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Chapter 1Complex Systems?The greatest hallenge today, not just in ell biology and eologybut in all of siene, is the aurate and omplete desription ofomplex systems. Sientist have broken down many kinds of sys-tems. They think they know most of the elements and fores. Thenext task is to reassemble them, at least in mathematial modelsthat apture the key properties of the entire ensembles.Edward O. Wilson [1℄.This thesis overs the analysis of two fundamental ingredients for theorret modeling of real marosopi systems: Nonlinearity and StruturalComplexity. The study of systems where these ingredients are present is sys-tematially related to the �eld of �Physis of Complex Systems�. It is not easyhowever to �nd a formal de�nition of what a omplex system is and most bookson the matter submit the reader from the very beginning to some illustrativeexamples of omplex phenomena rather than establishing the general priniplesand harateristis of a omplex system.The standard lassi�ation of the wide range of studied natural systemsinto physial �elds is mainly based on the energy range involved for theirdesription, namely, (ranging from higher to lower energy) partile physis;nulear physis; moleular atomi and optial physis; soft and ondensed mat-ter. With this lassi�ation in mind the question about what �eld the Physisof Complex System belongs to naturally arises. However, omplex systemsare ommon to a number of physial disiplines belonging to di�erent �energyranges� so it is di�ult to plae them into a single physial ompartment. Inaddition, one an �nd lots of examples of systems alled �omplex� outside thesetraditional branhes of physis in hemistry, biology, eology, and soial and



2 Chapter 1. Complex Systems?eonomial sienes. Then, rather than beoming a partiular physial �eld,the physis of omplex systems has emerged as an interdisiplinary subjet.What are the unifying harateristis of omplexity in the phenomena studiedby suh a diverse branh of sienti� disiplines? One an state that the �nger-print of a omplex system is re�eted by the display of organization withouta entral organizing priniple. This olletive organizational behaviour is notusually explained by deomposing a omplex system into its parts and analyz-ing their isolated properties. In this sense, the Physis of Complex Systemsis a new way for analyzing systems where omplex phenomena are displayedrather than a new physial �eld.One of the �rst attempts to show the need of a Physis of Complex Systemsis due to Philip W. Anderson in his elebrated artile �More is di�erent� [2℄.In this artile, Anderson tells about the onept of broken symmetry re�etedwhen one moves from a small system to a marosopi one. In this transitionit may happen that some symmetries of the single systems, that determinetheir physial behaviour, are lost when embedded in a bulk of many systemsand unexpeted phenomena our (Emergene). In this latter situation theknowledge of the physial laws governing eah single building blok is in manyases not enough to explain the olletive behaviour of the big system.Emergentism versus RedutionismThis new way of thinking in physis is strongly related with the Emergen-tism philosophy. The advent of Emergentism philosophy onstituted a punhat the old-fashioned Redutionist movement that led the theory of siene fordeades and, in partiular, the way of physis during the XIX entury and the�rst half of the last entury.Emergentism states that the observed phenomena are lassi�ed into di�er-ent levels of desription and that eah one of these levels is independent in thesense that eah has its own laws. The emergene of suh levels is the resultof the inrease of the problem's omplexity. On the other hand, redutionistsassume the unity of siene so that a hierarhial organization is establishedamong disiplines:
• Chemistry is based on Physis.
• Fundamental Biology is based on Chemistry.
• Psyhology is based on Biology.
• Soiology is based on Psyhology.



3
• Politial siene and Anthropology are both based on Soiology.Whereas the �rst two of these redutions were ommonly aepted, it was notthe ase for the last ones yielding a big ontroversy. For example, aspetsof evolutionary psyhology and soio-biology are rejeted by those who laimthat omplex systems are inherently irreduible. On the ontrary, strong re-dutionists laim that the behavioural sienes should beome truly sienti�disiplines by being based on geneti biology arguments. Examples of thislong-standing ontroversy an be found in several sienti� forums. Perhaps,the most fruitful ones, in the sense of the number of rationales on the sub-jet, are found in the ontext of life sienes: the mind-body problem, theexplanation of Darwinian evolution theory, et...As the theory of siene evolved, the Redutionism-Emergentism ontro-versy progressively a�eted eah stage of the above hain of redutions, arrivingup to the very �rst level. In fat, it was Karl Popper, one of the godfathers ofthe modern theory of siene, who stated that Chemistry was not reduible toPhysis [3℄.The big ontroversy arrives to Physis under the term �Complex Systems�questioning the possibility of explaining every physial system only in terms ofthe properties of its onstituents (Construtionist hypothesis). As mentionedabove, a great deal of physial systems is said to display omplex behaviour, i.e.they display some new phenomena that annot be predited by only looking attheir parts. This impossibility goes beyond the limitations related to the largeamount of elements that are involved; there are ases where the properties ofthe isolated elements seem to be violated by the physial desription of themarosopi behaviour. The onept of symmetry breaking is thus entral fora proper (in physial terms) de�nition of what is alled emergent phenomenain Physis. The aforementioned artile by P. W. Anderson [2℄ introdued thisnew onept in �one of the early manifestos for this in�nitely quiet revolution�leading the new way of looking at physial phenomena. Let us review the mostsalient examples of the so-alled omplex behaviour.Symmetry breaking arguments have been reursively invoked to explainunexpeted experimental disoveries in the �eld of ondensed matter physis.The most representative examples are superondutivity, super�uidity, liquidrystals and antiferromagnetism. The physial explanation of eah of these ol-letive phenomena has ontributed to the growth of oneptually new frame-works in many-body physis. It was Landau [4, 5℄ the �rst to formulate phasetransitions as proesses where symmetry redutions ourred. This point ofview allowed him, after the theoretial explanation of ferromagnetism, to pre-dit antiferromagnetism [6, 7℄ by generalizing the idea of spin rotation sym-metry breaking. Subsequently, ideas on gauge symmetry breaking led to the



4 Chapter 1. Complex Systems?explanation of super�uidity [8, 9℄ and superondutivity [10℄. Anderson [2℄thus laimed that symmetry breaking in many-body systems is a generalizedphenomenon yielding di�erent emergent olletive behaviours depending onthe partiular type of broken symmetry. Therefore, it seems reasonable that,sine the priniples that govern the behaviour of a marosopi system of par-tiles appear de�ned by the whole system, these phenomena should be studiedseparately to those found for more elementary levels of desription.The suess of the holisti desription of simple (in terms of the knowledgeof the governing physial laws) systems where olletive behaviour shows up,paved the way for the searh of new oneptual shemes to explain other emer-gent phenomena at higher omplexity levels. This searh was arried out by thestudy of mathematial models that aount for di�erent emergent behaviourssuh as the appearane of dynamially oherent states, spontaneous loaliza-tion or pattern formation in extended systems. A seond set of motivatingphenomena is revealed by the observation of self-similar (fratal) patterns innatural systems, that is viewed as the emergene of self-organization behaviour.These examples are di�erent forms of the dynamial or spatio-temporal orderthat appears in seemingly di�erent systems of a large number of interatingelements in nature.The breakthroughs in the desription of the �rst lass of phenomena islosely related to the advanes in the studies of nonlinear dynamial systems.From the very �rst soliton theory [11℄ in ontinuous nonlinear systems andthe disovery of loalized states in nonlinear hains [12℄, we have seen thatoherent strutures emerge from large sale nonlinear models, possess their ownentity (partile-like behaviour, well-de�ned life times, harateristi interationpatterns, et...). In fat, no matter the omplexity of the underlying equations,spatial or temporal oherent strutures are many times desribed with the helpof a low dimensional phase spae.The onept of self-organized ritiality, introdued by Per Bak, KurtWiessenfeld and Chao Tang [13, 14℄, onstitutes one of the best explanationof nature omplexity and, perhaps, it represents one of the major oneptualahievements of the physis of omplexity. Self-organized ritiality tries toapture the essential ingredients to explain the ritial-like behaviour (man-ifested by observations of fratal struture and power-laws) of many naturalsystems without a entral ontroller unit. The original idea was to desribe thedynamis of sandpiles, aounting for the avalanhes that may happen whengrains are progressively inorporated, by means of a simple ellular automa-ton model. The suess of this simple model was seized to relate the modelto a variety of phenomena where ritiality was already observed, like earth-quakes, forest �res, epidemis and, indeed, evolution theory (relating it to the



5the theory of puntuated-equilibrium [15℄).Reading again Anderson in [16℄ (written nearly 20 years after his treatise onomplexity) and reviewing the most relevant examples of omplex behaviourup to now, it is evident that emergene is progressively being aepted as aneessary ingredient to fae all the new phenomena that has appeared in thelast deades under the name of Complexity. A number of sienti� institutesand groups are nowadays ontributing to the growth of omplexity physiswhih is still in its infany. Centers with a long history takling omplexitysuh as the �Sante Fe Institute�, the �Max Plank Institute for Physis of Com-plex Systems� at Dresden, the �Complex Systems group and the Center forNonlinear Studies� at Los Alamos, the �New England Complex Systems Insti-tute� at Boston, et... and those of muh reent reation like our �Instituteof Bioomputation and Physis of Complex Systems� at Zaragoza are ativelyontributing to this growth.In summary, the physis of omplex systems tries to explain emergent phe-nomena without losing the sight of the whole system (unlike the fully redu-tionist way of doing, whih destroys the systemi level). It is then importantto keep in mind that, although physial systems have a lear hierarhial or-dering (nobody doubts that a system is omposed by its parts) �eah level anrequire a whole new oneptual struture� [2℄ (at least for our limited way ofthinking), making thus impossible bridging the gaps by the systemati use ofa bottom-up approahes.What are the essential ingredients of a Complex System?All the examples listed above are labeled as omplex phenomena due to theimpossibility to explain them by studying in isolation the parts of the systemswhere they our. The behaviour of these systems is thus intrinsially newwith respet to the properties of the single elements of the system.It is lear that a omplex system is omposed of a large number of ele-ments. However, a big ensemble of building bloks is not enough by itself toguarantee the emergene of unexpeted phenomena suh as those desribedabove (long range orrelations from short-range interations, loalization inextended systems, self-organization and adaptability, et...). Then, it is im-portant to distinguish the attribute omplex from ompliated. Airplanes,omputers or swiss loks are examples of ompliated systems made up of alarge number of piees. They all onform a direted ause-e�et hain so thatthe malfuntioning of a single piee stops the whole system. They are alsodesigned by an external agent (humans) for a unique funtion.



6 Chapter 1. Complex Systems?What are then the key ingredients of a system for the observation of om-plex phenomena? Before being tempted to answer this question, it omes thedoubt about whether it is reasonable to expet omplex systems to have awell de�ned number of harateristi properties. Unavoidably, our mind tendsnaturally to overuse lassi�ation, whih is the natural (hardwired) way ofthinking we manage for everyday's life. However, the holisti roots of emer-gent phenomena makes it intrinsially di�ult to have well de�ned boundariesbetween what is a real omplex system and what is not. (In fat, we have upto now de�ned a omplex system by their behavioural rather than struturalproperties.) On the other hand, the number of omplex phenomena observednumerially and experimentally gives us some hints for unveiling some reur-rent strutural ingredients. Let us brie�y summarize the most relevant ones:
• Nonlinearity: It is lear that only a few natural systems an be de-sribed by means of linear relations. The need for a nonlinear modelingof the interations is learly seen by the nonlinear response of many realsystems to perturbations. In fat, nonlinearity also appears when �rstpriniples equations are obtained for very simple systems.
• Non regular struture of the interations: The network of inter-ations is of utmost importane. It is revealed a high diversity in theamount of onnetions that a single element of the system has with om-bination of short-range and long-range links. In addition, loops are veryusual in real systems.
• Surroundings do matter: Many omplex systems are open. They mayshare a balane between dissipated energy and inoming energy �ux withthe surroundings in order to ahieve dynamial stability.Although neither omplete nor preise (they an be presented alone or all to-gether), the properties listed above are shared by a number of systems whereomplex phenomena is observed. Evidently, natural omplex systems, likee.g. a protein, inorporate all these omplexity levels, but, on the other hand,syntheti models inorporating only one of them are able to reprodue the rel-evant phenomena. It is seen that one of these ingredients in syntheti models,speially in the ase of nonlinear systems with many degrees of freedom, anlead the system towards omplexity. It is also worth stressing that, as wellas the di�ulties for explaining omplex phenomena, all the above propertiesinorporate additional mathematial and omputational di�ulties.Despite the e�orts for unveiling the attributes of a omplex system, thequestion about what are the essential ingredients that generate omplexityremains open, speially when it is lear that a variety of dynamial mehanismsan produe self-similar strutures.



7Our �Complex Systems�The assoiation of several ingredients of omplexity in syntheti modelsis even more interesting than the study of systems where only one soure ofomplexity exists. One would expet the observation of new emergent phe-nomena, di�erent from those related to any of the soures of omplexity. Thisexpetation motivates our studies in this Thesis. In partiular, we will fouson extended systems of interating elements where two soures of omplexityare present, namely, nonlinearity and/or strutural omplexity.As explained above, the emergene of oherent strutures in extended non-linear systems has been studied sine deades. Our onern in this Thesis isto dediate a �rst part to the study of loalization in nonlinear homogeneouslatties. In partiular, we will address the study of loalized states in one andtwo-dimensional nonlinear Shödinger latties. These states, usually termedintrinsi loalized modes or disrete breathers are time periodi, spatially loal-ized and are seen as ubiquitous solutions to a number of homogeneous nonlinearlatties (for it the attribute �intrinsi� in their denomination). Besides, nonlin-ear Shödinger latties are seen as paradigmati equations of importane forseveral branhes of physis like Bose-Einstein ondensates or nonlinear optis.In this �rst part we will be speially interested in the mobility of suh oherentstrutures. The main di�erene with lassial solitons in ontinuum equationsrelies in the absene of ontinuum spae translational symmetry, that makesthe �nding of suh solutions non trivial. Besides, we will study other types ofoherent states, like disrete vorties or osillating disrete breathers, in orderto have a omplete desription of the behaviour of loalized solutions in thisimportant lass of latties.The seond part of this Thesis will onern the study of omplex networks,i.e. extended systems of interating elements where the patterns of onne-tions between them is random. The study of this lass of systems has beentraditionally asribed to graph theory. However, the reent disoveries on theself-similar harater of the struture of onnetions in many real (soial, bi-ologial, tehnologial, et...) systems have led to a burst in the ativity ofthe so-alled physis of omplex networks. There is a lot of important on-sequenes of the sale-free behaviour of real networks, like robustness underrandom perturbations, the �small-world� e�et, absene of threshold for epi-demis spreading and a omplete new behaviour for most dynamial proessesthat take plae on top of them. The self-similar patterns of onnetions andits ubiquity in nature lead to the onlusion that a large amount of systemsshare the same self-organizational priniples. However, the question about themehanism that drives the evolution of networks to these ommon struturalpatterns is still unsolved. We will fous on both the modeling of network



8 Chapter 1. Complex Systems?growth and the study of several simple dynamis of interest in human-made(tehnologial) sale-free networks.The study of omplex network struture and the analysis of simple dynam-is on top of sale free graphs try to unveil the improvements that a hetero-geneous pattern of onnetions provides to the deployment of the network'sfuntion. However, these two elements, funtion (dynamis) and struture, aremany times presented to us entangled. That is, the growth and time evolu-tion of the network of interations (that determines its sale-free feature) isperformed at the same time the system develops its funtion. Therefore, thestruture is the result of a kind of seletive proess that drives to the moste�ient arhiteture. In this ase, the study of how network grows is similarto the problem of �nding those network arhitetures that are the most e�-ient for its funtioning. Besides, most of the dynamis of real systems areseen to be nonlinear and, therefore, the analysis of systems of elements withboth nonlinear and random interations omes as neessary. Our main pur-pose in the third part of the Thesis is to analyze two systems of this kind and,therefore, approah to the problem on the Struture-Funtion relation. We willanalyze this relation in two biologially relevant systems, namely, a sale-freenetwork with ativatory-inhibitory (Mihaelis-Menten type) interations andthe Kuramoto model of phase osillators on top of di�erent network arhite-tures. In these two studies we do not pretend to �nd the de�nite answer tothe Struture-Funtion problem, but to disuss new tools and disover newphenomena that ould lead to a better understanding of this relation.The studies on this Thesis are thus separated in three parts depending onthe soures of omplexity involved in their desription: nonlinearity (Part I),strutural omplexity (Part II) and (�nally Part III) both. Along this thesiswe will fae problems assoiated to the emergene of oherent strutures, self-similar strutural patterns and �nally self-organization of dynamial patterns.Therefore, the onept of emergene will be the reurrent idea behind ourstudies.



Part IIntrinsi loalization innonlinear Shrödinger latties





Presentation of Part I
In this �rst part of the Thesis we will analyze the phenomenon of intrinsiloalization in nonlinear latties. In partiular, we will fous on the study ofintrinsi loalized states solutions to nonlinear Shrödinger latties. Let us�rst motivate this study by reviewing the birth and growth of the physis ofintrinsi loalized modes.Loalized states in ondensed matter physis has been usually asribedto the presene of inhomogeneities or disorder that, due to the breaking ofthe disrete translational symmetry of the system, lead to the observation ofphonon modes whih are loalized around these inhomogeneities or to the so-alled Anderson loalization[17℄. This oneption of loalization in disretesystems has been reently extended with the disovery [18, 19℄ of the so-alledintrinsi loalization in ompletely homogeneous periodi strutures. The termintrinsi loalization refers to the possibility of having spatially loalized andtime periodi exitations due to the presene of both disreteness and strongnonlinearity in homogeneous latties. These two ingredients, disreteness andnonlinearity, are seen as the essential ingredients for the observation of intrinsiloalized modes.Intrinsi loalized modes were also termed as disrete breathers in the lit-erature. These two names re�et, as reported in [20℄, the onvergene of twodi�erent ways of interpreting this kind of solutions. On one hand, the viewof intrinsi loalization in latties as a result of the presene of nonlinearityinstead of impurities, and on the other hand, as a result of the stabilizationof the loalized periodi osillation due to disreteness, that avoids the deayof the exitation into radiation. The former interpretation led to term thesesolutions as intrinsi loalized modes pointing out that loalization of the peri-odi state is a result of the self-trapping e�ets aused by the nonlinear termsin ontrast to the loalization around extrinsi defets or impurities in linearlatties. The latter point of view tries to resemble these states to that parti-ular soliton solution (alled breather due to its time periodiity) obtained forthe ontinuous sine-Gordon system [21℄. The �nding of this breathing solutionto the sine-Gordon model remained as a very exeptional feature for ontin-uous models related to its integrable harater. While physiists onernedwith ontinuous models tried to reprodue these solutions in other ontinu-ous models they realized that the disretization performed for the numerialsimulations provided an apparent robustness to loalized breathing solutions.These observations onstituted the hint for the existene of disrete breathersas true solutions of nonlinear latties.



12 The above two approahes to intrinsi loalization in nonlinear latties (onegoing from linear to nonlinear disrete systems and the seond from ontinu-ous to disrete nonlinear models) �nally onverged to onlude that intrinsiloalized modes or disrete breathers should be generi solutions to nonlinearextended latties. The heuristi explanation argued was that in nonlinear lat-ties the plane wave spetra are bounded due to disreteness, thus making pos-sible the absene of multi-harmoni resonanes of the exat disrete breathersolution with extended modes. Therefore, the ombination of nonlinearity anddisreteness is su�ient for the physial existene of disrete breathers result-ing in its generality and broad interest. This extreme was further supportedby the development of the theory for the existene of intrinsi loalized modesin nonlinear disrete systems [22℄ and nowadays the study of nonlinear lat-ties have beome the subjet of a onsiderable multidisiplinary interest. Thebroad range of appliations in physis subdisiplines overs �elds as diverse asbiophysis (myelinated nerve �bers [23℄, DNA [24, 25℄, biopolymer hains [26℄),nonlinear optial devies (photoni rystals [27℄ and waveguides [28, 29℄), andJosephson e�et [30℄ (superonduting devies [31, 32℄, Bose-Einstein onden-sates [33�35℄), among others [36�38℄. From a theoretial perspetive nonlinearlatties have been progressively reognized not as mere disretizations (un-avoidable for numerial omputations) of nonlinear ontinuous �eld equations,but as a target of interest in their own right, due to the distintive featuresassoiated with disreteness, whose relevane to experimental features havebeen largely established.Though many of the properties of disrete breathers are today well hara-terized1, several questions remain unsolved and their most promising applia-tions are yet to be developed. From the theoretial point of view, the questionon their mobility has been a onstant soure of ontroversy. The heuristi ar-guments tell about the impossibility of having moving loalized strutures inlatties due to the radiative losses unavoidably assoiated to the translationalmotion of the loalized pulse in generi systems. Our main onern in thispart will be to analyze this problem for nonlinear Shrödinger latties whereimportant appliations are found.The purpose of this �rst part of the Thesis is to haraterize these mobilesolutions along with the well known pinned ones and, besides, more exotitypes of loalized strutures (like bound states of intrinsi loalized modes,osillating disrete breathers, pulsons, or disrete vorties) by a systematistudy of their existene, stability and dynamis. For these purposes, we havedivided this part into three hapters. First, in hapter 2, we will brie�y presentthe nonlinear Shrödinger lattie equations and the essential tehniques to be1Interesting reviews and tutorials on the subjet are found in [20, 39�43℄.



13employed in the following hapters. Seondly, in hapter 3, we will analyze theone-dimensional ase, where we will mainly fous on the mobility of loalizedstrutures and its physial interpretation. In this hapter, we will also analyzea new type of pinned solutions, termed uspons, that arise when ompeting(self-fousing and self-defousing) nonlinearities ome into play. Finally, thetwo-dimensional version of the model equations is studied in hapter 4. Here,besides generi two-dimensional solutions like disrete vorties, two importantissues are of importane, namely: (i) the quasi-ollapse instability of disretebreathers (that turns loalized solutions into pulsoni strutures), and (ii) theextension of the one-dimensional mobile solutions to their two-dimensionalounterparts.The disussion of the results in hapters 3 and 4 tries to unify di�erentapproahes to and studies of the problem in order to provide a oherent enoughpiture about the behaviour of disrete breathers in nonlinear Shrödingerlatties. We hope that the results shown would provide a path for studyingsimilar problems in other interesting models.





Chapter 2Disrete Breathers andNonlinear Sh�rodinger lattiesI was observing the motion of a boat whih was rapidly drawn along a narrow hannelby a pair of horses, when the boat suddenly stopped but not so the mass of water inthe hannel whih it had put in motion; it aumulated round the prow of the vesselin a state of violent agitation, then suddenly leaving it behind, rolled forward withgreat veloity, assuming the form of a large solitary elevation, a round, smooth andwell-de�ned heap of water, whih ontinued its ourse along the hannel apparentlywithout hange of form or diminution of speed. I followed it on a horsebak, andovertook it still rolling on at a rate of some eight or nine miles an hour, preservingits original �gure some thirty feet long and a foot to a foot and a half in height.Observation of a solitary wave formationin 1834 by John Sott Russel [44℄.Disrete breathers, also alled intrinsi loalized modes, are ubiquitous so-lutions {Φn(t)}, with n = −∞,...,0,...,∞, to extended anharmoni latties.These states are time periodi, with a well de�ned frequeny ωb, solutionswhere the energy is on�ned on a few number of sites. A general form of thissolutions an be expressed as
Φn(t) = f(n− x0) exp (iωbt) , (2.1)with f(n − x0) ∼ exp [−Γ|n− x0|] when n → ±∞. The parameter x0 is theloalization enter and Γ (> 0) aounts for the deay rate and hene quanti�esthe degree of energy loalization.The �rst observations of energy loalization in anharmoni latties whereaidentally found by E. Fermi, J.R. Pasta, S.M. Ulam and M. Tsingou [12℄ in



16 Chapter 2. Disrete Breathers and Nonlinear Shrödinger latties1955. This �little disovery� were followed by the burst of nonlinear siene ledby theoretial advanes in soliton theory or integrable systems. The growthof omputer proessing power turned again the view to nonlinear latties and,after the theoretial work of A.J. Sievers, S. Takeno and K. Kisoda [18, 19℄ in1988 disovering a new loalized mode for pure anharmoni latties, several nu-merial observations of these kind of solutions were reported by several authorsfor di�erent nonlinear latties [45�48℄. It is worth mentioning that the observa-tion of these loalized states was found to be generi of homogeneous nonlinearlatties and therefore di�erent from that due to presene of Anderson modesas a onsequene of the existene of any inhomogeneity (defet or impurity) ofthe harmoni lattie. Observations of genuine disrete breather solutions weremainly based on the numerial simulations of the nonlinear dynamis.The question on their existene as true solutions of the nonlinear lattieremained unsolved until R.S. Makay and S. Aubry [22℄ established the the-orem for the existene of disrete breather solutions. This theorem is basedon the onept of anti-integrability (developed by S. Aubry for studying theFrenkel-Kontorova model [49, 50℄) or, applied to general latties, the antion-tinuum limit. This onept refers to the limiting ase when there is no ouplingbetween adjaent sites of the lattie so that the system is omposed of a setof independent osillators whose dynamis is governed by their orrespondingon-site potentials. Then, onsidering the state where a single osillator evolvesfollowing an orbit of frequeny ωb while the remaining sites are in the reststate one an ask whether this state of energy on�nement would remain whenthe oupling between sites is adiabatially inorporated. The ontinuability ofdisrete breathers from the unoupled limit implies two onditions
• Non-resonane ondition: The osillation frequeny and its harmonismust rely outside the phonon band of the lattie at the rest state

nωb 6= ω(q) ∀q ∈ [−π/2, π/2] (n = 1, 2, ...) (2.2)
• Anharmoniity ondition: The on-site potentials governing the dynamisof the isolated sites must be nonlinear so that the frequenies, ωb, of theirorbits ful�lls ∂ωb/∂I 6= 0, where I is the ation.The proof of the existene theorem is based on the impliit funtion theoremand provides a pratial way for onstruting loalized solutions of the type(2.1).After the rigorous formulation of the existene onditions of disrete breathersseveral questions arised. From one hand, its stability and robustness in noisyenvironments has been studied in detail [51℄ sine their experimental observa-tion and potential appliations to real systems implies relative large life times.



2.1. The Salerno Model 17Another hot topi is the issue of their mobility. Taking into aount the gen-eral form (2.1) of a pinned disrete breather one would expet their mobileounterparts to have the form
Φn(t) = f(n− vb − x0) exp (iωbt) , (2.3)with f(n− vb − x0) ∼ exp [Γ|n− vbt− x0|] when n→ ±∞. The possibility oftransferring energy pakets aross latties opens the door to a wide range ofappliations in nonlinear optis, solid state and soft matter physis. However,sine the ontinuous translational invariane is broken due to disreteness, theomputation of pinned disrete breathers of the form (2.1) does not guaran-tee the suess in onstruting mobile loalized states like (2.3) by means ofa hange of the referene system. Di�erent approahes have been used forstudying this problem ranging from the �kiking� method [52�55℄ (where astati solution is perturbed with the so-alled pinning or marginal mode in or-der to make it move) to analytial approximations were ontinuous variables(olletive oordinates) aounting for the loalization enter are introdued[56�60℄. Our approah to this problem tries to generalize the method of on-tinuation for pinned breathers to obtain mobile solutions. For this purpose westart with make use of the onept of (p, q) resonant states that will allow usto unify the problem of �nding both mobile and pinned disrete breathers.In this hapter we introdue the set of nonlinear Shrödinger equationsthat we study along the two forthoming hapters as well as to summarize thebasi de�nitions and tehniques used for haraterizing breather solutions tothese equations. We will start in setion 2.1 desribing the Salerno model [61℄whih provides a two-parametri family of nonlinear Shrödinger latties. Insetion 2.2 we address the de�nition of the onept of (p, q) resonant solutionsto whih general disrete breather solutions belong. Finally, in setion2.3 thebasi tehnique to obtain and haraterize disrete breathers are summarized.2.1 The Salerno ModelThe ontinuous nonlinear Shrödidinger equation (NLS) onstitutes a key toolfor a number of �elds as diverse as the study of Bose-Einstein ondensates(where the mean �eld approximation is of the NLS-type, the Gross-Pittaevskiiequation), the study of nonlinear (Kerr type) optial �bers, moleular hains(where Davydov solitons are studied), et... Besides, the NLS equation isspeially interesting for nonlinear physis sine it appears when onsideringthe lowest order of nonlinearity for any dynamial equation on a dispersivemedium where energy is onserved. The most general form of this equation isiΦ̇(x, t) = −▽2Φ(x, t)− γ|Φ(x, t)|2Φ(x, t) , (2.4)



18 Chapter 2. Disrete Breathers and Nonlinear Shrödinger lattieswhere Φ(x, t) is a omplex �eld whih, in the ontext of Bose-Einstein on-densates, aounts for the marosopi wave-funtion of the ondensate. Theparameter γ aounts of the ompetene between the dispersive (Laplaianterm) and the nonlinear parts. This ubi nonlinear equation posses the sin-gular property of being integrable. The integrability was probed by means ofthe Inverse Sattering Method (ISM) tehnique [11, 62, 63℄ in [64℄ providing afamily of nonlinear waves.The Disrete Nonlinear Shrödinger equationThe physial relevane of the NLS equation along with its integrable haratermake it one of the most studied models by nonlinear physiists during thelast deades. Besides, disretizations of this equation are also of great interest.The natural the disretization of eq. (2.4) yields the so-alled standard disretenonlinear Shrödinger equation (DNLS) [23℄,iΦ̇n = −C(Φn+1 + Φn−1)− γ|Φn|2Φn , (2.5)where Φn is now a omplex variable, the parameter C amounts the nearestneighbor oupling, and γ is the strength of the nonlinearity. The above dis-retization does not onserve the integrability of the ontinuous model (2.4)although the wide appliability to physial �elds is preserved. In partiular,the DNLS equation is partiularly relevant for
• Dynamial desription of Bose-Einstein ondensates trapped in a periodipotential well (optial trap) [33�35, 65�68℄.
• Pulse dynamis in nonlinear waveguide arrays [28, 29, 69�72℄.
• Adiabati approximation of the Holstein polaron [23℄.
• Exitation dynamis in biopolymers latties [26℄.The dynamis governed by the DNLS equation (2.5) is derived from the Hamil-tonian

H = −C
∑

n

(ΦnΦn+1 + ΦnΦn+1)−
γ

2

∑

n

|Φn|4 , (2.6)where Φn denotes the omplex onjugate of Φn. Both variables, Φn and Φn,are anonially onjugated with the usual Poisson struture
{U, V } =
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]

. (2.7)



2.1. The Salerno Model 19Beside, the DNLS equation has a seond integral of the dynamis, namely thenorm,
N =

∑

n

|Φn|2 , (2.8)that in the ontext of Bose-Einstein ondensates aounts for the total numberof bosons whereas for waveguides arrays it is the total power of the beam.The Ablowitz-Ladik equationAnother important disretization of the ontinuous NLS equation is the so-alled Ablowitz-Ladik equation (AL). Although this lattie is not so physiallyrelevant as the usual disretization, DNLS equation (2.5), the AL model pre-serves the integrability of its ontinuous ounterpart (2.4). In fat, the ALmodel is an extremely exeptional example of an integrable nonlinear lattiethat was disovered by M.J. Ablowitz and J.F. Ladik in 1976 [73, 74℄ by meansof the ISM in its disrete version [75, 76℄. The AL model reads as followsiΦ̇n = −(Φn+1 + Φn−1)
[

C +
γ

2
|Φn|2

]

, (2.9)where again Φn(t) is a omplex probability amplitude, the parameter C amountsthe nearest neighbor oupling, and γ is the strength of the nonlinearity. Thenonlinear term in the AL equation is of the intersite type and hene di�erswith its ounterpart in the DNLS model whih is an onsite nonlinearity.The AL model (2.9) has a deformed Poisson struture de�ned by
{U, V } =
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, (2.10)and the onserved Hamiltonian is
H = −C

∑

n

(ΦnΦn+1 + ΦnΦn+1) . (2.11)The integrability of the AL equation results in an in�nite number of onservedquantities. Along with the Hamiltonian the two onserved magnitudes of lowestorder in {Φn} are
N =

2

γ

∑

n

ln(1 +
γ

2
|Φn|2) , (2.12)

P = i∑
n

(ΦnΦn+1 − ΦnΦn+1) , (2.13)whih are the norm and the momentum respetively.



20 Chapter 2. Disrete Breathers and Nonlinear Shrödinger lattiesThe integrable AL equation possesses a two-parameter family of exatbreather solutions of the form
Φn(t) =

√

2

γ
sinh β seh[β(n− x0(t))]×

exp [i(α(n − x0(t)) + Ω(t))] . (2.14)As an be observed the solutions possess the ontinuous spatial symmetry
x0 → x0 + ǫ and hene analyti mobile breather solutions with a similar formto eq. (2.3) are available for this exeptional lattie. The two parameters ofthis breather family an be hosen to be the breather frequeny ωb and veloity
vb,

vb = ẋ0 =
2 sinh β sin α

β
(2.15)

ωb = Ω̇ = 2 cosh β cos α + αvb , (2.16)where −π ≤ α ≤ π and 0 < β <∞. The AL moving breather (instantaneous)pro�le interpolates between the rest state Φn = 0 of the lattie (at n → ±∞)in an exponentially loalized region around x0(t), while traveling with veloity
vb.The Salerno modelIn the above two equations, DNLS (2.5) and AL (2.9), the self-foussing e�etof loal nonlinearity balaned by the opposite e�et of the dispersive ouplingmakes possible the existene of loalized periodi solutions (breathers) of thedisrete �eld, where the pro�le of |Φn| deays exponentially away from theloalization enter:

Φn(t) = |Φn| exp[iωb(t))] . (2.17)In the unoupled limit C → 0 of the DNLS equation, also known as the anti-integrable or anti-ontinuous limit, disrete breathers an be easily onstrutedby seleting a periodi osillation Φn0(t) of frequeny ωb = γ|Φn0 |2 at site n0and Φn = 0 for n 6= n0. These solutions an be uniquely ontinued (we will seethe proedure below) to nonzero values of the oupling C, and onstitute theone-parameter family of immobile on-site breathers of the DNLS equation.Unfortunately, the ontinuation from the unoupled limit does not providesolutions where the loalization enter moves along the lattie with veloity vb(as for the AL ase), i.e, mobile disrete breathers. On the other hand, theonnetion between the integrable (though physially limited) AL equation



2.1. The Salerno Model 21and the physially relevant (though nonintegrable) DNLS equation is providedby the model originally introdued by M. Salerno in [77℄,iΦ̇n = −(Φn+1 + Φn−1)
[

C + µ|Φn|2
]

− 2νΦn|Φn|2 . (2.18)The above lattie provides a Hamiltonian interpolation between the stan-dard DNLS equation (2.5), for µ = 0 and ν = γ/2, and the integrable ALlattie (2.9) when µ = γ/2 and ν = 0. In the following we will set the value of
γ = 2. The Hamiltonian of the Salerno equation is given by

H = − C
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ln(1 + µ|Φn|2) , (2.19)whih ontains the AL and DNLS Hamiltonian for the above limits. ThePoisson struture of the Salerno model takes the form
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1 + µ|Φn|2
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, (2.20)whih, for µ 6= 0, takes the same funtional form as that of the Ablowitz-Ladikequation, eq. (2.10), and in the limit µ = 0 it beomes the standard Poissonstruture aording to that of the DNLS limit, eq. (2.7). In addition to theHamiltonian, this equation possesses, for any value of the parameters µ and ν,the following onserved norm
N =

1

µ

∑

n

ln(1 + µ|Φn|2) . (2.21)While the SM was originally introdued in a rather abstrat ontext, it hasreently found diret physial realization, as an asymptoti form of the Gross-Pitaevskii equation desribing a Bose-Einstein ondensate of bosoni atomswith magneti momentum trapped in a deep optial lattie [78℄. In that ase,the onsite nonlinearity is generated, as usual, by ollisions between atoms,while the intersite nonlinear terms aount for the long-range dipole-dipoleinterations. This latter interation may be attrative (µ > 0) or repulsive(µ < 0), if the external magneti �eld polarizes the atomi momentum alongthe lattie or perpendiular to it, respetively.The ontinuation of the family (both pinned and mobile) disrete breathersfrom the AL integrable limit allows numerial observations of the interplaybetween the integrable term, weighted by the parameter µ, and the noninte-grability, weighted by ν. We will inspet the e�ets that the ombination ofthese two nonlinearities, with both similar and opposite signs, has on disretebreathers dynamis.



22 Chapter 2. Disrete Breathers and Nonlinear Shrödinger latties2.2 Disrete spae-time symmetries: (p, q) resonantstatesIn order to unify the problem of �nding pinned and mobile disrete breathers bymeans of ontinuation methods we start de�ning the onept of (p, q) resonantstates. Suppose that a frequeny ωb = 2π/Tb is given, we will say that asolution Φ = {Φn(t)} is (p, q) resonant with respet to the referene frequeny
ωb, if the following ondition holds, for all n and t:

Φn(t) = Φn+p(t + qTb) . (2.22)After q Tb-periods, these solutions repeat the same pro�le but displaedby p lattie sites. In more tehnial terms, these (p, q) resonant solutions are�xed points Φ of the operator
LpT q = M (2.23)

(M−I) Φ = 0 , (2.24)where L and T are, respetively, the lattie translation and the Tb-time evolu-tion operator
L{Φn(t)} = {Φn+1(t)} (2.25)
T {Φn(t)} = {Φn(t + Tb)} . (2.26)We now onsider some examples of (p, q) resonant solutions with respetto the frequeny ωb; the �rst example is simply provided by the family of planewave solutions of eq. (2.18):
Φn(t) = A exp[i(kn− ωt)] . (2.27)It is easily seen, by inserting (2.27) in eq. (2.18), that the values of ω, k and

|A| de�ne a surfae in the three-dimensional spae, the nonlinear dispersionrelation surfae ω(k,A) (see �gure 2.1):
ω = −2[1 + µ|A|2] cos k − 2ν|A|2 . (2.28)Note that due to the nonlinear harater of the eq. (2.18), the frequeny ωdepends on both wave number k and amplitude |A| of the plane wave.One an easily determine those plane waves that are (p, q) resonant withrespet to ωb: the eq. (2.22) imposes the following ondition on ω and k

ω

ωb
=

1

q

( p

2π
k −m

)

, (2.29)



2.2. Disrete spae-time symmetries: (p, q) resonant states 23where m is any arbitrary integer. These planes in the 3-d spae (ω, |A|, k)interset the dispersion relation surfae at (in general) several one-parameterfamilies (branhes) kj(|A|), in the �rst Brillouin zone (−π ≤ k ≤ π).If we are not interested in unreasonably large (and not interesting) ampli-tude values |A| of the plane waves, the number of branhes is �nite: one ansee that for �xed values of all the parameters (p, q, ωb, ν, µ), there is a �nitenumber of branhes in the limit |A| → 0; there is also a well de�ned (parameterdependent) threshold value of the amplitude at whih a pair of new branhes(tangent bifuration) appear (i.e. these plane waves an only resonate with ωbfor amplitudes above some threshold value).Thus, by a suitable bounding of the amplitude, for eah ouple (p, q) one�nds a �nite number, s, of branhes of (p, q) resonant plane waves. (Note alsothat this number diverges when p/q tends to an irrational).A di�erent, and highly nontrivial, example of (p, q) resonant solutions isprovided by the solitary waves (2.14) of the AL lattie. From eq. (2.16) it islear that the hoie 2πvb/ωb = p/q selets a (p, q) resonant solitary wave withrespet to the frequeny ωb, i.e. a breather solution where the two time salesinvolved, given by its frequeny ωb and veloity vb, are ommensurate. Theset of veloity values of resonant AL breathers is dense and any AL movingbreather is a limit of some sequene of resonant ones. Note also that immobilebreathers are (0, 1) resonant with respet to the frequeny ωb.In the integrable limit, the plane waves and the AL breathers are bothexat independent solutions. Integrability makes possible that the initial lo-alization of energy is maintained with time evolution, without deaying awayby exiting radiation. It is a well established result that (even far away fromthis integrable limit) immobile disrete breathers remain exat solutions of thelattie dynamis. Our onern in the next setions is the question of moving
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24 Chapter 2. Disrete Breathers and Nonlinear Shrödinger lattiesdisrete breathers away from integrability in eq. (2.18). In order to studythem, we will fous on (p, q) resonant solutions. The motivating of this re-strition omes from its aessibility to numeris. First we will motivate thenumerial (Newton) method that allow us to study these solutions with anadequately high preision.2.3 Disrete Breathers numerisWe introdue here the numerial tehniques that we have used. As a whole,one ould refer to them as the (SVD-) regularized Newton method. They donot onstitute a novel method in "disrete Breather numeris", as they havebeen already used, e.g. in [79℄ to re�ne moving breathers of Klein-Gordonlatties obtained by other numerial means (see, by ontrast, [80℄). From themethodologial side, what is novel here is the systemati use of them in theinvestigation of the family of moving Shrödinger breathers reported below in3.1.To some extent, the presentation here is self-ontained but for further de-tails on these tehniques we refer to the Appendies and the proposed bib-liography. First, in 2.2 we introdue the notion of (p, q) resonant solution,providing some illustrative examples. The (SVD) regularized Newton algo-rithm is presented in 2.3.1, and �nally in 2.3.2 we brie�y explain the basis ofFloquet stability analysis.2.3.1 Newton ontinuationA well-known numerial proedure to obtain exat periodi solutions of nonlin-ear latties is the Newton ontinuation [22, 53, 79, 81℄. The di�erent pratialimplementations of this proedure work very suessfully when, for example,one obtains numerially exat immobile disrete breathers of eq. (2.18), fromthe unoupled limit µ = 0 and C = 0, where exat periodi disrete breathersare trivially onstruted.The iteration of the Newton operator T onverges rapidly to its �xed point(i.e. the solution to be omputed) provided the starting point, Φ̂0, is loseenough, and the solution of the following system of linear equations is a well-posed problem:
(DT − 1)(Φn − Φn+1) = [T − I]Φn , (2.30)where DT is the Jaobian matrix of the Newton operator, and Φn (the n-thiteration solution of (2.30)) onverges quadratially to the �xed point solution.By adiabati hange of a model parameter, one onstruts a uniquely ontinued



2.3. Disrete Breathers numeris 25exat �xed point solution for eah parameter value, using eah time, as startingpoint of the Newton iteration, the solution previously omputed.The matrix (DT − 1) must be invertible, in order to uniquely ompute
Φn+1. Degeneraies assoiated with the +1 eigenvalues of DT , if any, haveto be removed in order to obtain a unique �xed point solution. When ontin-uing immobile (time periodi) disrete breathers of eq. (2.18), a onvenientpresription is ommonly used, namely to restrit the operator ation to thesubspae of time-reversible solutions (see Appendix A and [53, 81℄). This pro-vides a pratial way of removing degeneraies, allowing unique ontinuationof immobile disrete breathers.However, for the ontinuation of general (p, q) resonant solutions (of whihperiodi solutions are only the partiular ase p = 0 and q = 1), one has to use
M = LpT q as the Newton operator. One has also to deal with the degeneraiesof M, and imposing time-reversibility ould, in this ase, be too restritive,sine in general (p, q) resonant solutions are not time-reversible.A well-known solution to the problem of removing degeneraies when nolear restritions are available, is provided by the so-alled singular value de-omposition (SVD) [53, 79, 82, 83℄ of the matrix (DLpT q − 1) :

(DLpT q − 1) = J = PV Q , (2.31)where P , V and Q are 2N×2N square matries. P and Q are orthogonal matri-es and V is diagonal (vjδij) with possibly null (zero) elements, alled singularvalues, assoiated with the null spae of J (the subspae that is mapped to zero
Jx = 0). The olumns of P whose same-numbered elements vj are nonzeroare an orthonormal set of basis vetors that span the range of J (the subspaereahed by this matrix). The rows of Q whose same-numbered elements vj arezero are an orthonormal basis for the null spae of J . One an numerially usethis SVD deomposition, heking the (numerial) vetors spanning the nullspae to identify degeneraies, and using at iteration steps the pseudoinversematrix

Q∗V̂ −1P ∗ , (2.32)where V̂ −1 is diagonal with elements 1/vj for vj 6= 0 and 0 for vj = 0.The onvergene riterion for the �xed point solution is that
∑

j

∣

∣

∣

(

[T − I]Φn+1
)

j

∣

∣

∣
< N · 10−16 , (2.33)where N is the size of the lattie, i.e. the solutions obtained along the twoforthoming hapters an be regarded as exat up to mahine preision. As ajudiious test of our numerial odes, we have used both proedures (redution



26 Chapter 2. Disrete Breathers and Nonlinear Shrödinger lattiesto time-reversible subspae and SVD deomposition) to obtain immobile dis-rete breathers (for whih both methods are valid) of the Salerno model. Bothagree, up to the highest possible auray, from the unoupled limit up to theA-L limit (and vieversa).2.3.2 Floquet stability analysisA very useful outome of the numerial Newton method of omputing solutionsof eq. (2.18) is the Jaobian matrix of the Newton operator, usually alled theFloquet matrix F . This matrix is the linear operator assoiated with the linearstability problem (see Appendix B and [84℄) of the �xed point solution.Indeed, the Jaobian F of the Newton operatorM
F = DM (2.34)maps vetors in the tangent spae of the solution (small initial perturbations

~ǫ(0) of the �xed point solution) into their TM-evolved vetors, i.e. ~ǫ(TM),after a period ofM. That is:
~ǫ(TM) = F~ǫ(0) , (2.35)The Floquet matrix of a Hamiltonian system is real and sympleti, sothe Floquet eigenvalues λ ome in quadruplets, λ, 1/λ, λ̄, 1/λ̄. The neessaryondition for the stability of the solution is that all the eigenvalues lie on theunit irle of the omplex plane, |λ| = 1.To illustrate the Floquet analysis of (p, q) resonant solutions of the NLSlattie (2.18), we now obtain the Floquet spetrum of modulational instabilitiesof a (p, q) resonant plane wave,

Φn(t) = A exp i(kn− ωt) . (2.36)One has to investigate the evolution of small perturbations, in both ampli-tude and phase, of the plane wave
Φn(t) = (A + In) exp i(kn − ωt + ϕn) , (2.37)where we assume that the perturbation parameters are small ompared withthose of the plane wave solution. Introduing expression (2.37) in (2.18) andonsidering the following form for the perturbations {In, ϕn}:

In(t) = I exp i(Qn− Ωt)

ϕn(t) = ϕ exp i(Qn−Ωt) (2.38)
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Figure 2.2: Plot of the modulus of the unstable Floquet eigenvalues |λ| (orrespondingto the positive values of ℑ(Ω) in eqs. (2.44) and (2.45)), versus the Floquet angle,
θFloq. Both quantities are onveniently normalized to the period of the map TM. Theamplitude of the exursion of |λ| and the range of values of θFloq for whih |λ| > 1grow as the amplitude A of the plane wave is inreased. The parameters in eq. (2.18)are µ = ν = 0.5 and the wave number of the plane wave is k = 0.5.we obtain the dispersion relation for the perturbation parameter Ω:

[Ω− 2(1 + µA2) sin k sin Q]2 = 16(1 + µA2)×
sin2 Q/2 cos k[(1 + µA2) sin2 Q/2 cos k

− µA2 cos k − νA2], (2.39)as obtained in [85, 86℄. From the above expression one derives the values of
Ω(A,Q, k; ν, µ) for the modulational perturbations. When the parameter Ωhas a nonzero imaginary part, i.e. the right-hand side of (2.39) is negative,the plane wave (A, k) beomes unstable under the orresponding modulational(Q) perturbation, whose amplitude will grow exponentially fast in the linearregime (tangent spae).Modulational perturbations (2.38) orrespond to eigenvetors {In, ϕn} ofthe Floquet matrix:

In(t + TM) = exp(−iΩTM)In(t) (2.40)
ϕn(t + TM) = exp(−iΩTM)ϕn(t) (2.41)with assoiated Floquet eigenvalues exp(−iΩTM). The real part of Ω gives the
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ℜ(λ)Figure 2.3: Plot of the Floquet spetra of a plane wave with modulational instabil-ity (irles) and the theoretial predition (lines) for the distribution of the Floqueteigenvalues in the omplex plane given by eqs. (2.44) and (2.45). The amplitudeand wave number of the plane wave are A = 0.1 and k = 0.1 · 2π; the nonintegrableparameter value is ν = 0.1 and the lattie size is of 400 sites.angle in the omplex plane,
θF loq = −ℜ(Ω)TM , (2.42)while the imaginary part ℑ(Ω) gives the modulus of the Floquet eigenvalue,
|λ| = exp(ℑ(Ω)TM) , (2.43)thus providing the information about the linear stability of the solution.The distribution of angles and moduli in the Floquet spetrum of the mod-ulational instability an be obtained from eq. (2.39) by taking the real andimaginary parts of Ω:

ℜ(Ω) = 2(1 + µA2) sin k sin Q (2.44)
ℑ(Ω)2 = −16(1 + µA2) sin2 Q/2 cos k ×

× [(1 + µA2) sin2 Q/2 cos k

− µA2 cos k − νA2] . (2.45)In �gure 2.2 we represent the modulus of the unstable eigenvalues as afuntion of the Floquet angle for the spetrum of a (p, q) resonant plane



2.3. Disrete Breathers numeris 29wave, taken as an example to visualize the non-point-like harater of theinstability in the Floquet spetrum in the thermodynami limit. Note thatthere is no plane wave harmoni instability (θF loq = 0) due to this mehanismof modulational instabilities.A numerial omputation of the Floquet spetrum of a plane wave (witharbitrary wave number) of a lattie of N = 400 sites, with periodi bound-ary onditions is shown in the omplex plane representation of �gure 2.3.The instability globes, at angles symmetrially plaed around zero in this �g-ure, niely �t the theoretial (thermodynami limit) values obtained from eqs.(2.44) and (2.45).





Chapter 3Disrete Breathers inone-dimensional NonlinearShrödinger lattiesA one-dimensional dynamial system of 64 partiles with foresbetween neighbors ontaining nonlinear terms has been studied onthe Los Alamos omputer MANIAC I (...) The results show verylittle, if any, tendeny toward equipartition of energy among thedegrees of freedom.First insights on intrinsi loalization by E. Fermi, J.R. Pasta,S.M. Ulam and M. Tsingou in 1955 (Extrated from [12℄).In this hapter we report on the most salient �ndings on disrete breathersolutions to the Salerno model (2.18). The generalized ontinuation shemebased on the (p, q) resonane ondition allows to �nd both pinned and mobiledisrete breathers ontinuing those analytial solutions found for the integrableAblowitz-Ladik equation.In the light of the obtained results we an distinguish two regions of theSalerno model. First, the so-alled standard Salerno model where µ > 0. Inthis ase pinned disrete breathers are feasible states of the dynamis andtheir haraterization for the interesting DNLS limit [87, 88℄ and the SM[58, 59, 89, 90℄ has been deeply studied. Then, our primary onern in this re-gion is the issue of disrete breather mobility. The main numerial fats aboutmobile disrete breathers are shown in setion 3.1. The numerial solutions arefound to be (up to numerial preision) the superposition of a traveling expo-nentially loalized osillation (the ore), and an extended bakground, whih is a



32 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattieslinear superposition of �nite amplitude nonlinear plane waves. Then, ontraryto the exat immobile breather solution (spae-homolini and time-periodiorbit), whih asymptotially onnets the rest state (vauum or ground state)of the lattie with itself, eah exat mobile loalized solution is instead homo-lini to a spei� lattie state of extended radiation. In other words, exatstationary mobility of disrete breathers requires an extended exited state ofthe lattie. In setion 3.2 we analyze the numerial results in the light of olle-tive variable theories, orrelating them with the main theoretial preditionsof this suessful (however inomplete) physial perspetive. In partiular, theexistene of Peierls-Nabarro barriers to translational ore motion is on�rmed,and its subtle relation to the bakground amplitude is disussed. We presentalso numerial on�rmation of the existene of another type of loalized states:exat osillating anhored breathers. Along with the disussion in this setion,a physial interpretation of the role of the interation bakground-ore in theenergy balane emerges, paving the way to a satisfatory integration of theresults into a olletive variable theory.The seond region of interest is the Salerno model with ompeting nonlin-earities (µ < 0) that we study in setion 3.3. In this ase the Salerno Modelombines onsite self-fousing and intersite self-defousing ubi terms, whihturns to be physially meaningful for desribing a Bose-Einstein ondensateof dipolar atoms trapped in a strong periodi potential. The analytial re-sults using the ontinuum approximation predits a threshold value µc < 0 sothat for µ < µc pinned disrete breather solutions do not exist. On the otherhand, the numerial ontinuation of exat disrete breathers shows that thepinned breather family ontinues beyond this threshold in the form of a novelsolution: uspon states. In-phase and out-of-phase bound states of disretebreathers are also onstruted in order to shed light on the new transitionfound. This results makes the Salerno model with ompeting nonlinearitiesalso interesting for what onerns pinned disrete breathers. Mobile disretebreathers are �nally studied in this region revealing the same results as in thestandard Salerno model: they are omposed of a moving ore and an extendedbakground.3.1 Disrete breathers in the standard SalernomodelThe omputation of (p, q) resonant disrete breathers in the standard Salernolattie (µ > 0) is performed following the path ν + µ = 1 (see Figure 3.1)from the AL integrable lattie (ν = 0, µ = 1) to the standard DNLS equation(ν = 1, µ = 0). The hoie of the path does not a�et the generality of the
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Figure 3.1: Two di�erent pathsto reah the DNLS limit in the(C, ν, µ) spae. The standardSalerno path, ν+µ = 1, is used forontinuing the AL (p, q) resonantbreathers to the DNLS limit. Theontinuation from the antiontin-uum limit an be used only for im-mobile ((0, 1) resonant) breathers.results sine for every solution for the nonlinear parameters (ν, µ) one aneasily obtain the orresponding one for other set (ν ′ , µ
′

= µν
′

/ν) by means ofthe resaling Φ
′

n(t) =
√

ν ′/ν Φn(t).We have omputed pinned disrete breathers ((0, 1) resonant solutions) tothe DNLS equation (2.5) by (i) ontinuing those analytial pinned solutions ofthe AL lattie (α = 0) following the Salerno path and (ii) starting from theantiontinuum limit C = 0 of the DNLS equation and hanging the oupling C.These two approahes yields the same solutions when ompared at the DNLSlimit. However, the ontinuation from the unoupled limit does not o�er thepossibility of ontinuing a seond family of pinned, (0, 1) resonant, disretebreathers present at the AL limit: Looking at eq. (2.15) one realize that for(α = π) a set of pinned solutions with phase di�erene betweeen adjaent sitesequal to π and ωb < 0 is also available. This type of pinned solutions areusually termed staggered disrete breathers and, as we will see below, theirbehaviour in the standard Salerno model is far from trivial. One an studythis new type of pinned solutions by onsidering the ase ν < 0 for standard(unstaggered) pinned breathers, orresponding to α = 0 in the AL lattie,sine the hange ν
′

= −ν, t
′

= −t orresponds to a staggering transformationof the solution Φ
′

n = (−1)nΦn. Then, the study of (p, q) resonant solutionsalong the path µ − ν = 1 of the standard Salerno model (µ > 0) is also ofinterest. The Salerno ontinuation of standard pinned breathers also providesfurther on�rmation of an important and well-known theoretial result. Atthe integrable AL lattie, one-site and two-site immobile breathers are buttwo partiular hoies of the ontinuous one-parameter (x0, the loalizationenter) family of immobile solitary waves, i.e. onstant x0(t) = n or n + 1/2respetively, in eq. (2.14). The well-known result, on�rmed by our numeris,is that away from the AL limit only these (one-site and two-site) immobile
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Figure 3.2: (Bottom) Convergene of the two solutions found at the DNLS limit(ν = 1, µ = 0) when one is obtained by ontinuation from the AL (ν = 0, µ = 1)following the Salerno path (Top-left) and the other by adiabatially inreasing theoupling C from the antiontinuum limit of the DNLS equation (Top-right). Thefrequeny of the solutions is set to ωb = 4.3.disrete breathers persist under adiabati ontinuation. No immobile breatherentered in between exists. For positive values of the parameter ν, the one-siteimmobile one has a lower value of energy H, and it is a linearly stable solution,while the energy of the two-site breather is higher and it is linearly unstable.The relative situation is reversed for negative values of ν. This result anbe interpreted as the emergene of a (Peierls-Nabarro) potential funtion ofthe breather enter x0, whih destroys the ontinuous degeneray of immobilebreathers, leaving only two of them per lattie unit, namely those loalizedat maxima and minima of the Peierls potential. This interpretation, whih isaptured in the theoretial framework of olletive variable approahes, turnsout to play a entral role in building up the physial interpretation of thenumerial results on mobile disrete Shrödinger breathers as we will see insetion 3.2.As introdued previously the translational motion of disrete breathers in-trodues a new time sale (the inverse veloity) so generially a moving breather



3.1. DB's in the standard Salerno Model 35exites resonanes with plane wave band spetra. This fat poses no problem tothe persistene of loalization when the lattie dynamis is governed by powerbalane (fored and damped latties [91�93℄): the emitted power is exatlyompensated by the input from the homogeneous external fore �eld, duringstationary breather motion. However, for generi (nonintegrable) Hamiltonianlatties one would expet that the radiative losses would tend to deloalize en-ergy and some energy ompensating mehanism is needed in order to sustainexat stationary states of breather translational motion. From the (partile)perspetive of olletive variables theory it is well known that the loalizedbreather experienes a periodi Peierls-Nabarro potential funtion of its posi-tion, so that the motion of the loalized �eld osillation over this landsapeshould be expeted to indue the emission of radiation at the expense of transla-tional (and/or internal) breather kineti energy, whih thus would unavoidablydeay on time.In this setion, we fous on the numerial results on mobile disrete Shrö-dinger breathers in the NLS lattie (2.18). These numeris are omputed usingthe tools explained in the previous hapter. The Newton �xed point ontinua-tion requires a good initial guess (meaning that the starting initial onditionshave to be in a small neighborhood of the �xed point). Very lose to ν = 0,the AL solitary traveling waves (exat solutions at ν = 0) provide good start-ing points. After onvergene to the �xed point, we inrease adiabatially thevalue of the parameter (∆ν = 10−3), and start iteration from the previous�xed point.An important step in the numerial method used here, is obtaining a basisfor the subspae of (tangent spae) vetors with Floquet eigenvalue +1. Theseare assoiated to those degeneraies (symmetries) that one has to eliminatein order to regularize the linear system at eah (Newton) iteration step whennumerially onverging to the �xed point solution.Away from the AL limit, it is known (as reported e.g. in [94℄) that only twoonserved quantities remain generially as dynamial invariants, the Hamilto-nian (2.19) and the norm (2.21). They are respetively assoiated to the on-tinuous time translation and gauge (global phase rotation) invariane. Usingthe notation ui = ℜ(Φi) and vi = ℑ(Φi), one easily obtains that
δui(t) = u̇i(t)

δvi(t) = v̇i(t) , (3.1)is the perturbation assoiated with time translational invariane, while
δui(t) = vi(t)

δvi(t) = −ui(t) , (3.2)



36 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesis the one with gauge invariane. These are, onsequently, Floquet eigenvetorswith assoiated eigenvalue +1, and we an easily hek that they oinide withthe (two) basis vetors provided generially (i.e. exept at speial bifurationvalues of the parameter, see below in 3.1.3) by the numerial Singular ValueDeomposition (2.32) explained in the previous hapter.In subsetion 3.1.1 we summarize our �ndings on the generi struture ofmobile Shrödinger disrete breathers. For this, as explained earlier, we haveexplored partiular values for the integers (p, q) and performed ontinuationof (p, q) resonant AL traveling waves. The variation of the main struturalharateristis of the �xed points along the ontinuation parameter ν is exam-ined in detail in 3.1.2, for both signs of this parameter. Of partiular interestare the observed drasti hanges in the struture for ν ≃ −0.3 and ν ≃ −0.39.Then, in 3.1.3, we show the main onlusions on the stability analysis of themobile Shrödinger disrete breathers, in a setor of the breather parameterspae.3.1.1 The struture of the solutionIn �gure 3.3 we plot the spatial pro�le of a (1, 1) mobile Shrödinger disretebreather for nonintegrability parameter value ν = 1.0, and ωb = 2.678.A quik inspetion of this �gure provides a �rst glane of the general stru-ture of the omputed (p, q) resonant solutions: The �xed point Φ̂ is the super-position of an (exponentially) loalized osillation (the ore) moving on top ofan extended bakground.
Φ̂ = Φ̂ ore + Φ̂bakg . (3.3)In other terms, far away from the ore loalization site n0, the solution doesnot tend to the rest state Φ̂n = 0, but to an extended exited state of thelattie , i.e. for |n− n0| ≫ 1

Φ̂n(t) = (Φ̂bakg)n(t) 6= 0 . (3.4)One easily realizes (for example, onsider a site very far from n0) that thebakground has to be itself (p, q) resonant. This an be quikly heked in ournumeris: Indeed, the power spetrum,
S(ω) =

∣

∣

∣

∣

∫ ∞

−∞
ℜ[Φ̂n(t)] exp(iωt)dt

∣

∣

∣

∣

2

, (3.5)at a site n far from n0 reveals a �nite number of s peaks ωj, j = 0, ..., s − 1;one an hek that eah ωj numerially �ts to a branh of (p, q) resonant plane
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Figure 3.3: Instantaneous pro�le of a (1, 1) resonant breather with ωb = 2.678 and
vb = 0.426; the nonintegrable parameter is ν = 1.0 (standard DNLS equation). (a)Real part, (b) imaginary part, () modulus and (d) phase. The resonant onditionfor the harmoni omposition of the bakground gives the ontribution of three planewaves. The existene of these plane waves is revealed by the modulation of theextended tail in the modulus pro�le ().waves (see eq. (2.27)); this provides a set of amplitudes Aj , and �nally oneon�rms that the superposition of the (Aj, ωj) plane waves �ts the numerialsolution Φ̂n(t).While immobile disrete breathers an be desribed as a sort of homolini(and time periodi) onnetion on the rest state, the mobile loalized ore in-stead onnets a spei� linear superposition of low amplitude nonlinear planewaves. One ould say that the loalized ore needs for its motion to "surf over"a spei� extended state of radiation (see �gure 3.4):

(Φ̂bakg)n(t) =

s−1
∑

j=0

Aj exp i(kn− ωjt) . (3.6)We note that among the members of the (s-parameter) ontinuous familyof (p, q) resonant plane waves (see Setion I), the �xed point solution ontainsonly a partiular member (Aj , ωj) from eah branh (see �gure 3.5.a). This



38 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesseletion varies smoothly with the (adiabati) ontinuation parameter ν. Inpartiular, the amplitude modulus |Aj | seleted inreases smoothly from itszero value at the integrable limit (ν = 0), for both signs of ν.If the bare ore of a �xed point solution (i.e. after subtration of the bak-ground) is taken as initial ondition for a diret numerial integration of theequations of motion, one observes radiative losses, along with the orrespond-ing hanges in shape, veloity, et. of the loalized moving ore. The motionof the bare loalized ore (not anymore a solution) exites extended states ofthe lattie. Thus, regarding the exat �xed point solution, one ould say thatradiative losses of the running ore are exatly aneled out when the loalizedore runs, with spei� veloity, on top of the spei� linear ombination of(Aj , ωj) resonant plane waves (3.6).A omplementary numerial observation is the following: Taking as initialondition for a diret integration of the equations of motion (2.18), a superpo-sition of an immobile disrete breather and the bakground of a (p, q) resonantmobile breather, it evolves into a moving disrete breather, with approximateveloity vb = (pωb)/(2πq). One thus would say that the bakground promotesbreather translational motion with adequate veloity. In the next setion 3.1.2,a onnetion between bakground harateristis and the partile perspetive(i.e. the Peierls-Nabarro barrier of olletive variable theories), will be estab-lished in order to further illuminate the physial desription of disrete breathermobility.Whatever physial perspetive one may prefer, the numerial fat is thatthe generi struture of the �xed point solution is given by the superposition(3.3). Not too far from ν ≃ 0, where the amplitudes Aj of the �xed pointbakground have small values, one an arefully hek that if the bare ore is
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Figure 3.5: (a) Plot of the graphial solving of the resonant ondition (in the Aj → 0limit) for a (1, 2) resonant breather with ωb = 2.384 and vb = 0.189. (b) PowerSpetrum S(ω) of the bakground of this solution at ν = 1.0. From (a) eq. (2.29)gives the ontribution of seven plane waves (j = 0, ..., 6) but only �ve (j = 0, ..., 4) ofthem are visible due to the di�erene of orders of magnitude between the amplitudes
|Aj |. The agreement between the resonant ondition equation (for the �tted value of
Aj) and the frequenies observed in S(ω) is up to mahine auray.given as a starting guess for Newton iteration, this onverges well to the exatomplete solution (ore + bakground), by developing the spei� seletion of
Aj amplitudes. This on�rms the robustness of the numeris.Though previous observations of nondeaying tails of numerially au-rate mobile disrete breathers in Klein-Gordon latties [53℄ and/or (solitary)traveling waves [95℄ in self-fousing equations had been reported (see also theinteresting disussions on this issue in [80℄ and [96℄), no systemati study onthose tails and their role is available. However we learly see that they arean essential part of the exat solution. As argued in the introdutory setion,the translational motion of a disrete breather introdues a new time sale. Ina nonintegrable ontext, this fat unavoidably implies resonanes with planewave band spetra, and an exat self-sustained moving DB solution ould onlyexist on top of a developed resonant bakground. This seems to have been(with a few exemptions) not fully appreiated in most of urrent literatureon mobile breathers, where the bakground is most often either ignored ordeliberately suppressed.A notable feature of the plane wave ontent of the bakground Φ̂bakg isthat the amplitude modulus |Aj| in (3.6) di�er by orders of magnitude, i.e.
|A1| ≫ |A2| ≫ |A3|..., so that only a few frequenies are dominant for mostpratial purposes (see �gure 3.5.b). In other words, the extended bakgroundassoiated to a spatially loalized moving ore is, in turn, strongly loalized inthe reiproal (k-spae) lattie. The possible relevane of this observation isfurther disussed below in the onluding setion.
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Figure 3.6: Bakground amplitude versus ν for three di�erent (1/1) resonant breatherswith frequenies: (a) ωb = 5.65, (b) ωb = 4.91, () ωb = 4.34. Note the two di�erentbehaviours: for positive values of ν |Φbackg|2 is a monotonous inreasing funtion of
ν while for the negative part it shows smooth rises and falls.3.1.2 The bakground amplitudeIn order to haraterize the spei� features of the nonintegrable motion of dis-rete breathers, we fous here on the (perhaps) most remarkable among thosefeatures: the bakground amplitude of the uniquely ontinued �xed point. Howdoes it evolve along the ontinuation path in parameter spae?For positive values of ν we have followed the line in parameter spae (�gure3.1) µ + ν = 1 (see equation (2.18)), while for negative values, we took thepath µ − ν = 1. Note that taking this latter path is similar to studyingstaggered breathers in the former one due to the staggering transformationreported above. We do not expet other paths to make important di�erenes.As stated earlier, near ν ≃ 0, the amplitude grows from its zero value (at theintegrable limit) for both signs of this parameter, for it is a nonintegrable e�et.However, for larger values of nonintegrability |ν| the bakground amplitudeevolution shows some important di�erenes for the two signs of ν.In �gure 3.6 we plot the bakground amplitude (modulus) of the (1, 1)resonant �xed point, versus the ontinuation parameter ν, for three di�erentvalues of the breather frequeny ωb. For ν > 0, one observes that the amplitudesteadily inreases with ν before ontinuation stops (i.e. Newton iteration easesto onverge beyond a ertain maximum ν value). Note that the amplitudegrows faster for higher values of the frequeny, and that the ontinuation stops(orrespondingly) at a smaller value of ν. This may suggest that the failureof �xed point ontinuation is related to a somewhat exessive growth of the



3.1. DB's in the standard Salerno Model 41bakground amplitude, an issue that will be disussed later.For ν < 0, after an initial growth the bakground amplitude dereases downto almost negligible values around ν ≃ −0.3, then grows and again dereaseslose to zero at ν ≃ −0.39, and so on, in progressively narrower intervals withlarger peak amplitude, until ontinuation stops. Most notieable is the fatthat the intervals neither depend on the breather frequeny ωb nor on thebreather veloity vb. Why do bakground amplitudes deay so dramatially atthose regions in parameter spae? An important hint is presented in the nextsetion, where the Floquet stability analysis of immobile disrete breatherswill show a oinident situation of mirror-symmetry breaking (and its absenefor positive ν values). For other values of p and q that we have numeriallyinvestigated, the same features of the bakground amplitude variation as shownin �gure 3.6 are qualitatively reprodued.3.1.3 Floquet analysisOn the basis of the general arguments given in [84, 97℄, the Floquet spetraof immobile DB in the thermodynami limit, N → ∞, onsists of two om-ponents: the (ontinuous) Floquet spetrum of the asymptoti state of thesolution (rest state), and a disrete part assoiated with spatially loalizedeigenvetors. The ontinuous part is omposed by small amplitude (linear)plane waves, the so-alled phonons. However, for mobile DB the asymptotistate of a (p, q) resonant �xed point solution is a superposition of plane waves,the bakground Φ̂bakg. From this, one should expet the Floquet spetrumof a (p, q) resonant DB being omposed of two omponents: the disrete (spa-tially loalized eigenvetors) and a ontinuous part assoiated with the linearstability of the bakground plane waves. The ontinuous part of the Floquetspetrum should re�et the same results of the modulational instability analy-sis of setion 2.3.2. In partiular, this means that any modulational instabilitya plane wave may su�er will be also an instability of a �xed point solutionwhose bakground ontains this plane wave. In the future we will refer toany instability of the ontinuous part of the Floquet spetrum as bakgroundinstability. Any instability from the disrete part is a ore instability.First we fous on ore instabilities. For this we turn attention to the on-tinuation of mobile (p, q) resonant breathers. Figure 3.7 shows in the ν − ωbplane (dotted line), the values νmax(ωb) where the numerial ontinuationsstop due to non onvergene of Newton iteration for p = 1, q = 1 and ν > 0.As it was remarked above, the ontinuation stop is assoiated with the rapidinrease of the bakground amplitude shown in �gure 3.5. Only low frequenybreathers, for whih the bakground amplitude inreases more slowly, an be
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Figure 3.7: Continuation diagram of (1, 1) resonant breathers as a funtion of thefrequeny ωb. The end of the numerial ontinuation, νmax(ωb), is represented bythe line with dots. The region where mobile breathers su�er from ore instabilities islimited by the shaded area.numerially ontinued all the way to the standard DNLS equation. The linearstability analysis of (p, q) resonant breathers yields a well de�ned region inthe ν − ωb diagram where ore instabilities appear. There is an island insidethe ontinuation region of �gure 3.7, where the Floquet spetra ontain a realeigenvalue λ > 1. We observe the evolution of this Floquet eigenvalue (andits omplex onjugate) as the parameter ν is inreased in �gure 3.8.a, for a (1,1) breather of frequeny ωb = 2.678. Here the angle (θF loq) in the omplexplane is plotted versus ν. The interval of onstant zero angle orresponds tothe setion (onstant ωb) of the instability island in �gure 3.7.Along the whole ontinuation path, the pro�le of the orresponding unsta-ble eigenvetor is loalized. An example of this pro�le inside the instabilityisland is shown in �gures 3.8.b and 3.8., where one observes that the loalizedinstability shows a deaying bakground along the diretion opposite to themotion. The deay rate inreases as the modulus of the eigenvalue grows anddereases again when λ returns to the unit irle. On the other hand, the sta-ble Floquet eigenvetor assoiated with 1/λ shows a wing deaying along themirror symmetri diretion. The diret integration of the equation of motionreveals that the unstable solution experienes a pinning after a transient ofregular motion with veloity vb = p/(qTb). After the solution pins at site n, itsore enter osillates around this site. The trapping of the unstable MB ouldbe interpreted as a result of the energy losses that the growth of the linearlyunstable perturbation indues on the solution.Returning to the instability island shown in the diagram of �gure 3.7, some�nal observations are worth summarizing: (i) there is a range of frequenies
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3.1. DB's in the standard Salerno Model 45(a)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

ℑ(λ
)

ℜ(λ)(b)
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

ℑ(λ
)

ℜ(λ)()
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

ℑ(λ
)

ℜ(λ)Figure 3.10: Floquet spetra of (1, 1) resonant breathers: (a) for ωb = 4.348, vb =

0.692 and ν = 0.08 the spetra shows the ore (loalized) instability; (b) for ωb =

6.610, vb = 1.052 and ν = 0.07 the spetra shows the bakground (modulational)instability (also present but not visible in (a)); () for ωb = 4.348, vb = 0.692 and
ν = −0.39 the solution is linearly stable.



46 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger latties
-1

-0.5

0

0.5

1

-0.305 -0.303 -0.301 -0.299

ξ

ν

one-site DB

two-site DB

two-site DB

18

12

6

0
46 48 50 52 54

|Φ
n|

2

18

12

6

0
46 48 50 52 54

|Φ
n|

2

18

12

6

0
46 48 50 52 54

|Φ
n|

2
-1

-0.5

0

0.5

1

-0.392 -0.391 -0.39 -0.389

ν

one-site DB

two-site DB

two-site DB

two−site
DB

DB

one−site
DB

asymmetric

(b)(a)

Figure 3.11: Graphial representation of the two �rst symmetry breaking bifurationsfor ν < 0. The quantity ξ in the vertial axes of both �gures is de�ned, referredto the one-site breather, as the di�erene between the modulus |Φ| of the two sitesadjaent to the maximum (|Φmax|), i.e. ξ ∼ |Φmax−1| − |Φmax+1|. For the one-siteDB ξ = 0 and for the two-site DB ξ = 1, for this ξ is onveniently normalized with thethe di�erene between Φmax and Φmax±1. The ontinuous lines represent the regionswhere the stati solutions are linearly stable while the disontinuous ones representthe unstable regions. The modulus pro�le of the three immobile oexisting solutionsare plotted in the entral insets for ωb = 6.215 and ν = −0.3012.a moving breather satisfying these requirements is plotted in �gure 3.10..After the analysis of both types of instabilities eventually experiened bymoving Shrödinger breathers, we �nally report on a most relevant numerialfat revealed by the Floquet analysis of the family of standard immobile dis-rete breathers for ν < 0 (or, similarly, the family of staggered immobile disretebreathers for ν > 0). Near ν ≃ −0.3 an immobile two-site DB experienes amirror symmetry-breaking (pithfork) bifuration beoming linearly unstable.When approahing the bifuration point, two onjugate Floquet eigenvaluesquikly approah +1, where they meet, and then separate along the real axis.The eigenvetor assoiated to the unstable λ > 1 Floquet eigenvalue is loal-ized and odd-symmetri, and is termed the symmetry-breaking or depinningmode φdep. We reall here that the bakground of an immobile breather isthe rest state Φ̂ = 0, whose ontinuous spetrum onsists of small amplitude(linear) plane waves. The depinning mode, on the other hand, is a loalizedore instability of the immobile breather, favoring a translation of the oreenter. For a smaller value of ν ≃ −0.39 there is another symmetry-breakingbifuration where the two-site breather beomes stable, again interhangingthe stable harater with the one-site. The orresponding bifuration diagramfor these two symmetry breaking transitions is plotted in �gure 3.11.



3.2. Partile perspetive on DB's 47In the �rst symmetry breaking bifuration, two unstable mirror-asymmetriimmobile breathers emerge from the bifuration point, progressively evolvetoward the (stable) two-site breather, and �nally ollide in a new pithforkbifuration from where a unstable two-site breather emerges. The net resultis an inversion of stability between one-site and two-site immobile breathers.Around the narrow interval of ν values where these two bifurations our,the energies of the three types of breathers involved (one-site, two-site, andasymmetri) have very small di�erenes. From a partile perspetive, thisshould make the breather motion easier. It is preisely in this same narrowinterval where (see 3.1.2) we observe that the bakground amplitude of movingbreathers beomes negligible. This is not a oinidene as we will argue in 3.2.3.2 Partile perspetive on disrete breathersThe appealing framework and suess of olletive variable approahes (see e.g.[56�60, 98℄) to the problem of nonintegrable motion of disrete breathers relieson the �delity of a partile-like desription of these �eld exitations that theyprovide. In these approahes, the e�etive dynamis of only a few degrees offreedom (e.g. the loalization enter, and the spatial width of the state, et...insome instanes [65, 68℄) replaes the whole desription of the moving loalizedstate.Though unable to aount for all the nonintegrable features, perturbativeolletive variable theories of NLS latties provide a sensible physial har-aterization of important features of the nonintegrable mobility of loalizedsolutions, like the emergene [99℄ of a Peierls-Nabarro barrier to motion. Herewe summarize the main results of this partile-like desription and omparethem with the behaviour of numerially exat (p, q) resonant moving breathers.Our goal is twofold: to aquire a orret physial understanding of the numer-ial fats, and then to make an assessment of validity and intrinsi limitationsof olletive variable approahes.3.2.1 Colletive variables theory.A presentation of the partile perspetive on moving Shrödinger breathersnear the AL integrable limit an be found in [58, 59℄ (see also [56, 57, 60, 98℄),where the interested reader will �nd the relevant formal aspets of the theory.Using the integrable solitary wave (2.14) as an ansatz for the movingbreather solution in the perturbed AL lattie, ν 6= 0 and small in (2.18),one onsiders the parameters α, β, x0 and Ω as dynamial variables (variation



48 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesof onstants). The time evolution of these parameters in the perturbed lattieis governed by:
ẋ0 = 2 sin α

sinh β

β
(3.7)

Ω̇ = 2 cos α cosh β + αẋ0 + g(β) (3.8)
β̇ = 0 (3.9)
α̇ = −ν

∞
∑

s=0

8π3 sinh2 β

β3 sinh(π2s/β)
sin(2πsx0) (3.10)where

g(β) = 2ν

[

2 sinh β cosh β

β
− sinh2 β

β
− 1

]

+ ν
∞
∑

s=1

4π2 cos(2πsx0)×
[

sinh2 β cosh(π2s/β)π2s

β4 sinh2(π2s/β)
− 2 sinh2 β

β3 sinh(π2s/β)
+

2 sinh β cosh β

β2 sinh(π2s/β)

]

. (3.11)These relations an be viewed as the Euler-Lagrange equations of the ol-letive variable Lagrangian obtained in [58, 59℄. The variation of the breatherparameters give the evolution of solution (2.14) for the perturbed AL equation.Furthermore, one an regard eqs. (3.7) and (3.10), as the Hamilton equationsfor the anonial onjugate variables x0 and α of the following e�etive Hamil-tonian:
Heff = Teff +Veff = −2 cos α

sinhβ

β
−ν

∞
∑

s=1

4π2 sinh2 β

β3 sinh(π2s/β)
cos(2πsx0) . (3.12)This e�etive Hamiltonian ditates the dynamis of the position of thesolitary wave. Note that the (olletive) variable β is an invariant of motion,so it enters as a parameter into the e�etive Hamiltonian, and that the time-average value of Ω̇ (the parameter ωb of the integrable solitary wave, now afuntion of time) is an inreasing funtion of this parameter β. The e�etivepotential Veff ats as a barrier to the displaement motion (x0 variations) andis naturally related to the Peierls-Nabarro potential. The amplitude of thisbarrier is an inreasing funtion of both the nonintegrability parameter |ν| and

β. The equilibrium points (representing immobile breathers) of this potentialare x0 = n and n ± 1/2 with n an integer. For α = 0, the former are stable(enters) one-site breathers, while the latter are unstable (saddle) two-sitebreathers; for the ase α = π (staggered breathers) the stability is reversed.A remarkable further onsequene is the following [57℄: there are no pertur-bative traveling wave solutions, for values of ν larger than ertain ritial value
νcr(β). In partiular, for β > βc ≃ 3.6862 , one annot ontinue AL mobile
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50 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesillating breathers) there are instead open trajetories in α. The transitionpoint, for a given β, ours when trajetories with rotating α appear, andmoving breathers disappear as the e�et of separatrix line rearrangement onthe ylinder (x0, α(modulo2π)) phase portrait.Note that the existene of osillating breathers is a onsequene of theexistene of a Peierls-Nabarro potential. These breather solutions do not per-turbatively ontinue from the integrable limit. In 3.2.3 we will investigate themand provide further numerial on�rmation of the existene of these genuinelynonperturbative solutions, predited by the olletive variables theory.3.2.2 Energy balane governs mobility.In order to orrelate olletive variable preditions with the numerial resultspresented in setion 3.3.3 one should �rst realize that our diret numerialapproah omputes breathers with �xed values of ωb and vb and that theseparameters are not tied to any spei� ansatz. In partiular, the onnetionof these two parameters with the olletive variables is given by eq. (2.16) inthe integrable limit. For the perturbed (near-integrable) lattie, ωb and vb areidenti�ed as the time averages of Ω̇ and ẋ0, respetively.The Peierls-Nabarro (PN for short) barrier is naturally identi�ed as theenergy di�erene (given by the Hamiltonian (2.19)) between the two immobilebreathers of the same frequeny ωb, one entered at a site n and the other(two-site) at a bond n± 1/2 :
EPN (ν, ωb) = H(ν, ωb, n)−H(ν, ωb, n±

1

2
) (3.13)In the integrable AL limit this barrier is zero due to the degeneray (ontinuoustranslation invariane) of the breather family solution, but for ν 6= 0 thisinvariane is broken and only these two isolated solutions persist. The energydi�erene of the two pinned solutions is thus viewed as the minimal extra�kineti energy � of enter of mass translation that a mobile breather mustinorporate for overoming the barriers to its motion.We have studied the behaviour of the PN barrier in the Salerno model byontinuing immobile breathers, both entered at a site and at a bond, whileomputing their energy di�erene. The omputations of the barrier are madefor a grid of values of ωb. �gure 3.13 shows the �equipotential� lines of the PNbarrier in the (ν, ωb) plane. The results show di�erent behaviours dependingon the sign of ν:

• ν < 0.- Here one observes the e�ets of the symmetry-breaking bifur-ations asade desribed in 3.1.3. The suessive stability inversions
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Figure 3.13: Density Plot of the absolute value of the Peierls Nabarro barrier, |EPN |,as a funtion of ωb and ν. For positive values of ν, |EPN | is a monotonous inreasingfuntion of ν and ω. For negative values the plot reveals the osillating behaviour of
|EPN | as a funtion of ν (for a given value of ωb).between site and bond entered breathers involve a substantial dereaseof the Peierls barrier. The appearane of asymmetri solutions in thesebifurations introdues a new energy and, orrespondingly, the Peierlsbarrier is omputed as the maximum energy di�erene between the threepinned solutions: the two symmetri (site and bond entered) and theasymmetri breather.
• ν > 0.- In this ase the behaviour of the Peierls barrier follows qualita-tively the olletive variable preditions on the e�etive potential expe-riened by the partile. The inreasing harater, with ν and ωb, of thenumerial barrier is qualitatively the same as that predited from Veff(as a funtion of ν and β) by the theory.



52 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesThe PN barrier of (ωb) immobile breathers and the bakground amplitudeof (ωb, vb = pωb
2πq ) mobile breathers are in fat strongly orrelated. This orre-lation is obtained onsidering the funtions |EPN |(ν) and |Φ̂backg|2(ν). Bothfuntions are plotted for a �xed value of ωb = 4.34 in �gure 3.14.a. Thebehaviour of |EPN |(ν) for negative ν (revealing the asade of bifurationsexplained before in 3.1.3) is losely followed by |Φ̂backg|2(ν) with the orre-sponding sequene of growths and deays. The strong orrelation holds alsofor positive values of ν, where numerial PN barrier data are available for alarger interval of ν values (due to the absene of the symmetry-breaking as-ade of bifurations). Indeed, the orrelation is so strong that one is temptedto view the PN barrier and the bakground amplitude as omplementary as-pets of a single phenomenon: the breaking of the ontinuous translationalinvariane, and the assoiated lak of ore momentum onservation. Indeed,the bakground amplitude of moving breathers is a monotone inreasing fun-tion of the PN barrier of pinned breathers of the same frequeny, as shown in�gure 3.14.b, where |Φ̂backg|2(|EPN |) is plotted.However, we also observe learly in �gure 3.14.a that, when the ontinua-tion end is approahed, the rate of growth of |Φ̂backg|2(ν) inreases dramatially(the onavity of the urve in log sale turns upwards), while the PN barrierdoes not inrease muh faster than before. This is re�eted in �gure 3.14.b,where the slope approahes vertiality, indiating that, in this range of EPNvalues, the bakground grows rapidly.This numerial observation suggests taking a loser look at the preisein�uene of the bakground amplitude on the ore energy variations assoiatedwith the existene of PN barriers. To this end, we use the onservation of theHamiltonian (2.19) and insert this equation into the form (3.3) of the (p, q)resonant �xed point. The energy of the solution an be deomposed in thefollowing terms:

H[Φ̂] = H[Φ̂core] +H[Φ̂backg] +Hint , (3.14)where Hint is the interation energy, i.e. the rossed terms of Φ̂core and Φ̂backg.Let us now onsider the simplest ase in whih the bakground has a singleresonant plane wave. Along with the total energy, also the energy of the planewave is a onstant in time so that
∂H[Φ̂core]

∂t
= −∂Hint

∂t
. (3.15)In other words, the variations of the ore energy during the motion are exatlyompensated by those of the interation term.If one takes, as an ansatz for Φ̂core, the AL solution, one formally obtainsfor Hcore ≡ H[Φ̂core] the olletive variables Hamiltonian (3.12). But note that
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Hcore(t) is omputed. In �gure 3.15 we have plotted the evolution of the oreenergy as a funtion of the loalization position (enter) of the breather ore.The loalization enter of a lattie funtion Φn is de�ned using the onserved



54 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger latties

 0

 1

 2

 3

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

H
co

re

x0Figure 3.15: Plot ofHcore of a (1, 1) resonant breather as a funtion of the loalizationenter x0 for di�erent values of ν. The parameter of the solution are ωb = 5.056 and
vb = 0.805. The values of ν are 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.25 and 0.2512(end of the ontinuation), the amplitude of the osillation of Hint grows with ν.(The minimum value of Hint has been set to zero in order to ompare the di�erentfuntions.)norm (2.21):

x0 =

∑

n n ln(1 + µ|Φn|2)
µN . (3.16)As expeted, the ore has extrated the maximum available from the intera-tion energy (with the bakground) when the ore passes at n±1/2 (maxima ofthe PN barrier) and has returned it to the interation term when at n (minimaof the PN barrier).Another interesting feature of these numerially obtained funtions is seenfrom the variations in the form of the osillation of Hcore as the nonintegrableparameter ν is inreased. At the same time, as the energy di�erene between

n and n±1/2 inreases the modulus of the derivative ∂Hcore/∂x0 in the neigh-borhood of x0 = n also inreases. These variations beome faster when theend of the ontinuation is approahed, reahing a uspidal point for the last
ν reahed. The bakground amplitude is inluded in Hint, and of ourse in
∂Hint/∂t; the dramati variation of it at the end of the ontinuation ould beinterpreted in terms of this derivative variation in x0 = n.



3.2. Partile perspetive on DB's 553.2.3 Osillating breathersThe emergene of the Peierls barrier and the behaviour of the bakgroundamplitude illustrate the physial interpretation of this bakground as a (p/q)-resonant energy support to overome the barrier to motion. We now on�rmthis statement searhing for another kind of solution: osillating breathers.These solutions are predited by olletive oordinates approahes and are aonsequene of the loss of translational invariane out of the integrable limit.Following the above interpretation of the bakground role one an imagineertain solutions with a bakground amplitude not high enough for surpassingthe Peierls barrier and allowing travel along the lattie. In terms of a wellde�ned potential, onsidering the partile perspetive, the enter of these lo-alized solutions would be osillating between (n− 1/2) and (n + 1/2) for theunstaggered ones or between n and (n± 1) for the staggered ones.From our perspetive, the osillating breathers are solutions with two fre-quenies: the internal one of the breather (ωb) and the one orresponding tothe osillatory motion (ωosc). One again, we have a problem dealing with twotime sales and onsequently we have to impose that the two frequenies areommensurate pωb = qωosc. The �xed point problem is now assoiated withthe map:
TqTb

Φn(t) = Φn(t) (3.17)We annot, however, develop the Newton iteration sheme in a similar wayas for mobile breathers. There is no longer any family of osillating breathersproviding a good start point for the ontinuation (they are intrinsi solutions ofthe nonintegrable regime beause they appear as the Peierls barrier emerges).The way to obtain a good ansantz (as Cretegny and Aubry already used to�nd mobile breathers in Klein-Gordon latties [53℄) is to perform a small per-turbation of the stati solution (pinned at a site n) with the depinning internalmode:
Φansantz

n = Φstatic
n (ωb) + ǫδφdep

n (3.18)The dynamis of the perturbed solution for small enough values of ǫ shows theosillating behaviour expeted and for large enough values of ǫ the breatherstarts to move. Obviously in both ases the motion �nishes after a transientdue to radiation (they are not exat solutions). Tuning the parameter ǫ wesearh for those osillatory transients whose ωosc is resonant with the breatherfrequeny ωb. The transient is muh more stable when the nonintegrable pa-rameter ν is very small, lose to the AL limit. We �rst searh here for a goodinitial guess for the method and then obtain the exat solution of the map(3.17). One the exat solution is obtained for a small ν, we an perform theontinuation to higher values in the same way as we did for mobile solutions.In �gure 3.16.a we show the evolution of the amplitude of osillation as ν is
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3.086. The amplitude of the osillation of x0 inreases with ν revealing the nonlinearharater of the motion for the highest values of ν. (b) Density plot of the timeevolution of |Φ̂n|2 for the above osillating breather.



3.2. Partile perspetive on DB's 57inreased from 0.05 to 0.18. The amplitude of the osillation is representedby the phase portrait of the loalization enter of the breather de�ned as in(3.16). The ontinuation re�ets that the amplitude of the osillation, for a�xed value of ωosc, grows with ν. In �gure 3.16.b the density plot of |Φ̂n|2 isshown as a funtion of time, revealing the osillating pattern of the solution.The existene of exat osillating breathers is a onsequene of the exis-tene of a Peierls barrier. The struture of these solutions reveals the existeneof a bakground (resonant with the map) whose amplitude grows as ν (andonsequently the amplitude of osillation) is inreased. This is the piture weexpeted from the role played by the interation bakground-ore in the energybalane during motion. The monotonous growing behaviour of the bakgroundversus the osillation amplitude, strongly suggests that if the amplitude of theformer is inreased the solution will be able to translate steadily. This has beenheked by diret numerial integration, beause no exat solutions onnet-ing the osillating with the mobile ones an be obtained due to the di�erentmaps employed to obtain both types of solutions. However, the existene of abakground in the exat osillating breather solutions and its behaviour withthe amplitude of the breather osillations are fully onsistent with the inter-pretation of the results obtained for the mobile solutions.3.2.4 Validity and limitations of partile perspetiveThe most basi result of the perturbative olletive variable theories away fromthe integrable regime is the existene of a Peierls-Nabarro potential funtion ofthe ore (olletive variable) enter. It expresses (in partile-like terms) thatthe breather position is no longer indi�erent beause the ontinuous transla-tional invariane has been broken. From this also naturally omes the existeneof osillating breathers. We have seen how our numeris fully on�rm the qual-itative validity of these preditions.A further predition onerns the phase portrait's transition studied in[57℄. Despite the fat that our end of ontinuation is orrelated with theequipotential lines pro�le of the numerial PN barriers, and the phase portraittransition is also related to their sudden growth, no lear onnetion (betweentransition and end of ontinuation) an be established. The end of ontinuationis itself sensibly interpreted as a numerial onsequene of the sudden inreasesof the amplitude bakground, and does not imply neesarily the existene ofany global phase portrait transition.However, in some respets the perturbative olletive variable theory islearly inomplete: For example, it is unable to predit the observed loalized(ore) instability bifuration and the observed symmetry breaking transitions



58 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesfor ν < 0. These bifurations ould easily appear in a theory with (at least) twovariables (a dimer) experiening the Peierls-Nabarro potential, whih woulddemand an improved perturbative ansatz. This improved ansatz must oinidein the integrable limit with the AL solution. One an use the numerial resultsto guide the onstrution of suh an improved ansatz. In this respet, thefollowing observation may be relevant. The parameter β of the AL solutiondetermines both the amplitude and the width of the loalized pulse. However,our numerial estimates of these breather harateristis for immobile breathersshow learly that, for �xed value of ωb, the breather width is independent of
ν, while the amplitude varies with it. In other words, away from integrability,width and amplitude of the (immobile) breather are no longer a single olletivevariable.Beyond any other limitation of the perturbative olletive variable theory,the bakground (an indispensable part of the exat solution) is absent in theperturbative ansatz, and it annot appear later in that ontext. A ompletetheory of (nonlinear Shrödinger) breather motion should somehow inorporatethe bakground in the ansatz itself. If orret, it should then predit that thebakground amplitude grows from zero with the nonintegrability parameter ν,and (ideally) so on with all the numerially observed behaviours. One possibleway to develop the analytial approah ould be to use the method presentedin [100℄. In this sheme, eq. (3.15) may play an important role, for it providesthe energy balane governing the translational motion of the breather ore. Inother words, our results show that the ore energy is not an invariant of motionand this requires the existene of a �nely tuned bakground whose nonlinearinteration with the ore ompensate the ore energy variations.3.3 Disrete breathers in the Salerno model with om-peting nonlinearitiesIn the above setions we have mainly foused on the study of mobile disretebreathers. In fat, the haraterization of usual (non-staggered) pinned disretebreathers along the standard (µ > 0 Salerno path was already onsidered inprevious works [58, 59, 89, 90℄ onluding that eq. (2.18) gives rise to pinneddisrete breathers at all values of the DNLS parameter ν, and all positivevalues of the AL oe�ient, µ. As already mentioned above if ν is negativeone an make it positive by means of the staggering transformation, and henestudy those staggered pinned disrete breather along the SM with ν > 0 (andhene �nding the symmetry breaking bifuration reported in setion 3.1.3).However, the sign of µ annot be altered. In partiular, the proper AL model(ν = 0) with µ < 0 does not give rise to loalized solutions. The latter



3.3. DB's in the Salerno Model with ompeting nonlinearities 59irumstane suggests onsidering soliton dynamis in the SM with µ < 0, i.e.,with ompeting nonlinearities, whih is the subjet of the present setion 1.In order to study the SM with ompeting nonlinearities, it is neessary torede�ne the onserved norm (2.21) and Hamiltonian (2.19) by
N =

1

µ

∑

n

ln
(
∣

∣1 + µ|Φn|2
∣

∣

)

, (3.19)
H =

∑

n

[

−
(

ΦnΦ∗
n+1 + Φn+1Φ

∗
n

)

− 2
ν

µ
|Φn|2

+ 2
ν

µ2
ln
(∣

∣1 + µ|Φn|2
∣

∣

) ]

. (3.20)Whereas the Poisson struture of the standard Salerno model (eq. 2.20) re-mains valid. The above rede�nitions of the norm (3.19) and Hamiltonian (3.20)are introdued in order to remain valid when [1 + µ|Φn|2
] takes negative valuesat some sites, due to the use of µ < 0.In this setion we will study the existene and haraterization of bothpinned and mobile disrete breathers when these two ompeting (on-site self-fousing and inter-site self-defousing) nonlinearities oexist in the Salernomodel. In 3.3.1 a ontinuum approximation (CA) of the Salerno model is usedin order to investigate the behaviour of the disrete breathers when µ < 0in an analytial form. It is found that, although they might exist in a semi-in�nite band of frequenies (as ours for the above studied ase µ > 0), theyatually oupy a �nite band, with an solution (peakon) at the edge of theband. After this alulations a family of disrete breathers is onstruted for

µ < 0 in setion 3.3.2 by means of a ontinuation of these pinned solutionsfrom the standard DNLS limit (µ = 0) where they are easily obtained. Theontinuation results show that they form a family of regular pinned disretebreathers, inluding a peakon-like one, similar to what was found in the CA,but disrete breathers extend beyond the peakon in the form of a novel solutiontermed uspon that we will haraterize in this part. In setion 3.3.2, the pinnedbreather stability is explored by means of both standard Floquet analysis anddiret simulations, with the onlusion that only a small part of the familyis unstable. Two-breathers bound states are reported in 3.3.2, where it isdemonstrated that stability exhange between in-phase and out-of-phase statesours at a point where the bound breathers are peakons. For what onernsto mobile breathers we show in setion 3.3.3 that they an be ontinued up toa ritial strength of the inter-site self-defousing nonlinearity.1Remind that the SM with µ < 0 is also physially relevant for it desribes the repulsivease for the long-range dipole-dipole interations in a Bose-Einstein ondensate of bosoniatoms with magneti momentum trapped in a deep optial lattie as introdued in setion2.1.



60 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger latties3.3.1 Continuum limitTo introdue the ontinuum approximation (CA) in eq. (2.18), we de�ne
Φ(x, t) ≡ e2itΨ(x, t), and expand Ψn±1 ≈ Ψ ± Ψx + (1/2)Ψxx, where Ψ isnow treated as a funtion of the ontinuous oordinate x, whih oinides with
n when it takes integer values. After that, the ontinuum ounterpart of eq.(2.18) is derived,

iΨt = −2 (1− |µ|) |Ψ|2 Ψ−
(

1− |µ| |Ψ|2
)

Ψxx , (3.21)where we have set ν = +1 and µ < 0, in order to inspet the interesting region.Equation (3.21 ) onserves the norm and Hamiltonian, whih are straightfor-ward ounterparts of expressions (3.19) and (3.20),
Ncont =

1

µ

∫ +∞

−∞
dx ln

(∣

∣1− |µ||Ψ|2
∣

∣

)

, (3.22)
Hcont =

∫ +∞

−∞

[

|Ψx|2 + 2

(

1

|µ| − 1

)

|Ψ|2 +
2

µ2
ln
(
∣

∣1− |µ||Ψ|2
∣

∣

)

](3.23)Loalized solutions to eq. (3.21) are sought as Ψ(x, t) = U(x)eiωt, with a realfuntion U(x), this solutions are usually referred to as envelope solitons in theontinuum ontext [101℄. The loalized envelope U(x) obeys the equation
d2U

dx2
=

ω − 2 (1− |µ|) U2

1− |µ|U2
U, (3.24)whih may give rise to solitons, provided that ω > 0 and |µ| < 1. The abseneof soliton solutions for |µ| > 1 implies that if the intersite self-defousing,aounted for by µ < 0, is stronger than the onsite self-fousing, the self-trapping of solitons is impossible in the CA. Equation (3.24) an be ast in theform

U ′′
xx

(|µ|−1 − 1)
= −W ′(U) , (3.25)where the e�etive potential W (U) is

W = −1

2
U2 − 1− Ω

2|µ| ln
(

1− |µ|U2
)

, with Ω ≡ |µ|ω
1− |µ| ; (3.26)the expansion of the potential (3.26) for U2 → 0 yields

W ≈
[

−ΩU2 + |µ| (1− Ω)U4
]

2
. (3.27)This form of the equation shows that solitons exist in a �nite band of frequen-ies, 0 < Ω < 1, rather than in the entire semi-in�nite band, Ω > 0, where



3.3. DB's in the Salerno Model with ompeting nonlinearities 61the linearization of equation (3.24) produes exponentially deaying solutionsthat ould serve as the solitons' tails. The redution of the semi-in�nite bandto a �nite one is typial for soliton families in models with ompeting nonlin-earities, suh as the ubi-quinti NLS equation [102℄. Further, it follows fromthe divergene of potential (3.26) at U2 = 1/|µ| that the solitons's amplitude
A, whih is a monotonously inreasing funtion of Ω, is smaller than 1/

√

|µ|for 0 < Ω < 1, and A = 1/
√

|µ| at Ω = 1.Solitons an be found in an expliit form near the edges of the existeneband: at small ω (i.e., small Ω),
U(x) ≈

√

ω (1− |µ|)sech
(√

2ωx
)

, (3.28)while preisely at the opposite edge of the band, Ω = 1, the exat solution isa peakon,
Upeakon(x) =

(

1/
√

|µ|
)

exp
(

−
√

(1/|µ|)− 1|x|
)

. (3.29)In other words, at a given frequeny ω, the peakon solution is found at
|µ| = |µp| ≡ 1/ (1 + ω) . (3.30)Note that norm (2.21) of the peakon is

Npeakon = π2/[6
√

|µ|(1 − |µ|)] , (3.31)and its energy is also �nite. Close to this point, i.e., for 0 < 1 − Ω ≪ 1,the solution is di�erent from the limiting form (3.29) in a narrow interval
|x| .

√

|µ|/ (1− |µ|)(1− Ω), where the peak is smoothed.Finally let us remark that the CA based on eq. (3.21) is valid if the intrinsisale of all ontinuum solutions, that may be estimated through the urvatureof the soliton's pro�le at x = 0 as l ∼ 1/
√

|U ′′
xx/U |, is large, l ≫ 1 (reall thelattie spaing is 1 in the present notation). Aording to eq. (3.29), the latterondition implies (1/|µ|)− 1≪ 1 (i.e., stritly speaking, the CA applies in thease when the ompeting nonlinearities in the SM nearly anel eah other).It is relevant to note that, in the standard version of the SM (previouslystudied in setions 3.1 and 3.2), with µ > 0, the CA presented here give riseto pinned envelope solitons in the entire semi-in�nite band, ω > 0 and thenonsistent with the exat solutions obtained for the disrete model in the abovesetions and earlier works [58, 59, 89, 90℄.3.3.2 Pinned disrete breathersIn order to �nd exat pinned ((0, 1) resonant) disrete breather solutions ina numerial form, we look for solutions to eq. (2.18) whih are loalized and



62 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiestime periodi with frequeny ωb = 2π/Tb (that is related to ω in the ontinuumequation (3.21) by ωb ≡ ω − 2). Pinned solutions are widely known for theDNLS limit (µ = 0) sine they an be obtained both ontinuing the analytialAL pinned beathers along the standard SM (as previously done in setions 3.1and 3.2) and by the ontinuation from the antiontinuum limit, C = 0, of theDNLS equation (2.5). It is then possible to make a numerial ontinuationof suh solutions for µ < 0 by adiabati hanges of the model parameter µand suessive appliations of the shooting methods in order to obtain thenumerially exat pinned disrete breather for a given frequeny ωb and µ.In general all the pinned solutions were omputed starting from the DNLSlimit, µ = 0, and inreasing |µ| at a �xed value of ωb. The ontinuations wereperformed using an inrement δ(|µ|) = 10−2 at eah step, or smaller if higherauray was needed.As shown in the previous setion, the breather family in the ontinuumequation (3.21) ends with the peakon solution (3.29). To ompare the numeri-ally determined shape of the disrete breathers with the feasible peakon limit,we �tted the breathers' tails to the asymptoti form
|Φn| = A exp [−Γ (|n− n0|)] , (3.32)with onstant A, Γ, and n0, whih follows from the linearized equation (2.18)for large |n|. This proedure yielded the deay rate, Γ = Γ(µ, ωb), amplitude,

A = A(µ, ωb) (and the enter's position n0), as funtions of parameters µ and
ωb of the pinned breather family. One A(µ, ωb) and n0 were found, we de�ned
γ(µ, ωb) ≡ A− |Φn0 | to measure a deviation of the true disrete soliton from aonjetured peakon shape obtained by formal extension of the tail inward.In �gure 3.17.a we show the evolution of γ produed by several ontinua-tions of the disrete breather solutions (at di�erent frequenies ωb). We de�ne
µp(ωb) as a value of µ at whih an exat disrete peakon of internal frequeny
ωb is found, that we realize as vanishing of γ (µ, ωb) at µ = µp. In �gure3.17.b we plot the evolution of the breather's amplitude as the ontinuation isperformed. It is observed that the amplitude inreases with |µ|, reahing thepredited value, 1/

√

|µ|, at the exat peakon solution.A noteworthy result, evident from �gure 3.17, is the persistene of disretebreathers beyond the peakon limit (whih means ontinuability of the solutionsto γ < 0). The apparent intersetion of di�erent urves at one point in �gure3.17.a is a spurious feature (see the inset in the �gure): an aurate onsid-eration shows that the urves atually interset at lose but di�erent points.In ontrast, the intersetion of the urves in �gure 3.17.b indeed happens at asingle point, whih orresponds to disrete breathers taking the peakon shape.Figure 3.18 displays typial examples of the numerially found disrete
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Figure 3.17: (a) The mismath with the peakon shape, γ , as a funtion of |µ|, fordisrete breathers found at di�erent frequenies ωb. (Note in the inset that there isno ommon intersetion of all the urves). (b) The breather's amplitude vs. |µ|. Theaxes are resaled to show that the amplitude of the peakon solutions (attained at
|µ| = |µp|) are equal to 1/

√

|µ|, as predited by the ontinuum approximation.breathers. It demonstrates that the solutions orresponding to γ < 0 areuspons, with a super-exponential shape, that do not exist in the ontinuumequation (3.21). The disrete harater of the SM with the ompeting nonlin-earities allows this new type of solution, as happens with the quasi-ollapsingstates in the standard DNLS equation in two dimensions (see next hapter).Cuspon solutions ontinue into the region of |µ| > 1, where the CA yields nobreathers, but, due to the sharp hange of the solution with the inrease of |µ|,�nding numerial solutions at larger values of |µ| beomes inreasingly more
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3.3. DB's in the Salerno Model with ompeting nonlinearities 65In �gure 3.19.a we ompare the line of the existene of the peakons in theontinuum limit, and the atual loation of disrete peakons. It is seen thatthe agreement between the CA and numerial �ndings is good for smaller |ωb|(in this ase, the disrete breathers are broad), while at larger |ωb| the disretebreathers are narrow, hene the agreement with the CA deteriorates.Floquet analysisPerforming the linear stability analyses of pinned breathers it is found thatthese solutions are linearly stable along the whole µ-ontinuation, exept for arelatively small region, as shown in �gure 3.20.a. The entire instability islandin the (ωb, |µ|) plane is displayed in �gure 3.19.b. The instability displayedis revealed by a Floquet multiplier leaving the unit irle at +1 (harmonibifuration). The eigenvetor assoiated to this multiplier show a loalizedpro�le around the pinned solution. Note, in partiular, that the peakon anduspon solutions are stable. The stability of the disrete breathers was alsoheked by diret simulations of perturbed (along the unstable diretion givenby the Floquet eigenvetor whose Floquet multiplier is λ > 1) solutions, usingthe full equation (2.18). The results of these simulations orroborated the
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3.3. DB's in the Salerno Model with ompeting nonlinearities 67norm (3.19) onverges for them, and features a positive slope (see �gure 3.21),
dN/dωb > 0. The VK riterion predits instability in this ase; however, thediret omputation of the Floquet multipliers, as well as diret simulations,reveal no instability of the uspons. Thus, while the VK riterion is perfetlyorret for regular pinned breathers and peakons in the present model, it isirrelevant for uspons, f. the situation in [104℄.Bound states of breathers and their stabilityThe above �ndings on the haraterization and stability of pinned disretebreathers suggest looking at the behaviour of more exoti (0, 1) resonant lo-alized strutures. For this purpose, we have also explored bound states ofpinned disrete breathers solutions to the SM with ompeting nonlinearities.For this purpose, we performed numerial ontinuation in µ, starting with thewell known bound states of the standard DNLS equation (onstruted by on-tinuation from the antiontinuum DNLS limit) at µ = 0. In that limit, twodi�erent types of bound states are known, in-phase and π-out-of-phase ones,whih are represented, respetively, by even and odd solutions. It is well knownthat only the states of the latter type are stable [105, 106℄.The numerial ontinuation of breather bound states was performed forpairs of idential disrete breathers of a given frequeny ωb and di�erent dis-
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Figure 3.22: (a) Pro�les of typial in-phase (top) and out-of-phase (bottom) boundstates of two peakons, with di�erent distanes between their enters, at ωb = 3.086and |µ| = |µp| = 0.645 . (b) Absolute values of the Floquet multiplies that determinethe stability of three bound states, with the same �xed frequeny, ωb = 3.086, anddi�erent separations between the breathers. The in-phase (top) and out-of-phase(bottom) bound states are stabilized and destabilized, respetively, at the point wherethe bound breathers are peakons, see panel (a). Unstable states are less unstable (withsmaller absolute values of the Floquet multipliers aounting for the instability) if thedistane between the breathers is larger.



68 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiestanes between them. The ontinuation of in- and out-of-phase bound statesgives bound states of peakons, see �gure. 3.22.a. The latter solution is found atexatly the same value, µ = µp(ωb), whih gives rise to the single peakon. Wehave also examined the linear stability for the omputed solutions. A remark-able feature of the bound states observed with inrease of |µ| is the stabilityinterhange between the in-phase and out-of-phase states, as shown in �gure3.22.b. This stability interhange ours preisely at µ = µp(ωb), regardless ofthe separation between the bound breathers.3.3.3 Moving disrete breathersIn order to omplete the full piture on the haraterization of disrete breathersolutions in the SM with ompeting nonlinearities we turn our attention to mo-bile breathers. We have proeeded in the same way as for the standard SMand used the generi method for the ontinuation of (p, q) resonant solutions.In order to explore the behaviour of these solutions we have numerially on-tinued them from the DNLS limit where, in turn, they were earlier obtainedin previous setions2. Among those mobile solutions we have hosen for theontinuation into the SM with ompeting nonlinearities only those that werelinearly stable at the DNLS limit.As in the standard SM when ν 6= 0 the obtained states are omposedof a traveling loalized ore and an extended bakground, Φn = (Φn)core +

(Φn)bckg, see �gure 3.23 whih is a superposition of nonlinear plane waveswhose amplitude is related to the height of the orresponding Peierls-Nabarrobarrier.The important result obtained along the ontinuation by the SM with µ < 0is that the mobile breathers an only be ontinued up to a ertain ritial value,
µ = µc(ωb), lose to, but smaller in absolute value than, µp(ωb) at whih thepinned disrete breather beomes a peakon. The Floquet stability analysisreveals that the extended bakground of the mobile breathers is subjeted tomodulational instability. (However, this is too weak to manifest itself in thesimulations and it is only notieable by looking at the Floquet spetra whenthe amplitude of the bakground is very high). On the the other hand we donot observe any loalized eigenvetor with eigenvalue |λ| > 1 and thus the oreis not a�eted by any unstable perturbation. The stability of mobile solutionsis orroborated when simulations of the dynamis are performed, allowing forinteresting numerial experiments (see below). The bakground amplitude is2Remind that only a subset of those mobile solutions (those with small enough frequeny)ontinued from the AL limit (µ = 1, ν = 0) remains along the whole standard SM path(µ > 0) to the DNLS (µ = 0, ν = 1). Then, only those states that ould be obtained at theDNLS limit are, in priniple, ontinuable into the SM with ompeting nonlinearities (µ < 0).
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Figure 3.23: The real and imaginary parts of the lattie wave �eld in a moving disretebreather, for ωb = 2.24 and µ = −0.7.
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Figure 3.25: The time evolution of the realpart of the lattie wave �eld in a mobilestate. Initially, a moving soliton is reatedorresponding to |µ| = 0.8 and ωb = −2.24.Then, µ jumps instantaneously to µ′ = µ+

δµ. After the jump, followed by emission ofsome transient radiation, the moving orebeomes broader and starts to move faster.In (a) |µ′| = 0.84, and in (b) |µ′| = 0.89.
a growing funtion of |µ| having a very sharp inrease when |µ| approahes
µ = µc(ωb), see �gure 3.24.a. This behaviour of the bakground amplitudesuggests that the PN barrier also grows with |µ| and beomes very high nearthe ritial point. To hek this expetation, we have omputed the heightof the PN barrier for the same frequenies ωb for whih the mobile breatherswere numerially alulated, using the energy de�nition as in equation (3.20).Figure 3.24.b on�rms that the PN barrier dramatially inreases when theontinuation approahes the ritial point, µ = µc(ωb), although the PN barrierdiverges not exatly at this point, but rather at µ = µp(ωb), where the pinnedbreather assumes the peakon shape.The strong dependene of the PN barrier on µ suggests a numerial experi-ment to test the behaviour of mobile breathers when the lattie's pinning foresuddenly hanges. To this end, we took an initial mobile breather at values of
µ and ωb for whih the PN barrier is low. Then we monitored the evolution
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Figure 3.26: Contour plots showingthe evolution of the lattie �eld |Φn|in three ases of ollisions betweenidential breathers moving in oppo-site diretions. The breather's fre-queny is ωb = −2.11, and |µ| = 0.6(a), |µ| = 0.8 (b), and |µ| = 0.9 ().of the moving solution following an instantaneous hange in the nonlinearity,
µ → µ + δµ ≡ µ′, whih makes the PN barrier essentially higher than expe-riened by the original soliton. The numerial experiments are illustrated by�gure 3.25. We observe that the ore of the mobile breather does not beomepinned due to the inrease of the PN barrier, but rather aommodates itself,with some radiation loss, into a broader state with a smaller amplitude, so thatthe PN barrier, as experiened by the new state for µ = µ

′ , is low enough toallow the breather to remain mobile. Besides that, we observe an inrement inthe ore's veloity, so that the larger the jump of the PN-barrier's height thefaster is the new moving state. The fat that the sudden inrease of the PNbarrier does not prevent the motion of the breather solution reveals, on onehand, that the relation between PN barrier and mobility is far from trivial,and on the other hand, that mobility is quite a robust feature.Finally, we simulated ollisions between idential lattie breathers movingin opposite diretions. The results show that the olliding breathers alwaysmerge into a single loalized state, whih subsequently features intrinsi pulsa-tions. If the PN barrier is low, the emerging pulse an itself move in a haoti



72 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattiesway, due to interation with the lattie phonon �eld (radiation) generated inthe ourse of the ollision. On the ontrary, for values of µ and ωb at whih theoriginal breathers experiene a high PN barrier, the �nally generated singlesoliton is always strongly pinned.The most notable and generi feature of the ollision manifests itself inthe merger senario. When the ores of the mobile breathers ollide, suddendeloalization is �rst observed, with transfer of energy from the ollision pointto adjaent lattie sites. Then, almost all the energy is olleted bak at theollision spot, and thus a single loalized state emerges. An example of theollision is shown in �gure 3.26. This senario was observed in all simulationsof the ollisions. The appearane of pulsons as the produt of soliton ollisions,as well as the fat that they also appear as asymptoti states of the evolutionof perturbed unstable breathers (see setion 3.3.2), shows the ubiquity of thistype of loalized exitations in the present model.3.4 Conlusions and Prospetive RemarksIn this hapter we have studied numerially several features about disretebreathers solutions to the one-dimensional Salerno lattie (2.18). It is thenonvenient to summarize the results and obtain a global piture of the work.A shemati piture of the results obtained in this hapter an be found in�gure 3.27.Pinned Breathers.- This lass of solutions have been extensively studiedby earlier works for the standard Salerno model (µ > 0) with positive valuesof the nonintegrability parameter, ν. In this region we have on�rmed thatthe ontinued (along the SM path) breathers oinide in the DNLS limit withthose obtained by a ontinuation from the unoupled (antiontinuum) limit ofthe latter equation. We have extended the omputation of numerially exatpinned breathers in the standard SM (µ > 0) for negative values of ν. Inthis ase there exist narrow regions where the immobile breathers experienemirror symmetry-breaking bifurations.The analysis of the pinned disrete system in the Salerno model with om-peting nonlinearities (µ < 0) yields a family of breathers, whih inludes apeakon as the ontinuum ounterpart predits. However, the family ontinuesbeyond the peakon, in the form of speial pinned disrete breathers termeduspons. Stability analysis of the pinned breathers in the SM with ompetingnonlinearities reveals that only a small part of the soliton family is unstable;the evolution of the unstable breathers leads asymptotially to pulsons, i.e.loalized solutions where the width osillates. In this part of the SM bound



3.4. Conlusions and Prospetive Remarks 73states of idential breathers were also investigated, revealing a stability ex-hange: the in-phase and out-of-phase bound states, whih are unstable andstable, respetively, in the DNLS limit, exhange their stability harater ex-atly at the point where the bound breathers are peakons.The omputation of pinned breathers both on-site and inter-site enteredhas served for omputing the Peierls-Nabarro barrier and thus provide a usefultool to analyze the results obtained for mobile breathers.Mobile breathers.- Using a regularized Newton method we have ontinuedthe family of mobile Ablowitz-Ladik disrete breathers into the nonintegrabledomain of model parameters. The ontinuation was then performed for a �negrid of frequenies belonging to the family of (p = 1, q = 1) resonant disretebreathers. We �nd that these solutions deay asymptotially, in spae, to anexited lattie extended state (the bakground), whose amplitude vanishes atthe integrable Ablowitz-Ladik limit. This omponent of the solution is unam-biguously found to be a linear ombination of nonlinear resonant plane waveswhose amplitudes deay typially, in k-spae, exponentially. The exponen-tially loalized osillation (the ore) of the amplitude probability rides overthis extended radiation state.̂
Φ = Φ̂ ore + Φ̂bakg (3.33)This expression de�nes the purely loalized omponent Φ̂ore of the solution.The bakground is a �nite linear ombination of nonlinear plane waves,

(

Φ̂bkg)n
(t) =

s
∑

j=1

Ajexp[i(kjn− ω(kj , Aj)t)] . (3.34)These plane waves are exat solutions of the Salerno model (2.18). The re-sults onerning the haraterization of the bakground an be summarized asfollows:(i) The set of �s� plane waves whih take part in the bakground of a
(p, q)−resonant disrete breather with internal frequeny ωb is derivedby the simple seletion rule for the wave-numbers kj

ω(kj , Aj)

ωb
=

1

q

( p

2π
kj −m

)

, (3.35)i.e. only the plane waves whih are (p, q)-resonant with the internalperiod of the breather an be omponents of {Φbkgn (t)}. The numberof solutions of (3.35) �xes �s�.(ii) The amplitudes {Aj} of the nonlinear plane waves di�er by orders ofmagnitude yielding a loalization in the k-spae.



74 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger latties(iii) There exist a strong positive orrelation between the amplitude of thebakground and the strength of the Peierls-Nabarro barrier arising fromthe periodi lattie. This orrelation is partiularly lear when symmetrybreaking transitions our for the also studied ase of ν < 0 and µ > 0,and re�ets the link between non-integrability and the existene of thebakground dressing of the mobile ore. Another interesting e�et isobtained for the SM with ompeting nonlinearities. In this ase theontinuation of mobile breathers of a given frequeny stops near thedivergene of the Peierls-Nabarro barrier for pinned breathers with thesame frequeny.(iv) Finally, the interpretation of the orrelation desribed in (iii) is reinforedfrom a study of the energy evolution of the mobile ore: There is anenergy balane brought by the bakground when the ore moves along thelattie. In partiular, it an be observed how the ore energy osillatesperiodially so that it takes the maximum energy value when the orevisits the inter-site on�guration. This extra energy periodially obtainedby the ore is provided by the interation bakground-ore, with theenergy maximum learly related to the bakground amplitude.It is worth stressing that the most relevant preditions of perturbative ol-letive variable theory are on�rmed by our numerial results, whih show theexistene of Peierls-Nabarro barriers to breather translational motion. Further-more, the existene of exat osillating breather solutions for the standard SMis numerially on�rmed. They are found to ontain an extended bakgroundwhose amplitude is typially muh smaller than for mobile breathers.The orrelation between the Peierls-Nabarro barrier EPN (omputed fromimmobile breathers) and the amplitude bakground of moving breathers or-retly suggests that the bakground has a role in the energy balane requiredto overome the barriers to translational motion. The interpretation is alsofully onsistent with the observations on the bakground amplitude behaviourof spatially osillating anhored breathers in the standard SM. Currently usede�etive partile (olletive variable) theories are thus seen as intrinsially in-omplete, beause ore energy is not an invariant of motion. Any sensibleimproved approah must adopt equation (3.33) as starting point for improvedperturbative ansatzes, and we hope that our work will stimulate further studiesalong these lines.Numerially exat moving disrete breathers with an in�nitely extendedtail of small amplitude were already observed in some ases for Klein-Gordonlatties with Morse potential by Cretegny and Aubry [53℄, however no inves-tigation of the bakground of these exat solutions is reported, so they wereable to "..suggest that generally a stritly loalized breather annot propagate
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76 Chapter 3. Disrete Breathers in 1D Nonlinear Shrödinger lattieswithout radiating energy". Our systemati study of the NLS latties allowsus to go further by showing that the extended bakground (here fully har-aterized) plays an important and subtle role in the translational motion ofthe loalized ore. Indeed, it is an indispensable part of the exat solutionin the nonintegrable regime. Exat mobile loalization only exists over �nelytuned extended states of the nonlinear lattie. Mobile "pure" (i.e. rest statebakground) loalization must be regarded as very exeptional [96℄.Before onluding this hapter, it is worth ommenting on some of thedi�erenes between the Newton ontinuation of �xed points that we use inthis hapter, and other important reent approahes to breather numeris.The work by Ablowitz et al [107℄ uses disrete Fourier analysis to obtain anonlinear nonloal integral equation, from where the " ... soliton is thus viewedas a �xed point of a nonlinear funtional" (si) in the Fourier transformedspae of funtions. Following these authors, their results seem to di�er fromthose of early pioneering work [108℄ (nowadays textbook material [23℄) � inwhih a ontinuous traveling solitary waves were reported using Fourier seriesexpansions with �nite period L while assuming onvergene as L→∞ " (si).Ablowitz et al term ontinuous a solution that an be de�ned o� the lattiepoints, whih they see as "neessary when disussing traveling waves in latties"(si), and disagree with some onlusions reported in the earlier works.The ("orthodoxy matters") disussion above helps us to larify how dif-ferently our numerial approahes "sees" the disrete Shrödinger breatherproblem: The very onept of a variable de�ned o� the lattie points is intrin-sially alien to our disrete approah, whih neither needs of it nor exludesits eventual onsideration. In ontrast to those views (but not at all in logialopposition), we onsistently view the thermodynamial limit (N →∞) in lat-tie spae, muh in the sense used e.g. by Serge Aubry in his elebrated workon the Frenkel-Kontorova ground state problem [49℄: The in�nite size limit isbuilt up from a subsequene of PBC (�nite) latties for whih the limit is wellde�ned. This will make the Fourier-transformed k-spae ontinuum.Closer to our approah in some respets, though tehnially di�erent inmany others, is the formal approah purposed reently by James and ollab-orators [109, 110℄. It is also worth mentioning that these results have beenreprodued reently for other kind of solutions (dark breathers) [111℄ and haveonstituted [112℄ a �(negative) result� about the impossibility of onstruting�exponentially loalized fundamental (single-humped) moving disrete solitons�in the nonintegrable part of the Salerno model.There are, at very di�erent levels, several open questions to further re-searh. From a tehnial point of view, it is important to analyze arefullythe irrational limit p/q → σ, of the solutions. In partiular, in this limit the



3.4. Conlusions and Prospetive Remarks 77number of resonant plane wave branhes tends to a ontinuum and one ould(or not) expet that exponential loalization in the reiproal lattie persistsin that limit. This an be addressed numerially, though systemati investi-gations may require some e�orts in optimizing the time e�ieny of urrentnumerial shemes.An important issue regarding appliations is the phenomenology of multi-breather states. In partiular, studies on ollisions of a pair of breathers may�nd in this study of exat mobility a useful referene in order to deal with theomplexities that emerge from the many time-length sales involved in thesephysially relevant phenomena. Muh simpler multibreather states, e.g. train-like hains of (moderately) separated moving breathers ould also be investi-gated. Not least, the perspetive and results presented here may be of someinterest to studies of the e�ets of oupling to (nonthermal and/or thermal)radiation baths in the breather and multibreather states of nonlinear latties[51℄ and the pratial manipulation and patterning of loalized "hot spots" byexternal �elds [113℄.





Chapter 4Disrete Breathers intwo-dimensional NonlinearShrödinger lattiesGiven the ubiquity of suh breathers in disrete nonlinear physial systems (whihexist on essentially all length sales), these nonlinear exitations are likely to beimportant in many physial phenomena, inluding melting, frature, and the buk-ling and folding of biopolymers. They may also prove useful in tehnologies rangingfrom 'smart' materials with tunable olletive responses to light-indued, all-optialswithes and networks. With the aquisition of this new animal, the nonlinear 'zoo'has beome an altogether more interesting plae. David K. Campbell in [114℄.The study of two-dimensional nonlinear Shrödinger latties has attratedmuh attention [115, 116℄ in reent years due to the new phenomena emergingwhen the dimensionality of the lattie is inreased. Some examples of thesenew features are the existene of vortex-breathers [117℄ whih supports en-ergy �ux, the appearane of an energy threshold for the reation of disretebreathers [118�122℄ and the ubiquity of an instability (the quasi-ollapse) ofsome disrete breather solutions leading to a highly loalized pulson state [123�128℄. These theoretial e�orts have their ounterpart in reent advanes in the�eld of nonlinear optis. The studies of two-dimensional arrays of oupled non-linear waveguides allow the experimental observation of those e�ets studiedtheoretially. Speially relevant is the reent experimental breakthrough (theo-retially designed in [129℄) by Fleisher et al [72, 130℄, where a two-dimensionalarray of nonlinear waveguides is indued in a photosensitive material. This



80 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattiestehnique provides a lear experimental veri�ation of the two-dimensionaldisrete breather existene in this system. In partiular, besides the observa-tion of standard disrete breathers, these works reported the �rst observationsof staggered disrete breathers.Our study in this hapter fous on the omputation of numerially exatdisrete breathers in two-dimensional anisotropi nonlinear Shrödinger lat-ties, i.e. where the ouplings in the two spatial diretions are not neessarilyequal. The use of the shooting methods introdued in setion 2.3.1, and rede-�ned here for the two-dimensional ase in setion 4.1, allow us to �nd thesesolutions and analyze their strutural and stability properties. Both pinnedand mobile disrete breathers are studied. In the latter ase we will study onlythe ones whose motion is along one axis of the lattie. The analysis of the nu-merially exat solutions help to shed light on some features of the propertiesand stability of loalized solutions reported in previous works.After introduing in setion 4.1 the two-dimensional anisotropi Salernolattie and provide explanations on the implementation of the numerial pro-edures used to study the dynamis of 2D disrete breathers, we will fouson pinned ones. The analysis of the results on pinned disrete breathers foranisotropi nonlinear Shrödinger latties is reported in setion 4.2 for boththe standard version of the SM (setion 4.2.1) and that with ompeting nonlin-earities (setion 4.2.2). In both studies we present the numerial omputationsof the �xed point norm, as a funtion of three parameters: breather frequeny,transversal oupling, and nonlinearity (see below). They show, as antiipated,the so-alled quasi-ollapse transition. In these studies we present numeriallyomputed setors of the bifuration surfae and take a brief look at the nonlin-ear dynamis on the unstable manifold, whose typial trajetories have beenalled pulson states. Early numerial work on the 2D quasi-ollapse phenom-ena in isotropi latties was reported in [127, 128℄ and [125℄. A three-year-oldaount of the "state of knowledge" on 2D Shrödinger latties an be foundin Setion six of [131℄. Interestingly, for the ase of ompeting nonlinearitiesa transition to 2D uspon states is also found. In this region of the Salernomodel we have also studied the existene and stability of in-phase and out-of-phase bound states of pinned breathers motivated by the results obtained inthe previous hapter for the 1D ase (setion 3.3.2).As introdued above, a new lass of breathing solutions are possible inthe 2D model: disrete vorties [117℄. We investigate vortex breathers of twotypes, vortex rosses and vortex squares, in setion 4.3 (in the framework of theisotropi model). The analysis of their linear stability reveals parametri sta-bility regions (whih turn out to be rather narrow) for the vorties, and helpsto identify various bifurations (inluding a generi Hamiltonian Hopf bifur-



4.1. The Salerno model in two dimensions 81ation) responsible for their destabilization. Diret simulations demonstratethat the instability transforms the vorties into ordinary breathers in the aseof the standard Salerno model, and into vortex pulsons, that keep the vortialtopology, in the most interesting ase of ompeting nonlinearities. Finally, wehave also introdued bound states of vortex rosses and analyze their stability.Mobile solutions are �nally reported in setion 4.4. For this type of solu-tions we have foused on a single type of mobile breather, namely those movingalong the diretion of stronger lattie oupling onstant. The struture of eahof these mobile exat disrete breathers is that of a loalized moving ore su-perimposed on a spei� extended state of resonant small amplitude radiation,the bakground. An extensive Floquet stability analysis of this type of solu-tions is performed in two setors of the three-dimensional parameter spae,revealing the existene of two di�erent transitions. The tangent spae eigen-vetors assoiated to eah of the transitions are presented, and the relation ofthe unstable manifold trajetories to pulson states is analyzed afterwards.4.1 The Salerno model in two dimensionsMotivated by the results reported in the last hapter our aim here fous on ex-tending the ontinuation sheme for alulating exat disrete breathers inhigher dimensional systems. In partiular we fous on the following two-dimensional nonlinear Shrödinger lattieiΦ̇nm = − [C1(Φn+1,m + Φn−1,m) + C2(Φn,m+1 + Φn,m−1)] (1 + µ|Φn,m|2)
− 2νΦn,m|Φn,m|2 (4.1)This lattie an be viewed as the two-dimensional Salerno model. The two ou-pling parameters C1 and C2 provide a tehnial advantage for numeris (seebelow), but they are also introdued for theoretial and experimental interest.The possibility of ontrolling the ratio between the two linear ouplings of thetwo transversal diretions has been studied in various works as a way of an-alyzing how the intrinsi 2D phenomena (suh as the quasi-ollapse) emerge.In fat, for C1 << C2, µ = 0 and ν 6= 0 equation (4.1) desribes a set ofweakly oupled nonlinear waveguide arrays and an be onsidered as a ase of�intermediate dimensionality�. This extreme has been studied experimentallyin [132℄ and using perturbative methods in [133℄. On the other hand, thisequation inorporates, as two partiular limits, the physially relevant stan-dard two-dimensional DNLS equation (µ = 0, ν 6= 0) and the two-dimensionalounterpart of the AL lattie (µ > 0, ν = 0) whih is not integrable. Theontinuation between these two limits provides a useful tool for studying theinterplay between the on-site and inter-site nonlinearities in the 2D ase. More-



82 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattiesover, the anisotropy (or freedom in the values of the oupling parameters C1and C2) allows to inlude an integrable model among the members of the fam-ily of nonlinear latties desribed by eq. (4.1). That is, for ν = 0, Ci = 0and Cj 6= 0 one obtains a set of integrable AL 1D hains. In this sense, every2D model inluded by eq. (4.1) is onneted with this integrable model whereanalyti disrete breathers are available.The SM (4.1) may �nd a straightforward physial appliation as a disretemodel for the BEC of dipolar atoms trapped in a deep two-dimensional optiallattie [78℄; in that ase, as stated for the 1D Salerno model, assuming that astrong magneti �eld aligns the momenta parallel (perpendiular) to the lattieplane, and the ondensate is strongly on�ned in the vertial diretion, one willagain deal with the dipole-dipole attration (repulsion), i.e. µ > 0 (µ < 0) ineq. (4.1).Similarly to the 1D version of the Salerno model eq. (4.1) has two dynam-ial invariants, the Hamiltonian
H = − C1

∑

n,m

(

Φn,mΦn+1,m + Φn+1,mΦn,m

)

− C2

∑

n,m

(

Φn,mΦn,m+1 + Φn,m+1Φn,m

)

− 2ν

µ

∑

n,m

|Φn,m|2 +
2ν

µ2

∑

n,m

ln (∣∣1 + µ|Φn,m|2
∣

∣

)

, (4.2)and, due to the phase invariane of the equations of motion, the following norm(4.1)
N =

1

µ

∑

n,m

ln (∣∣1 + µ|Φn,m|2
∣

∣

)

. (4.3)Note that we have inluded here the needed rede�nition in the logarithmiterms of both quantities in order to manage with a orret desription of thedynamial invariants within the Salerno model with ompeting nonlinearities.In the same manner as in the 1D ase we will fous on a speial set of2D disrete breathers. For this, we have to generalize the de�nition (2.22)introdued in setion 2.2 for a (p, q) resonant solution in the 1D model tothe 2D ase. In this ontext, disrete breathers solutions are haraterized bythree time sales. Namely, one assoiated with the internal osillation ωb andthe other two derived from the translation of the loalization enter, i.e. itsveloity ~vb = (vx, vy). The subset of 3-tuples (ωb,~vb) that ful�ll the (px, py, q)-resonane ondition
vx

2π

ωb
=

px

q
(4.4)

vy
2π

ωb
=

py

q
, (4.5)



4.1. The Salerno model in two dimensions 83(where px, py and q are integers) denote the breather solutions that an beobtained with our ontinuation method. These solutions are those that after qperiods of the internal frequeny, Φ̂(t0 + qTb), translates px and py lattie sitesin the x and y diretion of the square lattie, respetively, i.e.
Φ̂n,m(t0) = Φ̂n+px,m+py(t0 + qTb) , (4.6)where, again, PBC are applied ΦNx+1,m = Φ1,m, Φ0,m = ΦNx,m, Φn,Ny+1 =

Φn,1 and Φn,0 = Φn,Ny (with Nx and Ny being the lattie size in the x and
y diretion respetively). Consequently, a (px, py, q)-resonant state will be asolution of the following set of equations

F(px,py,q,ωb,ν,C1,C2)

[

{Φ̂n,m(t0)}
]

= L
py
y Lpx

x T q
(ωb,ν,C1,C2)

[

{Φ̂n,m(t0)}
]

=

= {Φ̂n,m(t)} , (4.7)where the operators Li are the lattie translation in the i-diretion,
Lx[{Φn,m(t0)}] = {Φn+1,m(t0)} , (4.8)
Ly[{Φn,m(t0)}] = {Φn,m+1(t0)} . (4.9)Besides, T(ωb,ν,C1,C2) is the time evolution operator given by equation (4.1) overone period Tb = 2π/ωb,

T(ωb,ν,C1,C2)[{Φn,m(t0)}] = {Φn,m(t0 + Tb)} . (4.10)In order to illustrate the 2D time sales resonane let us to onsider theplane wave solutions of equation (4.1): Φn,m(t) = A exp[i(kxn + kym − ωt)].These solutions possess the following nonlinear dispersion relation
ω(~k,A) = 2(C1 cos kx + C2 cos ky)(1 + µA2)− 2νA2 . (4.11)Hene, we an obtain the subset of plane waves whih are (px, py, q)-resonantwith some time sale τ (i.e. after a time qτ they have translated px and pysites in the x and y diretion, respetively). Eah member of these subsets willbe labeled by the pair ~k =(kx, ky) and from the ondition (4.7) it follows thatthe orresponding set of values of ~k for eah family will satisfy the relation

ω(~k,A) =
1

qτ

(

~p · ~k − m

2π

)

, (4.12)where m is an integer and ~p =(px, py). In �gure 4.1 the orresponding valuesof ~k are represented for two resonanes of type (px = 1, py = 0, q = 1) and
(px = 1, py = 1, q = 1).The method used for solving equation (4.7) for eah resonant 3-tuple (ωb,~vb)is the same as in the 1D ase, already desribed in setion 2.3.1. Then, the
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Figure 4.1: Wave numbers, ~k = (kx, ky), of the (1, 0, 1) (a) and (1, 1, 1) (b) resonantplane waves for m = 0 (see equation (4.12)). Di�erent values of C2, while C1 is �xed(C1 = 1), are shown. The referene time sale for the resonane is set to τ = 2.4315(ω = 2.584).impliit funtion theorem assures that a �xed point solution of a map (4.7)given by ~ξ =(px, py, q, ωb, ν, C1, C2) an be obtained provided that (i) theJaobian of the operator F~ξ[{Φn,m(t0)}] − I is invertible, and (ii) we know a�xed point of a map orresponding to an in�nitesimally lose set of parameters,
~ξ−δ~ξ = (px, py, q, ωb−δωb, ν−δν, C1−δC1, C2−δC2). As explained in setion2.3.1 the �rst demand an be satis�ed using a singular value deomposition(SVD) of the Jaobian in order to obtain the pseudo-inverse operator. On theother hand, when the seond ondition is ful�lled onvergene of the Newton-Raphson iterative sheme is guaranteed. For this, we start with a su�ientlygood trial solution, {Φ0

n,m(t0)} and solve the equation
{δΦ0

n,m(t0)} = −DF~ξ

[

{Φ0
n,m(t0)}

]−1 · F~ξ

[

{Φ0
n,m(t0)}

]

, (4.13)in order to obtain {Φ1
n,m(t0)} = {Φ0

n,m(t0)} + {δΦ0
n,m(t0)}. We iterate thesealulations to the desired onvergene, and then the solution, {Φ̂n,m(t0)}, isobtained. In our numeris this is the ase when

F~ξ

[

{Φi
n,m(t0)}

]

< N · 10−16 , (4.14)(where N is the total number of sites in the square lattie) is ful�lled. Onethe solution is found we use it as the following trial solution, {Φ0
n,m(t0)}, forsolving the map (4.7) orresponding to the next set of parameters ~ξ

′

= ~ξ + δ~ξ.There are two possible paths for developing the ontinuation method de-pending on the hoie of the starting point of the ontinuation. One possibilityis to start from the full anti-ontinuum limit, C1 = C2 = 0, where a pinned



4.2. Pinned disrete breathers 85breather solution of frequeny ωb is written as
Φ̂n,m(t) = δn,n0δm,m0

√

ωb

2ν
exp(iωbt) . (4.15)Starting from the above solution, we an perform the ontinuation inreasingthe parameters C1 and C2 as usual, and so obtain the whole family of (px =

0, py = 0, q = 1) resonant disrete breathers. An alternative path starts fromthe one-dimensional limit, C2 = 0. The hoie of this seond limit (whihimplies taking as the very initial trial solution of the ontinuation the wholeset of 1D solutions obtained in the previous hapter) is justi�ed when seekingmobile solutions. As stated above, this limit o�ers the possibility of studyingstrongly anisotropi latties as a ontrolled interpolating situation betweenone and two dimensions. On the other hand, employing this strategy we anonly obtain those solutions whih are (px = p, py = 0, q)-resonant, i.e. thetwo-dimensional ontinuation of those one-dimensional (p = px, q)-resonantdisrete breathers. Hene, the solution from whih we start is
Φ̂n,m(t) = δm,m0Φ̂

1D
n (t) , (4.16)where Φ̂1D

n (t) is the orresponding (p = px, q)-resonant one-dimensional solu-tion.In what follows we will employ both ontinuation paths when we studythe ase of pinned breathers (setion 4.2), and we will show that the resultsobtained are the same when approahing the same limit (the standard two-dimensional DNLS).4.2 Pinned disrete breathersWe �rst fous on the haraterization of pinned ((0, 0, 1)-resonant) disretebreathers for the standard Salerno model (with speial attention to the DNLSequation) in setion 4.2.1 and for the SM with self-defousing inter-site non-linearity in setion 4.2.2.4.2.1 Pinned disrete breathers in the standard SalernomodelAs we have disussed, we an hoose two di�erent starting points for the ontin-uation of (0, 0, 1)-resonant �xed points (pinned breathers) of equation (4.7): (i)the full anti-ontinuum (AC) limit (C1 = C2 = 0), or (ii) the (one-dimensional,1D) limit of unoupled hains (C1 6= 0, C2 = 0), where they were obtained in



86 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattiesthe previous hapter from ontinuation along the standard 1D Salerno modelby inreasing values of the parameter ν from the one-dimensional AL lattie(2.9). As a test for our odes, we have heked that both paths arrive to thesame solution. In fat, unique ontinuations an proeed along any path onthe plane of parameters (C2, ν) that we have explored.Early works [123�125℄ on the isotropi two-dimensional standard DNLSequation analyzed the so-alled quasi-ollapse instability of pinned disretebreathers, i.e. the ondensation of all the energy into a few modes in dis-rete nonlinear systems, whih orresponds to the onset of a singularity (waveollapse) [126℄ in multidimensional ontinuum models. Subsequent numeri-al works [127℄ extended these studies to the isotropi 2D Salerno lattie andaddressed the question of how the instability is a�eted by the presene ofimpurity lattie sites.As expeted, our results further orroborate the existene of quasi-ollapseinstabilities in the anisotropi ase: The phase diagram in parameter spae(ωb, C2, ν) onsists of two regions (stable and unstable) separated by thesurfae of transition. As we perform the ontinuation of breather solutionsaross the parameter spae we san the Floquet stability of the omputedsolution. In �gure 4.2 we present the two stability transition urves in theplane (ωb, C2, ν = 1), i.e. the funtion Cth
2 (ωb), orresponding to the twodi�erent ontinuation starts. The ontinuation from the AC limit is madethrough the path C1 = C2 and the one from the 1D limit is made at C1 = 1.The onvergene of the two paths at C2 = 1 is learly seen.The Vakhitov-Kolokolov riterion [103℄ for stability of the pinned disretebreather solution derived and used for the 2D DNLS in [124, 125℄,

(

∂N

∂ωb

)

C2,ν

> 0 , (4.17)is of a very general harater and our numeris illustrate it learly. On the otherhand, the Floquet stability analysis detets the dimensionality (and a basisin tangent spae) of the unstable linear manifold assoiated with the quasi-ollapse instability that these exat disrete breathers experiene for someparameter values. We have omputed numerially, for a �ne grid of ωb valuesand a oarser grid of C2 and ν, the funtion N(ωb, C2, ν), from whih we showsome setors in �gures 4.3 and 4.4.In �gure 4.3 we show the numerially omputed norm (4.3) as a funtionof the breather frequeny N(ωb), for three di�erent values of the transversaloupling C2, and a �xed value of ν = 1 (anisotropi DNLS limit). We observethe existene of a minimum value, min N(ωb) = N th 6= 0, whih is thus seenas an exitation threshold for the reation of these solutions. The position of
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b (C2), whih naturally inreases with C2, separates the stableand unstable branhes of pinned breathers. Breathers orresponding to valuesof ωb where N(ωb) has a negative slope are unstable: This is shown in theinsets, where the Floquet spetra of two representative examples of pinneddisrete Shrödinger breathers are plotted in the omplex plane. Note thatthe high auray of the numerial solution allows an unpreedented detailedFloquet analysis of the instability, paving the way to rigorous analytial har-aterizations of the quasi-ollapse unstable manifold. This is a one-dimensionalmanifold, as our numerial results unambiguously on�rm. Then, in the regimeof small time sales, the unstable manifold is fully haraterized by a singleFloquet eigenvetor.Figure 4.4 shows the (surfae) funtion N(ωb, ν) for the volume setor ofonstant C2(= 0.5). Most notieably, the ritial (threshold) line of bifurationpoints ( ∂N
∂ωb

= 0), as seen in the inset, does not de�ne a monotone funtion
ωth

b (ν). In fat, in the whole interval of 0 ≤ ν ≤ 1 values, the range of values of
ωth

b is quite short, indiating the insensitivity of the gross features of the quasi-ollapse transition to the value of ν. However, onsidering �ner details, onesees that the threshold urve ωth
b (ν) smoothly reahes its slightly larger valuesaround midway between the DNLS and the AL limits. In other words, in-termediate values of the interpolating (Salerno) parameter ν somewhat favour
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b = 4.03) and the other peaks areloated at the frequenies of the harmonis resulting from the ombination of theinternal frequeny with the frequeny (ωqc = 0.78) assoiated with the amplitude
|Φn,m| osillations shown in (a).the enhanement of the quasi-ollapse unstable region. These onlusions arein ontrast with the stated onlusion (for isotropi latties) in [127℄ that theAblowitz-Ladik term inreases the stability regime.When instability is allowed to develop beyond the �xed point tangent spaeinto the nonlinear realm of perturbations, the trajetory obtained by diretintegration of the equations of motion invariably ends after a transient (of timesale given by the real Floquet exponent larger than 1) in a loalized solutionwith omplex dynamis, the pulson states, that we have already observed inthe one-dimensional Salerno model with ompeting nonlinearities for a narrowregion in the (µ, ωb)-plane (see setion 3.3.2). In the two-dimensional ontextthese states were haraterized in [131℄ in the following terms "... where thepeak intensity |Φm,n|2 osillates between the entral site and its four nearestneighbours (...) it is not known whether these pulson states represent truequasiperiodi solutions to the DNLS equation". What makes these trajetorieson the unstable nonlinear quasi-ollapse manifold of muh pratial relevaneand interest is their ubiquity: They appear as persistent loalized states inthe Hamiltonian dynamial evolution from a wide variety of initial onditions.Their desription requires at least two frequenies, namely the internal (genuinebreather-like frequeny) and the frequeny of the osillations of the breather



90 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattieswidth around a mean width value, whih turns out to be less than the widthof the unstable exat disrete breather. Seond and outer shells of neighbours(in both lattie axes) also partiipate in the width osillations.Though a more detailed haraterization of the pulson states would be re-quired, it is illustrative to onsider (�gure 4.5) the power spetrum S(ω) (eq.3.5) of the �eld at the entral site of a typial trajetory on the unstable nonlin-ear manifold of a quasi-ollapsing pinned disrete breather. This shows peaksat the ombinations ω∗
b + jωqc (j = 0,±1,±2...), where ωqc is the frequenyof the width osillations haraterizing the pulson state, while ω∗

b > ωb is afrequeny higher than the (initial ondition) �xed point frequeny ωb. The newfrequeny ω∗
b turns out to be very lose to the breather frequeny of the same(initial) norm on the stable branh. In other words, the instability drives ashift of breathing frequeny towards the stable branh, while the exess energyis transferred to the osillatory motion of the observable width. This behav-ior seems to be the essene of the physial haraterization of the nonlinearquasi-ollapse manifold dynamis.The numerial observation of a two-frequeny power spetrum for a typialpulson state points towards an eventual positive answer to the question (ontrue quasiperiodiity) arised in [131℄. This point serves to illustrate how thehigh auray of the �xed point numerial solution provides detailed lues onmany still unsolved (from a mathematial and physial point of view) questionson two-dimensional Shrödinger loalization, whih are of prospetive experi-mental interest in nonlinear (photoni, Josephson, ...) physis tehnologies.4.2.2 Pinned disrete breathers in the Salerno model withompeting nonlinearitiesLet us now analyze the e�ets that ompeting on-site self-fousing and inter-site self-defousing nonlinearities have on pinned disrete breathers. For thispurpose we start from the above omputed pinned breather solutions for the2D DNLS equation, orresponding to µ = 0, and parameterized by the orre-sponding values of ωb, C1 and C2. In patiular we will keep �xed the value

C1 = 1 and let vary C2 = C. We will also keep �xed the value of ν = 1 (dueto the saling invariane of the model (4.1)). Then, our ontinuation seedsis a set of solutions at di�erent frequenies and several di�erent values of C,whih are subsequently ontinued in µ < 0. With these ontinuations we areable to onstrut families of the breather solutions (labeled by their internalfrequeny ωb) for di�erent values of µ and C. In this way, we sanned thefamily of disrete breathers in the entire (C,µ < 0, ωb)-spae of the Salerno
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Figure 4.6: Intensity pro�les, |Φn,m|2, of two disrete breathers found for C = 1(isotropi ase) and frequeny ωb = 4.22: (a) µ = −0.2; (b) µ = −0.88. The lattersolution is a uspon, whih features stronger loalization at its enter than in the tails.model with ompeting nonlinearities1.As noted above, varying C from 0 to 1 allows one to observe the transitionfrom one- to two-dimensional lattie and to study the strong anisotropi limit(C << 1). We will onentrate on the existene of 2D uspons and their sta-bility. Let us remind that in the 1D ase, uspons exist for µ < 0, when theon-site and inter-site nonlinearities are ompeting (see setion 3.3.2). Thesesolutions present highly loalized pro�les, with the deay rate around the lo-alization enter higher than in tails of the solutions. Another relevant result ofthe 1D ase is that small-frequeny breathers are unstable in a narrow intervalof negative values of µ. The instability observed in the 1D ase transforms thedisrete breather into a pulsoni state. We have seen in the previous setion4.2.1 that the standard Salerno model (and in partiular the 2D DNLS lattie)features a similar unstable behavior for small-frequeny breathers. It is theninteresting to �nd a link between the breather instability in the 2D standardSalerno model (4.1) with µ > 0 and the above-reported instability of breathersin the 1D Salerno model when µ < 0.First, we onsider the shape of solutions produed by the ontinuation. Asexpeted, uspons appear when µ is negative and of su�iently large absolutevalue. In �gure 4.6 we display disrete breathers found at C = 1 (in theisotropi lattie) and ωb = 4.22, for two di�erent values of µ. As seen in �gure4.6.b, the uspon indeed features a higher spatial deay rate around its enter,
(n0,m0), than far from it.To haraterize the transition from usual disrete breathers to the uspons,we �tted the deaying tail of the breather along the vertial and horizontaldiretions on the lattie, (n0,m → ±∞) and (n → ±∞,m0), to the expeted1Typially, the di�erene between the breather frequenies used for eah C was δωb =

8 · 10−2 (whih is also the lowest frequeny taken lose to the edge of the phonon band), andthe ontinuation step in µ was δµ = 2 · 10−2.
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asymptoti forms, |Φ(asymp)

n0,m→±∞| = Ay exp(−Γy |m−m0|) and |Φ(asymp)
n→±∞,m0

| =

Ax exp(−Γx |n− n0|), respetively. One two pairs of parameters (Ax,Γx) and
(Ay,Γy) are found, one an determine whether the deay rate (loalizationdegree) around the breather's enter is higher or lower than in the tails, byde�ning two sharpness parameters (this is a similar de�nition to that adoptedin setion 3.3.2 for the 1D ase), γx ≡ Ax − |Φn0,m0|, and γy ≡ Ay − |Φn0,m0 |.Obviously, γx ≡ γy in the isotropi model (C = 1); however, γx and γy aredi�erent in anisotropi latties. We have omputed both quantities as theontinuation in µ was performed for eah breather at frequeny ωb. For agiven pair of parameters C and ωb, it was found that, for higher (in partiular,less negative) values of µ, both γx and γy are positive, thus pointing out thatthe loalized states are ordinary disrete breathers (not uspons). Dereasing
µ, one �nds a ritial value, µ = µy, at whih γy = 0, whih orrespondsto a peakon pro�le in the (vertial) diretion of weak oupling, (n0,m). If µis further dereased, we then have γy < 0, while γx is still positive (i.e., thebreather is a semi-uspon), until the seond ritial point is reahed, µ = µx <

µy, where γx = 0, and the breather assumes a peakon pro�le in the (horizontal)diretion of strong oupling, (n,m0). Finally, at µ < µx, both γx and γy arenegative, and the disrete breather is a uspon in both diretions. Figure 4.7shows the ritial values, µx and µy, versus ωb for several �xed values of C.As noted above, µx = µy when C = 1, while for C = 0 (the 1D limit), only µxexists.



4.2. Pinned disrete breathers 93Floquet analysisConomitant with the ontinuation of the breather solutions in µ, we examinedtheir linear stability. Performing the Floquet analysis for every omputedsolution, we have generated a full stability diagram in the (ωb, µ)-plane forseveral values of C (inluding both positive and negative µ in order to link theunstable region of the 1D SM at µ < 0 and those found for the standard 2DSM). This is shown in �gure 4.8. At the isotropi ase, C = 1, and for µ > 0we observe, as expeted from the results obtained in the previous setion, anunstable region orresponding to the low-frequeny breathers. As previouslyreported, the development of this instability yields to the development of apulsoni state (similar to what was found in in the 1D version of the modelwhen µ < 0). On the other hand, for µ < 0, all uspons are found tobe linearly stable. This is a new result onerning 2D nonlinear latties of theShrödinger type. Taking a lose look at the evolution of the stability diagramsas C dereases, one an monitor a transition from the 2D isotropi model to its1D ounterpart. We thus observe (see ontour plots in �gure 4.8) that there isa subregion in the (ωb, µ) plane, for eah value of C, where the largest valuesof |λj| are muh higher than in the rest of the unstable region. This subregionontinuously deforms as C varies, and, as C → 0, it approahes the unstableregion found in the 1D Salerno model.We have also heked the validity of the Vakhitov-Kolokolov (VK) riterionfor the stability of breathers in the Salerno model with ompeting nonlineari-ties. For this we have omputed the norm of the solutions as per eq. (4.3), togenerate surfaes N(ωb, µ) for several values of C. These surfaes are plotted in�gure 4.8. In the �gure, we have also plotted urves at whih ∂N∂ωb hangessign, thus separating the predited stable and unstable regions. Comparisonwith the rigorous results produed by the Floquet analysis on�rms again thevalidity of the VK riterion for prediting the unstable region found for pinnedbreathers at µ < 0. A noteworthy feature of surfaes N(ωb, µ) is the diver-gene when the breather's amplitude attains the value |Φn0,m0 |2 = 1/|µ|. Inthe 1D model (C = 0), this happens for an exat peakon solution, whereasfor C > 0 we observe that the divergene urve in the (ωb, µ) plane is loatedbelow the urve of µ = µy(ωb), i.e. it happens for uspon states. Examiningthe norm for uspons with the amplitude exeeding 1/
√

|µ|, we onlude that
∂N∂ωb < 0 for all ωb in this region (after the divergene of the norm ours).Then, the VK riterion predits that uspon breathers are unstable ontraryto the results of the Floquet analysis. Hene, the VK riterion does not applyto the uspons with |Φn0,m0| > 1/

√

|µ|. The stability of perturbed usponswas also on�rmed by diret simulations of the dynamis (4.1) revealing notonly that they are linearly stable solutions but also high robust.
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0, from the anti-ontinuum limit up to the 2D DNLS equation (C = ν = α =

1), and then dereased the value of µ into the region of ompeting nonlinearities(µ < 0). At the same time, the linear stability analysis of these periodisolutions was performed by the numerial omputation of their Floquet spetra.We have omputed two di�erent patterns of bound states of breathers. The�rst type onsists of two disrete breathers with their enters, (n
(j)
0 ,m

(j)
0 ), with

j = 1, 2, lying on the same lattie axis (so that n
(1)
0 = n

(2)
0 or m

(1)
0 = m

(2)
0 ),



4.2. Pinned disrete breathers 95
 1.8

 1.4

 1

 0.6

-1 -0.8 -0.6 -0.4 -0.2  0

|λ
|

µ

d=3
 1.8

 1.4

 1

 0.6

-1 -0.8 -0.6 -0.4 -0.2  0

|λ
|

µ

d=3
d=5

 1.8

 1.4

 1

 0.6

-1 -0.8 -0.6 -0.4 -0.2  0

|λ
|

µ

d=3
d=5
d=7

 1.4

 1.2

 1

 0.8

 0.6

|λ
|

d=3 1.4

 1.2

 1

 0.8

 0.6

|λ
|

d=3
d=5

 1.4

 1.2

 1

 0.8

 0.6

|λ
|

d=3
d=5
d=7

Figure 4.9: The absolute value of the Floquet multipliers as a funtion of µ for in-phase (top) and out-of-phase (bottom) axis-aligned bound states of breathers with
ωb = 7 (C = 1). The �gure shows ases when the two breather enters are separatedby d = 3, 5 and 7. It an be observed that, irrespetive of the value of d, the stabilityinterhange ours at µ = −0.3.whereas for the seond type of bound states the enters are related by n

(1)
0 =

n
(2)
0 ± d and m

(1)
0 = m

(2)
0 ∓ d, i.e. they are aligned along a diagonal of thelattie.In �gure 4.9 we show the absolute value of the Floquet multipliers as afuntion of µ for in-phase and out-of-phase bound states, aligned along a lattieaxis for the ase of ωb = 7.0, with three di�erent values of the distane betweenbreather enters in the pair. Results of similar omputations for the diagonal-aligned bound states with ωb = 8.0 are shown in �gure 4.10. As in the 1Dversion of the model (see setion3.3.2), for µ = 0 in-phase bound states arelinearly unstable (the more unstable the loser breathers are in the pair), whileout-of-phase pairs are stable. As observed in �gures 4.9 and 4.10, at µ = −0.3for the pattern of the �rst type (ωb = 7.0), and at µ = −0.25 for the seond one(ωb = 8.0), the in-phase bound states beome stable regardless of the distanebetween breathers. Simultaneously, out-of-phase states beome unstable, alsoregardless of the separation between breather enters.The same stability exhange between in- and out-of-phase states was ob-served in the 1D ase, where it ours at the value of µ at whih the dis-rete breather solution is a peakon. However, here in the 2D ase the disretebreathers in the pair are uspons on both sides of the stability-exhange point.
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Figure 4.11: Two examples of fundamental (|S| = 1) disrete vorties. Pro�les of thereal part of the square vortex with M = 1 and vortex ross are shown in the top andbottom panels, respetively. Both solutions are found for µ = −0.4 and ωb = 7.0 (asnoted in the text, we �x C = 1 for the vortex solutions).In this setion, we onsider vorties only in the isotropi model (C = 1),with the purpose of analyzing their behaviour at both the standard SM (µ > 0)and at the SM with ompeting nonlinearities (µ < 0). In the framework ofthe 2D DNLS model, in�uene of the lattie anisotropy on fundamental andvortial disrete breathers was studied in [134℄).We will onstrut two types of vorties, on-site- and o�-site-entered ones(alias vortex rosses and vortex squares), both with |S| = 1. Vortex squaresare haraterized by the number of lattie bonds, M , that eah side of thesquare omprises; in this setion, we only deal with M = 1. Two examples ofthese two speies of the solutions are plotted in �gure 4.11.4.3.1 Vortex rossesIn order to onstrut fundamental (|S| = 1) vortex rosses entered around thelattie site (n0,m0), we start with the antiontinuum (C1 = C2 = 0) DNLS(µ = 0) limit. The orresponding seed pattern inludes nonzero �elds
Φn0,m0+1 = −iΦn0+1,m0 = −Φn0,m0−1 = iΦn0−1,m0 =

√

ωb/2 . (4.18)
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Figure 4.12: (a) The absolute value of the Floquet multipliers as a funtion of µfor a vortex ross with ωb = 8. Two bifurations an be inferred from the Floquetdistributions in panels () and (d): a Hamiltonian Hopf bifuration at µ = 0.46, anda harmoni bifuration at µ = −0.3. A similar set of two bifurations is found atother frequenies. The entire stability diagram is displayed in panel (b), showing anarrow stability region. (As noted in the text, we �x C = 1 for the vortex solutions).Then, by adiabatially inreasing the inter-site oupling (Newton ontinuationin C using C1 = C2 = C), we reah the isotropi DNLS model, and start theontinuation to positive values of the inter-site nonlinearity, µ. Performingthe ontinuation in C at µ = 0, we have found that, for low-frequeny vortexsolutions, there is a ritial value, Cc, that depends on frequeny ωb, at whiha Hamiltonian Hopf bifuration (HHB) [135℄ ours and the vortex solutionturns unstable for C > Cc(ωb). This phenomenon was already reported inprevious works [117, 134℄.Higher-frequeny vortex solutions, whih are stable in the DNLS equationin the onsidered range of parameters, undergo destabilization through a bi-furation of the same type as a result of the ontinuation in µ, at C = 1. TheHamiltonian-Hopf harater of the bifuration an be seen in �gure 4.12.,whih shows the Floquet spetrum after the bifuration: it is seen that aquadruplet of omplex eigenvalues λj exit the unit irle. After this (�rst)bifuration, further bifurations of the same type our at inreasing values of
µ, as observed in the right part of �gure 4.12.a. Similar to what was reportedin Ref. [117℄ for the DNLS model, in diret simulations unstable vortex rossesevolve into on-site-entered fundamental disrete breathers (with S = 0) by



4.3. Disrete vortex breathers 99transferring almost all the energy to one of the sites whih originally formedthe ross. The orresponding instability border (for C = 1) in the (µ, ωb)plane is depited by the right urve of �gure 4.12.b.More interesting is the ase of µ < 0. In this regime, we have found thatfundamental vortex rosses experiene another bifuration, with a quadrupletof Floquet eigenvalues leaving the unit irle at λ = +1 (the so-alled har-moni bifuration). With the derease of µ, the orresponding two pairs ofthe eigenvalues move along the real axis in the opposite diretion, until eahpair breaks up, as shown in �gure 4.12.d. The unstable eigenvetors, δΦ∗ and
δΦ∗∗, assoiated with this bifuration are plotted in �gure 4.13.a and 4.13.b(in this notation, ∗ does not stand for omplex onjugation). The shape ofeah eigenvetor reveals strong loalization at two opposite sites of the vortexross, eah one separately breaking the spatial symmetry (2D isotropy) of theoriginal solution. Adding a small perturbation to the solution along one un-stable diretion auses osillations of the amplitudes around the vortex enter,as shown in �gure 4.13.. Suh behaviour persists at longer times; in fat, thevortex pattern does not disappear but rather su�ers irregular modulations ofits loal amplitudes.This piture of the instability development supplements the stability dia-gram for the fundamental vortex rosses, whih is displayed in �gure 4.12.b inthe (µ, ωb) plane (as noted above, for the isotropi model, with C = 1). Notethat the border of the instability whih transforms the vortex ross into itsosillatory ounterpart (the left urve in the �gure) stays in the µ < 0 region,even for large frequenies. Therefore, unlike the HHB desribed above, thisinstability is dominated by the ompetition between the self-defousing inter-site and self-fousing on-site nonlinearities. A further insight into the natureof this bifuration is provided by the observation that it oinides exatly withthe divergene of norm N(ωb, µ) of the disrete breather (and of the vortexross solution), and thus it oinides with the stability interhange betweenin-phase and out-of-phase bound states analyzed above in setion 4.2.2.Regarding the vortex ross as made up of two (perpendiular) out-of-phase bound states of breathers (say, left-right and top-bottom), one wouldbe tempted to interpret the quadruplet of eigenvalues leaving the unit irleat +1 as the two pairs of eigenvalues that signal the simultaneous instabilityof both out-of-phase bound states. At least, this interpretation would explainthe fat that a quadruplet of eigenvalues simultaneously leave the unit irleat +1, and it is fully onsistent with the shape of the Floquet eigenvetors in�gure 4.13. This interpretation suggests that the bifuration of vortex rossesourring in the left part of �gure 4.12.b is the same one experiened by out-of-phase bound pairs of breathers in �gure 4.9 (for separation d = 1). In any ase,
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Figure 4.13: (a) and (b) Intensity pro�les of the unstable Floquet eigenvetors, δΦ∗

δΦ∗∗, orresponding to the bifuration at µ = −0.3 (for C = 1) of the vortex rosswith ωb = 8, see �gure 4.11.d. () Time evolution of the lattie �eld at sites aroundthe enter of the same unstable vortex solution. Pulsoni dynamis of the amplitudesis observed, without deay of the vortex pattern.



4.3. Disrete vortex breathers 101a noteworthy numerial �nding is that these bifurations (of bound states andvortex rosses) not only oinide but are also haraterized by the divergeneof the breather norm.4.3.2 Vortex squaresWe have also studied the smallest (M = 1) vortex squares arrying S = 1vortiity. For this purpose, we have performed the ontinuation of the or-responding solution family, starting from a on�guration with nonzero om-ponents Φn0,m0 = −iΦn0,m0+1 = −Φn0+1,m0+1 = iΦn0+1,m0 =
√

ωb/2 in theantiontinuum limit, eq. (4.18). As in the ase of the vortex ross, we have�rst performed the ontinuation in the oupling onstant C to obtain the or-responding solutions for the DNLS model (C = 1, µ = 0). Again, for low-frequeny vortex squares, we have observed an HHB at some ritial value of
C. For high-frequeny solutions, a bifuration of the same type is observedwhen the ontinuation is performed from the DNLS model to values µ > 0.In �gure 4.14.a, one an observe this bifuration for the vortex square with
ωb = 8. The orresponding HHB (see �gure 4.14.) ours with a quadrupletof the Floquet eigenvalues leaving the unit irle. The behavior of the unstablesolution is the same as for the vortex ross, and, after a transient, a regularbreather with S = 0 emerges at one of orner sites of the former vortex square,while the �eld at three other orners nearly vanishes (i.e. the energy mainlyonentrates at a single site of the initial vortex struture).With the ontinuation of the vortex square to µ < 0, we have again (asin the ase of vortex rosses) found that the solutions su�er a destabilizingbifuration di�erent from that at µ > 0. However, the bifuration for µ < 0 (see�gure 4.14.d) is also di�erent from its ounterpart for the vortex ross (whihwas displayed above in �gure 4.12.d). At some value µ < 0, a quadrupletof Floquet multipliers leave the unit irle, to return to it at +1. After thisbrief exursion, they immediately leave the unit irle again, and instabilitygrows with |µ|. Unlike its ounterpart for the vortex ross, this bifurationdoes not orrespond to the interhange of stability for the bound state ofbreathers analyzed in 4.2.2, whih atually ours at a lower value of µ, wherethe vortex square is already unstable. However, it is remarkable that preiselyat this value of µ the quadruplet of eigenvalues outside the unit irle meetinstantaneously at +1, so that the vortex square is marginally stable at thatpoint.Pro�les of unstable eigenvetors, δΦ∗ and δΦ∗∗, are shown in �gure 4.15.aand 4.15.b. Eah one is loalized at two non-adjaent orners of the plaquettewhere the vortex square is loated. The dynamis triggered by the original
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(n0,m0)→ (n0,m0 + 1)→ (n0 + 1,m0 + 1)→ (n0 + 1,m0)→ (n0,m0)→ ...(4.19)Another noteworthy feature of the dynamis in this ase is that the totalamount of energy that is periodially transferred between neighboring sitesvaries, also in a regular periodi fashion, thus giving rise to the seond fre-queny. Again (as happened for the vortex ross), the instability observed at
µ < 0 indues a pulsoni dynamis of the lattie amplitudes but, in the presentase, the dynamis is muh more regular. An intriguing numerial observationis that the value of µ at whih the quadruplet of eigenvalues meet at +1 (sothat the vortex-square solution momentarily beomes marginally stable) ours
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104 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattiesexatly when the breather norm diverges.The entire stability diagram for the fundamental vortex squares is presentedin �gure 4.14.b. Again, we �nd a narrow stability region for low-frequenyvortex squares that expands as the frequeny inreases.4.3.3 Bound states of disrete vortex rossesAs a �rst step towards the haraterization of the stability of more omplex2D arrangements of vorties, we have studied two types of bound states ofvortex rosses, with the vortex enters aligned along a lattie axis (say, the
x-diretion). In the two types of the bound state, the vorties have equalor opposite vortiities, see �gures 4.16.a and 4.16.b. Both types of solutionswere studied on the isotropi Salerno lattie with ompeting nonlinearities(C = ν = 1 and µ < 0), and were numerially obtained by the ontinuationat µ = 0 from the antiontinuum limit (C = 0), followed by the a seondontinuation in the diretion of negative inter-site nonlinearity µ. The Floquetspetrum of the solution was also numerially omputed along the ontinuationpath.At µ = 0, bound states of vorties with equal vortiities are stable, whilethose with opposite vortiities are unstable. To explain this numerial ob-servation, one has to realize that the right-most member of the breather setforming the left vortex, and its left-most ounterpart in the right vortex areout-of-phase (in-phase) in the former (latter) ase, see �gures 4.16.a and �g-ures 4.16.b. Then, the stability analysis of bound states of breathers reportedabove in setion 4.2.2 suggests that the stability of the bound states of vor-ties is atually dominated by the stability of the loal bound state of thetwo onstituent breathers (one from eah vortex) that are in the losest prox-imity. This analysis is further validated by omparison of unstable Floqueteigenvalues for the bound state of vorties with opposite vortiities and thosefor the bound state of in-phase breathers (for the orresponding values of thefrequeny and separation between the enters).When µ dereases, a destabilizing bifuration ours, as expeted, in theequal-vortiity bound state, preisely at the same value of µ where the simul-taneous instability of the vortex ross (in setion 4.3.1) and the out-of-phasebound state of ordinary breathers ours. By inspetion of the Floquet spe-trum for the bound state of vorties, one an learly identify pairs of eigenvaluesassoiated with eah of these instabilities that take plae simultaneously at thisbifuration point. It lear that the stability of bound states of disrete vortexand that of single vorties in the SM with µ < 0 is related to the behaviourfound for bound states of two pinned breather solutions. The deomposition
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√

ωb/2.These solutions are ontinued in C up to C = 1, and then ontinued in µ. Panel ()shows the evolution of the Floquet multipliers as a funtion of µ when µ < 0. Theresults orrespond to ωb = 8 and the distane between the two vortex enters is setto be d = 5 (as seen in (a) and (b)).of any omplex solution in terms of this latter building bloks is learly ofimportane.



106 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger latties4.4 Mobile disrete breathersEarly and urrent attempts to explore straightaway disrete breather mobilityin isotropi 2D Shrödinger latties seem to agree that "kiking" proeduresmeet huge di�ulties in delivering good mobile solutions, ontrary to the nu-merial experienes in 1D latties. We note here that the formal basis for thosemethods [52℄ takes advantage of the Floquet spetra analysis of exat pinnedbreathers, where the so-alled depinning (symmetry-breaking) mode is identi-�ed. This allows, provided Peierls-Nabarro barriers are small enough, to obtainnie numerial 1D mobile disrete breathers, by omputing trajetories fromperturbations of the exat pinned breather along the tangent spae diretionspei�ed by the depinning eigenvetor. The presene of symmetry-breakinginstabilities leading to exhange of stability between one-site and two-site en-tered pinned breathers [91℄ and the assoiated lowering of the Peierls-Nabarrobarriers to breather displaements (as we observed for the 1D standard SMwhen ν < 0 in setion 3.1.3), hugely failitates the suess of these proedureswhen applied to (both Hamiltonian and dissipative) one-dimensional latties[92, 93℄.In ontrast, our "anisotropi lattie" ontinuation approah takes advan-tage of the availability of exat 1D mobile solutions by monitoring the param-eter C2 of transversal oupling, and then does not rely on how easily one pro-motes lean mobility from pinned loalization. In this way we obtain auratenumerial (px, py = 0, q) �xed points, that is Shrödinger disrete breathersmoving along the strong oupling diretion. We will leave open the questionfor arbitrary diretion of motion whih would imply more sophistiated (andpossibly more unlean) methods of onstrution.In this setion we will fous on the behaviour of the 1D mobile breathersfound for the standard SM (then we set C1 = 1) when the oupling in thetransverse diretion (aounted by C2) is adiabatially inorporated and henethe dimensionality of the solution is inreased.4.4.1 Struture and stability of (1,0,1) �xed points.In �gure 4.17 we visualize the instantaneous real and imaginary omponentsof the 2D disrete �eld pro�le of a typial (1,0,1) Shrödinger breather. Itsstruture an be seen as the natural extension to two-dimensional latties ofthe struture of mobile Shrödinger breathers analyzed in the previous hapter.The numerial solution is spatially asymptoti to a �nely tuned small-amplitudeextended (deloalized) radiation state (Φbkg)m,n
(t) when m,n → ∞. The



4.4. Mobile disrete breathers 107�xed point solution an be thus deomposed as
Φm,n(t) = (Φore)m,n(t) + (Φbkg)m,n

(t) , (4.20)whih de�nes (Φore)m,n(t), the spatially loalized omponent of the solution.It turns out that the spatially deloalized omponent is a highly loalized statein the (ontinuum, in the thermodynami limit) k-spae of wavevetors. Morepreisely, (Φbkg)m,n
(t) is a �nite linear ombination of (1,0,1) -resonant non-linear (i.e. amplitude-dependent frequeny ω) 2D planewaves. It an be saidthat, as might be expeted, 1D Shrödinger breather mobility smoothly persistswhen (strong C1-oupling) 1D hains are oupled transversally. Importantly,the numerial ontinuation for inreasing values of the transversal oupling

C2 proeeds far from the weak oupling regime into where the genuine two-dimensional e�ets start to be manifest, as we will see below.Most notieable, the SVD-regularized Newton proedure invariably seletsthe values ky = ±π/2 for all values of C2 and ν, and thus the values of kx forthe 2D resonant planewave are independent of C2 (so it remains equal to the kvalues of the 1D (1, 1) �xed point for the unoupled hain). The appearane ofan extended bakground modulation in the transversal diretion of ky = ±π/2appears naturally as the best hoie to take advantage of approximately 1Dbreather propagation along strong oupling diretion, for it keeps the valueof kx favoured by the strong oupling C1 value: Any other value of ky wouldentail a di�erent kx value. Note however that this provides only a plausibilityargument for the interpretation of the numerial observation (ky = ±π/2).The high auray of the omputed solutions allows a detailed analy-sis of many issues onerning 2D Shrödinger breather exat mobility alongthe strong oupling diretion. We will fous here on how the existene ofquasi-ollapse instabilities of pinned Shrödinger breathers, for inreasing C2-oupling values, in�uenes the stability properties of moving (1, 0, 1) breathersin the standard SM. In other words, we searh here for genuine 2D e�ets onthese "strong-oupling-diretion" (quasi-1D) moving breathers.We have performed an exhaustive exploration of two setors of the param-eter spae (C2, ωb, ν), orresponding to the breather frequeny values ωb =

2.5843, and ωb = 2.712, by omputing the ontinued (1, 0, 1) �xed point alongthe standard Salerno model. These values of ωb were hosen low enough toallow the analysis of pinned breather quasi-ollapse e�ets on mobility, whihours at relatively low values of Cth
2 (ν) for these values of ω as seen in setion4.2.1 (see e.g. �gure 4.2 for the ase ν = 1, µ = 0).The Floquet analysis of the omputed solutions provides the stability dia-grams represented in �gures 4.18. Both show no qualitative di�erenes: Thereare two regions in the (C2, ν) plane where the (1, 0, 1) mobile breather is lin-
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Figure 4.17: Real, (a) and (b), and imaginary, () and (d), of a mobile (1, 0, 1)-disrete breather of frequeny ωb = 2.712. The parameters of equation (4.1) are
C1 = 1, C2 = 0.14 and ν = 0.95 (µ = 0.05). The insets in (a) and () show thebakground far from the moving ore. It an be observed that the wavenumbers inthe transversal diretion are ky = ±π/2. (b) and (d) show the ontour plot for bothreal and imaginary parts.early unstable. The �gures are not "shemati": Every point of the plane in a�ne grid of values of C2 and ν has been analyzed, i.e. the Floquet spetrum ofthe omputed (1, 0, 1) �xed point is srutinized, as shown in �gures 4.18.b and4.18.d, where the modulus of the Floquet eigenvalues is shown as a funtion ofeither ν (�gure 4.18.b) or C2 (�gure 4.18.d).The �rst unstable region appears at low values of C2 and intermediate tohigh values of the Salerno parameter ν, i.e. it does not our lose to theAL limit. This unstable region is also bounded above in the diretion of C2:The variation of the modulus of the unstable Floquet eigenvalue versus thetransversal oupling parameter C2 shows that the mobile breather beomesstable again at larger values of C2, before the seond instability at even higheroupling takes plae. An important observation is that the pinned disretebreather of the same frequeny is linearly stable at the points in this unstable
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0.16, 0.02 () is shown.region for (1,0,1) mobile breathers. Thus this instability annot be asribed topinned quasi-ollapse e�ets.The seond transition ours for values of C2 lose to, but slightly higherthan, the values Cth

2 of the quasi-ollapse of the pinned breather of the samefrequeny. We had already seen in the previous setion that the quasi-ollapsetransition Cth
2 (ν) is only very weakly dependent on the value of ν, and notethat the same is true for this mobile breather bifuration. These results suggestthat this seond transition is related to quasi-ollapsing phenomena. Signi�-antly, the stability of the (1, 0, 1) mobile breather persists for a small intervalof oupling values above the pinned breather quasi-ollapse. This should beregarded as natural, for the mobile breather is a di�erent solution. Note in�gure 4.18.b that the modulus of the unstable Floquet eigenvalue, in the inte-



110 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattiesrior of the unstable region, reahes muh higher values than those typial forthe �rst type of instability, and dereases for larger values of C2, before thebreather solution eases to exist and only plane wave solutions are obtainedby our numerial method. Note that this behaviour of the unstable Floqueteigenvalue also �ts well to the main features of the pinned quasi-ollapse insta-bility strength, as desribed by the slope ∂N/∂ωb. From now on we will referto this instability of mobile breathers as the quasi-ollapse instability.In the next setion we haraterize both generi types of instability, bylooking at the details of the unstable manifold assoiated with eah type. Aswe will see, pulson states turn out to play a role in the desription of typialtrajetories on the unstable nonlinear manifolds.4.4.2 Unstable manifold behaviour and ubiquity of pulsonstates.First, we analyze the quasi-ollapse instability of (1, 0, 1) mobile breathers.The unstable linear subspae in the tangent spae of the �xed point is one-dimensional. The typial instantaneous pro�le of the (modulus) unstable Flo-quet eigenvetor driving the instability is shown in �gure 4.19.d. It is an expo-nentially loalized 2D pro�le whih deays asymptotially to zero as m,n→∞,i.e. it does not exite radiation. These harateristis are shared by the quasi-ollapse unstable eigenvetor of the pinned breathers, whih further reinforethe previous onsiderations leading us to onsider this instability as the mobileounterpart of the pinned quasi-ollapse transition.In �gure 4.19. we have visualized the time evolution of the �eld modulusontour plot for a typial trajetory on the unstable manifold. This is obtainedby diret numerial integration of the equations of motion, from an initial on-dition in whih a small perturbation along the quasi-ollapse eigenvetor hasbeen added to the unstable �xed point solution. One sees that the breathertranslational motion slows down, and the energy is transferred to width osil-lations. These osillations turn out to be more irregular, see �gure 4.20, thanthose observed in setion 4.2 when we inspeted typial trajetories on theunstable nonlinear manifold of pinned breathers.The di�erene in the harater of the width osillations in both (pinnedand mobile) ases may be asribed to the presene of an extended bakgroundomponent in the mobile breather solution, whih naturally enters into theenergy transfer taking plae during temporal evolution. The slowing downof the translational motion ontinues and eventually the breather pins into aonvulsive pulson state surrounded by the remaining radiation.Now we pay attention to the �low C2� instability of (1, 0, 1) mobile breathers.



4.4. Mobile disrete breathers 111
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

-4
-2

 0
 2

 4
 6

 0
 5

 10
 15

 20
 25

 30
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6 6

 4

 2

|Φn|=0.1
|Φn|=0.5
|Φn|=1.0

n,m

n m

time

m−3

5
10

15
20

n

3

0

(a)

(b)
δΦ

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

-4
-2

 0
 2

 4
 6

 0
 5

 10
 15

 20
 25

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0
 5

 10
 15
 20
 25
 30
 35
 40

|Φn,m|=0.10
|Φn,m|=0.40
|Φn,m|=0.95

n
m

δΦn,m

n m −6

0
−3

3
10 15 20

5

time
(b)

(a)(c)

(d)

Figure 4.19: Time evolution of two unstable solutions, (a) and (), of frequeny
omegab = 2.584 and the assoiated unstable Floquet eigenvetor, (b) and (d) re-spetively (C1 = 1). Figures (a) and () show the time evolution of the ontourlines orresponding to three di�erent values of |Φn,m|, in order to visualize the 4-dimensional funtions |Φn,m|(t). Figures (a) and (b) shows the �ssion of the breathersolution when perturbed along the unstable �M-shaped� Floquet eigenvetor plottedin (b). It an be seen how a low amplitude pulse emerges and the mobile breather be-omes pinned. After this transient this low amplitude pulse deays into radiation. Theparameter of equation (4.1) are C1 = 1, C2 = 0.08 and ν = 0.5 (µ = 0.5). In the aseof �gures () and (d) the parameters are the same exept for C2 = 0.19. In this asethe solution is in the �quasi-ollapse� unstable region shown in �gure (4.18.a). The�nal state when perturbed along the unstable eigenvetor (d) is a traveling breatherwhose amplitude osillates in the same fashion as that of the pinned quasi-ollapsingbreathers, i.e the loalization enter osillates out of phase with respet to all theother sites on the lattie.The modulus pro�le of the unstable Floquet eigenvetor that drives this insta-bility is M-shaped (bimodal), as shown in �gure 4.19.b, and is asymptoti toan extended planewave-like pro�le as m,n → ∞, i.e. it is not a purely loal-ized perturbation. It is indeed rather di�erent from the quasi-ollapse unstableeigenvetor analyzed above, whih is onsistent with the fat that the pinnedbreather of the same frequeny is linearly stable in this region of parameterspae. As argued above, this instability is not related to quasi-ollapse phe-nomena, and it does not appear in the region of small values of the Salernoparameter ν, lose to the AL limit.A typial trajetory on the unstable manifold assoiated with this insta-bility is shown in �gure 4.19.a, where we have plotted the time evolution of
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Figure 4.20: Time evolution of the maximum value of the modulus |Φn,m|(t) along theentral (m = 0) hain and the adjaent (m = 1) one for a mobile (1, 0, 1) breather withfrequeny ωb = 2.584. This magnitude is normalized to the initial value |Φn,m|(t0).Figure(a) shows this evolution for an stable situation (C2 = 0.15, ν = 0.5). It anbe observed how the loalization enter (m = 0) and is neighbour in the transversaldiretion (m = 1) follows two in-phase periodi trajetories in their modulus dueto the Peierls-Nabarro barrier surpassed during the motion. In ontrast, �gure (b),shows the ase when the breather is unstable (C2 = 0.19, ν = 0.5). Here the quasi-ollapse dynamis is manifested while the loalization enter moves aross the lattie.As an be observed, the osillations of the two amplitudes are out of phase and theamplitudes of these osillations are one order of magnitude higher than those of �gure(a).the �eld modulus ontour plot. We an see there that the mobile breatherpins quikly while a small pulse moving bakwards is ejeted, whih spreadsand �nally mixes with the remaining deloalized bakground. However someenergy is transferred to width osillations of the pinned breather so that alsoin this ase we observe the formation of pulson states surrounded by the re-maining radiation. As the main di�erene of this behaviour, with respet tothe evolution observed on the quasi-ollapse unstable manifold, is the ejetionof the small moving pulse, we refer to this instability as �ssion.By inreasing the strength of the initial perturbation along the diretionof the unstable eigenvetor, one observes that the size of the ejeted pulseinreases. This observation is onsistent with the results reported in [127℄,where the evolution of initial moving Gaussian pulses in isotropi 2D Shrö-dinger latties was studied. These numerial experienes lead the authors toonlude that "the harateristi feature of the disrete quasi-ollapse of amoving pulse is the splitting of the initially moving broad pulse into a trak ofthe standing narrow strutures ..." (si). However, we see from our study ofthe stability of exat moving disrete breathers that the �ssion and the quasi-ollapse instabilities have di�erent origins and they appear in di�erent regionsof parameter spae. On the other hand, the ubiquitous phenomenon of widthosillations of pinned loalized strutures (pulson states) annot be asribed



4.5. Conlusions and Prospetive Remarks 113to quasi-ollapse. They also appear as the preferred way to alloate exess of(loalization) energy in regions of parameter spae far from the quasi-ollapseunstable region.4.5 Conlusions and Prospetive RemarksWe have studied here the dynamis of exat numerial disrete breathers(pinned, vortial and mobile ones) in a two-dimensional anisotropi nonlinearShrödinger latties. These solutions are omputed from a set of unoupled1D hains into inreasing non-zero values of the oupling in the transversaldiretion in order to reah the 2D limit. It is onvenient review the mostsalient results in order to have a ompat piture of the 2D behavior of dis-rete breathers.Pinned breathers.- We have performed an extensive exploration in the pa-rameter spae (ωb, C2, ν) of breather frequeny, transversal oupling andSalerno parameter, by omputing the Floquet spetra of the numerial so-lutions. Both the 1D solutions of the standard and the ompeting SM havebeen ontinued into the 2D regime in order to see the e�ets of the dimen-sional inrement. In partiular we have found the link between the unstablebehaviour found for ertain breather frequenies in the 1D ompeting Salernomodel (whose pulsoni harater resembled those of the well known 2D unsta-ble solutions) and the quasi-ollapse instability that appears for low frequenybreathers when the oupling in the transverse diretion is inorporated. Fur-thermore, we have analyzed the dynamis on the quasi-ollapse unstable man-ifold, where the unstable breather experienes a shift in frequeny towards the(higher) value of the stable breather with the same norm. The exess of en-ergy is oherently transferred to osillations of the breather width, so that theresulting pulson state is haraterized by two frequenies. We have also reov-ered the 2D ounterpart of the 1D uspons and peakons for the 2D SM withompeting nonlinearities. Again these hyperloalized states are stable Finally,the stability analysis of in-phase and out-of-phase bound states of breathers inthe isotropi lattie reveals that there is a stability interhange between bothtypes of bound states, preisely at the same value of the intersite-nonlinearityparameter (µ) where the breather norm diverges as happened for the 1D model.Vortex breathers.- In addition to fundamental breathers, disrete vortiesof two types, ross- and square-shaped ones, have also been onstruted, andtheir stability regions identi�ed. In diret simulations, unstable vorties inthe standard 2D Salerno model of the ordinary type transform into regularbreathers, while in the model with the ompeting nonlinearities the instabilityturns vorties into loalized vortial pulsons, without destroying their topo-



114 Chapter 4. Disrete Breathers in 2D Nonlinear Shrödinger lattieslogial harater. It is then worth mentioning the ubiquity of this pulsoniattrators of the dynamis in the model. Regarding the stability of boundstates of vortex rosses, we have shown that it is determined by the stability ofthe loal bound state of two onstituent breathers (forming the two vorties)whih are in the losest proximity.Mobile breathers.- We have studied disrete breathers moving along thestrong oupling diretion for the standard 2D SM. These solutions are om-posed of an exponentially loalized ore on top of an extended bakgroundwhih is itself the �nite sum of a �nite set of nonlinear 2D plane waves. Thetime sales assoiated with these plane waves are resonant with the ore inter-nal frequeny as happens in the 1D ase. In partiular, the bakground hoosesa �nite set of plane waves from a ontinuous family of resonant solutions. TheFloquet analysis of these mobile disrete breathers reveals the existene of twodistint types of instability. One is the ounterpart, for mobile breathers, ofthe quasi-ollapse experiened by pinned breathers. The other instability o-urs in a region of parameter spae where pinned breathers are linearly stable.The analysis of the dynamis on the unstable manifold show that the exess ofenergy is partly transferred to a small moving pulse, ejeted from the enterof loalization, whih justi�es the designation of a �ssion instability. However,part of the energy exess is also transferred to width osillations. The ap-pearane of pulson states far from the quasi-ollapse regime indiates that thetendeny to alloate energy in the form of width osillations is a general 2Dfeature, not exlusively assoiated to quasi-ollapse instabilities.We leave the question on mobility of 2D disrete breathers in an arbitrarylattie diretion. The results obtained here shed light about how this mobil-ity an be obtained. In fat, our experienes show that mobility of pinnedbreathers an be indued based on the existene of the extended bakgroundin the numerially exat mobile solution. On the other hand, the results ob-tained here and the aforementioned future work may help to design and betterunderstand reent numerial experiments reported in [136℄, onerning the in-teration between high amplitude pinned breathers and mobile ones. Theseexperiments provides a possible way for routing and bloking mobile disretebreathers via the interation with the high amplitude pinned ones, resultingin a plausible implementation of logial funtions.



Part IIStruture and Dynamis ofComplex Networks





Presentation of Part II
The seond part of the Thesis is devoted to the study of the strutureof omplex networks. Traditionally, physis has foused on systems where theunderlying topology of elements' interations is desribed by regular lattiessuh as those studied in the preeeding part. However, in the reent years,physiists have started to look to those systems where the interations amongonstituents re�et the abstrat relations between pairs of elements ratherthan being determined by the proximity in a physial spae. These relationsan be determined by the existene of monetary transations between banks ineonomi networks, or ooperative and friendship relations between individualsin soial networks, or assemblies of di�erent moleules working together todevelop ellular tasks in biologial networks, et... From the highest to thelowest level of desription we �nd omplex networks of interative elementsthat annot be desribed by regular patterns of onnetions. The growinginterest in the haraterization of the above systems has led to the emergeneof the so-alled network siene [137℄. Let us review the development of thisnew interdisiplinary �eld.One an settle the �rst steps of network siene with the works on graphtheory [138, 139℄ in the middle of last entury. The most remarkable resultis the theoretial analysis of a random network by the mathematiians PaulErdös and Alfréd Rényi [140, 141℄. However, networks where interationsamong elements are ompletely random are a oarse-grained approah to realnetworked systems, assuming a homogeneous disorder in what onerns thepatterns of onnetions. The burst in the study of omplex networks amewith the advent of the XXI entury along with the development of the Inter-net and the World Wide Web. This development has provided a large amountof data-sets for unveiling the relations established among industrial ompa-nies, institutions, sientists, et... Besides, the explosion of human mobility(provided by the inrease of aessible infrastrutures and transportation om-panies) and the boom of new teleommuniations tools (mobile phones, instantmessaging servies, et...) has hugely failitated the stablishment of new agentnetworks with a high global harater. These two ingredients, the emergeneof new networked systems and the high aessibility to data-sets desribingthem, onstituted an unpreedented opportunity for sientist to analyse theirtopologial features.The analysis of real omplex networks revealed that seemingly di�erentsystems share a ommon property when looking to the distribution of thenumber of onnetions that the elements of the networks have. It is found



118[142�154℄ that most of the networks present a power law funtional shape forthis statistial quantity and, therefore, they di�er from that aounted by PaulErdös and Alfréd Rényi, where all the elements present a similar number ofneighbours. Besides the surprising fat that real networks (aounting for manydi�erent types of interations) share the sale-free harater, understanding the(ommon or not) origin of this internal organization has beome a hallengingquestion for many researhers.The above astonishing �ndings lead physiists to onstrut simple modelsof network growth in order to reprodue the �universal� properties found forreal networks. In this sense, the models developed by Dunan J. Watts andSteven H. Strogatz [155℄, and Albert-László Barabási and Réka Albert [145℄deserve speial mention. Another diretion of researh has been foused by thesearh for statistial measures of network topology in order to handle e�ientlythe large amount of available data-sets and haraterize those networks theyrepresent with a few meaningful indiators. The purpose of these two typesof studies di�er strongly from those of onern of traditional graph theory(where rigorous theorems of di�ult real appliation are proved) and, at thesame time, are methodologially far from the metiulous system harateriza-tion performed by biologists (who tend to overpay attention to single elementdetails to atalogue systems so that a unitary analysis of di�erent systemsbeomes di�ult). The statistial point of view and the unitary approah tothe problem of network haraterization performed by physiists have learlytaken advantage over other disiplines under the name of statistial physisof omplex networks2. In hapter 5 we will brie�y review the most importanttools for haraterizing network struture and present two model of synthetinetwork generation.The next step of network siene has been to look to network dynamis.Most networks are not omposed of mere stati objets but, on the ontrary,their elements develop a funtion. This funtion an be as simple as beingrouters for the transfer of entities among their elements, or as ompliatedas being regulatory agents of some internal dynamial proesses performed ateah network node.It is important to di�erene two kind of studies to the problem of networkdynamis. On one hand, given that real networks an be desribed by a set ofstatistial measures and that one an stablish subsets of networks whih arequalitatively similar in terms of these quantities, it is therefore interesting to�nd how to implement dynamial proesses on top of the network in order totake advantage of these topologial harateristis. This searh for e�ientalgorithms is not only motivated for pratial purposes but it is also interest-2Interesting reviews and tutorials on the subjet are found in [156�163℄.



119ing for studying the interplay between dynamis and the underlying networkedsubstrate. In this sense, the models developed for onstruting syntheti net-works are a useful benhmark for studying this interplay before applying theresults to real networks. This �rst kind of studies are therefore interesting fornetworks whose dynamis an be modeled or modi�ed. This is the ase oftehnologial, logisti and ertain soial networks, e.g. information and trans-portation networks are suseptible targets of this kind of studies. In hapter 6we will deal with two related problems, namely the interplay between networkstruture and, �rst, the performane of immunization strategies aimed at stop-ping the spread of epidemis and, seond, the routing poliies for informationdynamis.As we mentioned above there is a seond kind of studies on network dy-namis. Instead of varying the dynamial properties assuming a �xed substratein this seond lass of studies both struture and dynamis are asummed too-evolve towards a stable state where system's performane is optimal. Wewill leave the disussions on this interesting problem for part III and now letus fous on the study of the struture of networks and its in�uene over thedynamial performane.





Chapter 5Network Struture andGeneration There may well be no useful parallel to be drawnbetween the way in whih omplexity appears in thesimplest ases of many-body theory and hemistryand the way it appears in the truly omplex ulturaland biologial ones, exept perhaps to say that, ingeneral, the relationship between the system andits parts is inteletually a one-way street.� Philip W. Anderson in More is Di�erent [2℄.
This hapter is devoted to the desription of the struture of networks andthe modelling of their growth and evolution. We have seen in the preedingpages that a great amount of empirial data about the patterns of onnetionsamong the onstituents of soial, tehnologial, logisti and biologial networksis nowadays available. At this point several questions arise suh as How sim-ilar real networks are? or Is there any ommon feature (regularity) betweennetworks with the same funtion? In order to answer (if possible) these kindof questions we have to de�ne some properties that would allow us to give aquantitative and qualitative desription of the arhiteture of networks. Afterde�ning these magnitudes we will brie�y desribe some important models ofsyntheti networks that try to apture some of the ingredients observed whenanalysing the �native� ones. We will round o� the hapter with a deep analysisof two models of network design that will be employed along the forthomingparts of this Thesis.



122 Chapter 5. Network Struture and Generation5.1 Desribing Complex NetworksBefore de�ning the magnitudes employed for desribing the networks we give abrief aount of some formal de�nitions and notations inherited from lassialgraph theory. Afterwards, we list and explain the most used quantities forharaterizing networks' struture at loal, global and mesosopi levels.5.1.1 Basi de�nitionsWe start with the formal de�nition of a network (or, in mathematials terms,a graph) G(V,E) as an ordered pair of set of sets: a non null set V of elementsalled nodes (or verties) and another set E of pairs (i, j), with i, j ∈ V , alledlinks (or edges, ars) that denote that nodes i and j are onneted. Normallyone imposes that i 6= j so that self-onnetions are avoided. We will denoteby N and L the ardinalities of the sets V and E respetively. Along withthis de�nition we an also onsider that the elements in E are ordered pairs
(i, j) 6= (j, i). In this ase we will talk of a direted network (or digraph). Itis also very ommon to assign weigths (numbers) to the edges so that we havea weighted (or valued) network. The ardinality of V and E an tell us aboutthe nature of the graph. Taking into aount that the maximal ardinality of
E is ( N

2

) we will talk about a sparse network when L ≪ N2 and a dense onewhen L ∼ N2.A subgraph G′(V ′, E′) of G(V,E) is a graph suh that V ′ ⊆ V and E′ ⊆ E.A subgraph is said to be maximal with respet to a given property if it annotbe extended by adding elements either to V
′ or E

′ without loosing its property.Aditionally, we say that a subgraph G′ is indued by G if E
′ ontains all thepairs (i, j) ∈ E with i, j ∈ V

′ .The omplement of a graph G(V,E) is the graph G
′

(V ′, E′) (sometimesdenoted G) so that V = V
′ but whose edge set E

′ onsists of the edges notpresent in E. Then a graph G(V,E ∪ E
′

) will be a omplete graph, i.e. everynode will be onneted with the rest of the N − 1 nodes.In order to manage with a graph one usually label with natural numbersthe elements of V so that i = 1, ...,N . Di�erent assignation of labels to theelements of V yield isomorphi networks and the topologial properties are nota�eted. Formally, two graphs G1(V1, E1) and G2(V2, E2) are said isomorphiwhen one an stablish a bijetive relation φ : V1 → V2 that preserve theonnetions, i.e. if (i, j) ∈ E1 then (φ(i), φ(j)) ∈ E2.One an represent the graph with the so-alled adjaeny matrix A whoseelements are aij = 1 if (i, j) ∈ E and aij = 0 otherwise. This matrix will



5.1. Desribing Complex Networks 123be symmetri for undireted graphs but, in general, this is not the ase for di-graphs. In the ase of weighted networks one an replae the non zero elementsof A by the weights of the orresponding links in order to obtain a ompleterepresentation of the graph.The analysis of the adjaeny matrix will give the topologial harateri-zation of the networks. At present, there is a large amount of di�erent mag-nitudes used for haraterizing the networks arhiteture. However, the morespei� �eld we study the more properties we will �nd for desribing theseomplex topologies. Then, we will only emphasize on those quantities whihare of general use and therefore will be used along the works desribed in thisThesis. We will divide the magnitudes depending on the sale involved fortheir de�nition. From our point of view this is a useful de�nition sine loal(mirosopi) or global (marosopi) properties play a key role depending onthe kind of dynamis plaed on top of the network.5.1.2 Single nodes propertiesLoal MagnitudesWe will refer to loal quantities when one takes into aount a node i and itsneighbours, Γi. Obviously, the �rst loal property is the degree of a node i, ki,whih is the ardinal of the set Γi, i.e. the number of nodes whih i is linkedto or, in terms of the adjaeny matrix
ki =

N
∑

j=1

aij . (5.1)If one is onsidering a direted network one will talk about the �in-degre� of anode i, kini , and its �out degree�, kouti , whih are the number of inoming andoutgoing links that a node shares with its neighbours. Again, we an obtainsuh quantities from the adjaeny matrix by
kini =

N
∑

j=1

aij and kouti =

N
∑

i=1

aij . (5.2)Another interesting loal measure is the so-alled lustering oe�ient ofa node whih measures the number of onnetions among the neighbours ofa node, ei. This quantity is usually normalized to one by dividing by itsmaximum value ( ki

2

) so that it measures the probability that two neighbours
j and m of a node i (aij = aim = 1) are also linked to eah other (ajm = 1).



124 Chapter 5. Network Struture and GenerationA formal expression of the lustering of a node i with ki neighbours is
ci =

2
∑N

j,m=1 aijaimajm

ki(ki − 1)
. (5.3)A third loal property arise when looking at the degree of the neighboursof a given node (here we assumme that this information is on the loal horizonof the nodes) so that we an de�ne the average nearest neighbours degree. Wean write this quantity as

knni =

∑N
j=1 aij

(

∑N
m=1 ajm

)

∑N
j=1 aij

. (5.4)Global MagnitudesNow we will de�ne two properties that are de�ned taken into aount pairsof nodes that are not neessarily linked and are then in�uened by the topol-ogy of the whole graph. These measures are the loseness entrality and thebetweeness entrality. As we will see in setion 6.2 these two magnitudes willplay a key role when dealing with problems of propagation through networks.First of all we de�ne the distane between two elements of the network, dij ,as the length of the geodesi that goes from node i to j. In priniple, one anobserve more than one geodesi for a pair of nodes. One an then onstrut thedistane matrix D so that the element Dij = dij . This matrix is symmetri inthe ase of undireted graphs but, in priniple, this is not the ase in diretedones. One we have onstruted D one an ompute the loseness entralityof a node, Di, as the inverse of the average distane between it and the rest ofthe nodes
Di =

N − 1
∑

j∈V i di,j
. (5.5)The purpose of measuring this property is to know whether a node holds aentral or a peripheral position in the network.
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Figure 5.1: Two di�erent situ-ation in terms of the lusteringof the striped node. In the �rstase (left) lustering is 0 whilefor the seond example (right)the probability of �nding twoonneted neighbours raises to
2/7.



5.1. Desribing Complex Networks 125Closely related with the above magnitude but rather more sophistiatedis the betweeness entrality of a node, bi. The betweeness tell us how manygeodesis between any pair of nodes (j,m) go through node i. Then, measuringthe betweenes of a node implies not only knowing D but the di�erent sequenesof nodes (of minimal ardinality) we have to over for going from one node toanother. If we express by σj,m the number of geodesis for going from j to mwe an onstrut a σj,m ×N matrix G(j,m) whose elements are either 1 or 0so that row k tell us the sequene of nodes that are ontained in geodesi k by
G(j,m)k,l = 1 if node l is part of the geodesi sequene and 0 if not. Then wean express the betweenes of node i by

bi =
∑

{j,m∈V |j 6=m}

∑σj,m

k=1 G(j,m)k,i

σj,m
. (5.6)It is easy to realize that this magnitude will be important whenever there is a�ow of information aross the network sine it allows us to unveil whih nodeswill support the highest tra� levels.5.1.3 Network propertiesUp to now, we have de�ned quantities that only made referene to the prop-erties of single nodes. However we need a statistial haraterization of thesemagnitudes in order to have a proper desription of the networks. These sta-tistial indiators will involve averages of the single-node quantities over thewhole set V of nodes. This implies that the validity of the information pro-vided by the statistis will be only justi�ed when the ardinality of V , is verylarge N → ∞. This assumption is not always ful�lled when looking at realnetworks, e.g. the largest studied network (the WWW) has 109 nodes whihis orders of magnitude smaller than the number of partiles of the systemsstudied by statistial and ondensed matter physis. However, the use of astatistial desription has turned out to be very onvenient when studyingnetworks and the existene of �nite size e�ets do not prevent physiist fromonsidering networks as marosopi objets (although in terms of statistialmehanis they are mesosopi ones).Degree DistributionThe degree distribution, P (k), gives the probability that a given node is on-neted to k neighbours. The onstrution of P (k) is obviously easy when oneknows the onnetivity ki of every node i and then one an ompute the num-ber of nodes with a given onnetivity k, Nk = NP (k). With the degree
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10−1 10−1Figure 5.2: Degree distribution of the three real networks: Gnutella peer-to-peernetwork [164℄, the Internet network at the Autonomous Systems representation [165℄and at the Router level [166℄. The network sizes are N = 711, N = 11174 and
N = 228263 respetively.distribution one an measure the average degree of the nodes

〈k〉 =
∑

k

kP (k) . (5.7)Analogously, we an de�ne the in-degree and out-degree distribution of adireted graph, P in(kin) and P out(kout). In this ase we will obtain that
〈kin〉 = 〈kout〉 = 〈k〉/2. In order to obtain information of the �utuationson the degree distribution one an ompute the seond moments of P (k),

〈k2〉 =
∑

k

k2P (k) (5.8)The behaviour of 〈k2〉 turns out to be very important for studying dynamialproess as we will see in hapter 6.As mentioned above, the measurement of the degree distribution in realnetworks lead to an astonishing result. It was found that lots of networks sharea ommon pattern for the shape of P (k): a power law behaviour P (k) ∼ k−γ .This result is far from the expeted result when onsidering a fully randomgraph (one would expet to obtain a Poisson distribution as we will see below)and, as a plus, the form of a power law pointed out that there was a kind ofsef-organization in real networks. Power laws appear in the ontext of phasetransitions when a system goes from a disordered to an ordered phase. It is wellknown that at the transition the system posseses a self-similar harater, thatis, no matter the re-saling we employ to analyse the system we will alwaysobserve that the system looks the same. This e�et is re�eted by a powerlaw sine it is the unique funtion that after hanging the sale remains withthe same funtional form: if k → ak then P (k) → a−γP (k). Beause of thisfeature this lass of networks are ususally termed �Sale-free� networks in the



5.1. Desribing Complex Networks 127literature. In �gure 5.2 we show di�erent degree distributions observed whenanalysing real networks. We will analyse the emergene of suh behaviour forthe degree distribution in setion 5.2.3. Let us remark here that the termsale-free ould be in priniple misleading beause the absene of a typialsale in the degree distribution does not imply that we annot observe saleswhen looking at other topologial magnitudes.Degre-Degree CorrelationsThe knowledge of the degree distribution fully haraterize the network topol-ogy when the statistial independene of the nodes is ful�lled. However thisis not the ase for many real networks. Then, it is onvenient to ompute theonditional probability P (k
′ |k), i.e the probability that a node of degree k islinked to another one with degree k

′ . This probability satisfy
∑

k′

P (k
′ |k) = 1 (5.9)and

kP (k
′ |k)P (k) = k

′

P (k|k′

)P (k
′

) , (5.10)whih are the normalization and the detailed balane1 respetively. As westated above, for unorrelated graphs P (k
′ |k) is given by the degree distribu-tion. From (5.9) and (5.10) we obtain in this ase P (k

′ |k) = k
′

P (k
′

)/〈k〉.In order to measure the behaviour of P (k
′ |k), it is onvenient to omputethe average degree of the neighbours of a node with onnetivity k, knn(k).In general, the omputation of the matrix, Pk′ ,k = P (k

′ |k), yields very noisyresults sine the �nite size e�ets do not allow a proper statistial treatment.Then, we an ompute the funtion knn(k),
knn(k) =

∑

k′

k
′

P (k
′ |k) , (5.11)by simply omputing the average neigbours degree,knni introdued in setion5.1.2 and averaging in every subset of nodes with idential degree

knn(k) =

∑

{i∈V | ki=k} knni

kP (k)
. (5.12)When degree orrelations are absent eq. (5.12) yields knn(k) = 〈k2〉/〈k〉and thus knn(k) does not depend on k. As noted above this is not the ase1This equation is onstruted by introduing the probability of �nding a link onnetingtwo nodes with degree k and k

′ , P (k, k
′

) = 2kP (k)P (k
′

|k)/〈k〉, and imposing its simmetryproperty P (k, k
′

) = P (k
′

, k).
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Figure 5.3: Degree-degree orrelationsof some of the real networks usedin this thesis. (a) Average on-netivity of a vertex with degree k,
knn(k), for the Gnutella peer-to-peernetwork [164℄ and the Internet (at theAutonomous System level, AS [165℄)graphs. These networks display disas-sortative degree orrelations betweenonneted verties, where two neigh-boring verties likely have dissimilardegrees. (b) knn(k) for the Inter-net (at the Router level [166℄) graph.This network displays assortative de-gree orrelations between onnetedverties, where onneted verties tendto have similar degrees. The ontinu-ous lines are the best �ts to the powerlaw knn(k) = Akν .of real growing networks and one an usually �nd that knn(k) ∼ kν . When

knn(k) is a inreasing (dereasing) funtion of k, ν > 0 (ν < 0), we say that thenetwork is assortative (dissasortative). The assortativity denote the tendenyof nodes of similar degree to onnet with eah other while in dissasortativenetworks higly onneted nodes tend to be surrounded by low degree ones.There is a lear di�erene in the behaviour of knn(k) depending on the type ofthe network. In partiular, it has been observed that soial network tend tobe assortative while the rest ones (like tehnologial and biologial networks)show dissasortative trends. In �gure 5.3 we show the analysis for knn(k) ontwo real networks.Average Shortest Path LengthWe an ondense the information of the distane matrix D by omputing themean of all the geodesi lengths between the nodes of the network. This givesthe average shortest path length, L

L =
1

N(N − 1)

∑

{i,j∈V |i6=j}

dij . (5.13)Along with L we an de�ne the diameter of a network as the maximum valueof the distanes between nodes, D = max {dij | i, j ∈ V }. The analysis of thisquantity tells us whether the graph is omposed by one or several omponents.
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� Figure 5.4: An example of a tree-like graph with oordination num-ber 2.We term a omponent of a graph as a subset of nodes V

′ ⊆ V so that thedistane between any node i ∈ V
′ and the rest of nodes j ∈ V \ V

′ divergeswhile the distane with the nodes j ∈ V
′ remains �nite. Obviously both L and

D will diverge if the graph is partitioned in two or more omponents. In realgraphs this situation is ommonly found and one usually restrit the analysis ofthe network to the omponent with maximal ardinality whih is the so-alled�giant omponent�.Formaly, a network whose L grows logaritmially with the number of nodes,
L ∼ log N , or even slower, is alled a �small-world�. This term omes from thefamous experiment by Milgram in the 60's [167℄. This experiment onsisted inasking a group of people to deliver some douments to a person haraterizedby his name, plae of residene and his pro�esion. Then people were asked tosend the douments to those of their aquaintanes that they think of beingloser (either physially or soially aording to the initial parameters given)to the �nal reipient. The results pointed out that every pair of people in theworld are in average onneted by only 6 steps in the global network of soialaquaintanes. This results is broadly known as the �six degrees of separation�.Other experiments performed using the e-mail networks [168℄ on�rmed thesmall-world harater of the global soiety.From the mathematial point of view the small-world e�et is nothingbut the outome of an exponential inrease of the nodes with the distanefrom a entral element. A simple proof of the small-world phenomena an beperformed using one of the simplest networked struture: a tree-like graph. Atree-like graph (see �gure 5.4) is omposed of a hierarhial struture whereevery node is onneted to d desendants and its anestor (d is usually termedoordination number). In this ase the number of nodes whih are in the ishell (or generation) from a given node is Ni = di. Then, the whole set ofnodes are N = dL so that the average path length of the network is given by
L = log N/ log d so that L remains small even for large tree-like graphs.



130 Chapter 5. Network Struture and GenerationClusteringIn setion 5.1.2 we introdued the onept of the lustering oe�ient of anode, ci. One an measure the average lustering oe�ient of the nodes of anetwork, c, and onsider it as a measure of the density of small loops of length
3 in the network. Then, c will tell us how similar is our network to a tree-likenetworked struture (see �gure 5.4) (if c→ 1 one an say that the network is farfrom being a tree graph). This measure was introdued by Watts and Strogatz[155℄ but there are, however, another possible formulation for measuring thedensity of short iruits in a network that is alled transitiviy, T . Trasitivityis de�ned by

T =
3× ard [{(i, j,m) | (i, j), (i,m), (j,m) ∈ E}]ard [{(i, j,m) | (i, j), (i,m) ∈ E}] . (5.14)While lustering was introdued reently in the physial literature the on-ept of transitivity was largely employed mainly by soiologist. These twomagnitudes turn out to be meaningfull when looking at networks of di�erent�elds. It is well known that soial networks of aquaintanes present a highlustering denoting the fat that two friends of a person are very likely toknow eah other. That is the ase of sienti� oautorship networks [148, 169℄.On the other hand, tehnologial networks like peer-to-peer networks [170℄ orpower grids [155℄ are very poor in length 3 loops sine they are redundant inwhat refers to resoures supply.The existene of a high lustering together with the small-world haraterlead to very e�ient ommuniation strutures. This is beause the inreaseof networks' lustering leads to a growth of the number of geodesis betweenthe pairs of nodes.5.1.4 Looking at Networks MesosaleThe statistial desription of the networks onsidered above an be extendedby looking at the kind of internal organization of subsets of nodes (if there isany). This implies that neither single nodes nor the whole ensemble of vertiesare studied, but groups of them whose ardinals may vary a lot depending onthe kind of network we deal with. The sale involved in suh studies neitheran be alled �miro� nor �maro� and thus we term it the network mesosale.Two onepts are entral in this piture of the networks: ommunities andmotifs.



5.1. Desribing Complex Networks 131CommunitiesThe onept of ommunity2 has to do with the existene a ohesive subsetof nodes. This ohesion is ahieved by the existene of large number of linksamong the members of this subset ompared to the typial number of linksthat they share with the rest of the network. More formally we an say that,given a graph G(U, V ) a ommunity is a subgraph G′(U ′, V ′) so that L′ .ard {i ∈ U ′ | (i, j) ∈ V, j ∈ U}. Obviously, we need a quantitative desriptionon how ohesive a subset of nodes is in order to deide whether or not theyform a ommunity.Several ways for quantifying ommunity strutures have been proposed.However we an distinguish to kinds of de�nitions depending of the onditionsimposed. The �rst type imposes ertain onstrains to the number of linkswithin the members of the ommunity. In this sense, the strongest de�nitionstates that a ommunity is a subgraph G′(U ′, V ′) so that if i, j ∈ U ′ then
(i, j) ∈ V ′), i.e. all pairs of ommunity members are linked to eah other.This de�nition is too restritive and then far from being useful. In fat, themaximal subgraph G′(U ′, V ′) that ful�lls the above requirement is termed alique. One an relax the onditions and onsidering that ommunities as then-lique of the graph. N-liques are maximal subgraphs in whih the largestgeodesi distane between any two nodes is no greater than n. Other way forrelaxing the former ondition is to redue the number of other nodes in thesubgraph to whih eah node must be onneted, the onept of k-plex is thenapplied. A k-plex is a maximal subgraph ontaining n nodes, in whih eahnode is adjaent to no fewer than n− k nodes in the subgraph.The above de�nitions have to do only with the links within the elements ofthe subgraphs and there is no mention to the ratio between these inner-linksand those going to the rest of the network. From our point of view this kindof arguments have to be inorporated to our riterion in order to get loser tothe ohesive piture. Then, we have to look to ommunities as groups of nodeswithin whih onnetions are dense, and between whih onnetions are sparseror, more formally, we an say that, given a graph G(U, V ) a ommunity is asubgraph G′(U ′, V ′) so that L′ . ard {i ∈ U ′ | (i, j) ∈ V, j ∈ U}. An exampleof this onsideration is plotted in �gure 5.5.a. There are several de�nitionswith this philosophy (see [171℄). One de�nition is the following: G′(U ′, V ′) isa ommunity if the sum of all degrees within G′ is larger than the sum of alldegrees toward the rest of the graph [172℄.2The �rst network desription in terms of ommunities appear in the ontext of soialsiene [171℄
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(a) (b)Figure 5.5: (a) Shemati piture of a set of 4 ommunities (surrounded by dashedirles). The density of inner-links between nodes of the same ommunity is muhlarger than that of the links with members of the rest of the network. (b) The 7possible 4-nodes motifs.MotifsWe de�ne a motif M as a pattern of interonnetions so that its ourrenein a graph is signi�antly higher than in randomized versions of the graph,i.e. graphs with the same number of nodes, links and degree distributionas the original one, but where the links are distributed at random. Moreformally, M is usually onsidered as a n-node onneted graph whih is asubgraph of G. An example of all the possible 4-node onneted graphs isillustrated in �gure 5.5.b. The onept of motifs (originally introdued byUri Alon and oworkers [173�177℄) was employed for studying the �nding ofreurrent patterns of interonnetions between a small number of nodes inbiologial and other networks.In order to obtain a quantitative desription for the appearane of thesigni�ant motifs in a graph G, one makes use of mathing algorithms forounting the total number of ourrenes of eah n-node subgraph M in theoriginal graph and in the randomized ones. Then, one an de�ne the statistialsigni�ane of a given motif M by some sore funtion, like the so-alled Z-sore [174, 176℄
ZM =

nM − 〈nrand
M 〉

σrand
nM

, (5.15)where nM and nrand
M are the number of times the subgraph M appears in Gand in its randomized ounterpart repetively. σrand

nM
is the standard deviationof the number of appearanes in the randomized network ensemble.



5.2. Overview of network generation models 1335.2 Overview of network generation modelsIn this setion we brie�y aount for several important network models. Nowa-days there is a huge number of ways for generating omplex networks that tryto apture the properties of real graphs. Many of them are variations of themodels we present below sine they represent seminal works on the matter.For a omplete review on urrents trends in network modeling we refer thereader to [156, 158, 159, 163℄.5.2.1 Random graphsWe all random graphs to those network where the links between nodes arerandomly distributed3. In their seminal work in the subjet, Erdös and Rényi[140℄ (ER for short) proposed a method for the onstrution of random graphswith N nodes and L links: Starting from N isolated nodes, pairs of randomlyhosen nodes are linked avoiding self and multiple onnetions. This proess isstoped when L links have been stablished. A single graph obtained using theabove reipe is one of the ( „

N
2

«

L

) possible equiprobable realizations. Theset of all these possible realizations is alled the set of uniform random graphswith N nodes and L links, GER
N,L. In a random graph the probability that twogiven nodes are linked is L/
(

N
2

).Another possible strategy for onstruting random graphs is to sampleevery pair of nodes and with probability 0 < p < 1 link them. This proedurede�nes a di�erent set alled random binomial graphs, GER
N,p, that ontains graphswith di�erent number of total links L being

pL(1− p)

“

N
2

”

−L (5.16)the probability that a graph belonging to GER
N,p has L links. Then the averagenumber of links of a graphs in this set is p
(

N
2

).The two sets (uniform and binomial) of random graphs are tightly relatedto the anonial and grand anonial ensembles of the equilibrium statistialmehanis when one looks at the number of edges as the number of partilesin the system. Both ensembles onverge to the same set in the thermodynamilimit N → ∞ when approahed keeping 〈k〉 �xed (wih is equivalent to �x
2L/N and p(N − 1) in the uniform and the binomial sets repetively).3In fat, all the network models analysed in this hapter are stritly random in the sense ofthe mehanism adopted for their onstrution. However, the term random graph is overusedin the literature for alling Erdös-Rényi networks.



134 Chapter 5. Network Struture and GenerationThe strutural properties of the ER graphs vary as a funtion of p, showinga dramati hange at the ritial probability pc = 1/N that orresponds to
〈k〉 = 1. In partiular:
• If p < pc, the size of the giant omponent of the graph is of the order

O(ln N) graph and there is no graph omponent with more than oneloop.
• If p = pc, the size of the giant omponent goes with O(N2/3).
• If p > pc, the graph has a giant omponent with a number of loops thatsales as O(N) and there is no other graph omponent with more than

O(ln N) elements neither with more than one loop.This transition (haraterized by Erdös and Rényi in [141℄) is strongly relatedwith the perolation transition studied in the theory of ritial phenomena[178℄.In ER graphs the probability that a node has k neighbours follows thebinomial distribution
P (k) =

(

N − 1

k

)

pk(1− p)N−1−k , (5.17)that for 〈k〉 �xed and N →∞ tends to the Poisson distribution
P (k) =

〈k〉k
k!

exp (−〈k〉) . (5.18)Erdös and Rényi graphs are unorrelated sine the links are launhed atrandom independently of the degree of the nodes. As a onsequene, P (k
′ |k)and knn(k) are independent of k. Conerning to the onnetivity properties ofan ER graph, when p > ln N/N nearly all the generated graphs are omposedof one single omponent and the average path length takes values around 〈k〉 =

ln N/ ln (pN) = ln N/〈k〉 beause loally the ER topology is viewed as a treelike struture where a single node has 〈k〉 neighbours, 〈k〉2 nodes at distane
2,... Finally, sine p is the probability of two nodes sharing a link there willbe pk(k − 1)/2 links among the neighbours of a node of degree k so thatthe lustering oe�ient goes as c = p = 〈k〉/N , and then it vanishes in thethermodynami limit.5.2.2 Small-world networksIn 1998 Watts and Strogats (WS) proposed a method of graph onstrution thatallows to obtain networks with a high lustering oe�ient and small average
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0 10.05 p

Figure 5.6: Three kind of networks obtained used the Watts-Strogatz method startingfrom a regular one-diemnsional network where every node is linked to its 4 nearestneighbours. For p = 0 we obtain the regular network. For small values of p ≪ 1 wehave �Small World� networks from the small amount of reassigned links. Finally, for
p = 1 random networks are obtained.path leghth [155℄. We have seen that ER graphs present a small value of Land that c vanishes when N →∞. On the other hand, a regular network withonnetions to �rst, seond, third,... next nearest neighbours presents a highvalue of the lustering oe�ient joined with large values of L. In some sense,the WS model interpolates smoothly between these two topologies.The WS proedure starts from a ring (see �gure 5.6) where every node issymmetrially linked to its 2m next nearest nodes so that there is L = mNlinks. Then, every link is onsidered and with probability p it is substitutedby another link that onnets one of the original nodes with a new one hosenat random. Note that for p = 0 we maintain the original regular topologywhereas for p = 1 an ER random graph is generated. In �gure 5.7 it is shownhow for a range of p values the WS model generates networks with both thesmall world property (due to shortuts added when p 6= 0) and high lusteringoe�ient (inherited from the regular topology), two harateristis shared bya number of real networks. This result reveals that the lustering oe�ientis very robust under link reasignation whereas L rapidly dereases when a fewshortuts are inorporated.Analytial alulations on the transition observed in the WS model arefound in [179�182℄. It has been shown that the appearane of the small worldharater as p inreases is not a phase transition but a rossover phenomenon.The harateristi length satisfy the saling relation L(N, p) = Nf(Np) where

f(x) ∼
{

c if x≪ 1
ln x
x if x≫ 1

(5.19)



136 Chapter 5. Network Struture and GenerationBesides, in [181℄ the authors found the analytial expressions for the lusteringand the degree distribution as a funtion of the ontrol parameter p

c(p) =
3(m− 1)

2(2m − 1)
(1− p)3 (5.20)

P (k; p) =

min(k−m,m)
∑

i=0

(

m

i

)

(1− p)ipm−i (pm)k−m−i

(k −m− i)!
exp(−pm) ,(5.21)the last equation (5.21) is valid provided k ≥ m otherwise P (k < m; p) = 0.The WS model was later modi�ed by Newman and Watts in order to solvethe possible formation of disonneted graphs of the network as shortuts wereinorporated. Then, they proposed to add new links between randomly hosennodes instead of making the rewiring proess [183℄. They onsidered everynode and with probaibility p a link was stablished with any other node of thenetwork so that the average number of shortuts added is pN .5.2.3 Sale-Free networksThere are a large number of models that reprodue the power law funtionalform for the degree distribution. However, we will fous here on those modelsthat inorporates the growing harater present in real networks, where theamount of nodes grows with time, to the formulation of the model. Thesemodels usually onsist of an initial small subset of nodes to whih new nodesare sequentially inorporated by launhing new links over those nodes thatalready take part of the network (see �gure 5.8). In partiular, the work byBarabási and Albert (BA) in 1999 [145℄ suposed an important breakthroughto the problem of �nding the roots of the SF behaviour of real networks andhad the growing proess as a key ingredient of their formulation.The BA models works starting from an initial ore of m0 isolated nodes.Figure 5.7: Evoluion of the lus-tering oe�ient and the averageshortest path length as a funtionof p. Note that near p = 4 · 10−3the lustering remains omparableto the values of the regular net-work whereas L has dereased sig-ni�atively.



5.2. Overview of network generation models 137At eah time step a new node is inorporated to the network by launhing
m ≤ m0 links over the already existing ones so that the network ore growslinearly in time. The probability that one of the ore nodes, i, reeives a linkfrom the new node is proportional to its degree, ki,

Πpa
i =

ki
∑N(t)

j=1 kj

, (5.22)where N(t) is the number of nodes that form the network ore at time t,
N(t) = m0 + t − 1. Besides, the total number of links at time t evolvesas L(t) = mt. The above rule for node seletion was termed preferentialattahment and favours that a node with more links than others will inreaseits onnetivity at a higher rate (this is usually referred to as riher gets riher).Obviously, the soonest a node is inorporated to the network ore the mostonneted it will be at larger times.The solution of the BA model was found by the same authors by means ofa mean �eld approximation4 [145, 187℄. In this formulation the onnetivityof a node i, ki, is onsidered as a real ontinuous and time-derivable variable.Considering that new nodes are uniformly inorporated in time and that theyattah m new links, we an write the evolution equation of ki as

∂ki

∂t
= mΠpa

i (ki) = m
ki

∑N(t)
j=1 kj

=
ki

2t
, (5.23)with the initial ondition ki(ti) = m, and ti being the time when node i wasadded to the network ore. The solution to eq. (5.23) is

ki(t) = m

(

t

ti

)1/2

. (5.24)4Other solutions to this important model have been found solving the rate equation forthe onnetivity distribution [184�186℄.
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� Figure 5.8: Shemati representation of thegrwoth proess. At eah time steps a newnode is inorporated to the network orelinking to m = 3 nodes that already belongto the ore.
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k−3 Figure 5.9: Degree distribution,
P (k), for a BA network with N =

5 ·104. The linear �t of the data inthe log-log plot yield an exponentfor the power law of γ = 3.
In order to obtain the degree distribution we �rst take the umulative distri-bution, P (ki < k). From (5.24) one obtains

P (ki < k) = P

(

ti ≥
m2

k2
t

)

. (5.25)Finally, sine the adition of new nodes is performed uniformly, the probabilityof �nding at time t a node that was inorporated to the network at time ti is
P (ti; t) = 1/(m0 + t). Then, the above probability (5.25) an be written as

P (ki < k) = 1− m2t

k2(m0 + t)
, (5.26)so that the degree distribution yiels

P (k) =
∂P (ki < k)

∂k
=

2m2t

m0 + t
k−3 . (5.27)Taking the limit when t → ∞ we obtain the power law P (k) = 2m2k−3 withthe exponent γ = 3. In �gure 5.9 we show the numerial results for the degreedistribution when the BA is implemented.Analytial alulations aounting for other magnitudes have been per-formed. For example in [188℄ the authors showed that the shortest path lengthis smaller than that observed for ER graphs. In partiular L ∼ log N/ log (log N).Besides, the lustering oe�ient in BA networks vanishes in the thermody-nami limit as happened for ER graphs. However, although the lusteringdeay is seen to be slower, c ∼ N−3/4, than in the ase of ER networks, itrepresents a major weakness of the BA model.Variations of the preferential attahment rule (5.22) has been broadly stud-ied after the BA model appeared. These variations try to obtain more �exiblemodels in order to grow networks with other harateristis similar to those



5.3. Global versus loal knowledge 139found in real network for whih the BA fails to reprodue (existene of highlustering, the presene of degree orelations, the variety of exponents foundfor the ower law distribution, et ...) while keeping the SF harater indued bythe preferential attahment. Some examples of these variations an be foundin [186, 189�199℄.5.3 Global versus loal knowledgeIn this setion, we revisit one of the main assumptions of the Barabási-Albertmodel: the preferential attahment rule. We study a model in whih the PArule is applied to a neighborhood of newly reated nodes and thus no globalknowledge of the network is assumed. We numerially show that global prop-erties of the BA model suh as the onnetivity distribution and the aver-age shortest path length are quite robust when there is some degree of loalknowledge. In ontrast, other properties suh as the lustering oe�ient anddegree-degree orrelations di�er and approah the values measured for real-world networks.As explained in Se. 5.2.3 the �rst sale-free network model, introdued byBarabási and Albert, postulated that there are two fundamental ingredientsof many real networks [145, 187℄: their growing harater and the preferentialattahment (PA) rule. The preferential attahment rule onsiders that theprobability that an old node links to newly added nodes is proportional to itsdegree k (see eq. 5.22). However, the BA model assumes that one knows theonnetivity of all nodes when a new node links to the network. This is learlyan unrealisti assumption. This drawbak of the model onstrution has notpassed unnotied and many models have been introdued to produe sale-freenetworks and to test whether or not the basi assumptions of the BA reipeare neessary onditions to build up these networks [156, 158℄. There are somemodels in whih the PA rule is limited to a neighborhood due to geographionstraints [200℄, or where its linear harater is investigated [201℄.In the model deribed here, we adopt a di�erent perspetive. Our aim isto test to what extend the global harater of the PA rule in the original BAmodel is important. We introdue a model in whih the PA is applied only toa neighborhood of the newly added node depending on the value of a variablewhih measures the a�nity between di�erent nodes. By going down from theBA limit of the model to the the limit where all nodes are distint, we test towhat extend the global knowledge of eah node's onnetivity is fundamental toget a sale-free graph. Through numerial simulations we �nd that in a widerange of the model parameters, average quantities suh as the onnetivitydistribution and the shortest path length are not a�eted by the use of loal



140 Chapter 5. Network Struture and Generationknowledge of the network whereas other properties like the lustering oe�ientare more sensitive to loal details.5.3.1 The modelThe model is de�ned in two layers. The �rst disriminates among all the nodesby assigning to eah node at the moment of its reation a parameter ai whihmeasures how lose or distint a given node is from the rest of the elementsthat ompose the network. Then, we apply the preferential attahment rulein the neighborhood de�ned by nodes with ommon a�nities. Spei�ally, thenetwork is onstruted by repeated iteration of the following rules:(i) Start from a small ore of nodes, mo, linked together. Assign to eah ofthese mo nodes a random a�nity ai taken from a probability distribution,
P (a). In what follows, we will use for simpliity a form for P (a) uniformlydistributed between (0, 1).(ii) At eah time step, a new node j with a random a�nity aj is introduedand linked to m nodes already present in the network aording to therules spei�ed below.(iii) Searh through all nodes of the network verifying whether or not theondition ai − µ ≤ aj ≤ ai + µ is ful�lled, where µ is a parameter thatontrols the a�nity tolerane of the nodes. The nodes that satisfy thea�nity ondition are grouped in a set A as potential andidates to gainnew links.(iv) Apply the preferential attahment rule to the set A 5, i.e., when hoosingthe nodes to whih the new vertex links, we impose that the probabilitythat vertex i onnets to the new node depends on its onnetivity suhthat

Π(ki) =
ki

∑

s∈A ks
. (5.28)(v) Finally, repeat steps (ii)-(iv) t times suh that the �nal size of the networkis N = mo + t.It is worth mentioning that the inlusion of the a�nity parameter a is not amere artifat. Indeed, most real systems are formed by non-idential elementsand thus it is natural to assume that although a given node ould have a5In ase that the number of elements in the set A is smaller than m we just add a linkto all nodes in A without applying the PA rule.



5.3. Global versus loal knowledge 141large onnetivity a newly reated element will not link to that node beausethey have very little in ommon. This feature is learly manifested in soialnetworks like the WWW −where individuals bookmark di�erent web pagesaordingly to their �a�nity�− or the sientist itation network [142℄. In thisway, it is very unlikely to �nd a itation in a ondensed matter paper referringto a paper wrote by a psyhologist. Additionally, the same argument an betranslated to biologial networks suh as predator-prey webs or protein-proteininteration networks.Obviously, when µ is large enough as to dilute the �rst layer of the model,we reover the BA model. The problem then onsists of determining to whatextend the loal preferential attahment will give the same results, or in otherwords, does the knowledge of the entire network substantially ontribute tothe properties observed in the BA networks?5.3.2 Network propertiesWe have performed extensive numerial simulations of the model desribed inthe preeding setion. In all ases, the numerial results have been obtainedafter averaging over at least 500 iterations varying the system size from 103 upto 1.2×104 nodes. We �rst generate the BA network by setting the parameter
µ to its maximum value suh that the preferential attahment applies to theentire set of nodes and then tune µ in order to systematially redue its valueand therefore the size of the set A to whih the seond hoie eq. (5.28) isapplied.Figure 5.10 shows the number of nodes with onnetivity k for several val-ues of µ. It turns out that irrespetive of the range to whih the preferentialattahment is applied the stationary probability of having a node with on-netivity k is the same as for the BA model, namely, Pk ∼ k−γ with γ ≈ 3.This result ould be intuitively understood by noting that although the rulesfor the network generation has been hanged at a loal level, from a globalperspetive the average properties should not hange radially. To realize thispoint, think of the network as being made up of di�erent small omponents, asgiven by the a�nity onstraint, eah of whih is onstruted following the BAalgorithm. It is then lear that for large system sizes, eah graph will followthe power law distribution Pk ∼ k−3 and so will be for the entire network.The above argument applies only to average global properties, but there isnothing that guarantees a priori that the omponents of the network will linktogether in suh a way that other properties will not be a�eted. This is thease of the average shortest path length L. As already introdued, omplexnetworks show the notieable property, known as small-world property, that the
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Figure 5.10: Number of nodes with onnetivity k for di�erent values of µ. The sizeof the network is N = 104 nodes and mo = m = 3. The power-law distribution hasan exponent equal to 3. Note that the BA limit orresponds to µ = 1.
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(a) Pajek (b) Pajek

() Pajek (d) PajekFigure 5.12: Graph representations of four networks produed with di�erent valuesof µ. The values of µ orrespond to (a) µ = 1, (b) µ = 0.2, () µ = 0.1, (d) µ = 0.04.Eah network is made up of N = 500 nodes.average path length inreases at most with the logarithm of its size. We expetthat for high values of µ the network is omposed by a unique giant omponentand no fragmentation arises. When the range to whih the a�nity riterionis applied dereases, the network will gradually loose its ompatness and willstreth approahing a one-dimensional struture with some small omponents.Further redution of µ provokes the break down of the network in many isolatedlusters.Figures 5.11 and 5.12 substantiate this piture. Figure 5.11 representsthe ratio between the average path length obtained for di�erent values of µand that of the BA network, for several system sizes. As µ restrits the PArange, the network undergoes a transition haraterized by a growth of L(µ) aneventually beomes fragmented giving rise to an in�nite shortest path length.We note here that although the results shown in the �gure have been obtainedfor a uniform distribution of a�nity values ai, the qualitative behavior doesnot hange for other probability distributions and only the value at whih thetransition is observed slightly shifts to the right. The shape of the networkas the parameter µ is varied an be observed in �gure 5.12, where we haverepresented how the network looks like for the limiting values of µ. It is learthat when the PA range redues too muh the struture of the network radiallyhanges while keeping the same degree distribution.We now fous our attention on other properties with a loal harater. Thisis the ase of the lustering oe�ient of a node ci. The lustering oe�ientis of loal harater as it gives the probability that two nodes with a ommon
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Figure 5.13: (a) Average lustering oe�ient ck of nodes with degree k for �vedi�erent values of the parameter µ. Note that as µ dereases, the lustering oe�ientdeparts from the BA limit (µ = 1). (b) The average lustering c as a funtion of µon�rms this result. The parameters used for the generation of the networks are asof �gure 5.10.neighbor are also linked together. Thus, it is expeted that this magnitude, inour model, depends on the a�nity of eah node and the range of preferentialattahment given by µ. Figure 5.13.a shows the average lustering oe�ientof nodes with a given onnetivity k, for di�erent values of the parameter µ.The BA limit exhibits almost no orrelations with the degree k of the vertiesand the smallest value for the lustering oe�ient. As µ is redued, the �rstseletion of nodes by their a�nity values plays a more dominant role ontribut-ing to the rising of ci for small and large onnetivities. Near the transition,
µ ∼ 0.04, the average oe�ient is about one order of magnitude greater thanthat of the BA network. In order to see this growth of the lustering as theloality of the PA is inreased we show in �gure 5.13.b the mean lusteringoe�ient (averaged over all the elements of the network), c, as a funtion of
µ. The results reveals that the lustering grows in a rather regular fashionwhen µ dereases so that �nally c is inremented by a fator 3 at µ = 0.1respet to the value at the BA limit.These results are important for what onerns to the existene of yles ofsmall length in the network (triangles and retangular loops are among thesegraph omponents). They are important beause they express the degree ofredundany and multipliity of paths among nodes in the topology of the net-work. The results obtained for ck indiate that as the region where the PAapplies is redued, the number of yles inreases and non-random orrelationsarise. This is illustrated in �gure 5.14, where the average nearest neighbor
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Figure 5.14: Average nearest neighbor onnetivity knn against k for several valuesof µ. Results are averaged over 100 network realizations for eah µ value. Otherparameters are as of �gure 5.10.
degree, knn(k) of a node with onnetivity k is depited. While the BA modelexhibits no orrelations, it is manifested the tendeny that networks gener-ated with small values of µ display disassortative mixing at both ends of theonnetivity range.Finally, let us point out that although the values found for several magni-tudes an not be diretly assoiated with real data, there are some regions ofthe parameter spae µ where non-trivial properties arise. In this sense, it wouldbe interesting to perform the same analysis in more realisti growing networkmodels looking for more similarities with real-world networks. For example,the exponent of the onnetivity distribution an be tuned to small values byinorporating the �rst level of seletion of the present model in the general-ized BA model [158℄, whih is known to give arbitrary γ values in the interval
(2, 3). As a plus, this model an be used to test the dependene of the net-work funtioning with its topologial struture (when the degree distributionis �xed). In partiular, we will make use of it for analysing the performane ofdi�erent proesses plaed on top of the network [ommuniation between nodes(setion 6.2.2) and sinhronizability of Kuramoto networks (setion 8.2)℄ whenlustering and average path length are varied.



146 Chapter 5. Network Struture and Generation5.4 Interpolation between Random and Sale-FreenetworksThe seminal paper by Barabási and Albert [145, 187℄, showed that many realworld networks an not be desribed by Erdös-Rényi type graphs where theonnetivity distribution follows a Poisson-like distribution. While today wehave reognized that preferential attahment is not a neessary ondition forthe formation of sale-free networks [202℄, it seems to be lear that it is animportant mehanism. Indeed, most of the existing models intrinsially inor-porate a preferential attahment like rule. On the other hand, uniform randomlinking of nodes on growing networks gives rise to networks where the degreedistribution deays exponentially fast with the degree k, thus produing ho-mogeneous networks with a well de�ned (and meaningful) average value for
k [155, 181℄. The ombination of the two rules, i.e, uniform and preferentiallinking, have been also analyzed in several models for interpolating betweensale-free and exponential networks. For instane, Liu et al [203℄ have studieda model in whih the probability of establishing new links goes as a linearombination of both in suh a way that a new link is established between anode i and a new one proportionally to (1 − p)ki + p, where p weights theontribution of the two mehanisms. However, in previous models of this sort,there is an assumption that does not apply always. It has to do with the fatthat the network always grows around a single omponent of onneted nodesand uniform or preferential links from the emerging nodes are always madewith elements belonging to this unique luster. This single omponent growslinearly in time until it reahes the size of the network. Sine there are nolusters of nodes other than the giant omponent, the models an not aountfor phenomena suh as the oalesene of small networks into a larger one, norfor situations in whih more than one node is added to a preexisting strutureat eah time step, features that may be relevant in soial, eonomi and othernetworked systems.In this setion, we analyze a model that interpolates between Erdös-Rényiand sale-free networks as far as the degree distribution is onerned througha tunable parameter. The novel feature of the model is that, by onstrution,new links are not always established with nodes previouly inorporated to thenetwork and thus allowing to interpolate with the lassial ER graphs. Weexplore analytially and numerially the time behavior of nodes attahment aswell as of the degree evolution. We �nd that, depending on the interplay be-tween uniform and preferential linking, the transition from an ER like networkto an SF one is smooth or more abrupt. The present model is useful as it pro-vides a unique reipe to go progressively from homogeneous to heterogeneoustopologies as well as for exploring the interplay between them.



5.4. Interpolation between Random and Sale-Free networks 1475.4.1 The modelThe model introdued in this work generates a one-parameter family of om-plex networks. This parameter, α ∈ [0, 1], measures the degree of heterogeneityof the �nal networks. Let us assume the �nal size of the network to be N . Thenetwork is generated in the following way:(i) Start from a fully onneted network of m0 nodes and a set U(0) of
(N −m0) unonneted nodes.(ii) At eah time step hoose a new node j from U(0).(iii) This node makes a link in two ways:(a) With probability α it links to any other node i of the whole set of

N − 1 nodes with uniform probability
Πuniform

i = (N − 1)−1 . (5.29)(b) With probability (1 − α) establish a link following a preferentialattahment strategy, that is, the probability for any other node i toattah to node j is a funtion of its onnetivity as,
ΠPA

i = F(ki) , (5.30)where di�erent hoies for the funtional form of F(x) are analyzedbelow.(iv) Repeat m times step (iii) for the same node j.(v) Repeat U(0) = (N −m0) times steps (ii) to (iv).A shemati plot of the linking proedure at step (iii) is shown in �gure 5.15.The above rules allow for the oexistene of two lasses of nodes. On one hand,there are nodes with at least one link. This set will be referred to heneforthas the onneted set Ω(t) 6. On the other hand, there is another set U(t) ofisolated nodes suh that its size is N − Ω(t). At variane with other modelsin whih there are only nodes with onnetivity di�erent from zero and thusthe onneted omponent grows linearly with time, the above rules allows theaddition of more than one node to the set Ω(t) as a result of random linking.Therefore, we expet the time dependeny of Ω(t) to be highly non trivial.6We reall on the possibility that the onneted set is temporarily omposed by morethan one onneted omponent. This is the ase for the initial stage of the network growthwhen α → 1. However, when N is high enough the �nal network is omposed by a uniqueonneted omponent.
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α 1−α Figure 5.15: Shemati representation of thegeneral proedure for generating the networks.With probability α one of the m links an bemade with any of the nodes (and with the sameuniform probability) that will take part in the�nal network. On the other hand, with proba-bility (1 − α) the link will be made only withthose nodes that form the onneted set at thattime beause the node will hoose a preferentiallinking strategy.5.4.2 Network growth and degree evolutionIn order to desribe the evolution of the nodes degree, one has to onsiderthe funtional form of F(x) for the preferential attahment probability (5.30).However, we an take into aount some previous onsiderations that do notdepend on the partiular form of F(x).First of all, it is useful to onsider two kind of links in order to analyze themodel. Namely, the ones that arise from a uniform random hoie, ku, andthe remaining, kpa, orresponding to the implementation of the preferentialattahment rule. The dynamis of ku is ompletely independent of the dynam-is of the PA links, kpa, but the opposite is not neessarily true. From this, itfollows that the probability that one node has ku uniform links, P u(ku), is aPoisson distribution with 〈ku〉 = 2αm.
P u(ku) =

(2αm)k
ue−2αm

ku! (5.31)As a onsequene, we will onentrate on analyzing the growth dynamis ofthe PA links for the studied models.It is partiularly interesting to study at this point how uniform randomlinking a�ets the evolution of the onneted set sine this is ompletely inde-pendent on the spei� PA rule onsidered. This feature represents one of themain di�erenes between the studied model and other previous mehanismsused to generate growing networks. That is, in our model nodes are not in-orporated to the onneted set at a onstant rate (like e.g. in the standardBarabási-Albert model) due to the possibility of adding new nodes from U(t)by applying uniform linking at time t and therefore the set U(t) 6= U(0) − t.



5.4. Interpolation between Random and Sale-Free networks 149We an easily derive the evolution of the onneted set size, Ω(t) = N −U(t),for any value of the parameter α. For this, we onsider the growth of theonneted set at eah time step, i.e. when a new node of U(0) throws its mlinks
Ω(t + 1) = Ω(t) +

N − Ω(t)

N − (t + m0)
+ αm

(

1− Ω(t)

N

)

. (5.32)In the above equation the seond term on the right aounts for the probabilitythat the new node (whih is throwing its m links) of U(0) does not belong al-ready to the onneted set at time t (due to the possible uniform links obtainedfrom previous nodes of U(0) already onneted to the onneted set Ω(t)). Be-sides, the third term on the right desribes the probability that any uniformlink thrown by the node is direted to a node belonging to U(t). These twoterms aount for the growth rate of the onneted set. We an onsider thatboth time and Ω(t) are ontinuous variables and make the time step smallenough in order to obtain the orresponding ODE assoiated to eq. (5.32),whose solution is given by
Ω(t) = N + (t + m0 −N)e−αmt/N . (5.33)The agreement between this alulation and Monte Carlo simulations is shownin �gure 5.16 for di�erent values of α and a preferential attahment as desribedin what follows (model A). It is worth noting the highly nonlinear behavior of

Ω(t), at variane with models in whih its size hanges at a onstant rate.We formulate below two di�erent ways to implement the preferential at-tahment rule, whih give rise to di�erent behaviors. In both models we willonsider that the PA probability of a node j depends only on the PA links of thenode, kpaj . This new separation between PA links and uniform ones introduesa higher di�erentiation between the two simultaneous kinds of link dynamisimplemented here allowing us to manipulate (as shown below) the degree oforrelation between them. The two models interpolate between sale-free andErdös-Rényi topologies but the strutural transition is quite di�erent (as wewill show in setion 5.4.3).MODEL AIn this �rst model we shall study a preferential attahment rule strongly or-related with the simultaneous uniform random linking. First, we onsider thatthe PA probability of a node i is linear with the inoming PA degree of thenode, k̂pai , that is, those links reeived by i when other node launhes (in aver-age) (1−α)m links following the PA rule. This partiularity of the PA rule wasalready onsidered by Dorogovtsev et al [186℄. Besides, we onsider that whena node is introdued in the onneted omponent (beause either it is hosen
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Figure 5.16: Size of the onneted set Ω(t) as a funtion of time. Solid lines orrespondto the analytial results (eq. (5.33)) and points are the Monte Carlo results of networkonstrution (employing model A (se. 5.4.2)). The omparison is made for N = 105and several values of α. The parameters of the model are set to A = m = m0 = 1.

Figure 5.17: Model A. Monte Carlo simulation (points) versus mean �eld (lines)results for k̂pa(t = N) as a funtion of the birth time t0 for di�erent values of α. Theparameters of the model were N = 105 and A = m = m0 = 1. The statistis of theMonte Carlo simulations were performed using 104 networks for eah value of α.



5.4. Interpolation between Random and Sale-Free networks 151at random by any node or it is launhing its m outgoing links over the rest ofnodes) it has an initial attrativeness (or �tness) A. In other words, eah nodehas an assoiated parameter Ai that is zero if the node i is not in the onnetedset and is Ai = A if i is linked to other nodes (i.e., it belongs to Ω(t)). Wefurther onsider that the attrativeness Ai enters linearly in the preferentiallinking probability of node i. With these two ingredients, the expression for
ΠPA

j is given by
ΠPA

i =
k̂pai + Ai

∑

j∈N (k̂paj + Aj)
, (5.34)The introdution of the �tness A orrelates the PA rule with the uniformlinking in the sense that the more links are established uniformly (the higher

α), the more new nodes with k̂pai = 0 are inorporated to the onneted setfrom U(t) and hene (by the presene of A in the PA probability) the moreandidates to obtain PA links are available. This an be observed from theevolution of the onneted set Ω(t), when α is high there are a lot of nodesadded into Ω(t) at the early stage of the network onstrution so that thepotential growth of the PA degree of the former members of the onneted setis strongly weakened. In order to on�rm these heuristi onsiderations wederive the mean �eld evolution for the inoming PA degree of a node i, k̂paidk̂paidt
= (1− α)m

k̂pai + A

(1 − α)mt + A Ω(t)
, (5.35)(with the initial ondition k̂pai (ti0) = 0). Obviously, in the limit α = 0 wereover the mean �eld equation for the Generalized Dorogovtsev model [186℄(whih, when A = m, desribes the Barabási-Albert model). For α 6= 0 thein�uene of the uniform random linking is evident from the presene of Ω(t).The number of nodes that start to have the above dynamis at some time t0 isdΩ(t)/dt evaluated at time t = t0 whih for α 6= 0 is not onstant as we haveseen in the previous alulation of Ω(t). The solution of (5.35) is then givenby

k̂pai (t = N)

A
= −1 + exp[(1− α)m

∫ N

ti0

dt

(1− α)mt + A Ω(t)

]

. (5.36)We have solved numerially eq. (5.36) in order to obtain k̂pai (t = N) (or
kpai (t = N) = k̂pai (t = N) + αm) as a funtion of ti0. This funtion, alongwith the number of nodes whih are inorporated to the onneted set at time
ti0 = t0, gives the degree distribution of the PA links. We have ompared theresults given by eq. (5.36) for di�erent values of α with the orresponding onesobtained by performing Monte Carlo simulations of the model (averaging over
104 networks for eah value of α). The results, plotted in �gure 5.17, show



152 Chapter 5. Network Struture and Generationa very good agreement for the mean �eld model and the numerial networkonstrution. As expeted, the sooner a node is inorporated to the onnetedset the higher its �nal PA degree. However, as disussed above, one an observethat this gain of the oldest nodes beomes less important when the value of αgrows due to the ombination of two e�ets: (i) the appliation of the PA rulebeomes less frequent and (ii) the fast growth of the onneted set tends tomake more homogeneous the PA probability of the nodes.MODEL BIn the seond proposal the two di�erent linking proesses are ompletely inde-pendent. For this, we onsider that ΠPA
i is a linear funtion of the (inomingand outgoing) links that appear as a produt of the appliation of the PA rule.Then, kpai will be zero until it launhes its αm PA links over the rest of thenodes, i.e. regardless of kui . Then, the mean �eld equation for the evolutionof kpai is given by dkpaidt

= (1− α)m
kpai

2(1 − α)mt + m0
, (5.37)with the initial ondition kpai (ti0) = (1−α)m and ti0 being the time when node

i launhes its m links. Solving the above equation yields
kpai (t) = (1− α)m

[

t

ti0

]1/2

. (5.38)Beause the nodes launh their links at a onstant rate (one node per timestep), it is easy to obtain the degree distribution P (kpa)
P (kpa) = 2(1 − α)2m2(kpa)−3 , (5.39)whih is simply a power law distribution with a Barabási-Albert exponentregardless of the value of α. On the other hand, the relative weight of the powerlaw with respet to the Poisson distribution in the total degree distribution

P (k) will be obviously a�eted by α (as the prefator in the above equationsuggests).5.4.3 Network propertiesIn this setion we disuss the transition from SF to ER networks in terms ofthe global topologial features of the networks. We have performed MonteCarlo simulations of the two models and ompared how the relevant topologi-al measures evolve as a funtion of α. We are interested in obtaining how the
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Figure 5.18: Monte Carlo results for the degree distribution P (k) and rank-degreerelation for several values of α. (a) and () show the results for model A revealing aprogressive inrease of the tails deaying rate when α → 1. The results for model B((b) and (d)) show how the deaying rate is not a�eted by α. The networks weregenerated with the following parameters N = 105 and m = m0 = 3 (A = 3 for modelA).di�erent orrelations between the uniform and PA linking rules a�et severalstrutural measures. To do this, we have studied the behavior of three magni-tudes that behave very di�erent in the two known limiting ases (SF and ERnetworks), namely: the degree distribution P (k), the average shortest pathlength 〈L〉 and the seond moment of the degree distribution 〈k2〉.Degree distribution - The degree distribution evolution is learly di�erentfor the two models. In �gure 5.18 we have plotted the degree distribution andthe rank-degree relation for both models. The rank-degree relation provides auseful tool for analysing the degree heterogeneity of the networks [204℄ and thusit is helpful when looking at the transition between ER and SF networks. Asan be observed from �gures 5.18(a) and 5.18() the orrelated model A showsa smooth transition from the power law (α = 0) to the Poisson distribution(α = 1). The deay of the tails (k >> 1) of the degree distribution andthe rank-degree relation beomes progressively faster as α grows revealing thederease of the exponent of P pa(kpa) as expeted from the results obtainedby the analytial insights developed for model A. For model B the transition
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Figure 5.19: Average path length(a) and seond moment of the de-gree distribution (b) as a funtionof α. Both quantities are repre-sented normalized by their respe-tive values in the ER limit. Theresults learly manifest the twodi�erent transitions of the modelsregarding the heterogeneity evolu-tion along the interpolating path.The averaged networks had thefollowing parameters N = 104 and
m = m0 = 3 (A = 3 for model A).

is ompletely di�erent as it is shown in �gures 5.18(b) and 5.18(d). In bothrepresentations the deaying rate of the tails is independent of α and thetransition to the Poisson distribution is muh more apparent for low values of
k. In this sense one an onlude that highly onneted nodes persist alongthe transition of model B while for model A the heterogeneity is progressivelylost.Average shortest path length - The di�erent evolution of the degree dis-tributions observed above suggests to look at how the average shortest pathlength behaves along the two paths of interpolation. It is well known that theexistene of high degree nodes makes the network more ompat due to thepossibility of �nding shortuts between nodes going through the hubs. Hene,the persistene of highly onneted nodes determines the small diameter ofthe sale-free network. The results obtained are shown in �gure 5.19(a). Asexpeted, the average shortest path length as a funtion of α grows slower formodel B beause the probability of �nding hubs is higher than for the networksgenerated using model A for the same value of α.Seond moment of P (k) - In order to obtain a quantitative measure of theevolution of the degree heterogeneity for the two models it is onvenient tomeasure the seond moment of the degree distribution, 〈k2〉. This magnitudediverges (in the thermodynami limit N → ∞) for sale-free networks withexponents between 2 and 3. So, we expet a derease of the heterogeneityon the path to ER graphs. As an be observed from �gure 5.19(b), modelA shows a faster derease of 〈k2〉 as expeted from the study of the degreedistribution while for model B the transition is muh smoother revealing again



5.4. Interpolation between Random and Sale-Free networks 155the persistene of highly onneted nodes along the path to the ER limit.As for other properties like the lustering oe�ient and degree-degreeorrelations we have heked that they remain unhanged irrespetive of thevalue α and wheter model A or B is implemented.The present model provides a useful tool to study the in�uene of the degreeof heterogeneity in dynamial proesses of di�erent kinds just as the Watts-Strogatz model have proved to do so in the transition from regular to randomstrutures. In partiular, there exist open questions in phenomena suh asthe synhronization of oupled osillators [205℄ where this kind of model ouldbe partiularly relevant to explore the system's behavior in the region wherehomogeneous and heterogeneous arhitetures oexist. This question will bedeeply analysed in setion 8.3.





Chapter 6Propagation through ComplexNetworks The better a simulation is for its own purposes,by the inlusion of all relevant details, the moredi�ult it is to generalize its onlusions for otherspeies. For the disovery of general ideas in eol-ogy, therefore, di�erent kinds of mathematial de-sriptions, whih may be alled models, are alledfor. Whereas a good simulation should inlude asmuh detail as possible, a good model should in-ludes as little as possible.� J. Maynard Smith in Models in Eology [206℄.In this hapter we will fous on two of the main dynamial proesses stud-ied on top of omplex networks, namely, the analysis of Epidemi spreadingand Information dynamis. The interest of studying these problems is twofold.First, the simpliity of the desription of the two proeses allow for analyti-al results, heuristi insights and extensive numerial simulations in order toexplain the role that the underlying topology has on the dynamis. Then, oneof the advantages of studying these dynamis is that the simple formulationof the models (usually expressed by means of linear rules) used for their de-sription does not mask the e�ets of the topologial omplexity. Besides, onean realize by looking at the literature that a great number of the networkswhose haraterization is available (mostly due to the simpliity for unveilingthe links between their omponents) an be regarded as either tehnologial orlogisti networks. Then, the study of epidemis and information propagationis justi�ed for pratial purposes.



158 Chapter 6. Propagation through Complex Networks6.1 Epidemi spreading and ImmunizationThe history of the studies on epidemi spreading starts with the �rst works byepidemiologist at the beginning of the 20th entury [207℄. However, the burstin the mathematial modeling of disease transmission took plae in the middleof the 20th entury by the formulation of a large variety of models (interestingbooks on the matter are [208�211℄) aimed at reproduing the evolution patternsof the number of asualties and infeted people during epidemi periods (see�gure 6.1). Reently, the attention has been redireted to the spreading ofinformati viruses. The interest in this �eld has been oupled to the availabilityof data about potential transmission networks (like the internet or peer-to-peernetworks). The development and deployment of a digital immune system toprevent tehnologial networks from the spreading of viruses and to minimizethe damage produed by intentional attaks are in the root of reent researhe�orts [161, 212�222℄.In this setion we will �rst introdue two general models (SIR and SIS)that desribe the spread of epidemis on homogeneous systems. Then, we willturn our attention to the disease transmission in heterogenous substrates andthe performane of di�erent immunization strategies will be ompared. Finallywe will report on a new immunization strategy based on the overing problemof omplex networks. The performane of this new algorithm depends on theloal struture of the network. We will implement this strategy along with theafore mentioned in order to ompare their results when deployed on top of realnetworks.
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Figure 6.1: Histogram ofthe number of deaths due tothe in�uenza-pneumonia epi-demi during the 1968-1969winter in New York. Thisextremely damaging in�uenzawas named the �Hong Kong�u� due to the plae where itstarted.



6.1. Epidemi spreading and Immunization 1596.1.1 Modeling epidemi spreadingThere are many di�erent models to desribe the epidemi transmission prob-lem. However, nearly all of them are variations of some general and oarsegrained models like the SIR (Suseptible-Infeted-Removed) and SIS (Suseptible-Infeted-Suseptible). The di�erent variations have to do with an inreasedompliation of the models to study partiular diseases. In order to fouson the importane that the topology of the network has on the spreading ofa disease we will deal with the most simpli�ed desriptions of the epidemisdynamis.The SIR modelThe SIR model was introdued by Kermak and M Kendrik in 1927 [207℄ toexplain the rapid rise and fall in the number of infeted patients observed inepidemis suh as the plague (London 1665-1666, Bombay 1906) and holera(London 1865). This model was reovered by the work of Anderson and May[223℄ after being oversought for deades. The SIR model is a typial exampleof the so-alled ompartmental models. In this lass of models the elementsare viewed as parts of several groups (or ompartments) so that the evolutionequations are referred to the number of elements of eah group. The SIR modeldesribes the spreading of infetious diseases in whih eah individual an beeither immunized or dead after the ontagion. Following this assumption wean lassify the population into three di�erent groups:
• Suseptible: Those healthy people who have not been infeted and thusare likely to ontrat the disease in the future.
• Infeted: People who has been ontagied and are urrently su�ering thee�ets of the disease. They an infet Suseptible people in the ourse oftheir disease.
• Reovered and Removed: Composed by people that �nally died due tothe disease or reovered and got immunized.Then, individuals an hange their state by means of the jumps between thethree ompartments, S → I → R. The dynamial rules aounting for the �uxamong the three states determine a set of di�erential equations for the densitiesof the population groups s(t) = S(t)/N , i(t) = I(t)/N and r(t) = R(t)/N .The hange rate for suseptible elements is always negative and propor-tional to the number of ontats among infeted and suseptible elements.



160 Chapter 6. Propagation through Complex NetworksWe all λ the probability that one suseptible individual gets infeted in oneontat, then we an write dsdt
= −λ〈k〉s(t)i(t) . (6.1)The evolution of the proportion of infeted individuals, i(t), has two ontri-butions, one positive −ṡ(t) and one negative aounting for the reovering (ordeath) rate of the infeted individualsdidt

= λ〈k〉s(t)i(t) − µ i(t) , (6.2)where µ is the reovering (or death) rate that orresponds to the inverse ofthe average disease time for an individual. Taking into aount that r(t) =

1− s(t)− i(t) the last evolution equation for the reovered density isdrdt
= µ i(t) . (6.3)The above formulation of the model equations assumes the homogeneousmixing hypothesis that onsiders that the set of suseptible people with whoman infeted individual establishes ontats is taken at random within the wholepopulation. This is manifested in the onstant value for the number of on-tats 〈k〉 so that the approah is only valid for homogeneous networked systems.Along with this assumption we have onsidered homogeneity in the agent har-ateristis so that λ and µ (although seen as averages) are meaningful. Thismodel is seen as a mean �eld approximation to the epidemi spreading prob-lem. One an modify the SIR model by adding more ompartments (like e.g.in models for VIH propagation where a set of people su�ering an inubationperiod, or more tehnially a lateny period, should be distinguished fromthose who have the disease already diagnosed) or by onsidering that the timesale involved is slow enough so that additional terms aounting for naturalbirth and death rates should be inorporated. We an resale onveniently theabove equations (µ → 1, t → µt, λ → λ/µ) in order to have a single ontrolparameter λ to study the behaviour of the model.The question to answer in the SIR model has to do with the onditionsunder whih a small infetious seed leads to a signi�ant fration of individualsat the reovered state when the steady state (i(t) = 0) is reahed for thewhole system. One an translate this question in terms of a general bondperolation problem sine an epidemi is set when there is a large enoughfration of �oupied� bonds (those that the epidemy used to spread) to leadto the formation of a network omponent whose size sales with the size ofthe graph (signaling an epidemi perolation). In fat, there exist an exat
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Figure 6.2: Graphial solutionof r⋆ given by last expressionin eq. (6.4). It an be ob-served the emergene of theseond solution (orrespond-ing to the epidemi perola-tion) for λ/µ > 〈k〉−1. Theinset shows a qualitative plotof the phase transition for theSIR model.
mapping between both problems [224, 225℄ that an be used as a powerfultool for solving the epidemi spreading aross general networks [226, 227℄. Inorder to answer this question we onsider the initial onditions s(0) = 1/N ,
i(0) = r(0) = 0 and we look for the value r⋆ = limt→∞ r(t) It is easy to notiethat r⋆ = 1− s⋆ beause i⋆ is neessarily null. Then, dividing eq. (6.1) by eq.(6.3) to get rid of i(t) we havedsdr

= −λ〈k〉s(t) → s(t) = exp (−λ〈k〉r(t)) → r⋆ = 1− exp (−λ〈k〉r⋆) .(6.4)Last equation has always r⋆ = 0 as a solution (no epidemi perolation) and if
R0 = λ〈k〉 > 1 there is a seond one with r⋆ 6= 0 orresponding to a signi�a-tive spread of the disease. R0 is usually termed as the e�etive reprodutiverate and its physial meaning is lear: it orresponds to the average seondaryinfetions produed when a single infeted individual is introdued in a healthypopulation. If this number is greater than one the disease reahes a non nullfration of the population. From the phase transitions point of view one wouldspeak about r⋆ as the appropriate order parameter and λ as the ontrol pa-rameter. It an be obtained that at the ritial point, λ = 〈k〉−1, r⋆ behavesas r⋆ ∼ (λ− 〈k〉−1) so that the ritial exponent is 1 as expeted from a mean�eld treatment.The SIS modelThe SIS model was originally introdued by Hethote and Yorke [228℄ in 1984for desribing the propagation of gonorrhea and has been largely used forstudying the transmission of tuberulosis. These diseases have several ommonattributes that make it di�erent from other infetions. The most importantdi�erene is that the infetion does not onfer immunity to reovered subjets



162 Chapter 6. Propagation through Complex Networksso that the SIR model is no longer valid. The SIS model onsiders only twoompartments omposed of suseptible and infeted nodes so that a ontinu-ous �ux between both ompartments is allowed, S ↔ I. Then, the relevantequation for the SIS model isdidt
= λ〈k〉 [1− i(t)] i(t)− µ i(t) , (6.5)where we have assumed s(t) = 1− i(t) (i.e. no deaths assoiated to the diseaseare onsidered). Again we an resale the equation in order to obtain µ = 1.The SIS model is analogous to the SIR model in what refers to the ex-istene of a epidemi transition. However in the SIS model the two regimesare di�erentiated by whether the disease persist inde�nitely in the population(due to the fat that subjets an be reinfeted many times) or not. Then,imposing di/dt = 0 in (6.5) we obtain two di�erent steady states, one with

i(t) = 0 and the seond one, for the ase λ > 〈k〉−1, with i(t) = (λ− 1/〈k〉)/λorresponding to the an endemi state.Due to the manifest analogy between SIR and SIS models we will fouson the SIR formalism in the forthoming disussions about the behaviour ofepidemi spreading on heterogenous networks. It has been shown that thesame qualitative results are also obtained for both models when studying moreomplex topologies.6.1.2 Epidemi spreading in general omplex networksThe homogeneous mixing hypothesis assumed in the previous disussion an-not be applied to many real systems like tehnologial networks where theiromponents do not interat with a similar number of network elements. Then,it is neessary to inorporate the ingredient of heterogeneity to the problemof epidemi spreading. In the SIR model (and analogously for the SIS formu-lation) the di�erent ompartments S(t), I(t) and R(t) are now haraterizedby the subsets {Sk(t)}, {Ik(t)} and {Rk(t)} labeled by the onnetivity k oftheir omponents [212�214, 216, 227℄. These variables are normalized so that
Sk(t) + Ik(t) + Rk(t) = 1, then

S(t)

N
=
∑

k

P (k)Sk(t) ,
I(t)

N
=
∑

k

P (k)Ik(t); ,
R(t)

N
=
∑

k

P (k)Rk(t) .(6.6)This seond lassi�ation of the ompartment elements into degree lasses al-lows to take into aount the heterogeneous harater of real networks.At a mean �eld desription the evolution of these new magnitudes satisfy



6.1. Epidemi spreading and Immunization 163the following set of oupled di�erential equationsdSkdt
= −λkSk(t)Θ(t) , (6.7)dIkdt
= λkSk(t)Θ(t)− Ik(t) , (6.8)dRkdt
= Ik(t) , (6.9)where we have already set µ = 1. The quantity Θ(t) represents the probabilitythat an element is linked to an infeted node. This probability is given by

Θ(t) =

∑

k kP (k)Ik(t)

〈k〉 . (6.10)Note that we are onsidering here that the degree orrelations are absent in thenetwork with the assumption that Θ(t) is the same for any set Sk regardlessof the onnetivity of its omponents.Considering initial onditions onsisting on a in�nitesimal fration of in-feted nodes distributed homogeneously over the onnetivity sets, Ik(0) =

i0 ≪ 1, we an onsider Sk(0) ≃ 1 and integrate eq. (6.7) to obtain Sk(t) =

exp [−λkφ(t)], where
φ(t) =

∑

k kP (k)
∫ t
0 Ik(τ)dτ

〈k〉 =

∑

k kP (k)Rk(t)

〈k〉 . (6.11)In order to obtain a losed relation for Rk(∞) we ompute the time derivativeof φ(t) dφdt = 1− φ(t)−
∑

k kP (k) exp[−λkφ(t)]

〈k〉 . (6.12)Solving the above di�erential equation we an obtain R⋆
k = Rk(∞) = 1 −

Sk(∞) = 1 − exp[−λkφ(∞)] and ompute the total epidemi prevalene R⋆.The solution φ(t) to eq. (6.12) is not available for a general degree distribution
P (k). However, we are interested in the behaviour of φ⋆ = φ(t→∞) to obtaininformation about R⋆. In this limit ˙φ(t) = 0 so that eq. (6.12) transform intoa onsistent equation for φ⋆

φ⋆ = 1−
∑

k kP (k) exp(−λkφ⋆)

〈k〉 . (6.13)The above equation has always the solution φ⋆ = 0 (implying R⋆
k = 0 ∀k,

R⋆ = 0) and when
∑

k λk2P (k)

〈k〉 > 1 (6.14)



164 Chapter 6. Propagation through Complex Networksit has a seond non trivial solution φ⋆ > 0 that yields R⋆ > 0 indiating asigni�ative epidemi prevalene. Then, the epidemi threshold is given by
λc =

〈k〉
〈k2〉 . (6.15)This result is very relevant sine it points out that omplex networks withheterogeneous degree distributions (like SF networks with 2 < γ ≤ 3) showa vanishing epidemi threshold (sine 〈k2〉 → ∞ as N → ∞) and beomeextremely fragile under possible infetions. An idential result for the thresholdvalue is found when analyzing the SIS model [212, 214℄. In this ase theresults are explained by a persistene of low levels of infeted individuals forlow values of λ. This interpretation is oherent with the long term prevalenefound for real informati viruses and in priniple an only be understood inthe framework of homogeneous networks by the (unrealisti) existene of aglobal tuning of the parameters in order to work lose enough to the epidemithreshold. However, the bad news about the absene of epidemi threshold aresomehow played down when one looks at the behaviour of R⋆ when λ ≪ 1.Considering the BA model (P (k) = 2m2k−3) we an ompute this behaviour[212, 214, 216℄ �nding

R⋆ ∼ exp

(

− 1

mλ

)

, (6.16)so that the epidemi prevalene approahes smoothly to 0 at λc = 0.Correlated Complex NetworksThe above results have been obtained assuming that degree orrelations be-tween pairs of nodes are absent. However orrelations are present in most realnetworks and therefore they annot be negleted in the expression for Θ ,eq.6.10, [215, 218℄. The equations for the SIR model (6.7), (6.8) and (6.9) arethen modi�ed to dSkdt
= −λkSk(t)

∑

k
′

P (k
′ |k)Ik′ (t) , (6.17)dIkdt

= λkSk(t)
∑

k′

P (k
′ |k)Ik

′ (t)− Ik(t) , (6.18)dRkdt
= Ik(t) . (6.19)In order to have some insight above the behaviour of the system for a generalform of P (k

′ |k) one onsider again the initial onditions Sk ≃ 1. Then eq.(6.18) beomes unoupled and an be written asdIkdt
=
∑

k
′

[

λkP (k
′ |k)− µδk′ ,k

]

Ik′ (t) ≡
∑

k
′

Lk,k′Ik′ . (6.20)



6.1. Epidemi spreading and Immunization 165The stability of the initial state orresponds to the situation when there is noepidemi prevalene and it is then haraterized by the sign of the eigenvaluesof the Jaobian matrix L. Sine the matrix C whose elements are Ck′ ,k =

kP (k
′ |k) has the same eigenvalues as its transposed (see eq. (5.10)) all itseigenvalues are real. If Λ is the maximum eigenvalue of C we obtain that thesolution Ik(t) = Rk(t) = 0 ∀t is stable if −µ + λΛ < 0 and therefore theepidemi threshold is de�ned as

λc =
µ

Λ
. (6.21)Then, the existene of an epidemi threshold is ompletely determined by thematrix C and hene a non zero λc an be reovered depending on the natureof the orrelations. It has been shown numerially [218℄ that for assortativenetworks the threshold remains zero and the behaviour is qualitative the sameas for unorrelated networks.6.1.3 Immunization strategiesThe above study of epidemi spreading suggests the inorporation of meha-nisms or strategies for stopping the advane of the infetions aross the net-work. From the SIR point of view this means to inorporate some degree ofimmunity to a fration g of elements so that they annot be infeted and thusthey would loally stop the possible subsequent infetions. The question thenis where to loate this subset of immune nodes. Obviously, the answer willdepend on the topologial harateristis of the underlying network so that ane�ient immunization design would di�er depending on what kind of networkwe are dealing with.In the following we will haraterize the most ommon ways for perform-ing suh immunizations in order to ompare these mehanisms with a newimmunization proposal desribed in the next setion.Random ImmunizationRandom immunization onsists of hoosing a fration g of the nodes withuniform probability and onfer them immunity to the epidemy. This is thesimplest way for plaing immune elements on a omplex network sine thehoie of the nodes is ompletely independent of any attribute or harateristiof the set. The presene of a fration g of immune nodes simply resale thetransmission probability in the above disussed mean �eld approah, λr =

(1 − g)λ. Then, for homogenous networks and for a onstant value of λ weobtain a ritial fration gc = 1 − 1/(λ〈k〉) so that r = 0 if g ≤ gc. On the
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Figure 6.3: Time evolution of a SIR epidemi in the Internet Autonomous Systemsrepresentation when λ = 0.8 and 1% of infeted nodes at t = 0. Pink and blue denotesuseptible and reovered nodes respetively. (a) Corresponds to the ase when noimmunization is applied and (b) when targeted immunization is applied (g = 0.01).other hand, for the same situation in heterogeneous non-orrelated networkswe obtain gc = 1 − 〈k〉/(λ〈k2〉) so that gc = 1 regardless of the value of λ forSF networks with 〈k2〉 → ∞ and thus random immunization of heterogeneousnetworks is ompletely ine�ient.Targeted ImmunizationThe failure of random immunization when applied to SF networks an be un-derstood by the well known results on random failures in these networks. SFnetworks are very robust (it keeps the global ohesion) under random removalof nodes. Then, in terms of epidemi spreading, no matter the amount of im-munized nodes the infetion will always �nd a path to arrive to any suseptiblenode. On the other hand, SF networks are extremely weak when intentionalattaks are performed, i.e. when a seletive removal of those highly onnetednodes is applied. It is then interesting to apply a targeted immunization strat-egy [217℄ just olleting those nodes with the highest onnetivity and onferthem immunity.In order to make an estimation of the e�ets that targeted immunizationhas on SF networks we take the nodes with k > kt and immunize them1. Then1Note, however, that in order to do so we should have omplete knowledge of the network



6.1. Epidemi spreading and Immunization 167we have that the fration of immune nodes orresponds to
g =

∑

k≤kt

P (k) . (6.22)This implies that those nodes, and the links that pointed to them, are removedfrom the remaining e�etive network available for the spread of the epidemy.Then, if we all p(g) the probability that any link of the original network pointto an immune node we obtain
p(g) =

∑

k≤kt
kP (k)

〈k〉 , (6.23)so that the degree distribution of the new network after removing those immu-nized nodes is
Pt(k) =

kt
∑

q≤k

P (q)

(

q

k

)

[1− p(g)]kp(g)q . (6.24)With this new distribution we an ompute its �rst and seond moments sothat we an ompute the new λc from eq. (6.15). These moments an beexpressed in terms of p(g) and the old moments of the original network as
〈k〉t = 〈k〉[1−p(g)] and 〈k2〉t = 〈k2〉[1−p(g)]2 + 〈k〉p[1−p(g)] [217℄. Applyingthese results we obtain for the BA network a ritial value gc as a funtion of
λ so that if g < gc the epidemi prevalene is zero

gc ≃ exp(−2/mλ) . (6.25)The above equation learly shows that ritial immunization is exponentiallysmall for a range of low values of λ. Although the above estimations are onlyvalid for homogeneous random networks, we illustrate the e�ets of this typeof immunization in SF networks in �gure 6.3. The evolution of the SIR modelon top of the Internet map at the Autonomous System level when there is noimmune nodes (�gure 6.3.a) and when targeted immunization is applied (�gure6.3.b). Besides, in �gure 6.4 we show the results on both the AS and Routerlevels for three ases of targeted immunization and the ase with zero immunenodes.Single Aquaintane ImmunizationSingle aquaintane immunization (SAI) was introdued in [219℄ as the �rstloal algorithm to immunize omplex networks. In this strategy a fration pof the network nodes is seleted at random and one of their orrespondingneighbours is hosen at random and immunized. Then, only a knowledge of
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Figure 6.4: Final fration ofinfeted nodes for the SIRmodel and SIR with targetedimmunization with di�erentnumber of immunized nodesfor the AS (a) and router (b)map representations of the In-ternet. Simulations were ar-ried out starting from a sin-gle infeted node at t = 0 inall ases. The plots are in alog-log sale for a better visu-alization.
the node neighbourhood is assumed and even the degree of its omponentsis not needed for the performane of the SAI immunization. This is not thesame senario as for random immunization sine the probability that a nodewith onnetivity k is hosen by one of its neighbours is proportional to kP (k)and thus immunization of highly onneted nodes is favored ompared to thepurely random situation [229℄.The alulation of the ritial fration of nodes gc is performed looking atthe perolation threshold of the network (onsidering again that immunizednodes and their links are removed from the network) so that the infetionwould beome arrested in one part of the network. This alulation [219℄yields a value

gc = 1−
∑

k

P (k)

(

1− 1

Nk

)Nkpc

, (6.26)where pc is numerially omputed from
∑

k

P (k)k(k − 1)

〈k〉

(

1− 1

Nk

)N(k−2)pc

· exp

(−2pc

k

)

= 1 , (6.27)for every type of network depending on the degree distribution P (k).Single aquaintane immunization is a useful hoie when only minimalnetwork knowledge is available. However, this ase is not so usual in realproblems when neither the omplete knowledge of the network (as targetedimmunization assumes) nor the ultra-short horizon of nodes (where SAI pro-posal is applied) are present. An intermediate situation between targeted andSAI immunization is desribed in the next setion.



6.1. Epidemi spreading and Immunization 1696.1.4 Covering based ImmunizationThe immunization strategy reported here has to do with a general lass ofproblems in the ontext of graph theory: the problem of identifying the minimalsubset of nodes that ful�lls ertain presriptions. In partiular, we report hereon a heuristi method that allows to �nd near-optimal solutions to the overingproblem in networks. The overing problem onsists of obtaining the minimumset of overed verties suh that every vertex is overed or has at least oneovered vertex at a distane at most d (d-overing problem). The introdutionof the distane onstrain leads to a wide appliability of the solutions foundthat an be onsidered as sets of servers in tehnologial networks or largestoring failities in logisti networks as well as immunized nodes in ontat ortehnologial networks. Then, the algorithm implemented here will serve usnot only to onveniently plae those immune nodes that would help to stopthe spread of the disease, but to onsider more general problems. In fat,the alloation of network resoures to satisfy a given servie with the leastuse of resoures is a frequent problem in ommuniation networks. For theimmunization problem, we would like to have a robust system in front of adisease or virus spreading proess while saving resoures, that is, using theminimum number of immune nodes.For this purpose, we will make use of a heuristi algorithm that targetshigh degree verties and omputes an upper bound to the minimum frationof servers needed to over the network. We will apply the method to three realnetworks: the AS and Router level graph representations of the Internet andthe Gnutella peer to peer network. As exposed in setion 5.1.3 these graphs arequalitatively idential in what onerns the degree distribution and the small-world property but, however, they di�er from the point of view of the degreeorrelations between nearest neighbor verties: the AS and Gnutella networksexhibit disassortative degree orrelations whereas for the Router networks as-sortative degree orrelations are displayed (see �gure 5.3). The results shownbelow point out that the solution to the d-overing problem strongly dependson the degree of similarity between the onneted verties. As a onsequene,we show that when designing networked systems, whether a entralized or dis-tributed alloation of these immune/serving/storing nodes (heneforth alledovered nodes for generality) is to be used relies upon the network propertiesat a loal level. Therefore, the interest of applying this heuristi strategy toorrelated real networks is twofold. First we will obtain a nearly optimal over-ing distribution and seondly we asses the impat of orrelations on the designof networked systems.Before explaining the heuristi method and the results obtained it is worthmaking a deeper analysis of the real nets onsidered here. In the d-overing
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(k) vs k for the AS graph. Theinset shows the exponent νd ob-tained from the �t to the powerlaw form < k
(d)
nn > (k) = Akνdin the range k > 1. Similar re-sults are obtained for the Gnutellagraph, but with more �utuationsdue to its small size. (b)< k

(d)
nn >

(k) vs k for the Router graph.The inset shows the exponent νdobtained from the best �t to thepower law < k
(d)
nn > (k) = Akνd inthe range 10 ≤ k ≤ 100.problem one is interested in distanes beyond d = 1, therefore we also analyzethe degree orrelations for d > 1 (see �gure 6.5). For the disassortative graphs,the average degree of distane-d neighbors < k

(d)
nn > (k), restrited to rootverties with degree k, follows the same trend as < k

(1)
nn > (k), tending to beless orrelated for larger d (�gure 6.5.a). For the assortative graph, however,the degree orrelations are assortative up to d = 2, beoming disassortative for

d > 2 (�gure 6.5.b). Finally, for d > 6 the degree orrelations in the originallyassortative graph show a similar trend than in the disassortative graphs.We propose the following heuristi algorithm to obtain an upper boundto the d-overing problem. Loal algorithm: For every vertex in the graph,over the highest degree vertex at a distane at most d from the vertex. Inase there is more than one vertex with the highest degree, one of them isseleted at random and overed. To test this algorithm we �rst onsider thease d = 1, known as the dominating set problem [230℄. In this ase wean use a leaf-removal algorithm as a referene method, whih yields a nearlyoptimal solution together with an error estimate. The leaf-removal algorithmis de�ned as follows. To eah vertex i we assign two state variables xi and
yi, where xi = 0 (xi = 1) if the vertex is unovered (overed) and yi = 0(yi = 1) if the vertex is undominated (dominated). Here a vertex is said to be



6.1. Epidemi spreading and Immunization 171dominated if it has at least one neighbour overed. Starting with all vertiesunovered and undominated (xi = yi = 0 for all i), iteratively, (i) selet avertex with degree one (leaf). If it is not dominated, over its neighbour, setdominated its seond neighbours, and then remove the leaf, its neighbour, andall their inident edges. (ii) If no vertex with degree one is found, then overthe vertex with the larger degree (hub), set dominated its neighbours, andthen remove the hub and all its inident edges. Finally, if some verties withdegree zero remain, they are overed if they are not dominated, and removedfrom the graph. Sine step (i) always provides an optimal solution, the errorin omputing the average fration of overed verties 〈x〉 =
∑N

i=1 xi/N is lessthan or equal to the fration of verties overed applying step (ii).The omparison between the loal and leaf-removal algorithms is shown in�gure 6.6. First, notie that the solutions obtained with the leaf-removal algo-rithm are almost exat for the networks onsidered here and d = 1. The loalalgorithm yields satisfatory, though non-optimal, solutions to the overingproblem, with some di�erenes depending on orrelations between onnetedverties. For the AS and the Gnutella graphs, whih exhibit disassortative de-gree orrelations, the loal algorithm gives a good estimate, quite lose to theoptimal one for the AS graph. In ontrast, for the Router graph we observe alarger deviation from the optimal solution. The origin of this di�erene is dueto the fat that the loal algorithm exploits the degree �utuations among on-neted verties. Indeed, these �utuations are bigger in disassortative graphsas onneted verties likely have di�erent degrees. In ontrast, in assortativegraphs, although there may be high degree �utuations between two vertiesseleted at random, onneted verties tend to have similar degrees, result-ing in poorer solutions. These results indiate that the general belief thatheuristi algorithms targeting the hubs may be su�ient to solve omputa-
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Figure 6.7: (a) Average fration of servers 〈x〉 overing the graph for di�erent valuesof d. The ontinuous lines are the best �ts to an exponential deay. (b) Averagefration of verties 〈n〉 served by a server for di�erent values of d. The inset showsthe graph size dependene of 〈n〉 for the AS graph and d = 1, 2.tional problems on graphs with wide degree �utuations may not be the asefor assortative graphs.The d = 1 overing problem results in a distributed arhiteture beausea �nite fration of the verties is overed. Let us now extend the method anddisuss the results obtained with the loal algorithm for the more general andomplex problem d > 1. In �gure 6.7.a we show that, with inreasing d, theaverage fration of overed nodes deays exponentially fast, indiating that ifwe allow the overs to be more distant, a substantial derease in the numberof required overs is obtained. This exponential deay is a onsequene ofthe small-world property of these networks. The derease in 〈x〉 is, however,ahieved at the expense of an inrease in the average fration of verties 〈n〉served by a overed node (�gure 6.7.b). This is a key metri as it marks thetrade-o� between the number of overs needed and their apaity.
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Figure 6.8: Average number ofovered verties 〈n〉k restrited toverties with the same degree kfor several values of d. The �g-ures show that for disassortativegraphs (a), the overs should havea large apaity to serve a �-nite fration of the graph evenfor small to moderate values of d.On the ontrary, for assortativegraphs (b), the fration of oversis a negligible fration of N up tolarge values of d.
Again, a remarkable di�erene depending on the graph assortativities isappreiated. For the Gnutella and AS graphs, with disassortative orrelations,

〈n〉 inreases signi�antly from d = 1 to d = 2. Indeed, a �nite size study forthe AS graph, with a growing tendeny from 1997 to 2002 [231℄, reveals that
〈n〉 dereases to zero with inreasing the graph size for d = 1, while it remainsalmost onstant for d = 2 or larger (see inset of �gure 6.7.b). On the otherhand, in the Router graph, with assortative orrelations, 〈n〉 inreases muhslower with inreasing d, being almost zero up to d = 3 (�gure 6.7.b). Theseresults are the signature of a phase transition. There is a threshold distane
dc suh that the average fration of verties served by a overed vertex is verysmall for d ≤ dc, going to zero with inreasing N , while it is �nite for d > dc.For disassortative graphs dc = 1 while for assortative ones dc > 1. Note thatthe value dc ≈ 3 for the Router graph oinides with the distane where thedegree orrelations beome disassortative, indiating that the phase transitionis determined by the hange in the degree orrelations. Furthermore, thistransition gives a pratial measure to get the desired trade-o� between 〈x〉and 〈n〉.Sine the graphs onsidered here are haraterized by wide �utuations inthe vertex degrees, one an also ompute the average number of overed verties
〈n〉k, restrited to verties with the same degree k. In all ases an inreasing



174 Chapter 6. Propagation through Complex Networkstendeny of 〈n〉k with k is observed, as it is expeted from the de�nition of theloal algorithm, whih targets high degree verties. Two distint behaviors areone again observed depending on the degree orrelations. In the disassortativegraphs, 〈n〉k is already as large as 10% of the verties for d = 2 and k > 10(�gure 6.8.a). In ontrast, in the assortative graphs, only beyond d = 4, oneobserves that large value of 〈n〉k.The striking di�erenes between disassortative and assortative orrelationshave important onsequenes form the pratial point of view, for example,regarding how resoures for immune response or fast reovering are alloated.For disassortative graphs, exept for the ase d = 1, one would need overs witha vast apaity, serving a large fration of verties. The most e�ient strategyis, therefore, the alloation of resoures in a few overs with a large apaity.The salability of the over system would in this ase be determined by thesingle over apaities, whih should be inreased as the graph size grows. Inthe assortative ase, we have a di�erent senario. The derease of the numberof overs with inreasing d is not as dramati as for the disassortative graphs.In ompensation, eah over serves a small fration of verties. Hene, themost e�ient strategy is to alloate the resoures in a large number of overswith a limited apaity. The salability of the system would be driven by thenumber of required overs, whih augments with inreasing the graph size. Inturn, regarding the design of ommuniation networks, we an deide betweendisassortative or assortative topologies depending on the available resoures.A disassortative topology will be more appropriate for a entralized design,with a few overs having a large apaity, while an assortative network willbe best suited for a distributed design, when a large number of overs have alimited apaity.SIR with immune oversIn order to apply the overed sets found to the problem of SIR epidemi spread-ing we will onsider overed verties as immune nodes to the spreading of adisease or virus. For instane, in a tehnologial network, they ould be thoughtof as being speial devies devoted to �ltering out any virus or attak. Thiswould imply that the spreading proess stops when it arrives to suh nodes.This is of ourse the ideal situation. However, it happens more often that im-mune nodes an not ath the epidemi, but they are not able to stop spreadingit through other nodes − as when you have an up-to-date anti-virus. There-fore, we study the worse senario and onsider that immunized nodes just repelthe virus utting the path to infetion spreading.We will onsider the di�erent d-over sets labeled by the orresponding
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Figure 6.9: Relative di�erene ofthe epidemi inidene for di�er-ent values of d, R(d), with respetto that at d = 1 (λ = 1). The be-haviour observed in the �gure isdetermined by the number of sus-eptible nodes eah immune ver-tex has to �protet�.
distane d used to solve the d-overing problem. For eah distane we omputeby Monte Carlo simulations the epidemi inidene, R(d), in both the Routerand AS representation of the Internet for a onstant value of the epidemitransmission rate, λ = 1, when their orresponding d-overs are onsidered asimmune nodes. We will then fous on the in�uene of degree orrelations onthe �nal size of the outbreak2.Figures 6.9 and 6.10 re�et the di�erenes in the algorithm's performanefor the AS and the Router maps of Internet. Figure 6.9 illustrates the relativedi�erene of the epidemi inidene as a funtion of d, taking as a referenethe size of the outbreak at d = 1. The behaviour depited in the �gure isquite similar to the dependeny of the number of nodes overed by eah im-mune node, 〈n〉, when d is inreased (�gure 6.7.b). For the AS network, thefration of infeted nodes at the end of the epidemi spreading proess rapidlyinreases. In ontrast, the inrease in the epidemi inidene for the routernetwork takes plae at larger values of d. This indiates that for the same
d > 1, the immunization strategy works better at the router level as on�rmedin �gure 6.10, top panel. The reason of this behavior beomes apparent bynotiing that for the router level 〈x〉 is bigger than for the AS, but the number
〈n〉 of nodes served on average by eah immune node is smaller. The ombi-nation of the two fators leads to a more e�ient immunization at the routerlevel, however, at the ost of more resoures. Both strategies tend to be loseras d is inreased beause at the router level the orrelations hange beyond
d ≥ 3.The previous result has to be arefully interpreted and should not be mis-understood. A loser look at the in�uene of the orrelations reveals that,although in general they determine 〈x〉 and 〈n〉 for eah map, these two quan-2It should be notied that a number of other topologial features suh as lustering andhierarhy properties may also be at the root of the di�erent behaviors. Our guess is mainlybased on the performane of the loal algorithm that we will use below.



176 Chapter 6. Propagation through Complex Networkstities alone do not su�e to explain all the di�erenes observed. Indeed, theloal struture of the network turns out to be at the root of the immunizatione�ieny and the optimal trade-o� between the size of the outbreak and theleast use of resoures. To see this, we have analyzed the situation in whihboth 〈x〉 (though the d's are di�erent) and 〈n〉 are almost the same in the tworepresentations. This ase is represented in the bottom panel of �gure 6.10.As an be seen from the �gure, in the latter ase, the immunization sheme forthe AS outperforms that for the router level. This behaviour is due to the fatthat in the AS network, the immune nodes are more distributed throughoutthe network beause highly onneted verties alternate with poorly onnetedones. On the ontrary, at the router level, the hubs are topologially loser toeah other (the orrelations are positive) and thus some of the immune nodesare not highly onneted resulting in a less e�ient protetion in front of anepidemi.In priniple, one may think that as we are immunizing overs (highly on-neted nodes), the use of the (global) targeted immunization strategy wouldprodue the same set of immune nodes. Obviously, this is not the ase sinethe overing operates at shorter distanes than targeted immunization (whihoperates at d = D, the diameter of network). In fat, a diret omparison ofwhat the immune nodes are in both algorithms shows that no more than 50%of them are the same and both sets are equal only when d reahes the diameterof the network. Moreover, as a further evidene of the in�uene of the graph
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6.1. Epidemi spreading and Immunization 177representation in the performane of immunization shemes, it is found thatfor the router level the perentage above an inrease up to 70%.Comparing immunization strategiesThe next step is to ompare the performane of all the immunization strate-gies presented in this hapter when SIR epidemi modeling is employed. It isworth stressing that the heuristi overing-based immunization proposed aboveis based on a tuned loal knowledge of the network (only requiring informationabout the graph topology up to a distane d), a key property of utmost im-portane for most real appliations. Indeed, all the graphs onsidered here areinomplete representations of the systems they are aimed to represent, as itgenerally happens in graph representations of large systems. An added valueof the method developed here is that the overing-based strategy does not onlydeal with the degree of the immune nodes, as targeted immunization does, butnaturally introdues the pratial onstraint of having limited resoures to bedistributed in the system on top of whih the epidemis is spreading.Before omparing the performane of the di�erent algorithms let us illus-trate the importane of the loal properties of the network on the performaneof targeted immunization. The results depited in �gure 6.4 suggest that againthe degree orrelations is one of the main fators in�uening the performaneof the immunization poliy. We see that even for small perentages of immunenodes, targeted immunization performs better in the AS graph. This may bedue to the ompat distribution of hubs (whih play a key role in targeted im-munization) in the router map whereas for the AS representation they are dis-tributed throughout the whole network. Therefore, in the AS representation,targeted immunization works better beause immune nodes are more e�ientin utting the paths leading to poorly onneted nodes, the more abundant.We now fous on the implementation of the SIR epidemiologial model ontop of the Internet maps at the AS and router levels and ompare with theresults obtained by using targeted, random, SAI immunization as well as theheuristi overing-based immunization strategy desribed above. The resultsindiate that the loal algorithm performs quite well and is near the optimalone. We have performed Monte Carlo simulations of the SIR model on top ofthe Internet maps starting from an initial state in whih a randomly hosenset of nodes orresponding to a 1% of the network is infeted. The resultshave been averaged over at least 1000 realizations orresponding to di�erentinitially infeted nodes. We have performed extensive numerial simulationsmaking use of the four di�erent immunization shemes. The immunization ob-tained following the overing algorithm �xes the fration, gc = 〈x〉, of immune
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180 Chapter 6. Propagation through Complex Networksis more �exible than other immunization strategies (reall that it is the resultof an optimization).The strategy introdued has been shown to perform better than all previousmethods irrespetive of the degree of loal knowledge, exept for the ase oftargeted immunization. We �nally remark that the introdued overing-basedimmunization ould be more appropriate when more omplex immunizationdevies are plaed in the network nodes sine the distane onstrain allowsfor a fast ommuniation in order to stop the spread by a possible responsemehanism departed from overed nodes.6.2 Information transmission and JammingThe problem of epidemi propagation shares a ommon feature with other dy-namis like rumour di�usion [232℄: the set up of the problem is the spreadingaross the network of some signal (epidemy, rumour, information,...) launhedfrom a small set of nodes (spreaders) and the study is foused on whether asigni�ative fration of the network is �nally a�eted (or reahed) by this sig-nal. Here, we will address a di�erent lass of propagation problems in networkswhere, as well as the soure nodes, the destination of the information is wellde�ned and unique for a partiular signal. In this ase, the information dy-namis between any given soure and the destination will end when it arrivesto the target. Besides, the information between every pair of nodes follows asingle path and it is not bifurated during its trip as ours in spreading pro-esses. In this ontext we �nd interesting appliations to information dynamisbetween agents in real networks like the internet. The interesting phenomenonfound in this lass of problems has to do with the existene of overloads andfailures due to the exess of information arried on top of the network. Thisis usually known as jamming. We are onerned in whether or not a networkarhiteture or a routing poliy for the information pakets is more favorablefor handling a large amount of tra� in the network. In priniple, the �ndingof SF harater in information networks like the Internet is naively attributedto the ompat arhiteture ahieved with this design. However, although theexistene of hubs in these networks allows the fast distribution of the infor-mation between pairs of nodes, these highly onneted nodes are exposed to alarge amount of data and thus will be easily ongested. Therefore, a detailedanalysis of the interplay between both the topology and the routing strategiesis needed. We begin this hapter with a review on the more interesting workson the subjet and then report two studies on the in�uene of these two im-portant ingredients (topology and routing) on the funtioning of informationdynamis.



6.2. Information transmission and Jamming 1816.2.1 Information dynamis on NetworksReal data analysis of tra� levels on real omputer networks has provided theharaterization of information �ow [233�235℄. This haraterization allowsfor aurate modeling of information dynamis on networks. Among thesereported observations and measures are:
• Long-range orrelations and self-similarity are observed in the time evo-lution patterns of the number of data pakets, A(t).
• Power law behaviour in the power spetrum of the time ativity of thenetwork load,
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∼ f−ξ , (6.28)where ξ, alled the Hurst exponent, was found to be ξ ∼ 1.These �ndings were attributed to the existene of a dynamial phase transitiondue to jamming in the system. The explanation of this ritial behaviour ofthe system has been explored by means of models where this large sale orga-nization was reprodued. However, the reasonable doubt about the in�uenethat the substrate network has on the ritial behaviour makes essential the in-orporation of suh ingredient in order to obtain a omplete desription of thesystem's dynamis. The availability of the topology of these type of ommuni-ation systems allows for a detailed desription inorporating both the omplexdynamial rules and the topology of interations among the onstituents.Computer network tra� an be modeled in diverse ways. However, thegeneral piture of a tra� model onsists in a onstant (in average) injetionof p pakets per unit time in the network. Eah paket, whih is reatedwith a soure node (sender) and a target one (reipient) assigned, is deliveredfrom a sender to a reipient by hops between adjaent nodes and when thepaket arrives to its destination it dissapears. The main magnitude used todesribe the state of the system is the total amount of tra� in the networkwhih is usually de�ned as the number of ative pakets that are urrentlysearhing their destination at time t, A(t). The balane between deliveredpakets and inoming ones governs the behaviour of the system. In the free�ow state the balane is reahed after a transient time and the network isable to deliver pakets at the same rate as new ones are introdued (A(t) isonstant in average). This is obviously found for low values of p but, on theother hand, when p is high enough the network is unable to handle the loadof information and it gets jammed yielding an unbounded growing of A(t).This senario is ommon for a variety of models although they are di�erentonerning partiular details. These peuliarities an be summarized as follows:
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• Eah node of the the network an be modeled as either a router or a host.A router node simply store and distributes among its neighbours all thetra� pakets that it reeives from them. On the other hand, host nodesare, at the same time, senders and reipients of the pakets and hene thegeneration and death of information pakets ours at them. Althoughthis node lassi�ation was onsidered in [236�238℄, in most models hostand routers are not distinguished so that all nodes are senders, routersand reipients of the pakets at the same time.
• The strategy employed by routers to deide whih neighbour is the mostonvenient for a paket to move in depends on the partiular model weuse. This is frequently based on the router knowledge, loal or global,on the plaement of the destination node of the paket. It is frequentlyassumed that a router knows its relative position to every node in the net-work and therefore the paket follows a shortest path between its senderand its destination [239℄. However, this is not a realisti assumptionand randomness is usually inorporated to the routing protool whenthe destination node is not found on the router horizon [240�243℄.
• The relation between the number of pakets a router an deliver per unittime (the routing rate), r, and p is also meaningful. It is always assumedthat a router an only deliver one paket per unit time r = 1 and thenno resaling is needed. This routing limitation introdues the oneptof router queues whih are omposed by the pakets alloated in a nodewaiting for being delivered. The maximum amount of pakets a routeran hold is alled the bu�er apaity, H. The general assumption is thatbu�er apaity is in�nite but there are models where bu�er size is limited.In these models, pakets moving into a node with a full bu�er are lost andnever reah their destinations. Therefore, in these models the jammingpiture desribed above is not valid anymore sine the network has alimited apaity of ative proesses, max[A(t)] = N · H, and anotherquantity aounting for lost pakets is then neessary.
• There are several ways for routers to manage the pakets alloated intheir bu�ers. One an onsider that the router piks up the paket whihis at the head of the queue at eah time step, this is the so-alled First-In-First-Out (FIFO) queue. On the ontrary in Last-in-First-Out (LIFO)queues it is the last paket in the queue the one hosen by the router.Queues where pakets are hosen at random at eah time step are alsoonsidered.The di�erent models reported below belongs to the above desribed generalpiture. The e�orts are always direted to apture the jamming phenomena



6.2. Information transmission and Jamming 183dedued by the experimental observations and, at the same time, to obtain thesimplest and the most tratable modellization of the system.The Ohira-Sawatari modelOne of the �rst attempts to reprodue the jamming transition on omputernetworks was proposed by Ohira and Sawatari [239℄. This model distinguishtwo lasses of nodes: hosts and routers (whih are apable of queuing an un-limited number of pakets). In this work the routing strategy was based onshortest paths (thus assuming that routers have global knowledge of the net-work arhiteture). In general more than one neighbour an be hosen due todegeneray in the shortest path from the router i to the destination node k ofthe information paket. Then, the router has to deide what neighbour is thebest hoie among the set of neighbours that are in the way of a geodesi to
k, L(i, k). Ohira and Sawatari used the following probability for eah possibleneighbour to ath the paket

P k
j =

exp (−βXj)
∑

l∈L(i,k) exp (−βXl)
, (6.29)where Xj is the number of pakets routed by i towards j in the past. Besides,

β has the role of an inverse temperature in order to have an interpolatingparameter from the omplete deterministi routing when β → ∞ (with longtime routers memory) and the random β → 0 routing (where pakets aredistributed at random among the possible shortest paths). Between these twolimits the probabilisti routing an be explored. The model has been studiedon simple network arhitetures as 2D latties with hosts on the boundaries.As a funtion of p, it shows a sudden transition to a ongestion state. Theongestion was measured in terms of the average travel time of pakets. Therelevant result is that the phase transition point, pc, depends on the routingstrategy adopted (β). In partiular, a high degree in randomness (β ≃ 0.01) inthe path hoie is found as the optimal routing poliy ahieving the maximumshift of the onset of tra� ongestion.Cyli searh routingThe use of shortest path routing is linked to the unrealisti assumption ofglobal knowledge. Besides, this is not the best routing strategy when dealingwith SF networks beause of the fast ongestion of highly entral nodes (whihusually are the hubs) that lead to a global ongestion in the network. Toavoid these problems Tadi¢ et al [240�243℄ have developed the so-alled ylisearh routing. This strategy onsist of employing a global random routing



184 Chapter 6. Propagation through Complex Networksjoined to a loal shortest path strategy. The implementation of suh strategyis as follows: every router has a �nite horizon of radius d so that if the targetof a paket is inside this horizon the paket is diretly moved towards thetarget following the shortest path, otherwise it is randomly sent to one of therouter neighbours. The simulations of this yli searh algorithm have beenperformed on top of a variety of network topologies inluding SF networks.Besides, the jamming transition for high values of p the dynamial behaviour inthe free �ow phase was explored. They study the patterns of the time evolutionof the network load, A(t), as a funtion of p. In the free �ow regime, wellbelow the ritial point, the power spetrum of the network ativity followeda power law S(f) ∼ f−ξ with exponent ξ = 1.2 for the so-alled �Web graph�3. In this regime the queue e�ets are negligible and thus the topology isgoverning the system behaviour. When the system approah the transition,
p → pc, the A(t) patterns manifest risis-like ativity with sudden growths ofthe load for relative large windows and the power spetrum of A(t) lose itstemporal orrelations manifested by an inrease of the Hurst exponent, ξ ≃ 2.The waiting times (the time a paket spends in routers queue during its trip)distributions were also investigated. The results for the free �ow regime showeda power law distribution ompatible with those obtained empirially in [233℄ forthe Internet dynamis. However, when the ritial point was approahed (andhene risis in A(t) were found) this distribution turned into a Cauhy-typeshowing long queue times.Self-regulated tra�The �ndings using yli searh algorithms about the �utuations on the loadativity in the free �ow regime are in agreement with the results when ana-lyzing real time series of data tra� in real networks. Besides, the Internetdata analyzed does not (or rarely) manifest a behaviour similar to that of thejammed regime when the ativity grows over large times. On the other hand,the whole system e�ieny is ahieved for p values near the ritial point whenthe average onstant ativity A(t) is maximum. Valverde and Solé suggested[236℄ that there is a feedbak between users and the system ativity so thatusers demand enhanes the ongestion of the system but as ongestion in-reases users tend to slow down their requests and tend to leave the network.This feedbak has the overall result of set the system operation point near theonset of ongestion. This self organization of the system was proposed in amodel where router and host nodes where di�erentiated [237℄. They proposeda mean �eld model for the evolution of the density of information pakets3This is a direted graph displaying SF behaviour and high lustering and degree orre-lations [244℄
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Γ(t) = A(t)/N dΓdt

= pR− τ−1〈k〉Γ(Γ− 1) (6.30)where R is the density of host and τ is the mean life time of information pakets(τ ≃ 〈L〉 in the free �ow state). The �xed point solution guarantees that free-�ow is ahieved. When this solution is lost the jamming regime is reahed. Thisours for eq. (6.30) at pc = 〈k〉/(4τR). Assuming the feedbak between thedensity of hosts and the delivery rate pc in order to reah a onstant ativity Γ⋆the model predits a saling between these two quantities of the form p ∼ R−1.In [238℄ the authors have studied an improved mean �eld model inluding p asa dynamial variable.Searh and CongestionShortest path routing lead to the problem of the fast ongestion of hubs. An-other possible alternative to the yli searh was proposed in [245�247℄ wherethe routing mehanism studied takes into aount node ongestion. In theseworks pakets follow paths of minimum length from their origin s to their des-tination l. At eah time step, all the pakets alloated in the nodes try to movefrom its urrent position i to the next node j in their path with a probability
qij whih is alled the quality of the hannel. This magnitude is de�ned interms of the apabilities of the two nodes, qi and qj as qij =

√
qiqj so that,when one of the nodes has apability 0, the hannel is disabled. High qualities(qij ≃ 1) imply that pakets move easily, while low qualities (qij ≃ 0) implythat it takes a long time for a paket to jump from one node to the next. Itis assumed that qi = f(ni), i.e. the apability of a node i is a funtion of thenumber of pakets ni, urrently at node i. The general funtion f(n) = 1 for

n = 0 and f(n) = n−γ for n = 1, 2, 3, . . ., with γ ≥ 0, has been onsidered.For ξ > 1 (ξ < 1) the number of delivered pakets from i to its neighbour j,
i → j, is proportional to n1−γ

i . Then, the transmission between two adjaentnodes dereases (inreases) with the number of aumulated pakets. For thespeial ase γ = 1 the number of delivered pakets is independent of the num-ber of aumulated pakets. This routing poliy has been studied in 1D, 2Dlatties and Cayley trees. To haraterize the jamming transition the authorsemployed an order parameter, ρ, de�ned as
ρ = lim

t→∞

A(t + δt) −A(t)

δt · pN
. (6.31)A smooth ritial transition to ongestion is found only for γ = 1, while for

γ > 1 the transition to ongestion is disontinuous and jumps from ρ = 0 to
ρ = 1 at pc. This is due to the progressive deterioration of the transmissionhannels as ongestion grows in the network leading to a state where no pakets



186 Chapter 6. Propagation through Complex Networksare transmitted and thus ρ = 1 at the end. This �nal state is reahed by theemergene of a ongestion nulei. The behaviour of the spetra of A(t) for
p < pc was also analyzed showing a power law behaviour S(f) ∼ f−ξ with
ξ ≃ 2.The hoie of an spei� routing poliy (shortest path, random, ylisearh, et...) is equivalent to de�ne an e�etive distane matrix betweenevery pair of nodes (we will return to this piture in setion 6.2.3). Obviously,when the shortest path algorithm is hosen this e�etive distane will be thesame as the topologial one. In [248℄ the authors developed a general formu-lation of the model of tra� dynamis by making use of the probability thata paket loated at a node i and whose destination is a node k will move intonode j in the next hoop, pk

ij. The onstrution of these probabilities dependson the partiular routing algorithm employed and several magnitudes an beexpressed in terms of them. For example, the probability for a paket withtarget k to travel from i to j in n steps
P k

ij(n) =
∑

l1,...,ln−1

pk
il1 · ... · pk

ln−1j . (6.32)The above probability P k
ij(n) allows to alulate the average number of stepsbetween i and j for a paket traveling to k, dk

ij =
∑

n nPn
ij, whih de�nes thematrix dk. Then, the element dk

ik is the e�etive distane from i to k, i.e. themain topologial magnitude governing the �ow of data tra� at a given nodewhen shortest path routing is implemented. For this general situation the e�e-tive betweenes of the nodes an be also alulated as Bj =
∑

i

∑

k<i

∑

n P k
ij(n).Hene, for a general routing strategy when p pakets per unit time and node aresent and the routing rate is r a node j will be ongested when pBj/(N−1) > r.For the whole network one an establish a lower bound for the ritial pointat pc = r(N − 1)/B⋆, where B⋆ is the maximum node betweenes. The generalformulation of the tra� problem performed in this work is of great interestsine it allows avoiding extensive numerial simulations of the hard problem oflooking for optimal topologies when a given routing strategy is presribed. Infat the authors found that for a random routing strategy a dramati hangein the optimal network topology is obtained when p is inreased jumping froma highly entralized star-like topology at low values of p to a homogeneous onewhen p grows.6.2.2 Shortest path routingAfter the above brief summary on the modeling of information dynamis onnetworks we fous now on the in�uene of network struture on the data �owe�ieny. Here we will onsider a simple routing mehanism based on shortest



6.2. Information transmission and Jamming 187path routing so that we assume global knowledge of routers. In order to disusshow the loal topologial properties in�uene the e�ieny of a given routingprotool, we use the network studied in setion 5.3. Let us reall that in thismodel, the network is generated by onsidering the Barabási-Albert proedure[145℄ (setion 5.2.3) but introduing an a�nity variable fi and a tolerane µ,whih determine the peers j a new node an attah to. This is done by requiringthat fj ∈ (fi ± µ). This network shows the same global properties of the BAgraph, like the SF degree distribution, regardless of the tolerane. However,depending on the value of µ, other loal properties, suh as the lusteringoe�ient and orrelations, di�er from the original BA network. The lusteringoe�ient showed the major deviation ompared to the values at the BA limit(where lustering e�ets are negligible) and grows as µ dereases. Besides, theaverage path length L remain nearly onstant for a wide range of µ valuesbut shows a sudden inrease when the tolerane approahes µ = 0. Thesetwo quantities, lustering and average path length, are of importane for theinformation disemination on networks as we will show below.Let us now de�ne the set up of the problem. We will assume that routersdeliver data pakets by ensuring that all routers onverge to a best estimateof the path leading to eah destination address. In other words, the routingproess takes plae following the riterion of the shortest available path lengthfrom a given soure to its destination. We will onsider a situation onsistingof an initial amount p of information pakets to be transmitted aross thenetwork. That is, we will not onsider the situation before where the networkis subjeted to a onstant �ux of proesses like in the works desribed but,instead, we will study how the system relax to its �ground state� (A(t) = 0)when an initial perturbation is performed. Then, in our simulations p paketsare reated at the beginning and both their destinations and the soures arehosen at random. In subsequent time steps, eah node i holding a paketsends it to its destination j following the shortest path length between node iand j until all pakets reah their destinations. That is, eah paket is divertedin suh a way that the distane dij , measured as the number of nodes one needsto pass by between i and j, is minimized. In the ase that there are more thanone possible path, the hoie is made at random. Besides, we onsider thatrouters deliver r = 1 paket per unit time and that the router bu�er size isin�nite, H →∞.The above proedure is repeated many times for a number of proessesranging from p = 1 to at least p = 500. Di�erent realizations of the dynamisand the network substrate for the same p are performed in order to averagethe relevant quantities. As a measure of the e�ieny of the proess, we havemonitored the relaxation time, 〈Trelax〉, by omputing the maximum time ittakes for a paket to travel from its soure to its destination, averaged over



188 Chapter 6. Propagation through Complex Networks

 0

 50

 100

 150

 200

 250

 300

 350

 0  200  400  600  800  1000  1200  1400

T
re

la
x

p

µ=1.00
µ=0.50
µ=0.22
µ=0.12

Figure 6.13: Averaged relax-ation time, Trelax, as a funtionof the initial number of pakets,
p, for several network topolo-gies (using the model desribedin setion 5.3) orresponding to
µ = 1.0 (BA limit), 0.5, 0.22and 0.12. As an be observed
Trelax sales linearly with p forall the networks.di�erent realizations 4. Sine the SF topology is shared by all the networksstudied here, we expet that the paket dissemination follow the same trendfor any value of µ. That is all the pakets will tend to onentrate into thehubs queues at �rst instane. In these queues pakets will spend most of theirlife times so that the in�uene of other topologial fators would be apturedby the onvergene and sape times of the trips into and from the entral hubsore.The numerial results show that this magnitude sales linearly with thenumber of proesses as an be expeted from the simple shortest path routingprotool. An example is shown in �gure 6.13 where the linear saling is shownfor several values of µ. Therefore, the derivative of Trelax(p) is a proper pa-rameter to haraterize the routing performane. �gure 6.14 shows the slopesof the straight lines as a funtion of the ontrol parameter µ whih determinesthe loal properties of the network. It is lear from the �gure that the algo-rithm's outome depends on the topologial details of the network. For thefamily of networks labeled by µ the average shortest path length L is roughlythe same as that of the BA network up to a value around µ ≃ 0.2. This fatsomehow breaks the entanglement between the in�uene of the harateristilength and other loal properties of the network on the paket dynamis al-lowing to study them separately. As shown in �gure 6.14, the e�ieny hasa well de�ned maximum and a minimum in the range µ values 0.2 < µ < 1where L(µ) remains almost onstant. This implies that loal properties areresponsible for the behavior observed, namely the lustering oe�ient c.We have distinguished four µ-ranges in the �gure depending on the perfor-mane of the paket dynamis relative to that of the BA network. In regionI, 0.8 < µ < 1, we �nd that the performane is almost the same as in the BA4Note that the hoie of 〈Trelax〉 is arbitrary. One an also use 〈Tavg〉 or 〈Trms〉, whihleads to the same behaviours.
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Figure 6.14: ∂〈Tmax〉/∂p, as a funtion of the network parameter µ. The �gureillustrates the dependeny of the standard routing protool on the loal properties ofthe network. The right panels show the variation of c with µ. The size of the networkis N = 104 nodes and mo = m = 3. The degree distribution is a power law withexponent equal to 3. Note that the BA limit orresponds to µ = 1. See the text forfurther details.limit. In this range both lustering and L show the same values as the BAnetwork. Region II and III, 0.35 < µ < 0.8 and 0.2 < µ < 0.35 respetively,show a di�erent performane with respet to the BA topology. In region IIthe relaxing times inrease signi�antly reahing a maximum at µ ≃ 0.5. Onthe other hand, in region III an enhanement in paket di�usion is manifestedrevealing an optimal topology for paket difussion at µ ≃ 0.22. In both regionsII and III the deviation from the BA performane an be only atributted to thelustering growth sine L is almost onstant in the whole µ-range. The resultis apparently ontraditory sine the growing behaviour of c as µ dereases isheld for the two regions. However, it an be explained in terms of the lusteringevolution. Sine the number of links is onstant for all the networks exploredhere (due to the growth mehanism employed in setion 5.3) an initial growthof the lustering yields to the appearane of loops of length 3, triangles. Thesestrutures are useless for the shortest path routing, as �gure 6.15.b shows, inthe sense that those links used to link neighbours of a given node i does notontribute anymore to any shortest path from i to other nodes in the network.However, if the lustering is further inreased the probability of forming loopsof length 4 is inremented, see �gure 6.15., and then the degeneray in theshortest path from pairs of nodes is inremented. This fat is very importantfor shortest path routing with ongestion sine the queue times are dereased
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cFigure 6.15: Shemati representation of the di�erent strutures found in the neigh-borhood of a partiular node (white oloured in the �gures) when lustering is in-reased as happens when going from region I to region III in �gure 6.14. Whenlustering is small (I) the tree-like struture in the neighbourhood of nodes makes thepakets to hoose a partiular branh depending on their destination. When luster-ing inreases (II) the links employed by our model for onneting its neighbours areuseless and derease the number of hoies. However, if lustering is even larger (III)the formation of losed loops of length 4 diversify the possible shortest path to befollowed by a single paket delivered from the white oloured node.when pakets going to similar parts of the networks are distributed in severalshortest paths. Now, pakets an irumvent more easily ongested nodes,thus making the shortest path protool more e�ient. The routing enhane-ment provided by the large lustering is lost when length e�ets appears at lowvalues of µ. For very small µ, L diverges (see inset in �gure 6.14) leading toa bad performane of the protool, although the lustering ontinues to growfor these µ values, sine the algorithm works on a shortest-path-delivery basis.The rossover from the minimum to the divergene of ∂〈Tmax〉/∂p is ahievedin the parameter region IV where the interplay between c and L breaks downand the ontribution from L to the routing performane prevails.The above results indiate the strong dependene of the routing e�ienyon the underlying topology. Let us �nally take a look at the queue timesdistribution, i.e. the probability that a paket spends a time Tqueue waitingin the queues of the nodes visited in its trip to the destination node, whenseveral µ values are employed for the network substrate. We have plotted in�gure 6.16 these distributions for µ = 1 (BA limit), µ = 0.5 (orrespondingto the loal maximum in �gure 6.14, µ = 0.22 (orresponding to the optimaltopology as explained above) and for the Autonomous System network. For allthe networks generated by our model we �nd a power law behaviour trunatedat long queue times where the di�erenes between the topologies are revealed.
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Figure 6.16: Queue time dis-tribution for a set of networkswith µ = 1, 0.5, 0.22 and theAS representation of the inter-net. Trunated power law be-haviour is well appreiated forthe networks generated usingour model. These networkswere grown up to a similar sizeof the AS map N = 11174.
The distribution orresponding to the AS network shows however a di�erenttrend and the power law behaviour is not reovered. In this ase, (as weexplained in previous hapters), although the SF harater is also preserved,loal properties suh as degree orrelations are very di�erent from those in themodi�ed BA model employed here on�rming the importane of these loalingredients on the paket dynamis.6.2.3 Congestion-aware routingThe preeding analysis shows that the routing protool may be very sensitiveto loal details of the network on top of whih the spreading proess is takingplae. It is then advisable the use of real nets in order to obtain reliable results.To this end, we will use the Internet Autonomous System map [165℄, whih isa SF network with γ = 2.2 and N = 11174 nodes. It is worth stressing thateah AS groups many routers together and the tra� arried by a node is theaggregation of the tra� generated at the internal routers and on individualend-host �ows between the ASs.Our aim here is to explore routing mehanisms more sophistiated thanpurely random or shortest path strategies. The �rst modi�ation of the routingsheme is introdued by noting that the shortest path proedure does not takeinto aount the tra� on the network. Spei�ally, a routing poliy based onthe shortest path between two given nodes neglets the queue in overloadednodes whih makes the proess slower as the queue lengths beome larger. Thatis, it may be more e�ient to divert a paket through a larger but less ongestedpath. Let us hene assume that a node l is holding a paket that should besent to a node j and de�ne an e�etive distane deff

ij from a neighboring node
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i of l to the destination j as

deff
ij = dij + ci , (6.33)where dij is the shortest path between node i and j and ci is the number ofproesses (or pakets) in the queue of i. The above de�nition, however, doesnot allow us a diret omparison with the other standard proedures. It isthen onvenient to rede�ne the e�etive distane as

deff
ij = hddij + hcci , (6.34)so that the limit hc = 0 ontains the shortest path protool. Furthermore,without loss of generality, we take hd + hc = 1. This algorithm will be alleddeterministi protool heneforth. The proedure for 0 < hd < 1 ombinesknowledge of the strutural properties of the network and its urrent dynamialstate at a loal sale, onsequently, a trade-o� assoiated to pakets' transittimes is naturally and dynamially inorporated (see �gure 6.17).Taking into aount the above e�etive distane, dij

eff , we �rst study asimilar situation to the one presented in the previous setion. Starting from ppakets in the network, at eah time step, the remaining pakets are deliveredin suh a way that the neighbour hosen when a paket towards j departs froma node i is that whih minimizes dij
eff .A �rst look at the dynamis shows that a protool implemented in this wayis more e�ient than taking into aount only the shortest path riterion. Infat, 〈Trelax〉 departs from the linear behavior previously observed and is well
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Figure 6.18: Dependeny of 〈Trelax〉 on the number of initial pakets p in the deter-ministi limit of the model (β = 20) ran on top of an AS Internet map made up ofaround 11000 nodes. Eah point is an average over at least 200 realizations. Thestandard protool orresponds to the limit hd = 1. Note that although the tendenyof the urves is to ross the straight line as p inreases, there is an optimal value of
hd suh that the intereption would take plae in the limit of very heavy tra�.below the straight line up to a high p. This behaviour learly depends on hd,sine it is straightforward to realize that if hd is zero, the pakets are divertedfollowing the less loaded node regardless of the path length whih results in anunontrolled inrease in the distane traveled by the pakets from the sendingnodes when p grows.The above algorithm an be further generalized by inluding a probabilistiview. In other words, one we have determined the deff

ij for all pairs (i, j), wean allow for a stohasti hoie of the paths. Hene, our seond algorithm,referred to as stohasti protool onsiders a sore funtion or �energy� Hij =

hddij + (1− hd)ci and that the probability Πij that a paket with destination
j is sent preisely through node i is given by,

Πij =
exp (−βHij)

∑

{l|(l,i)∈V } exp (−βHlj)
, (6.35)where β is the inverse of the temperature. In the limit β → ∞ (at zerotemperature) we reover the deterministi protool.Figure 6.18 shows the dependeny of 〈Trelax〉 on the number of pakets pfor several values of hd in the deterministi limit of the model, whih we foundto be ful�lled for β = 20. A dynamis whih does not take into aount theamount of tra� handled by the neighbors of a sender node −straight line in
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Figure 6.19: Dependeny of 〈Trelax〉 on the number of pakets, p, for a middle β = 5value. The network parameters are as in �gure 6.18. In this ase, the hd range inwhih the stohasti strategy performs better than the standard one is redued.�gure 6.18− performs worse than the one whih integrates both ingredients.However, this depends on both the spei� weight of eah metri in Hij and p.In the regime where the tra� is not heavy (small p values) all urves are belowthe shortest path protool performane, but as the amount of tra� handledby the network inreases, the deterministi protool starts performing worsefor a range of hd values. From the results, it seems that eventually, when thetra� inreases too muh, the urves ross the straight line indiating that atthose limits the shortest path strategy is best suited. Note, however, that for
hd = 0.75 the onvergene of the two algorithms ours for a very heavy load.Consequently, we an assert that there is an hd region where the ombination ofthe two ingredients gives rise to the best performane. On the other hand, theexistene of an optimal hd value distint from zero an be understood by notingthat a mehanism laking some degree of path length information between thesoure and destination nodes of the pakets performs badly beause the paketstravel along too large paths that do not ompensate the time they would loosetrapped in the queues of ongested nodes.The ompletely stohasti limit of the model orresponds to β = 0. Theperformane of the protool in this limit is however very bad. In fat, for anin�nite temperature, all neighboring nodes of a given sender have the sameprobability to reeive the message regardless either their ongestion level ortheir distane to the targets. Then, the dynamis beomes a random walkproess. With no topologial information about what are the destinations ofthe pakets, they arrive to the reeiver at longer times and the algorithm is the
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Figure 6.20: Phase diagram of the system's dynamis. The network parameters areas in �gure 6.18. The number of proesses is p = 500. Calulations for higher p showthat the minimum of 〈Trelax〉 is also attained around hd = 0.8± 0.1.worst. For intermediate values of β, we have an stohasti dynamis in whihtopologial and tra� information oexist with some degree of randomnessin the hoie. This is the ase depited in �gure 6.19 for the same valuesof hd used in �gure 6.18. As an be noted from the �gure, the stohastiprotool inreases 〈Trelax〉 by at least one order of magnitude as ompared tothe deterministi limit (β = ∞). Moreover, the shortest path routing seemsto be the best hoie for a wider range of hd values, although hd = 0.75 stillperforms better.Figure 6.20 summarizes our results for di�erent values of the ontrol pa-rameters β and hd. It turns out from the study of the whole phase diagramthat the best algorithm is one whih inludes information about both pathlengths and ongestion at a loal sale. Besides, the deterministi limit with
hd = 0.75 gives the best results for 〈Trelax〉. It would be worth notiing atthis point that, although the �gure 6.20 was obtained in not too heavy tra�onditions, the results are onsistent for larger values of p. Di�erent tests al-low us to onlude that the optimal value is hd = 0.8 ± 0.1. In any ase, thison�rms that it would be possible to devie more elaborated protools withthe aim of diminishing the time needed for a paket to spread through thenetwork. In light of the present results, suh an strategy may be implementedby also taking into aount the amount of tra� handled by a loal area of thenetwork.



196 Chapter 6. Propagation through Complex NetworksAs suggested by �gure 6.20, the best protool is the deterministi one,whih, on the other hand, should be easier to implement in pratie. Themirosopi dynamis of the routing proess in this limit reveals that it isdesirable that the routing proess inorporates some knowledge of the node'squeue lengths. However, the ontribution in the sore funtion of the seondterm in eq. (6.34) should not weigh in exess. For small values of hd, say 0.25,the algorithm performs better that shortest path routing for moderate valuesof p beause the pakets do not pass by the hubs of the network, whih arelikely to be in the shortest path route to any node. Instead, they go around thehubs and 〈Trelax〉 is smaller. If p is inreased, the neighbors of the hubs alsoget ongested. This leads to a situation in whih the pakets around a hub gettrapped in its neighborhood, getting in and out from it, but without �ndingtheir routes to their destinations. We will analyze in depth this situation below.Jamming transitions at onstant information �uxTo analyze in more detail the performane of the ongestion-aware protools weturn our attention to the more realisti situation where the network is subjetedto a onstant �ux of newly reated pakets. Starting from an unloaded network,at eah time step p new information pakets are reated. As before, the soureand destination of eah paket are hosen at random among all the nodes andeah node sends only one paket at eah time step, r = 1. As an appropriatemeasure of the e�ieny of the proess, we monitor the aggregation of paketsin the network, given by the number of pakets that have not reahed theirdestinations at eah time step t, A(t). Figure 6.21 shows the results obtainedfor di�erent values of p and hd. As it an be seen, when the external drivingis applied at low rates (i.e., small p), both protools allow for a stationarystate where A(t) > 0 is onstant. In this state, the system is able to balanethe in-�ow of pakets with the �ow of pakets that reah their destinations.This stationary state, where no marosopi signs of ongestion is observed,orresponds, as already introdued in previous setions, to the so-alled free�ow phase. The situation hanges when the rate at whih new pakets areintrodued inreases. As we will see below, there is a ritial value pc beyondwhih a ongested phase shows up. Let us now note that for the shortest pathprotool (hd = 1) (�gure 6.21.a, dotted line), when p > pc, A(t) grows linearlyin time ∀t as expeted from earlier works where this routing was implemented[239℄. On the ontrary, for the tra�-aware algorithm, hd < 1, we observe that
A(t) grows slowly at short times and then beomes steeper as time goes onwith a onstant slope (�gure 6.21.).In order to haraterize the phase transition from a free phase to a on-
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Figure 6.21: Total number of ative pakets as a funtion of time steps. Figures (a)and (b) orrespond to the shortest path protool, hd = 1 while () and (d) have beenobtained for the tra�-aware routing with hd = 0.85. In eah �gure, the ontinuousline stand for subritial values of p ((a) and (b) p = 3.0, (d) p = 8.0) and the dottedline orresponds to p > pc ((a) and (b) p = 4.0, () and (d) p = 13.0).gested one, we use the order parameter introdued in [245℄, eq. (6.31)
ρ = lim

t→∞

A(t + τ)−A(t)

τpwhere τ , the observation time, was typially �xed to 200 time steps. Wereall that the limit in the above expression is introdued only to ensure thatthe system is not in a temporary regime, for our purpose it ranged from fewthousands to 104 time steps depending on the system behaviour. The orderparameter ρ hene measures the ratio between the out�ow and the in�ow ofpakets during a time window τ . Then, ρ equals 1 when the ongestion ismaximal (no paket reahes its destination) and 0 when an equilibrium isestablished, i.e., in the stationary state.For the shortest path routing the omputation of ρ is simple beause ofthe linear behaviour observed for both the free-�ow and the ongested phases.
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A(t) shows two di�erent regimes forthese two last values: a large tran-sient time (where a nearly linear be-haviour for A(t) is observed) andthe equilibrium one (where againa linear behaviour is reahed witha larger slope). (b) Instant om-putation of ρ(t). For the valuesof p where p < pc ρ(t) �utuatesaround 0, whereas when p > pc, thetwo aforementioned regimes are re-�eted by the regions where ρ(t) isonstant.On the other hand, for the routing aware protools at the ongested phase wehave to be areful about the measures of ρ. The �rst transient regime observedin �gure 6.21. an be regarded as a linear regime for the neighbourhood ofthe orresponding value pc. In fat, as observed from �gure 6.22.a for valuesof p so that pc . p this transient regime ould be of the order of severalthousands of time steps. If one monitorizes the evolution of ρ(t), �gure 6.22.b,this quasilinear behaviour is re�eted as a nearly onstant low values of ρ(t)for initial times. This behaviour is interrupted by a suddenly growth of ρ(t)to a larger value, where it remains onstant signaling that the system havereahed its dynamial equilibrium. At �rst look it seems that, at the beginning,the system is being harged by the unbalaned load of tra� and when thedynamis reahes a ritial number of ative pakets it explodes yielding to therapid inrease of A(t) shown by the large slope of the �nal state. Although wewill analyze in more details this proess below, it is important to stress herethat no matter how slow the harge rate of the transient regime is, the systemwill experiene the �nal dramati inrease in A(t). Obviously, as we approah

pc from the right, the time needed by the system to reah the �nal equilibriumdiverges and hene the estimation of the ritial point pc is omputationallyhard.Figure 6.23 depits the system's phase diagram. The dynamis of the
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200 Chapter 6. Propagation through Complex NetworksMirosopi origin of the ritial behaviourIn order to provide more insights into the nature of the phase transitions, wenow fous on the mirosopi details of the system's dynamis that lead to themarosopi results shown previously. We have inspeted how the nodes getongested. As both lasses (shortest path and ongestion-aware) of protoolsinorporate a shortest path delivery strategy, a suitable desription an beobtained by monitoring the number of ative pakets at eah node as a funtionof the betweenness of the nodes. As explained in setion 5.1.2, the betweennessor load of a node i gives the total number of shortest paths among all pairs ofnodes in the network that pass through i [161, 169, 249℄. It is then a measureof the entrality of a node in the network so that it beomes a relevant quantityin tra� �ow modeling. In partiular, for our system, AS representation ofthe Internet, the betweenness of a node sales with its onnetivity k [161℄.Figure 6.24 learly illustrates the distribution of ongested verties for thetwo protools analyzed. The shortest paths onneting the soures and thedestinations of any ative paket always tend to visit �rst the more onnetednodes and then go down to the less onneted ones. This is a onsequene ofthe hierarhy of the network and is alled up-down strategy [161℄. For hd = 1,the protool only works on a shortest path delivery basis. Then, the hubsbeome ongested early in the proess ausing the pakets to get trapped ina few nodes as shown in �gure 6.24. When tra� onditions are taken intoaount by the routing mehanisms, the same up-down strategy applies up tothe hubs. Then, instead of getting trapped in them, the pakets irumventhighly jammed nodes and the load is distributed to nodes other than the hubs,provoking the aggregation of tra� in neighborhoods of overrowded nodes.As it is shown in the �gure, when hd < 1 the ongestion gets �rst loalizedin the most entral nodes, the hubs, and it is progressively distributed amongthe rest of the nodes following the entrality hierarhy, from the most entralsnodes to the less ones. At the long time limit, the ongestion is spread throughthe network instead of getting trapped in the hubs as happens for hd = 1.It is possible to get deeper into what is going on in the system for hd 6= 1by analyzing the redistribution proesses that make the paket follow the lessongested paths. Let us suppose that a node i is holding a paket to be sentto j through one of its ki neighbours. Among all the neighbours of i, there isone node with the lowest load cmin. Now, assume the extreme situations inwhih by going through a given neighbour l the paket is one hop loser to itsdestination, but taking the path for whih the ongestion is minimum, it is onehop farther from j. Thus it follows that whenever the relation
cl − cmin >

2hd

1− hd
(6.36)
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h=0.85 h=1.00h=0.85 h=1.00dh =0.85 h =1.0d Figure 6.24: Congestion levels asa funtion of time and nodes' be-tweenness. At eah time step,the olor-oded sale is normal-ized by the number of pakets ciin the queue of the node withthe largest ongestion. Two rad-ially distint behaviors are ob-tained for the shortest path rout-ing (hd = 1, p = 4 > pc = 3,right panel) and for the tra�-aware protool (hd = 0.85, p =

13 > pc = 9, left panel).
is veri�ed, no pakets (regardless of their destination) will be sent through l.This node l is impenetrable for i. Then, if a node is impenetrable for all itsneighbors, we all it just impermeable, sine it does not partiipate in tra�delivery.Following this piture, as ongestion spreads throughout the network, thenumber of impermeable nodes would inrease up to a onstant value sinethe de�nition of impermeable nodes is relative to their neighbourhood (it isimpossible to obtain a network omposed only by impermeable nodes). Then,regardless the total load of the network (that inreases with time), the numberof impermeable nodes remain nearly onstant. Besides, its distribution wouldhange dynamially sine an impermeable node does not admit new pakets intheir queues but it does ontinue sending pakets to their neighbours so that itslevel of ongestion relative to that of their neighbours an only derease whileits neighbours reeive its pakets. Therefore a dynamial bakbone made up
Cmin i

l Figure 6.25: A node l is alled impermeable toits neighbour i when eq. (6.36) is ful�lled.



202 Chapter 6. Propagation through Complex Networks

0 10000 20000 30000 40000
t

0.0

0.2

0.4

0.6

0.8

1.0
<

G
>

/G
m

ax
, A

<G>/Gmax

A

Figure 6.26: Time dependene of the total number of pakets in the system andaverage size of the lusters formed by non impermeable nodes. Note that A(t) beomessteeper just when the in�etion of 〈G〉/Gmax(t) hanges. hd = 0.85 and p = 13. Seethe text for further details.of all nodes that are able to transmit the pakets omes up. This piture issimilar to the perolation of a �uid through a porous media. Here, pakets an�ow only through non impermeable nodes as a �uid an only �ow through thepore hannels.The existene of impermeable nodes provokes the appearane of both smallnetwork omponents in the form of impenetrable regions, and lusters of al-lowed paths. By identifying those impermeable nodes at some time t follow-ing the riterion (6.36), it is possible to �nd those dynamially unonnetednetwork omponents whose boundaries are omposed by impermeable nodes.Figure 6.26 depits the time dependene of the average luster size (normalizedby the largest luster size) of allowed regions. Starting from t = 0, as timegoes on, the total number of pakets in the network inreases and there is onlyone luster of the size of the network. When signs of ongestion �rst appear,
〈G〉/Gmax(t) dereases departing from unity signaling that impermeable nodesstart to appear. At longer times, tra� jams reah more nodes (see, �gure 6.24,for t > 21000) ausing the ongestion to be more distributed in the networkand hene the growth of the total amount of impermeable nodes. Finally, the�ow of pakets in the network reahes the regime in whih A(t) inreases lin-early in time and ρ(t) saturates to its stationary value (�gure 6.22). In thisstate, marked by an in�etion point in the 〈G〉/Gmax(t) urve beyond whih
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Figure 6.27: Jamming transitions for the Gnutella, Barabási-Albert and Erdös-Rényinetworks. The bottom right plot shows the estimation of the ritial point, pc, forthese topologies. Syntheti networks (ER and SF-BA) have the same size as theGnutella peer-to-peer network N = 711.the average luster size of allowed regions stabilizes, the system seems to haveself-organized the distribution of jammed nodes.This self-organization phenomenon niely explains why one an not gosmoothly from these results to those orresponding to the use of the short-est path protool by making hd → 1, as it an seem from eq. (6.34). Thedisontinuity at hd = 1 is therefore due to the lak of alternative paths in thestandard protool. Even for hd very lose to 1, the system will self-organizeitself into a state in whih ongested nodes are distributed and not limited tothe very hubs of the network. The only dependene with hd is manifested inthe time needed for self-organization, that beomes very large and eventuallydiverges when hd → 1.The results found here are reprodued when using more general networktopologies as the tra� substrate. We have inspeted the ase of synthetinetworks like Erdös-Rényi and Barabási-Albert graphs as well as other realmaps like the Gnutella peer-to-peer network (see �gure 6.27). The results arequalitative the same as those shown above: a little knowledge of the loalongestion levels enhanes the performane of the information dynamis in



204 Chapter 6. Propagation through Complex Networkswhat refers to the shift of the ritial point pc, but on the other hand, thetransition to the ongested regime hanges from a smooth to a sudden one dueto the dynamial fragmentation of the network explained above. Our resultsdemonstrate that whether or not a given protool is best suited for tra�handling depends on a deliate trade-o� between the system's performaneand tra� apabilities (how large pc is) and how ongestion arises (smoothlyor suddenly).6.3 ConlusionsWe have explored in setion 6.1 and 6.2 two propagation proesses in omplexnetworks, namely: epidemi spreading and information routing. Assumingthat the networked substrates are sale-free, several features have been stud-ied in detail. As we introdued at the beginning of this seond part of theThesis, the main purpose onerning the study of network dynamis here, isto know how the heterogeneous topology and other strutural properties a�etthe development and e�ieny of the dynamis.The �rst set of results, explained in setion 6.1, onerns the immunizationstrategy of omplex heterogeneous networks. Taken into aount that hubsplay a entral role in these kind of proesses it is lear that the best hoie forstopping the epidemi spreading is to onfer immunity to these most onnetednodes. However, taking into aount that knowledge of network struture is notomplete in most situations, we have proposed a new immunization strategybased on a heuristi solution to the overing problem. This new immuniza-tion sheme is neither loal nor global, and hene, we have explored severalsituations orresponding to di�erent knowledge horizons (from loal to globalknowledge). The immunization strategy, based on the overing solution, takesadvantage of the heterogeneous struture of networks and it has been shownto perform better than all previous methods irrespetive of the degree of lo-al knowledge, exept for the ase of targeted immunization. We have alsoshown that the solution found for the immune set of nodes, i.e. the overingsolution, and therefore the output of a SIR epidemis strongly depend on thenature of the degree-degree orrelations of the network. In this sense, it isworth mentioning that the traditional belief that by targeting hubs one an ef-�iently solve most problems on networks with a power-law degree distributionis not ompletely true if the degree-degree orrelations are assortative, wherea distributed overing-based immunization is desirable.We have also analyzed the problem of information routing in omplex net-works in setion 6.2. We have studied di�erent strategies for tra� deliveryin omplex heterogeneous networks. The results showed that the performane



6.3. Conlusions 205of the standard approah, based on routing through minimal distane (be-tween sender and reipient) paths, is sensitive to loal topologial hanges.Spei�ally, the lustering properties may play a key role in message delivery.Besides, we have studied alternative strategies to the shortest path routingpoliy. In partiular, we have studied algorithms whih integrate topologialand tra� information. This ongestion-aware algorithms have been shown toperform better that the standard protool when relaxation proesses our. Atthe same time, we have haraterized the jamming transitions that take plaewhen a onstant �ux of information is introdued in the network. The resultshave shown that when tra� awareness is inorporated into the routing proto-ol, new ooperative e�ets arise and the jamming senario is totally hanged.The use of ongestion-aware routing is seen to imply a better performane,for what onerns the onset of jamming, i.e the network allows a higher loadof data tra� at the free �ow phase. On the ontrary, when jamming ourthere is a sudden inrease of the ongestion levels and an abrupt transition isobserved in ontrast to the well known seond order phase transition found forthe standard shortest path routing.The two main strategies introdued in this seond part of the Thesis,overing-based immunization and ongestion-aware routing, are oriented totake advantage of the sale-free nature of the substrates where the assoiateddynamis, epidemi spreading and information tra�, take plae. In the forth-oming part we will are about the two way relation between struture anddynamis.





Part IIINonlinear Dynamis ofComplex Networks





Presentation of Part IIIIn the two preeeding parts of the Thesis we have dealt separately withboth dynamial and strutural omplexity. In part I we have been onernedwith dynamial systems oupled in a simple regular way onforming perfetnonlinear latties. These geometries of the arrays of dynamial systems are,in most ases, realisti when onerning appliations in �elds as solid statephysis, optis, et... and they are urrently the subjet of a onsiderablemultidisplinary interest [23℄. However, there are yet another kind of prob-lems, most of them assoiated with biologial systems, where these simplistiassumptions for the topology of interations are not valid and, therefore, stru-tural omplexity is linked to nonlinear dynamis.Although our analytial tendeny is to separate these two soures of om-pliation, an unitary approah is needed in order to explain how struturaland dynamial omplexity in�uene eah other [250℄. This diretion of studyis deeply related with the growing interest in the understanding of the manyaspets of the orrelation between Struture and Funtion in systems made upof disretely many nonlinearly interating omponents. The main assumptionbehind these studies is that the struture of the network of interations is theresult of a seletive proess that yields an advantageous topology for the systemfuntioning. The ommon sale-free harater found for many real networkssupport these speulations and many e�orts are urrently being made in orderto �nd dynamially based optimization priniples for modeling network growthand evolution.The most interesting problems on the relation between struture and fun-tion arise in the ontext of biologial systems suh as biomoleular (protein-protein interation, gene regulation, ell metabolism), ortial brain and eo-logial (trophi networks, mutualism) networks. There exist many dynamialmodels aounting for the interations among the elements of suh systemsand, at the same time, the advanes in experimental tehniques allow for hav-ing the topology of these interations mapped into a large amount of biologialnetworks. The sienti� basis are thus well established and the researh isnow being oriented to the study of the mutual in�uene between dynamisand topology, attrating the attention of sientist from diverse �elds to thisinteresting problem.The most relevant results would eventually ome from those mentionednetwork models that, instead of de�ning network growth in terms of struturalproperties, inorporate the e�ieny of the dynamis (funtion) of the networkas the leading priniple for network evolution. However, most of studies up



210to now have onentrated in analyzing how struture a�ets the emergeneof dynamial e�ets like synhronization patterns, self-sustained dynamialativity, et... These �rst approahes to the problem provide useful insightsfor more ambitious projets where optimization of dynamial properties likesynhronizability, dynamial adaptability and stability, et... will be expliitlyemployed in network design.Our main onern in this last part of the Thesis is on the line of these�rst approahes to the Struture-Funtion relation problem. We will use theonepts applied in the two former parts to study the dynamial patterns thatappear when two di�erent dynamial systems are plaed on top of omplexgeometries. We will haraterize both dynamially and struturally these pat-terns in order to unveil the interplay between topology and dynamis. Thesepatterns are seen as the produt of the two oupled soures of omplexity and,as we will see, lead to the emergene of new properties that annot be obtainedfrom a separate study of dynamial and strutural omplexity.In hapter 7 we will study a lass of omplex networks where there exists aompetition of inhibitory and ativatory interations between elements. Thesekind of systems are related with gene regulatory networks and metaboli re-ations hains. The desription of the system funtioning is performed via aMihaelis-Menten equation, widely used for desribing the reation kinetis ofatalyti proesses. We will �rst study in detail the phase portrait of the sys-tem as a funtion of the ratio between ativatory and inhibitory interationsof the network and haraterize the diverse bifurations found. This dynami-al haraterization of the system onstitutes a generalization of those studiesperformed in random Boolean networks. A seond purpose of this study isto haraterize topologially the substrutures of self-sustained dynamis thatare observed. In this regard, we analyze the emergent dynamial lusters bymeans of the statistial measures introdued in the seond part of the Thesis,hapter 5, and observe that new strutural properties absent in the networksubstrate show up.Chapter 8 is devoted to the study of synhronization in networks of Ku-ramoto phase osillators. Here we will haraterize the synhronization transi-tion in several network topologies. In partiular, we will desribe the evolutionof the system towards synhronization paying attention to the emergene ofdynamially oherent lusters of nodes as the oupling between network nodesis inreased. These studies aim to highlight that the route to synhronizationdepends strongly on the underlying topology, not only for what onerns thequantitative values for the onset of synhronization, but in the qualitativelydi�erent organizational priniples that lead to the formation of a marosopisynhronized luster.



211These two strutural studies of the dynamial patterns, that emerge whenoupling dynamial systems in a networked substrate, will help to understandwhat kind of topologies are best �tted for systems funtion.





Chapter 7Ativatory-Inhibitoryinterations in ComplexNetworksHow would we express in terms of the statistial theory the marvelous faulty ofa living organism, by whih it delays the deay into thermodynamial equilibrium(death)?... the devie by whih an organism maintains itself stationary at a fairlyhigh level of orderliness... really onsists in ontinually suking orderliness from itsenvironment.� Erwin Shrödinger in What is life? The physial aspet of theliving ell [251℄.How does the interplay between omplex strutures and nonlinear dynam-is may shed new light on what is going on at the ellular and moleular levelsof organization of biologial systems? As in other natural systems, on onehand, sientists have begun to look for patterns of interations in biologialsystems. The idea behind this approah is that we an not ompletely under-stand the funtioning of the ell by studying its omponents separately. Thenext step onsists of taking into aount the dynamis governing the unraveledinterations. This is ertainly not an easy task as one has to deal with twosoures of omplexity: one oming from the unraveled strutural patterns andthe other from a dynamis in whih analytial insights are di�ult to take.In this hapter we address the problem of networks of agents that regulatetheir ativity by means of ativatory and inhibitory interations. This kindof systems onstitute the oarse grained desription of regulatory networks ofgenes at the ellular level. We will �rst desribe in setion 7.1 the urrenttrends in modeling biologial networks with speial interest in gene networks.



214 Chapter 7. Ativatory-Inhibitory interations in NetworksThe results obtained when a simple ase of this lass of systems is analyzedare desribed in setion 7.2.7.1 Modeling biologial networksIn 1999, Hartwell and ollaborators published an in�uential paper disussingthe new hallenges of modern biology [252℄. The authors pointed out that anissue of utmost importane is to develop a general framework in whih biologi-al funtions ould be understood as part of a omplex modular organization ofmoleules or ell's onstituents. In other words, modern biology should explainnot only the funtioning of individual ellular omponents, but also how theseomponents are interonneted through a omplex web of interations leadingto the funtion of a living ell. It is then natural to ask what these biologi-al networks at the ell organization level look like, and how their strutureouples to the dynamis.Cells are life's fundamental units of struture and funtion. It was expetedthat, one the omplete instrutions enoded in DNA would have been inter-preted, one ould map a gene (the basi information unit in the DNA) intoa spei� ativity or funtion, with all the onsequent potential appliationssuh as targeted drug development [253℄. On the ontrary, although today theomplete knowledge on the genes of several organisms is available, yet the rela-tionship between blueprints in DNA and funtional ativities of the ell is notfully understood. For instane, the p53 gene and protein (having the funtionof ontrolling ell's life and death) are known as tumor-suppressor, sine it wasfound that the p53 protein does not funtion orretly in most human aners.However, despite the many studies performed on p53 gene and protein, theway on how e�etively suppressing the growth of aner ells is missing at ageneti level. Reently, it has been proposed that the understanding of suhaner ell growth mehanism would be gathered not only from the study ofthe p53 gene and protein, but taking into aount the whole network inter-ating with them [254℄. That is, the funtion of the gene should be analyzedthrough a network in whih the gene partiipates. Similarly to p53 networkase, several other observations prove that some funtional ativities of the ellemerge from interations between di�erent ell's omponents through omplexwebs. Moreover, it is expeted that the large-sale network approah may leadto new insights on various longstanding questions on life, suh as robustness toexternal perturbations, adaptation to external irumstanes, and even hiddenunderlying design priniples of evolution.In what follows, we disuss the last advanes in the haraterization of somebiologial networks from two points of view: their strutural organization and



7.1. Modeling biologial networks 215their funtioning. The main point here is how to unover the relationshipbetween the two soures of omplexity intimately linked (dynamis and stru-ture) as both play a key role in the funtioning of the system. We stress herethat our main intention is to provide a brief overview of the urrent state inthe �eld, and that many works may be overlooked due to spae onstraints.We invite the interested reader to follow the speialized literature.7.1.1 StrutureIn the seond part of the Thesis we introdued a variety of types of networksthat have been analyzed in order to unveil their omplex topologies. Amongthese di�erent network lasses biologial networks are of speial interest sinethey have emerged following a natural evolving proess. A plenty of ellularand moleular networks have been unraveled in the last several years. We hererefer to those that have been more used in subsequent studies or beause theyare onsidered to be essential for the ell's life.The �rst of these omplex biologial networks is that formed by metabolireations: the metaboli network. Jeong et al have onsidered the metabolireations of 43 di�erent organisms, representing the three domains of life, andhave onstruted direted graphs whose nodes are the metabolites and edgesrepresent biohemial reations [146℄. A node reeives an inoming edge whenthe orresponding metabolite is produed, and reeives an outgoing edge whenthe metabolite is edued. Enzymes are not inluded in the graph. The totalnumber of onnetions (edges) of a node is alled the degree of the node. If theedges have a diretion (inident to or going out from the node), the degree of anode is divided in in-degree and out-degree, respetively. For all investigatedorganisms, the resulting graphs for metaboli reations exhibit sale-free prop-erties for both inoming and outgoing degree distributions similarly to manyother real world networks.The above-mentioned property was found universally, irrespetive of me-taboli pathway databases and of the methods used to onstrut graphs frombiohemial reations. For example, instead of assuming virtual intermediateomplexes, Wagner and Fell built up two networks (the metabolite and thereation networks) from the metaboli pathways of Esherihia oli [255℄. Themetabolite network onsists of nodes representing metabolites and bidiretionallinks between edut and produt of a metaboli reation. On the other hand,the reation network is the network where the nodes orrespond to metabolireations and two nodes are linked when the two reations share a metabolite.In metabolite networks, sale-free properties are deteted, while the reationnetwork does not show power-law degree distributions. Small-world properties



216 Chapter 7. Ativatory-Inhibitory interations in Networksand relatively high lustering (i.e, how probable it is that two nodes with aommon neighbor are also onneted together) are found in both networks.Other studies with di�erent ways of obtaining graphs show almost identialresults [256�259℄.Another lass of well-studied ellular networks is that of protein-protein andprotein-gene interation networks. This is due to the inreasing availabilityof data sets and new experimental tehniques that allows a more detailedstudy of the interations at the ellular level. On the other hand, interationsamong proteins have a ruial role in several funtional ativities, suh assignal transdution. Aording to the demand of understanding the proteininteration map, several high-throughput experiments have been performed.They provide evidene of a partial interation map between proteins. In thegraph representation, a node orresponds to a protein and two proteins arelinked when they physially interat. The least two-hybrid sreen method hasbeen applied for revealing protein-protein interations by Uetz et al [260℄ andby Ito et al [261℄. Similarly to metaboli networks, sale-free properties, high-lustering and small-world properties have been found. Besides, the studiesperformed have allowed to address other questions suh as the robustness ofthese networks against random and direted failures [262℄. It should be notiedthat the databases used in the analysis show very small overlap, while theindividual networks obtained from eah database show a very similar struture.In partiular, it has been argued that the biologial funtional organization andthe spatial ellular organization are orrelated signi�antly with the topology ofthe network, by omparing the onnetivity struture with that of randomizednetworks.Finally, we note that networks onstruted from gene expression data areurrently under exploration [263, 264℄. For instane, Agrawal [264℄ have stud-ied networks from gene expression of aner data. By analyzing individual geneexpression level at di�erent samples, networks in whih the degree distributionof the nodes shows a power-law behavior in the tails with an exponent 1 an beonstruted. Stuart et al have further shown that o-expressed gene networksof humans, �ies, worms, and yeast have sale-free properties [263℄.In summary, biologial networks seems to share many topologial prop-erties. What do these properties mean in a biologial system? And whatbasi priniples in biology give rise to suh universal features? Many stepstoward the answers to these questions have been ertainly given in the lastseveral years. However, the majority of the issues addressed are based mainlyon analyzing the struture of these networks without taking into aount theirdynamis, i.e., the fat that the struture orrelates with the funtioning of theunderlying system. For instane, from a topologial point of view, it has been



7.1. Modeling biologial networks 217argued that the nodes with a high degree (the hubs, those ontributing to thetail of the degree distribution) are ritial for the robustness of the system tointentional removal of them. On the other hand, the hubs have been shown toradially hange the behaviour of the system in front of several dynamial pro-esses suh as epidemi spreading [163, 216℄. It is yet to see whether or not thesame results hold when nonlinear dynamis oexists with omplex topologialstruture. We next desribe two promising approahes in this diretion.7.1.2 DynamisDuring the last several years a wealth of experimental data, obtained withtehnologial advanes suh as DNA miroarrays, have allowed the dynami-al haraterization of several biologial proesses both on a genome-wide andon a multi-gene sales and with �ne time resolution. From a theoretial side,ompelling models on the dynamis governing metaboli and geneti proessesare hard to build as these biologial phenomena are highly nonlinear and withmany degrees of freedom. However, sientists have ertainly advaned towardsa omprehensive global understanding of, for instane, gene regulation throughgeneti engineering that require a thorough understanding of the general prin-iples that an guide the design proess. It is impossible here to provide anexhaustive review of the subjet. However, it is important to provide at leastsome ideas about the researh lines that relate the struture and the funtionof biologial systems.Conepts suh as operon, regulator gene and transriptional repression were�rst introdued in the literature by Jaob and Monod [265℄. Their model hasserved as the basis for more elaborated models as di�erent regulatory meh-anisms have been disovered [266℄. Reent theoretial studies apitalize onthese kind of models in order to eluidate what are the system onstituents,their properties and how they interat in order to give rise to the olletive be-havior of the system. The �nal goal is to understand the relationship betweenstruture and funtion as determined by the biologial environment. In thissense, di�erent gene iruit designs should be ompared to determine whih ofthem onfers seletive advantage in an eologial ontext and thus one shouldbe able to advane what the funtional onsequenes of di�erent designs are.This is usually done by exploring the parameter spae and looking for perfor-mane riteria suh as the ability of a system to return to a steady state aftera perturbation (alled stability) or its responsiveness, that an be measured asthe reovery time of the system after an environmental hange (a hange in anindependent variable).The results obtained for elementary gene iruits ertainly provide answers



218 Chapter 7. Ativatory-Inhibitory interations in Networksto intriguing questions about how gene iruits ould be organized, but at thesame time pose new ones. With the reent advanes in the haraterizationof the struture of gene networks, it is lear that genome-wide approaheswill allow to disover new higher-order patterns. Therefore, more e�orts inmodeling the dynamis of inreasingly omplex gene iruits are expeted inthe near future. Some steps in this diretion have been given.The basi proess of single gene expression is depited in �gure 7.1. Thehain reation starts when a protein binds to a partiular DNA region. Thebinded protein is known as transription fator and the set of DNA sites towhih the transription fator is attahed is alled promoter gene. The bindingstage yields to the ativation of a given gene manifested by the transriptionof the geneti information loated at this gene into messenger RNA. Finallythe mRNA is translated into a protein at the ribosomes. The protein produtof this reation hain an be either used as a transription fator for startinganother reation or modi�ed for taking part or protein omplexes like enzymesinvolved in ellular physiology. Sine the resulting protein is a diret produtof the ativated gene one an say that a given gene regulates the ativity ofanother one when the produt of the former at as the transription fatorof the latter. In this ase the regulation is seen produe an ativating e�etbut proteins produts an as well at as repressors or inhibitors of other geneativity. We will now fous in the modeling of these interation dynamisbetween di�erent genes and neglet more sophistiated details about singlegene expression.Boolean modeling of regulatory networksThe �rst attempt to desribe the funtioning of geneti regulatory networks wasperformed by S.A. Kau�man [267℄. This pioneering work settled the basis formodeling the omplex nature of dynamis and interations between genes andtheir produts. In his work, eah gene, i, and its produt, I, were abstratedas a node of a random network having a �xed number, k, of neighbors thatregulate its ativity level, gi. This level of ativation an be viewed as theonentration of the transribed mRNA and/or the protein I enoded. Theboolean harater of the formulation done by Kau�man implies a qualitativedesription of whether a gene is ativated (gi = 1) or not (gi = 0). Besides,time is onsidered as a disrete variable so that the dynamial behavior of thegene ensemble is desribed by the temporal series of their ativity levels. Ateah time step the ativity level of a single gene is updated onsidering thestate of its k neighbors
gi(t + τ) = fi(gj1(t), ..., gjk

(t)) . (7.1)
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ActRepFigure 7.1: Stages of the gene expression. The basi ingredients are the geneti seg-ments in the DNA and proteins. At the �rst stage a spei� protein binds to a partof the DNA sequene alled the promoter, the protein is known as the transrip-tion fator sine it starts the transription of the geneti information enoded at thespei� gene that the omplex promoter + transription fator regulates. After thegeneti information is transribed into the messenger RNA polymerase it is subse-quently translated into proteins at the ribosomes. The protein produt that emergesafter this proess an at either as another transription fator for the expression ofother genes or as a repressor of other genes ativity stopping the reation of theirprotein produts. Another possibility is that this protein produt partiipates in thephysiologial proesses of the ell and form protein omplexes as enzymes.This is performed by means of booleans funtions, fi, that make use of thebasi �AND�, �OR� and �NOT� logial funtions so that the results an beeither 1 if the statement is true or 0 if it is false. The onstrution of eahboolean funtion depends on the partiular interations that a gene shares withits regulators and has to be arefully analyzed with the help of biohemialdata. On the other hand, the work by Kau�man was performed from a generalpoint of view and onsidered a random assignment of the boolean funtionsthat governs the dynamial evolution of the gene's ativity. The main result ofthe work is the existene of a phase transition on the number and length of thedynamial attrators. In partiular, for k > 2 the number of yles sales withthe number of genes, N , and its length sales exponentially with N . On theother hand, for the ase k = 2 these two quantities sale as √N . The above�ndings are biologially relevant if one onsiders that di�erent geneti dynamisan be regarded as biologially di�erentiate ells. Taking into aount that the



220 Chapter 7. Ativatory-Inhibitory interations in Networksell diversity of a living organism sales approximately with the square rootof the geneti population Kau�man suggested that gene regulatory networksshould operate just on the border of the dynamially ordered region.The above �ndings represented the starting point of a lot of researh onthe so-alled subjet of �Kau�man networks� during the last 25 years. Theseworks mainly fous on the searh of a full desription of the dynamially di�er-ent regions as well as the haraterization of the phase transition (reent workon the matter an be found in [268�273℄). On the other hand, �Kau�man net-works� have served as a framework for performing a oarse-grained desriptionof real gene regulatory networks. The availability of real regulatory networksinferred from DNA miroarray data joined with the easy implementation andmanagement of the boolean dynamis provides a useful tool for understandingthe interplay between the topology and the funtion of biologial networks.The use of boolean dynamis to haraterize real geneti regulatory net-works has been reently applied to the ase of the segment polarity genes inthe Drosophila Melanogaster [274℄. In this ase the whole map of interationsbetween genes is known and Boolean dynamis is seen to reprodue the pat-terns of gene expression that appear in the wild type. Besides, it has beentested when mutations are present on�rming the validity of the model. Theappliation of this method an help to determine the e�ets of new mutationsand onstitute a test for the question of whether the topologial features ofthe interation network or the kineti details play the key role in the funtion-ing of biologial networks. The suess of the use of Boolean modeling pointsout that it is the former whih is the relevant ingredient. Another reent ap-pliation of Boolean dynamis to a real gene iruit is found in [275℄ wherethe yeast transriptional network is onsidered. In this ase the point of viewis drastially di�erent beause neither the nature of the interations betweengenes nor any dynamial state of the system is available. The starting pointis simply a set of onneted genes and the authors apply a Boolean modelingof the interations for determining what set of (Boolean) interation rules leadto a stable dynamis of the whole system. The authors also study the e�et ofrewiring links of the network and onlude that dynamial states on top of theoriginal network is more stable than on the perturbed ones. The above twoexamples show how the oarse-grained Boolean modeling an help to analyzethe large amount of available experimental data and answer the question onwhere the biologial stability observed has its roots.Finally, let us remark that the boolean modeling an be reformulated inorder to inorporate realisti features of real regulatory networks. Perhaps,the most important ingredient is to reprodue the e�ets of noise (whih is asubstantial harateristi of a biologial system). This is usually inorporated



7.1. Modeling biologial networks 221on the form of a non synhronous update rule, assigning a time delay to eahvariable of the Boolean funtions, fi. Another interesting extension of theformulation is onsidering multi-levels for the gene ativity so that the modelinorporates some quantitative desription on how muh the gene is ativated.Continuous time modeling of dynamisNow we turn our attention to the ingredients of the ontinuous time modelingof geneti regulation. We will address three important issues on this matter,namely: (i) the saturable harater of the dynamis, (ii) the advanes per-formed when syntheti regulatory networks are used to understand the kinetiof the proesses and �nally (iii) the appliation of the knowledge gained withthese predesigned networks when real ones are analyzed.Saturable Dynamis.- The ontinuous time formulation of a gene responseto the ativity of its regulating genes is made inorporating the saturable har-ater. There is a wide variety of situations in whih the system response to anexternal ation saturates. Perhaps the most familiar example of saturable be-havior known to physiists is the adsorption of gas moleules on a solid surfae:At thermodynamial equilibrium, the fration (overage ratio) θ of surfae in-terstitials oupied by adsorbed moleules depends on the gas pressure P as[276℄
θ =

P

P0(T ) + P
, (7.2)where the temperature-dependent onstant P0(T ) is the pressure value at whihthe overage ratio reahes half of its possible maximal value θ = 1. While forsmall values of P , ompared to P0(T ), θ inreases linearly with P , for valuesof the pressure larger than P0(T ) the overage ratio beomes insensitive topressure variations. Saturable behaviours of this type [277℄ (and of a moregeneral form; see below) have been introdued by Drossel and MKane in [157℄for the modeling of interations among speies in eologial systems, where(most notably) they e�etively provide robustness to the limit-yle behaviouroften observed in these systems [278, 279℄. In the realm of Soial Sienes,saturated response funtions have been also used to model some type of soialinterations like e.g. the e�ets of ommunity investments in polie pressureand/or eduational programs on the street-gang growth phenomena [279℄.Biologial reation rates are often saturable; while at small onentrationsof a new hemial introdued in a ell, this responds sensitively, the responseshould not keep growing inde�nitely as the new hemial onentration grows.The arhetypal example of saturation in biologial systems is the Mihaelis-Menten equation [280, 281℄ governing the onentration evolution of a produt



222 Chapter 7. Ativatory-Inhibitory interations in Networksatalyzed from a substrate by an enzyme whih binds to it. If x and y denotethe onentrations of produt and substrate respetively, then the reation rateis given by
dx

dt
=

Vmaxy

KM + y
(7.3)where KM is alled the Mihaelis onstant and Vmax is the value at whih therate saturates for high substrate onentrations. This saturation behaviouran be understood from the usual hemial kinetis (law of mass-ation) inan intuitive way: when the enzyme moleules are mostly bound to substratemoleules, adding more substrate annot speed up the reation [282℄. If n,instead of only one, substrate moleules bind to the enzyme, the reation ratetakes a more general funtional form of saturation, often alled Hill equation

dx

dt
=

Vmaxyn

KM + yn
(7.4)showing a sudden inrease of the reation rate towards saturation around y =

KM . The Hill parameter n often takes on non-integer values. Both Mihaelis-Menten and Hill equations are often used in models of biologial reations, evenwhen the expliit mehanisms generating them are unknown in many ases.Syntheti geneti networks.- In ells, the proteins, RNA and DNA form aomplex network of interating hemial reations governing all ellular fun-tional ativities like metabolism, response to stimuli, reprodution, . . . Whilethe understanding of the struture of these networks is growing rapidly, theurrent understanding of their dynamis is still rather limited. In this regard,an interesting body of researh is urrently addressed to syntheti geneti net-works, whih o�er an alternative approah aimed at providing a ontrolled testbed for the detailed haraterization of some isolated funtions of natural genenetworks, and also pave the way to engineering of new ellular behaviour.An example of syntheti gene regulatory network, termed the �repressila-tor�, is beoming one of the best studied model systems of this kind. Therepressilator is a network of three genes, whose produts (proteins) inhibit thetransription of eah other in a yli way; they were added to the bateriumE. oli, so periodially induing the synthesis of green �uoresent protein as areadout of the network state [283℄. The authors of the work �rst argue thatthe represilator an show temporal �utuations in the onentration of eahof its omponents, by analyzing a system of six ODE's (whih, in turn, wereobtained by a proess of integration-out or oarse-grain away of the promoterstates involved in the regulation, and resaling of the variables) modeling thenetwork. If pi (i = 1, 2, 3) denote the three repressor-protein onentrations (in



7.1. Modeling biologial networks 223
�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

P2

P3 P1

g3

g1

g2

Figure 7.2: Shemati representation ofthe so-alled repressilator. The repressi-lator is small network omposed of threegenes gi (i = 1, 2, 3) eah of one inhibitsthe ativity of the subsequent. That is,the protein produt of gene gi at as therepressor of the ativity of gene gi+1 (g3inhibits g1).
units of the Mihaelis onstant KM ), and mi their orresponding mRNA on-entrations (appropriately resaled), the repressilator equations are (assumingthe symmetrial ase in whih all three repressors are idential exept for theirDNA-binding spei�ities):

dmi

dt
= −mi +

α

1 + pn
i

+ α0 (7.5)
dpi

dt
= −β(pi −mi) (7.6)where i = 1, 2, 3 and j = 3, 1, 2; α0 (α + α0) is the number of protein opiesprodued from a given promoter type in the presene (absene) of saturatingamounts of repressor, β is the ratio of the protein deay rate to the mRNAdeay rate, and time is resaled in units of the mRNA lifetime. This system ofequations has a unique steady state whih an be stable or unstable dependingon the parameter values. In the unstable region of parameter spae, the threeprotein onentrations �utuate periodially. Experiments show temporal os-illations of �uoresene, whih were heked to be due to the repressilator.Though admittedly oversimpli�ed, the model of ODE's guided the experimen-tal design, for it served to identify possible lasses of dynami behaviour andto determine whih experimental parameters should be adjusted in order toobtain sustained osillations.Not surprisingly, the repressilator alled attention from experts on (biolog-ial) synhronization, for it o�ers good prospetives for further insights intothe nature of biologial rythms, whose mehanisms remain to be understood.In this respet, in referene [284℄ the authors propose a simple modular addi-



224 Chapter 7. Ativatory-Inhibitory interations in Networkstion (of two proteins) to the repressilator original design, whih allows for amehanism of oupling between ells ontaining the repressilator networks.Modules.- As seen in the previous subsetion, even a very small gene net-work, like the repressilator, requires some simplifying assumptions for an anal-ysis of its dynami behaviour in terms of ordinary di�erential equations. Withlarge networks involving thousands of regulatory genes, this approah wouldrequire a huge number of di�erential equations and, what is even more prob-lemati, an exploding number of dimensions of the parameter spae (deayrates, prodution rates, interation strengths, et. ). Thus an important issueonerns the right level of desription when onstruting quantitative modelsof large geneti networks [285℄.In this regard, several works (e.g. [286�288℄) have foused on the identi�a-tion of general building bloks (motifs) in geneti networks, showing robust or�reliable� behaviour. These inlude small modules of a few genes, suh as au-toregulatory exitatory feedbak loops, inhibitory feedbak loops, feed-forwardloops and dual positive-feedbak loops, whih represent di�erent kinds of ro-bust swithing elements, whose ourrene as subgraphs in real networks issigni�antly higher than in their randomized versions. These works providesupport to disrete models in whih genes are modeled as swith like dynamielements that are either �on� or �o��, of the Boolean type desribed in theprevious setion, and point toward strong orrelations between strutural andfuntional properties of geneti regulation networks.The robustness of slightly larger modules, like the segment polarity genesof the fruit �y Drosophila (a subgraph of the segment determination network,responsible for the embryoni development of the inset body segments), hasbeen onviningly tested with a realisti dynamial model [289℄ supportingthe view that segmentation is modular, with eah module autonomously ex-pressing a harateristi intrinsi behaviour in response to transient stimuli.A onnetionist model for the segment determination system of Drosophila,inluding ell-ell interation via one-dimensional di�usion [290, 291℄ has beenthoroughly haraterized (along with its ontinuum limit (PDE) equations[292℄). These generalized reation-di�usion models inspired further work in[157, 293, 294℄ whih identi�ed minimal gene networks assoiated to di�erentsegmentation patterns; also, extensive omputer simulation of randomly gen-erated networks showed that ombinations of spatial patterns an be mappedinto ombinations of the basi modules.The resistane of modules to variations (proxy for mutations of small e�et)in the kineti onstants and various parameters that govern its dynamial be-haviour, may suggest that evolution ould rearrange inputs to modules without



7.2. Regulatory dynamis in sale-free networks 225hanging their intrinsi behaviour, or as onjetured in [157, 293, 294℄, thatthe target of seletion would operate not only on single-gene level strutures,but also on the available strutures in the high-dimensional parameter spaeof the model equations.In summary, it is a major hallenge the disovery of how biologial entitiesinterat to perform spei� biologial proesses and tasks, as well as how theirfuntioning is so robust under variations of internal and external parameters.Suh an ahievement is only possible by merging the new knowledge gainedfrom network analysis with nonlinear dynamis models relevant in biologialproesses suh as the geneti regulation. This is what is driving urrent theo-retial e�orts, in whih new mathematial models and methods borrowed fromnonlinear dynamis are being studied on top of the real arhiteture of biolog-ial networks. Besides, the on�uent interest of several sienti� disiplines inthe many aspets of the problem of Struture-Funtion orrelations in systemsmade up of disretely many nonlinearly interating omponents (of whih generegulatory networks are but a partiular example), reomends to pay some at-tention to general abstrat models. These models should be both oneptuallysimple and universal in their pereptions.In next setion we will onsider the essential ingredients of both topologyand dynamis of gene regulatory network, namely saturability of the intera-tions and sale-free harater of the patterns of interonnetions among on-stituents. As a result, we fae a problem where nodes in a sale-free networkself-regulate their dynamis through either ativatory or inhibitory interationsin a fashion that resembles the regulation among genes in ells.7.2 Regulatory dynamis in sale-free networksThe model that we analyze in this setion tries to apture the general in-gredients of the entangled topologial and dynamial omplexity of genetiregulatory networks introdued in the previous setion. For this we employa relevant kind of nonlinear dynamis: Ativation/Inhibition (AI) ompetinginterations with a �saturated response� rule for the rate of ativation (see�gure 7.3) of Mihaelis-Menten type (introdued previously in setion 7.1.2).Besides, the interating units (genes) sit on a lattie whih is both small-worldand sale-free. For this we use the Barabási- Albert network (setion 5.2.3).We have to remark that neither real geneti networks are explored nor a de-tailed desription of the nonlinear A/I dynamis is inorporated. However,this oarse-grained representation of geneti regulatory networks presents fea-tures that are revealed when dynamis and topology from experimental data



226 Chapter 7. Ativatory-Inhibitory interations in Networksare analyzed.We will �rst present in detail the AI dynamis in setion 7.2.1. Here, somebasi general features of the model are disussed, namely the network fragmen-tation in sublusters (or islands) of olletive dynamis, and the generi typesof asymptoti behaviours oexisting in the phase spae of olletive dynamis(steady, periodi and haoti states) as well as the observed bifurations inphase portrait upon parameter variations. These basi onsequenes of the AIompetition on the omplex network are prevalent for a range of values of theAI ratio as we will see below. Finally, the bifurations found are explained interms of the Floquet analysis of the solutions.One the main dynamial regimes of the model are haraterized we willturn our attention on the statistial haraterization of both the dynamial be-haviours observed and the strutural haraterization of the dynamial islandsin setion 7.2.2. We perform an extensive exploration of the parameter spae,employing di�erent initial onditions and substrate network realizations, inorder to �nd the onditions for the existene of haoti and periodi behav-ior as well as to fully haraterize the main topologial harateristis of thedynamial islands.We will end this study in setion 7.2.3 looking for those substrutures of thedynamial islands that are relevant for the dynamial evolution of the system.7.2.1 The model: basi dynamial featuresAs stated above, we introdue here a model of Ativatory/Inhibitory intera-tions regulating the ativity gi(t) (i = 1, ..,N), of N onstituents (e.g. genes,agents, substrates), with N generally being a large number. The real funtionsof time gi(t) are eah one attahed to a node of a graph with adjaeny matrix
Cij (N ×N). Then, in terms of the dynamis, the matrix element is non-zero,
Cij 6= 0, only if the rate of variation of the i-th node ativity, gi(t), dependson the ativity gj of the j-th node (interation i ← j). Di�erent realizationsof the Cij matrix are onstruted using the method of Barabási and Albert(setion 5.2.3) for m = 3 (〈k〉 = 6) in order to have a sale-free network withexponent γ = 3 (P (k) ∼ k−3).The interation (i← j) an be either ativatory (exitatory) or inhibitory;orrespondingly we de�ne the interation matrix element Wij to be +1 or −1,respetively (and Wij = 0 whenever Cij = 0), and all p the fration, amongnon-zero elements, of negative signs (note that while Cij is a symmetri matrix,
Wij is not in general). Moreover, the sign distribution of elements is takenuniform in the set of (approx. 〈k〉N/2) links of the network realization.
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The dynamis of the nodes ativity vetor G(t) = {gi(t)} (with i =

1, . . .,N) that we onsider is suh that only in the presene of exitatory neigh-bours ativity ould gi possibly be non null, otherwise gi deays to zero withan exponential rate:
dG(t)

dt
= −G(t) + αF [WG(t)] , (7.7)where F is a nonlinear vetor funtion whose argument is the produt of theinteration matrix W and the ativity vetor G, and α (> 0) aounts for thestrength of the interation. The funtion F is a saturated response funtion(see �gure 7.3), de�ned as:

F(z) =

{

Φ(zi)

h−1 + Φ(zi)

}

, (7.8)where Φ(x) is a funtion de�ned as
Φ(x) =

{

0 if x ≤ 0

x if x > 0
(7.9)The dynamis of the system de�ned as before is determined by only twoparameters, h and p. One ontrols the degree of nonlinearity and the other thetopologial properties of the network, respetively. In our numerial studiesof the model we have �xed the value of the parameter α = 3, and varied theparameters 0 ≤ p ≤ 1 and 0 ≤ h ≤ 10. One an easily realize that the solutionsfor non-negative initial onditions remain bounded for all t ≥ 0. Indeed, asthe nonlinear term in eq. (7.7) is bounded above by α, one obtains that ġi < 0whenever gi > α. Also, if gi = 0 then Fi(WG) ≥ 0, so that the ativitiesannot beome negative.
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Figure 7.4: Two examples of network fragmentation. The nodes of the networks arelassi�ed in: (i) dynamial nodes (red), (ii) stationary nodes with nonzero ativity(blue), (iii) stationary nodes with zero ativity belonging to D0 ⊕ D1 (yellow) and(iv) remaining nodes with zero ativity (white). Note that the white entral nodes in(b) at as the frontier between the dynamial island and the steady nonzero ativityone.The above dynamis an be regarded, e. g., as a generalization of thesimpli�ed and oarse-grained geneti models, Random Boolean Networks, in-trodued in setion 7.1.2. Equation (7.7) inorporates the experimental obser-vation of a ontinuous range of ativity levels [294℄. It is worth mentioningthat while ontinuous time linear models have been suessful for the reon-strution of the interation networks from experimental data [295℄, nonlinearmodels like eq. (7.7) are expeted to be more appropriate for a quantitativedesription of the dynamis.The dynamis (7.7) of a two-agent (dimer) model has been onsidered inreferene [294℄, in the ontext of virus-ell interations in bateria and gen-eral gene regulatory ativity models, where a rih repertoire of behaviours,like multi-stability (multiple attrators in phase spae) was reported. In theforthoming paragraphs, we will report some remarkable general features ofthe network dynamis.Ativation and Inhibition interplay: FragmentationA brief look at equation (7.7) easily reveals that for any value of the parameters
p and h the state of inativity, G = 0, is always a solution. As a matter of fat,for h = 0, or h 6= 0 but p = 1, this is the unique asymptoti solution (globalattrator in the phase spae) for all possible non-negative initial onditions.However, for h 6= 0 and p 6= 1 other asymptoti solutions, with islands ofpositive ativity, generially oexist with the rest state. The term islandsdenotes here subnetworks that are interonneted through nodes whih haveevolved to null ativity, so that their dynamis are e�etively disonneted.



7.2. Regulatory dynamis in sale-free networks 229The fragmentation of the network dynamis into disonneted islands isa generi feature of AI interations, as the following onsiderations suggest.Let us all D the set of nodes whose ativities, for a given initial ondition
G(t = 0), asymptotially vanish. It is easy to see that, irrespetive of theinitial ondition, this set is generially non-empty.Indeed, if a node i is suh that Wij = −1 or 0 for all j, then its ativity
gi(t) will tend to zero. Let us all D0 the set of these nodes, and note thatits measure (∑k P (k)pk) is a non-zero inreasing funtion of p. Now, all D1the set of nodes l suh that their positive Wlj our for j's in D0, and so on. . . Due to the small-world property, there are in fat very few relevant Dn(n = 0, 1, . . .) sets. Its union D∗ =

⋃Dn is easily seen to have a non-zeromeasure whih inreases with p.The nodes of D∗ are struturally (i.e. irrespetive of initial onditions)inative. Depending on the initial ondition, the set D may inlude othernodes not ontained in D∗, namely those nodes that evolve to inativity dueto the initial ondition (dynamially, instead of struturally, inative): See e.g.the white nodes in �gure 7.4, where we show two small networks of N = 50nodes to allow a simple visualization of the sets D∗ and D. In other words,the measure of D may in general be (muh) larger than the measure of the�struturally dead� nodes D∗.From the previous onsiderations, whether or not the set D perolates thenetwork realization, leaving out islands of disonneted ativity, is an eventthat learly depends on both the parameter p and the initial onditions. Butalso the disussion orretly suggests that fragmentation of the network intosublusters with independent temporal evolution is a generi (non-zero mea-sure) feature. Our numeris, whih are extensive in the sense of (both, networkrealizations and initial onditions) large sampling, onviningly orroboratethis assertion. Figures 7.5 and 7.6 show two islands of periodi and haotiativity, respetively, as well as the temporal evolution of gi(t) for some of theironstituent's nodes (see the next setion for a more detailed disussion of the�gures).Temporal �utuations of asymptoti solutionsThe dynamis of the system turns out to be very rih and, depending onthe values of p and h, three di�erent asymptoti dynamial regimes are ob-served, haraterized by stationary, periodi and haoti attrators. Here weharaterize these di�erent dynamial regimes and the transitions between thedi�erent states when h is varied. For this purpose we have performed extensiveomputations following this sheme:
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as 1/(αλmax), where λmax is the largest eigenvalue of Wij, provided λmax > 0(no instability of the rest state will our if λmax ≤ 0). In �gure 7.7 we showthe probability Ptrans that the rest state beome unstable for some value of h,as a funtion of the parameter p. This probability has been estimated fromthe omputation of λmax for 104 di�erent realizations of Wij for eah value of
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h in 75% (or more) of the realizations, it oexists in phase spae with otherattrators, so that only a basin of initial onditions evolve to this state.The rest state typially destabilizes through a transritial bifuration[296℄, where an unstable branh of stationary solutions exhanges stabilitywith the rest branh (see �gure 7.8.a. The omputed largest Lyapunov ex-ponent shows then a variation with h as in �gure 7.8.b near h ≃ 0.33: itapproahes zero (from negative values) at the bifuration parameter value,and then dereases indiating that now the attrator belongs to the new stablestationary branh, in whih the nodes of a luster display non-zero onstantativity gi(t) = g∗i (let us say hemostasis regime). As shown in �gure 7.8.a,the ativity of these nodes typially inreases with h. Eventually, this statebeomes unstable for larger values of h, and evolves to a periodi state in whihthe ativities osillate (�gure 7.8.) regularly in time.Periodi states.- The presene of inhibitory interations makes possible theexistene of instabilities in the �xed point hemostati solutions of evolution eq.(7.7). Using linear stability analysis tehniques, these "typial" instabilities areharaterized as Hopf bifurations (either diret or often inverse), where attra-tors of exatly periodi olletive ativities, gi(t) = gi(t+T ), are born out fromthe unstable �xed points. To illustrate the aspet of typial periodi �utua-to tangent spae vetors whih do not bring the system into the region of negative ativities.
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N = 100 nodes and p = 0.7. h has been �xed to 4.of the osillation is small ompared to ḡi (see e.g. top rightmost and bottomleftmost insets); while in others they are of omparable size, even to the pointthat lowest levels of ativity an reah a null value, before ativity is triggeredagain after inhibiting neighbors ativity dereases enough. The inverse period(frequeny) ω = 1/T of a periodi attrator hanges with parameter and isnaturally dependent on eah spei� island realization. A sampling over di�er-ent initial onditions and network realizations allows to ompute the frequenydistribution for a periodi state P (ω). For this purpose we identify those real-izations in whih λ < 5·10−3. Then, we fous on the nodes for whih dg/dt 6= 0.One identi�ed, a vetor Ti

n = {ti1, ti2, . . . , tin} is onstruted and stored for ev-ery periodi dynamis gi. The tij 's stand for the times ful�lling the onditions
gi(t

i
1) = gi(t

i
2) = . . . = gi(t

i
n) and dgi(t

i
1)/dt = dgi(t

i
2)/dt) = . . . = dgi(t

i
n)/dt2. In this way, after verifying that tij − tij−1 is onstant, the period of theorresponding i-orbit is given by this onstant. As the free deay of a geneativity, that ours when its inhibitory inputs prevail over ativatory ones,has an assoiated time sale of order unity, one should expet values of thisorder for the period of osillations. This expetation is on�rmed looking atthe probability that a periodi yle has an angular frequeny ωper, P (ωper)2Sine the integration is done at �xed time intervals, a further numerial hek is imposed.Namely, |gi(t) − gi(0)| < dgi(0)/dt

2
and | dgi(t)

dt
− dgi(0)

dt
| < d2gi(0)/dt2

2
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7.2. Regulatory dynamis in sale-free networks 235shown in �gure 7.9. As shown in this �gure, it is very likely that the frequenyof the ativity of a periodi island lies around ωper = 1. It is also of interestthat P (ωper) is not symmetri, but biased towards larger frequeny values. Itis di�ult to �gure out an explanation to this behavior. It may probably has todo with the spatial distribution of the nodes and the spei� value of p whihontrols the average number of input and output onnetions a node has.Chaoti States.- When h is further inreased one observes that these peri-odi attrators, in turn, typially experiene also period doubling instabilities,and through the well-known universal senario of (suessive) period doublingbifuration asade, the onset of haoti attrators takes plae in the phaseportrait of the network dynamis. To help visualization of the generi typesof asymptoti network dynamis, we represent in �gure 7.10 the bifurationdiagram for a typial attrator. At di�erent values of the (Mihaelis-Menten)parameter h, and onstant values of α = 3, p = 0.7, we plot the ativity ofan individual node at the instant when its time derivative vanishes. Thus, asingle branh in the �gure indiates stationary ativity, two branhes indiatea periodi attrator, et. We also plot in �gure 7.10 the largest Lyapunovexponent λ on the attrator, so to allow diserning between haoti (positive
λ) and eventual regular quasiperiodi evolutions (λ = 0). Figure 7.11 showsthe phase spae diagrams for the ativity of one node (belonging to a di�erentdynamial island) as h is inreased. For small values of h, the gene is in a pe-riodi yle, whih doubles its period suessively until it reahes the haotiphase.A similar bifuration diagram for a di�erent network realization is shownin �gure 7.12, where one an appreiate (see inset) a ommonly found bi-furation (though it appears muh less often than period doubling), namelyperiod tripling bifuration. Its haraterization will be made below in the nextsubsetion where the Floquet analysis of periodi attrators is presented.A visualization of haoti temporal �utuations of the ativities in a lusteris shown in �gure 7.6. Here again we see nodes (e.g. top left inset) where thesize of ativity �utuations is less than 1 per ent of the average level ḡi.Most remarkable, there are nodes (like the one in bottom left inset) whihremain inative most of the time intermittently experiening spikes of shortduration ativity. This amazing variability of individual node temporal ativityon the haoti attrators is a generi feature of the network dynamis. Theexistene of spike behaviour of individual nodes ativity suggests orretly thateventual variations of parameters like h may lead to permanent inativity ofsome partiular nodes, so providing a straightaway dereasing of the dynamialluster size or, the other way around, the ativation of inative nodes in thefrontier.
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Figure 7.11: Phase spae of a node ending up in a haoti state as the value of
h is inreased. Suessive period doublings starting from a periodi yle an beappreiated. The values of h (from (a) to (f)) are: 5.30, 5.50, 5.63, 5.65, 5.66, 5.68,respetively. The parameters are set to p = 0.7 and N = 100.
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Figure 7.12: Example of bi-furation diagram (N = 60;island size: 12; p = 0.8)showing (see inset) a pe-riod tripling bifuration. Themaximum Lyapunov expo-nent λ is plotted in the lowerpart.
It is important to note that, for a �xed set of parameter values and a givennetwork realization, there are generally several di�erent attrators oexistingin the phase spae portrait of the network dynamis, eah one having its ownbasin (of attration) of initial onditions. Multi-stability appears as a generionsequene of the exitatory/inhibitory interplay. Importantly also, therean be very many unstable periodi trajetories (often entangled) �owing inbetween basins of attrations. The exitatory/inhibitory ompetition is alsoresponsible for the appearane of temporally omplex (positive Lyapunov ex-ponent) aperiodi evolutions, assoiated to the bifuration asade senario.As we will show in setion 7.2.2 the manifestation of �utuating (either peri-odi or haoti) temporal behaviours takes importane when inhibitory linkspredominate, though not too muh, over exitatory ones.Floquet analysis of the periodi attratorsAs shown in the bifuration diagrams of �gures 7.10 and 7.12, periodi solutionsof the network dynamis often beome unstable under variations of the modelparameters. In order to haraterize these instabilities in a preise manner,
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Figure 7.13: Floquet spetra. (a) Pe-riod doubling bifuration in an islandof size 14 at h = 1.57. (b) Naimark-Saker bifuration (at rational Floquetangle θ = ±2π/3) in an island of size12 at h=2.44 (the same as used inthe diagram of �gure 7.12). For both
N = 60 and p = 0.8.

one may perform the linear stability analysis of the periodi orbits (see, e.g.[296℄) near the bifuration points.For this we onsider small perturbations of the dynamial variables, δ~g(t0) =

{δgi(t0)}, and ompute their evolution over the period T of the periodi orbit.The evolution of these small perturbations (vetors in tangent spae) followsthe (linear) dynamis obtained by linearizing equation (7.7) around the peri-odi orbit {ĝi(t)} = {ĝi(t + T )}, i.e.,
dδ~g(t)

dt
= −δ~g + α · Aδ~g , (7.10)where the matrix A is obtained as

Ai,j =
Θ[
∑

k Wi,kgk]

(1 + h−1Φ[
∑

k Wi,kgk])2
·Wi,j (7.11)and Θ[x] denotes the (Heaviside) step funtion. Note that the above equationis only valid when the sum of the inputs (ativatories and inhibitories) whihreeives a node from its neighbours is nonzero. Hene, the Floquet analysis isperformed for eah dynamial luster found and not for the whole network.As introdued in the �rst part of this thesis when disrete breather solutionswere studied the so-alled Floquet (or monodromy) matrix F of the periodi



7.2. Regulatory dynamis in sale-free networks 239solution {ĝi(t)} is de�ned as the linear operator in tangent spae that mapsthe initial perturbation at t0, δ~g(t0), onto the perturbation at t0 + T

δ~g(t0 + T ) = Fδ~g(t0) (7.12)The Floquet matrix F is obtained here by numerial integration of thelinearized eq. (7.10) over a period T for a basis of initial onditions in thetangent spae. The spetrum of eigenvalues of this matrix provides the infor-mation on the linear stability of the periodi solution. Note that beause F isa real matrix, if a Floquet eigenvalue µ is a omplex number, then its omplexonjugate µ̄ also belongs to the Floquet spetrum. Also, beause solutions ofautonomous di�erential equations an be shifted in the time t diretion, theirFloquet matrix always has unity as an eigenvalue, say µ1 = 1, with assoiatedeigenvetor { ˙̂gi(t0)}. The solution is linearly stable if all the other eigenvalues
µj = |µj | exp(iθj) are in the interior of the unit irle of the omplex plane,i.e. |µj| < 1 for j 6= 1. A periodi solution beomes unstable when a Floqueteigenvalue (or a pair of omplex onjugate eigenvalues) rosses the unit irle.The assoiated Floquet eigenvetor indiates the diretion in tangent spaewhere perturbations will grow exponentially away from the solution.In �gure 7.13.a we plot the Floquet spetrum of a periodi attrator ata period doubling bifuration. As seen in the �gure, a Floquet eigenvaluerosses the unit irle at −1. In �gure 7.13.b we plot the Floquet spetrum ofthe periodi attrator of �gure 7.12 at h = 2.44, where the inset suggested thata period tripling bifuration may our. We see a omplex onjugate pair ofFloquet eigenvalues exiting the unit irle at angles θ = ±2π/3. In general, forgeneri irrational values of θ/π this type of bifuration (alled Naimark-Sakeror generalized Hopf bifuration) gives rise to a quasiperiodi attrator whosetrajetories �ll densely a two-frequeny torus. However, as a generi featureof our model, the two frequenies of the new attrator are in a ommensurateratio (2 : 3), so that the new stable trajetory has a period of 3T.In terms of how often di�erent types of bifuration our in the networkdynamis, as inferred from our (non-exhaustive, but signi�ant at the salesonsidered) sampling of initial onditions and network realizations, one may saythat period doubling asades and, less often, ommensurate Naimark-Sakerbifurations have been generially found by varying the Mihaelis-Menten pa-rameter h. But, besides the formal haraterization of the dynamial instabil-ities observed, the Floquet analysis allows also to give an answer on a moregeneral question, namely how temporal instabilities orrelate with networkingonnetivity harateristis. Are there harateristi features disernible in thestruture of instabilities? This point will be disussed further below in the nextsubsetion.



240 Chapter 7. Ativatory-Inhibitory interations in Networks7.2.2 Statistial haraterization of island's dynamis andstrutureAs noted before, the dynamis of the system is determined by only two param-eters, h and p. The behaviour of the system desribed by equation (7.7) on theunderlying network is very rih and one an have steady, periodi or haotistates as well as fragmentation. In this setion, we analyze in more details thesystem's phase diagram as well as how the dynamial regimes ouple to theloal strutural properties of the underlying network and dynamial islands.Density distribution funtions of dynamial regimesThe previously reported existene of haoti states have very interesting impli-ations for the stability of the system under external perturbations or internalvariations of the working parameters and points to the entral problem of ro-bustness of biologial networks studied by Kau�man for the design of RandomBoolean networks (see setion ??). For this reason it is important to omple-ment the study of the dynamial regimes with the study of the phase diagramin the (p, h)-spae where haos appears. The sheme of the omputations per-formed in order to haraterize the phase diagram of the system dynamis isslightly modi�ed with respet to that used in the previous setion:(i) For a given value of the parameters h and p and network realization theinitial values of gi are taken from a uniform distribution in the interval
(0, α).(ii) First integration of the equations is performed using a 4th order Runge-Kutta sheme. The total integration time is large ompared with thetransient.(iii) Chek the dynamial state of the network. If all the nodes are in a steadystate we try another initial on�guration; if there are dynamial nodesgo to the next stage.(iv) Chek the onnetivity between the dynamial nodes in order to obtainthe dynamial subnetworks (islands).(v) Seond integration for alulating the Largest Lyapunov exponent λ. If
λ > 5 · 10−3 the dynamis is onsidered haoti. If λ < 5 · 10−3 we lookat the frequeny of the periodi motion.(vi) Repeat stages (i)-(v) for di�erent initial onditions and realizations ofthe network.
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Figure 7.14: (a) Probability, Pchaos (Pper), that the system evolves to a haoti(periodi) regime as a funtion of the probability of inhibitory interations, p, for
h = 4 and N = 300. (b) Phase diagram in the (p, h)-parameter spae of the haotidynamis of the system. Color ode indiate the values of Pchaos (N = 300).In �gure 7.14.a, we have represented the probability, Pchaos, of ending up ina haoti regime as a funtion of p for a network of N = 300 nodes and h = 4.This probability is given by the fration of the total number of realizations(typially 103 di�erent initial onditions over di�erent network realizationsfor eah value of p and h were used) in whih at least one haoti dynamisis observed. The �gure also shows the orresponding probability, Pper, forperiodi orbits. As �gure 7.14.a learly shows, there is a threshold value p = pthbeyond whih the network dynamis is not robust under variations of the initialvalues of the gi's and onstitutes the onset of the haoti phase 3. For valuesof p above pth ≈ 0.25(5), two randomly hosen initial onditions an lead thesystem to disparate asymptoti regimes. The value pch

th ∼ 0.25(5) Besides, thesize of the system a�ets the value of Pchaos, but the onset −and the end− ofthe haoti phase seems to be N independent (see �gure 7.15).Figures 7.14.a onstitutes a quantitative illustration of how the prevaleneof �utuating asymptoti regimes over hemo-stasis ones depends on the modelparameter p. The sum of both funtions, Pper(p) + Pchaos(p), gives the prob-ability that the asymptoti state shows temporal variations of the ativityvetor (either regular or haoti) as a funtion of p. These results give thatin the range of values 0.5 ≤ p ≤ 0.8 regimes of temporal �utuations ourmore often than onstant ativity regimes. This measure is maximized by val-3Note that there is a seond threshold for p ∼ 1 whih avoids haoti behaviour. Thisis a onsequene of the dynamis (7.7). Remind that in this region most of the interationsare inhibitory and the dynamis of the genes die out due to the damping term in eq. (7.7).Thus, the nontrivial threshold is the lower one.
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ues around p ≃ 2/3 and, quite naturally, it inreases with the value of theMihaelis-Menten parameter h, i.e. the slope at the origin of the saturatedresponse funtion (see �gure 7.3). Note that even larger values of p meansoverabundane of inhibitory interations, whih leads to the predominane ofthe asymptoti rest state, while smaller values of p favour hemostati equilib-ria.The quantities Pchaos and pth depend on h. As we move to larger valuesof h, the strength of the interations inreases and hene it is expeted thatslight perturbations produe a behavior in whih the fration of nodes whosedynamial patterns are easily disturbed grows. This is indeed the ase, asillustrated in �gure 7.14.b. The olor-oded �gure shows that as h is inreased,the probability of having a haoti phase grows, and that the onset of suhhaoti patterns shifts to smaller values of p. This drift of pth is howeverbounded. For small enough values of p (even for very large h), most of theelements ativate eah other (Wij = 1 for a large fration of pairs ij and ji)and hene the resulting dynamis is steady. In other words, the onset of haotiregimes is always loated at a nonzero value of pth (the same applies to theright (deaying) part of Pch(p), but in this ase the ativity falls down to zero).Although the model and the underlying topology are very di�erent, theexistene of a nonzero value of pth, no matter the value of h, points to theoriginal suggestion by Kau�man (explained in setion 7.1.2) that there is a rel-evant (input) onnetivity κc for the regulatory gene network of an organismbelow whih the dynamial behavior of the system is frozen and is not easilyhanged by perturbations [267℄. Around κc, the behavior is neither haoti(not robust and then biologially not desiderable) nor frozen (biologially un-
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Figure 7.16: Onset of haoti regime as a funtion of p for three di�erent values of theexponent of the degree distribution P (k) ≃ k−γ (γ = 3, 2.33 and 2.2). The resultsorrespond to a network of N = 300 and the nonlinear parameter is set to h = 4 and.realisti), but exhibits a rih behavioral repertoire. The same piture appliesto pth in our model. In this diretion, the quantity Pper(p)−Pchaos(p) allows todetermine the regions in the parameter spae where regular dynamis prevailsover haos. As pointed above the range of p values where Pper(p) > Pchaos(p)an be regarded as dynamially robust and then ompatible with the operationpoints for real biologial networks.We have also performed the omputation of the phase diagram for the ex-istene of haoti dynamis for networks with di�erent degree of heterogeneity.For this purpose, we have varied the exponent γ of the onnetivity distribution
P (k) ∼ k−γ to values lower than 3 using the so-alled generalized Barabási-Albert model reported in [297℄. These networks are even more heterogeneoushaving a higher number of highly onneted genes. These omputations al-low to gain information on the importane of highly onneted genes on theexistene of haoti behavior. The results shown in �gure 7.16 manifest thatwhen γ dereases the threshold value for displaying haoti behavior pth(γ)slightly grows, giving a narrower haoti region but, on the other hand, theprobability Pch in the haoti region takes higher values for the same valuesof p as γ dereases. In table 7.1 we show the thresholds pth(γ) and the values
I(γ) given by

I(γ) =

∫ 1

0
Pch(γ, p)dp , (7.13)that aounts for the strength of the haoti behavior in the whole range ofthe parameter p. When periodi behaviour is also onsidered one realizesby looking (Figure) at the aforementioned substration Pper(p) − Pch(p) that
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Figure 7.17: (a) Probability that a onneted luster of nodes displaying either haotior periodi behavior has a given size (in number of nodes forming the luster). (b)Saling of the mean luster size with N . The parameters have been set to h = 4 and
p = 0.7.although the onset of haoti behaviour pth is lower for the less heterogeneousase γ = 3 it orresponds to the more robust ase as it presents the largerregion of periodi prevalene. These quantitative results have to be arefullyonsidered sine it is lear that, as a matter of fat, regardless of the value of γemployed, the dynamial robustness of the system is mainly determined by thetopologial properties given by p. We remark again that this onlusion is inagreement with the �ndings when Random Boolean Networks are onsidered.Dynamial island strutureWe next fous on the topologial haraterization of islands of dynamial units.For this we will take into aount only the nodes belonging to those onnetedomponents of the whole network whih share ommon dynamial patterns,
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γ 3 2.33 2.2

pth(γ) 0.25 0.32 0.38
I(γ) 0.1581 0.1962 0.2Table 7.1: The table shows the values of the probability (of inhibitory interations)threshold, pth for having haoti behavior and the values of the integral 7.13 for thethree values of γ = 3, 2.33 and 2.2.the islands, and only those links that onnet two dynamial nodes of thesame islands. That is we will not onsider those links that onnet island'snodes with the rest of the substrate network. In this sense, the islands an beviewed as those modules introdued in setion 7.1.2 that display independentdynamis but are loated nested in large network of interations. We expetto �nd di�erenes between the topologial features of the islands and those ofthe sale-free substrate as a result of the nonlinear dynamis that de�nes theislands.We �rst analyze how the luster size distribution of islands of nodes dis-playing either periodi or haoti ativity sales with the system size. Figure7.17.a represents the probability that an island has a given size for severalnetworks made up of a number of nodes ranging from 50 to 800. Clearly, thesize distribution shows an average value that hanges as N grows. A loserlook at the �gure (see �gure 7.17.b) reveals that the mean luster size saleswith N and that about 17% of the nodes, in average, exhibits nonzero ativity.This on�rms what we have disussed in setion 7.2.1 about the measures ofthe sets D∗ and D, namely, that the fragmentation of the network into islandsof independent dynamis appears as one of the most harateristi features ofthe model.As we stated above, it is interesting to eluidate how the topologial proper-ties of the islands orrelate with those of the underlying (original) network. Tothis end, we have further srutinized the struture of the lusters and measuredtwo topologial quantities of interest. Figure 7.18 shows the degree distribu-tion of nodes belonging to dynamial islands for several system sizes. Thisproperty an be regarded as a global one and indiates that within the islands,the probability that a node has k links pointing to other nodes of the samedynamial island also presents a slow deay with k, though with a more pro-nouned ut-o� and a (slightly) di�erent value for the exponent γ than thatof the substrate network. More striking is the result depited in �gure 7.19,where the average lustering oe�ient 〈c〉 of the substrate (original) networkand of the islands is plotted as a funtion of N . While for the BA networkthe lustering is vanishing as the network size grows, as reported in setion
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7.2. Regulatory dynamis in sale-free networks 247of onnetions, a high average lustering and the independene of 〈c〉 withrespet to the system size. This result points to the onjeture that severaltopologial properties observed in systems driven by AI interations wherenodes are themselves (nonlinear) dynamial units may be biassed by their owndynamis. In other words, what we atually see is the result of the ativityshowed up by a smaller �dynamial� network whose loal topologial propertiesgreatly di�er from those of a larger substrate network that we don't �see�beause many of its omponents are simply o�. This, in fat, may be the aseof biologial systems where struture and dynamis are indissoluble linked[298℄.7.2.3 Struture inside dynamial islandsThe above �ndings on new (dynamially) emergent harateristis of the is-lands struture motivate the question of whether these lusters have an internalorganization or hierarhy among its onstituents. It is widely known that whenone deals with problems where the network topology (sale-free) is the onlydegree of omplexity of the problem the answer to this question is usuallybased on the presene of highly oneted nodes (the hubs). This is the asewhen linear evolution equations are studied on top of omplex networks likeepidemi or rumour spreading, tra� and ommuniation problems (hapter6). However, our ase is not so simple and the nonlinear exitatory/inhibitorydynamis between the elements of the network plays a ruial role in deter-mining whih nodes are governing the evolution of the system. Moreover, thehigh lustering found for the dynamial lusters points out that this leadingrole is not played by isolated nodes but by small substrutures inside the dy-namial islands. This onept is not new, the problem of �nding small relevantsubstrutures inside large networks, usually alled �motifs� (see setion 5.1.4),has been studied in di�erent ways in the �eld of biologial networks.It is indeed very revealing to pay attention to the networked struture ofthe unstable manifold, whih is given in the linear regime of small perturba-tions by the Floquet unstable eigenvetors. For this purpose, we look at thebehaviour of the omponents of the dynamial islands when a bifuration (ei-ther period doubling or Naimark-Saker type) ours. In these ritial points,it is possible to get a deeper insight into what is going on in the dynamialislands by looking at the Floquet eigenvetor responsible for the bifuration,
~δg

⋆
(t0) = {δg⋆

i (t0)}, orresponding to the Floquet eigenvalue whih reahes theunit irle. In partiular, integrating equation (7.10) for the initial ondition
~δg

⋆
(t0) we an ompute the following vetor

~〈δg⋆〉 = {〈δg⋆
i 〉} =

{

1

T

∫ T

0
|δg⋆

i |dt

}

. (7.14)
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Figure 7.20: The �gure shows theomponents of the vetor 〈 ~δg⋆〉(see text) for �ve dynamial is-lands at the ritial point of ei-ther a period doubling bifura-tion [(a), (b), (d) and (e)℄ or aNaimark-Saker one ().
The omponents of this vetor measure, for eah node, the average (over aperiod T of the old solution) distane of the new solution after the bifurationpoint from the old periodi solution. Note that a zero omponent of thisvetor at a node k, means orthogonality of the single-site perturbations atthat node with respet to the unstable diretion in tangent spae. In otherwords, by looking at the omponents of the vetor (7.14) we an identify thosenodes that are more a�eted by the perturbation that leads the system toinstability. In �gure 7.20 we show this quantity for several dynamial islands(relatively small, but still representative) orresponding to values of h where abifuration ours. In partiular, �gures 7.20. and 7.20.e orresponds to those



7.2. Regulatory dynamis in sale-free networks 249islands whose Floquet spetra are given in �gure 7.13, one 7.21. orrespondingto a Naimark-Saker bifuration and the other 7.21.e to a period doublingbifuration.As it an be seen from the �gures, the vetors ~〈δg⋆〉 have several null om-ponents. The unstable perturbation ~δg
⋆
(t0) that hange the island's attratorat the ritial point does not perturb the motion of these nodes. For the threelatter ases (orresponding to �gures 7.20., 7.20.d and 7.20.e) there is a rep-resentative group of nodes where this measure vanish. The strutural pro�lesreveal for these three ases (see the islands plotted in �gure 7.21), apparentlyirrespetive of the type of instability, that the set S of nodes in the islandwhih are alien to instability (white regions), that is, the set of those nodes

j suh that 〈δgj〉 = 0, is a non-zero measure set; it is sometimes even largerthan the omplementary set (green area) U = I − S of partiipating nodeson the unstable eigenvetor evolution during a period. We observe here thatthe fragmentation tendeny (see disussion on islands of disonneted dynam-is made above) operates also at the level of the tangent spae, in the sensethat a binary partition of the island nodes is well de�ned at the bifuration(ritial) point. Namely, the instability introdues a partition of the island
I = U ⊕ S into (a) the set U of nodes that do partiipate in the instabilityevolution in the linear regime, and (b) the omplementary set S, of nodes suhthat single-node perturbations are orthogonal to the unstable linear manifold.This drasti, generi fragmentation of the island of periodi ativity at thelinear desription level of the bifuration, is also learly the onsequene ofthe AI ompetition on the network of interations, and we have not seen anydeviation from this observation in the omputations performed (of whih only�ve ases are illustrated). In summary, one ould say that inside the dynamialislands there are ompat substrutures (and not single nodes) governing thedynamial hanges of the whole luster of nodes.The behavior desribed above suggest the following numerial experiment:we have explored the responses of the di�erent nodes to an external pertur-bation when the system is in a periodi state near a bifuration point. Inpartiular, we fore a single node i by adding an aditional term to eq. 7.7 ofthe form

dG(t)

dt
= −G(t) + αF [WG(t)] + ei · [A sin (ωt)] , (7.15)where ei is a vetor whose omponets are {ei}j = δij. The foring frequenyis set to ω = 2π/T where T the period of the unperturbed system. Then weompute, as a funtion of the foring amplitude A, the evolution of the Floqueteigenvalue µ⋆ responsible for the forthoming bifuration in the unperturbedsystem. The e�ets of suh a perturbation strongly depend on whether theperturbed node belongs to the subset of those identi�ed as leaders, i.e the
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Figure 7.21: In the left side of the �gure the dynamial islands orresponding to �gures7.20., 7.20.d and 7.20.e are represented. The islands show the distribution (greenregion) of the nodes with non null omponent of 〈 ~δg⋆〉 in �gure 7.20 respetively. Inthe right side, the plots show the evolution of the Floquet eigenvalue µ⋆ (see text) asa funtion of the foring amplitude A applied to di�erent nodes of the left dynamialislands respetively. For all the islands the susbstrate network was of N = 60 nodeswhith a fration of 80% of inhibitory interations (p = 0.8).



7.3. Conlusions 251ones with non null omponent in ~〈δg⋆〉 (represented inside the green area in�gure 7.21). The results obtained for the dynamial islands plotted in �gure7.21 are shown in the right plots of the �gure. When the nodes inside thegreen area are perturbed the Floquet eigenvalue µ⋆ signi�antly deviate (eitherinrease or derease, we have not been able to eluidate when a given hangeis expeted) from the values of the unperturbed system. On the other hand,the perturbation of the nodes loated outside the green region does not implyany hange to linear stability of the whole system. These results illustrate therelevant role played by the substrutures found above by the omputation of
~〈δg⋆〉.7.3 ConlusionsIn this hapter we have analyzed the interplay between omplex topologiesand ativatory-inhibitory interations driven by a saturated response dynam-is of the Mihaelis-Menten type. The dynamis of the system is very rih andexhibits steady, periodi and haoti regimes that in turn lead to the fragmen-tation of the original substrate network into a smaller luster of dynamiallyative nodes. We have fully haraterized these states by means of the Lya-punov exponent and the Floquet analyses as well as the topologial featuresof ative islands. The reah behavioral repertoire observed is thus a onse-quene of the entangled omplexity of the system temporal behavior and theheterogeneous struture of the underlying network.The emerging dynamis haraterized in this work ould plausible desribeat least two relevant senarios in biologial systems. On one hand, the dy-namis expressed in eq. (7.7) has been proposed as a way to haraterize the-oretially the individual dynamis of gene expression [294℄. In fat, eq. (7.7)is the generalization of the suessful Random Boolean models widely used tomodel gene expression. In this ontext, two nodes at the ends of a link areonsidered to be transriptional units whih inlude a regulatory gene. One ofthese end-nodes an be thought of as being the soure of an interation (theoutput of a transriptional unit). The seond node represents the target bind-ing site and at the same time the input of a seond transriptional unit. Bystudying simpli�ed models as the one implemented here − the intrinsi om-plexity of the problem does not allow for a omplete and detailed desriptionof real gene dynamis −, one an infer the region of the parameter spae (i.e.

(p, h)) that better desribes gene networks. The latter seems possible due tolatest developments in miroarray tehnologies, bioomputational tools, anddata olletion software.A seond senario where the results obtained apply is reation kinetis in



252 Chapter 7. Ativatory-Inhibitory interations in Networksmetaboli networks. In metaboli systems, a very rih behavioral repertoire iswell doumented [210℄, as for instane, the osillations observed in the onen-tration of ertain hemials in biohemial reations suh as glyolysis. Thesystem of di�erential equations, Eqs. (7.7), represents one of the most basibiohemial reations, where substrates and enzymes are involved in a reationthat produes a given produt. In this ontext, there are several importantissues as how fast the equilibrium is reahed, how the onentration of sub-strates and enzymes ompare, et. Besides, it is known that in a large numberof situations, some of the enzymes involved show periodi inrements in theirativity during division, and these re�et periodi hanges in the rate of enzymesynthesis. This is ahieved by regulatory mehanisms that neessarily requiresome kind of feedbak ontrol as that emerging in our model. The interest-ing point here is that the real topologial features of the underlying metabolinetwork [146℄ have not been taken into aount in studies performed so far.As this work shows, they have important bearings in the orrelation betweenstruture and the observed dynamis.Finally, on more general theoretial grounds, we antiipate several featuresof interest suh as the fragmentation of the original network aording to thedynamial states of the nodes, multistability and di�erent routes to haotibehavior within the same system. The �rst of these points is partiularly rel-evant sine it may indiate that in networks of dynamial units, the topologyobserved an be the result of a given network state hiding a larger substratewhose topologial properties are ompletely di�erent at a loal level. Of parti-ular interest is also the result gathered in the last part of the work, namely, theexistene of an additional substruture inside dynamial islands determined bythe di�erent responses of nodes to external perturbations. This points to theentral issue in many biologial proesses of what subset of nodes are the mostimportant in order to sustain (or break) the system's robust funtioning. As aonlusion, the haraterization of models where nonlinearity and spatial om-plexity oexist yields new results missed when only one of these ingredients ispresent and opens the path to a better omprehension of biologial proessesand the dynamis of networks of nonlinear dynamial units.



Chapter 8Synhronization on ComplexNetworksWhile I was in fored to stay in bed for a few days and made obser-vations on my two loks of the new workshop, I notied a wonderfule�et that nobody ould have thought of before. The two loks, whilehanging [on the wall℄ side by side with a distane of one or two feetbetween, kept in pae relative to eah other with a preision so highthat the two pendulums always swung together, and never varied.While I admired it for some time, I �nally found that this happeneddue to a sort of sympathy: when I made the pendulums swing at dif-ferent paes, I found that half an hour later, they always return tosynhronism and kept it onstantly afterwards, as long as I let themgo. Disovery of synhronization by Christian Huygens(Extrated from a letter to his father, 26 February 1665) [299, 300℄.The understanding of emergent olletive phenomena in natural and soialsystems has driven the interest of sientists from di�erent disiplines duringdeades. One example of these phenomena is the emergene of loalized stru-tures in extended nonlinear latties like those studied in part I. Besides, thestudy of synhronization of a set of interating individuals or units oupies aprivileged position among these oherent phenomena beause its ubiquity inthe natural world. In this hapter, we show how the emergene of loal pat-terns of synhronization behaves di�erently depending on the properties of theunderlying networked struture, driving the proess towards a ertain globalsynhronization degree following di�erent paths. The dependene of the dy-namis on the oupling strength and on the topology is studied in this hapter



254 Chapter 8. Synhronization on Complex Networksin an e�ort to provide a new perspetive and tools to understand this emergentphenomena.We will fous on the synhronization of oupled osillators, in partiular onthe paradigmati Kuramoto model, beause of its validity as an approximationfor a large number of nonlinear equations and its ubiquity in the nonlinearliterature. In setion 8.1 we will review the main harateristis of this modeland brie�y summarize the �state of the art� onerning synhronization inomplex networks. Setions 8.2, 8.3 and 8.4 are devoted to the study of therelationship between network topology and synhronization dynamis. Forthis we will onsider a variety of networks whose topologial properties (suhas lustering, average path length, degree distribution, et...) an be tunedand study how topologial variations a�et the emergene of the olletivesynhronization.8.1 The Kuramoto modelThe onept of synhronization studied in this hapter refers to the state of amarosopi system of limit-yle osillators whose frequenies are loked to aommon value despite of the di�erenes of their natural frequenies of individ-ual osillations. However, the very onept of synhronization of n dynamialsystems implies that there exist a smooth and invertible map that relate thetrajetories of any pair of these systems. Then, synhronization of any type ofdynamial behaviour, suh as haos [301℄, an be studied. Depending on theharateristis of the maps that onnet two given evolutions di�erent types ofsynhronization are onsidered suh as omplete synhronization [302℄, phasesynhronization [303℄, lag synhronization [304℄, et... This rih repertoiremakes the general problem of synhronization an outstanding �eld for non-linear physis. Besides, the synhronization of non-idential interating unitsoupies a privileged position among emergent olletive phenomena beauseof its various appliations in interdisiplinary �elds like Neurosiene, Eology,Earth Siene, among others [300, 305�308℄.Let us now fous on the problem of omplete synhronization of an extendedset of limit-yle osillators where the Kuramoto model has been objet of in-tensive researh during the last deades [309℄. In 1967 Winfree [310℄ faed theproblem of synhronization with the following two simpli�ations: (i) the ou-pling between the osillators is weak and (ii) they are nearly idential (similarnatural frequenies). Subjeted to these assumptions one an perform a timesales separation. From one hand, at a fast time sale, the osillators relax totheir natural limiting yles so that they are desribed by the rotation angleof their phases. At a slow time sale these phases evolve aording to the



8.1. The Kuramoto model 255weak interation with their neighbours and the small di�erenes between thefrequeny of the osillators. This approah allows to fae the problem simi-larly to a lassial mean �eld model when one assumes that every osillatoris oupled to the entire ensemble of osillators and hene to the overall rithmgenerated by the whole population. Winfree expressed the model by means ofthe following general equations
θ̇i = ωi +





N
∑

j=1

X(θj)



Z(θi) (i = 1, ..., N) , (8.1)where θi is the phase of osillator i, ωi is its natural frequeny, X(θj) aountsfor the in�uene that a osillator j makes over the rest of the elements and�nally Z(θi) denotes the response of the osillator i to the overall oupling.Winfree found that when the width of the natural frequeny distribution g(ω)is large ompared to the oupling strength the system behaves inoherentlyand eah osillator evolves aording to its natural frequeny. On the otherhand, when the distribution gets narrower the inoherene persists up to athreshold below whih a small subset of osillator gets into synhrony.After the work of Winfree lots of works tried to understand the meha-nism of the synhronization transition. One of the most suessful attempts tounderstand it is due to Kuramoto [311, 312℄. By means of perturbative meth-ods Kuramoto proved that for any system of nearly idential weakly oupledlimit-yle osillators, the long time dynamis is expressed by equations for thephase evolution of the form
θ̇i = ωi +

N
∑

j=1

Γij(θi − θj) (i = 1, ..., N) , (8.2)where the interation funtions Γij an be alulated as integrals ontainingmodel-dependent terms. These funtions an be omposed of a (arbitrarily)large number of Fourier harmonis, and besides, one has to provide them in-luding information about the oupling topology. Kuramoto analyzed a mean�eld ase orresponding to an uniform, all-to-all and sinusoidal oupling
Γij(θi − θj) =

K

N
sin (θi − θj) , (8.3)where the fator 1/N is inorporated in order to ensure a good behaviour ofthe model in the thermodynami limit, N →∞. Besides, he assumed that thefrequenies ωi are distributed following a density distribution g(ω) unimodaland symmetri with respet to an average frequeny Ω, g(Ω− ω) = g(Ω + ω).One an then take Ω = 0 by hanging to a rotating frame of frequeny Ω so



256 Chapter 8. Synhronization on Complex Networksthat the phases are rede�ned aording to θi → θi + Ωt, the distribution g(ω)is even and unimodal and the equations of motion are
θ̇i = ωi +

K

N

N
∑

j=1

sin (θi − θj) (i = 1, ..., N) . (8.4)This is the so-alled Kuramoto model. It is onvenient to de�ne the omplexorder parameter in order to desribe properly the synhronization transition
r exp (iφ) =

1

N

N
∑

j=1

exp (iθj) , (8.5)where the modulus r measures the phase oherene and φ(t) is the averagephase. For example, let us suppose that the osillators dynamis is suh thatthe phases move grouped around the unit irle, then r ≃ 1 and the systembehaves as a marosopi osillator. On the other hand, if phases �ll denselythe unit irle then r ≃ 0, and the osillators behave inoherently and nomarosopi rithm is observed. By multiplying eq. (8.5) by exp (−iθj) weobtain for the imaginary part: r sin (φ− θi) = 1/N
∑

j sin (θj − θi), so thatone an write eq. (8.4) as
θ̇i = ωi + Kr sin (φ− θi) (i = 1, ...,N) , (8.6)where it is easily realized the mean �eld harater of the model. Eah osillatorinterats with the remaining ones through average quantities (r and φ). Then,the individual phases θi are attrated to the average phase φ and the inten-sity of this attration is proportional to the overall oherene of the system

r. This establishes a positive feedbak between oupling and oherene: themore oherent the olletive motion the larger is r and so is the tendeny forreruiting osillators into the synhronized luster.The numerial integration of eq. (8.4) (using a Gaussian or similar dis-tribution, with in�nite tails, for g(ωi)) show that for low enough values of Kthe osillators seem unoupled, i.e for arbitrary initial onditions the phases
θi tend to distribute uniformly aross the unit irle. Then r(t) deays to val-ues that �utuate around zero (O(N−1/2)). When K exeeds some thresholdvalue, Kc, the inoherent state beomes unstable and r(t) grows exponentiallyup to a nearly onstant value 1 > r > 0, showing the emergene of a smallluster of synhronized osillators (see �gure 8.1).8.1.1 Solution to the Kuramoto modelIt is possible to obtain an analytial estimation of the ritial point for thesynhronization transition. For this purpose Kuramoto looked for stationary
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Figure 8.1: Dynamial patterns of a set of N = 100 globally oupled osillators.A random set of initial onditions were onsidered lying on the unit irle, θi(0) ∈
[−π, π], and the natural frequenies are uniformly distributed between ωi ∈ [−0.5, 0.5].Starting from an unoupled system K = 0 (r = 0.089) the oupling is adiabatiallyinreased letting the system reah the equilibrium for every value of K where r isomputed. For every pattern we have K = 0.2 (r = 0.109), K = 0.4 (r = 0.240), K =

0.6 (r = 0.648) and K = 1.0 (r = 0.962) where the system reahes the synhronizedstate (note that the frequeny of this synhronized state is seen to be ωsync ≃ 2π·10−3,i.e. nearly zero as the mean value for the natural frequeny distribution onsidered).solutions where r(t) is onstant and φ(t) rotates uniformly around the unitirle with frequeny Ω. Then it is possible to take a rotating frame of frequeny
Ω and �x the phases origin so that φ = 0. With these assumptions eq. (8.6)take the form

θ̇i = ωi −Kr sin θi (i = 1, ...,N) . (8.7)In the above expression it is lear that the osillators are ompletely indepen-dent, although their dynamis should be onsistent with the presribed valuesof r and φ. Equation (8.7) admits two solutions depending on the relativesize of the natural frequenies |ωi| with respet to the prefator Kr. Those



258 Chapter 8. Synhronization on Complex Networksosillators suh that |ωi| ≤ Kr evolve to a stable �xed point so that
ωi = Kr sin θi , (8.8)with |θi| ≤ π/2 to ensure stability. These osillators are alled loked sine theirphases evolve oherently following a well de�ned frequeny Ω in the originalreferene system. On the other hand if |ωi| > Kr the orresponding osillatorsare drifting and rotate around the unit irle in a non-regular fashion. Theexistene of these osillators seems to ontradit the assumptions of stationaryharater of r(t) and the regular motion of φ. However, it an be found ertainonditions so that the ompatibility is ful�lled [311℄. In partiular, it is enoughto assume that the osillators phase distribution is stationary in order to theassure the stationary state onditions.Now we ompute the value of r. Taking into aount that φ = 0 oneobtains r · exp(iφ) = r = 1/N
∑

j exp(iθi) = 〈exp(iθ)〉. The latter average anbe deomposed into the following two ontributions
r = 〈exp(iθ)〉lok + 〈exp(iθ)〉drift , (8.9)from the loked and drifting osillators. For the �rst average one obtains that

〈exp(iθ)〉lok = 〈cos θ〉lok sine for the loked solutions relation (8.8) holds andhene the ontributions for the osillators with natural frequeny ω anelswith the orresponding to those with −ω due to the presribed symmetry
g(ω) = g(−ω). Then,

〈exp(iθ)〉lok = 〈cos θ〉lok =

∫ Kr

−Kr
cos [θ(ω)] g(ω) dω , (8.10)where θ(ω) is impliitly de�ned by eq. (8.8). Changing the variable ω to θusing eq. (8.8) in the above expression one �nally obtains

〈exp(iθ)〉lok =

∫ π/2

−π/2
cos2(θ) g(Kr sin θ) dθ . (8.11)The ontribution to r from the drifting osillators, 〈exp(iθ)〉drift, is seen tovanish invoking symmetry arguments [311℄ and hene the ontrol parameter ris equal to the right side of eq. (8.11)

r = Kr

∫ π/2

−π/2
cos2(θ) g(Kr sin θ) dθ . (8.12)This equation has always r = 0 as a solution (whih orresponds to the ino-herent system). A seond solution for r 6= 0 is possible if the following relationholds

1 = K

∫ π/2

−π/2
cos2(θ) g(Kr sin θ) dθ . (8.13)



8.1. The Kuramoto model 259This will our for K > Kc so that the threshold value Kc orresponds to theritial point where oherene appears, r → 0+. Then one �nds
Kc =

2

πg(0)
(8.14)for the ritial oupling. The behaviour of the system's oherene near theritial point r ≪ 1 an be obtained expanding g(Kr sin θ) up to seond orderyielding

r ≃
(
√

16

−πg′′(0)K4
c

)

(K −Kc)
1
2 , (8.15)where the mean �eld harater of the model beomes evident.8.1.2 Synhronization in omplex networksThe Kuramoto mean-�eld approah to synhronization was a great break-through for the understanding of the emergene of synhronization in largepopulations of osillators. However, we are aware that a large amount of realsystems do not show a homogeneous pattern of interonnetions among theirparts. That is, the underlying struture is not ompatible with the originalassumption of the Kuramoto model. Moreover, it is not even well desribed byrandom patterns of interonnetions in the vast majority of systems. There-fore, the mean-�eld approah requires of several onstraints that are not usu-ally ful�lled in real systems like natural[262, 313℄, soial [148℄ and tehnologial[143, 314℄ ones. The study of proesses taking plae on top of omplex net-works with sale-free harater has led to reonsider lassial results obtainedfor regular latties or random graphs due to the radial hanges of the system'sdynamis when the heterogeneity of omplex networks an not be negleted. Itis then natural to investigate how synhronization phenomena in real systemsare a�eted by the omplex topologial patterns of interation. This is notan easy task, as one has to deal with two soures of omplexity, the nonlinearharater of the dynamis and highly non trivial omplex strutures, whih areusually presented to us in an entangled way. In fat, in 1998 Watts and Stro-gatz in an e�ort for understanding the synhronization of riket hirps, whihshow a high degree of oordination over long distanes as though the insetswhere �invisibly" onneted, end up with a seminal paper about the small-world e�et that was the seed of the modern theory of omplex networks [155℄.Nevertheless, the understanding of the synhronization dynamis in omplexnetworks remains a hallenge.Let us fous again on the paradigmati Kuramoto model. In order tomanage with the KM on top of omplex topologies we reformulate eq. (8.4) to



260 Chapter 8. Synhronization on Complex Networksthe form
dθi

dt
= ωi +

∑

j

ΛijAij sin(θj − θi) (i = 1, ..., N) , (8.16)where ωi stands for its natural frequeny, Λij is the oupling strength betweenpairs of onneted osillators and Aij is the onnetivity matrix (Aij = 1if i is linked to j and 0 otherwise). The original Kuramoto model studiedabove assumed mean-�eld interations so that Aij = 1,∀i 6= j (all-to-all) and
Λij = K/N,∀i, j.The �rst problem when dealing with the KM in omplex networks is thede�nition of the dynamis. In the seminal paper by Kuramoto [311℄, eq. (8.4),the oupling term in the right hand side of eq. (8.16) is an intensive magni-tude. The dependene on the number of osillators N is avoided by hoosing
Λij = K

N . This presription turns out to be essential for the analysis of thesystem in the thermodynami limit N → ∞. However, hoosing Λij = K
N thedynamis of the KM in a omplex network beomes dependent on N . There-fore, in the thermodynami limit, the oupling term tends to zero exept forthose nodes with a degree that sales with N 1. A seond presription onsistsof taking Λij = K

ki
(where ki is the degree of node i) so that Λij is a weightedinteration fator that also makes intensive the right hand side of eq. (8.16).This form has been used to solve the paradox of heterogeneity that states thatthe heterogeneity in the degree distribution, whih often redues the averagedistane between nodes, may suppress synhronization in networks of osilla-tors oupled symmetrially with uniform oupling strength [316℄. One shouldonsider this result arefully beause it refers to the stability of the fully syn-hronized state (see below) not to the whole evolution of synhronization in thenetwork. More important, the inlusion of weights in the interation stronglya�ets the original KM dynamis in omplex networks beause it imposes adynami homogeneity that mask the topologial heterogeneity of the network.Finally, the presription Λij = K [315, 317, 318℄, whih may seem more appro-priate, also presents some oneptual problems beause the sum in the righthand side of eq. (8.16) ould eventually diverge in the thermodynami limit ifsynhronization is ahieved.To our understand, the most aurate interpretation of the KM dynamis inomplex networks should preserve the essential fat of treating the heterogene-ity of the network independently of the interation dynamis, and at the sametime, should remain alulable in the thermodynami limit. Taking into a-ount these fators, the interation Λij in omplex networks should be inversely1Note that this is only possible in networks with power-law degree distributions, but witha very small probability as P (k) ∼ k−γ with γ > 0. In these ases, mean-�eld solutionsindependent on N are reovered, with slight di�erenes in the onset of synhronization ofall-to-all and sale-free networks [315℄.



8.1. The Kuramoto model 261proportional to the largest degree of the system Λij = K
kmax

= λ keeping inthis way the original formulation of the KM valid in the thermodynami limit(in SF networks kmax ∼ N1/(γ−1)). In addition, the same order parameter, eq.(8.5), an be used to desribe the oherene of the synhronized state. Sine
kmax is onstant for a given network, the physial meaning of this presriptionis a re-saling of the time units involved in the dynamis. Note, however, thatfor a proper omparison of the synhronizability of di�erent omplex networks,the global and loal measures of oherene should be represented aording totheir respetive time sales. Therefore, given two omplex networks A and Bwith kmax = kA and kmax = kB respetively, the omparison between observ-ables must be done for the same e�etive oupling KA

kA
= KB

kB
= λ. With thisformulation in mind eq. (8.16) redues to

dθi

dt
= ωi + λ

∑

j

Aij sin(θj − θi) (i = 1, ..., N) , (8.17)independently of the spei� topology of the network. This allow us to studythe dynamis of eq. (8.17) over di�erent topologies in order to ompare theresults and report properly the interplay between topology and dynamis forwhat onerns to synhronization.In reent years, sientists have addressed the problem of synhronizationon omplex networks apitalizing on the Master Stability Funtion (MSF) for-malism [319℄ whih allows to study the stability of the fully synhronized state[316, 320�326℄. The MSF is simply the result of a linear stability analysis fora ompletely synhronized system. Although we are not going to make use ofthe MSF along the forthoming setions, let us brie�y summarize the basis ofthis tehnique for the sake of ompleteness.Consider a general system of N oupled dynamial systems for the n-dimensional variables {xi} (i = 1, ...,N) of the form
ẋi = F(xi) + λ

N
∑

j=1

LijH(xj) (i = 1, ..., N) , (8.18)where F : Rn → Rn is the isolated n-dimensional dynamial system, λ is theoupling strength, Lij is the N ×N Laplaian matrix ful�lling∑j Lij = 0 and
H : Rn → Rn is an output funtion that aounts for the mutual in�uene ofthe dynamial states of two oupled dynamial systems. The above equationsan be written in a more ompat form

ẋ = [IN ⊗ F + λ · L⊗H](x) , (8.19)where IN is the N × N identity matrix and ⊗ is the diret produt. Theevolution of a small perturbation around any solution of the above system



262 Chapter 8. Synhronization on Complex Networkswill be governed by the linearized equations around the orresponding solutionfrom whih one an ompute the Floquet and Lyapunov exponents (see Ap-pendix B). However, if the whole system displays synhronous dynamis onehas xi = xj ∀i, j and it implies some simpli�ations about the linear stabilityanalysis. Sine the Jaobians DF and DH that appear in the linearized equa-tions are the same for every n-dimensional tangent subspae orresponding toperturbations of single n − dimensional variables xi (i = 1, ...,N) one ane�etively deouple the stability analysis of the N dynamial system. For thispurpose diagonalizing the N×N Laplaian matrix, and alling γi (i = 1, ...,N)its eigenvalues, one arrives to a set of N n-dimensional systems of equations
ξ̇i = [DF + λγiDH]ξi (i = 1, ...,N) (8.20)with the same funtional form. The similarity of these n-dimensional systemsof equations, derived from the the symmetry of the synhronized solution, leadsto formulate the general problem of �nding the maximum eigenvalue, Λ of thegeneri equation

ẏ = [DF + (a + ib)DH]y (i = 1, ...,N) (8.21)as a funtion of a and b. The above equation is the so-alled Master StabilityEquation and the surfae, Λ(a, b) generated by the solutions orrespond to theMaster Stability Funtion. By means of this surfae, that only depends on thepartiular equations for the isolated dynamial systems and the form of theoupling between them, one an ompute the maximum Lyapunov exponentsfor eah Laplaian eigenvetor γi (i = 1, ...,N), that would depend on the un-derlying topology employed, and hene obtain the stability of the synhronizedstate over the omplex network struture.While the MSF approah is useful to get a �rst insight into what is goingon in the system as far as the stability of the synhronized state is onerned,it tells nothing about how synhronization is attained and whether or not thesystem under study exhibits a ritial point similar to the original KM. Tothis end, one must rely on numerial alulations and explore the entire phasediagram. Surprisingly, there are only a few works that have dealt with thestudy of the whole synhronization dynamis in spei� senarios [317, 327�329℄ as ompared with those where the MSF is used, given that the onset ofsynhronization is reaher in its behavioral repertoire than the state of ompletesynhronization. In the following setions we will study this point using the KMmodel on top of di�erent substrate topologies in order to get insight about therole of the strutural properties on the route towards omplete synhronization.



8.2. Synhronization in loal sale-free networks 2638.2 Synhronization in loal sale-free networksIn this setion, we take a further step in the detailed haraterization of thephase diagram and spei�ally, in the desription of the dynamial behaviorat the onset of synhronization in SF networks. By performing a standard�nite size saling analysis, we show that the loal topology a�ets the ritialproperties of the dynamis, though it is less pronouned that what one mayexpet a priori. We apitalize on the network model reported in setion 5.3that keeps the power-law exponent �xed while varying the lustering oe�ientand the average path length. This model was already used in setion 6.2.2 forstudying the role of the loal topology when studying tra� dissemination.Let us �rst review the main features of the model. Roughly speaking, themodel mimis the situation in whih new nodes are attahed to an existingore or network but without having knowledge of the whole topology. Themodel generates a one parameter family of networks labeled by µ ∈ [0, 1] thatmeasures the degree of knowledge that is applied when preferential attahmentis performed during the network growth. Then, the limit µ→ 1 assumes globalknowledge an thus it reovers the BA network. On the other hand, µ → 0implies extremely loal knowledge and the resulting networks while displayinga sale-free struture (the exponent γ of the power-law degree distribution is thesame, i.e. γ = 3, regardless of the value of µ) are very large (large values of 〈L〉)and highly lustered ompared to BA networks. Both magnitudes, lusteringoe�ient 〈c〉 and average path length 〈L〉, inrease as µ dereases from 1 to 0(see �gures 7.4 and ??). Remind that the larger variations orrespond to thelustering oe�ient (a fator greater than 4 as ompared to a fator lose to 2for 〈L〉) and that it is the �rst property that deviates from the BA limit while
〈L〉 holds up lose to similar values to that of the BA limit up to small valuesof µ, where 〈L〉 raises at a higher rate than 〈c〉.We will onsider the Kuramoto model (8.17) disussed in the last setionand employ the ontrol parameter r introdued above to measure the degreeof synhronization as a funtion of the oupling strength λ and the topologyparameter µ.In order to inspet how the dynamis of the N osillators depends onthe underlying topology, we have performed extensive numerial simulationsof the model. Starting from λ = 0, we inrease at small intervals its value.The natural frequenies ωi and the initial values of θi are randomly drawnfrom a uniform distribution in the interval (−1/2, 1/2) and (−π, π), respe-tively. Then, we integrate the equations of motion eq. (8.17) using a 4th orderRunge-Kutta method over a su�iently large period of time to ensure that thesystem reahes the stationary state, where the order parameter r is omputed.
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Figure 8.2: Order parameter r as a funtion of λ for di�erent values of µ as indiated.The network parameters are N = 1000 and 〈k〉 = 6.The proedure is repeated gradually inreasing λ for every network realizationlabeled by µ. All the results are averaged over at least 100 realizations.The results for r versus the ontrol parameter λ are shown in �gure 8.2 forseveral networks haraterized by di�erent values of µ. For all values of µ, whenthe oupling is inreased from small values, the inoherent solution prevailsand marosopi synhronization is not attained. This behavior persists untila ertain ritial value λc(µ) is rossed. At this point some elements lok theirrelative phase and synhronized lusters of nodes appear. This onstitutesthe onset of synhronization. Beyond this value, the population of osillatorssplits into a partially synhronized state ontributing to r and a group ofnodes whose natural frequenies are too spread as to be part of the oherentpak. Finally, after further inreasing the value of λ, more and more nodes getentrained around the mean phase and the system settles down in a ompletelysynhronized state where r ≈ 1.A omparison between the results for di�erent values of µ (and thus dif-ferent 〈c〉 and 〈L〉 values) indiate several interesting features of the synhro-nization proess. First, it is remarkable that when the lustering oe�ientinreases, the system reahes omplete synhronization at higher values of theoupling. This result agrees with the results reported in [328℄, where a di�erentnetwork model able to generate topologies with a tunable lustering oe�ientwas implemented.At this point, one may ask whether the e�ets are only due to the in�uene



8.2. Synhronization in loal sale-free networks 265of 〈c〉 or to the inrease of the average path length 〈L〉 (note that the modelimplemented in [328℄ does not explore this possibility). Unfortunately, the twofators are generally linked together so they an not be onsidered separately.However, a loser look at �gures 7.4 and ?? reveals that there is a regionof the parameter µ where the lustering oe�ient grows while the averageshortest path length remains almost onstant. This orresponds to the interval
0.4 ≤ µ ≤ 1.0 approximately. Going bak to �gure 8.2, the behaviour of
r in this interval of µ reveals that synhronization is almost una�eted. Infat, the r(λ) urves lie slightly above that orresponding to the BA limit.Therefore, though the above omparison is not onlusive, it seems that thedelayed transition to omplete synhronization is mainly due to the e�et ofthe inrease in 〈L〉 at smaller values of µ rather than to the inrease in 〈c〉.This onlusion is further supported by a diret omparison of the results in�gure 8.2 with those reported in [328℄, where the authors explored a regionwith higher values of 〈c〉 (up to 0.7) and the pro�le of r(λ) is almost the sameas ours.The seond region of interest is the onset of synhronization. From �gure8.2, it is di�ult to eluidate how the ritial point for the BA limit ompareswith those at values of µ < 1. At �rst glane, it seems that λc(µ) shiftsrightward as the parameter µ is dereased below 1. However, a more detailedanalysis shows that it is indeed the ontrary. To this end, we have performeda �nite size saling analysis that allows to determine the ritial points λc(µ).We assume a saling relation of the form

r = N−αf
[

Nβ(λ− λc)
]

, (8.22)where f(x) is a universal saling funtion bounded as x → ±∞ and α and
β are ritial exponents to be determined. The estimation of λc an then bedone by plotting Nαr as a funtion of λ and tuning α for several system sizes
N until the urves ross at a single point, the ritial one.The results of the FSS analysis are shown in �gure 8.3 for di�erent valuesof µ (from top to bottom and from left to right µ = 0.05, 0.15, 0.50, 0.60).The insets show a blow-up around the ritial points λc(µ). Although thedi�erenes in the ritial points at di�erent values of µ are small, they areertainly distinguishable. In fat, the higher the value of µ, the higher theritial point. That is, when the lustering oe�ient and the average pathlength grow with respet to the BA network, the onset of synhronization isantiipated. Moreover, taking into aount that the inrease in 〈L〉 is likely toinhibit synhronization, one may hypothesize that the e�ets of the lusteringoe�ient prevail in this region of the parameter λ. To hek this hypothesis,we have also inluded in �gure 8.3 the analysis performed for µ = 0.50 and µ =

0.60. As pointed out before, for these values, the di�erenes an only arise from
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Figure 8.3: Finite size saling analysis for several values of µ. From top to bottomand from left to right the values of µ are: 0.05, 0.15, 0.50 and 0.60. In eah panel, it isrepresented the resaled order parameter against the ontrol parameter λ. The insetsare a zoom to the regions around the ritial points λc(µ). The data are averaged overat least 100 realizations for eah value of λ. The sizes of the networks, the ritialpoints λc(µ) at whih the onset of synhronization takes plae, as well as the values ofthe ritial exponents α are those indiated in the plots. See the main text for moredetails.the variations of the lustering oe�ient as the average path length remainsonstant in this region of the parameter µ. The ritial points, although verylose to eah other, are learly di�erent. Therefore, the main ontribution tothe onset of synhronization at low values of λ omes from the raising of thelustering oe�ient.Rounding o�, the results point to a nontrivial dependene between thelustering oe�ient and the average path length, and the synhronizationpatterns of phase osillators. Separately, the onset of synhronization seems tobe mainly determined by 〈c〉, promoting synhronization at low values of theoupling strength with respet to networks not showing high levels of stru-tural lustering. On the other hand, when the oupling is inreased beyond theritial point, the e�et of 〈L〉 dominates and the phase diagram is smoothedout (a sort of strething), delaying the appearane of the fully synhronized



8.3. Homogeneous versus heterogeneous topologies 267state. These results on�rm and omplement those antiipated in [328℄ andshow that general statements about synhronizability using the MSF are mis-leading. Whether or not a system is more or less synhronizable than othersshowing distint strutural properties is depends on the region of the phasediagram in whih the system operates.With this �rst study we have shown that synhronizability of omplexnetworks is dependent on the e�etive oupling λ among osillators, and onthe properties of the underlying network: For small values of λ, the inoherentsolution r = 0 �rst destabilizes as the lustering oe�ient is higher, while theoherent solution r = 1 is promoted when both the strutural lustering andthe average path length are small.8.3 Homogeneous versus heterogeneous topologiesThe results obtained in the above setion shed light about the in�uene ofthe interations topology on the route to synhronization. However, in thisstudy at least two parameters (lustering and average path length) vary alongthe studied family of networks. This paired evolution, although yielding a in-teresting interplay between the two topologial parameters, made di�ult todistinguish what e�ets were due to one or other fators. The family of net-works used in the present setion are omparable in their lustering, averagedistane and orrelations so that the only di�erene relies on the degree dis-tribution, ranging from a Poissonian type to a sale-free distribution. In thissense, the obtained results are as far reahing as the highly alaimed onesobtained for perolation and epidemi spreading on top of homogeneous orheterogeneous graphs, where the radial di�erenes are rooted in the topologyof the underlying networks.The main goal of this setion is to srutinize and ompare the synhroniza-tion patterns in Erdös-Rényi (ER) and sale-free (SF) networks. These kindsof synhronization patterns have been observed in the all-to-all KM model forbroadly heterogeneous (in natural frequenies) populations of osillators[330℄,however, those reported in this setion are shown to be intrinsially related tothe underlying topologial struture and hene of importane for the struture-funtion problem. For this purpose we make use of the model presented insetion 5.4 that allows a smooth interpolation between these two importanttopologies. Besides, we introdue a new parameter for haraterizing the syn-hronization paths in order to unravel their di�erenes. The results reveal thatthe synhronizability of these networks does depend on the oupling betweenunits, and hene, that general statements about their synhronizability areeventually misleading. Moreover, we show that even in the inoherent solu-



268 Chapter 8. Synhronization on Complex Networkstion, r = 0, the system is self-organizing towards synhronization. We willanalyze in detail how this self-organization is attained.The �rst studies about the onset of synhronization in SF networks [317℄revealed some important di�erenes from the behaviour observed from purelyrandom networks as ER graphs. The main di�erene relied on the great ten-deny of SF networks to synhronizability, whih is revealed by a non-zero butvery small ritial value λc. Besides, it was observed that at the synhronizedstate, r = 1, hubs are extremely robust to perturbations sine the reoverytime of a node as a funtion of its degree follows a power law with exponent
−1. These �ndings point out that the speial arhiteture of SF networks en-hanes the synhronizability both at its onset and at the oherent regime. Inthis sense, it is interesting to haraterize the roots of this di�erent behaviouromparing it to that observed for ER graphs.We �rst onentrate in global synhronization for the Kuramoto model(8.17). For this we follow the evolution of the order parameter r, eq. (8.5),as λ inreases, to apture the global oherene of the synhronization in net-works. We will perform this analysis on the family of networks generated withthe model introdued in setion 5.4. This model generates a one-parameterfamily of networks labeled by α ∈ [0, 1]. The parameter α measures the degreeof heterogeneity of the �nal networks so that α = 0 orrespond to the hetero-geneous BA network and α = 1 to homogeneous ER graphs. For intermediatevalues of α one obtains networks that has been grown ombining both prefer-ential attahment and homogeneous random linking so that eah mehanism ishosen with probabilities (1−α) and α respetively. It is worth stressing thatthe growth mehanism preserves the total number of links, Nl, and nodes, N ,for a proper omparison between di�erent values of α. We will onsider thevariant A of the model sine with this formulation the interpolation in termsof the degree distribution is seen to be smoother than in the seond variant ofthe model (see �gure 5.18).The urves r(λ) for several network topologies ranging from ER to SF areshown in �gure 8.4. We have performed extensive numerial simulations of eq.(8.17) for eah network substrate starting from λ = 0 and inreasing it up to
λ = 0.4 with δλ = 0.02. A large number (at least 500) of di�erent networkrealizations and initial onditions were onsidered for every value of λ in orderto obtain an aurate phase diagram of the synhronization onset. As in theprevious setion the natural frequenies ωi and the initial values of θi wererandomly drawn from a uniform distribution in the interval (−1/2, 1/2) and
(−π, π), respetively.Figure 8.4 reveals the di�erenes in the ritial behaviour as a funtion ofthe substrate heterogeneity. The global oherene of the synhronized state,
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Figure 8.4: Global synhronization urves r(λ) for di�erent network topologies labeledby α (α = 0 orresponds to the BA limit and α = 1 to ER graphs). The networksizes are N = 104 and 〈k〉 = 6 (Nl = 3 · 104).represented by r, shows that the onset of synhronization �rst ours for SFnetworks. As the network substrate beomes more homogeneous the ritialpoint λc shifts to larger values and the system seems to be less synhronizable.On the other hand, it is also lear that the route to omplete synhroniza-tion, r = 1, is faster for homogeneous networks. That is, when λ > λc(α) therate growth of r grows with α. In order to inspet in more details the ritialparameters of the system dynamis we proeed as in the previous setion byfollowing a �nite size saling proedure. This allows to determine with prei-sion the urve λc(α) and study the ritial behaviour near the synhronizationtransition. A detailed analysis performed for both SF and ER topologies showsthat the ritial value of the e�etive oupling, λc, orresponds in sale-freenetworks to λSF
c = 0.05(1), and in random networks to λER

c = 0.122(2), a-ordingly with �gure 8.4. In both ases, the transition strongly realls thelassial transition of the original KM [311℄ with a ritial exponent near 0.5(0.46(2) for the SF network [317℄).The di�erenes between ER and SF topologies observed when looking atglobal patterns of synhronization motivate a more detailed study of the syn-hronization onset for both topologies. The original work by Kuramoto pointedout that at the onset of synhronization small lusters of loked osillatorsemerge and that the reruitment of more osillators into these lusters as theoupling is inreased makes larger the global oherene r of the system. Obvi-ously the emergene of these lusters would depend on the underlying topology



270 Chapter 8. Synhronization on Complex Networkswhih drives the possible on�gurations that loked osillators would eventu-ally form. In order to inspet how this initial oherene is ahieved we proposea new order parameter, rlink. This parameter measures the loal onstrutionof the synhronization patterns and allows for the exploration of how globalsynhronization is ahieved. Then we de�ne
rlink =

1

2Nl
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1

∆t
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ei[θi(t)−θj(t)]dt

∣

∣

∣

∣

, (8.23)being Γi the set of neighbours of node i. The parameter rlink measures thefration of all possible links that are synhronized in the network. The aver-aging time ∆t should be taken large enough in order to obtain good measuresof the degree of oherene between eah pair of physially onneted nodes.Besides, rlink is omputed after the system relaxes at some large time tr.In �gure 8.5 we represent the evolution of both order parameters, r and
rlink, as a funtion of the oupling strength λ for both ER and SF networks.The behaviour of rlink shows a hange in synhronizability between ER andSF and provides additional information to that reported by r. Interestingly,the nonzero values of rlink for λ ≤ λc indiate the existene of some loalsynhronization patterns even in the regime of global inoherene (r ≈ 0).Right at the onset of synhronization for the SF network, its rlink value deviatesfrom that of the ER reovering the known result about the synhronizationof SF networks for lower values of the oupling. In this region, while thesynhronization patterns ontinue to grow for the ER network at the samerate, the formation of loally synhronized strutures ours at a faster ratein the SF network. Finally, when the inoherent solution in the ER networkdestabilizes, the growing in its synhronization pattern inreases drastiallyup to values of rlink omparable to those obtained in SF networks and evenhigher.The results in terms of rlink show again that statements about synhro-nizability are dependent on the oupling strength value. Additionally, theprevious disussion suggests that synhronization is attained following two dif-ferent paths that depend on the underlying topology. To shed new light on thisphenomenon, we have studied the harateristis of the synhronization pat-terns along the evolution of rlink. Following the usual piture synhronizationpatterns are formed by pairs of osillators, physially onneted, whose phasedi�erene in the stationary state tends to zero. In order to determine whihpairs of nodes are truly synhronized we have to determine the oherene oftheir dynamis. Note that eq.(8.23) is the average dynamial oherene be-tween every pair of linked nodes and then the synhronization degree of every
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Dij = Aij
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. (8.24)Then one has to analyze eah matrix term Dij in order to label a link (i, j)as synhronized or not. As introdued above, from the omputation of rlinkone determines the fration of physial links that are synhronized so that onewould expet that 2rlink · Nl elements of the matrix D are Dij = 1, whilethe remaining elements are Dij = 0. However, this is not the real situationsine the network dynamis is not well de�ned in terms of a fully synhro-nized luster and a set of ompletely inoherent osillators. On the other handthe worst senario would be found if there were 2Nl elements of matrix D sothat Dij = rlink, implying that all the physially onneted pairs are equallysynhronized and hene the parameter rlink ould not be interpreted as thefration of links that are dynamially oherent and no information about the
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D that orresponds to physial links are plotted ordered from the highest tothe lowest one. The two situations plotted orrespond to the onset of synhro-nization (λ = 0.05) and when high global oherene (λ = 0.13) is observed fora SF network. As an be observed for the onset of synhronization, a subsetof nearly 20% of links displaying oherent dynamis with high degree of syn-hronization, Dij > 0.8, is well separated from the behaviour of the remaininglinks as the dramati derease of Dij reveals for the remaining 80% of links.In this sense, it is lear that the dynamis of a 20% of the possible pairs anbe regarded as synhronized whih is in agreement with the obtained value
rlink = 0.25 for λ = 0.05 and hene supporting that although marosopioherene is not observed (r ≃ 0 at this point) the system is seen to walktowards it. For the urve orresponding to λ = 0.13 a plateau of nearly 75% oflinks is observed, thus revealing the high degree of global oherene, r ≃ 0.7,at this point. As a onlusion, the shape of both urves allows to interpret
rlink as the fration of synhronized links and thus to obtain information aboutsynhronized patterns from D.In order to determine exatly whih pairs of nodes are regarded as synhro-nized, matrix D is thus �ltered using a threshold T suh that the fration ofsynhronized pairs equals rlink. In this way T is a moving threshold so that if
Dij > T osillators i and j are onsidered synhronized. The value of T de-pends on the partiular realization and is determined by means of an iterativesheme starting from T = 1 and dereasing it with δT = 0.01 one omputes
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λ for whih r ≈ 0. Despite r being vanishing and hene no global synhronizationis yet attained, a signi�ant number of lusters show up. This indiates that for any
λ > 0 the system self-organizes towards marosopi synhronization. The networkparameters are as in �gure 8.5the amount of links that ful�lls the ondition. Dereasing progressively thevalue of T more pairs of osillators are hosen and the proess is stopped whenthe value of T is suh that the fration of hosen links is equal to the desiredvalue rlink previously omputed from D. When the synhronized links areidenti�ed the lusters of synhronized nodes are reonstruted. In �gure 8.6the hosen links aording to the orresponding values of rlink are those lyingin the thiker part of both urves.In �gure 8.7 we represent the number of synhronized lusters and the sizeof the largest one (GC) as a funtion of λ and rlink for ER and SF networks.The loal information extrated from it unveils an astonishing and novel featureof the synhronization proess that an not be derived from �gures 8.4 and8.5, and that in some sense is ounterintuitive. The emergene of lusters ofsynhronized pairs of osillators (links) in the networks shows that for values of
λ ≤ λSF

c , i.e., still in the inoherent solution r = 0, both kind of networks havedeveloped a largest luster of synhronized pairs of osillators involving 50%of the nodes of the network, and an equal number of smaller synhronizationlusters. From this point on, in the SF network the GC grows and the numberof smaller lusters goes down, whereas for the ER network the growth explodes.These results indiate that although SF networks present more oherene in



274 Chapter 8. Synhronization on Complex Networksterms of r and rlink, the mirosopi evolution of the synhronization patternsis faster in ER networks, being these networks far more loally synhronizablethan the heterogeneous ones.The observed di�erenes in the behaviour at a loal sale are rooted inthe growth of the GC. It turns out that for the ER networks, many di�erentlusters of synhronized pairs of osillators (note in �gure 8.7 the large numberof lusters formed when a 15% of the links are synhronized) merge togetherto form a GC when the e�etive oupling is inreased. The oalesene ofmany small lusters leads to a giant omponent of synhronized pairs that isalmost the size of the system one the inoherent state destabilizes. On theother hand, this is not anymore the ase for SF networks, where osillators areinorporated slowly to the GC pratially one-by-one (forming new pairs) interms of λ (or rlink), but starting from a ore made up of half the nodes of thenetwork. As a onlusion, while for ER network the ollapse at λc of the smalllusters of synhronized nodes that have been grown when r = 0 is the rootof the fast inrease of the global oherene, for SF the proess is desribed asa slow and progressive growth as the oupling is inreased of an initial ore ofsynhronized nodes.The above piture is on�rmed in �gure 8.8, where we have represented theevolution of loal synhronization patterns in ER and SF networks for severalvalues of λ. It is lear that when r ≃ 0 the two networks follow di�erent

Figure 8.8: Synhronized lusters for several values of λ for the two di�erent topologiesstudied (ER and SF). These networks are made up of 100 nodes, in order to have asizeable piture of the system. The evolution of loal synhronization patterns isalways agglomerative, however, it follows two di�erent routes. In the ER ase, thegrowth of the GC proeeds by aggregation of small lusters of synhronized nodes,while for the SF network the entral ore groups the smaller lusters around it.
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Figure 8.9: (Left) Evolution of the ontrol parameters r and rlink as a funtion ofthe oupling strength for networks generated with the model introdued in setion ()orresponding to α = 0.0, 0.25, 0.5, 0.75 and 1.0. (Right) Evolution of the number ofsynhronized lusters Nc and the synhronized giant omponent size GC as a funtionof rlink for the same topologies. The network parameters are the same as in �gure8.5.paths toward synhronization as an be observed for λ = 0.05 where for theER network three lusters of synhronized nodes of similar size appear whilefor the SF network a unique large luster is present. The oalesene of thesynhronized patterns for the ER is lear at λ = 0.07 2 and orresponds tothe emergene of the global oherene of the system. On the other hand, forthe SF network the unique luster su�ers a smooth growth by adding newsynhronized nodes to the giant luster.This study about the patterns of self-organization towards synhroniza-tion reveals that the quantitative di�erene about the marosopi behaviour,shown by the omputation of the evolution of the global oherene r for ERand SF networks, has its roots on a qualitatively di�erent route at the miro-sopi level of desription. The use of the new parameter rlink whih involvesthe omputation of the degree of oherene between eah pair of linked nodesis a useful tool for desribing suh di�erenes.We have repeated analogous omputations using those networks that inter-polate between ER and SF topologies. As expeted the behaviour of relevant2Note that the size of the network is relatively small (N = 100) and thus the ritial pointis shifted to lower values (λER
c ≃ 0.07 in this ase) than that found using a FSS analysis.



276 Chapter 8. Synhronization on Complex Networksmagnitudes suh as rlink, the number of synhronized lusters and the sizeof the giant synhronized luster lies between the two limiting ases studiedabove. In �gure 8.9 we have plotted the evolution of these magnitudes for theseinterpolating network topologies labeled with α. The results suggest that thedegree of heterogeneity of the network is the key ingredient to explain the twodi�erent routes observed.The tehnique developed for extrating the synhronization patterns allowsthe analysis of the topologial features of suh lusters of nodes. Consideringas we did in last hapter 7 the emergent lusters of synhronized nodes andlinks, we an ompute the average measures of relevant quantities suh asthe lustering oe�ient or the degree distribution, and see how these mag-nitudes evolve from the unoupled limit, where no synhronization ours, tothe oherent regime where the synhronized network oinides with the un-derlying substrate. It is then relevant to explore the regions where the onsetof synhronization takes plae and haraterize topologially these emergentsynhronized lusters.In �gure 8.10 the evolution of the lustering oe�ient, 〈c〉, of the giantsynhronized luster is plotted as a funtion of λ for the topologies orrespond-ing to SF to ER networks. The results are illustrative, for these topologies thelustering dereases as the oupling is inreased or, in other words, as the gi-ant omponent grows by the addition of new synhronized nodes. However,
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8.3. Homogeneous versus heterogeneous topologies 277the e�ets of the two di�erent routes to omplete synhronization observed forER and SF are well appreiated from the results. For SF networks there is asmooth derease of the lustering oe�ient and the e�ets of the emergeneof global oherene for λ > λSF
c = 0.05(1) are not dramati in what refers tothe behaviour of 〈c〉. That is, it takes too long in terms of λ to arrive to valuesof the lustering similar to those of the substrate network. On the other hand,for ER graphs the slow deay rate observed for λ < λER

c = 0.122(2) when nomarosopi oherene is observed is interrupted by a sudden jump near theirritial value. In fat, for λ > λc the lustering of the synhronized luster issimilar to that found for the substrate network. This e�et beomes lear ifone has in mind the oalesene of small lusters, whih happens around theritial point for ER graphs. In fat, taking into aount the giant synhro-nized omponent on ER for λ < λER
c , implies to onsider one of the severaldisjoint synhronized lusters of similar size that are in this region. Then, whenthese lusters ollapse into a muh larger one the topologial features hangedramatially as observed from the evolution of the lustering oe�ient. Thisis not anymore the ase in SF where the topologial harateristis of the gi-ant omponent hange smoothly as new nodes are dynamially attahed to theomponent. The remaining urves orresponding to the interpolating networksonnet these two di�erent behaviours.All the results reported above point out that the ultimate reason behind thetwo di�erent routes to omplete synhronization is the heterogeneous haraterof the SF network and the role played by the hubs. The natural ohesion thathubs provide to SF network prevents the existene of independent marosopilusters of synhrony as ours for ER networks. It is then interesting to studyhow these hubs partiipate in the formation of the �nal synhronized state. Forthis, we �rst study the evolution with λ of the omposition of the synhronizedluster in terms of the degree of its omponents. In �gure 8.11, we have plottedthe probability that a node with degree k belongs to the giant synhronizedluster as a funtion of its degree k and the oupling λ for the SF network.This probability turns out to be an inreasing funtion of k for every value ofthe oupling λ. Hene one an state that the more onneted a node is, themore likely it takes part in the luster of synhronized links. In partiular,the results on�rm the hypothesis made above that the hubs partiipate fromthe very beginning on the formation of the synhronized luster. Reently[331℄, Zhou and Kurths have reported the study of hierarhial organizationin omplex networks, using the MSF and a mean-�eld approah in the weakoupling limit. Our results thus substantiate and generalize those about therole of hubs in the synhronization proess presented in [331℄.The above haraterization of the synhronized luster in terms of the de-gree of its omponent should be ompleted studying their e�etive degree, kint.
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Figure 8.11: The plot shows the orrelation between the likelihood that a node belongsto the GC of pairs of synhronized osillators and its degree k as a funtion of theoupling strength λ. This probability, PGC(k), is olor-oded as indiated in the rightpanel. The �gure onviningly demonstrates that highly onneted nodes are thosethat reruit poorly onneted nodes as the GC grows. The network is SF and itsparameters are those used in �gure 8.5.
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Figure 8.12: The plot shows the fration of links that a node with degree k belongingto the synhronized luster shares with other nodes of the same synhronized luster.This fration kint/k is plotted as a funtion of k and λ. The �gure shows how thehubs progressively inorporate their neighbours to the synhronized omponent as λgrows. The network is SF with parameters as those used in �gure 8.5.



8.4. Synhronization in strutured networks 279The e�etive degree of a synhronized node is the number of links it shareswith other nodes belonging to the same synhronized luster. Obviously, atthe omplete synhronized regime a node with degree k will have kint = k.We have plotted in �gure 8.12 the quantity kint/k (the fration of links thata node has with synhronized neighbours) as a funtion of λ and the degree
k of the nodes. The results reveal that although hubs are the �rst to takepart of the synhronized luster, their neighbours are progressively inorpo-rated to the luster as λ grows. Besides, if a node with small k is synhronizedthe probability that its neighbours are also synhronized grows very fast with
λ whih is an e�et of the network topology (this nodes in the BA networkare physially onneted to hubs with high probability). These results furthersupport the statement about the essential role played by hubs in the path tosynhronization in SF networks.The results of this setion learly show that synhronizability of omplexnetworks is dependent on the e�etive oupling λ among osillators. For smallvalues of λ, SF networks outperform ER topologies, but the tendeny is re-verted for intermediate to large values of the oupling. On the other hand, thedetailed analysis of evolution of patterns of synhronization showed that thereare two radially di�erent mehanisms to attain synhronization. In the pres-ene of hubs, a giant omponent of synhronized pairs of osillators forms andgrows by reruiting nodes linked to them. On the ontrary, in homogeneousstrutures, many small lusters �rst appear and then group together through asharp merging proess. These results are in the same diretion of those foundfor perolation and epidemi spreading (see setion 6.1.2) on top of homoge-neous or heterogeneous graphs, where the radial di�erenes of the system'sdynamis are found depending on the heterogeneity of the underlying networks,demonstrating that the same behavior may hold for nonlinear dynamial sys-tems oupled to omplex strutures. More importantly, the fat that the routeto omplete synhronization is radially di�erent in homogeneous and hetero-geneous networks, raises the question of its motivation in nature and shedlight on the struture-funtion interplay. Besides, the results open new pathsto larify how synhronization is attained in omplex topologies and give newtools to analyze this ubiquitous phenomenon.8.4 Synhronization in strutured networksIn the light of the results of the above setion we have extended the studybeyond unstrutured networks to strutured or modular networks. This is alimiting situation in whih the loal struture may greatly a�et dynamis,irrespetive of whether or not we deal with homogeneous or heterogeneous



280 Chapter 8. Synhronization on Complex Networksnetworks and then they onstitute a perfet framework for testing the neworder parameter rlink introdued in the last setion.Many omplex networks in nature are modular, i.e. omposed of ertainsubgraphs with di�erentiated internal and external onnetivity that form om-munities (see setion 5.1.4). The use of modular networks where a properomparison in synhronizability an be performed (same number of nodes andlinks) restrits us to the onsideration of syntheti strutured networks. Thenwe make use of a ommon benhmark of random network with ommunitystruture, �rst proposed by Newman[332℄ onsidering one hierarhial leveland later extended to two hierarhial levels[329℄.The modular network struture we build is as follows: in a set of N nodes,we presribe n ompartments that will represent our �rst ommunity organiza-tional level, and m ompartments, eah one embedding four di�erent ompart-ments of the �rst level, that de�ne the seond organizational level of the net-work. The internal degree of nodes at the �rst level zin1 and the internal degreeof nodes at the seond level zin2 keep an average degree zin1 + zin2 + zout = 〈k〉so that these networks are stritly homogeneous in the sense of the degreedistribution , P (k) = δ(k − 〈k〉). Networks with two hierarhial levels arelabeled as zin1 - zin2 , e.g. a network with i-j means i links with the nodesof its �rst hierarhial ommunity level (more internal), j links with the restof ommunities that form the seond hierarhial level (more external) and
(〈k〉 − i− j) links with any ommunity of the rest of the network.Synhronization proesses on top of modular networks of this type has beenreently studied as a mehanism for ommunity detetion [329℄. Starting froma set of homogeneous (in terms of the natural frequenies) Kuramoto osilla-tors with di�erent initial onditions the system evolves after a transient of timeto the synhronized state. It has been shown that the ommunity struture isprogressively unveiled at the same time the system's dynamis evolve towardthe oherent state and the synhronization is attained. In partiular, the nodesbelonging to the �rst ommunity level are the �rst to get synhronized, subse-quently the seond level nodes ahieve the frequeny entrainment and �nallythe whole system shows global synhronization.Here we adopt a di�erent perspetive sine we will onsider as previouslya set of non-idential Kuramoto osillators with random assignment of naturalfrequenies and hene the �nal degree of system's synhronization will dependon the strength of the oupling. It is then interesting to study how the de-gree of synhronization evolves as a funtion of λ and whether the oherenebetween nodes is progressively distributed following the hierarhy imposed bythe underlying topology. For this, we make use of the order parameters r, eq.(8.5), and rlink, eq (8.23), to haraterize the synhronization transition on two
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Figure 8.13: Global and loal synhronization in modular networks. Evolution of (a),
r and (b), rlink as a funtion of λ for strutured modular networks. The networksare synthetially built with an a priori ommunity struture. The network size is256 nodes and the number of links is 4608. We presribe 16 ompartments that willrepresent our �rst ommunity organizational level, and four ompartments eah oneembedding four di�erent ompartments of the above �rst level, that de�ne the seondorganizational level of the network. Eah node has 18 links distributed between its�rst ommunity level, the seond, and the whole network at random. The network 13-4 has 13 internal onnetions in its �rst hierarhial level, 4 external onnetions in itsseond hierarhial level, and 1 onnetion with any other ommunity in the network.The generation of the 15-2 struture is equivalent. The urves show that although13-4 has always a better global synhronization, 15-2 has better loal synhronizationas shown by rlink.slightly di�erent modular networks with two well de�ned hierarhial levels,
13− 4 and 15− 2, being this di�erene the ohesion of the internal ommunityore, 13 links out of 15 possible neighbors or 15 links (i.e., all-to-all) at the mostinternal level. Both networks have N = 256 and 〈k〉 = 18. Figure 8.13 showthe results for both kinds of networks revealing that the path towards syn-hronization as a funtion of the interation is again a�eted by the struture.They also show that the information provided by rlink is essential to unveil thesynhronization proess. While the global synhronization parameter r is re-�eting that the 13−4 struture globally synhronizes always better, rlink tellsus again about the loal synhronization. It shows that loal synhronization
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Figure 8.14: Synhronization patterns in a 15 − 2 modular network. We representthe degree of synhronization between pairs of onneted nodes for several valuesof the oupling λ in a 15 − 2 modular network (with two organizational levels) of
N = 256 nodes. The olor ode denotes the value of the averaged (over di�erentinitial onditions) �ltered matrix 〈Dij〉 ∈ [0, 1]. The values of the oupling are (fromleft to right and top to bottom) λ = 0.0110, 0.0210, 0.0275, 0.0305, 0.0360, 0.0440 and
0.210 (orresponding to full synhronization). The pitures show that the order ofsynhronization is given by the organizational levels. The �rst ommunity level is the�rst one to get synhronized, subsequently, seond level nodes attain synhronizationfor a larger value of λ and �nally the full synhronized state is reahed when outerlinks have 〈Dij〉 = 1.



8.4. Synhronization in strutured networks 283is indeed favored in the 15 − 2 struture sine rlink is larger for this topologyfor small values of λ where the system is loally forming synhronized lusters.This result, not aptured by the marosopi indiator r, is expeted sine theinternal ohesion of ommunities at the �rst hierarhial level is larger for the15-2 than for the 13-4. The evolution of rlink shows that when the oupling λis inreased the number of links synhronized in the 13 − 4 network beomeslarger than in the 15 − 2 struture revealing that omplete synhronization isthen favoured by the presene of more external links onneting the �rst levelommunities.The inspetion of the synhronization path in modular networks an beeasily visualized by the representation of the �ltered matrix D. It implies toreassign the values of matrix D so that Dij = 1 if Dij > T Dij = 0 otherwise.Plotting this �ltered matrix for di�erent values of the oupling λ one aneasily determine whih links are the �rst to synhronize sine the form of theadjaeny matrix A (that inludes all the physial links between nodes) isalso easy to interpret beause of its nested struture. Figure 8.14 shows howthe ommunity struture determines the internal organization of the system inthe route towards full synhronization for the 15 − 2 network. For this studywe have omputed the value of the �ltered matrix D for a number of initialonditions and then took its average value so that 〈Dij〉 ∈ [0, 1] aounts for thesynhronization strength of the network link (i, j). The results point out thatlink synhronization depends on the organizational level they belong to. Thoseonneting nodes belonging to the same �rst level ommunity are the fastest(in terms of the oupling strength λ) to reah full synhronization. For largervalues of λ full synhronization is attained progressively for the subsequentorganizational levels. Then, one an onlude that the inner the link is thefaster it gets synhronized in agreement with previous studies reported above[329℄.As a onlusion, the framework of strutured networks has provided a usefulbenhmark for testing the validity of the new parameter rlink and the infor-mation obtained from the omputation of matrix D. The results obtained bymeans of these quantities allow to onlude that for modular networks syn-hronization is �rst loally attained at the most internal level of organizationand, as the oupling is inreased, it progressively evolve toward outer shells ofthe network. Besides, we have obtained evidenes that a high ohesion at the�rst level ommunities produe a high degree of loal synhronization althoughit delays the global oherent state.



284 Chapter 8. Synhronization on Complex Networks8.5 ConlusionsIn this hapter we have explored several issues about synhronization in om-plex networks of Kuramoto phase osillators. Our main onern has been thestudy of the synhronization patterns that emerge as the oupling betweennon-idential osillators inreases. As in the previous hapter, nonlinear dy-namis on top of omplex networks lead to the formation of ativity patterns.These dynamial patterns (synhronized lusters here) are the byprodut ofthe dynamial and strutural omplexity of the problem.First, in setion 8.2 we have foused on sale-free networks. In this setionwe have explored the marosopi behaviour of synhronization when bothlustering and average path length are ontinuously varied making use of thenetwork model de�ned in setion 5.3. The results show that the onset of syn-hronization is favoured as the lustering oe�ient grows but, on the otherhand, as the average path length inreases the path toward full synhroniza-tion beomes larger. Setion 8.3 aounts for the main onern of this thirdpart of the Thesis, the analysis of the emergene of dynamial patterns. Forthis purpose we ompute the degree of synhronization between eah pair ofonneted osillators. This tehnique allows to reonstrut the synhroniza-tion lusters from the dynamial data. We have studied how the underlyingtopology (ranging from homogeneous to heterogeneous strutures) a�ets theevolution of synhronization with the help of the network model introduedin setion 5.4. The results reveal that the route towards full synhronizationdepends strongly on whether one deals with homogeneous or heterogenoustopologies. In partiular, it has been shown that the synhronization lusterin heterogeneous networks grows from a unique ore formed by those highlyonneted nodes (hubs) whereas for homogeneous networks several synhro-nization lusters of similar size an oexist. In the latter ase, a oaleseneof these lusters is observed in the synhronization path whih is marosopi-ally manifested by the sudden growth of global oherene typially observedfor Erdös-Rényi networks. The main result of this setion is that systems areseen to organize towards synhronization even when no marosopi signal ofglobal oherene is observed. The di�erene between these two observed orga-nizational behaviours in�uenes the eventual onset of synhronization. Finally,in setion 8.4, we have applied the new tehnique for unveiling the loal syn-hronization patterns to the analysis of the emergene of synhronization instrutured networks. In this ase, the tehnique allows to observe how syn-hronization is progressively attained from the most internal ommunities untiloherene of the whole network shows up.



Chapter 9ConlusionsWe want to onlude with a brief summary of the most relevant resultsobtained along the three parts of this Thesis. We want to stress here theirrelevane as well as some prospetive researh that arises in the light of theseresults.In the �rst part we have studied the issue of intrinsi loalization (dis-rete breathers) in nonlinear Shrödinger anharmoni latties (desribed bythe Salerno model). The major ahievement of these studies is the omputa-tion of exat mobile loalized modes. For these omputations, it was importantto develop a generalized ontinuation method, that an be thought of, as thenatural extension of those employed for omputing standard (pinned) disretebreathers. The generalized ontinuation method allows to obtain, in a highlysystemati way, families of mobile, osillating and vortial disrete breathers(as well as pinned ones).The problem on the existene of mobile disrete breathers has been exten-sively disussed after the theory for pinned loalized modes was suessfullydeveloped. The use of olletive variable methods and numerial simulationsof perturbed pinned solutions laks the preision required to obtain generalarguments about the possibility of having mobile loalized states in nonlinearlatties. However, the omputation of mobile disrete breathers in this Thesisis neither unbiased (i.e. based on a priori ansatzes) neither su�ers from lownumerial auray. On the ontrary, our ontinuation proedure omputesmobile disrete breather solutions as exat �xed points solutions of a map and,therefore, the unique requirement is that the Jaobian of the map is invertibleso that the iterative method onverges to the desired solution.Conerning mobile breathers, our results point out that, exept for inte-grable and other exeptional (e.g. vanishing Peierls-Nabarro barrier) situa-



286 Chapter 9. Conlusionstions, mobile loalized states in nonlinear Shrödinger latties are desribedby a loalized part (the ore) and an asymptotially extended bakgroundomposed of plane waves. We have obtained numerial evidenes of the im-portane of this extended bakground in the ore mobility. In partiular, wehave shown how the Peierls-Nabarro barriers that a mobile breather experi-enes periodially in its motion aross the lattie are surpassed with the helpof the energy balane ore-bakground. In this sense, we have observed thatthe higher is the Peierls-Nabarro barrier, the higher is the energy �ux betweenore and bakground and the higher is the amplitude of the extended bak-ground. These observations reveal the essential role of the bakground in oremobility pointing out that olletive variables approahes are inomplete whenonsidering only those degrees of freedom relative to the ore.The study of the whole Salerno lattie, both in its one- and two-dimensionalversions, has provided a detailed aount of the existene and properties ofdisrete breather solutions and, at the same time, it has proved the versatilityof the ontinuation method.Several questions remain open after these studies. In partiular, it wouldbe desirable to perform a deep analysis on the mobility of two-dimensionaldisrete breathers and more exoti solutions like trains of disrete breathers orvortial states. It would be also interesting to apply the ontinuation methodsto other important nonlinear latties suh as Klein-Gordon or Peyrard-Bishop-Dauxois models. Finally, it is also interesting to develop a olletive variabletheory aounting for the relevant ingredients of the mobile solutions found.In the seond part we have studied the struture of omplex networks andthe performane of propagation dynamis on top of them. Several results havebeen obtained for eah of these two issues.We have �rst presented two models of network onstrution that providetwo network families where only a few topologial harateristi vary signi�-antly among the members of these families. The purpose of these models is toprovide a useful tool for analyzing the role that these hanging strutural prop-erties have on the performane of di�erent network dynamis. In fat, thesemodels have been used for this purpose along the Thesis. Whereas one modelpreserves the sale-free harater of the degree distribution while the lusteringoe�ient and average harateristi path length are varied, the seond one al-lows the degree distribution to interpolate between the sale-free and Poissondistributions while other magnitudes remain omparable. This latter modelwould be very useful to shed new light on the roots of the di�erent phenomenafound when dealing with homogeneous and heterogeneous topologies.The studies on the propagation dynamis on networks have been fousedon two important dynamis, namely, the SIR model for epidemi spreading



287and the analysis of oarse-grained information routing models. The main ob-jetive of these two studies is to analyze the e�ieny of di�erent routing andimmunization algorithms depending on the substrate topology.For the studies performed on epidemi spreading the main results onernthe development of a new immunization method based on the d-overing prob-lem. We have implemented an heuristi method for �nding the nearly smallestsubset of network's elements that should be overed so that every node in thenetwork has at least one overed node at a distane less than or equal to d.The results show that, depending on the degree-degree orrelations of the net-work, the obtained solution is very di�erent. Besides we have shown that theobtained solution of the d-overing problem, when thought of as immune nodesto a SIR epidemis, yields a very e�ient algorithm ompared to those alreadyexisting in the literature. The e�ieny of the d-overing subset of immunenodes also depends strongly on the orrelations of the network when a SIR-likeepidemis is studied.The study of information routing dynamis also yields interesting results.In partiular, the main result onerns the study of a ongestion-aware strategyfor the routing of information pakets aross the network. The use of shortest-path strategies in sale-free networks lead to a fast ongestion of highly on-neted nodes and hene to the development of jamming for low levels of injetedinformation. We have obtained a more robust routing poliy making use of ane�etive distane that takes into aount the ongestion level of the networkat the loal sale. However, the shift of the onset of jamming is ahieved at theexpenses of a sudden growth of the ongestion levels at the jammed phase. Wehave explained the mirosopi origins of this �rst order like phase transitionas a onsequene of the e�etive fragmentation of the network. This fragmen-tation is due to the formation of dynami walls omposed of those nodes thatdo not allow to reeive data pakets from their neighbors, due to their highlevel of loal ongestion.We have seen in this seond part several examples on the relation of topo-logial harateristis like the lustering oe�ient, the average path length andthe degree-degree orrelations on the development of two simple model dynam-is of importane for sale-free networks. Besides, the modeled algorithms forimmunization and data routing have been designed for a nearly optimal de-ployment when applied on top of highly heterogeneous networks. The natureof the simple dynamis studied here and their appliation to human-made realsystems allows our models to be reliable in these kind of networks. This is notanymore the ase of real biologial networks where both topology and (nonlin-ear) dynamis are imposed to the system. This extreme has been analyzed inthe third part of the Thesis.



288 Chapter 9. ConlusionsThe third part of this thesis is devoted to the study of nonlinear dynamison top of omplex networks. It is thought of as the on�uene of the abovetwo parts beause it applies the tools obtained from the studies on nonlin-ear loalization in homogeneous latties and the analysis of omplex networksstruture. Along with the results obtained in this part, the mixed use of thesetools onstitutes a, somewhat, novel feature sine the study of nonlinear om-plex networks is still in its infany.We have studied two di�erent nonlinear systems: a Mihaelis-Menten reg-ulatory dynamis (where ativatory and inhibitory terms ompete) and theparadigmati Kuramoto model of oupled phase osillators. In these two prob-lems, related to diverse natural systems, the main purpose is to unveil therelation between the networked struture of the systems and the funtion theyful�ll. The searh for this �Struture-Funtion� onnetion is based on theassumption that the evolution of the real networks is the result of a kind of op-timization for the performane of their funtion. Then, a �rst step is to analyzeoarse-grained syntheti systems modeled by relevant nonlinear dynamis.The study of ativatory-inhibitory regulation, modeled by means of a gen-eral Mihaelis-Menten dynamis between the network nodes, allows to ap-proah the problem of gene-gene regulation. In this sense, some importantresults are related to the experimental observations of this kind of systems.The �rst important result onerns the fragmentation of the network into in-dependent dynamial lusters while the rest of the network remains at therest (zero ativity) state. The dynamis of these dynamial islands show avery rih dynamial behavior: steady, periodi and haoti states. When theseemergent dynamial lusters of self-sustained non-zero ativity are onsideredas networks de�ned by its nodes and the links among them, new topologialfeatures, di�erent from those of the underlying network, are obtained. In thisregard, the most important �nding is a lustering oe�ient for the dynami-al islands muh higher than that of the substrate network (a Barabási-Albertsale-free network). A seond important result is obtained when looking atthe observed bifurations. Periodi lusters display either period doubling ortripling bifurations on their route to haos. Analyzing the shape of the Flo-quet eigenvetors assoiated to these bifurations it is possible to determinewhih nodes are responsible for the transition from the old (period 1) attratorto the new (period 2 or 3) one. This method allows us to observe that, dif-ferently from other proesses on networks, nodes' substrutures and not singlenodes are responsible for the evolution of the dynamial lusters.The seond objetive of this third part is the study of the synhronizationpaths in networks of Kuramoto phase osillators. This study is performed on avariety of networked substrates, namely, the two networks families introdued



289in the �rst part of the Thesis and strutured networks. For this purpose, wehave introdued a new order parameter that allows to unveil the loal patternsof the synhronized lusters that emerge as the oupling strength is inreased.In this sense, the main result is obtained when omparing the synhronizationpaths in homogeneous and heterogeneous networks. The results point out thatthe emergene of the giant synhronized luster for Erdös-Rényi networks is theresult of the oalesene of multiple small synhronized lusters. This simul-taneous lusters' ollapse is thus produed in a narrow region for the ouplingparameter so that the degree of global synhronization is rapidly inreasedfrom zero near the synhronization onset. On the other hand, for sale-freenetworks the proess is desribed by a gradual growth of the giant synhroniza-tion luster. This synhronization luster, organized around the entral hubsof the networks, grows by inorporating more and more synhronized nodesas the oupling is inreased. As a result, the onset of global synhroniza-tion ours earlier (in terms of the oupling strength) than in the Erdös-Rényiase. However, the global oherene in sale-free networks grows, far from thesynhronization onset, at a muh slower rate than in the ase of Erdös-Rényigraphs due to the (one-by-one) additive growth for the synhronized luster.These two works onstitute interesting examples on the interplay betweenFuntion and Struture. In the �rst study it is lear that nonlinear dynamisshows up an emergent struture with new topologial harateristis. For theseond work it is shown that, depending on the underlying struture, radiallydi�erent patterns of synhronization are obtained. Therefore, the importaneof takling the ombined study of both strutural omplexity and nonlineardynamis is lear, sine a separate analysis would be inomplete. The mutualin�uene observed thus prevent from going from one to the other or vie versa.The ontinuation of the presented work would be arried following di�erentdiretions. Perhaps, the most ambitious diretion is to make one step furtherinto the analysis of real networks. For example, the availability of gene expres-sion data (although one must be areful and seletive with the large amount ofexperimental data sets) motivates the study of real gene regulatory networks inorder to apply the tools and results found in this part. At the same time, otherkind of relevant nonlinear dynamis, like models of neural ativity (Hop�eld,integrate and �re, et...), ould be also studied by means of similar tehniquesin order to obtain more examples on the interplay of struture and dynamis.The results presented in this Thesis are intended to analyze and understandseveral phenomena displayed when two essential ingredients of omplexity arepresent (both separated and ombined). It would take still a long time beforethe understanding of simple dynamis and models allows to go one step fartherand attak the uni�ation of these two ingredients in order to have a frameworkwithin whih one an solve the �Struture-Funtion� problem. In this sense, the



290 Chapter 9. Conlusionspresent work provides some examples and tools about how the problem ouldbe �rst takled. As all researh work that does not su�e to fully unravel thefeatures of a given problem, our work also motivates further studies on thisinteresting question that we intend to pursue in the years to ome.



AppendiesWe want to add two appendies about the omputation and stability har-aterization of periodi orbits sine these solutions have extensively appearedthroughout this Thesis. Although for partiular types of periodi solutions anddynamial systems, the results reported here an be further extended we havetried to brie�y summarize the essential features about these two issues.A Computation of Periodi OrbitsThe omputation of periodi solutions to a set of N oupled nonlinear dif-ferential equations
∂~x

∂z
= ~F~ξ

[~x] , (A.1)where ~x are the variables of the system and ~ξ denote the parameters of thepartiular equations, an be formulated as a problem of �nding the solution ofa system of N nonlinear equations, with N variables xi (i = 1,...,N) and a setof m parameters ξi (i = 1,...,m), of the form
~G(~x; ~ξ) = 0 . (A.2)As we introdued in setion 2.2, let us onsider a periodi solution ~x~ξ

as a �xedpoint solution of a N -dimensional mapM
M~y n = ~y n+1 , (A.3)where the map M an be onstruted using the z-evolution operator (z isusually time or spae) given by equations (A.1) over a (time or spae) period

T when we are looking for z-periodi solutions
M = T~ξ,T

, (A.4)or a ombination of an index (lattie) displaement and a z-evolution operatorswhen looking for ombined periodiities as in (p, q)-resonant states for time and



292 Chapter . Appendieslattie displaement, eq. (2.24),
M = LpT q

~ξ,T
. (A.5)Given the partiular de�nition of the map M, the desired periodi solutionwill satisfy eq. (A.2) in the form

~G(~x; ~ξ) =M ~x~ξ
− ~x~ξ

= 0 . (A.6)One is typially interested in a partiular solution orresponding to a speialhoie of the parameters ~ξ but, on the other hand, the only available solutionorresponds to a simpli�ed version of the system orresponding to ~ξ 0. In theseases the solution an be found by means of a homotopy proedure [296℄: givena known solution, ~x~ξ 0 , to some speial hoie of parameters, ~ξ 0, the solution,
~x~ξ, is omputed via the omputation of intermediate solutions to a hain ofequations with parameters, ~ξ 0 → ~ξ 1 → ... → ~ξ n−1 → ~ξ n = ~ξ. Thelatter path in parameter spae is onveniently used so that every intermediatesolution an be found. There are several methods used for solving eah step inthe hain of equations and nearly all of them make use of the solution found forthe latter system as the ansatz for the analytial or numerial methods usedat eah step.The homotopy strategy is based on the impliit funtion theorem thatassures the existene of an unique solution ~x~ξ n , so that ~G(~x~ξn ; ~ξn) = 0, whenthere exist a solution ~x~ξ n−1 ( ~G(~x~ξn−1 ; ~ξ

n−1) = 0) and ~ξ n belongs to an openset entered at ~ξ n−1. The onditions that must be ful�lled are:(i) ~G(~x; ~ξ) is ontinuous on an open set entered at (~x~ξ n−1 , ~ξ
n−1).(ii) The Jaobian determinant of ~G(~x; ~ξ) evaluated at (~x n−1

~ξ
, ~ξ n−1) is non-null,Det{[D~xG(~x~ξ n−1 ; ~ξ

n−1)
]

ij

}

= Det [∂Gi(~x; ~ξ)

∂xj

∣

∣

∣

∣

(~x~ξ n−1 ,~ξ n−1)

]

6= 0 .(A.7)In order to satisfy the loal onvergene onditions of the theorem, the homo-topi omputation must be arried by dividing the path toward the desiredsolution into as muh intermediate steps as neessary. In this way, the solutionfor ~x~ξ n would not di�er very muh to that for ~x~ξ n−1 so that expressing thenew solution as ~x~ξ n = ~x~ξ n−1 + ~∆ one would write
~G(~x~ξ n−1 + ~∆; ~ξ n) = 0 = ~G(~x~ξ n−1 ; ~ξ

n) + D~xG(~x~ξ n−1 ; ~ξ
n)~∆ + . . . , (A.8)
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Figure A.1: Shemati representation of the iterative proess of homotopi ontinua-tion.negleting those higher order terms in ~∆. From the above expression onean obtain the di�erene ~∆ between the old and the desired solution by justomputing the inverse of the Jaobian matrix D~xG

~∆ = −[D~xG(~x~ξ n−1 ; ~ξ
n)] −1 · ~G(~x~ξ n−1 ; ~ξ

n) . (A.9)Due to the error at the trunation in Taylor expansion (A.8), one must iteratethis proedure until the desired onvergene (bounded by mahine preision)is reahed, ∣∣
∣

~G(~x~ξ n ; ~ξ n)
∣

∣

∣
< ǫ. For this purpose, one uses as the new trialsolution the one obtained by the last omputation of ~∆. Calling ~y i

ξ n thetrial funtion used at the ith stage of the iterative omputation of solution
~xξ n and ~∆ i the obtained solution of eq. (A.9) at this stage, a shematipiture of the whole proess for omputing ~x~ξ n from the initial ansatz ~x~ξ n−1(the solution of the before equation in the homotopy hain) is re�eted in�gure A.1. The onveniene of using the above iterative proess relies on itsquadrati onvergene but, on the other hand, one must posses a good ansatzfor the initial trial funtion (sine no global onvergene is assured) and henea homotopi ontinuation to the desired solution is required.For the partiular situation when one is interested in the omputation ofpurely z-periodi solutions (suh as disrete breathers for the ase of timeperiodi solutions), the equation to solve would be written as

G
(

~x~ξ(z0); ~ξ
)

= T~ξ,T

(

~x~ξ(z0)
)

− ~x~ξ(z0) = 0 , (A.10)



294 Chapter . Appendieswhere z0 stands for the z-origin of integration. Therefore, eq. A.9 will takethe form
~∆ = −

{[

D~xT~ξ n,T

(

~x~ξ n−1(z0)
)]

− I
} −1

·G
(

~x~ξ n−1(z0); ~ξ
n
)

, (A.11)where the matrix D~xT~ξ,h
(~x(z0)) is omputed integrating from z0 to z0 + hthe equations that are obtained by deriving eq. (A.1) respet to the initialonditions, ~x(z0),

[

∂D~xT~ξ,z
(~x(z0))

∂z

]

ij

=
∂2xi(z)

∂z∂xj(z0)
=

N
∑

k=1

∂
[

F~ξ
(~x(z))

]

i

∂xk(z)

∂xk(z)

∂xj(z0)
=

=

N
∑

k=1

Aik
∂xk

∂xj(z0)
=
[

A ·D~xT~ξ,z
(~x(z0))

]

ij
, (A.12)with the initial ondition D~xT~ξ,z0

(~x(z0)) = I, i.e. integrating the linearizedequations around the solution, ~x~ξ
(z).The matrix D~xT~ξ,h

(

~x~ξ
(z0)

) provides a map between an initial perturbationof the solution, ~δx~ξ
(z0), and its evolution up to z0 + h,

~δx~ξ
(z0 + h) =

[

D~xT~ξ,h

(

~x~ξ
(z0)

)]

· ~δx~ξ
(z0) . (A.13)For a z-periodi solution the elements of matrix A in eq. (A.12) are z-periodifuntions with the same period T and hene

D~xT~ξ,qT

(

~x~ξ
(z0)

)

=
[

D~xT~ξ,T

(

~x~ξ
(z0)

)]q
, (A.14)with q integer. This implies that it is enough to integrate the evolutionof the linearized equations over a period T and obtain D~xT~ξ,T

(

~x~ξ
(z0)

) forharaterizing the time evolution of the perturbations after an integer num-ber of periods. For a time periodi solution the so-alled Floquet matrix,
F = D~xT~ξ,T

(

~x~ξ
(t0)
), ontains all the information about the linear stability ofa periodi solution (we will disuss it later in Appendix B).As the impliit funtion theorem states, the key point for being able toompute the solutions to eq. (A.10), is that the Jaobian is invertible so thateq. (A.11) an be solved. In the partiular ase of time periodi solutions thisimplies that the eigenvalues of the Floquet matrix, F , must be di�erent from

+1. In other words, if the spetra of the Floquet matrix ontains perturbationsthat are also time periodi with the same period of the solution, T , theirassoiated eigenvalue will be +1 and therefore we ould not solve eq. (A.11).The existene of suh perturbations auses the degeneray of the linear problem



B.0. B Linear Stability of Periodi Orbits 295sine given any solution of period T one an onstrut another one by addingany ombination of suh perturbations and therefore the solution is not unique.Although the existene of degeneraies depends on the partiular dynam-ial system, when we are dealing with autonomous dynamial systems, suhas eq. (A.1), there always exist one Floquet eigenvalue +1. The assoiatedeigenvetor is related with the time translation invariane of the solutions,
~δx~ξ

(t) = ~̇x~ξ
(t), and ats translating the instant solution aross its path in thephase spae. However, the non invertibility of the Jaobian does not preventus from implementing the ontinuation sheme. The ommon way used tosolve this problem is to restrit the rank of the Jaobian matrix to a subspaeorthogonal to its kernel. This restrition does not in�uene the e�eny of themethod sine the kernel vetors orrespond to diretions in tangent spae thatonvert the solution into itself.There exist several ways for restriting the Jaobian rank that depend onthe partiular properties of the periodi solution. For example, in the ase oftime-reversible orbits, i.e. those whih are invariant under the transformation

R(~q, ~p, t)→ (~q,−~p,−t) (where ~q and ~p denote the two sets of anonially on-jugated variables of the system), one an �x the time origin without loss ofgenerality setting ~p = 0 [81℄. With this restrition we prevent from perturba-tions inside the same periodi manifold and, as a plus, we have redued thedegrees of freedom to the half, N/2. However, this triky method does not al-low to ompute other kind of periodial orbits whih are not time-reversible (asmobile disrete breathers) and the use of other methods suh as the SingularValue Deomposition [82, 83℄ is required.B Linear Stability of Periodi OrbitsBefore analysing the stability analysis for periodi solutions let us brie�y fo-us on the stability haraterization of general orbits of dynamial systems.The linear system of equations de�ned in (A.12) de�nes the most general toolfor haraterizing the stability of dynamial systems solutions: the Lyapunovexponents whih are the eigenvalues, {µj} (j = 1, ...,N), of matrix A thatde�ne the system of linear di�erential equations for the evolution of linear per-turbations. In partiular, the general de�nition of Lyapunov exponents anbe expressed in terms of the eigenvalues of matrix D~xT~ξ,t

(

~x~ξ
(t0)
) (whih forperiod T solutions and t = T is the Floquet operator), {λj(t)}, as

µj = lim
t→∞

1

t
ln|λj(t)| . (B.1)
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Figure B.1: Shemati representation of theresaling proedure for the omputation ofthe largest Lyapunov exponent µ1.Although there are several tehniques for omputing Lyapunov exponents, itis somehow a hard task sine it implies large integration times in order to getaurate values independent of the time origin hoie. However, one is mostof the times interested in the value of the largest Lyapunov exponent (say µ1)whih is the easiest to alulate due to the tendeny of any perturbation togrow towards the diretion assoiated to the largest Lyapunov exponent (see[296, 333℄). The largest Lyapunov exponent, µ1, tell us whether the solutionrepeals nearby orbits (perturbations), µ1 > 0, and thus the solution is regardedas haoti. In the ase of stable periodi orbits of autonomous dynamialsystems the maximum Lyapunov exponent is always 0, this orresponds to theFloquet eigenvalue +1 assoiated to the time translational invariane. Thelargest Lyapunov exponent an be expressed as
µ1 = lim

t→∞
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 . (B.2)This expression, whih makes uses of the ratio of separation of an initial per-turbation ~δx~ξ
(t0) after large times, turns out to be helpful for omputing µ1.The omputational method onsists in making a perturbation of the solutionwith a tangent vetor of arbitrary diretion and modulus |d|, and follow theevolution of the perturbed orbit for a time interval, h. Then, the distane,

|d1| between the original and the perturbed orbits is measured. At the sametime h, the perturbed solution is varied by preserving its diretion but beingresaled to |d|. This proess is iterated for a number of times (see �gure B.1) sothat a set of distanes {|di|} with (i = 1, ..., n) is olleted. Finally, averagingthese measures one obtains the largest Lyapunov exponent
µ1 =

1

nh

n
∑

i=1

ln |di|
|d| . (B.3)



B.0. B Linear Stability of Periodi Orbits 297As stated above, this method turns out to be helpful sine the ontributionof the largest Lyapunov exponent to the dynamis of the perturbed orbitsdominates for large times.Turning our attention to periodi orbits it is then onvenient to look atthe properties of the Floquet matrix. An unstable periodi orbit is manifestedby the presene of Floquet eigenvalues with |λi| > 1, whih implies that themodulus of the perturbations of the �xed point solution of map (A.4) (theperiodi orbit) along the eigenvetor assoiated to this eigenvalue will grow ata rate |λi|.Sine the Floquet matrix, F , is real the Floquet eigenvalues ome in pairs(λi, λi). For Hamiltonian systems, one an say a little bit more about thestruture of the Floquet spetra. In partiular, when the nonlinear evolutionis Hamiltonian, so that we have an even set of dynamial variables, N = 2n(~x = (~q, ~p)t), and
~̇x = (~̇q, ~̇p)t =

(

0 In
−In 0

)(

∂H
∂q1

, ...,
∂H
∂qn

,
∂H
∂p1

, ...,
∂H
∂pn

)t

= J ·∇~xH , (B.4)the map de�ned by the Floquet operator () is sympleti, i.e. given an orthog-onal and skew-symmetri matrix suh as J in (), F obeys the relation
FJF t = J . (B.5)From this property it an be shown that if λ is an eigenvalue of F so is 1/λby proving that the harateristi polynomial, p(λ), of F is re�exive (i.e. theoe�ients ai of degree i in λ satisfy ai = aN−i with i = 0, ...,N)

p(λ) = det (F − λI) = det (JFJ t − λI
)

= det((F−1
)t − λI

)

=

= det (F−1 − λI
)

= det (F) det (F−1 − λI
)

= det (I − λF) =

= (−λ)Ndet (F − λ−1I
)

= (λ)Np(λ−1) . (B.6)Therefore, for Hamiltonian dynamial systems the Floquet eigenvalues for aperiodi orbit ome in quadruplets (λ, λ, 1/λ, 1/λ). This result implies thatthe Floquet multipliers of a stable periodi solution will lie on the unit irleof the omplex plane so that, these solutions are marginally stable sine anyperturbed solution will not deay into the original one, i.e. the yle is not anattrator of surrounding trajetories. Besides, this result implies that in orderto a pair (or a single if it is at +1 or −1) of Floquet eigenvalues leave the unitirle it is neessary that they (it) ollide with another pair.By omputing the periodi solutions for a hain of equations orrespondingto di�erent parameters ~ξ one an study how the stability of the periodi solu-tion hanges aross the ontinuation path. In this regard, stability hanges of



298 Chapter . Appendiesthe periodi solution an our for ertain values ~ξc manifested by the existeneof Floquet eigenvalues leaving the unit irle. There are several mehanismsof loosing stability and one an identify whih type of bifuration ours (dif-ferened by the new stable solutions that emerge when the original periodiorbit loss its stability) at ~ξc by looking how the assoiated Floquet eigenvalue,
λj , leaves the unit irle. One an distinguish three types of bifurations or-responding to:(a) λj = 1,(b) Im (λj) 6= 0,() λj = −1.These three types of bifurations are shematially plotted in �gure B.2.In the �rst one (�gure B.2.a) a Floquet eigenvalue leaves the unit irle at
+1 and therefore the perturbation responsible for this instability, ~δx

∗
~ξc

(t), istime periodi with the same period as the original solution. It is thus an har-moni bifuration or also alled stationary bifuration sine the new solution,
~x~ξc

(t)+ ~δx
∗
~ξc

(t), is also a �xed point of the original map (eq. (A.4)). The mostommon senario is depited in �gure B.2.a at bottom, where two new orbits ofidential period, T , emerge passed ~ξc. For this ase a pithfork (superritial)bifuration has ourred. Pithfork bifurations are often assoiated with asymmetry breaking sine, after the bifuration, the system dynamis an o-upy either stable periodi orbit. This latter situation was reported in setion(3.1.3). Other possible senarios are saddle-node and transritial bifurations.In these two ases there are two solutions, one stable and another unstable,meet at ~ξc, while in the former situation no solutions are available after thebifuration point, for the latter there is an interhange of stability between thetwo solutions.Case (b) (see �gure B.2.b) orresponds to an osillatory or generalized Hopfbifuration or also a Naimark-Saker bifuration. In this ase the frequenyof the new solution, ~x~ξc
(t) + ~δx

∗
~ξc

(t), an be inommensurable with the periodof the map if the angle where the Floquet eigenvalue) leaves the unit irle isan irrational multiple of 2π, θ 6= p2π/q with p an q integers. In this ase thequasiperiodi movement of the emergent solution moves over a Torus de�nedby the frequeny of the Map (the frequeny of the original solution) ω = 2π/Tand the angle where the eigenvalue leaves the unit irle (the frequeny of theunstable perturbation) ω∗ = θ/T . For the ases where these two frequeniesare ommensurate the new orbit is periodi (see setion 7.2.1).Finally, ase () (see �gure B.2.) onstitutes the �ngerprint of a period-doubling bifuration sine the angle where the unstable Floquet eigenvalue is
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Figure B.2: Shemati plot of the three types of bifurations and their orrespondingFloquet behaviour (the upper plot orrespond to a Hamiltonian System and the onebelow for a non-Hamiltonian one). The lowest plots are the representation of theunstable (dashed and red) original orbit and the stable (solid and blue) emergentsolution after the bifuration.loated at θ = π and, therefore, the period of the unstable eigenvetor, ~δx
∗
~ξc

(t),will be T ∗ = 2π/ω = 2πT/θ = 2T . Therefore, the new solution ~x~ξc
(t)+ ~δx

∗
~ξc

(t),will be periodi with period 2T (see setion 7.2.1).The Floquet analysis of the periodi solutions is threfore useful for iden-tifying the nature of the bifurations found. Besides, the inspetion of theeigenvetors assoiated with the Floquet eigenvalues that leave the unit irlehelp us to investigate how the unstable solution evolves.
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