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EXECUTIVE SUMMARY

Raytheon is a defense contracting company with an electronic warfare division that is
developing a radio frequency signal triangulation system. Part of the focus in improving this
technology is the need for accurate and real time locational knowledge of the signal
receivers, which are located at the tips of aircraft wings. Due to turbulence during flight, the
fluttering motion of the wings alter the distance and angle relationships of the two receivers
and add noise to the received signal data, which negatively affect the triangulation estimates.
To mitigate this error caused by the wing flutter, Raytheon is developing a software
algorithm that predicts the precise locations of the signal receivers in space to attempt to
clean up the incoming signal data.

As part of the development process at Raytheon, there 1s a need for a device that can
move a signal antenna in random, flutter-like motion so rapid testing and refinement of the
algorithm can be done. Thus Raytheon has made this project available for us to complete.

This project was completed over the course of one year, which was divided into three
distinct phases of development. The first phase of the design process was research and
design ideation. In this step, the project specifications that the completed device would have
to meet was defined. Research into existing systems and available technologies was done to
gain knowledge of the wide range of possible solutions that could be explored. During the
second phase of the design process, various actuation methods and their feasibility for use in
this project were analyzed, while iterative refinement of the device was also underway in
parallel. The last phase involved building and testing the final design of the project.

The final product that was born out of this process is a two axis, large amplitude, low
frequency shake device. The vertical axis is belt-driven with a servo drive and meets the
required maximum motion of 11 inch stroke at 1.6 Hz. The horizontal axis 1s rack and
pinion driven with a DC motor that is controlled by an Arduino board in closed loop
control that met the maximum motion requirement of 1.1 inch stroke at 3.2 Hz. Both of the
drive systems were capable of generating a pseudorandom motion that resembles the flutter
of wingtips.

The rest of this report further details the research, analysis, design, manufacturing, and

testing process that was performed to complete the project.
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I.INTRODUCTION

The main goal of this project is to design and manufacture a testing device that will
move an antenna in way that simulates a wingtip in flight in an anechoic chamber for the
Raytheon Company.

Raytheon is a defense contractor that is divided into multiple divisions including Air and
Missile defense, Cyber security, and Electronic Warfare (EW). Raytheon’s EW division in
Goleta, CA is developing and producing electronic warfare products such as radar warning
receivers and jammers for the US military forces. These devices work through signal
triangulation.

Triangulation 1s a method of measuring the distance and location of a signal emitter
using at least two receivers mounted apart from each other, in this case an antenna on either
wingtip of the aircraft. Each antenna receives a signal from the emitter, and based on the
time variation of the signals, and the known location, velocity, and acceleration of the
antennas, the system can detect where the emitter is located. This is useful in military
applications and other scenarios to more accurately detect unseen threats and have greater
situational awareness in the sky.

In order to properly implement this triangulation system though, one must account for
the wingtip dynamics caused by wing flexure under flight conditions. Raytheon needs a test
system designed and built that can simulate these dynamics. People who have an interest in
our device, directly or indirectly, include Raytheon’s software engineers and lab technicians

and the aircraft pilots who will depend on accuracy of the signal triangulation system.
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2. BACKGROUND

In the field of aeronautics, active knowledge of ground-based emitter locations is vital to
the survival and mission success of tactical aircrafts [1]. Where the emitter towers work by
detecting wave reflections off of the target, the passive emitter geolocation systems work by
listening for delays in received waves and changes in wavelengths [2]. To locate a signal,
multiple antennas are mounted on the aircraft wingtips. These points of reference provide
data of the delay between receiving a signal on one detector to the other as depicted in
figure 1. This is called the time-difference-of-arrival [3]. This data is combined with the

known positions of the detectors to estimate the location of the ground-emitters [2].

Signal
Wavefront

BA 04

V \v\
| J |

Figure 1: Diagram of emitter location estimation [6].
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An obstacle in achieving high accuracies in such systems is the difficulty in knowing the
precise location of antennas during flight [3]. The difference in lift generated along the
length of the wing along with turbulence and wingtip vortices cause flutter in the wing. The
flutter caused created during flight can vary the location of the wingtip antenna by as much
as 11 inches in some crafts [5]. The flutter causes the wing to vibrate in an erratic sinusoidal
pattern. One way to mitigate the effects of the flutter on signal triangulation is to employ
software algorithms to predict the instantaneous location of the antennas [5]. This system
combines the methods of triangulation, hyperbolic location, and statistics to produce
accurate and combat ready triangulation implementation [4]. Thus to develop and calibrate
this flutter-filtering software, a method of simulating the motion of a mounted antenna is

needed.

)~ « ) Elastic axis
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Figure 2: Wing deflection during flight [5].
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Figure 3: The varying path of antenna during flight [6].
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2.1 Current Systems

2.1.1 Vibration tables

Vibration tables use mechanical means to excite a table surface at a high frequency. The
research in currently available products led to the conclusion that most vibes tables only
have max amplitudes in the order of .5inches, with high amplitude models barely
accomplishing 3.5inches of displacement. 2-axis systems similar to what we need exist, but
they also fall very short of our required 11” amplitude, with the largest found having 3”
amplitude.

2.1.2 Industrial Vibration Platforms

There are two types of automobile simulation platforms; one type is essentially a scaled
up vibration table and the other is a seismic simulation platform that uses electromagnetic
and electro-hydraulic exciters. The large scale vibration table has the disadvantage of only
being able to output one frequency and the amplitude adjustment is difficult. [11] Some
automotive shakers that operate with electromagnetic and electro-hydraulic exciters could
get the required motion profile. For both of these, however, the size is much larger than

necessary and cost of the system is in upwards of hundreds of thousands of dollars [12].

Figure 4 : Indistrial vibration driver from Briiel & Kjeer. [13]
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Figure 5: Instron Structural platform for use in automotive testing [7].

Table 1: Sample specifications for Instron Structural 6 axis motion

platforms [7]

Unit MAST-8710 MAST-8720 MAST-9725 MAST-8730 MAST-9735
Pay Load used kg 300 450 450 800 800
for Calculation Ib 660 990 990 2200 2200
kg 300 300 300 545 545
Table Mass b 60 660 60 1200 1200
Table Work - mm 1200 x 1200 1700 x 1500 1700 x 1500 2100 x 1800 2100 x 1800
Area Dimensions in 47 x 47 67 x 80 67 x 60 83xT 83xT1
Peak Acceleration -  mysec® 127 60 102 64 106
Vertical [} 13 6.1 103 6.5 108
Peak Acceleration- m/sec 100 48 i 50 80
Lateral q 101 48 18 5.1 8.1
Peak Acceleration -  m/sec? 49 40 40 26 40
Longitudinal q 5 4 4 26 4
Peak Velocity - m/sec {125] 17 21 2 2
Vertical in/sec 59 66 82 18 78
Peak Velocity - m/sec 125 15 19 18 2
Lateral in/sec 48 59 4 70 78
Peak Velocity - m/sec 1 11 15 13 13
Longitudinal in/sec 39 43 59 51 51
. e mm +75 *75 *75 *75 %75
Stroke - Vertical in +3 i3 ) ) L3
G mm /A +125 +125 =125 =125
Stroke - Vertical in NA +5 = 5 o5
mm =75 +75 =75 =75 =75
Stroke - Lateral in +3 i3 +3 i3 L3
- mm +75 +75 +75 +75 +75
Stroke - Longitudinal in +3 3 +3 3 +3
LR He 0-60 0-50 0-50 0-60 0- 60

2.1.3 Large Motion Simulator

The only complete packages that exist that are close to meeting our requirements are
large motion simulators like those used in high end flight and racing simulator games. These
systems operate using a number of large amplitude actuators with inputs of real-time
positions for each of the actuators to recreate the sensations of racing and flight. Although

the actuators used in these products are less expensive than industrial grade electromagnetic
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actuators, they are still prohibitively expensive and they have the problem of the actuators

not being able to move fast enough.

InMotion Simulation v ST

}/ . iy
HOME | PRODUCTS | FLIGHT SIMULATORS | SOFTWARE CONCEPTS | UPGRADES | VIDEOS

6 DOF Hydraulic (Level D)

Accelerations iti Standard Payload Sizes
= £ 30° pitch « 150°/sec™2 « 40°/sec = 15,000 Ibs | 6,800 kgs
= =+ 30° roll + 150%/sec”™2 « 409/sec = 20,000 Ibs | 9,000 kgs
+ +45° yaw + 150°/sec”™2 « 40°/sec = 25,000 |bs | 11,000 kgs
+ + 32" heave = 1.0g « 24"{sec = 30,000 |bs | 13,000 kgs
+ + 34" surge = 1.0g * 24"fsec
+ + 34" sway = 1.0g * 24"fsec

Standard Payload Sizes

3,000 Ibs | 1,300 kgs
5,000 Ibs | 2,200 kgs
8,000 Ibs | 3,600 kgs

« £ 30° pitch
+ =+ 35° roll

+ 1,000°/sec™2
+ 1,000°/sec™2
+ 1,000°/sec™2

+ 359%sec
+ 359%sec
35°%/sec

- 1.0g + 18"/sec 10,000 |bs | 4,500 kgs
« 17" surge - 1.0g + 18"/sec
+ =+ 18" sway - 1.0g + 18"/sec

wynw. inmotionsimulation.com

Figure 6: Flight simulator actuators [9].

2.1.4 Patents

Searching through the patents directory, we found conceptual ideas that have a
possibility of being reconfigured to suit the needs of this project. A function that was
focused on during the patent search was the creation of large amplitude vibration. A patent
by the name of “Dual-frequency vibrating screen” [14] describes a system that pulls a fabric
over a frame to create a tight sheet where objects can be placed and excited via external
means to the frame. This patents points to a possibility of using a system of springs to
amplify the motion from a smaller external excitation method. The patent, however, would
only allow for a single direction of motion and would require a different system to
incorporate a second direction of motion.

Another patent describes a design for a large scale vibration table to be used in aerospace
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and automotive testing [15]. This vibration table uses the principle of a cam and follower by
driving a rod with non-circular cross-section below the table surface. The design claims to
provide high carrying capacity, high frequency and overcome problems of longevity.
However, the cam-follower mechanism would not provide an adequate amplitude for use in

this project.

Figure 7: Patent drawing from CN203132810 U.

2.2 Methods of Actuation

2.2.1 Linear Actuators

Three common types of actuators are hydraulic, pneumatic, and mechanical. Hydraulic
actuators have two chambers and a pump that pumps pressurized hydraulic fluid between
the two to move a piston. Pneumatic actuators are similar but use pressurized air rather than
fluid. This creates the need for an air compressor instead of a fluid reservoir. There are
various types of mechanical actuators including those operating with a screw, wheel and
axle (belt, chain, etc), or cam.

To start, the only actuators that can supply a reciprocating motion, rather than just
pulling or pushing, are hydraulic, pneumatic, or lead screws. The most viable of these three
options is the screw actuator, in which an electric motor is connected to the screw and can
turn its rotational motion into linear motion in either direction. This method is better than
both hydraulic and pneumatic because there is no loud, bulky compressor and no fluid

reservoir, pumps, and lines running throughout the device.
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Most linear actuators are either high frequency and low stroke, or high stroke and low
speed. A few suppliers, including Exlar and Parker, were found that produced high
amplitude linear actuators that were also high speed. These products had speeds of up to 2

m/s with a large enough stroke along with linear feedback which is needed for our

controller.

ABOUT EXLAR EMPLOYMENT eNEWSLETTER CONTACT US | Search

GSM Series

Electric Linear Actuators

GSM Series Motor/Actuators

GSM20 - 2 inch frame, 580 Ib continuous force

GSM20 - 2inch frame. 530 b continuous force | pPerformance Specs Mechanical and Electrical Specifications Life Curves Speed Force Curves
GSM30 - 2 inch frame, 1280 Ib continuous force

GSMA40 - ¢ inch frame, 3460 Ib continuous force Frame Stroke Sorew Cont Force Wax Max Static  Armature Dynamic Load Weight
Size  in Lead Rating Velocity  Load Inertia, Rating {approx.}
in {mm} in 1orZ stack inisec Ib Ib-in-s bf In
{mm) m Ib mmisec)  [H} {Kg-m?) ) {Ka)

0.00101
{0.000114)

GSM20-0302

GSM20-0304 T

{0.000114)
G5M20-0601

GSM20-0602

GSMZ20-0604

G5M20-1001

GSM20-1002

GSMZ0-1004

G5M20-1201

Figure 8: Sample of Exlar specification sheet for high speed, high
amplitude actuators [8]

2.2.2 Cam/Follower and Crank/Connecting Rod

A cam and follower uses the non-concentric shape of the cam to impart linear motion
on a follower. However, a cam is only able to push and cannot pull back on the follower.
Thus a spring is necessary on the follower in order to maintain contact. Crank and
connecting rod mechanism uses the concentric motion of the crank and converts it into a
linear motion using a follower that has one end constrained to one direction of motion.
Crank and connecting rods are able to both push and pull. Both of these options are
somewhat viable for this project because long stroke can be achieved with proper
mechanism design and the frequency can be varied with the speed of the motor. However, it

lacks variability of amplitude and would excite the system with the same amplitude on each

cycle.
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2.2.3 Spring-Mass System

A spring-mass system would be useful as an intermediary component in our device by
bridging some of the shortcomings of the aforementioned actuation methods. A spring-
mass system can be tuned to resonate at two desired frequencies and the base of the springs
can be excited using one of the actuation methods outlined. For example, it is difficult to
find an affordable electric actuator that has a large enough stroke and frequency, but a
payload suspended by springs could be excited with a smaller, more affordable actuator.

From our research, no systems similar to what we desire currently exist. In addition, the
motion they produced would be very dependent on the mass of the payload, so in order to
prevent the need for re-tuning any time a new payload was being tested, we would need to
add a ballast device to our system. That way we could add or subtract mass to maintain a

constant total mass.

2.2.4 Linear Servos

Linear servo motors utilize a technology similar to a MaglLev Train and are composed
of an array of magnets with a matching electromagnetic slider that glides over the magnets.
Linear servo motors can have its tracks scaled to any length by connecting more magnetic
tracks together and they are commonly used in manufacturing automation where a long
linear translation is required. Linear servo motors can move with very high velocity and
acceleration. The output force is less than linear actuators, but it is still sufficient for our use.
The 1nitial design plan was to use a linear servo in the system to drive both axis of motion
because of the easily achievable high speed and acceleration and the positional control it
offered, but later discovered that linear servo motors need high-voltage drivers and expensive

encoders for it to work. The estimated cost for such a system was around $12,000.

2.2.5 General Purpose Motors

General purpose motors are inexpensive motors made with permanent magnets most
commonly used for driving fans or pumps. They are intended to run at a steady rate for an
extended period of time and take longer to ramp up to speed than a servo motor. Like the
servo motor, an encoder can be mounted to give positional feedback, however they are not
designed for high speed and high temperature use. Because of the slow acceleration and low

heat dissipation, general purpose motors are not suitable for our use.
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Figure 9. 12V DC Motor [16]
2.2.6 Servo Motors

Servo motors are motors that allow for angular position control using either a built-in
encoder or a retrofitted encoder. Most servos are designed to have a high input voltage and
good thermal dissipation in order to deliver high acceleration and continuous motion. A
specialized servo drive must be used in order to supply adequate voltage and control to the
servo. Servo motors are more expensive than the general purpose motors, but have the

capability to deliver the performance needed at a lower cost than most linear actuators.

Figure 10. TLY-Series Servo Motor [17]

2.3 Drivers

Motors drivers, also known as amplifiers or speed controllers, power the motor and
enable it to perform to the desired specifications. Servo motors are driven by specialized
servo drivers which are electronic amplifiers that amplify a command from the controller
and give a varying output to the motor to match the desired motion. These servo drivers can

output the command signal in terms of desired velocity, position, or torque, depending on
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the requirements. General purpose motors are driven by speed controllers that power the
motor using pulse width modulation. PWM is when the controller sends on and off signals
in rapid succession to the motor so it appears that the motor is only operating at a fraction
of its total power. This is needed because the motor can’t normally operate at variable

power, only fully on or off.

2.4 Controller

Programmable logic controllers (PLCs) can be programmed with a desired motion. They
receive inputs from a sensor on the system and give an output to the motor. For our system,
a microcontroller can receive digital inputs from a position, velocity, or acceleration sensor
and output a PWM signal to our driver. Arduino makes a Uno microcontroller which is a
microcontroller on a circuit board. Arduino microcontrollers are inexpensive, easy to use,

and flexible to be customized.

Figure 11. Arduino UNO Microcontroller [18]

2.5 Anechoic Chamber

An anechoic chamber is a shielded enclosure coated in absorption material that
prevents any external or internal radio frequency signals from interfering with emission
measurements. It is used to increase accuracy and repeatability of testing antenna radiation
patterns, electromagnetic compatibility, and radar cross section measurements. RF
absorbing material (RAM) is used to reduce reflections of incident RF radiation from as

many directions as possible, for this reason its most effective setup consists of an array of
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pyramid shaped pieces that cover the entire room. Any testing devices that have exposed
metal must also be coated in this RAM to prevent reflection of RF. The standards for
certification of anechoic chambers and RAM are found in the Department of Defense
Interface Standard 461E. It states, “During testing, the ambient electromagnetic level
measured with the EUT de-energized and all auxiliary equipment turned on shall be at least
6 dB below the allowable specified limits when the tests are performed in a shielded
enclosure.” [10]

To ensure our testing device doesn’t reflect RF above the allowable limit, we will cover
any exposed metal with RAM. This may require larger portions of RAM if any moving
parts on the device would expose themselves during testing. There is an anechoic chamber
on Cal Poly’s campus that we will be able to use for verification of our device’s RF
“quietness.” One issue we may run into due to this insulation is the reduction of heat
transfer from our testing device. If most of the device is covered by RAM, it will be highly
insulated and we may need to integrate a cooling system depending on how much heat the

device generates.

2.6 Data Acquisition

For some of the systems we have been looking into, either the actuator or the motor
supply positional feedback. For systems in which neither of these components have sensors,
we will need to incorporate a sensor to either measure position, velocity, or acceleration.

The easiest of these to measure is position through the use of linear encoders or
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potentiometers. Our servo motor is paired with an incremental encoder that gives position
feedback to the driver. And on both axes, we will put linear magnetic encoders to give

accurate position data about the test sensor.

2.7 Power Sources

The components in our system that need to be powered include the motor, driver,
microcontroller, and encoder or potentiometer. As stated earlier, each motor will be powered
by its respective driver or speed controller. The driver we have chosen for the vertical axis,
the Allen-Bradley Kinetix 3 drive requires 1 phase, 240 VAC input which can be obtained
from 240V wall sockets. Standard microcontrollers need 5V input and can be powered by a
USB cable, AC-to-DC adapter, or a battery. Finally, various magnetic linear encoders we
have been looking into are powered through a control cable that will be connected to our

computer.

Figure 13. Kinetix 3 Servo Drive [20]
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3. OBJECTIVES

Raytheon develops antennas to be mounted on the wingtips of planes used for radar
triangulation systems, which transmit important information to the pilots. The flutter
motion of the wingtips in flight decreases the accuracy of the triangulation system, and it is
important to be able to predict the location of the wingtip under flight conditions to more
accurately implement signal triangulation. Software solutions exist that filter out the noise
and correct for antenna location, but they must be tested, preferably on the ground and not
in flight. A portable system to simulate flight conditions is needed and must fit in an
anechoic chamber at the Raytheon facility. The objective of the project is to create a two-
axis, low frequency, high amplitude vibration device that simulates the motion of an
antenna during flight and transmits real time data of antenna position, velocity, and

acceleration.
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3.1 Customer Requirements

The customer requirements shown below were provided by Raytheon and are the basis

for our engineering specifications we developed.

Table 2: Customer Requirements

Requirement

Comments

Simulate flight conditions of wingtip

Motion needs to match the supplied profiles

as closely as possible

2 Axis System

Needs to move the antenna in the vertical

and horizontal axis

Selectable motion and frequency

4 specific motion profiles need to be able to

be produced

Random Amplitude and phase inputs added

System needs to be able to simulate random
impulses that will significantly change the
motion of the system to simulate turbulence

and other fluctuations in the wingtip

Real-time knowledge of motion

System must output position, velocity, and

acceleration data in real time

Test system does not reflect RF

Metal surfaces would reflect RF, altering the

signals detected by receiver

Reusable test machine

Device needs to be durable, and capable of

being used for many tests

Mount payload on device

Must support a variety of payloads. Can’t be

made custom for each one

Can be transported to Raytheon facility

Must be a reasonable price

Quick setup time and turn around rate
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3.2 Formal Engineering Requirements

The Formal Engineering Requirements we are proposing are listed below. We used

Quality Function Deployment (QFD) to interpret all customer requirements and identify

the engineering specifications. The House of Quality can be found in Appendix B.

Table 3: Formal Engineering Requirements

Spec. #

Requirement or

Description Tolerance | Risk | Compliance
Parameter Target
1 Multi axis movement 2 axis of motion Min M S, 1
2 Can accelerate l_oad n x 6ginx, 14iny Min M AT
and y axis
3 Can pro.duce 4 specific 4 profiles Min L AT
motion profiles
Data refresh rate is 4-10 .
4 times bandwidth SUHz Mn ) L L1
Impulses can be added 11in
) that will extend vertical . Min H ATI
. displacement
displacement
Sensor only
6 No RF Reflection receives signals Max L Al
from transmitter
7 High expected lifetime 10000 cycles Min L A, S
8 Can fit through door 3ft*7ft Max M I
9 Accuracy +5% Max L A, S
10 Accommodates payload g)lbs, 6m Min L I
lameter
11 Cost $5,000 Max M A, S
12 Multiple independent 3 tests Min L T
tests per day
Impulses can be added
13 that will extend 1.1" Min H ATI
horizontal displacement
Able to fully
operate system
14 Clarity of instructions after 1 hour Max M T
reading
instructions
15 Time to set up device 3 hours Max M T

On the list of Formal Engineering Requirements, the Tolerance states whether each

requirement or target is the maximum or minimum value needed for compliance. The Risk

column lists the difficulty we expect to experience in meeting the goal. We expect to face the
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most difficulties in producing high enough accelerations and displacements for our device.
Compliance shows the methods by which we will ensure each requirement is met. These
procedures include Analysis (A), Test (T), Similarity to Existing Designs (S), and Inspection
M.

Requirements 2, 5, and 11 will be tested by looking at the motion profile output by the
onboard sensors and verifying that it matches the required output. Requirements 14 and 15
will be verified by recruiting volunteers to attempt to learn and use the product once it is
complete.

A short explanation of each specification is provided below:

1. The motion of the wingtip can be approximated as 2 axis motion, so the system must

replicate this.

2. These accelerations were calculated from the motion profiles supplied by Raytheon.
3. The wing vibration model shall contain 2 modes in each axis:
e Vertical:

o 1.6 Hz, 6.6 cm (zero to peak) sinusoidal with nominal guests, 1c.
o 3.2 Hz, 1.7 cm (zero to peak) sinusoidal with nominal guests, 10.

e Horizontal:

o 3.2 Hz with amplitudes 10% of vertical.
o 6.4 Hz with amplitudes 10% of vertical.

4. The definition of real time as supplied to us by our sponsor is 4-10 times the
bandwidth of operation, which in our case maxes out at 6.4Hz.

5. The device must have displacement limits of *11in in the vertical direction. These
displacements are achieved by adding pseudo-random impulses to the primary
modes of vibration.

6. RF reflection by our device could compromise the test.

7. All components will be designed with maximum lifetime in mind.

8. Must be able to get in and out of buildings with standard doors, either complete or
disassembled.

9. Data output must be within +5% of actual.
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10. Must be able to accommodate the supplied payload. Mounting hardpoints must be
flexible enough for a variety of payloads.

11. Budget expected to be $3000-$5000.

12. Same as specification 5, only in the horizontal direction with a smaller amplitude.

13. Setting up and resetting the test can’t take an excessive amount of time.

14. System must not require special training to use, or be too complicated to use
effectively without extensive practice.

15. Initial set up must be relatively quick, as lab space is valuable. Less time setting up

means more time doing useful work.

Wingtip Dynamics Simulator Final Report

22



4. DESIGN DEVELOPMENT

4.1 ldeation

After sufficient background research was done so that we felt that we understood the
project scope, we began a series of idea generation exercises. To assist in staying focused for
ideation, four main functional area were identified as important to the project. The four
functions were “generation of motion”, “random noise input”, “2D constrained plane of
motion” and “data acquisition.” For each of these functional areas, we performed
brainwriting as the first exercise. Brainwriting involves writing down as many ideas as
possible on a sheet of paper in a short timespan (no more than 5 minutes) then switching the
sheet with other team members to perform another round of brainwriting. The second
exercise was a series of brainstorming sessions using sticky notes to rapidly create and
branch off ideas. Lastly, we created some models of our ideas using foam core, legos, office
supplies, and other craft material to quickly verify viability of ideas and demonstrate

functions. In the end, we generated 87 distinct ideas that could potentially be useful in

solving our problem.

4.2 Evaluation

After generating an extensive list of all possible ideas for our four functions, we began to
evaluate them. Our first process was Go No-Go in which we eliminated all the unreasonable
ideas generated through ideation. This included ideas that were simply far too expensive or
technically impossible. The Go No-Go cut down our ideas almost in half.

We followed this with our first set of Pugh matrices in which we chose our best concept
to set as the datum and compared it to all other concepts for a variety criteria for each
function. This allowed us to determine if there were some ideas which at first looked
inferior to our datum, but actually were superior in certain aspects. It also allowed us to see
those ideas that were inferior to the datum in every quality so we could eliminate them
easily.

The second set of Pugh matrices consisted of all the top concepts from the previous
matrix gathered into sets of systems. We evaluated a variety of these systems under more

specific criteria including quickest response time of payload and ease to vary the amplitude
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of the payload motion. We were left with three final systems that stood out: a direct
mechanical actuator, a cam and spring combination, and an actuator with a spring. These
ideas were chosen for their combined superiority in price, complexity, configurability, and
how well they produced the desired motion.

Finally, we had to weight each criteria so the systems that were superior in the most
important aspects would stand out. To create this weighted decision matrix, first we had to
figure out an accurate weight for each criteria. We calculated the various weights through
use of pairwise comparison. The criteria were individually compared to each other and the
more important criteria got a point for each comparison. The ratio of points for each criteria
to the total points generated gave us the weight. We used this weight combined with how
well we were satisfied with each concept’s performance to calculate a weighted score for
each criteria and, summing the scores up, could pick the best concept. The mechanical
actuator was chosen as our top concept followed by the spring-actuator combination.
Although further research into actuator price could prove that long stroke mechanical
actuators are out of our budget in which case we will proceed with the spring driven system.
Please see all Pugh matrices and the weighted decision matrix in Appendix C along with

explanations for each criteria and justifications for the scores.
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4.3 Top Concepts

4.3.1 Spring Drive

Figure 14. Draft 3D model of spring-actuator design.

This system will be driven by a short stroke mechanical actuator in the horizontal axis
and a medium stroke actuator combined with a spring in the vertical axis. The payload will
be attached to a carriage that slides along a rail in the horizontal axis. This rail will also be
attached to a carriage that will slide along a vertical rail. The payload carriage will be
connected directly to a small linear actuator, which will be controlled via a servo controller.
This will allow amplitude and frequency of motion in the horizontal axis to be input directly
with complete control.

The vertical axis will be driven by an actuator connected to the carriage by a long spring.
This spring will amplify the motion of the actuator, and allow for the high speeds and
displacements needed by the system. This actuator will also be controlled by a servo
controller, but the inputs will need to be generated beforehand to guarantee the output

motion matches the desired profile.
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Figure 15. Proof of concept Matlab simulation of payload movement due
to base excitation.

Motion profiles can be generated in advance for each actuator to allow the system to
operate at each of the 4 primary frequencies. The spring in the vertical axis may need to be
swapped for one of a different stiffness when the vertical frequency changes.

In order to conduct initial testing on the system, the rail and carriage for the vertical axis
would need to be purchased, as well as the actuator and spring. A compatible servo
controller for the actuator will need to be determined and purchased as well. A dummy
weight will need to be mounted to the carriage, and the spring and actuator attached to the
carriage. Testing of the spring-actuator system can then begin, with coding for the control of
the actuator beginning and being tested on the real system to verify it works properly.

Once the system has been shown to work in one axis, parts for the other can be ordered
and final assembly can be completed. From there, testing of the full system with motion in

both axis will begin.
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4.3.2 Direct Drive

oo

Figure 16. Sketch of direct driven payload.

This system will be identical to the previous system except for the vertical axis will no
longer have a spring in it. This concept requires a sufficient budget to purchase an actuator
with a long enough stroke and high enough speed to not need spring amplification. This
would allow for the vertical axis to be directly controlled just like the horizontal axis,
meaning generation of movement profiles would be much easier and faster, as well as more

flexible in the kinds of motion it could generate.

4.3.3 Outcome of Top Concept

At the end of the Concept Design Review, we were excited that we had found a
seemingly feasible drive mechanism and design to meet our project goal. On the surface,
mechanical actuators seemed like they would be within the budget. However, when we
began delving deeper into actuator suppliers, we discovered that linear actuators require a

separate purchase of a high powered servo motor and an equally expensive servo drive. The
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problem was that there are no vendors who supply inexpensive hobby-grade linear actuators
with the required speed and stroke and actuators intended for heavy factory-use were grossly
overpowered for our need. Once we learned that going with a pre-built linear actuator was
not feasible, we decided to construct our own actuator mechanism using a servo motor. The

resulting design is outlined in the following sections.
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5. FINAL DESIGN

Figure 17. Overview of final system design.

5.1 Description of Product and Features

The final design for the wingtip dynamics simulator 1s shown above. The main driving
mechanism of the system is a servo motor and belt drive for the vertical motion and a DC
motor on a rack and pinion for the horizontal motion. The two axes of motion for the
payload will be independently controlled and a linear encoder will collect data on the
location of the payload during the test. To simplify the operation and function of each
distinct subsystem, the description of various component groups will be divided up in five
sections: vertical electrical subsystem, vertical mechanical subsystem, horizontal electrical

subsystem, horizontal mechanical subsystem and the frames, rails and base.

5.1.1 Vertical Electrical Subsystem

The main component of the vertical motion is the Rockwell Automation’s TLY-230
series servo motor. This servo offers sufficient power needed to simulate the motion of a

wing tip. It has efficient thermal dissipation, which allows the servo to be continuously run
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through rigorous motion routines. The servo motor is driven by a matched servo drive from
Rockwell Automation called the Kinetix 3 and offers control of the servo motor using
feedback from an encoder. An encoder is attached on the vertical rail, which will allow for
data collection on the position with accuracy of up to 0.001in. The user interface and

motion profiles will be programmed using the RSLogix software.

5.1.2 Vertical Mechanical Subsystem

Since the motor has a high optimal operation speed (4500 RPM), a 20:1 gearbox will
step down the speed and at the same time increase the torque. A favorable side effect of
using a worm gear based gearbox is that upon system shutdown, the worm gears will self-
lock and the payload will not crash down. The rotational motion from the gearbox will be
transferred into a belt drive, which will create the long stroke vertical motion. The vertical

stroke will be transferred onto a carriage mounted on two rails.

5.1.3 Horizontal Electrical Subsystem

The electrical system includes a DC motor and a DC speed controller. The DC motor
will be receiving an input signal from a microcontroller like the Ardruino microcontroller
board. The signal input will be a sine wave with varying amplitudes and frequencies. The
speed controller then translates the signal into a larger voltage PWM signal to move the
motor at a certain power. As with the vertical orientation, there is an encoder mounted on

the rails for positional knowledge.

5.1.4 Horizontal Mechanical Subsystem

Much like the vertical orientation, the horizontal motion is constrained by use of two
parallel rails. The motor at the bottom of the payload platform is connected to a pinion gear.
A rack gear 1s connected to the rails, which slide independently from the payload platform,
and allows for an oscillating horizontal motion. Since the DC motor with the DC speed
controller will not offer any kind of feedback, a spring system will be mounted to force the

horizontal system to stay centered while the device is operating.

5.1.5 Frames, Rails and Base

There are two sets of rails (two in the vertical direction and two in the horizontal) that
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act as a motion constraint for the payload support for the whole device. The rails fit with
carriages that were selected and mitigate the moments the belt would not be able to support.
The base is a simple rectangular plate of aluminum with matching bolt holes for all the
components. At the top of the belt drive system is an intuitive belt tensioning system; the
two bolts below the free spinning shafts can be screwed in to raise the free pulley higher and

increase tension in the belt.

5.2 Manufacturing Process

The majority of the parts being used in this design come either in their final form or very
close to it. The rails, angle bracket, and bottom plate will have their major features roughed
out with a band saw, then a finishing pass taken with a mill where necessary. Holes will be
located by hand and then drilled on a drill press. The drive shaft and free pulley axle will
both be cut from a longer rod on a band saw.

For more detail on any part which has a manufacturing process more complicated than

those above will be found in Appendix H, on the page following it’s detailed design drawing.

5.3 Integration Concerns

An area of concern regarding timely completion of the build process is programming the
driver for the servo motor. No one on the team has much experience in configuring motion
control hardware except from Controls and Mechatronics class so we may face some
challenge. However, there is a Rockwell Automation lab on campus where there is motion
control equipment that is pre-configured and many commonly used hardware programming
languages that are available for our use. Thus we feel that we have the capacity and resource

to learn and create a routine for testing.

5.4 Design Analysis

See Appendix D for all calculations and part specifications.

5.4.1 Motion Requirements

Raytheon provided us with the amplitudes and frequencies of two modes of vibration
for each axis. Using this data, we were able to calculate the maximum velocity and

accelerations required for each axis. The payload must be able to accelerate at 1.4g and
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reach a max velocity of 55.3 in/sec in the vertical axis and accelerate at 0.6g to a max

velocity of 11.0 in/sec in the horizontal axis.

5.4.2 Motor Sizing

From the payload weight and previously calculated motion requirements, we determined
the maximum force and power that needs to be applied on each axis. Given a 10 Ib max
payload weight, we assumed the total weight in the vertical axis will be 15 Ib. When the
payload is at the bottom of its oscillation and is accelerating upwards, it needs to fight
gravity and thus experiences an acceleration of 2.4g, resulting in 36.6 1b needed for the
motion. These dynamics can be supplied by using a 0.31 HP motor. Assuming the total
weight to be moved in the horizontal axis is 13 Ib at an acceleration of 0.6g, 7.47 1b is
required to move the mass accordingly. A 0.0125 HP motor can produce this motion. For
the vertical axis, we ended up selecting a 0.59 HP servo motor from Allen-Bradley. The
motor was selected due to its high thermal dissipation and ability to sustain continuous
motion and high accelerations. When geared properly, the motor will be sufficient for our
device. For the horizontal axis, we selected a geared, 12 V DC motor supplied by McMaster.

It can generate 0.073 HP and doesn't need to be geared further to suit our purposes.

5.4.3 Drive and Controller Selection

Since the servo motor we are using for the vertical axis requires such a high input voltage
and high control, it needs a specialized drive. The Kinetix 3 servo drive, also manufactured
by Allen-Bradley is compatible with the motor we selected and can give us closed loop
position control of the motor. It can supply 400 W, which is sufficient to power our 0.59 HP
(or 440 W) motor, but is not capable of outputting power that will exceed the motor’s rating.
For the DC motor in the horizontal axis, we chose a motor driver from Pololu based on its
voltage and amperage specifications. It can deliver 12 A continuously (5.91 A are required

by the motor), and it operates from 5.5V-24V so it can drive our 12V motor.

5.4.4 Rack and Pinion Sizing

To actuate the horizontal motion, our design will use a DC motor mounted to a rack
and pinion system. In order to minimize chances of burnout, it is more desirable to operate

the motor near its rated max speed. Therefore, the diameter of the pinion must be
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determined that will generate the required maximum speed on the rack. Given the DC
motor speed of 179 RPM and the maximum horizontal velocity of 11.1in/s, the necessary
pinion size was determined to be at least 0.587in. A pinion size of less than the derived
value would fail to achieve the required velocity; therefore when looking for the part, a
pinion of size equal or greater must be chosen. Steel gears will be chosen and the gear
stresses are assumed within safe ranges since other more demanding gear analysis has
yielded huge factors of safety and also since the horizontal axis experiences loads far less
than the vertical. The rack will be selected to match the teeth specifications of the chosen

pinion.

5.4.5 Gearbox Selection

To step down the servo motor speed and increase torque, a gearbox offered the best
option for a preconfigured package that would be simpler to install than a full gear train
constructed by us. Knowing that the servo motor will need to be driven at a maximum of
0.31hp and that the optimal power output occurs at 5000 RPM, a 20:1 gearbox from
McMaster Carr was selected. Its maximum input power specification is 0.52hp and
maximum input speed of 4500 RPM. At 4500 RPM, in conjunction with the selected
driving pulley size, the gear ratio of 20:1 will create the speed and torque we need on the
belt. In addition, the input speed restriction on the gearbox would mean that the servo
motor has to speed up to 4500 RPM rather than to 5000RPM and be quicker to reach

necessary speeds.

5.4.6 Gear Bending Stress

To ensure the selected gears do not fail under the expected loads they will be subjected
to, we compared the yield strength for 1018 steel with the bending stress experienced by the
drive pulley in the vertical drive system. We used Shigley’s Mechanical Engineering Design,
9th edition for all necessary factors and material specifications. From the analysis, we
concluded that the gear has a factor of safety of 19 against bending stress. We did not
perform any stress analysis on the rack and pinion set up for the horizontal axis due to the

extremely large factors of safety present in the vertical axis.
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5.4.7 Carriage Loads

As the payload moves up and down, the cantilevered payload imparts a moment on the
four carriages on the rails. Carriages are rated for a maximum dynamic load of 336lbs and

the maximum load experienced on a carriage is 57.8lbs giving a safety factor of 5.8.

5.4.8 Vertical Rail Deflection

As the payload moves horizontally, the vertical rails experience a side to side twisting
moment, which may cause a deflection in the rails. However, the analysis for bending

showed that the effect is negligible since the loads are minimal.

5.4.9 10-32 Bolt Pullout

At the base of the vertical rails, the horizontal motion of the payload applies a moment
and a pulling force onto the bolts. The vertical tension force on each of the bottom plate
bolts is 23.41bs. Since the bolts are made of steel and the angle supports are made of
aluminum, the angle brackets are the higher risk of the two. The internal thread has a thread
engagement area of 1.5152in"2 where the 23.41bs of force creates a stress of 15.44psi.

Aluminum’s ultimate tensil strength is 45000psi; therefore, there is no risk of bolt pullout.

5.4.10 Spring Selection

Since the damping coefficient of the rails is unknown and not published, we will wait
until we have the parts in hand to conduct tests to determine the damping coefficient. Once
the coefficient is known, we can determine the spring constant required for the horizontal

axis drive system.
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6. PRODUCT REALIZATION

6.1 Manufacturing Process

Figure 18. The final product.

This project involved a tight integration of both hardware and electronics, thus the
manufacturing of the mechanics and development of the electronic drive systems occurred
in parallel. This section outlines the process and outcome of the build phase and is divided

into sections according to the functional subassemblies.
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6.1.1 Structural Hardware

Figure 19. (Left) The angle brackets with bearings installed ax;d drive
shaft attached to the gearbox. (Right) Rail and carriage assembly
attached to angle brackets and gearbox.

Both angle brackets were cut from a single large rectangular plate of aluminum on a
band saw, and then holes were drilled and tapped in the two perpendicular sides to allow
the rails and base plate to be attached. Mounting holes for the vertical drive shaft bearings
were drilled in each bracket, as well as a larger hole for the drive shaft to pass through.

Carriages were mounted to their corresponding rails via pre-drilled mounting holes after

the rails were cut to length.

6.1.2 Payload Plate
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Figure 20. (Left) Payload plate being cut on a band saw. (Right) Payioad
plate attached to rail and carriage assembly.

The payload plate was cut from carbon fiber on a band saw, taking care to vacuum away

excess carbon dust. Mount holes were then drilled and the plate was bolted to the four
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carriages that slide in the pair of horizontal rails. These rails were then bolted to the four

carriages that slide in the pair of vertical rails.

6.1.3 Vertical Drive System

Fire 21. (Left) Belt clip being made on ;mill. (Right) Belt clip attached
to belt and rail.

The belt clip was milled out to have 3 grooves corresponding in size and spacing to the
ridges on the drive belt. Then two holes were drilled and tapped on either side of the

grooves to allow the clip to be bolted onto the upper horizontal rail.

Figure 22. (Lft) Drive pulley attached to drive shaft with belt in place.
(Right) Vertical drive motor mounted to the base plate and connected to
the gearbox.

The drive pulley was mounted onto the drive shaft in between the two angle brackets
using a set screw which fit into the keyway in the drive shaft.
The vertical drive motor was mounted onto an aluminum angle bracket via four bolts,

and that bracket was in turn bolted to the base plate. The large circle in the motor bracket
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was machined out using a mill while being held on a rotary table so the very large diameter
circle could be cut evenly.
The gearbox was bolted down to base plate by drilling holes in the base plate matching

the pattern of holes that came preinstalled in the gearbox housing.

6.1.4 Horizontal Drive System

R
Figure 23. (Left) Horizontal drive motor and electronics being tested.
Tape was used to allow breakaway in case of overextension. (Right)

Horizontal drive rack and pinion installed on the back of rail and payload
plate.

The horizontal drive motor was mounted to the payload plate using the preinstalled
mounting holes on the face of the motor. One of the holes in the payload plate was extended
into a slot on the mill to allow the motor to be adjusted closer or further from the rail.

A potentiometer was mounted between the payload plate and the rail using small bolts

to allow for positional feedback to the motor control system.

6.1.5 Vertical Electronics Development

Developing the vertical drive electronics required understanding the interactions between
the high tech components and the necessary steps to power-up the drive electronics.
Powering the Kinetix 300 servo drive and enabling it to power the motor was the most
difficult part of this development process. The drive required 240 VAC single phase input
power, which was only found in one outlet at the AERO Hanger. After building a plug and
circuit breaker assembly in order to safely power on the drive, it could not be enabled to spin
the motor. Enabling the drive required a further 24 VDC to be applied to the A3 terminal on
the drive’s I/0 port along with two terminals on the Safe Torque Off port.
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Figure 24. I/0 Terminal Expansion Block with terminal A3 energized

The servo drive gives direct commands to the motor. The drive has a built in software,
MotionView, which allowed for configuration of the drives 32 indices for a position,
velocity, and acceleration. Using this method, 30 independent peaks were configured, giving
15 different cycles to create the pseudo-random motion desired, along with 2 indices used
for homing the motor. Positions were chosen to replicate a pseudo-random sine wave with
varied amplitudes ranging from small (2.64inch stroke, 3.2Hz) to large (11inch stroke,
1.6Hz).

6.1.6 Horizontal Electronics Development

The horizontal drive was initially planned to be open loop control with compression
springs to keep the horizontal motion from drifting beyond the allowable range. However,
the ease of use of the linear potentiometer enabled for a closed loop positional feedback
design. One of the first tests conducted was calibration of the linear potentiometer. Then the
relationship between the Arduino’s analog reader signal and the extension length was
correlated.

To drive the DC motor, the Pololu amplifier was connected to an external 12V power
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source and to the Arduno’s PWM signal to control the speed. Once all the hardware was
configured, the closed loop P controller on the Arduino was programmed. The early stages
of controller design were done on temporary fixtures with tape that allowed the pinion to
break away from the potentiometer in case the motor failed to stop before reaching the
maximum extension of the potentiometer. The Kp gain was experimentally calibrated to
create a sufficient position output with overshoot that did not exceed the operating distance

of the potentiometer.

Figure 25. P controller test setup before hard mounting onto base plate.

With the position control finalized, a random position generator was created using the
random number function inherent in C programming language. The random motion
generator is random in the sense that the single next sinusoidal wave’s amplitude and
frequency was unpredictable, but there were restrictions on the range of possible amplitude
and frequency values to match the project requirement. The code also allows for easy
adjustment of the distribution of randomly chosen amplitudes with the default distribution
being 70% small amplitudes (0.264inch stroke, 6.4Hz), 10% peak amplitudes (1.1inch
stroke, 3.2 Hz), and 20% intermediate values that can vary from the minimum values to
peak.

Lastly, the electronics and the DC motor were mounted onto the baseplate and tested for
motor performance. At this stage a software-based stop limit that brakes the DC motor

when the payload plate travels beyond the user-set safe limit was added into the code.
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Figure 26. Backside of the payload plate showing the horizontal drive
components.
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6.2 Deviations from Final Design

Several deviations from the planned design occurred due to various part

incompatibilities. Other changes to design benefitted the end result of the prototype.

6.2.1 Vertical Drive Controlled with Indices and Removed Need for PLC

Vertical drive does not use Ethernet communication in conjunction with PLC. The servo
motor was originally intended to be powered by a servo drive with a PLC closing the loop
and giving control to the system. After receiving the components however, the PLC turned
out to not be capable of motion capabilities due to a lack of Pulse Train Output (PTO). The
proper PLC for use with the Kinetix 300 drive, a CompactLogix controller, required
purchasing software which was out of budget, so we had to change our control methods.
Instead of incorporating a PLC into the system, we chose to use the servo drive to give
direct commands to the motor. The drive has a built in software, MotionView, which
allowed for configuration of the drives 32 indices for a position, velocity, and acceleration.
Using this method, we configured 30 independent peaks, giving 15 different cycles to create

the pseudo-random motion desired, along with 2 indices used for homing the motor.

6.2.2 Belt Tensioner Threading Method

The original plan for the belt tensioner was to have bolts run from the bottom of the
tensioner to the top, with the axle for the pulley sitting on top of the end of the bolts to allow
for adjustment. It was planned to simply tap the aluminum of the tensioner and have the
bolts thread into that. It was later decided that aluminum threads would be insufficient for
vibration resistance and replacing these threads with a nylock nut would work better. A
small slot was cut in the side of the tensioner that intersected the bolt holes. These slots were
sized such that the chosen nut would lightly press fit into the slot, preventing it from falling
out of place should the bolts be removed. The nuts have steel threads, and a nylon lock so

thread wear and vibration will not cause problems in the future.

6.2.3 Closed Loop Position Control for Horizontal

The planned design for the horizontal motion control involved an open loop controlled
DC motor with two compression springs keeping the payload plate from drifting from the

center as random torque was imparted on the rack and pinion. However, the Arduino and
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linear potentiometer configuration proved to be simple to implement positional feedback.
Thus, a P controlled closed loop system was implemented to remove the need for springs to

keep the payload from drifting.

6.2.4 Incorrect Part Sizes in CAD

Late in the design phase, we discovered that a more powerful servo was attainable with
the limited budget, which prompted us to use a lower gear ratio gearbox and change the
pinion size. However, this change did not get updated in the CAD model and the parts were
ordered based on the old design. This affected the sizes for the motor-gearbox coupling,
drive pulley size, and belt length. The correct sizes were purchased and the incorrect parts

were returned to McMaster.
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6.3 Recommendations for Future Manufacturing

During testing it was found that the originally installed drive pulley was too small, and
needed to be replaced with a larger pulley, but there is not space for due to the presence of
the base plate. Because the output shaft of the gearbox determines the height of the drive
shaft, the gearbox would need to be shimmed away from the base plate or replaced with a

taller gearbox in order to use a significantly larger pulley.

The axle about which the free pulley in the vertical belt drive system spins is a 0.25” steel

rod, and bends slightly under the tension of the belt. It could be worthwhile to replace it
with a larger diameter shaft to eliminate this bending, or use a stronger grade of steel.
The main drive shaft is constrained by two bearings and a rigid coupling in the current

design. Either one of the bearings should be removed (not recommended) or the coupling

should be replaced with a flexible coupling to avoid over constraining the system. This issue

was mitigated in the current design by drilling the bearing mounting holes with significant
clearance and fixing the bearings in place only after the shaft was attached to the gearbox
output shaft.

A recommendation that became apparent while wiring all the electronics is to relieve
stress on the connection points of all the wires. Primarily, the 12V power supply wire that
feeds into the Pololu DC motor driver is susceptible to bending and could become weaker
due to fatigue or slip out of the sockets. A method of clamping down the wires near the

connection point should prevent the wires from bending.
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7. DESIGN VERIFICATION

During the build process and after the completion of subassemblies and the full system,
tests were conducted to ensure that components were working properly and assemblies were

behaving as they were intended.

7.1 Test Descriptions and Results

7.1.1 Defining User Units

Figure 27. Comparing measured belt travel to desired travel distance.

The MotionView software that controls the Kinetix 300 servo drive has a built in user
units function. Using it, the ratio of revolutions of the motor to our user units (inches) could
be specified. This was calculated to be 2.5 rev/inch by taking into account the 20:1
reduction gear box and the size of the pulley used. This number was verified by
commanding the motor to move 10 inches and measuring how far it actually moved via a
marked location on the belt. Using this method, the position accuracy of the system in the

vertical direction was confirmed to be within 1/16”.

7.1.2 Linear Potentiometer Calibration

Before the linear potentiometer could be used for positional feedback, its relationship

Wingtip Dynamics Simulator Final Report 45



between extension length and resistance had to be measured. To achieve this, the
potentiometer was connected to the Arduino’s 5V output and ground and an oscilloscope
was connected to the readout pin to measure the detected voltage. The linear potentiometer
was rated to 1.5% tolerance and the verification using a ruler only permitted a resolution of

1/16”, but the potentiometer was determined to be operating correctly.

Figure 28. Correlating extension length to voltage readout.

7.1.3 Verifying Vertical Motion

The device is required to be able to create to different motion profiles defined by an
amplitude and frequency each. These two modes were verified under no load by setting two
indices at either peak of the maximum amplitude required and inputting the necessary
velocities and accelerations to complete each motion’s cycle at the given frequency. The
amplitudes and frequencies were verified through MotionView’s built in oscilloscope
function which allowed monitoring of position and velocity, along with a variety of other

inputs and outputs.

Wingtip Dynamics Simulator Final Report 46



Avg: 00618 Maxf | 10.4019 |Max: 0
‘\ Min

| Avg 00646

AR A AN ‘
‘ ‘ 1 —H—
\ * ‘

|

\“ 1 | WeEW G

S r“jﬁ&hrﬁrr S i e

Figure 29. Oscilloscope plots that shows that the vertical drive system
achieves the desired small (left) and large (right) amplitudes and
frequencies.

7.1.4 Verifying Horizontal Motion

To test the horizontal motion response of the baseplate, an oscilloscope was connected
to the linear potentiometer to measure the voltage readout while the device was in motion.
The two required modes for horizontal motion were first tested independently by running a

code that moved the payload in a constant sinusoidal motion.
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Figure 30. Oscilloscope plot that shows that the horizontal drive system
achieves the desired small and large amplitudes and frequencies.
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Once the two independent sine wave motions were verified to be operating correctly, the
Arduino was set up to generate motions with random combination of the minimum to
maximum spectrum of modes. Even when the horizontal axis was running in random
mode, there were waves in the data that showed that the two desired wave frequencies were

generated.
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Figure 31. Oscilloscope plot showing the random motion generator in
action and successfully outputting a random motion.

7.1.5 Verifying Combined Motion with Load

The combined motion test with loading has been postponed pending further input from
the sponsor regarding information on the geometry and mounting hole location of the
antenna. However, we are confident that they system will be able to meet the engineering
requirements even with the 10 Ib load due to the fact that the motors were selected with

power significantly in excess of what was required by the system.

1.2 Specification Verification

For DVPR, see Appendix G — Design Verification Plan.
The table below gives an overview of which requirements were verified to be met with
our final device. The requirement for no RF reflection is marked as incomplete because we

do not have the low reflectivity foam nor access to an anechoic chamber for testing and
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believe that this is a requirement that will be easily met when Raytheon makes the necessary

modifications. The user manual will be created after the publication of this report.

Table 4: Specification Checklist

SIEEE, i Description SRR Tolerance Compliance
Parameter Target
1 Multi axis movement 2 axis of motion Min Yes
9 Can accelerate l.oad inx | 6ginx, 14iny Min Yes
and y axis
3 Can prqduce 4 specific 4 profiles Min Yes
motion profiles
: Yes (According
4 Datg refresh rate is 4-10 30Hz Min to DAQ
times bandwidth
Specsheet)
Impulses can be added 11in
5 that will extend vertical . Min Yes
. displacement
displacement
Sensor only Untested. Proper
6 No RF Reflection receives signals Max equipment and
from transmitter expertise missing
7 High expected lifetime 10000 cycles Min Yes
8 Can fit through door 3ft*7ft Max Yes
+.01” accuracy
9 Accuracy 5% Max or better in both
axis
Untested, but
101bs. 6in calculations
10 Accommodates payload . Min include factor of
diameter
safety and
expected to pass
11 Cost $5,000 Max $4,625
12 Multiple independent 3 tests Min Yes
tests per day
Impulses can be added
13 that will extend L.1" Min Yes
horizontal displacement
Able to fully
operate system Untested, but
14 Clarity of instructions after 1 hour Max expected to pass
reading without issue
instructions
15 Time to set up device 3 hours Max Approx. 40min
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8. RECOMMENDATIONS AND CONCLUSIONS

Our wingtip dynamics simulator device successfully met most of the engineering
requirements, and for the requirements that we were unable to directly verify, we are
confident in our initial design which incorporated large factors of safety, and we expect the
device to perform to satisfaction. We have attached a user’s manual in Appendix J that will
explain how to configure this device and operate it for testing.

Through the process of building and testing the device, we have observed some design
choices that may be beneficial for Raytheon to consider and implement and have them listed
below.

In the final design, the DC motor was mounted on the payload plate. This resulted in the
motor needing to move its own mass in addition to the payload. This configuration also
takes up space on the payload plate for mount holes and radio frequency absorbent foam. To
remedy this, an attempt was made to mount the motor to the frame, but anywhere it could
be mounted would have resulted in a collision sometime during the vertical cycle of motion.
In future iterations of this device, an effort should be made to redesign the horizontal drive
system so the motor is not attached to the front of the payload plate.

To create motion in the vertical direction, the drive is configured to rotate through its 32
indices, each having a position, velocity, and acceleration requirement. For actual
randomized motion that could be programmed, it is recommended to purchase a
CompactLogix PLC along with RSLogix 5000 programming software to implement in the
servo control system.

In the current design, the electronics box is separate from the device’s platform. To make
transportation easier, the electronics box should be mounted on the same base plate as the
rest of the device.

Lastly, this senior design project has given us hands-on experience with extensive
background research, comprehensive design development, weeks of manufacturing, and
quick adaptation to challenges. We are very proud of our work and are very thankful for the

opportunity presented to us by Raytheon.
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Appendix B — House of Quality

Explanation on the House of Quality:

The middle room of the House shows the strength of the relationships between
customer requirements and derived specifications. It does this by marking which customer
requirements each specification is related to and how strongly. The left and bottom sections
rank each requirement in order of importance to the project and the customer. The right
column lists currently available methods for solving the problem and their corresponding
effectiveness at satisfying each customer requirement. Normally in this area, one of the
columns is used to analyze the currently employed solution by the customer. However, since
this is a new capability we are testing, there are no previous solutions to use as a baseline.
The roof shows the positive and negative interactions the requirements have on one another.
If satisfying one specification makes it harder or easier to satisfy another, then that
relationship is marked here. From the Technical Importance Rating found in the QFD, we
were able to distinguish which factors were most important to our design and which were
negligible. For example, the QFD showed that the amplitude and control of the input

motion were of high priority, whereas minimizing the RF emissions was not as pertinent.

Wingtip Dynamics Simulator Final Report 54



Table 5. House of Quality Overview.

QFD: House of Quality

Project:
Revision:
Date:
Correl
Positive 4
Negative =
No Carrelation
Relationships
Stz @ & ¥
Modorate O +
Weak Vv -
+
Direction of Improvement
Maximize &
+
Target ©
+
Minimize ¥
+ +
Column # 1 2 a4 4 5 6 7 8 o 10 n 12 13 1" 15 16
WEO G Direction of Improvement | © | A | © S| v| A|v]|vY|[o]| v a A v NOW: Current Product Asseement - Customer Requirements
¥ = | 5|3 £ 2% %
$§3 i E|E g |E8] ., B2
¢ H 1 HEIRRE | B 3 HEIRAE BEIEIE
£ : =2 - El 2|2 |%:] 3 lzE| e ¢ HALIRIE
3 £ 3 AR 552 ¢ (32 : o
g g i Sl ¢ |3 sl x| E|s8| 5| x| § (3322 18153
2|2 i I E|E = | E|2[33) %<2 |28|=|¢ HHEIE
H 2 5| |2 s | < |3 HEEIE R £ |8 2 HEEIE
2 H ] T | whAT: Customer HREE Elsls12°| 8 £ g2 £ HEIEIE
2 H i £ 3 £ %% < s | &% & 1A ERE
3 £ H ireme: 5 H g ] 3|3
* bl 2 E E 5 | explicit & implicin g H 2 H s HE1E
iz ilzlzlz| |2 : H A5 HEIE
E o
1w us| s | s s 2 Axis Systom L] o o v o 41 3] 5
oln = IBF B g [Feectabiemotin and Feueny w11 o | @ | @ pe v o 2ls
N . Random amplitude and phase inputs. Z
3 (m el 5| 7| 2 ) added ® | O L] 5|43
4 (n x| 7]3]s 9 Real time knowledge of motion ° i 5] s
5 |m wel s |9 1 9 Simulate flight conditions of wingtip L ] L ] L ] L ] (o] [ ] 5] 2] 3
(3] x| 6| 1] s o | RFdoesn't interfore with test system L] 5)5] 2
7 |m sl al 1] o 9 Reusable test machine ° ol e 1] 5] 2
s |u wla] 1| 9 | Canbe transported to Ragtheon facility ° v 2lsls
o |m 2% 7] 85| 7 9 Mount payload on deviee L] v 5| 3|5
08 ol 6] 1]s 9 Must be o reasonable price | v 0| 8] a
nlm sl al 1] o 9 | Quick setup time and turn around rate [ ] L] L] 0|51
12 %
13 o 18
4+ Our Product
u o i
- Competitor #1
15 o —6— Competitor 2 "
Competitor #3 =
B B 6~ Competitor 14 T
s - .| 2
2 | 28] %
.| 3 H Tlel sk
N N H tl2ls] s :
T ] 2| £ Sl =] 2) %) 4 £
HOW MUCH: Target | % g | 2 3 tl s E|2 s | 2 H
a E| % 21 2|2 ¢ ] = -
< | & N £ =
i s [ 8z 8|56
£ H Sl 5| 3| £
S £ £ a|=]%
-l £
Max Relationship | 9 | 9 | 9 9 | s | o 9 | o | 9] o] 9] o] o
Technical Importance Rating 2406 | 2809 | 255.7| 7597 726 726 | 1138] 1209 3146 | 726 | 1927
Relative Weight | 10% | 1% | 10% | o% 3 o% | o% % | o% | %
‘Weight Chart
- | e = | W] _ ) _ o [ ol i WP - | W — | =
Our Product: NIA
% Competitor#1: Flight Testng | 4 | 5 | 5 | 5 | 6 | 1| 5] o] 5] 5o [ s] 1]
‘E Competitorsztternactuned| 3 | 3 | 2 [ 8 [ a [ s [ s [ s s a5 s 4] a]s
< Competitor#3:Robotacwatd | 5 | 5 | 5| 5| 2| 2] s 2] s 5] o] s3] 2] 2]z
£
Z
H -
2
4 - 1 Product
E X Competir 1
2 L G~ Competitor 12
L ~ - Competior 13
£ compeorss
z -
E
°
Template Revision:09  Date: 4232010
Tolumn# | 1 | 2 | 8 | 4 | 6 ] 6] 7 ] 8] o[ w] n]iz] 8] w] ] 6] Christopher Battles

Wingtip Dynamics Simulator Final Report

55



Table 6. Roof of House of Quality.
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Table 8. Right side of House of Quality.
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Table 9. Bottom of House of Quality.
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Table 10. Center of House of Quality.
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Appendix C —Weighted Design Matrix

Table 11. Weighted Decision Matrix.

Weight Crank w/ Spring Actuatorw/Spring Mechanical Actuator

Criteria Unweighted | Weighted | Unweighted | Weighted | Unweighted | Weighted
Varable Amplitude 0.22 75 16.5 ] 15.8 100 22
Create multiple profiles 0.17 75 1275 S0 15.3 100 17
Maximum velocity 0.06 S0 54 S0 5.4 80 48
Control of driving frequency 0.19 50 17.1 100 19 100 19
Response Time of payload 0.08 75 B 80 6.4 100 8
Configurability 0.08 70 5.6 80 6.4 S0 7.2
Life Time 0.03 50 7 80 2.4 80 24
Price 0.03 50 27 75 2.25 40 12
Complexity 0.14 50 7 &0 8.4 B0 112
i5 1 705 7375 745 85.35 770 5.8

Weighted Design Matrix Criteria Definitions

Variable Amplitude-Ease of impulse introduction to change the payload amplitude

throughout the run

Create Multiple Profiles-Ease of creating a new profile to operate at

Control of Driving Frequency-Ease to change frequency of actuation

Response Time of Payload-How quickly the payload responds to a new impulse

Configurability-Ease to set up a new profile in between runs

Complexity-Complexity of components and design including analysis, modeling, and

construction
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Appendix D — Design Analysis

Table 12. Servo motor specs for vertical axis

Rated Rated Continuous Peak Stall Continuous Peak Stall
Catalog Speed Output Rotor Inertia* Stall Torque Torque Stall Current Current Motor Weight
MNumber pm kW I<g-m2 (Ib-in.s2) Nm (lb-in.) MNm (lb-in) Amperes (0-peak)  Amperes (0-peak) kg (lb)
TLY-A230T 6000 0.44 0.000034 (0.0003) 1.300 (11.50) 305 (27.0) 550 155 13(287)
1
|
Targue, BoltHole Maounting Full Load
rpm in-lbs. (&) =] [ (m (E) Circle (F) Holes (Qity) Amps Each
12vDC
174 2338 n.2s" nra" 1.39" Aao 228" 148" 10-32 () a.74 2709k 7™ 254 .92
Table 13. DC motor specs for horizontal axis.
62
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Appendix E - Bill of Materials

Servo Motor
Micro Logix 820 PLC
Kinetix 300 Drive

Power Cable

Feedback Cable
Terminal Expansion
Block

Linear Encoder
Ethernet Switch
Ethernet Cable
10 gauge wire
10-4 SOOW Cord

60 Amp Main Lug
Surface

Clamp Connector
20A 2 Pole Circuit
Breaker

Power Supply Cord

20A 250V Plug
24VDC Power
Supply
Gearbox

Drive Shaft
Free Shaft
Input Coupling
Input Coupling
Spider

Output Coupling
24" Rails
1/4"-28 Screws

Drive Pulley
Drive

Pulley(unreturnable)

Follower Pulley
Bearings

10-32 Screw
1/4" Aluminum

TLY-A2530P-
HI62AA
2080-LC20-20QBB
2097-V31PR2
2090-CPWMG6DF-
16AA02
2090-CFBM6DD-
CCAA02

2097-TB1

N/A
N/A
N/A
N/A
N/A

N/A
N/A

N/A
N/A
N/A

N/A
5887K251
1497K141
6061K107
6408K11

6408K84
6412K42
6738K73
91251A435
6495K46

6495K44
6495K511
5912K17
91253A008
8982K81

Allen-Bradley
Allen-Bradley
Allen-Bradley

Allen-Bradley
Allen-Bradley

Allen-Bradley
SRA Measurement
Products

Best Buy
Best Buy
Home Depot
Home Depot

Home Depot
Home Depot

Home Depot
Home Depot
Home Depot

Amazon

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
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$374.44
$249.00
$836.00

$62.10
$110.00
$148.00

$220.44
$34.99
$4.99
$1.32
$8.37

$13.97
$4.09

$9.47
$8.47
$11.87

$17.47
$369.69
$19.67
$4.62
$3.61

$2.35
$15.55
$54.96
$8.68
$59.41

$47.69
$36.20
$13.33
$11.05
$22.05

=

N R R R R [EE S Y [EEY R A W R R

o N T NN

R RPN R R

$124.00 $21.85
$12.06 $12.76
$13.62
$4.00
$4.49
$0.68
$0.95
$3.99
$27.73 $10.04
$4.46 $8.31

$374.44
$249.00
$836.00

$62.10
$255.85
$172.82

$234.06
$34.99
$18.97
$5.28
$8.37

$13.97
$4.09

$13.96
$9.15
$12.82

$21.46
$407.46
$19.67
$4.62
$7.22

$2.35
$15.55
$54.96
$8.68
$72.18

$47.69
$36.20
$26.66
$11.05
$22.05
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Plate (90)

Aluminum Spacers

1/4" Aluminum Base

Plate

1/2" Aluminum
1/4"-20 Screw
Carriage

3/8" Aluminum
Rack

Pinion

36" Rails

12" Rails

DC Motor

1/2" Bushing
Ball Bearing
56" Timing Belt
Microcontroller

Speed Controller

Potentiometer
12VDC Power
Supply

Power Supply Cord
Lock nut/Screw
Electrical Supplies
Fasteners
Computer Case
24VPower Supply

92510A182

89155K27
9057K252
91309A562
6738K41
8975K213
6295K12
6325K64
6738K73
6738K74
2709K17
6086K111
57155K304
6484K412

Arduino Uno R3
VNH5019 Motor
Driver

LCP12Y50-1K

N/A
N/A
N/A
N/A
N/A
N/A
N/A

McMaster-Carr

McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr
McMaster-Carr

Adafruit Industries

Pololu

$1.90

$92.21
$78.19
$6.16
$58.33
$20.34
$21.17
$21.57
$82.44
$27.48
$249.44
$12.24
$5.62
$40.78
$24.95

$24.95

Potentiometer.com $142.50

Amazon
Home Depot
Home Depot
Miners
Miners
Amazon
Amazon
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$16.39
$8.47
$1.18
$7.50
$4.26
$43.18
$22.83

P RPN R P R R R R R 00R R, R

IR Y

P R R RPN R R

$105.98

$4.82

$0.87
$0.61
$0.34

$23.76

$7.81
$6.68

$3.95
$30.00

Total:

$15.20

$92.21
$78.19
$6.16
$466.64
$20.34
$21.17
$21.57
$82.44
$27.48
$379.18
$12.24
$11.24
$53.41
$31.63

$28.90
$172.50

$16.39
$8.47
$3.23
$8.11
$4.60
$43.18
$22.83
$4,690.98
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Appendix F - FMEA

Table 14. Failure Mode and Effects Analysis (FMEA).

Potential
Failure Mode and Effect Analysis

_X_System Wingtip Vibration Simulator (Design FMEA) FMEA Number: 1
___ Subsystem
__ Component Design Responsibility:  Nick, Steven, Eugene Page 1 of 1
Product Model: Der Vibrén Mk Key Date: Prepared By: Nick
Core Team: Dynamica FMEA Date (Orig.) 311,204
Action Results
0 o}
" . . S | Potential Causefs) /| ¢ c Responsibility & 5 c ¢
. Potential Failure Potential Effect(s) of . r Recommended . T
Item / Function Mod Fail e Mechanismi(s) of c . Acti Target Actions Taken e c .
ode ailure . i ion(s) : i
v Failure u t Completion Date v u t
r r
Motors must Motor jams Payload motion stops 7 |Environmental Factors| 3 21 Instruct to operate in an Eugene -
move payload anechoic chamber Movember
vertically 117 which is clean
and horizontally
1.1" peak to Too large of a moment] B 42 Design system to Steven - Junae Systern is designed
peak. on carriage compensate for mament with factar of safety of
through support rails or 13 for carriage loading
counterweight
Overloaded systern T 48 Add warning labels for | Nick - November
maximurm load capacity
Payload bottoms out Payload hits the rail 7 Input incorrect profile | B 42 Design 4 standard Eugene -
extremities profiles to be used for September
device that will be safe
B 42 Design crash stops at Steven-June
ends of rails
Randorm amplitudes | 4 28 Add 2" safety distance Mick - June Designed tracks to
traveling further than on track include extra distance
expected
Power outage during 1 7 Put failsafe brake in Steven - Warm gear and spring
operation system September system prevent
overshoot during loss
of power
Belt clip fails 1 7 Ensure belt clip is Eugene-
installed corectly Septernber
during assembly
Maotor burns out Need to replace 1 Device jams 3 30 Incorporate fuse into Nick-May
expensive motar system and observe for
Jams while in mation
Drive supplies higher | 1 10 Select drive with Steven-May Drive can output 4004
current than mator is maximum power output while motor is rated for|
rated for lower than matar's 440wy
power rating
Electroncs overheat Systerm wll stop 8| Lack of aiflow/coolant 40 |Incorporate cooling Eugene-hay
wiarking to electronics systerm or fan into any
enclosed areas with
electronics
MNeed realtime  |Receive incorrect data  |Need to re perform tests| 5 Encoders lose 15 |Calbrate encoders Operator
knowledge of position correctly before use and
system ensure ther readings are|
accurate
g Feedback cables l Inspect cables and Operator
darnaged connectors before use
Frarne must Frame experiences The frame is cracked 7| Weld Joint Fatigue 28|Stress analysis on Eugene - June  |Frarme designed with
stabilize the fatigue structure to ensure max large factor of safety
system with a stress on joint is safe ta prevent failure
100b payload
attached and in |Frame is coroded The frame is rusted 3| Scratches or chips on OfInstructions on how to Nick - November
mation paint, exposing metal inspect and maintain
paint surface integrety
Track interface | Track interface jams Track is jamming the 7| Too large of torgue for 0| Design a rail systerm Steven - June  |Ral system has
allowes for preventing payload payload motion anti friction device that can handle 1.5x factory of safety larger
smooth motion  |motion possible torgque than 1.5
and restrains the
payload to two Erwironmental Factors OfInstruct to operste in an|  Eugene - June
axis (Zvertical anechoic chamber
and X% which is clean
Hnriznntali
Not enough lubrication 0| Zelect low friction Mick - June Bearings do not need
devices that can work to be lubricated,
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Appendix G - Design Verification Plan

Table 15. Design Verification Plan (DVP)

Report Date [311/2014 |Sponsar |Raytheon | | \ | Component/Assembly | |REPORTING ENGINEER:
ltem | Specification or Clause - . Test SAMPLES TIMING TEST RESULTS

No Reference Test Descrption Acceptance Criteriz Responsibility| Test Stage Quantity Type| Start date |Finish date Test Result Quantity Pass| Quantity Fail NOTES
Verify positional control |Define user units for Kinetix drive
(Vertical) and verify that system is moving to . - .

1 specified positions within acceptabls +0.050 Mick PV 10 C |10/14/2014| 11/1/2014 |  Accuracy within 1/16 10 0

tolerances

Verify positional control |Verify the control system's capability
(Horizontal) of specifying and meeting an output . ) .

2 position through proportional control +0.050 Eugene PV 10 C [10/14/2014| 11/1/2014 | Accuracy within 0.005 10 0

using a potentiometer

Verfy system can Create motion profile for each
achieve specified required mode. Run device Géeaterdﬂ;ran 20% of Exceeds requirements for

3 |amplitudes at measuring displacement and ES(E E%”Edm:y Mick PV 10 C [ 11172014 | 11/8/2014 | low amplitude. Achieves 10 0
appropriate frequencies |frequency. Verify that it meets or da ‘apecw N i 90% for high amplitudes.
(Vertical) exceeds requirements Isplacements
Verify system can Create motion profile for each
achieve specified required mode. Run device Géeaterdﬂ;ran 20% of Exceeds requirements for

4 |amplitudes at measuring displacement and esw;e eqﬁuedncy Eugene PV 10 C | 11/1/2014 | 11/8/2014 both low and high 10 0
appropriate frequencies |frequency. Verify that it meets or d'a ‘SPEC\ N " amplitudes.
(Horizontal) exceeds requirements Isplacements
Verify system can Create motion profile with mix of high System generated

5 |generate pseudo- and low amplitude peaks for both Pass/Fail Steven PV 10 C | 11/8/2014 |#HAH=H++| suitable motion profiles in 10 0
random mation axes both axes
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Appendix H - Detailed Drawings

e DESCRIPTION QrY.
1 Vertical Rail 2
2 Angle Bracket 2
3 Drive Assembly 1 5
4 | Horizontal Rail Assembly | 1 . S 8
s Pay’lg stl g nF:IglgDrm ! p ) .
& Drive Bearing 2']" A
7 Spring Placeholder 7. .
8 Contol Electornics 1 *
9 Tensioner Assembly 1
10 10-32x.75 Bolt 28
11 Base Flate 1 2
12 Vertical Encoder 1 :
13 Hoixontal Encoder 1 5 =
14 | Motor Bracket Assembly | 1
15 Payload 1
&

(=) ] g

ﬂ?s?uum’ﬁ?ﬁiu e ::.-!u::.fr B bt L DRy .
SUPFALCE MREH: EDGET
ICI.E!A'H.I:E
ey
HAME SIGHATURE DaTE e
DRAWY
= FUll Assembly
w  SolidWorks Student Edition.
A For Academic Us&E0Only. M Ad
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ITEM
NO. PART MUMBER | GTY.
1 |Gearbox 1
2  |Dnve Pulley 1
3 |TimingBelt 1
Motor | nput
4 Coupling !
5 |Drive Shaft 1
& |Servo Motor 1
7 |lin Output 1
Coupling
g |8/8in Ouiput 1
Coupling
g |Output Coupling|
Spider

O

o ©

LRLESS OVHENWISE SPECIMED: RS Desm ARD

DIAEKEIOHS ARE I WAL LIETERS BEEAR SHART OO MW SCALE DRAWING eSO
SIFTACE I oG
TOLBRMH CBx:

LEAR:

AMGULAR:

A pr Dare _—

DRawH .
e Drive Assembl\/
APPVT:

s SolidWorks Student Edition.

@ For Academic Us€™Only. Drive Assemb |Y Ad

WEIGHT: SCALENID SHEET 1 OF 1
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ITEM NC. PART MNUMBER QY.

Camage

Camage Brackst

Rail Short

Fack

Sprng Loop A

Rail Short Top

—_ = | = = | =

]
2
3
4
a3
[.]
7

Belt Clip

LRLESS OVHENWISE SPECIMED: RS Desm ARD
DRAFHEIOHS ARE N MILLMFTERS. BEEAK SHAFF
SUFTALCE MRIEH: EDCES
TOLERAN P

LIKEAR:

AMGILAR:

HAME SIGRATURE DTE

DLW
CHOD

APPYD

s SolidWorks Student Edition.
s For Academic Us&€Only.

WEIGHT:
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Descrption QY.

1 |Drnve Motor Bracket

2  |Motor Mount S3pacer

3 10-32x 75 Bolt

Desm ARD
BEEAK SHAFF

LRLESS OVHENWISE SPECIMED: RS

DRAFHEIOHS ARE N MILLMFTERS.
SUFTALCE MRIEH:
TOLERAN P

LIKEAR:
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HAME SIGRATURE DTE
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s SolidWorks Student Edition.
s For Academic Us&€Only.
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TEM MO, PART MUMBER
Free Pulley Tensioner

Free Pulley Axle
Free Pulley

1/4-20x5" Bolts
FolwerPulleyBearngF
AEE

En | de |G| B —

LRLESS OVHENWISE SPECIMED: RS Desm ARD
DRAFHEIOHS ARE N MILLMFTERS. BEEAK SHAFF M S AL LR T
SUFTALCE MRIEH: EDCES
TOLERAN P
LIKEAR:
AMGILAR:
HAME SIGRATURE DTE TTLE:

DLW

- Tensioner Assembly
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ws  SolidWorks Student Edition.
=« For Academic Us&"Only. - Ad

WEIGHT: SCALE1Z SHEET 1 OF 1
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ITEM NC. PART NUMBER Q@TY.

Payload Plate

Camage

Honzontal Drive Motor

== =

Spur

Spring Loop B 1

O | Oh | b (L] BRI =

10-32.75 Bolt 12

LRLESS OVHENWISE SPECIMED: RS Desm ARD
DRAFHEIOHS ARE N MILLMFTERS. BEEAK SHAFF
SUFTALCE MRIEH: EDCES
TOLERAN P
LIKEAR:
AMGILAR:
HAME SIGRATURE DTE

oW
CHCD
APPYD

SolidWorks Student Edition.
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[

.02
1 1
b
O .: -
O -
£
:—c lr-r
- N
7 » 5.92 i 038 ||
= Angle Bracket
v SolidWorks Student Edition.
o] For Academic Us&Omiy = oW o Ad

Note: The Angle Brackets will be cut from one large plate of aluminum. It will be cut diagonally
on a band saw with a blade width of .125in, leaving two triangles for the brackets.
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17.000 ,

e
o
o
oo

0.250

D.588

I—.lnlﬁl
2.500
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]

o
& x @ 0.201 THRU ALL /
S (D 0.411 X §2°

13.000

1,08

6 x ¢ 0.201 THRU ALL 1.85] 5105
~ @ 0.411 % 82° 3213 | 9|c
—_|
oes | Base Plate
s SolidWorks Student Edition.
] For Academic UsE& Oy =" T Ho

Base Plate Drawing*

TWEIGHT: SCALETS SEImIor

Note: If possible, all holes should be drilled in the same set up on a mill and indexed to the
same location. The position of the holes relative to each other is more important than their
absolute position on the plate.
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=y SolidWorks $tudent Edition.
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Note: This part will be made from off-fall from the base plate. No additional stock is necessary
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Note: This part will be made from .25in carbon fiber plate. Care must be taken during
manufacture, as carbon fiber particles are harmful to people. Wear gloves, a respirator, and
clothing with long sleeves. Have a second operator standing by with a vacuum to remove
dust/chips as they form.

Roughing operations for the shape of the plate will be done with a band saw. Finishing
cuts can be made with a mill if necessary. All holes will be drilled on a mill. Operator will
index off the bottom right corner, and locate all holes relative to that location. Then the
plate will be flipped over, and the operator will again index off the same corner to locate the

holes that need to be countersunk from the opposite side.
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Note: Roughing cuts for this part should be made on a band saw, with care taken not to
remove too much material. Finishing passes will be made on a mill. Interior corners do not
need to be square, with radii allowable up to .5in at the machinists discretion. If the long
tapped holes cannot be tapped fully, it is acceptable to drill them as clearance holes up until

.751n from the top of the part. The remaining area should be tapped.
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Appendix | - HorizontalMotion Arduino Code

Horizontal Axis Controller

Parts required:

Pololu VNH5019 Motor Driver Carrier
Pittman 12V DC Motor

Created 20 November 2014
by Eugene Fox
foxeugenef@gmail.com

This code must me in a file called ”"HorizontalMotion.ino” and be put in a folder called
“HorizontalMotion” to work with the Arduino IDE

/*:::::::::::::::::::::::::::::::::::::::

Configuration parameters

const int peakOccurPercent = 10; /I "Percent occurence of peak motion" Percent of
how likely the high amplitide stroke should occur.

const int midOccurPercent = 10; Il "Percent occurence of mid range motion" Percent
of how likely the intermediate motion should occur.

const int noAmplitudePercent = 15; I/ "Percent occurence of very small motion"
Practically motionless for an instant.

const int smallOccurPercent = 65; /I (unused variable)"Percent occurence of the small

motion. The sum of these should be kept at 100%.

const int rangeLimit = 600; /] outer bounds limit in 1000ths of inch. Default 600.
Suggested maximum 850. Absolute max of 1000 dictated by the
potentiometer stroke length.

const float Kp = .43; /I "Proportional Gain" Suggested minum of 0.43. Increase in
small incriments until satisfactory motor response. Response is
also limited by maxPwm value below.

const int maxPwm = 80; // "max allowed motor power" Possible values: 0~255.
Suggested minimum of 80. Increase when motor is unable to
accelerate load fast enough.

/*::::::=================================

ADVANCED Configuration parameters

const int brakeRange = |; I -+ value when system is at the desired location to
apply brake

const int overcomeSticktion = 5; /l small number to add to low PWM values so motor
will overcome friction

const int motorSpinFlip = [; I/l -1+ | Feedback signal sign to easily flip motor direction

if DC wiring is backwards. Only needed if rewiring causes
feedback to be reversed

const int smallAmplitude = 268/2; /] zero to peak amplitude for small motion (0.268inch
@ 6.4Hz)
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const float smallFreq = 6.4;
const int peakAmplitude = 1040/2;

const float peakFreq = 3.2;

/Iconst int switchPin = 2;
const int directionAPin = 9;
const int directionBPin = 10;
const int pwmPin = 3;

const int potPin = 0;

const int ledPin = 13;

const float pi = 3.1416;
const long accelConst = 22393 1;

int tickState = I,

int waveState = |;

float wavePeriod = 0.1;
float periodStart = 0.001;
int waveAmplitude = 268;
/[float waveFreq = 6.4;
int maxPwmToggle = |;

//int switchState = 0;
void setup(){

/IpinMode(switchPin, INPUT);
pinMode(ledPin, OUTPUT);
pinMode(pwmPin, OUTPUT);
pinMode(directionAPin, OUTPUT);
pinMode(directionBPin, OUTPUT);
/IpinMode(potPin, INPUT);
digitalWrite(directionAPin, LOW);
digitalWrite(directionBPin, LOW);
digitalWrite(ledPin, LOW);
randomSeed(787);

delay(2000);

}

I frequency of small motion
Il zero to peak amplitude for large, peak motion
(I.linch @ 3.2Hz)
Il frequencty of large motion

/I the number of the switchPin
/I the number of the direction pin A
/l the number of the direction pin B
!l the number of the PWM pin
Il the number of the analog-in pin
/I select the pin for the LED

/1 0.58g in 1000%*in/s"2 derived from a =
Amplitude*(2*pi*freq)*2. This max acceleration is used to
create the intermediate motions since the max accel is the same
for different frequencies

I

/l indicates if wave is in large mode or small

/!
/[ variable for reading the switch's state. 0 = off, | = on

/I the setup function runs once when you press reset or
power the board
/[ initiates the switch pin as an input
Il declare the ledPin as an OUTPUT
// initiates the PWM pin as an output
/[ initiates the directionBApin as output
/[ initiates the directionB pin as output
// initiates the pot pin as input
/I brake to GND
/I brake to GND
// turn the ledPin off

/] wait for 2 seconds

N the loop function runs over and over again forever as long as board is getting

void loop(){

power

//int desiredPos = positionGeneration(tickState);
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int desiredPos = posRandGen(tickState);
int currentPos = getPos();

int error = desiredPos - currentPos; Il error amount in 1000ths of an inch;
if (\posSafeLimitOk(currentPos)){
setMotorVelocity(0);; /I if position is outside the safe limit, it will freeze the
motion.
} else {
setMotorVelocity(error*Kp); /I P-controller gain
}
tickState = tickState++;
if(tickState > 750) tickState=-750; /1 600 = 4Hz

} 1l end of loop()

T returns a sin wave position according to clock
int posSinGen(int tick){

float secTime = millis()/1000.0;

return smallAmplitude*sin(2*pi*peakFreq*secTime);

}

T returns the next position. A simple two point travel for initial development
int positionGeneration(int tick){

if (tickState >= 0) return -0; I/ sample positions

if (tickState < 0) return 0; 1
} /I end of positionGeneration

TN returns the next randomized location within the sinusoidal restrictions
int posRandGen(int tick){
float secTime = millis()/1000.0;

if (periodStart + wavePeriod < secTime){
I previous cycle complete. need to random generate the next wave period

periodStart = secTime; /I remember the start time of new period
float randValue = random(0,101);
if (randValue < peakOccurPercent){ /] peak case desired
wavePeriod = |.0/peakFreg; /I remember the period length of one cycle
waveAmplitude = peakAmplitude; /I remember the amplitude
} else if (randValue < midOccurPercent + peakOccurPercent){ // mid range case
desired

waveAmplitude = random(smallAmplitude, peakAmplitude);
/I creates a value of amplitude that is between small and peak

wavePeriod = 1.0/(sqrt(|.0*accelConst/waveAmplitude)/(2.0%pi));

} else if (randValue < noAmplitudePercent + midOccurPercent + peakOccurPercent){
waveAmplitude = random(smallAmplitude/2,smallAmplitude);
wavePeriod = random(300,800)/1000.0;

} else { /I small range case desired
waveAmplitude = smallAmplitude;
wavePeriod = |.0/smallFregq;
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}

return waveAmplitude*sin(2*pi/wavePeriod*secTime); // return the first pos of new wave

} else {
/1 still performing a wave
return waveAmplitude*sin(2*pi/wavePeriod*secTime);

}
return 0;
}
T returns the position measured with linear potentiometer
int getPos(){
int pos; I -I+ inches x1000 length from origin
float potlnputValue; /1 0~1023 value from potlnput
const float potConv = 512.0; /1 512 pinlnput/in
const int potZero = 470; /I centerpoint of potentiometer. Can range from 0 to
1023, but should be near the halfway point (512)
potlnputValue = analogRead(potPin); /I read pot input voltage
pos = (potlnputValue - potZero)/potConv*|000; /1 position in 1000ths of an inch
return pos;

} /I end of getPos()

TN sets the value of the pwmPin and direction

boolean setMotorVelocity(int velocity){ /1 velocity is -255~255
int sign = 0; Il determines sign of velocity and sets direction. Default if zero
if(velocity >= 0) sign = I;
else if(velocity < 0) sign = -1;

if(sign*velocity <= brakeRange){ Il checks if velocity is low enough to require braking
digitalWrite(directionAPin, HIGH);
digitalWrite(directionBPin, HIGH); I/ brake to GND

//analogWrite(pwmPin, 0);
return false;

}

if(sign == 1*motorSpinFlip){
digitalWrite(directionAPin, HIGH);
digitalWrite(directionBPin, LOW);

}

else if(sign == -1*motorSpinFlip){
digitalWrite(directionAPin, LOW);
digitalWrite(directionBPin, HIGH);

}
if (sign*velocity >= maxPwm && maxPwmToggle == 1){
digitalWrite(ledPin, HIGH); I turn the ledPin on
maxPwmToggle = -1;
} else if (sign*velocity >= maxPwm && maxPwmToggle == -1){
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digitalWrite(ledPin, LOW); I turn the ledPin on
maxPwmToggle = [;

}

if(sign*velocity > maxPwm){
analogWrite(pwmPin, maxPwm);
return true;
} else {
analogWrite(pwmPin, sign*velocity + overcomeSticktion);
return true;
}
return false; [l 'if it returns this line, something went wrong
} 1/ end of setMotorVelocity()

boolean posSafeLimitOk(int posValue){
if (abs(posValue) >= rangeLimit){

return false; /I position is outside the safe limit!!
} else {
return true; /I position is within the safe limit.
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Appendix ] - Pictures from Project Expo

Analysis

Figure 32. Team Dynamica members during the Senior Project Expo.
From left to right: Steven Rieber, Eugene Fox, and Nick Rodriguez.
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Figure 33. Screenshot of the poster displayed at the project expo.
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Appendix K - User Manual

Starts on next page.
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