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Abstract: The Neutron-Induced Fission Fragment Tracking Experiment (NIFFTE) built a novel 

Time Projection Chamber (TPC), the FissionTPC, for measuring neutron-induced fission cross-

sections to unprecedented precision. We investigated data from a 2014 run (400010151) at the 

Los Alamos Neutron Science Center (LANSCE) with a double-sided U235/Pu239 target. Our 

particle identification studies will aid in the development of improved tracking algorithms. 

 

1. Introduction 
Nuclear fission is the process of splitting an atom into two, possibly three fragments, 

often using an incident neutron.
1
 The cross section is the probability of inducing fission, related 

to the atomic nucleus and the incident energy of the neutron.
2
 Atoms consist of electrons 

(negative charge) and the nucleus, which consists of protons (positive charge) and neutrons (no 

charge). An element’s identity is determined by the number of protons in each atom’s nucleus, 

called the “atomic number.” Different isotopes of the same element have the same atomic 

number but a different number of neutrons. The Strong Nuclear force holds the nucleus together 

against the Electromagnetic force which otherwise would make the protons repel each other 

while the weak nuclear force governs the process of radioactive decay.
3  

Fission cross sections need to be measured to better than 1% precision to increase 

efficiency and minimize waste in nuclear reactors.
4 

Figure 1 shows the world’s data from neutron 

induced fission of Pu-239 relative to U-235 as a function of neutron energy.  The green line 

represents a 1% uncertainty around the calculate average. As is evident, there is considerable 

discrepancy between data points from different experiments. The Neutron Induced Fission 

Fragment Tracking Experiment (NIFFTE) aims to address these discrepancies by applying a 

novel technology to the investigation of fission reactions.
5 

 

 

Figure 1: Data Points and Average for 
239

Pu/
235

U Neutron Induced Fission Cross Section Ratio
4 

 

Radioactive nuclei have a disproportionate neutron to proton (n:p) ratio or contain excess 

nucleons (protons and neutrons). In massive nuclei with a large number of nucleons, the 

difference between binding energy from the strong nuclear force and the repulsion from the 

electromagnetic force becomes smaller with larger nuclei.
6
 At large enough nuclei, the binding 
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energy is less than the repulsive energy, resulting in an unstable nucleus.
6
 Stable nuclei generally 

have a n:p ratio of around 1:1. Stable elements with atomic numbers 20 to 60 have a n:p ratio of 

~1.2, elements with 60 to 83 protons have a n:p ratio of ~1.5, and those with atomic numbers 

greater than 83 are generally unstable. This n:p trend, known as the “belt of stability”, is shown 

in Figure 2 from UC Davis.
7 

 

   
Figure 2: Belt of Stability for Atomic Nuclei with Decay Types

7 

 

Unstable nuclei undergo decay to achieve a more stable state, generally by adjusting the 

n:p ratio or by becoming less massive.
8 

Alpha decay is when a nucleus emits an alpha particle; a Helium nucleus with +2 electric 

charge. An example alpha decay is: 

    
       

      
    

Alpha decay occurs with massive nuclei (>83 protons). 

 Beta decay occurs when a nucleus emits an electron and electron antineutrino (beta-) or a 

positron and electron neutrino (beta+). Example beta minus and beta plus decays are shown 

below: 
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Beta minus decay occurs when the nucleus’ n:p ratio is above the belt of stability and beta plus 

decays occurs when the n:p ratio is below the belt of stability. To adjust the n:p ratio, a neutron 

turns into a proton and neutron in beta minus decay, while a proton decays into a neutron and 

positron in beta plus.
8
 

Another method of adjusting the n:p ratio is by electron capture, example below: 

    
          

      

An electron merges with a proton in the nucleus to form a neutron and the resulting nucleus 

emits an electron neutrino. In all cases, an electron neutrino or antineutrino is emitted to 

conserve lepton number.
9
 

 One method to visualize fission is the “liquid drop model.” The nucleus is analogous to a 

water drop; too massive a water drop means the surface tension can’t contain the mass of the 

drop so it splits. The same idea applies with fission; too massive a nucleus splits because the 

binding energy can’t hold the nucleons together. Incident neutrons in fission reactions add mass 

to already unstable nuclei, causing the nucleus to split and release energy in the process. A 

common fissionable nucleus is Uranium 235 (U-235) since the incident neutron energy is greater 

than the nucleus’ critical energy.
2
 Figure 3 shows an example fission reaction where a neutron 

excites a nucleus which splits into a heavy and light mass fragment which may further de-excite 

and/or decay into a stable final state.   

 

 
Figure 3: Neutron Induced Fission and Radioactive Decay Steps

10
 

 

 As decay products travel, they deposit energy into their surroundings. More massive 

decay products like fission fragments deposit more energy per length and smaller products such 

as alphas deposit less. One can plot the energy deposited vs. penetration distance in a Bragg  
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Peak/Curve.
10

 A typical Bragg curve for alpha particles in air is shown in Figure 4.  

  

 
Figure 4: Energy Loss for Alpha Particles in Air

10 

 

The ionization energy loss is peaked near the end of the particle’s path because the cross-section 

increases as the energy of the alpha decreases.  For fission fragments, the stopping power is 

much higher and the fragments travel less far within a given medium.  Fragments from U235 and 

Pu239 fission generally have similar masses. The nucleus breaks into two fragments, one with a 

higher mass and one with a lower mass, as seen previously in Figure 3.  For an ensemble of 

fission events, one can plot the frequency of occurrence vs. atomic mass, as in Figure 5 from 

Ref. 2. 
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Figure 5: Probability vs. Atomic Mass Plots for Fission Fragments

2 

 

In a cross-section measurement experiment, one compares the rate of neutron-induced fission 

events to the number of incident neutrons to accurately determine the probability of the reaction.  

In order to count the fission reactions, one must be able to efficiently detect and distinguish 

different types of particles.  The NIFFTE TPC allows one to do this by creating a 3-dimensional 

image of the reactions where particle trajectories and identities can be determined.  

 

2. Experimental Method 

 The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) at Los Alamos 

National Lab (LANL) will be using a Time Projection Chamber (TPC) for its measurements.
12

 A 

standard TPC is a gas filled volume with a cathode in the center and anodes on each end. 

Charged particles ionize the gas atoms. The ionization clouds can then be measured by drifting 

the ionization in a uniform electric field to a charge-sensitive detection plane. Traditional TPCs 

also employ a magnetic field to bend the particles. One can calculate the momentum of the 

particle from the curvature. In NIFFTE’s TPC there is no magnetic field so momentum is not 

measured.
5
 

 The NIFFTE TPC, also called the FissionTPC, is made of two small gas volumes 

separated by a target plane with a holder for placing a thin layer of radioactive targets in the 

middle.  A copper field cage surrounds the space for the reaction to take place, and a mixture of 

95% Argon and 5% Isobutane gas fills the inside volume.  The target plane in the center is the 

cathode plane and the two ends of the detector are anode planes with a -300V MICROMEGAS 

amplification region above a hexagonally-segmented pad plane.  The pads are approximately 

2mm x 2mm and are read out by 192 “EtherDaq” cards, each handling signals from 32 

hexagonal pads.
5
 A cutaway view of the FissionTPC chamber is shown in Figure 6: 
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Figure 6: Cutaway View of the FissionTPC Design

5 

 

 The experiment is operated in the 90-left flight path of the Weapons Neutron Research 

section of the Los Alamos Neutron Science Center with a “white” source neutron beam.  The 

neutrons are created from the collision of a high energy proton beam with a tungsten target that 

produces neutrons of a spectrum of energies up to the maximum allowed by the beam.  In order 

to determine the energy of the neutron that produced a fission reaction, one measures the time-

of-flight for the neutron from the source to the FissionTPC target plane.
5 

 

 After neutrons from a neutron beam cause a fission reaction, the resulting particles are 

measured by looking at the energy deposited and the distance traveled. Smaller particles like 
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alphas and protons will have longer tracks but will deposit less energy per length. Larger 

particles like fission fragments will have shorter tracks but will deposit more energy per length. 

Figure 7 shows an example of an alpha-accompanied fission event in the NIFFTE TPC.  Note, 

volumes 0 and 1 denote each half of the chamber.
 
Several advanced pattern recognition 

algorithms are available to find the tracks left by the ionizing particles.  Subsequent track fitting 

algorithms are then used to determine the track parameters, such as the start/end points, specific 

ionization along the track, its direction, and track length.
5 

 

 

Figure 7: An alpha-accompanied fission event detected as a 3-dimensional image in the NIFFTE 

TPC.  Note; volumes 0 and 1 denote each half of the chamber. The Azimuthal Angle, Polar 

Angle, and XY Plane are also indicated. 

 

The left and right panels
 
of Figure 8 show Bragg curves for fission fragments and alphas 

detected in the NIFFTE TPC.  The difference in magnitude of the ionization, track lengths, and 

locations of the Bragg peaks can all be used to distinguish fragments from alphas.  The research 

included in this report used the track length vs. total energy (area under the curves in Figure 8) in 

terms of ADC counts measured by the FissionTPC to investigate the tracking performance for 

different types of particles.  Details of the data and analysis will be presented in Sections 3 and 4. 
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Figure 8: Specific ionization along the track for a fission fragment (left) and an alpha (right) 

detected in the NIFFTE TPC compared to numerical simulations (dashed curves). 

 

3. Data/Results  
 

In this section, we show data from Run 40010151 (10151 for short), taken on Nov 12, 

2014 12:49 to 1:00 pm PST using 5% Argon and 95% Isobutane, with a double-sided target in 

neutron beam at LANSCE. A thin film of U-235 was deposited on the target inside Volume 0 

while a thin film of Pu-239 was deposited on the target inside Volume 1.
 
 Figure 9 shows Length 

vs. ADC for all tracks detected in the two different volumes, with lines dividing the regions into 

high mass fission fragments, low mass fission fragments, and smaller particles (alphas, protons, 

recoil ions, etc.).  The orange line separates the low and high mass fission fragments and the 

vertical red line separates the fragments from everything else. The dark red in the color plots 

represents where the largest number of tracks occurred. The concentrated spots near track lengths 

of 5 cm and ADC 1000 are alpha particles produced with a characteristic energy. The distance 

traveled in the gas depends on the gas type, temperature, and pressure.
5 

 

  
Figure 9: Run 10151 with Fission Fragments and Cut Equations 

 

 ADC is a measure of the energy deposited per length of track and the ADC axis is on a 

log10 scale. Higher mass fragments deposit more energy per length so they statistically lose all 

their energy faster. This can be seen in the plot, where the high mass fission fragments are on the 

lower left, meaning higher energy deposits but at shorter track length, and the smaller fragments 

are along the left side, meaning they deposit less energy along a longer distance. The high mass 

fission fragments are more towards the upper right than the low mass fission fragments. 

Setting Track ADC to a value sets the vertical line dividing the fragments from lighter 

particles. A line in point-slope form 

                             (1) 
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defines the diagonal line separating the high mass fission fragment from the low mass fission 

fragment. In the equation, y is the Track Length, x is the Track ADC, and         is an arbitrary 

point on the graph to calculate m, which is the slope of the graph (always negative value). We 

chose          and x = 1000 for all the runs, so 

                  . Thus the slope equation   
    

              
 reduces to     , where 

y is the Track Length at x=1000 and y0 is the Track length at x=10000. 

Figure 10 shows further cuts for the lighter particles in volumes 0 and 1 for Run 10151.  

 

 
Figure 10: Cuts and Equations for Lighter Particles 

 

 The diagonal lines in Figure 10 are derived the same way as the line in Figure 9. The 

exponential curve equations in Figure 10 are in the form 

                            (2) 

where y is Track Length, x is Track ADC, and A is the Track Length at an arbitrary Track ADC 

x0. To calculate B, first choose an x0 and find the associated Track Length, A, by visual 

examination of a curve. Then pick another arbitrary x and find the Track Length at that x, call 

this variable z. We then obtain  

 

       
 

 
 

 

                    (3) 

 

For example, to obtain yR in volume 1 from Figure 10, we chose                   , thus 

              . Plugging in the values, we calculate 

      
 

 
 

 

                
   

  
 

 

                                  (4) 

                         (5) 

To simplify the calculations, we chose x and x0 values such that                   so 

      

 

 
                        

 

 
                         

            (6) 

For both the lines and the exponential curves, some trial and error may be necessary if the 

cuts don’t give the desired results since there will be some uncertainty in visual examination 
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measurements. In the next section we identify the sources of the different regions delineated here 

and use the cuts to investigate the track parameters for different types of particles. 

 

4. Analysis 
Using the cut regions outlined in Section 3, we examine the angular distributions for the 

different particle types by plotting the cosine of the polar angle (measured from the beam line, 

the Azimuthal angle and the start and end points in the X-Y plane, as depicted in Figure 7. The 

Polar Angle goes from 0 to 2π along the XZ plane, the Azimuthal Angle goes from 0 to π along 

the YZ plane. StartXY and EndXY are the count distributions along the XY plane at the start and 

end of the reaction path along the Z axis respectively. Figure 9 has the Polar Angle labeled in 

red, Azimuthal (Azm) labeled in green, and both with arrows pointing in the direction of 

increasing angle. 

 Figures 11 and 12 show the angular distributions for the different cut regions in volume 0 

and 1, respectively. The upper left panel is the uncut length vs. ADC while the upper right shows 

the different color-coded cut regions.  In both volumes; red is the low mass fission fragment, 

light green is the high mass fission fragment, yellow is the proton, dark green is the recoil, and 

blue isn’t identified yet. In Volume 0; purple is the low energy alpha and teal is the high energy 

alpha. In Volume 1; purple is the alpha and teal is the stripe. Higher track ADC, or to the right on 

the horizontal axis, means more energy deposited per unit volume along the track. Increasing 

track length, or distance traveled, means moving up on the vertical axis. Note, L vs. ADC is track 

length vs. ADC, CosPolar is the distribution with respect to Cosine of the Polar Angle, Azm is 

distribution with respect to the Azimuthal angle. 
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Figure 11: L vs. ADC, CosPolar, and Azm Plots for Fission Fragments (left) and light particles 

(right) in Volume 0. 
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Figure 12: L vs. ADC, CosPolar, and Azm Plots for Fission Fragments (left) and light particles 

(right) in Volume 1. 

 

 The distribution of each fragment is consistent with the theoretical expectation that higher 

mass fragments will deposit more energy per length of track but won’t travel as far because they 

expend their energy faster. Thus higher mass fragments tend towards the lower right portion of 

the plots while the lower mass particles tend towards the upper left. The recoil region (green) 

represents gas atoms that are hit by a neutron, become ionized and move parallel to the beam 
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line.  This can be seen in the CosPolar plots, explained below.  The stripes (cyan) in volume 1 

represent a mix of out-of-time alpha particles that have “piled up” in the detector during a fission 

event and are only partially recorded.  By identifying the characteristics of those tracks we may 

be able to reduce their contamination in the recorded events.   

 

CosPolar plots are populated on opposite sides of the origin according to the volume.. 

This reflects the measurement of angles from the forward beam direction, regardless of volume.  

Angles π/2 and 3π/2 are the X axis of the FissionTPC. Cos(π/2) = Cos(3π/2) = 0 represents the 

halfway point along the Z axis (Z=0) which divides the FissionTPC chamber into volumes 0 and 

1. Neutrons travel along the Z axis to hit the target at Z=0, and many of the particles are emitted 

along the direction of motion (conservation of momentum). For this run, the thick backing of the 

target prevents fragments from one side from penetrating into the other volume.  So all the 

activity for a given fission event should be in one volume or the other. This corresponds with 

Polar Angles between 0 and π, so the horizontal axis of CosPolar ranges from +/-1. This means 

that for a given volume we should see much more activity on one side of 0 on the horizontal axis 

than the other. Volume 0 corresponds to negative CosPolar values while Volume 1 corresponds 

to positive values.  Further investigation is needed for the few tracks with CosPolar values on the 

opposite side of where they are expected.  These are probably due to track-fitting errors that can 

be corrected.   

Azimuthal (Azm) plots should have roughly even distribution of counts with respect to 

the horizontal axis (angle) since there is no preferred direction perpendicular to the beam axis.  

The spikes in azimuth are likely due to low ADC tracks that need to be removed. Further 

variation in the azimuthal plots is from dead channels or missing cards.  Corrections for these 

inefficiencies will be applied before the cross-sections are determined. 

Figures 13 and 14 show the start and end position of the tracks in volume 0 in the XY 

plane, while figures 15 and 16 show the same thing for volume 1. Note StartXY and EndXY are 

distributions at the start and the end of the track for each particle respectively. The upper left two 

panels in each plot show the uncut and cut regions of the length vs. ADC plots for easy 

correlation with the remaining panels. In Volume 0, note that fragment start points all lie within 

the 2 cm target region. Recoil ions in particular track the beam profile very closely, which is 

elongated and slightly tilted with respect to the horizontal plane.  Simulations of the beam profile 

using the MCNPX program and a precise geometric description of the beam production target 

and collimators upstream of the FissionTPC match this shape nearly perfectly.
13 
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Figure 13: Length vs. ADC and track start positions in the XY plane for all particles and cut 

regions in Volume 0 

 
Figure 14: Length vs. ADC and track end positions in the XY plane for all particles and cut 

regions in Volume 0. 
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Figure 15: Length vs. ADC and track start positions in the XY plane for all particles and cut 

regions in Volume 1 

 
Figure 16: Length vs. ADC and track end positions in the XY plane for all particles and cut 

regions in Volume 1 
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The start points for the fragments are tightly coupled to the target in both volumes because the 

tracking convention is to take the z-position along the track that is closest to the target plane as 

the start point and the end point is the z-position along the track furthest from the target plane.  

The plots show this in the spread out locations of the fragment end points.  StartXY and EndXY 

both exhibit an empty spot at the lower right towards the edge of the hexagonal space in both 

volumes resulting from a faulty or missing EtherDAQ card. 

 

5. Conclusions and Future Work  

 The data analysis presented here is a first attempt to identify tracking characteristics for 

different kinds of particles produced in the FissionTPC. By identifying unusual features 

produced by the tracking software we hope to improve the tracking algorithms so that high-

precision fission cross sections can be measured. The CosPolar plots show that we need to 

improve on direction finding in the FissionTPC. The spikes in the Azm plots show that we need 

to reduce spurious signals from unphysical tracks.  Methods to reduce pile-up alphas and correct 

missing detector components (cards or channels in this case) must also be developed so that we 

can detect and measure all events and activity, as shown by the StartXY and EndXY plots.  All 

code used to create plots in this thesis have been checked in to the NIFFTE software version 

control repository so that future studies may build on this work. Ultimately, the success of the 

FissionTPC rests on the ability to pinpoint the causes of these anomalies and remove them. The 

studies presented in this senior thesis represent a first step toward that important goal. 
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