulations of
the dynamics is the following: At each time step (t) choose
uniformly at random an agent i. Then we have the following:

(i) If σi(t ) = H , then σi(t + 1) = C with transition, i.e.,
conditional, probability fα , a (yet-unspecified) function of the
local configuration around i. The agent remains honest with
probability 1 − fα .

(ii) If σi(t ) = C, then σi(t + 1) = H (warning-to-
wrongdoers effect) with probability 〈O〉, the fraction of
population in O state. Then, if not converted (probability
1 − 〈O〉), the corrupt agents will be delated to O state with
transition probability fβ , a (yet-unspecified also) function of
the local configuration around i. Thus, agent i keeps corrupt
at t + 1 with probability (1 − 〈O〉)(1 − fβ ). (Note that an
equally acceptable scheme would try first delation, then
conversion, which produces different transition probabilities
for C → H and C → O. We will comment on this later.)

(iii) If σi(t ) = O, then σi(t + 1) = H with conditional
probability r remaining out with probability 1 − r.

One can associate to this dynamics on agents’ state con-
figurations a nonlinear Markov process in the following way
[28,29]. Assign to each agent i, and at time t , a real vector
�ρ(i; t ) whose components are the probabilities (at time t) that
the agent is in each of the possible states, namely

�ρ(i; t ) ≡ (ρh(i; t ), ρc(i; t ), ρo(i, t )).

The transition probabilities (i)–(iii) introduced above define
a nonlinear Markov process for the time evolution of these
probabilities �ρ(i; t + 1) = Q �ρ(i; t ), where⎡

⎢⎣
1 − fα 〈ρo〉 r

fα (1 − fβ )(1 − 〈ρo〉) 0

0 fβ (1 − 〈ρo〉) 1 − r

⎤
⎥⎦

is the matrix representation of Q, and 〈ρo〉 is the fraction of
population in O state, i.e.,

〈ρo〉 = N−1
∑

i

ρo(i). (3)

Note our choice of relative order of trial—conversion
before eventual delation—in the second column of the matrix
Q above written. The alternative choice would correspond to
Qhc = (1 − fβ )〈ρo〉 (instead of 〈ρo〉) and Qoc = fβ [instead of
fβ (1 − 〈ρo〉)], the rest of the elements being unchanged.

To complete the model formal setting, one has to specify
the functions fα and fβ for the conditional probabilities of
corruption and delation, respectively. They define the specific
social interactions postulated, and also incorporate the infor-
mation on the social network, that we assume it is encoded
in the neighborhood matrix, whose ith row tells us who the
k(i) neighbors of the agent i are. The following choice mimics
the familiar implementation of infective interactions in Monte
Carlo simulations on compartmental epidemic models as SIS,
SIR, etc.:

fα (i, {σ j}) = 1 −
k(i)∏
j=1

(1 − αδσ j ,C ), (4)

fβ (i, {σ j}) = 1 −
k(i)∏
j=1

(1 − βδσ j ,H ), (5)

where δx,y is the Kronecker’s delta. The rationale for (4) is that
an honest focal agent contacts all its corrupt neighbors, and in
each one of these contacts, the probability of infection is α.
Similarly, for (5) a corrupt focal agent contacts all its honest
neighbors and in each contact is delated with probability
β.

For the associated Markov process, these expressions
translate into

fα (i, {�ρ( j)}) = 1 −
k(i)∏
j=1

[1 − αρc( j)], (6)

fβ (i, {�ρ( j)}) = 1 −
k(i)∏
j=1

[1 − βρh( j)]. (7)

Although in the computations shown below we have used
these specific forms for fα and fβ , other alternative forms,
based on some different corruption and delation schemes are,
no doubt, of potential interest. The microscopic mechanisms
of “becoming corrupt” should inform the appropriate func-
tional form of fα , as much as those of “delating corrupts” must
inform that of fβ .

Despite our emphasis in Sec. I on avoiding a genuine game-
theoretic formulation of the model, let us note that game the-
ory could, perhaps only to some extent, be accommodated in
the previous modeling frame by appropriately relating fα and
fβ to the payoff earned when playing a formal game where
honest and corrupt behavior are considered as strategies. We
will come back to this point in Sec. V when discussing model
potentialities and current prospects.

For the choice made in Eqs. (4) and (5) or Eqs. (6) and (7),
and if the conversion flow channel is suppressed (see Fig. 2
and III C below), then the model should be interpreted (by
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FIG. 2. Schematic visualization of the simplex S2 [i.e., 0 �
ρh, ρc � 1, ρh + ρc � 1 (left panel)], and directions of the contri-
butions of each of the four compartmental flows to the (flow vector)
�F field (left panel). The arrows on the face boundaries of the simplex
visualize that there is no flow outward, and thus the simplex is
an invariant set, as required by consistency. If one excludes the
conversion flow, the model (HCO) becomes a (nonstandard) version
of the epidemic SIRS model.

the identifications S ≡ H, I ≡ C, R ≡ O) as a kind of SIRS
model where the recovery rate is mediated by the interaction
of the susceptible neighbors with the infected agent, as if
the recovery from infection would crucially depend on the
assistance from healthy neighbors [30].

The suppression of the reinsertion flow, r → 0, is an-
other interesting limit case which we will consider below in
Appendix B.

III. MEAN-FIELD APPROXIMATION

As a first step in the analysis of a collective phenomenon,
a sensible mean-field approximation is a well-known and
recommended practice in statistical physics, due to both its
simplicity and unbiased character. Often, though not always,
it provides a qualitatively correct description of the observed
behavior, and, moreover, it reveals basic mechanisms that
trigger the collective changes of state for large (macroscopic)
systems. In the language of population dynamics, well-mixed
population approximation is the usual term employed for the
same sensible approach.

A. The mean-field dynamics

Homogeneity of both field (agent state; H , C, or O) and
structure of contacts (environment) is the essential assumption
of a mean-field approximation; under these circumstances,
it seems plausible considering average behavior as a good
(least-biased) estimation of agent’s behavior. If every agent
behaves as the average of all (“average” agent), i.e., �ρ(i) =
〈�ρ〉 (for all i) for the associated Markov process, and the
neighborhood of size k(i) = k is “indifferent” regarding i,
so that it can be selected at random among the population
at each time step (well-mixed population assumption), then
one arrives at the following mean-field discrete time evolution
equations for the probabilities ρh, ρc, ρo (or, alternatively, for
the compartmental fractions (〈H〉, 〈C〉, and 〈O〉):

�ρ(t + 1) =
⎡
⎣1 − fα ρo r

fα (1 − fβ )(1 − ρo) 0
0 fβ (1 − ρo) 1 − r

⎤
⎦�ρ(t ),

where suitable changes [see paragraph just below Eq. (3)]
in the second column of the matrix have to be made for a
different order of “trial for flow” out from the C compartment.

Due to the normalization constraint, ρh + ρc + ρo = 1,
the mean-field discrete time dynamics is a nonlinear two-
dimensional map of the simplex S2 (i.e., 0 � ρh, ρc � 1,
ρh + ρc � 1) onto itself. This simplex is visualized on the left
panel of Fig. 2, as the triangle defined by the vertices [H ≡
(1, 0),C ≡ (0, 1), O ≡ (0, 0)], in the (ρh, ρc) plane (say, ρh =
1, ρc = 1, ρo = 1, respectively).

The associated two-dimensional flow (continuous time dy-
namics) is defined by the velocity (2D vector) field on the
simplex �F (�ρ),

�F (�ρ) = �̇ρ,

whose components are

Fh(�ρ) = −( fα + r + ρc)ρh + (r + ρc)(1 − ρc)

Fc(�ρ) = [ fα + (1 − fβ )ρc]ρh + [(1 − fβ )ρc − 1]ρc. (8)

In the right panel of Fig. 2, we indicate the direction of the
contribution to the total flow vector field on the plane (ρh, ρc)
of each of the four compartmental flows. The preliminary step
of the analysis is to check that the simplex is an invariant
set of initial conditions, as obviously required by consistency.
Indeed, see left panel of Fig. 2, one easily realizes that

(i) On the hypothenuse of the simplex, where ρh + ρc =
1, both the reinsertion and the conversion flow are null
(ρo = 0); the corruption flow is colinear to this boundary, and
the delation flow points vertically inward.

(ii) On the vertical (ρc) axis, where ρh = 0, both the
delation and the corruption flows are null; both the nonzero
remaining flows point inward.

(iii) On the horizontal axis, where there are no corrupt
people, only reinsertion flow is nonzero, which is colinear to
this boundary, and points toward the full honesty corner of the
simplex, with the proviso that r > 0, the generic case.

From now on in this section we will consider the generic
case (r > 0) where reinsertion flow does not vanish. The
interesting r → 0+ limit is analyzed in Appendix B. Also, we
restrict the analysis to one-dimensional functions fα (ρc) and
fβ (ρh). This simplifying restriction amounts to saying that,
e.g., the probability that a honest agent becomes corrupt at
time t only depends on the agent contacts with corrupt agents,
and its contact with others have no influence on its corruption.

It is important to realize that a direct consequence of
the model assumptions in Sec. II, namely that infection and
delation flows originate exclusively from agent interactions,
is that the functions fα and fβ have to be such that fα (ρc =
0) = 0 (i.e., no corruption flow without corrupt agents) and
fβ (ρh = 0) = 0 (no delation flow without delators). Indeed,
this has been implicitly used in the previous simple vector-
field analysis, when we considered in item (ii) above that
delation flow was null when ρh = 0 and in item (iii) that
corruption flow vanished at ρc = 0.

Now we look for possible existence of boundary fixed
points; from the previous analysis, they can only be located
at corners. While ρo = 1 [i.e., (ρh = 0, ρc = 0), the origin]
is a fixed (invariant) point only in the limit r → 0, when
reinsertion flow vanishes, the two other corners of the simplex,
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say, full honesty (ρh = 1) and total corruption (ρc = 1), are
always fixed points of this dynamics [i.e., zeros of the field
�F (�ρ)], irrespective of the parameter values. These are the only
fixed points on the simplex boundary.

Let us now analyze, in the linear regime of perturbations,
the stability of these corner fixed points by looking at the
“restoring forces (flows)” induced by perturbations. For a
more formal, albeit fully equivalent, linear stability analysis
presentation of these results, see Appendix A, where we show
also the irrelevance regarding the stability of them of the order
in which the transitions C → O and C → H are tried.

ρh = 1: The full honesty corner H , provided r > 0, is
clearly stable against a small increase, δρo, in the population
fraction of O compartment, for it just induces a (stabilizing)
reinsertion flow. However, a small perturbation δρc generates
an infection flow fα (δρc) � f ′

α (0)δρc, which unless overcome
by the (also induced by perturbation) delation flow fβ (1)δρc,
would render unstable the full honesty state. In other words,
the full honesty state is a local attractor of (nearby) trajecto-
ries provided the following stability condition holds:

f ′
α (0) < fβ (1). (9)

Note that the rate r of reinsertion has no influence on this
stability condition. Only the balance among corruption and
delation flows determines the instability of the full honesty
state, because inactivity (δρo) fluctuations induce restoring
flow and have no linear effects on the instability driving this
corruption transition.

ρc = 1: Regarding the full corruption corner, also for r >

0, a small perturbation of component δρh generates a restoring
corruption flow fα (1)δρh, which, to keep this fixed point
stable, has to overcompensate the sum of the (destabilizing)
delation flow fβ (δρh) � f ′

β (0)δρh, and conversion flow δρo ×
1 � fβ (δρh)/r, generated by perturbation. Thus, the linear
stability condition for the total corruption is(

1 + 1

r

)
f ′
β (0) < fα (1). (10)

Note that now the balance corruption-delation is interfered
by the influence of ρo, which helps small honest fluctuations
to further develop. We see that the stability condition of the
full corruption state depends on the rate r of reinsertion, via
the conversion flow induced by linear perturbation, and then
this honesty transition is not exclusively driven by agent-agent
interactions but also by the (self-consistent, global field) value
of the fraction of agents in O state.

In the final stage of our search for attractors (asymptotic,
absorbing states) of the dynamics, we pay attention to the
�F field nullclines, i.e., the loci where each of its compo-
nents vanishes, Fh(�ρ) = 0 and Fc(�ρ) = 0, given explicitly by
Eqs. (8). An interior fixed point will exist whenever these loci
intersect in the interior of the simplex.

Fh = 0: The equation of the Fh nullcline is

−( fα + r + ρc)ρh + (r + ρc)(1 − ρc) = 0. (11)

Note, in the first place, that this locus is independent of
fβ , because the delation flow leaves ρh unchanged; next,
one quickly convinces oneself that it contains both C and H
corners. Finally, one realizes that, provided fα is independent

of ρh, Eq. (11) defines, inside the simplex, a unique function
ρc(ρh) whose graph joins those corners.

Fc = 0: The Fc nullcline satisfies the following equation:

[ fα + (1 − fβ )ρc]ρh + [(1 − fβ )ρc − 1]ρc = 0. (12)

One easily realizes that the horizontal axis, ρc = 0, belongs to
this set. This is one of the (curve, in general) branches that are
solutions of this nonlinear implicit equation. The rest of them
must solve for the equation obtained by dividing (12) by ρc:

[ fα/ρc + (1 − fβ )]ρh + [(1 − fβ )ρc − 1] = 0. (13)

It is also straightforward to check that the C corner always
belong to some of these branches. Another simple general
result is the following. There is always one of these branches
that crosses the horizontal axis. The argument is simple if
one assumes that fα is an analytic function of ρc at 0+.
By keeping second-order terms in the power expansion of
fα (ρc) � f ′

α (0)ρc + (1/2) f ′′
α (0)ρ2

c , one obtains the following
(nonlinear) approximation to the solution of (12) close to the
horizontal axis:

ρc = 1 − [ f ′
α (0) + 1 − fβ]ρh

1 − fβ + (1/2) f ′′
α (0)ρh

, (14)

which intersects ρc = 0 at the abscissa value ρh = ρ∗
h , the

solution of the nonlinear equation

[ f ′
α (0) + 1 − fβ (ρ∗

h )]ρ∗
h = 1. (15)

Whether the curve branch of the Fc nullcline that intersects the
horizontal axis at ρ∗

h is the same one that passes through the C
corner, or it is a different branch, both are possible situations
(conditional to the specific functions fα and fβ). In fact, we
will show numerical examples of both situations below, for a
single one-parametric functional form of them [Eqs. (17) and
(18)].

The stability of the states of full honesty and full corruption
is closely tied to the nullclines’ geometrical configuration
around them. Indeed, using (9) we easily conclude that the
stability condition of the full honesty corner is equivalently
expressed as “ρ∗

h is not in the simplex,” where ρ∗
h is the inter-

section of the curve branch of the Fc nullcline with the hor-
izontal axis, defined by (15) above. This implies that the H
corner is unstable iff ρ∗

h < 1.
In a similar, though geometrically very different, way one

can see that if the slope of the curve branch of the Fc nullcline
at the C corner is lower than the slope of the Fh nullcline, i.e.,

1 + fα (1) − f ′
β (0) > 1 + fα (1)

1 + r
, (16)

then the C corner is stable, see Eq. (10), and vice versa. From
both transitions, we conclude that the difference in relative
positions of Fh and Fc nullclines determines the stability of
both full honesty and corruption states.

In the next subsection we show numerical and analytical
results for the phase portraits and phase diagrams, for the
particular choice, inspired by epidemic analogy, that we made
above for the flows originated from social interactions C − H
[Eqs. (4), (5), (6), and (7)]; the expressions for the conditional
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FIG. 3. The nullclines Fh = 0 (red line) and Fc = 0 (yellow line) with a constant value r = 0.5. The infection rate is given as α = 0.1, 0.5.
The delation rate is set as β = 0.1, 0.5, 0.9. In each of plane, color level used to represent the numerical value of the flow.

probabilities fα and fβ in the mean-field approximation are as
follows:

fα (k, �ρ ) = 1 − (1 − αρc)k, (17)

fβ (k, �ρ ) = 1 − (1 − βρh)k . (18)

The “epidemic,” or “contact interaction,” character of this
choice for both transition probabilities, corruption and dela-
tion, should be kept in mind. On one hand, the knowledge
from closely related epidemic models can be capitalized on
here, while on the other, the results that we analyze could
plausibly be of use in some epidemiology contexts of potential
interest, wherever recovery needs assistance from susceptible
neighbors.

B. Mean-field phase portraits and diagrams

For the particular contact interaction functions (17) and
(18), the instability of the full honesty state, from Eq. (9),
occurs at the value of the (infection) corruption rate αc:

αc(β ) = 1 − (1 − β )k

k
, (19)

for all values of the reinsertion rate r (i.e., it is independent
of this parameter value). This value of the infectivity power
of corruption is the benchmark for the appearance of observ-
able corruption, under the mean field, well-mixed population,
assumptions.

Also, from Eq. (10), the instability of the state of full
corruption occurs at a value βc of the delation rate given by

βc(α) =
(

r

1 + r

)
1 − (1 − α)k

k
. (20)

From (19) and (20), it is easily seen that the stability
regions, in the (α, β) parameter plane, of corner fixed points
(H and C) do not overlap, meaning that there is neither
bi-stability region in the phase diagram of the model, nor
hysthereris behavior. In other words, no discontinuous change
full C-full H can occur by tuning a model parameter for
our choices (17) and (18) of fα and fβ . In the region of the
parameter plane (α, β ) where both fixed points are unstable,
an interior (stable) fixed point �ρ(r, α, β ) is the unique global
attractor of phase-space flow. By no means is this conclusion
forcefully valid for more general choices of the corruption, fα ,
and delation, fβ , transition probability functions, for multiple
interior nullcline’s crossing cannot be discarded in general
cases.

In Fig. 3 we show the phase portraits for a reinsertion
rate r = 0.5 and values of α = 0.1, 0.5 and β = 0.1, 0.5, 0.9.
Arrows indicate the local direction of the �F field, the flow,
while its modulus is color encoded. The Fh nullclines are
plotted in red color; one sees that they are independent of β

and that they deviate away from the simplex hypothenuse for
increasing values of α.

The branches of the Fc nullclines are plotted as yellow
lines. Note that the horizontal axis is always one of them.
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FIG. 4. Visualizations of the equilibrium surfaces ρm(α, β, r = 0.5), m = h, c, o, on the (α, β) parameter plane with a constant value of
the reinsertion rate r = 0.5. The sections of these surfaces at cutting planes corresponding to values of α = 0.2, 0.5, 0.8, 1 and β = 0.5, 1 are
also plotted to help a three-dimensional mental image. The stability regions of full C and full H states are red colored.

When no other branch is visible (as for α = 0.1 and β =
0.5, 0.9), meaning that ρ∗

h > 1, the full honesty state H is
stable, and it is the global attractor. For the other cases shown
in Fig. 3, the trajectories evolve asymptotically to the interior
fixed point where the Fh nullcline and a curve branch of the
Fc nullcline intersect. While for β = 0.1 and α = 0.1, 0.5 the
yellow curve passes through the full corruption corner, and for
α = 0.5 and β = 0.5, 0.9 it does not. In these cases, there is a
different curve branch of the Fc nullcline, passing through the
C corner, from outside the simplex. The transition between
these two qualitatively different phase portraits of the entire
plane (ρh, ρc) occurs when the two yellow curve branches
“anticross” far outside the simplex; this is a bifurcation on the
whole plane phase portrait which has no qualitative effects (no
local influence) on the interior of the simplex.

In the three panels of Fig. 4 we try to summarize the
effect of parametric variation of α and β (in the mean-field
dynamics) on the mixed population absorbing state, through
perspective visualizations of the compartmental fractions at
the equilibrium (attractor) for a fixed arbitrary value of r =
0.5, i.e., of the surfaces �ρ(α, β, r = 0.5) of the asymptotic
equilibrium. The regions colored in red in the three panels of
this figure correspond to the respective regions of stability of
the full honesty [α � αc(β )] and full corruption [β � βc(α)]
absorbing states, where the transition lines are given by (19)
and (20). We hope that the simple inspection of this figure is
more informative than lengthy and wordy explanations of the
general trends of the model behavior.

C. The SIRS limit

Here, leaving aside the fourth of our model assumptions in
Sec. II, we will take out from the model the conversion flow
(warning to wrongdoers effect). The number of flow channels
is thus reduced from four to three (contagion, delation, and
reinsertion), and thus the “flow chart” between the three com-
partments is now that of a SIRS model, with the identifications
S ≡ H, I ≡ C, and R ≡ O.

While in the standard SIRS model the rate of recovery
(I → R) is a constant, in this variant of the SIRS model the
recovery of an infected individual is only possible through
contact interaction with its susceptible neighbors. A plausible
epidemic situation leading to it, may be, e.g., one in which the
recovery from disease requires, sine qua non, imperatively the
assistance (care) from relatives [30].

Though the consideration made above may certainly add
some interest in the following results by themselves in plausi-
ble epidemic contexts, our main purpose in this subsection is
to make a precise assessment on the warning to wrongdoers
effect in the HCO model by revealing the aspects on which
its presence makes a difference and how much this difference
amounts to.

The mean-field analysis goes along the same lines as
explained in Sec. III A, and one arrives at the following 2D
flow on the simplex:

Fh(�ρ ) = −( fα + r)ρh + r(1 − ρc)Fc(�ρ)

= fαρh − fβρc. (21)

Both ρh = 1 and ρc = 1 corners are fixed points, whose
linear stability analysis we now summarize. The stability
condition for the full honesty corner is the same as it was in
the presence of “warning to wrongdoers” (conversion flow):

f ′
α (0) < fβ (1). (22)

This is an expected result, because we already saw in
Sec. III A that the conversion flow has no influence on this
transition, which is only determined by the competition of cor-
ruption and delation flows generated by linear perturbations.

On the other hand, now the stability condition of the total
corruption state no longer depends on the reinsertion rate r:

f ′
β (0) < fα (1). (23)

The stability of both homogeneous population states is
unaffected by the value of the reinsertion (R → S) rate in
this SIRS model. In other words, the rate r of reinsertion is
an irrelevant parameter regarding both corruption and honesty
transitions. However, one should be aware that away from sta-
bility of homogeneous populations, this parameter is clearly
relevant in determining the mixed equilibrium population
fractions, as we will soon discuss below.

Before that, we pay attention to the nullclines (see Fig. 5
for examples). The Fh nullcline connects the corners C and
H and is independent of fβ . Indeed, it is qualitatively very
similar to that of the HCO model. On the contrary, the Fc

nullcline (whose relevant branches are plotted as yellow lines
in Fig. 5) shows important differences. The equation of this
nullcline is

fβρc = fαρh. (24)
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FIG. 5. The nullclines Fh = 0 (red line) and Fc = 0 (yellow line)
in the SIRS model with a constant value r = 0.5. The infection rate
is given as α = 0.5, 0.9, while the delation rate is β = 0.5, 0.9.

Two branches of this nullcline are easily obtained, namely
ρc = 0 (horizontal axis) and ρh = 0 (vertical axis). Note that
the latter is incompatible with the warning to wrongdoers (or
conversion) flow, and thus it is absent in the HCO model, as
we know from Sec. III A. The rest of branches of this nullcline
must solve for the equation

fβ
ρh

= fα
ρc

. (25)

For the infective type of fα and fβ functions in Eqs. (17)
and (18), this equation has a useful symmetry: It is invariant
under the simultaneous interchange α ↔ β and ρc ↔ ρh. This
symmetry of the Fc nullcline is illustrated in Fig. 5. A simple
consequence of this symmetry is that if α = β, then the Fc

nullcline is ρc = ρh, the main diagonal. Furthermore, ρh � ρc

if and only if β � α. We will later discuss some other features
of the model that are associated to this symmetry.

After (23) and (22), the transition lines, βc(α) and αc(β ),

αc(β ) = 1 − (1 − β )k

k
, (26)

βc(α) = 1 − (1 − α)k

k
, (27)

are mirror symmetric around the line α = β in the (α, β)
plane, and as we already remarked, they do not change with
the value of r. However, when the attractor is an interior point
of the simplex, and thus the flow through the three channels
is, at equilibrium, the same:

fβρc = rρo = fαρh, (28)

the reinsertion flow rate r regulates the S − I (H − C)
balance. In particular:

For r = 1, meaning that the recovery time is just one time
step (the shortest possible time scale), we are as closer as the
model can be to the limit of zero (instantaneous) recovery
time.

In the strict instantaneous recovery limit the R ≡ O state
ceases to exist, it just disappears; the feasible region is in this
limit case reduced to the hypothenuse (ρo = 0) of the simplex,
and the model becomes a variant of the (kinetic two-states)
SIS model, with I → S rate mediated by S. For our choice
of the functions fα and fβ there is now a strict symmetry
of the dynamics (equations of motion) under simultaneous
interchange of parameters α ↔ β and labels h ↔ c. Note that
though the existence of R (O) state breaks this symmetry, the
broken symmetry is still manifest in the Fc nullcline symmetry
discussed above.

However, even when recovery takes just one step of time,
the instantaneous fraction ρo of inactive individuals does not
affect infected (do not delate corrupt) neighbors, and the
balance infection-recovery is biased toward infection.

For 1 > r > 0, the larger the characteristic stay time, 1/r,
at the O state the easier the infective state can spread.

For r = 0 the model becomes a variant of the SIR model,
which will be analyzed in Appendix B.

We conclude that the reinsertion rate r, though being irrel-
evant regarding the onset of instabilities that operate at both
corruption and honesty transitions, is a determinant factor
regarding the stationary values of the compartmental fractions
of the SIRS model when the dynamic equilibrium is a mixed
population macrostate.

Finally, we pay now a closer attention to the symmetry
that a unique choice of the functional form for the corruption
and delation transition probabilities, fα and fβ , induces on
this version of the SIRS model: If one assumes that both
transition probabilities are given by a unique function g(x, z)
in the sense that fα (ρc) = g(α, ρc) and fβ (ρh) = g(β, ρh), a
general simple argument concludes (see Appendix C) that in
the mixed population stationary state regime of this model, the
fractions (ρh, ρc) of corrupt and honest people are such that

ρc(α, β ) = ρh(β, α) and ρh(α, β ) = ρc(β, α), (29)

in other words, the equation of stationary state �ρ(α, β ) is
symmetric under the simultaneous interchange α ↔ β and
ρc ↔ ρh. This might be at a first sight unexpected, because
the equations of motion, and then the phase portraits (see
Fig. 5), are by no means invariant. In the extent that there is
no fundamental reason why delation and corruption transition
probabilities should be described by the same function, this is
an accidental (nonfundamental) symmetry. As already stated,
both models, HCO and SIRS, exhibit the same corruption
transition lines:

αHCO
c (β ) = αSIRS

c (β ), (30)

for all values of β, because the conversion flow has no influ-
ence on the onset of corruptive fluctuations. On the contrary,
honest instabilities in the full C state are enhanced by the
warning to wrongdoers, thus shrinking the full C stability
region, see (20) and (27), in the HCO model:

βHCO
c (α) < βSIRS

c (α), (31)

for all values of α > 0.
As expected, removing the conversion flow closes an input

channel of the H compartment and favors higher levels of
corruption, thus leading to a decrease of the fraction of honest
agents in the SIRS model with respect to the HCO model.
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FIG. 6. Top: Fraction of corrupt agents as a function of the
corruption rate ρc(α) fixing the delation rate to β = 0.1 and β = 0.9.
Bottom: ρc(β ) for α = 0.1 and α = 0.9. The mean-field predictions
for SIRS model are represented with dashed lines, whereas solid lines
correspond to the HCO model. The reinsertion rate is fixed to r = 0.1
(left panels) and r = 0.9 (right panels).

For a comparison of both models in their mixed population
equilibria regimes, we show in Fig. 6 the mean-field predic-
tions for the fraction of corrupt agents ρc. The upper panels
on this figure show the graphs of ρc(α) at several fixed values
of β (0.1, 0.9) and r (0.1, 0.9). Beyond the transition point
αc, one could intuitively expect that the fraction of corrupt
agents is always higher for the SIRS model due to the lack of
the conversion flow forcing corrupt agents to recover honesty.
This holds for low β values since the evolution of corruption
is clearly much more boosted in the SIRS model and, as a
result, the system undergoes the second transition toward a
full corrupt society much before than for the HCO model.
Interestingly, for very high values of the delation flow β,
this phenomenon is reversed as clearly seen on the curves
for β = 0.9 (upper panels), where ρHCO

c (α) > ρSIRS
c (α). To

heuristically explain this surprising result, we must realize
that, for β values very close to 1 (and in the absence of
conversion flow), corrupt agents are very likely to be delated
and go to ostracism; this is a dynamically inactive state, and
thus immune to infection, thus preventing the diffusion of
corruption for a typical reinsertion time r−1. In this sense,
the existence of the warning to wrongdoers in the HCO
model partially prevents the emergence of ostracism, thus
facilitating the unfolding of corruption. Obviously, this effect
is reinforced as r decreases, for it makes the staying time in
the inactive state longer.

The lower panels on Fig. 6 show the graphs of ρc(β )
at several fixed values of α (0.1, 0.9) and r (0.1, 0.9). One
sees there how the honesty transition occurs at lower delation
values for the HCO model and the detrimental effect on cor-
ruption of the warning to wrongdoers, provided the delation

FIG. 7. Top: Fraction of agents in ostracism as a function of the
corruption rate ρo(α) fixing the delation rate to β = 0.1 and β = 0.9.
Bottom: ρO(β ) for α = 0.1 and α = 0.9. The mean-field predictions
for SIRS model are represented with dashed lines, whereas solid lines
correspond to the HCO model. The reinsertion rate is fixed to r = 0.1
(left panels) and r = 0.9 (right panels).

rate β is not very large. Finally, the undesired effect of the
warning to wrongdoers is observed for values of β close
to maximum, when corruption better spreads for the HCO
model.

In Fig. 7 we show, for both models, the mean-field pre-
dictions for the fraction of agents out of active population,
i.e., in the O compartment. The upper panels in this figure
show the graphs of ρo(α) at several fixed values of β (0.1, 0.9)
and r (0.1, 0.9). We see that close above the corruption
transition, α � αc(β ), ostracism increases faster for the SIRS
model than for the HCO model, because in the latter con-
verted corrupt agents can no longer be delated. This trend is
obviously overcompensated, at very low values of β, before
the SIRS transition to the full C state is reached for α < 1,
because ρo should then decrease to zero for the SIRS model,
while the HCO model still remains in a mixed population
equilibrium. The graphs of ρo(β ) represented on the lower
panels of Fig. 7 illustrate further this change of trend in the
ρo evolution between transitions for α = 0.1. On the other
hand, the comparison between left (corresponding to r = 0.1)
and right (r = 0.9) panels of this figure shows the important
effect of increasing the reinsertion rate on the ρo fraction at
equilibrium.

IV. VALIDATION OF THE THEORETICAL RESULTS

The theoretical analysis of the mean-field equations for
both HCO and modified SIRS dynamics has shed light onto
the interesting phenomena arising from mechanisms which
drive the presence of corrupt agents in the society. Some of
these phenomena are the existence of two critical transitions
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FIG. 8. Fraction of agents in H state, ρh, as a function of α and
β, for mean-field approximation (red solid lines) and Monte Carlo
simulations. Parameter r is fixed to 0.5 for all graphs. Simulations are
performed on random regular networks with 〈k〉 = 4 (black empty
points) and lattice networks (green filled points), whose size is N =
104. Top panels correspond to HCO model and bottom ones to SIRS
model.

or the crucial role that social interactions like delation or the
warning to wrongdoers play in the evolution of corruption.
Here we aim at validating these theoretical results by perform-
ing extensive Monte Carlo simulations on networked popula-
tions. At this point, for the sake of simplicity, we consider
homogeneous networks (random regular networks or lattices)
as the backbone for corruption and delation processes. A
random regular network (RRN) is a random network where
all the nodes share the same degree. In what follows, we just
include mean-field theoretical predictions since, for regular
topologies, both individual-based Markovian and mean-field
approaches yield the same predictions for the evolution of
corruption. To carry out the simulations, we start with a 10%
of corrupt agents and we let the system evolve, following the
microscopical rules defined in Sec. II, until the stationary state
is reached. In this sense, to reduce stochastic fluctuations,
we compute the equation of (stationary) state �ρ(α, β, r) by
averaging them over 400 realizations.

Let us first analyze the evolution of the fraction of honest
agents as a function of both delation and corruption proba-
bilities. For this purpose, we fix the reinsertion flow to r =
0.5 and we represent the curves ρh(α) for several β values
and its counterpart. Regarding the topologies for the contact
networks, we make use of a RRN of N = 104 agents and
〈k〉 = 4 and a square latice of N = 104 vertices with pe-
riodic boundary conditions. Figure 8 contains the compari-
son between theoretical predictions obtained via mean-field
equations and the results yielded by simulations for both
lattices and RRN. There we confirm that the mean-field the-
ory developed above correctly predicts the existence of the
two aforementioned transitions: The first one related to the
destabilization of a honest population at αc(β ) and the second

one associated with the irruption of honest agents in a totally
corrupted society at βc(α).

Although we are able to reproduce most of the phase
diagrams, some relevant differences appear between theory
and simulation, especially in the region of the parameters
space close to the full honesty corner. In particular, it becomes
evident that the value of αc is underestimated by our formal-
ism. These discrepancies are mainly based on two facts: the
so-called echo chamber effect [31,32] and the influence of
structural correlations [33–35]. On the one hand, the “echo
chamber” effect is caused by the reinforcement of agents
corruption from neighboring agents who have been previously
corrupted by them. On the other hand, the formalism here
presented is constructed by neglecting the possible dynam-
ical correlations existing in the contact network. However,
the existence of strongly correlated agents can be of great
importance for the evolution of the system, especially close
to the transition points. In particular, it has been shown
recently that the presence of high-order structures like cycles
or motifs tends to make the network more resilient to diffusion
processes [35]. In our case, this is reflected in Fig. 8 where
it becomes clear that spatially structured topologies (lattices)
display a larger value of αc than uncorrelated ones (RRN).

Interestingly, these structural correlations do not have any
impact at the full corrupt corner, since mean-field equations
accurately capture the value of βc for both topologies. To
explain this, we must realize that, apart from the delation
processes caused by local interactions with honest agents,
corrupt agents are also influenced by the warning to wrong-
doers. This way, our hint is that having access to information
about the global state of the network hinders the role of local
interactions, thus giving rise to the same threshold for both
topologies.

To confirm this statement, we now remove this effect and
perform Monte Carlo simulations using the rules of the mod-
ified SIRS model. As observed in Fig. 8, the local nature of
delation processes regains its relevance, leading to a splitting
of the thresholds βc(α) (see inset). This separation is much
smaller than for the former αc(β ) splitting, given that the
transition from a full corrupt population to the honesty is not
affected by any “echo chamber” effect.

V. DISCUSSION AND PERSPECTIVES

In the sections above we have motivated the use of a
simple compartmental population-flow model consisting of
three states (compartments) and four flow channels connect-
ing them, as a highly stylized model for the social dynamics
of corruption, a punishable, and infectious, norm-violating be-
havior. In familiar terms to nonequilibrium statistical physics
studies [36], the model is a non-Hamiltonian kinetic version
of the spin-1 Ising model (also referred to as Blume-Emery-
Griffiths model [37,38]), where the spin state of null z compo-
nent represents strict social isolation (ostracism).

The model may also be viewed as an epidemic model,
and thus one can capitalize on recent advances in conta-
gion dynamics in complex social nets. However, two major
differences respect to usual epidemic models are at work.
First, recovery from infectious state (delation) requires the
interaction with susceptible people in the local neighborhood,
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which might, however, be a plausible situation in epidemics.
Second, the conversion flow, implementing the warning to
wrongdoers effect of punishment, has no obvious counterpart
in epidemic contexts.

The mean-field analysis reveals a phase diagram (in the
three-dimensional space of model parameters) with three
generic absorbing states: (i) full honesty, (ii) full corruption,
and (iii) a mixed state with nonzero flow through all the
channels. There is no coexistence of stable absorbing states
(no multistability). The transition from full honesty to the
mixed state is continuous, with a linear increase of the fraction
of corrupt population, and is not influenced by the warning to
wrongdoers. The transition from full corruption to the mixed
state is also continuous, and the fraction of honest people
increases linearly, as well; however, the warning to wrong-
doers (wtw) plays a very important role regarding the onset of
honest instabilities. On the one hand, wtw reduces the stability
region of the full corrupt state. On the other hand, because
the rate of conversion flow is assumed to be the fraction of
punished population (not a local quantity), the mean-field
prediction for the locus (a surface in the parameter space)
of this transition becomes exact for random and nonrandom
regular (homogeneous) networks. Both features are in contrast
with the irrelevance of the wtw regarding the transition from
full honesty to a mixed state and the (network dependent) shift
of the locus of this transition that we observe in homogeneous
graphs due to the presence of dynamical correlations induced
by the existence of higher-order motifs in the structure of the
network.

As for future works it would be interesting to relax some
of the assumptions incorporated in our model. For instance,
here we have assumed that (for fixed parameters) the rate
of corruption is a one-variable function of the local fraction
of corrupt agents and that the rate of delation is also a one-
variable function of the local fraction of honest agents. A
most promising prospective is to build up general and well-
informed functions for the corruption and delation flow rates,
so that the model in fact allocate a game-theoretic formu-
lation, i.e., that these flow rates correspond to some game
dynamics capable of incorporating fewer stylized ingredients
than the ones included here. In this regard, the consideration of
flow rates based on utility (benefit) functions not only requires
many-variable functions but also enlarges the “information
horizon” to second neighbors shell, likely expanding the scope
of model potential applications.
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APPENDIX A: LINEAR STABILITY ANALYSIS

In Sec. III A, we have discussed the onset of corruptive
destabilizing fluctuations in the fully honest H state by using
a linear approximation to the competing flows that a generic
small fluctuation induces, i.e., by analyzing the linear re-
sponse to generic fluctuations. In the same way, we have also
analyzed the onset of instabilities of the fully corrupt C state.
In general systems of differential equations this physically
appealing approach is rarely doable in such a simple way.

A more formal, and easier to generalize, method of analysis
of a fixed point is provided by the spectral analysis (eigen-
values and its associated eigensubspaces) of the Jacobian
matrix of the flow at this invariant point. This matrix is the
linearized flow in the tangent space of the fixed point. We
will use it here to show that both transitions, corruption and
honesty, are unaffected if the relative order or priority of
channels (delation and conversion) flowing out from the C
compartment is reversed.

In the channels’ priority scheme used in the main text, the
trial for conversion is prior to delation, where from the veloc-
ity field, �F (�ρ) = �̇ρ, is given by Eqs. (8), while if conversion
is conditional on evading delation, then the corresponding
equations of motion are slightly different:

ρ̇h = −[ fα + r + (1 − fβ )ρc]ρh

+ [r + (1 − fβ )ρc](1 − ρc)

ρ̇c = [ fα + (1 − fβ )ρc]ρh + [(1 − fβ )ρc − 1]ρc. (A1)

The Jacobian matrix at a point (ρh, ρc) in phase space is
defined as

J (ρh, ρc) =
[

∂ρ̇h (ρh,ρc )
∂ρh

∂ρ̇h (ρh,ρc )
∂ρc

∂ρ̇c (ρh,ρc )
∂ρh

∂ρ̇c (ρh,ρc )
∂ρc

]
. (A2)

Though at an arbitrary point of the simplex the Jacobian
matrices of the flows (8) and (A1) are generally different,
a direct calculation shows that at the full honesty corner
(ρh = 1, ρc = 0), both are equal:

JH =
[−r −r − f ′

α (0)

0 f ′
α (0) − fβ (1)

]
.

Being this matrix triangular, the eigenvalues are just the
diagonal elements, λH

1 = −r, and λH
2 = f ′

α (0) − fβ (1). The H
corner is stable whenever both eigenvalues are negative, thus
requiring the inequality f ′

α (0) < fβ (1), as we already know.
At the full corruption corner, the Jacobian matrices of the

flows (8) and (A1) are also equal:

JC =
[
−r − 1 − fα (1) −r − 1

fα + 1 − f ′
β 1

]
.

The eigenvalues of JC are the roots of the characteris-
tic polynomial λ2 − λT + D, where T = Tr(JC ) and D =
Det(JC ) are respectively the trace and the determinant of the
Jacobian matrix, explicitly given by

T = −r − fα (1) < 0, D = r fα (1) − (r + 1) f ′
β (0). (A3)
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Thus, the stability of the fully corrupt state requires that D >

0, that is, (
1 + 1

r

)
f ′
β (0) < fα (1).

We should note that the irrelevance of the priority of chan-
nels out from C regarding the onset of stability of both H and
C corners by no means implies that in the parameter region
where the attractor is an interior point of the simplex, this
mixed population state is unaffected by the chosen priority;
our numerical investigations clearly show that the surfaces
of asymptotic equilibrium �ρ(α, β, r) are (in general, slightly)
different for different choices.

APPENDIX B: THE r → 0+ LIMIT

Now we analyze the r = 0+ limit of the model, where
the O compartment has no leakages. This is the only locus
in parameter space where the O corner, of phase space of
feasible solutions, is a fixed point. In fact, as we will see, in the
presence of conversion flow (warning to wrongdoers effect),
the whole line ρc = 0 of the simplex (triangle) becomes a
line of fixed points, a kind of peculiar, though well-behaved,
parametric limit of the model. We will next show that, quite
differently, the whole line ρh = 0 becomes a line of fixed
points when the warning to wrongdoers effect is absent (SIRS
limit).

Provided the warning to wrongdoers is an ingredient of the
model (i.e., our fourth “model assumption” holds), it is easily
seen, from the stationarity condition of ρo, that in the absence
of reinsertion flow:

ρ̇o = −(Fh + Fc) = fβρc(ρh + ρc) = 0. (B1)

First note that the solution that corresponds to fβ = 0 leads
to ρh = 0 (i.e., the ρc axis) where conversion flow is positive
unless at the C corner fixed point, where it is null. Also note
that the solution ρh + ρc = 0 leads to ρo = 1, the O corner,
which now becomes a fixed point. Finally, the case ρc = 0,
corresponds to an asymptotic extinction of corruption, where
the interior trajectories of the simplex should flow somewhere
into the ρc = 0 locus. Also, the ρh axis becomes a line of fixed
points. We now focus the analysis on this O − H face of the
simplex.

One easily realizes that any arbitrary fixed point (in the
ρh axis) at abscissa ρh is marginally stable (zero linear re-
sponse or induced flow) against a small perturbation δρh

along the axis. The whole segment [0, 1] in the ρh axis is a
line of indifferent equilibria regarding honesty perturbations.
To inspect its stability against corruptive fluctuations in the
linear regime δρc << 1, note that the sign of the vertical
component, ρ̇c, of the interior phase-space flow, close to this
axis (ρc << 1), depends on the relative position respect to
the Fc = 0 nullcline. As shown in Fig. 9, it is negative on
the right side of the nullcline and positive on the left one.
The locus of this nullcline is independent of the value of
the reinsertion rate r, and when stability condition (9) of full
honesty state H holds [say, for values of α < αc(β ), in our
explicit computations], the sign of the vertical component of
the flow in the nearby interior points is negative for the whole

(a) (b)

FIG. 9. The Fh = 0 nullcline (red line) and the Fc = 0 nullcline
(yellow line) with a constant value of β = 0.5, r = 0. The infection
rate is set to α = 0.1 (a) and α = 0.5 (b).

unit interval of values of ρh. The unit interval is stable against
corruptive fluctuations.

When the full honesty state is unstable, i.e., Eq. (9) does not
hold [or α > αc(β ), for our numerical results], the segment of
indifferent equilibria is shortened to [0, ρ∗

h ], where ρ∗
h is the

solution of the nonlinear equation

[1 + f ′
α (0) − fβ (ρ∗

h )]ρ∗
h = 1, (B2)

that is, the point where the nullcline curve Fc(�ρ) = 0 inter-
sects the ρh axis.

To the left of this nullcline, the flow (in the interior of the
simplex) points vertically down, meaning that the segment
[0, ρ∗

h ] is now the absorbing segment. To the right, on the
contrary, the interior flow points upward and the equilibria
with ρh > ρ∗

h are linearly unstable.
The nulcline Fh = 0 has a peculiar r → 0 limit. For r = 0,

this nulcline is

−( fα + ρc)ρh + ρc(1 − ρc) = 0. (B3)

By keeping second-order terms in the power expansion of
fα (ρc), we find that for small enough values of ρc, one obtains
two solutions. The first one is ρc = 0, and the second solution
reads:

ρc = ρh[1 + f ′
α (0)] − 1

1
2ρh( f ′′

α )(0) − 1
, (B4)

This curve, Eq. (B4), is interior to the simplex if ρh < ρ̄h,
where

ρ̄h = 1

1 + f ′
α (0)

, (B5)

while for higher values of ρh it takes on negative values,
outside the simplex of feasible states, as shown in Fig. 9.

Nevertheless, please note that, as soon as r > 0, the
Fh = 0 nullcline only intersects the ρc = 0 value at the H
corner and thus the reinsertion flow contracts the absorbent
segment toward its upper bound, ρ∗

h , whose neighborhood
along the nullcline curve Fc(�ρ) = 0 absorbs the whole interior
flow. In other words, if we denote by ρ∗

h (r) the asymptotic
fraction of honest agents at a value of r > 0, then

lim
r→0

ρ∗
h (r) = ρ∗

h , (B6)

where ρ∗
h has been just defined above, Eq. (B2), as the upper

limit of the absorbent segment for r = 0. Note also that, when
the H corner is stable [α < αc(β ) for computations], and thus

022306-12



NORM VIOLATION VERSUS PUNISHMENT RISK … PHYSICAL REVIEW E 101, 022306 (2020)

FIG. 10. Nullcline Fh = 0 computed according to Eq. (11)
for several values of the reinsertion rate r. In particular,
the reinsertion values displayed from top to bottom are r =
1, 0.5, 0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0. The corruption rate has
been set to α = 0.5.

the absorbent segment is the whole unit interval, as soon as
r > 0, the reinsertion flow contracts it toward the H corner.

In Fig. 10 we show how the r = 0+ limit of the Fh = 0
nullcline is approached. For values of ρh < ρ̄h the r = 0+
nullcline is the nonzero ρc(ρh) solution of Eq. (B3), to which
Eq. (B4) is a second-order approximation valid near the
horizontal axis. But for ρh > ρ̄h, the nullcline limit is the
zero solution of Eq. (B3). Thus, the r = 0+ nullcline has a
singularity (jump-discontinuous first derivative) at ρ̄h.

Finally, as a check of consistency of the previous analytical
conclusions, note that it would be contradictory, and thus
impossible, that ρ∗

h be placed to the left of ρ̄h, for that would
imply a nullclines crossing leading to an interior fixed point.
Some simple algebra on Eq. (B2) shows, with relief, that
indeed ρ̄h < ρ∗

h always holds.
To round up, now we analyze the r = 0+ limit of the SIRS

model discussed in Sec. III C. In other words, the situation that
we now consider is that when both reinsertion and conversion
flows are absent: The SIR limit.

The flow components are now simply

Fh = − fαρh (B7)

and

Fc = fαρh − fβρc, (B8)

from where the flows, δFh and δFc, induced by corruptive δρc

and honesty δρh fluctuations can be easily analyzed in the
linear regime.

From the stationarity condition for ρo, Eq. (B1), one sees
that the ρc = 0 solution (the ρh axis) is a line of equilibria,
indifferent regarding honesty fluctuations but unstable against
corruptive fluctuations. Also the solution that corresponds to
fβ = 0 is the ρc axis, which in the absence of conversion
flow becomes an attractive set. In fact, it becomes a line of
indifferent equilibria versus corruptive fluctuations, and stable

against honesty fluctuations. Let us remark that, from Eq. (42),
it becomes clear that the r = 0+ limit of the Fh = 0 nullcline
is now coincident with both axes: fα = 0 on the ρh axis, and
ρh = 0 on the ρc axis.

APPENDIX C: ACCIDENTAL SYMMETRY
IN THE SIRS MODEL

In Sec. III C we have noted that the kind of SIRS model that
results from the removal of the warning to wrongdoers from
the HCO model possess an accidental symmetry, equation
(29), whenever the corruption transition probability fα (ρc)
and the delation transition probability fβ (ρh) have the same
functional form. This symmetry is not a fundamental symme-
try, because the mechanisms underlying delation of a corrupt
individual are surely very different from those driving the cor-
ruption of honest people, and one should expect, in general,
that those differences translate into different functional forms
for their transition probabilities.

We now provide an argument that prove the statement that,
under the assumption that both transition probabilities have
the same functional form, the equation of stationary state
�ρ(α, β, r) is symmetric under the simultaneous interchange
α ↔ β and ρc ↔ ρh:

ρc(α, β ) = ρh(β, α) and ρh(α, β ) = ρc(β, α). (C1)

In general terms, let us denote ρh = u, ρc = v, x = α, and
y = β. According to (22), in the stationary state both variables
must fulfill

u = r(1 − v)

r + g(x, v)
(C2)

and
g(y, u)

u
= g(x, v)

v
, (C3)

where r, x, and y are fixed parameters. By inserting (C3) into
(C2), one arrives at

v = r(1 − u)

r + g(y, u)
, (C4)

and thus u and v also solve for Eqs. (C2) and (C4) for the fixed
values of the parameters.

Now consider the solution u′ and v′ of (C2) and (C3) when
the values of x and y are interchanged, so that they solve for
the equations:

u′ = r(1 − v′)
r + g(y, v′)

(C5)

and

g(x, u′)
u′ = g(y, v′)

v′ . (C6)

Inserting (C6) into (C5), we obtain

v′ = r(1 − u′)
r + g(x, u′)

, (C7)

and thus u′ and v′ also solve for Eqs. (C5) and (C7) for the
fixed values of the parameters. Now note that Eq. (C5) is the
same as (C4) and that (C7) is the same as (C2) and then u = v′
and v = u′, which completes the argument.
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