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Abstract: Flavodoxins are small soluble electron transfer proteins widely present in bacteria and
absent in vertebrates. Flavodoxins participate in different metabolic pathways and, in some bacteria,
they have been shown to be essential proteins representing promising therapeutic targets to fight
bacterial infections. Using purified flavodoxin and chemical libraries, leads can be identified that block
flavodoxin function and act as bactericidal molecules, as it has been demonstrated for Helicobacter pylori
(Hp), the most prevalent human gastric pathogen. Increasing antimicrobial resistance by this bacterium
has led current therapies to lose effectiveness, so alternative treatments are urgently required. Here,
we summarize, with a focus on flavodoxin, opportunities for pharmacological intervention offered
by the potential protein targets described for this bacterium and provide information on other
gastrointestinal pathogens and also on bacteria from the gut microbiota that contain flavodoxin.
The process of discovery and development of novel antimicrobials specific for Hp flavodoxin that is
being carried out in our group is explained, as it can be extrapolated to the discovery of inhibitors
specific for other gastric pathogens. The high specificity for Hp of the antimicrobials developed may
be of help to reduce damage to the gut microbiota and to slow down the development of resistant
Hp mutants.

Keywords: flavodoxin; drug discovery; therapeutic target; Helicobacter pylori (Hp); antimicrobial
resistance; gastric pathogens; gastric microbiota

1. Introduction

Helicobacter pylori (Hp) is a Gram-negative, spiral-shaped bacterium that colonizes the gastric
mucosa of over 4 billion people worldwide [1–3]. The prevalence of this infection increases with age
and varies depending on the world region, being higher in developing countries (up to 88%) than in
developed ones [2–4]. It is suggested that the HLA-DQA1 gene influences the human susceptibility to
Hp infection, the development of related diseases, and the host’s response against this bacterium [5].
The ways in which Hp is acquired are proposed to include intake of contaminated water and direct
human–human contact [3]. Diet, hygiene, and lifestyle play an important role in Hp transmission [2],
and unless antimicrobial therapy is administered, humans can remain infected for life [3]. Although
most infected people are asymptomatic [3], Hp colonization of the gastric epithelial cells can cause
an inflammatory response in the mucosa. The initial gastritis can progress to chronic non-atrophic,
active or atrophic gastritis and lead to duodenal and gastric ulcers or even to intestinal metaplasia
and dysplasia, occasionally causing gastric mucosa-associated lymphoid tissue (MALT) lymphoma or
gastric adenocarcinoma [3,6]. In fact, Hp is the only bacterium classified as a Class I carcinogen by the
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International Agency for Research on Cancer [3,6,7] and, as shown by epidemiological studies, it seems
to be the most common infectious agent related to cancers, 6.2% of all cancer cases worldwide being
attributable to Hp [6,8]. The risk of developing Hp-related cancer has been suggested to depend on the
Hp strain, the host traits, and the interactions between bacterium and host [9]. Besides, Hp has been
reported to be involved in extragastric pathologies such as neurological, dermatological, hematologic,
ocular, cardiovascular, metabolic, allergic, liver, and biliary diseases [10,11]. The eradication of Hp has
been recommended in order to decrease gastric mucosa inflammation and to prevent its progression to
preneoplasic lesions and the development of gastric cancer and/or other extragastric diseases [12,13].

Conventional treatment of Hp infection has relied on two or three broad-spectrum antimicrobials
plus a proton-pump inhibitor (PPI) such as omeprazole, esomeprazole or rabeprazole. Although
standard triple therapy, which is based on clarithromycin, amoxicillin, or metronidazole and a PPI, has
been prescribed for decades, nowadays it does not accomplish acceptable eradication rates because
of Hp resistance, especially to metronidazole and clarithromycin. In areas of high (>15%) resistance
to the latter antibiotic, bismuth or non-bismuth quadruple regimens must be followed. They consist
of a PPI plus three antimicrobials: metronidazole, tetracycline, and bismuth in the first therapy and
metronidazole, amoxicillin, and clarithromycin in the second one [14,15]. These last regimens seem
the most effective ones to overcome antibiotic resistance, the main proposed reason of treatment
failure together with low patient compliance to therapy, high gastric bacterial load, cytochrome
P450 polymorphism (CYP2C19), and high gastric acidity [16]. Antibiotic resistance to Hp has been
suggested to arise from point mutations, drug inactivation, the activation of drug efflux pumps,
altered membrane permeability, biofilm formation or the presence of bacterial dormant forms [17].
The high genetic diversity of Hp allows the bacterium to evade the immune response and to adapt
to environment challenges such as antimicrobials [18,19]. The annual Hp reinfection rate is up to
8.7% and depends on world region, age, education level, proportion of household members infected,
and socioeconomic status of the patients [12]. While the reported prevalences of amoxicillin (0–21.4%)
and tetracycline (0–32.4%) resistance are moderate, those of metronidazole (2.1–99.5%), clarithromycin
(7.9–52.6%), and levofloxacin (0–55.6%) are quite high [12]. In fact, clarithromycin-resistant Hp
strains were included by the World Health Organization in the high-priority group of pathogens that
urgently require novel treatments [20]. Additional therapeutic regimens have been proposed that
include the use of vonoprazan, furazolidone, rifabutin, fluoroquinolones, and probiotics-containing
treatments [12,13,15,21,22]. Recent works suggest that therapies against Hp should be adapted to
local antibiotic resistances, and the Maastrich V/Florence consensus report recommended, after failure
of second-line treatment, culture with susceptibility testing or molecular determination of genotype
resistance [13,15,21–23]. While prophylactic or therapeutic vaccines for Hp have been investigated,
no vaccine has been developed yet, probably because of high Hp genetic variability together with the
fact that the infection downregulates the host’s immune response which highlights the importance
of selecting Hp antigens and adjuvants capable of triggering a strong host immune reaction [24,25].
Several novel therapeutic strategies for the treatment of Hp infection have been suggested including
phototherapy and the use of antimicrobial peptides, gastric mucins, polysaccharides or bioactive
compounds [24]. Related to the use of novel bioactive compounds, key Hp gene products have been
proposed for directed therapies [26]. One of them is flavodoxin [27,28], a small electron transfer protein
involved in an essential Hp metabolic pathway. Flavodoxin is also expressed in other gastrointestinal
pathogens and also in human gut commensal bacteria. As it is essential for some commensal
bacteria [29], it is important to develop flavodoxin-based therapies that are not harmful to these
microorganisms in order to avoid side effects on the gastrointestinal microbiota. On the other hand,
as flavodoxin is also essential for several gastrointestinal pathogens, this protein constitutes a useful
target for developing specific treatments against them.

In this review, we compile and discuss Hp proteins that may act as potential targets with a special
focus on the properties of flavodoxin that make it a promising therapeutic target for treating this
infection. We then summarize ongoing efforts to develop Hp-specific flavodoxin inhibitors, and, finally,
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we discuss the possibility of extrapolating them to target the flavodoxins of other gastric pathogens for
the treatment of the corresponding infections.

2. Targets for Hp Infection

Because resistance to currently used antibiotics in Hp infection is widespread, new antimicrobials
targeting bacterial functions different from the classically targeted ones (e.g., cell wall integrity, nucleic
acid synthesis and replication, or transcription and translation) are required. The new targets must
be essential for bacterial survival or important factors for colonization or virulence, and they should
be absent in humans so that toxicity risk is minimized. Complying with those requisites, several Hp
pathways (Figure 1) have been proposed for the development of new drugs. Some of them are detailed
in Table 1, and the more relevant ones are described below.
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Figure 1. Pathways providing therapeutic targets to fight Helicobacter pylori infection.

Table 1. Targets for Hp infection treatment.

Target Pathway Reference
Metabolism

Type II 3-dehydroquinase dehydratase (DHQ2) Shikimate pathway [30–33]
Shikimate 5-dehydrogenase (SDHase) Shikimate pathway [30,33]

Shikimate kinase (SK) Shikimate pathway [30,33,34]
Chorismate synthase Shikimate pathway [30,33]

Phosphopantetheine adenylyltransferase (PPAT) Coenzyme A biosynthesis [35,36]

Carbon starvation protein A Starvation response, utilization of peptides,
and host–pathogen interactions [37]

Methylthiotransferase (MiaB) Protein synthesis [37]
Ribosomal RNA small subunit methyltransferase E Protein synthesis [37]

Ribosomal protein L11 methyltransferase Protein synthesis [37]
Tetrapyrrole (Corrin-Porphyrin) methylase family

protein Protein synthesis [37]

Peptide chain release factor 1 Protein synthesis [37]
Fumarate reductase (FrdA, FrdB, and FrdC) Krebs cycle and anaerobic respiration [33,38]

Glu-tRNAGln amidotransferase, subunits A (GatA), B
(GatB), and C (GatC)

Protein synthesis [26,33]

Helicase-nuclease DNA Repair Enzymes (AddAB) DNA damage reparation [39,40]
Cytochrome C-type biogenesis protein CcdA Cytochrome C synthesis [37]

Cytochrome C oxidase, subunits CcoN, CcoO, CcoP
and CcoQ ATP synthesis [37]

Flavodoxin (Fld) Oxidative decarboxylation of pyruvate [28,41–43]
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Table 1. Cont.

Target Pathway Reference
Metabolism

Pyruvate:ferredoxin oxidoreductase (POR), subunit
α (porA), β (porB), γ (porC or porG) and δ (porD) Oxidative decarboxylation of pyruvate [26,33,44–46]

Flavodoxin:quinone reductase (FqrB) Oxidative decarboxylation of pyruvate [33,42,46]
2-oxoglutarate:acceptor oxidoreductase, subunits A

(OorA), B (OorB), C (OorC) and D (OorD) Succinyl-CoA production [26,33,45]

Cell Wall Structure
N-succinyl-L,L-diaminopimelic acid desuccinylase,

SDAP-deacylase (DapE) Succinylase pathway (lysine biosynthesis) [17,47,48]

Glutamate racemase MurI Peptidoglycan biosynthesis [49,50]
Multi-drug resistance protein MsbA Lipopolysaccharide biosynthesis [51]
UDP-galactose 4-epimerase (GalE) Lipopolysaccharide biosynthesis [52]

pH Homeostasis
Urease, subunits α (UreA), and β (UreB) Acclimation to low pH [33,53–58]

Nickel-responsive regulator (NikR) Urease expression and nickel uptake regulator [53,54]
Nickel–cobalt transporter (NixA) Nickel/cobalt transport [54,59,60]

Urease accessory protein UreE Urease maturation [33,54,59,61–63]
Urease accessory protein UreF Urease maturation [54,61,62]
Urease accessory protein UreG Urease maturation [33,54,62,63]
Urease accessory protein UreH Urease maturation [54,61]

Hydrogenase/urease maturation factor (HypA) Urease maturation [61,63]
Hydrogenase/urease maturation factor (HypB) Urease maturation [61,63]

Heat Shock Protein A (HspA) Nickel homeostasis [59,64,65]
Hpn Nickel homeostasis and storage [59,61,64]

Acid-activated urea channel (UreI) Urea permeability [33,66]
α-carbonic anhydrase Acclimation to low pH [33,67–71]
β-carbonic anhydrase Acclimation to low pH [33,67–69,71,72]

Virulence (Adherence, Motility and Pathogenicity)
Spore coat polysaccharide biosynthesis protein C

(PseC)
Pseudaminic acid biosynthesis pathway (Pse):

flagellin glycosylation [33,73,74]

Heat-inducible transcription repressor (HrcA) Flagella biosynthesis [37]
Transcriptional repressor of DnaK operon (HspR) Flagella biosynthesis [37]

Major flagellin FlaA Flagellar filament composition [33,53,75–77]
Minor flagellin FlaB Flagellar filament composition [53,75–77]

Flagellar hook-associated protein 2 (FliD) Flagellum assembly (filament capping) [33,76,77]

Flagellar hook-associated protein 1 (FlgK) Flagellum assembly (hook-filament junction
formation) [33,76–78]

ATP-binding protein (YlxH) Flagella biosynthesis [33,79]
Flagellar basal body L-ring protein (FlgH) Flagellum assembly (L-ring composition) [33,77]
Flagellar basal body P-ring protein (FlgI) Flagellum assembly (P-ring composition) [33,77]
Flagellar basal body M-ring protein (FliF) Flagellum assembly (MS ring composition) [33,77]

Flagellar biosynthetic protein (FliP) Flagellum assembly (Flagellar export
component) [33,60,77]

Flagellar biosynthetic protein (FliQ) Flagellum assembly (Flagellar export
component) [33,77]

Flagellar motor switch protein (FliY) Flagellum assembly (C-ring composition;
Flagellar export component) [33,77]

Flagellum-specific ATP synthase (FliI) Flagellum assembly (Flagellar export
component) [33,77]

Flagella-specific σ factor (FliA) Flagellum assembly (regulatory protein) [53,77]
FlgM (putative antagonist of FliA) Flagellum assembly (regulatory protein) [53,77]

Cytotoxin-associated gene A (CagA)
cag pathogenicity island (host cell metabolism

modulation, inflammation, metaplasia and
precancerous transformations)

[80–83]

cag-Type IV secretion system (T4SS)
cag pathogenicity island (translocation of

bacterial factors (e.g., Cag A and peptidoglycan)
into host cells)

[80,83]

HopQ adhesin (outer membrane protein) Adhesion to host cells and translocation of
CagA into host cells [84]

Vacuolating cytotoxin (VacA)
Cellular vacuolation, apoptosis and inhibition

of cell cycle progression and host immune
response

[81,82,85,86]

Blood group antigen binding adhesin (BabA) Adhesion to host cells [80–82]

High temperature requirement A (HtrA) Chaperone and proteolytic activities
(intercellular adhesion cleavage) [37,85,87]



Int. J. Mol. Sci. 2020, 21, 1881 5 of 26

Table 1. Cont.

Target Pathway Reference
Virulence (Adherence, Motility and Pathogenicity)

Sialic acid-binding adhesin (SabA) (outer membrane
protein) Bacterial migration to epithelium surface [76,88]

HopZ adhesin (outer membrane protein) Adhesion to host cells [76,80,85]
OipA adhesin (outer membrane protein) Adhesion to host cells [76,80,85]

AlpA/B adhesin (outer membrane protein) Adhesion to host cells [76,80,85]
Active Efflux of Metal Ions

Cation efflux system protein CusA Efflux of cobalt/zinc/cadmium [37]
Cobalt/Zinc/Cadmium efflux system membrane

fusion protein Efflux of cobalt/zinc/cadmium [37]

Cobalt/Zinc/Cadmium resistance protein (CzcA,
CzcB and CzcC) Efflux of cobalt/zinc/cadmium [37,89]

CznABC metal efflux pump Efflux of cadmium/zinc/nickel [89]
Ferrix siderophore transport system TonB

periplasmic binding protein Iron transport [37]

Ferric siderophore transport system ExbB
biopolymer transport protein Iron transport [37,60]

Haemin uptake system ATP binding protein Iron transport [37]
Protection Against Stress

Glutathionyl spermidine synthetase Intracellular thiol redox balance regulation [37]
Iron-binding ferritin-like antioxidant protein Prevention of toxic reactive species formation [37]

DNA-binding protein Dps DNA breaking protection [37]
Superoxide dismutase Superoxide dismutation [37]
Thioredoxin reductase Prevention of toxic reactive species formation [37]

RNA polymerase σ54 factor Survival under stress conditions [33,90]
Multi-drug resistance protein MsbA Efflux of hydrophobic drugs [33,51]

Exodeoxyribonuclease (LexA) SOS response activation [33,91]
Homeostatic stress regulator (HsrA) Regulation of gene expression [92–95]

2.1. Metabolism

The shikimic acid pathway uses erythrose-4-phosphate and phosphoenol pyruvate to produce
chorismic acid, the precursor of aromatic amino acids, folate cofactors, ubiquinone, and vitamins E
and K. This biosynthetic route involves four Hp essential enzymes that are absent in mammals:
3-dehydroquinate dehydratase, shikimate dehydrogenase, shikimate kinase, and chorismate
synthase [30–32,34]. The biosynthesis of coenzyme A (CoA), an essential bacterial cofactor, is achieved
with participation of phosphopantetheine adenylyltransferase (PPAT), the inactivation of which
prevents bacterial viability [35,36]. Fumarate reductase is a key enzyme for aerobic and anaerobic
respiration which contains three subunits: FrdA, FrdB, and FrdC. Some fumarate reductase inhibitors
used to treat helmintic infection have also shown inhibitory and bactericidal properties against Hp [33,38].
Several other Hp enzymes have been associated with bacterial respiration, rendering them critical
for bacterial survival. Some of them: cytochrome c-type biogenesis protein CcdA and cytochrome c
oxidase subunits CcoN, CcoO, CcoP, and CcoQ have been described as potential drug targets for Hp
infection [37]. Enzymes and electron carrier proteins that take part in pyruvate decarboxylation (such
as flavodoxin (Fld), pyruvate:flavodoxin oxidoreductase (POR), and flavodoxin:quinone reductase B
(FqrB)) have also been identified as essential proteins for Hp survival [26,28,41–46].

2.2. Cell Wall Structure

Peptidoglycan, synthesized by Mur enzymes in a multistep pathway, is an essential component of
the bacterial cell wall. MurA, acting on the first step, is targeted by Fosfomycin [50]. For glutamate
racemase MurI, transforming L-Glu into D-Glu, several inhibitors have been described [49,50].
The widely used β-lactam antibiotics inhibit peptidoglycan cross-linking which is carried out in
the last steps of the pathway [17,49,50]. On the other hand, the succinylase pathway is the only
route in Hp for the synthesis of lysine, a required element of the bacterial peptidoglycan cell wall.
N-succinyl-L,L-diaminopimelic acid desuccinylase (SDAP-deacylase; DapE), an enzyme of this route,
has been identified as essential for Hp survival [47,48].
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2.3. pH Homeostasis

Helicobacter pylori is able to survive the acidic pH in the stomach thanks to, at least, two enzymes
playing a fundamental role in acid acclimation. Urease and carbonic anhydrase maintain neutral pH
in the bacterial cytoplasm and periplasm by converting urea and carbon dioxide into ammonia and
bicarbonate [54,55,67]. Urease, which is absent in humans, is a critical enzyme for Hp colonization of
the host stomach. It is composed of α (UreA) and β (UreB) subunits and its activity requires Ni (II)
ions [53,54,56]. The putative nickel-responsive regulator (NikR) regulates urease expression and nickel
uptake [54]. This metal goes into the cytoplasm, where urease is localized, through the nickel–cobalt
transporter NixA [54,59], and its incorporation to the active sites of urease taking place during enzyme
maturation depending on UreD, UreE, UreF, UreG, and UreH accessory proteins [54,59,61–63] and
on the HypA and HypB hydrogenase/urease maturation factors [61,63]. Conversely, HspA and Hpn
proteins are related to nickel homeostasis, storage, and protection from higher concentrations of metal
ions [59,61,64]. The access of urea to urease is restricted by an H+-gated pore (UreI) which regulates the
urea entry into the cytoplasmic space [66]. The activity of these proteins is needed for urease function
and, thus, for Hp colonization, and some of them (specifically, urease and HspA) can be inhibited
by bismuth, an antimicrobial currently used in therapy [59]. On the other hand, two different types
of carbonic anhydrase, α- and β-, have been identified in Hp periplasm and cytoplasm, respectively.
Both metalloenzymes have been described to be essential for acid acclimation, biosynthetic reactions,
bacterial survival, and colonization of the stomach and duodenum [67,68,70–72]. They are targeted by
sulphonamide antimicrobial agents and phenol-derivatives [68,69,71].

2.4. Virulence (Adherence, Motility, and Pathogenicity)

Helicobacter pylori has developed structures and mechanisms contributing to bacterial virulence.
Among them are adhesins, pili, flagella, and extracellular polymeric matrix materials such as DNA,
polysaccharides, proteins, and lipids [96]. Biofilms are seen as virulence factors, and several mucoactive
and antibiofilm substances, such as N-acetylcysteine and erdosteine, have been proposed as new
adjuvant agents for therapy [96–98]. Motility, a crucial virulence factor needed for persistent Hp
infection, is provided by flagella which allow bacteria to travel through the mucus layer from the
gastric lumen to the epithelial surface, its site of infection. Flagellar filaments consist of the major
(FlaA) and the minor (FlaB) flagellin proteins [53,75,76,78]. Additional related genes, fliD and flgK, are
required for flagellar filaments assembly and flagella formation [76–78]. For flagellar assembly and
motility, flagellin needs to be O-glycosylated with pseudaminic acid (Pse). Thus, the Pse biosynthesis
pathway and, in particular, the aminotransferase enzyme PseC have potential as targets [73,74]. Severe
complications of bacterial infection have been related to Hp adherence to host cells. Secretion of
virulence factors, such as those encoded in the cytotoxin-associated gene pathogenicity island cagPAI
(CagA: the cytotoxin-associated antigen, and T4SS: the cag-type IV secretion system), the vacuolating
cytotoxin VacA, or the blood group antigen-binding adhesin BabA, have been related to increased
epithelial damage and predisposition to gastric carcinogenesis [82]. In particular, BabA enables bacterial
contact with the stomach mucosa. Then, VacA delivery and T4SS signaling are induced: VacA leads
to membrane pore formation, cellular vacuolation, apoptosis, and inhibition of immune cells [85,86],
while the T4SS pathway translocates CagA into host epithelial cells, where it modulates aspects of the
host metabolism and provokes inflammation, metaplasia, and neoplastic transformations [80–83,86].
The adhesin BabA has been associated to disease-related strains and cagPAI and VacA have been linked
to increased gastric cancer risk [81,86]. On the other hand, the T4SS route is favored by interaction
between the adhesin HopQ and the human carcinoembryonic antigen-related cell adhesion molecules
(CEACAMs) [84]. In addition to those indicated above, other virulence factors have been identified in
Hp which include adhesins, such as HopZ, OipA, SabA, and AlpA/B [76,80,85], and the HtrA serine
protease, an essential periplasmic protein with chaperone and proteolytic activities involved in quality
control and stress responses [85]. Specifically, HtrA is involved in the cleavage of the tumor suppressor
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E-cadherin and so in the disruption of intercellular adhesion and access of bacteria to intracellular
spaces [85,87,99,100].

2.5. Active Efflux of Metal Ions

The levels of cobalt, zinc, cadmium, and iron need to be regulated in Hp as both too low and too
high concentrations can be detrimental for bacterial life. Thus, enzymes that control metal levels (such
as cation efflux system protein CusA, cobalt/zinc/cadmium efflux system membrane fusion protein,
cobalt/zinc/cadmium resistance proteins CzcA, CzcB, and CzcC, CznABC metal efflux pump, ferrix
siderophore transport system TonB periplasmic binding protein, ferric siderophore transport system
ExbB biopolymer transport protein, and Haemin uptake system ATP binding protein) are crucial for
Hp virulence and adaptation to gastric environment and, therefore, for bacterial survival [37,89].

2.6. Protection against Oxidative Stress

Toxic reactive species can cause oxidative stress to Hp, leading to cell death. For this
reason, bacterial gene products involved in protection against reactive oxygen species, superoxide,
and free radicals have been proposed as therapeutic targets. They include glutathionyl spermidine
synthetase, iron-binding ferritin-like antioxidant protein, DNA-binding protein Dps, and superoxide
dismutase [37]. Homeostatic stress regulator (HsrA) is an orphan response regulator unique among
epsilonproteobacteria. It syncs metabolic functions and virulence with availability of nutrients and cell
division. This protein regulates its own expression and that of a large number of genes involved in
transcription, translation, energy, and nitrogen metabolism as well as redox homeostasis and oxidative
stress defense. Due to the fact of its essentiality, its absence in humans and the availability of an X-ray
structure, it has been proposed as a promising therapeutic target against Hp [92–95].

As can be seen, several Hp gene products have been described that may constitute appropriate
targets for the development of novel therapies against this bacterial infection. Among them, flavodoxin
stands out as a promising candidate due to the fact of its essentiality for Hp, its absence in humans,
and because of structural features that will be discussed below. Stimulated by these facts, our laboratory
has undergone several studies aimed at understanding the biophysical properties of Hp flavodoxin and
to identify and perfect molecules that could bind to it and interfere with its vital function. The following
sections include a detailed description of this flavodoxin, focusing on the properties that make it a fine
drug target.

3. An Overview of Flavodoxins and of the Flavodoxin from Hp

Flavodoxins are acidic proteins that contain a flavin cofactor (flavin mononucleotide, FMN)
acting as an electron transfer center [27]. They are small (14.5–23 kDa) α/β proteins with five
α-helices packing against a central five-stranded β-sheet, thus forming an αβα sandwich [27,101].
In some bacteria (e.g., Escherichia coli, Azotobacter vinelandii, or Desulfovibrio vulgaris), flavodoxins
are constitutive proteins, while in others, such as in several Anabaena strains, flavodoxin synthesis
is induced in low iron conditions, where it replaces ferredoxin [102–107], a constitutive sulfoferric
protein that transfers electrons one by one. Although the FMN in flavodoxin only participates in
two-electron transfer reactions when it is free in solution, apoflavodoxins modify the redox potentials
of FMN molecules bound to them so that they can accept and donate electrons one by one [27].
Flavodoxins transfer electrons among different partner proteins. In some photosynthetic and/or
N2-fixing bacteria, flavodoxin shuttles electrons from PSI to NADP+ or N2 via FNR and nitrogenase,
respectively [27,108,109]. In an analogous fashion, flavodoxin donates electrons to a variety of partner
proteins in different bacteria to perform biosynthetic reactions. For example, flavodoxin activates
cobalamin-dependent methionine synthase, pyruvate formate-lyase, and anaerobic ribonucleotide
reductase in Escherichia coli [110–113], as well as biotin synthase in Escherichia coli [111,112] and
Bacillus subtilis [114]. Flavodoxin is also involved in nitrate reduction in Azotobacter vinelandii [115]
and in the activation of pyruvate formate-lyase by free radicals formation [116]. On the other hand,
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flavodoxin has been found to function as an electron acceptor of the pyruvate oxidoreductase enzyme
complex (POR) which catalyzes the oxidative decarboxylation of pyruvate in Hp [44] (Figure 2).
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Figure 2. The POR:FldA:FqrB pathway in H. pylori. Flavodoxin (Fld) shuttles electrons between
pyruvate oxidoreductase complex (POR) and flavodoxin:quinone reductase (FqrB) in a reversible
pathway which plays a central role in the bacterial metabolism, as it represents an essential route for
CO2 fixation and pyruvate metabolism. The pyruvate decarboxylation pathway is represented by solid
lines, whereas the pyruvate synthesis pathway (contributing to gluconeogenesis) is indicated by dotted
lines. Adapted from Reference [46].

The FMN cofactor in flavodoxin is made of an isoalloxazine aromatic ring system connected
to a phosphate group by a ribityl chain, and it appears tightly bound at the carboxy-terminal
end of the flavodoxin β-sheet. The isoalloxazine moiety usually interacts with aromatic residues,
while the phosphate group forms hydrogen bonds with mainly threonine side chains and several
main chain NH groups of the protein [27,41]. Those interactions provide high stability to the
apoflavodoxin FMN complex, which has a formation that begins by interaction of the isoalloxazin
group with the folded apoprotein, followed by docking of the phosphate group [27,117]. The phosphate
binding site has been described to be pre-formed in Anabaena PCC7119, Hp [118], and Streptococcus
pneumoniae [119] apoflavodoxins, probably due to the presence of bound ions that mimic the phosphate
group (Figure 3). From sequence alignment and structural considerations, flavodoxins can be divided
into two groups: long-chain (18–23 kDa) (e.g., those in Anabaena PCC 7119 or Hp) and short-chain
flavodoxins (14.5–17 kDa) (e.g., those in Clostridium beijerincki or Desulfovibrio vulgaris). Long-chain
flavodoxins contain an extra 20 residue loop intercalated in the β5-strand of the β-sheet [27,120,121]
that does not seem to be relevant for protein stability or folding. Its sequence conservation suggests it
may play a functional role [120], and it has been suggested to be responsible for the recognition of FNR
and methionine synthase in E. coli [122]. Despite their differences, long- and short-chain flavodoxins
share a similar three-dimensional structure. In both families, sequence conservation is high at the
isoalloxazine binding loops (often referred to as the Y- and W-loops), the phosphate binding loop
(P-loop) and, in the long-chain ones, their characteristic long loop. In particular, the phosphate binding
site is highly conserved, the consensus sequence being T/S-X-T-G-X-T [27,41,120]. On the other hand,
the W- and Y-loops usually contain, respectively, Trp and Tyr residues that are involved in the binding
of the isoalloxacin moiety in FMN. Some flavodoxins, nevertheless, contain other residues in those key
FMN binding positions (e.g., the tryptophan residue of the W-loop appears replaced by methionine in
Clostridium beijerinckii flavodoxin, by leucine in Azobacter vinelandii or by alanine in Hp) [28,41,123].
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Figure 3. Molecular surface representation of holo (a) and apo (b) flavodoxin from Hp. FMN cofactor
and a chloride ion bound at the FMN phosphate site are shown as red sticks and a sphere, respectively.
The two structures are similar and exhibit an unusual pocket close to the cofactor binding site. Most
other (apo)flavodoxins lack such surface pocket.

The flavodoxin from Hp (Hp-Fld) is involved in a metabolic pathway essential for Hp viability: the
oxidative decarboxylation of pyruvate by the pyruvate oxidoreductase complex (POR) [27,44,45,124].
Flavodoxin synthesis in Hp is constitutive and detectable even in dormant forms of Hp which
have a significantly reduced metabolic activity [125]. Hp flavodoxin has been related to low-grade
gastric mucosa-associated lymphoid tissue (MALT) lymphoma pathogenesis, and antibodies against
this flavodoxin have been found in patients [126]. In anaerobic conditions, flavodoxin is able
to activate imidazole antimicrobials (such as metronidazole) [124,127] and transform them into
reactive intermediates that cause DNA lethal damage [124,127,128]. Mutations in ferredoxin (FdxA),
ferredoxin-like protein (FdxB), NAD(P)H flavinnitroreductase (FrxA), oxygen-insensitive NAD(P)H
nitroreductase (RdxA), flavodoxin (FldA), the γ-subunit of 2-oxoglutarate oxidoreductase (OorD)
or the γ-subunit of pyruvate ferredoxin oxidoreductase (PorD) have been related to metronidazole
resistance in Hp [129,130]. Hp flavodoxin is encoded by the fldA gene [41,131], and its 164 residue amino
acid sequence is similar to that of other flavodoxins, especially long-chain ones (sequence identities
approximately 40%). Sequence differences are noticed at the cofactor binding site, specifically at the
phosphate loop which, in Hp, is slightly different (T-D-S-G-N-A) from the general flavodoxin motif
(T/S-X-T-G-X-T) [41]. The Hp-Fld structure is similar to that of other known flavodoxins, although the
presence of some shorter loops and of an elevated percentage of small side-chain residues makes it
slightly more compact [41]. Interestingly, in Hp flavodoxin, a bulky residue located in the W-loop of
most flavodoxins (typically a Trp residue), appears replaced by an alanine residue (position 55). This
substitution, which lowers the affinity for FMN [41], opens a pocket at the protein surface, near the
bound cofactor [41,132], where small organic compounds could bind and inhibit complex formation or
electron transfer reactions with partner proteins.

As Hp lacks several essential genes of the glycolysis pathway, pyruvate formation through carbon
dioxide fixation may be physiologically favored, because it is the single gluconeogenic pathway in this
bacterium [46]. On the other hand, oxidative decarboxylation of pyruvate is a fundamental reaction
catalyzed by the pyruvate dehydrogenase complex in most aerobic organisms or by POR in anaerobic
ones [133,134]. Thus, Hp POR catalyzes the last step of carbohydrates fermentation as well as the
inverse pyruvate oxidative decarboxylation [135]. In this bidirectional electron transfer pathway,
another essential enzyme, flavodoxin quinone reductase B (Figure 2), is involved [46].

4. Flavodoxins in other Pathogenic Bacteria and in the Gut Microbiota

As flavodoxin is present in gastrointestinal pathogens other than Hp, the potential of flavodoxin
inhibitor-based therapies against those additional pathogens should be explored, especially in the cases
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of pathogens for which an essential flavodoxin has been described. On the other hand, flavodoxin
is also present in a variety of gut commensal bacteria and the possible negative side effects of Hp
flavodoxin inhibitors on the human microbiota should be evaluated too.

Indeed, flavodoxin genes are present in many bacteria (mainly Gram-negative ones), especially in
Proteobacteria, Cyanobacteria, Aquificae, Firmicutes, Bacteroidetes, Fusobacteria, and Spirochaetes.
We have collected and combined in Table 2 flavodoxin information available in the Uniprot
database [136] (searching for “flavodoxin” and refining by “reviewed”), in the NCBI database [137]
(searching for “flavodoxin” on the “Protein” tab, then refining by “Bacteria” on the species tag, selecting
on the source databases’ tag “PDB” and “UniProtKB/Swiss-Prot”, and specifying on the sequence
length’s tag from 130 to 199 residues), and in the flavodoxin-related literature available in PubMed [137].

Table 2. Some flavodoxin-containing bacteria a.

Microorganism Protein Name Gene Name Seq. Length Long/short
Chain Phylum Gram Stain

Anabaena (Nostoc) sp. Flavodoxin isiB 170 Long Cyanobacteria Negative
Aquifex aeolicus Flavodoxin fldA 185 Long Aquificae Negative

Azotobacter vinelandii Flavodoxin 1 Avin45950 174 Long Proteobacteria Negative
Azotobacter vinelandii Flavodoxin 2 nifF 180 Long Proteobacteria Negative

Azotobacter chroococcum Flavodoxin B nifF 180 Long Proteobacteria Negative
Bacillus cereus Flavodoxin BC_1376 148 Short Firmicutes Positive
Bacillus cereus Flavodoxin BC_3541 154 Short Firmicutes Positive

Bacillus subtilis Probable
flavodoxin 2 ykuP 151 Short Firmicutes Positive

Bacillus subtilis Probable
flavodoxin 1 ykuN 158 Short Firmicutes Positive

Bacteroides uniformis Flavodoxin BACUNI_04544 178 Long Bacteroidetes Negative
Buchnera aphidicola Flavodoxin fldA BUsg_289_ 154 Long b Proteobacteria Negative
Buchnera aphidicola Flavodoxin fldA BU299 171 Long Proteobacteria Negative
Buchnera aphidicola Flavodoxin fldA bbp_277 174 Long Proteobacteria Negative
Campylobacter jejuni Flavodoxin fldA 163 Long Proteobacteria Negative

Clostridium beijerinckii c Flavodoxin 138 Short Firmicutes Positive
Clostridium pasteurianum Flavodoxin CLPA_c13840 d 140 Short Firmicutes Positive

Clostridium
saccharobutylicum Flavodoxin floX 160 Long Firmicutes Positive

Desulfovibrio desulfuricans Flavodoxin Ddes_1951 148 Short Proteobacteria Negative
Desulfovibrio gigas c Flavodoxin 146 Short Proteobacteria Negative
Desulfovibrio gigas c Flavodoxin 147 Short Proteobacteria Negative

Desulfovibrio salexigens Flavodoxin Desal_0805 146 Short Proteobacteria Negative
Desulfovibrio vulgaris Flavodoxin DVU_2680/DvMF_1143 148 Short Proteobacteria Negative

Escherichia coli Protein MioC mioC 147 Short Proteobacteria Negative

Escherichia coli Uncharacterized
protein YqcA yqcA 149 Short Proteobacteria Negative

Escherichia coli Flavodoxin 2 fldB 173 Long Proteobacteria Negative
Escherichia coli Flavodoxin 1 fldA 176 Long Proteobacteria Negative

Fusobacterium nucleatum Flavodoxin FN0724 167 Long Fusobacteria Negative

Haemophilus influenzae Protein MioC
homolog mioC 146 Short Proteobacteria Negative

Haemophilus influenzae Flavodoxin fldA 174 Long Proteobacteria Negative
Helicobacter pylori Flavodoxin fldA 164 Long Proteobacteria Negative

Klebsiella pneumoniae Flavodoxin fldA/nifF 176 Long Proteobacteria Negative

Lactobacillus reuteri Flavodoxin/nitric
oxide synthase Lreu_1727 149 Short Firmicutes Positive

Listeria monocytogenes Lmo2153 protein lmo2153 145 Short Firmicutes Positive
Megasphaera

elsdenii(Peptostreptococcus
elsdenii) c

Flavodoxin 137 Short Firmicutes Negative

Pantoea agglomerans
(Enterobacter agglomerans) Flavodoxin nifF 177 Long Proteobacteria Negative

Pasteurella multocida Protein mioC
homolog mioC 147 Short Proteobacteria Negative

Pectobacterium
carotovorum c

Exoenzyme
regulation

regulon ORF2
151 Short Proteobacteria Negative

Pseudomonas aeruginosa Uncharacterized
protein PA3435 PA3435 150 Short Proteobacteria Negative
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Table 2. Cont.

Microorganism Protein Name Gene Name Seq. Length Long/short
Chain Phylum Gram Stain

Pseudomonas aeruginosa Flavodoxin FldP fldP 184 Long Proteobacteria Negative
Pseudomonas putida Flavodoxin mioC 151 Short Proteobacteria Negative

Rhodobacter capsulatus Flavodoxin nifF 182 Long Proteobacteria Negative
Salmonella Typhi Flavodoxin 2 fldB 173 Long Proteobacteria Negative
Salmonella Typhi Flavodoxin fldA 176 Long Proteobacteria Negative

Salmonella Typhimurium Flavodoxin 2 fldB 173 Long Proteobacteria Negative
Salmonella Typhimurium Flavodoxin 1 fldA 176 Long Proteobacteria Negative

Shewanella oneidensis Flavodoxin
Protein MioC mioC 146 Short Proteobacteria Negative

Shewanella oneidensis

tRNA
pseudouridine

synthase
C-associated
flavoprotein

YqcA

yqcA 154 Short Proteobacteria Negative

Shewanella oneidensis Flavodoxin fldA 175 Long Proteobacteria Negative

Shigella flexneri Uncharacterized
protein YqcA yqcA 149 Short Proteobacteria Negative

Shigella flexneri Flavodoxin 1 fldA 176 Long Proteobacteria Negative
Streptococcus agalactiae e Flavodoxin mioC 147 Short Firmicutes Positive
Streptococcus pneumoniae Flavodoxin flaV 147 Short Firmicutes Positive

Synechococcus sp. Flavodoxin isiB 170 Long Cyanobacteria Negative
Synechocystis sp. Flavodoxin isiB 170 Long Cyanobacteria Negative

Treponema pallidum Flavodoxin fldA 146 Short Spirochaetes Negative f

Trichodesmium erythraeum Flavodoxin fld 171 Long Cyanobacteria Negative

Vibrio cholerae Protein MioC
homolog mioC 144 Short Proteobacteria Negative

Vibrio cholerae Flavodoxin fld1 175 Long Proteobacteria Negative
Vibrio cholerae Flavodoxin fld2 198 Long Proteobacteria Negative

Wolinella succinogenes Flavodoxin fldA 171 Long Proteobacteria Negative
a Extracted from Uniprot by searching for “flavodoxin” and refining by “reviewed”, from NCBI by searching for
“flavodoxin” in the “Protein” tab and refining by “Bacteria” (in the species tag), “PDB and UniProtKB/Swiss-Prot” (in the
source databases’ tag) and “from 130 to 199 residues” (in the sequence length’s tag) and from References [114,119,138–159].
Despite the fact that there is a great deal of unreviewed flavodoxin sequences in Uniprot, we chose to include only those
that we found as described, which were flavodoxins with an existence that appeared to be firmly established. b Although
the length of this sequence is more typical of short-chain flavodoxins, we classified it here as long-chain due to the absence,
in sequence alignment with long chain-flavodoxins, of the characteristic 20 residue gap formed in so-aligned short-chain
sequences. c Unnamed gene (gene name not reported yet. Alternative sequences may be reported elsewhere). d Although
the isolation of a 148 residue flavodoxin from Clostridium pasteurianum has been reported [157,159], we did not find any
sequences of such length in Uniprot. On the other hand, the sequence reported in those papers was not complete. Among
the sequences in Uniprot, the one which is 140 residues in length (gene name CLPA_c13840) has the highest identity in
sequence with the partial sequences reported. e Extracted from the DEG database [160]. This sequence was not identified
by following the search pathway used for the rest of the sequences reported in the table. f Its Gram stain classification has
been controversial [161,162].

Most of these flavodoxins appear in Proteobacteria, and some of them are known to be essential
for bacterial viability. Essential flavodoxins annotated in the DEG database [160] and retrieved by
searching for “flavodoxin” by function in the bacteria’s tab are shown in Table 3.

Table 3. Bacteria with flavodoxins that are essential for viability a.

Microorganism Sequence Length Long/Short Chain Phylum Gram Stain

Campylobacter jejuni 163 Long Proteobacteria Negative
Escherichia coli 176 Long Proteobacteria Negative

Haemophilus influenzae 174 Long Proteobacteria Negative
Helicobacter pylori 164 Long Proteobacteria Negative
Salmonella Typhi 176 Long Proteobacteria Negative

Salmonella Typhimurium 176 Long Proteobacteria Negative
Shewanella oneidensis 175 Long Proteobacteria Negative

Streptococcus agalactiae 147 Short Firmicutes Positive
Vibrio cholerae 175 Long Proteobacteria Negative

a Obtained from DEG database [160].
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To anticipate the potential side effects on the human gastric microbiota associated to the use
of flavodoxin-targeting therapies, we have revised the presence of flavodoxin in these commensal
bacteria. Some of the key organisms present in the human gastric microbiota are shown in Table 4
classified by genus, phylum, gram staining, oxygen requirement, and (non)presence of flavodoxin(s).
Essential flavodoxins are indicated, where appropriate. As shown in the table, a variety of bacterial
genera from the human gastric microbiota have been identified as flavodoxin-expressing organisms.
Particular care should be taken with these microorganisms in flavodoxin-based treatments, especially
with Escherichiacoli, Haemophilus influenzae, and Streptococcus agalactiae which have flavodoxins that
are essential for bacterial viability. Besides, the flavodoxins from the first two ones share a high
percentage of identity (above 40%) with Hp-Fld (Figure A1, Appendix A). As sequence identity levels
higher than 35–40% usually involve substantial structural similarity [163], it is important to ensure
that compounds developed against Hp flavodoxin are not able to kill these microorganisms at the
minimal inhibitory concentrations (MIC) determined for Hp. On the other hand, it has been proposed
that flavodoxin-inhibitors could interact with the protein near its cofactor binding site and then
suppress flavodoxin function by modification of the cofactor redox potential or by steric blockage
of the interaction between the flavodoxin and its redox partners [28]. Therefore, if Hp-Fld inhibitors
bind the protein at the pocket created by the presence of an alanine at position 55, no side effects on
the human microbiota would be expected because E. coli and H. influenzae flavodoxins have a bulky
tryptophan residue at this position and that of S. agalactiae contains an also bulky tyrosine residue.
(Figure A1, Appendix A)

Table 4. Flavodoxin in the main bacterial genera of the human gut microbiota a.

Genus Flavodoxin Phylum Gram Stain Oxygen Requirement

Akkermansia Unreviewed Verrucomicrobia Negative Anaerobe
Alistipes Unreviewed Bacteroidetes Negative Anaerobe

Bacteriodes Yes Bacteroidetes Negative Anaerobe
Bifidobacterium Unreviewed Actinobacteria Positive Anaerobe

Clostridium Yes Firmicutes Positive Anaerobe
Eggerthella Unreviewed Actinobacteria Positive Anaerobe

Enterococcus Unreviewed Firmicutes Positive Facultative anaerobe
Escherichia Yes b Proteobacteria Negative Facultative anaerobe

Eubacterium Unreviewed Firmicutes Positive Anaerobe
Fusobacterium Yes Fusobacteria Negative Anaerobe
Haemophilus Yes b Proteobacteria Negative Facultative anaerobe
Lactobacillus Yes Firmicutes Positive Microaerophile

Neisseria No Proteobacteria Negative Aerobe
Odoribacter Unreviewed Bacteroidetes Negative Anaerobe

Parabacteroides Unreviewed Bacteroidetes Negative Anaerobe
Peptococcus Unreviewed Firmicutes Positive Anaerobe

Peptostreptococcus Yes Firmicutes Positive Anaerobe
Porphyromonas Unreviewed Bacteroidetes Negative Anaerobe

Prevotella Unreviewed Bacteroidetes Negative Anaerobe
Propionibacterium Unreviewed Actinobacteria Positive Anaerobe

Pseudomonas Yes Proteobacteria Negative Aerobe
Roseburia Unreviewed Firmicutes Positive Anaerobe

Rothia Unreviewed Actinobacteria Positive Anaerobe
Ruminococcus Unreviewed Firmicutes Positive Anaerobe
Staphylococcus Unreviewed Firmicutes Positive Facultative anaerobe
Streptococcus Yes b Firmicutes Positive Facultative anaerobe

Veillonella Unreviewed Firmicutes Negative Anaerobe
a The information related to the bacterial composition of the human gut microbiota was extracted from
References [164–170]. Unreviewed indicates the existence of flavodoxin sequences reported as such in Uniprot. No
scientific literature about them has been found. b Essential flavodoxin according to the DEG database [160].

On the other hand, flavodoxin is present in gastrointestinal pathogens, for some of which
it is an essential protein. In Table 5, major human stomach pathogens are classified by genus,
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phylum, gram staining, oxygen requirement, and flavodoxin expression (Yes/No). If flavodoxin is
essential for their viability, it is indicated. While different bacteria included in this table (Firmicutes,
Bacteroidetes, and Proteobacteria) express flavodoxin, it has been described so far as essential only
for some Proteobacteria: Campylobacter, Escherichia, Helicobacter, Salmonella, and Vibrio. As shown
in Figure A2 (Appendix A), sequence identities between Hp (strain J99) flavodoxin and those from
Campylobacter jejuni (strain ATCC 700819), Vibrio cholerae (strain ATCC 39541), Escherichia coli (strain
K12), Salmonella enterica subsp. enterica serovar Typhi (strain Ty2), and Salmonellaenterica subsp. enterica
serovar Typhimurium (strain ATCC 700720) are around 40% which is high enough to assume these
proteins will show a high structural similarity [163]. Nevertheless, the amino acid sequences of these
five flavodoxins, having a tryptophan residue where Hp-Fld carries an alanine one, suggest their
tridimensional structures will not display a pocket near the FMN cofactor, and they may not be affected
by Hp-Fld inhibitors.

Table 5. Flavodoxin in human gastrointestinal pathogens a.

Genus Flavodoxin Phylum Gram Stain Oxygen Requirement

Bacillus Yes Firmicutes Positive Aerobe
Bacteroides Yes Bacteroidetes Negative Anaerobe

Campylobacter Yes b Proteobacteria Negative Microaerophile
Clostridium Yes Firmicutes Positive Anaerobe
Escherichia Yes b Proteobacteria Negative Facultative anaerobe
Helicobacter Yes b Proteobacteria Negative Microaerophile

Listeria Yes Firmicutes Positive Facultative anaerobe
Peptostreptococcus Yes Firmicutes Positive Anaerobe

Salmonella Yes b Proteobacteria Negative Facultative anaerobe
Shigella Yes Proteobacteria Negative Facultative anaerobe

Staphylococcus Unreviewed Firmicutes Positive Facultative anaerobe
Vibrio Yes b Proteobacteria Negative Facultative anaerobe

Yersinia Unreviewed Proteobacteria Negative Facultative anaerobe
a The information related to the bacterial genera which cause gastrointestinal diseases was extracted from
References [171–183]. Unreviewed indicates flavodoxin sequences reported as such in Uniprot. No scientific
literature about them was found. b Essential flavodoxin according to the DEG database [160].

5. Discovery of Specific Inhibitors of Hp Flavodoxin Using an Approach that Can Be Transferred
to Other Pathogens

The eradication rates achieved by the conventional triple and quadruple therapies used for
treating Hp infection have been decreasing, so alternative treatments are needed to fight this prevailing
infection. Among the different strategies available, development of inhibitors of essential Hp targets
seems promising. Following this track, our group has focused on the identification and improvement
of small molecule inhibitors to target the essential Hp flavodoxin. As explained above, Hp flavodoxin
bears in its surface a peculiar pocket near the FMN binding site that could be exploited to identify
molecules that bind there and block function by either modifying the redox potential of the protein
or by sterically interfering with the recognition of partner proteins [28]. The Hp-Fld surface pocket
is absent in other epsilonproteobacteria, such as Campylobacter jejuni or Wolinella succinogenes, that
carry the characteristic Trp residue of the W-loop, or in other flavodoxins where the Trp residue
has been replaced by leucine (e.g., in Azotobacter vinelandii [123]) or methionine (e.g., in Clostridium
beijerinkii [41]). The pocket is not expected either to be present in several Helicobacter species such
as Helicobacter hepaticus (unable to colonize the human gastric mucosa but associated with chronic
hepatitis, liver adenocarcinoma in mice, cholecystitis and gallbladder human cancer) [184,185], where
its flavodoxin carries a tyrosine replacing the Trp. However, the pocket probably appears in the
flavodoxins from Helicobacter acinonychis (a bacteria establishing lifelong infections in the stomach
of cheetah and other felines) [186] and Helicobacter felis (which has been related to the development
of gastritis in humans) [187] as, similarly to Hp flavodoxin, they carry an alanine residue replacing
the Trp. Thus, the pocket initially observed in Hp-Fld as formed by replacement of the bulky Trp
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residue at the W-loop by an Ala residue is an almost exclusive feature of Hp-Fld which can be used
to develop highly selective inhibitors. A priori, such new inhibitors would not give rise to side
effects in humans, because flavodoxin is not present in vertebrates. An alternative possibility to use
flavodoxin as an antimicrobial target stems from the fact that redox proteins have been suggested to be
capable of activating nitro-compounds, as it has been demonstrated for nitroimidazole drugs such as
metronidazole. Reduction of nitro groups present in prodrugs could yield cytotoxic products which
would be able to act as anti-Hp compounds [124,127–129,188–192].

Our research group has been working on the identification and development of new compounds
targeting Hp flavodoxin by following the alternative possibilities of blocking flavodoxin function
using binding molecules and that of using compounds that could be activated by their conversion
into reactive toxic species after reduction (Figure 4). First, small molecules, such as benzylamine,
were identified as binders to Hp-Fld [28]. Due to the fact of their low binding affinity, they were
poor inhibitors. A high-throughput screening method was subsequently implemented to identify
them from a chemical library of other small organic molecules which could bind tighter to the
protein. Thus, a 10,000 molecule chemical library was screened using pure recombinant Hp-Fld which
led to the identification of 29 binding compounds that stabilized the protein as indicated by their
capability to increase the temperature of mid-denaturation [42]. Four of those compounds (compounds
I, II, III, and IV) were, in addition, able to inhibit the in vitro electron transfer between Fld and
their recombinantly produced partner proteins POR and FqrB. Three of them (I, II, and IV) showed
bactericidal activity against Hp cells and seemed to be selective for this bacterium. Inhibitors I and II
exhibited therapeutic indexes (TI) of around 10, meaning their minimal cytotoxic concentrations (MCC)
for eukaryotic cells were 10 times higher than the corresponding minimal inhibitory concentrations
(MIC) for Hp. Nonetheless, compound IV showed lower TI due to the higher cytotoxicity and lower
efficacy than molecules I and II. On the other hand, those three compounds (I, II, and IV) did not
seem to be nephrotoxic or hepatotoxic when they were administered to mice at 10 mg/kg body weight,
and they did not produce pathological changes in stomach, liver, heart, lung or kidney at 1 or 10 mg/kg
body weight. In an attempt to obtain detailed structural information on the complexes formed by
the inhibitors with the target, the interaction of compounds III (the only bacteriostatic compound of
the four hits) and IV with Hp-Fld was studied by crystallography and NMR, respectively. Inhibitor
III was able to replace FMN and establish hydrogen bonds and hydrophobic interactions with the
protein through its nitro group and benzene ring, respectively. However, it was unclear whether the
structure solved was showing the functional inhibitory interaction or rather the FMN replacement
by the inhibitor occurred in a subsequent step. The NMR analysis indicated that compound IV also
appeared to interact with flavodoxin through its nitro group which suggested a role for this functional
group in the formation of the inhibitor–flavodoxin complex. Crystallization trials are underway to try
to obtain the X-ray structure of the complex between flavodoxin and compound IV and derivatives
of it.

In a first round of optimization of the initial inhibitors, 102 new molecules related to inhibitors I,
II, and IV were synthetized or acquired, and their toxicity and activity were tested [43]. Among them,
20 compounds were able to bind to flavodoxin with dissociation constants in the micromolar range,
some of them with higher affinity than those of the initial hits. Most of these analogues inhibited
bacterial growth in vitro and nine of them showed higher therapeutic indexes than those of their parent
bactericidal compounds I, II, and IV. Large increases were observed in the therapeutic indexes of the
new analogues of II and IV (up to 25 times for derivatives of II and up to 59 times for derivatives of IV).
Six of these compounds were further tested, and it was confirmed that they kept a similar binding
affinity to flavodoxin and that they also displayed bactericidal properties [43].

A second round of optimization was then carried out. To improve the therapeutic and
pharmacokinetic properties of compounds I, II, and IV, new variants carrying modified redox forms
of nitro, sulfur and vinyl groups of the lead-molecules were synthesized [193]. Derivatives that
contain partially or fully reduced forms of the nitro and/or ethylene groups, or partially or fully
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oxidized forms of the sulfur atom displayed a considerably lower toxicity against HeLa cells and
mice than the corresponding leads. While the therapeutic indexes of derivatives of I or II did not
represent a significant improvement, some of the derivatives of IV were effective, according to EUCAST
(The European Committee on Antimicrobial Susceptibility Testing) criteria, against Hp clinical isolates
resistant to common antibiotics such as metronidazole, clarithromycin, and rifampicin. Furthermore,
four of these new compound IV derivatives, used as sole agents, were able to significantly reduce Hp
gastric colonization in the mouse model of infection and indeed to eradicate the infection in some mice.
At present, we will continue the development of derivatives of compound IV through the design and
testing of more soluble variants with optimized metabolic stability and bioavailability, and we are
testing their effect on other bacteria including those present in the gastric microbiota.
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Our preliminary results indicate the Hp-Fld inhibitors so far developed are highly specific for this
bacterium, and that they do not show activity (or very low) against a representative panel of other
bacteria from different phyla. This selectivity will be useful to minimize the generation of resistances and
suggests these inhibitors will be less damaging to the gut microbiota than broad-spectrum antibiotics.
Thus, this new family of selective Hp-inhibitors could provide an opportunity for the formulation
of therapeutic alternatives to fight Hp-drug resistant strains [193]. As explained, due to the fact of
their high selectivity, these Hp-inhibitors will not likely be effective against other pathogens. However,
other bacterium-specific flavodoxin inhibitors can be identified anew, though specific screening of
chemical libraries against other essential flavodoxins. Such bacterium-specific flavodoxin-inhibitors
could also be developed into novel antimicrobials against gastrointestinal pathogens such as Bacillus,
Campylobacter, Listeria, Salmonella, Shigella or Vibrio. To do so, the target-based approach followed
to discover Hp-Fld inhibitors can be readily applied to identify specific antimicrobials against other
flavodoxin-containing pathogens. Moreover, the steps carried out to improve the therapeutic and
pharmacokinetic properties of the Hp-Fld inhibitors could also be followed in order to enhance the
antimicrobial properties of these compounds against those bacteria.
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Abbreviations

Ala (A) Alanine
ATCC American Type Culture Collection
DNA Deoxyribonucleic acid
EUCAST European Committee on Antimicrobial Susceptibility Testing
Fld Flavodoxin
FMN Flavinmononucleotide
FqrB Flavodoxin:quinone reductase
Hp Helicobacter pylori
MALT Gastric mucosa-associated lymphoid tissue lymphoma
MCC Minimal cytotoxic concentration
MIC Minimal inhibitory concentration
NADPH Nicotinamide adenine dinucleotide phosphate
NCBI National Center for Biotechnology Information
NMR Nuclear Magnetic Resonance
PD Pharmacodynamics
PDB Protein Data Bank
POR Pyruvate oxidoreductase complex
PPI Proton-pump inhibitor
PK Pharmacokinetics
TI Therapeutic index
Trp (W) Tryptophan
Tyr (Y) Tyrosine
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