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STATEMENT OF DISCLAIMER 

Since this project is a result of a class assignment, it has been graded and accepted as 

fulfillment of the course requirements. Acceptance does not imply technical accuracy or 

reliability. Any use of information in this report is done at the risk of the user. These risks 

may include catastrophic failure of the device or infringement of patent or copyright laws. 

California Polytechnic State University at San Luis Obispo and its staff cannot be held liable 

for any use or misuse of the project.  
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EXECUTIVE SUMMARY 

Raytheon is a defense contracting company with an electronic warfare division that is 

developing a radio frequency signal triangulation system. Part of  the focus in improving this 

technology is the need for accurate and real time locational knowledge of  the signal 

receivers, which are located at the tips of  aircraft wings. Due to turbulence during flight, the 

fluttering motion of  the wings alter the distance and angle relationships of  the two receivers 

and add noise to the received signal data, which negatively affect the triangulation estimates. 

To mitigate this error caused by the wing flutter, Raytheon is developing a software 

algorithm that predicts the precise locations of  the signal receivers in space to attempt to 

clean up the incoming signal data. 

As part of  the development process at Raytheon, there is a need for a device that can 

move a signal antenna in random, flutter-like motion so rapid testing and refinement of  the 

algorithm can be done. Thus Raytheon has made this project available for us to complete. 

This project was completed over the course of  one year, which was divided into three 

distinct phases of  development. The first phase of  the design process was research and 

design ideation. In this step, the project specifications that the completed device would have 

to meet was defined. Research into existing systems and available technologies was done to 

gain knowledge of  the wide range of  possible solutions that could be explored. During the 

second phase of  the design process, various actuation methods and their feasibility for use in 

this project were analyzed, while iterative refinement of  the device was also underway in 

parallel. The last phase involved building and testing the final design of  the project.  

The final product that was born out of  this process is a two axis, large amplitude, low 

frequency shake device. The vertical axis is belt-driven with a servo drive and meets the 

required maximum motion of  11 inch stroke at 1.6 Hz. The horizontal axis is rack and 

pinion driven with a DC motor that is controlled by an Arduino board in closed loop 

control that met the maximum motion requirement of  1.1 inch stroke at 3.2 Hz. Both of  the 

drive systems were capable of  generating a pseudorandom motion that resembles the flutter 

of  wingtips. 

The rest of  this report further details the research, analysis, design, manufacturing, and 

testing process that was performed to complete the project. 
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1. INTRODUCTION 

The main goal of  this project is to design and manufacture a testing device that will 

move an antenna in way that simulates a wingtip in flight in an anechoic chamber for the 

Raytheon Company. 

Raytheon is a defense contractor that is divided into multiple divisions including Air and 

Missile defense, Cyber security, and Electronic Warfare (EW). Raytheon’s EW division in 

Goleta, CA is developing and producing electronic warfare products such as radar warning 

receivers and jammers for the US military forces. These devices work through signal 

triangulation. 

Triangulation is a method of  measuring the distance and location of  a signal emitter 

using at least two receivers mounted apart from each other, in this case an antenna on either 

wingtip of  the aircraft. Each antenna receives a signal from the emitter, and based on the 

time variation of  the signals, and the known location, velocity, and acceleration of  the 

antennas, the system can detect where the emitter is located. This is useful in military 

applications and other scenarios to more accurately detect unseen threats and have greater 

situational awareness in the sky. 

In order to properly implement this triangulation system though, one must account for 

the wingtip dynamics caused by wing flexure under flight conditions. Raytheon needs a test 

system designed and built that can simulate these dynamics. People who have an interest in 

our device, directly or indirectly, include Raytheon’s software engineers and lab technicians 

and the aircraft pilots who will depend on accuracy of  the signal triangulation system. 
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2. BACKGROUND 

In the field of  aeronautics, active knowledge of  ground-based emitter locations is vital to 

the survival and mission success of  tactical aircrafts [1]. Where the emitter towers work by 

detecting wave reflections off  of  the target, the passive emitter geolocation systems work by 

listening for delays in received waves and changes in wavelengths [2]. To locate a signal, 

multiple antennas are mounted on the aircraft wingtips. These points of  reference provide 

data of  the delay between receiving a signal on one detector to the other as depicted in 

figure 1. This is called the time-difference-of-arrival [3]. This data is combined with the 

known positions of  the detectors to estimate the location of  the ground-emitters [2].

 

Figure 1: Diagram of emitter location estimation [6]. 
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An obstacle in achieving high accuracies in such systems is the difficulty in knowing the 

precise location of  antennas during flight [3]. The difference in lift generated along the 

length of  the wing along with turbulence and wingtip vortices cause flutter in the wing. The 

flutter caused created during flight can vary the location of  the wingtip antenna by as much 

as 11 inches in some crafts [5]. The flutter causes the wing to vibrate in an erratic sinusoidal 

pattern. One way to mitigate the effects of  the flutter on signal triangulation is to employ 

software algorithms to predict the instantaneous location of  the antennas [5]. This system 

combines the methods of  triangulation, hyperbolic location, and statistics to produce 

accurate and combat ready triangulation implementation [4]. Thus to develop and calibrate 

this flutter-filtering software, a method of  simulating the motion of  a mounted antenna is 

needed. 

 

Figure 2: Wing deflection during flight [5]. 

 

 

Figure 3: The varying path of antenna during flight [6]. 
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2.1 Current Systems 

2.1.1 Vibration tables 

Vibration tables use mechanical means to excite a table surface at a high frequency. The 

research in currently available products led to the conclusion that most vibes tables only 

have max amplitudes in the order of  .5inches, with high amplitude models barely 

accomplishing 3.5inches of  displacement. 2-axis systems similar to what we need exist, but 

they also fall very short of  our required 11” amplitude, with the largest found having 3” 

amplitude. 

2.1.2 Industrial Vibration Platforms 

There are two types of  automobile simulation platforms; one type is essentially a scaled 

up vibration table and the other is a seismic simulation platform that uses electromagnetic 

and electro-hydraulic exciters. The large scale vibration table has the disadvantage of  only 

being able to output one frequency and the amplitude adjustment is difficult. [11] Some 

automotive shakers that operate with electromagnetic and electro-hydraulic exciters could 

get the required motion profile. For both of  these, however, the size is much larger than 

necessary and cost of  the system is in upwards of  hundreds of  thousands of  dollars [12]. 

 

Figure 4 : Indistrial vibration driver from Brüel & Kjær. [13] 
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Figure 5: Instron Structural platform for use in automotive testing [7]. 

 

Table 1: Sample specifications for Instron Structural 6 axis motion 

platforms [7] 

 

2.1.3 Large Motion Simulator 

The only complete packages that exist that are close to meeting our requirements are 

large motion simulators like those used in high end flight and racing simulator games. These 

systems operate using a number of  large amplitude actuators with inputs of  real-time 

positions for each of  the actuators to recreate the sensations of  racing and flight. Although 

the actuators used in these products are less expensive than industrial grade electromagnetic 
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actuators, they are still prohibitively expensive and they have the problem of  the actuators 

not being able to move fast enough. 

 

  

Figure 6: Flight simulator actuators [9]. 

2.1.4 Patents 

Searching through the patents directory, we found conceptual ideas that have a 

possibility of  being reconfigured to suit the needs of  this project. A function that was 

focused on during the patent search was the creation of  large amplitude vibration. A patent 

by the name of  “Dual-frequency vibrating screen” [14] describes a system that pulls a fabric 

over a frame to create a tight sheet where objects can be placed and excited via external 

means to the frame. This patents points to a possibility of  using a system of  springs to 

amplify the motion from a smaller external excitation method. The patent, however, would 

only allow for a single direction of  motion and would require a different system to 

incorporate a second direction of  motion. 

Another patent describes a design for a large scale vibration table to be used in aerospace 
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and automotive testing [15]. This vibration table uses the principle of  a cam and follower by 

driving a rod with non-circular cross-section below the table surface. The design claims to 

provide high carrying capacity, high frequency and overcome problems of  longevity. 

However, the cam-follower mechanism would not provide an adequate amplitude for use in 

this project.  

 

Figure 7: Patent drawing from CN203132810 U. 

2.2 Methods of Actuation 

2.2.1 Linear Actuators 

Three common types of  actuators are hydraulic, pneumatic, and mechanical. Hydraulic 

actuators have two chambers and a pump that pumps pressurized hydraulic fluid between 

the two to move a piston. Pneumatic actuators are similar but use pressurized air rather than 

fluid. This creates the need for an air compressor instead of  a fluid reservoir. There are 

various types of  mechanical actuators including those operating with a screw, wheel and 

axle (belt, chain, etc), or cam. 

To start, the only actuators that can supply a reciprocating motion, rather than just 

pulling or pushing, are hydraulic, pneumatic, or lead screws. The most viable of  these three 

options is the screw actuator, in which an electric motor is connected to the screw and can 

turn its rotational motion into linear motion in either direction. This method is better than 

both hydraulic and pneumatic because there is no loud, bulky compressor and no fluid 

reservoir, pumps, and lines running throughout the device. 
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Most linear actuators are either high frequency and low stroke, or high stroke and low 

speed. A few suppliers, including Exlar and Parker, were found that produced high 

amplitude linear actuators that were also high speed. These products had speeds of  up to 2 

m/s with a large enough stroke along with linear feedback which is needed for our 

controller. 

 

 

Figure 8: Sample of Exlar specification sheet for high speed, high 

amplitude actuators [8] 

2.2.2 Cam/Follower and Crank/Connecting Rod 

A cam and follower uses the non-concentric shape of  the cam to impart linear motion 

on a follower. However, a cam is only able to push and cannot pull back on the follower. 

Thus a spring is necessary on the follower in order to maintain contact. Crank and 

connecting rod mechanism uses the concentric motion of  the crank and converts it into a 

linear motion using a follower that has one end constrained to one direction of  motion. 

Crank and connecting rods are able to both push and pull. Both of  these options are 

somewhat viable for this project because long stroke can be achieved with proper 

mechanism design and the frequency can be varied with the speed of  the motor. However, it 

lacks variability of  amplitude and would excite the system with the same amplitude on each 

cycle. 
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2.2.3 Spring-Mass System 

A spring-mass system would be useful as an intermediary component in our device by 

bridging some of  the shortcomings of  the aforementioned actuation methods. A spring-

mass system can be tuned to resonate at two desired frequencies and the base of  the springs 

can be excited using one of  the actuation methods outlined. For example, it is difficult to 

find an affordable electric actuator that has a large enough stroke and frequency, but a 

payload suspended by springs could be excited with a smaller, more affordable actuator. 

From our research, no systems similar to what we desire currently exist. In addition, the 

motion they produced would be very dependent on the mass of  the payload, so in order to 

prevent the need for re-tuning any time a new payload was being tested, we would need to 

add a ballast device to our system. That way we could add or subtract mass to maintain a 

constant total mass. 

2.2.4 Linear Servos 

Linear servo motors utilize a technology similar to a MagLev Train and are composed 

of  an array of  magnets with a matching electromagnetic slider that glides over the magnets. 

Linear servo motors can have its tracks scaled to any length by connecting more magnetic 

tracks together and they are commonly used in manufacturing automation where a long 

linear translation is required. Linear servo motors can move with very high velocity and 

acceleration. The output force is less than linear actuators, but it is still sufficient for our use. 

The initial design plan was to use a linear servo in the system to drive both axis of  motion 

because of  the easily achievable high speed and acceleration and the positional control it 

offered, but later discovered that linear servo motors need high-voltage drivers and expensive 

encoders for it to work. The estimated cost for such a system was around $12,000. 

2.2.5 General Purpose Motors 

General purpose motors are inexpensive motors made with permanent magnets most 

commonly used for driving fans or pumps. They are intended to run at a steady rate for an 

extended period of  time and take longer to ramp up to speed than a servo motor. Like the 

servo motor, an encoder can be mounted to give positional feedback, however they are not 

designed for high speed and high temperature use. Because of  the slow acceleration and low 

heat dissipation, general purpose motors are not suitable for our use. 
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Figure 9. 12V DC Motor [16] 

2.2.6 Servo Motors 

Servo motors are motors that allow for angular position control using either a built-in 

encoder or a retrofitted encoder. Most servos are designed to have a high input voltage and 

good thermal dissipation in order to deliver high acceleration and continuous motion. A 

specialized servo drive must be used in order to supply adequate voltage and control to the 

servo. Servo motors are more expensive than the general purpose motors, but have the 

capability to deliver the performance needed at a lower cost than most linear actuators. 

 

 

Figure 10. TLY-Series Servo Motor [17] 

2.3 Drivers 

Motors drivers, also known as amplifiers or speed controllers, power the motor and 

enable it to perform to the desired specifications. Servo motors are driven by specialized 

servo drivers which are electronic amplifiers that amplify a command from the controller 

and give a varying output to the motor to match the desired motion. These servo drivers can 

output the command signal in terms of  desired velocity, position, or torque, depending on 
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the requirements. General purpose motors are driven by speed controllers that power the 

motor using pulse width modulation. PWM is when the controller sends on and off  signals 

in rapid succession to the motor so it appears that the motor is only operating at a fraction 

of  its total power. This is needed because the motor can’t normally operate at variable 

power, only fully on or off. 

2.4 Controller 

Programmable logic controllers (PLCs) can be programmed with a desired motion. They 

receive inputs from a sensor on the system and give an output to the motor. For our system, 

a microcontroller can receive digital inputs from a position, velocity, or acceleration sensor 

and output a PWM signal to our driver. Arduino makes a Uno microcontroller which is a 

microcontroller on a circuit board. Arduino microcontrollers are inexpensive, easy to use, 

and flexible to be customized.  

 
Figure 11. Arduino UNO Microcontroller [18] 

2.5 Anechoic Chamber 

 An anechoic chamber is a shielded enclosure coated in absorption material that 

prevents any external or internal radio frequency signals from interfering with emission 

measurements. It is used to increase accuracy and repeatability of  testing antenna radiation 

patterns, electromagnetic compatibility, and radar cross section measurements. RF 

absorbing material (RAM) is used to reduce reflections of  incident RF radiation from as 

many directions as possible, for this reason its most effective setup consists of  an array of  
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pyramid shaped pieces that cover the entire room. Any testing devices that have exposed 

metal must also be coated in this RAM to prevent reflection of  RF. The standards for 

certification of  anechoic chambers and RAM are found in the Department of  Defense 

Interface Standard 461E. It states, “During testing, the ambient electromagnetic level 

measured with the EUT de-energized and all auxiliary equipment turned on shall be at least 

6 dB below the allowable specified limits when the tests are performed in a shielded 

enclosure.” [10]  

To ensure our testing device doesn’t reflect RF above the allowable limit, we will cover 

any exposed metal with RAM. This may require larger portions of  RAM if  any moving 

parts on the device would expose themselves during testing. There is an anechoic chamber 

on Cal Poly’s campus that we will be able to use for verification of  our device’s RF 

“quietness.” One issue we may run into due to this insulation is the reduction of  heat 

transfer from our testing device. If  most of  the device is covered by RAM, it will be highly 

insulated and we may need to integrate a cooling system depending on how much heat the 

device generates. 

 
Figure 12. Anechoic Chamber [19] 

2.6 Data Acquisition 

For some of  the systems we have been looking into, either the actuator or the motor 

supply positional feedback. For systems in which neither of  these components have sensors, 

we will need to incorporate a sensor to either measure position, velocity, or acceleration. 

The easiest of  these to measure is position through the use of  linear encoders or 
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potentiometers. Our servo motor is paired with an incremental encoder that gives position 

feedback to the driver. And on both axes, we will put linear magnetic encoders to give 

accurate position data about the test sensor. 

2.7 Power Sources 

The components in our system that need to be powered include the motor, driver, 

microcontroller, and encoder or potentiometer. As stated earlier, each motor will be powered 

by its respective driver or speed controller. The driver we have chosen for the vertical axis, 

the Allen-Bradley Kinetix 3 drive requires 1 phase, 240 VAC input which can be obtained 

from 240V wall sockets. Standard microcontrollers need 5V input and can be powered by a 

USB cable, AC-to-DC adapter, or a battery. Finally, various magnetic linear encoders we 

have been looking into are powered through a control cable that will be connected to our 

computer. 

 
Figure 13. Kinetix 3 Servo Drive [20] 
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3. OBJECTIVES 

Raytheon develops antennas to be mounted on the wingtips of  planes used for radar 

triangulation systems, which transmit important information to the pilots. The flutter 

motion of  the wingtips in flight decreases the accuracy of  the triangulation system, and it is 

important to be able to predict the location of  the wingtip under flight conditions to more 

accurately implement signal triangulation. Software solutions exist that filter out the noise 

and correct for antenna location, but they must be tested, preferably on the ground and not 

in flight. A portable system to simulate flight conditions is needed and must fit in an 

anechoic chamber at the Raytheon facility. The objective of  the project is to create a two-

axis, low frequency, high amplitude vibration device that simulates the motion of  an 

antenna during flight and transmits real time data of  antenna position, velocity, and 

acceleration. 
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3.1 Customer Requirements   

The customer requirements shown below were provided by Raytheon and are the basis 

for our engineering specifications we developed. 

Table 2: Customer Requirements 

Requirement Comments 

Simulate flight conditions of  wingtip Motion needs to match the supplied profiles 

as closely as possible 

2 Axis System Needs to move the antenna in the vertical 

and horizontal axis 

Selectable motion and frequency 4 specific motion profiles need to be able to 

be produced 

Random Amplitude and phase inputs added System needs to be able to simulate random 

impulses that will significantly change the 

motion of  the system to simulate turbulence 

and other fluctuations in the wingtip 

Real-time knowledge of  motion System must output position, velocity, and 

acceleration data in real time 

Test system does not reflect RF Metal surfaces would reflect RF, altering the 

signals detected by receiver 

Reusable test machine Device needs to be durable, and capable of  

being used for many tests 

Mount payload on device Must support a variety of  payloads. Can’t be 

made custom for each one 

Can be transported to Raytheon facility  

Must be a reasonable price  

Quick setup time and turn around rate  
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3.2 Formal Engineering Requirements 

The Formal Engineering Requirements we are proposing are listed below. We used 

Quality Function Deployment (QFD) to interpret all customer requirements and identify 

the engineering specifications. The House of  Quality can be found in Appendix B. 

Table 3: Formal Engineering Requirements 

Spec. # 

Parameter 
Description 

Requirement or 

Target 
Tolerance Risk Compliance 

1 Multi axis movement 2 axis of  motion Min M S, I 

2 
Can accelerate load in x 

and y axis 
.6g in x, 1.4 in y Min M A, T 

3 
Can produce 4 specific 

motion profiles 
4 profiles Min L A, I 

4 
Data refresh rate is 4-10 

times bandwidth 
30Hz Min L T, I 

5 
Impulses can be added 
that will extend vertical 

displacement 

11in 
displacement 

Min H A, T, I 

6 No RF Reflection 

Sensor only 

receives signals 
from transmitter 

Max L A, I 

7 High expected lifetime 10000 cycles Min L A, S 

8 Can fit through door 3ft*7ft Max M I 

9 Accuracy ±5% Max L A, S 

10 Accommodates payload 
10lbs, 6in 
diameter 

Min L I 

11 Cost $5,000 Max M A, S 

12 
Multiple independent 

tests per day 
3 tests Min L T 

13 

Impulses can be added 

that will extend 
horizontal displacement 

1.1" Min H A, T, I 

14 Clarity of  instructions 

Able to fully 
operate system 

after 1 hour 

reading 

instructions 

Max M T 

15 Time to set up device 3 hours Max M T 

 

On the list of  Formal Engineering Requirements, the Tolerance states whether each 

requirement or target is the maximum or minimum value needed for compliance. The Risk 

column lists the difficulty we expect to experience in meeting the goal. We expect to face the 
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most difficulties in producing high enough accelerations and displacements for our device. 

Compliance shows the methods by which we will ensure each requirement is met. These 

procedures include Analysis (A), Test (T), Similarity to Existing Designs (S), and Inspection 

(I). 

Requirements 2, 5, and 11 will be tested by looking at the motion profile output by the 

onboard sensors and verifying that it matches the required output. Requirements 14 and 15 

will be verified by recruiting volunteers to attempt to learn and use the product once it is 

complete. 

A short explanation of  each specification is provided below: 

1. The motion of  the wingtip can be approximated as 2 axis motion, so the system must 

replicate this. 

2. These accelerations were calculated from the motion profiles supplied by Raytheon.  

3. The wing vibration model shall contain 2 modes in each axis:  

• Vertical:  

o 1.6 Hz, 6.6 cm (zero to peak) sinusoidal with nominal guests, 1σ. 

o 3.2 Hz, 1.7 cm (zero to peak) sinusoidal with nominal guests, 1σ . 

• Horizontal:  

o 3.2 Hz with amplitudes 10% of  vertical. 

o 6.4 Hz with amplitudes 10% of  vertical. 

4. The definition of  real time as supplied to us by our sponsor is 4-10 times the 

bandwidth of  operation, which in our case maxes out at 6.4Hz. 

5. The device must have displacement limits of  ±11in in the vertical direction. These 

displacements are achieved by adding pseudo-random impulses to the primary 

modes of  vibration. 

6. RF reflection by our device could compromise the test. 

7. All components will be designed with maximum lifetime in mind. 

8. Must be able to get in and out of  buildings with standard doors, either complete or 

disassembled. 

9. Data output must be within ±5% of  actual. 
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10. Must be able to accommodate the supplied payload. Mounting hardpoints must be 

flexible enough for a variety of  payloads. 

11. Budget expected to be $3000-$5000. 

12. Same as specification 5, only in the horizontal direction with a smaller amplitude. 

13. Setting up and resetting the test can’t take an excessive amount of  time. 

14. System must not require special training to use, or be too complicated to use 

effectively without extensive practice. 

15. Initial set up must be relatively quick, as lab space is valuable. Less time setting up 

means more time doing useful work. 
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4. DESIGN DEVELOPMENT 

4.1 Ideation 

After sufficient background research was done so that we felt that we understood the 

project scope, we began a series of  idea generation exercises. To assist in staying focused for 

ideation, four main functional area were identified as important to the project. The four 

functions were “generation of  motion”, “random noise input”, “2D constrained plane of  

motion” and “data acquisition.” For each of  these functional areas, we performed 

brainwriting as the first exercise. Brainwriting involves writing down as many ideas as 

possible on a sheet of  paper in a short timespan (no more than 5 minutes) then switching the 

sheet with other team members to perform another round of  brainwriting. The second 

exercise was a series of  brainstorming sessions using sticky notes to rapidly create and 

branch off  ideas. Lastly, we created some models of  our ideas using foam core, legos, office 

supplies, and other craft material to quickly verify viability of  ideas and demonstrate 

functions. In the end, we generated 87 distinct ideas that could potentially be useful in 

solving our problem. 

4.2 Evaluation 

After generating an extensive list of  all possible ideas for our four functions, we began to 

evaluate them. Our first process was Go No-Go in which we eliminated all the unreasonable 

ideas generated through ideation. This included ideas that were simply far too expensive or 

technically impossible. The Go No-Go cut down our ideas almost in half. 

We followed this with our first set of  Pugh matrices in which we chose our best concept 

to set as the datum and compared it to all other concepts for a variety criteria for each 

function. This allowed us to determine if  there were some ideas which at first looked 

inferior to our datum, but actually were superior in certain aspects. It also allowed us to see 

those ideas that were inferior to the datum in every quality so we could eliminate them 

easily. 

The second set of  Pugh matrices consisted of  all the top concepts from the previous 

matrix gathered into sets of  systems. We evaluated a variety of  these systems under more 

specific criteria including quickest response time of  payload and ease to vary the amplitude 
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of  the payload motion. We were left with three final systems that stood out: a direct 

mechanical actuator, a cam and spring combination, and an actuator with a spring. These 

ideas were chosen for their combined superiority in price, complexity, configurability, and 

how well they produced the desired motion.  

Finally, we had to weight each criteria so the systems that were superior in the most 

important aspects would stand out. To create this weighted decision matrix, first we had to 

figure out an accurate weight for each criteria. We calculated the various weights through 

use of  pairwise comparison. The criteria were individually compared to each other and the 

more important criteria got a point for each comparison. The ratio of  points for each criteria 

to the total points generated gave us the weight. We used this weight combined with how 

well we were satisfied with each concept’s performance to calculate a weighted score for 

each criteria and, summing the scores up, could pick the best concept. The mechanical 

actuator was chosen as our top concept followed by the spring-actuator combination. 

Although further research into actuator price could prove that long stroke mechanical 

actuators are out of  our budget in which case we will proceed with the spring driven system. 

Please see all Pugh matrices and the weighted decision matrix in Appendix C along with 

explanations for each criteria and justifications for the scores. 
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4.3 Top Concepts 

4.3.1 Spring Drive 

 

Figure 14. Draft 3D model of spring-actuator design. 

This system will be driven by a short stroke mechanical actuator in the horizontal axis 

and a medium stroke actuator combined with a spring in the vertical axis. The payload will 

be attached to a carriage that slides along a rail in the horizontal axis. This rail will also be 

attached to a carriage that will slide along a vertical rail. The payload carriage will be 

connected directly to a small linear actuator, which will be controlled via a servo controller. 

This will allow amplitude and frequency of  motion in the horizontal axis to be input directly 

with complete control. 

The vertical axis will be driven by an actuator connected to the carriage by a long spring. 

This spring will amplify the motion of  the actuator, and allow for the high speeds and 

displacements needed by the system. This actuator will also be controlled by a servo 

controller, but the inputs will need to be generated beforehand to guarantee the output 

motion matches the desired profile. 
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Figure 15. Proof of concept Matlab simulation of payload movement due 

to base excitation. 

Motion profiles can be generated in advance for each actuator to allow the system to 

operate at each of  the 4 primary frequencies. The spring in the vertical axis may need to be 

swapped for one of  a different stiffness when the vertical frequency changes. 

In order to conduct initial testing on the system, the rail and carriage for the vertical axis 

would need to be purchased, as well as the actuator and spring. A compatible servo 

controller for the actuator will need to be determined and purchased as well. A dummy 

weight will need to be mounted to the carriage, and the spring and actuator attached to the 

carriage. Testing of  the spring-actuator system can then begin, with coding for the control of  

the actuator beginning and being tested on the real system to verify it works properly. 

Once the system has been shown to work in one axis, parts for the other can be ordered 

and final assembly can be completed. From there, testing of  the full system with motion in 

both axis will begin. 
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4.3.2 Direct Drive 

 

Figure 16. Sketch of direct driven payload. 

This system will be identical to the previous system except for the vertical axis will no 

longer have a spring in it. This concept requires a sufficient budget to purchase an actuator 

with a long enough stroke and high enough speed to not need spring amplification. This 

would allow for the vertical axis to be directly controlled just like the horizontal axis, 

meaning generation of  movement profiles would be much easier and faster, as well as more 

flexible in the kinds of  motion it could generate. 

4.3.3 Outcome of Top Concept 

At the end of  the Concept Design Review, we were excited that we had found a 

seemingly feasible drive mechanism and design to meet our project goal. On the surface, 

mechanical actuators seemed like they would be within the budget. However, when we 

began delving deeper into actuator suppliers, we discovered that linear actuators require a 

separate purchase of  a high powered servo motor and an equally expensive servo drive. The 
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problem was that there are no vendors who supply inexpensive hobby-grade linear actuators 

with the required speed and stroke and actuators intended for heavy factory-use were grossly 

overpowered for our need. Once we learned that going with a pre-built linear actuator was 

not feasible, we decided to construct our own actuator mechanism using a servo motor. The 

resulting design is outlined in the following sections. 
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5. FINAL DESIGN 

 

Figure 17. Overview of final system design. 

5.1 Description of Product and Features 

The final design for the wingtip dynamics simulator is shown above. The main driving 

mechanism of  the system is a servo motor and belt drive for the vertical motion and a DC 

motor on a rack and pinion for the horizontal motion. The two axes of  motion for the 

payload will be independently controlled and a linear encoder will collect data on the 

location of  the payload during the test. To simplify the operation and function of  each 

distinct subsystem, the description of  various component groups will be divided up in five 

sections: vertical electrical subsystem, vertical mechanical subsystem, horizontal electrical 

subsystem, horizontal mechanical subsystem and the frames, rails and base. 

5.1.1 Vertical Electrical Subsystem 

The main component of  the vertical motion is the Rockwell Automation’s TLY-230 

series servo motor. This servo offers sufficient power needed to simulate the motion of  a 

wing tip. It has efficient thermal dissipation, which allows the servo to be continuously run 
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through rigorous motion routines. The servo motor is driven by a matched servo drive from 

Rockwell Automation called the Kinetix 3 and offers control of  the servo motor using 

feedback from an encoder. An encoder is attached on the vertical rail, which will allow for 

data collection on the position with accuracy of  up to 0.001in. The user interface and 

motion profiles will be programmed using the RSLogix software. 

5.1.2 Vertical Mechanical Subsystem 

Since the motor has a high optimal operation speed (4500 RPM), a 20:1 gearbox will 

step down the speed and at the same time increase the torque. A favorable side effect of  

using a worm gear based gearbox is that upon system shutdown, the worm gears will self-

lock and the payload will not crash down. The rotational motion from the gearbox will be 

transferred into a belt drive, which will create the long stroke vertical motion. The vertical 

stroke will be transferred onto a carriage mounted on two rails. 

5.1.3 Horizontal Electrical Subsystem 

The electrical system includes a DC motor and a DC speed controller. The DC motor 

will be receiving an input signal from a microcontroller like the Ardruino microcontroller 

board. The signal input will be a sine wave with varying amplitudes and frequencies. The 

speed controller then translates the signal into a larger voltage PWM signal to move the 

motor at a certain power. As with the vertical orientation, there is an encoder mounted on 

the rails for positional knowledge. 

5.1.4 Horizontal Mechanical Subsystem 

Much like the vertical orientation, the horizontal motion is constrained by use of  two 

parallel rails. The motor at the bottom of  the payload platform is connected to a pinion gear. 

A rack gear is connected to the rails, which slide independently from the payload platform, 

and allows for an oscillating horizontal motion. Since the DC motor with the DC speed 

controller will not offer any kind of  feedback, a spring system will be mounted to force the 

horizontal system to stay centered while the device is operating. 

5.1.5 Frames, Rails and Base 

There are two sets of  rails (two in the vertical direction and two in the horizontal) that 
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act as a motion constraint for the payload support for the whole device. The rails fit with 

carriages that were selected and mitigate the moments the belt would not be able to support. 

The base is a simple rectangular plate of  aluminum with matching bolt holes for all the 

components. At the top of  the belt drive system is an intuitive belt tensioning system; the 

two bolts below the free spinning shafts can be screwed in to raise the free pulley higher and 

increase tension in the belt. 

5.2 Manufacturing Process 

The majority of  the parts being used in this design come either in their final form or very 

close to it. The rails, angle bracket, and bottom plate will have their major features roughed 

out with a band saw, then a finishing pass taken with a mill where necessary. Holes will be 

located by hand and then drilled on a drill press. The drive shaft and free pulley axle will 

both be cut from a longer rod on a band saw. 

For more detail on any part which has a manufacturing process more complicated than 

those above will be found in Appendix H, on the page following it’s detailed design drawing. 

5.3 Integration Concerns 

An area of  concern regarding timely completion of  the build process is programming the 

driver for the servo motor. No one on the team has much experience in configuring motion 

control hardware except from Controls and Mechatronics class so we may face some 

challenge. However, there is a Rockwell Automation lab on campus where there is motion 

control equipment that is pre-configured and many commonly used hardware programming 

languages that are available for our use. Thus we feel that we have the capacity and resource 

to learn and create a routine for testing. 

5.4 Design Analysis 

See Appendix D for all calculations and part specifications. 

5.4.1 Motion Requirements 

Raytheon provided us with the amplitudes and frequencies of  two modes of  vibration 

for each axis. Using this data, we were able to calculate the maximum velocity and 

accelerations required for each axis. The payload must be able to accelerate at 1.4g and 
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reach a max velocity of  55.3 in/sec in the vertical axis and accelerate at 0.6g to a max 

velocity of  11.0 in/sec in the horizontal axis. 

5.4.2 Motor Sizing 

From the payload weight and previously calculated motion requirements, we determined 

the maximum force and power that needs to be applied on each axis. Given a 10 lb max 

payload weight, we assumed the total weight in the vertical axis will be 15 lb. When the 

payload is at the bottom of  its oscillation and is accelerating upwards, it needs to fight 

gravity and thus experiences an acceleration of  2.4g, resulting in 36.6 lb needed for the 

motion. These dynamics can be supplied by using a 0.31 HP motor. Assuming the total 

weight to be moved in the horizontal axis is 13 lb at an acceleration of  0.6g, 7.47 lb is 

required to move the mass accordingly. A 0.0125 HP motor can produce this motion. For 

the vertical axis, we ended up selecting a 0.59 HP servo motor from Allen-Bradley. The 

motor was selected due to its high thermal dissipation and ability to sustain continuous 

motion and high accelerations. When geared properly, the motor will be sufficient for our 

device. For the horizontal axis, we selected a geared, 12 V DC motor supplied by McMaster. 

It can generate 0.073 HP and doesn't need to be geared further to suit our purposes. 

5.4.3 Drive and Controller Selection 

Since the servo motor we are using for the vertical axis requires such a high input voltage 

and high control, it needs a specialized drive. The Kinetix 3 servo drive, also manufactured 

by Allen-Bradley is compatible with the motor we selected and can give us closed loop 

position control of  the motor. It can supply 400 W, which is sufficient to power our 0.59 HP 

(or 440 W) motor, but is not capable of  outputting power that will exceed the motor’s rating. 

For the DC motor in the horizontal axis, we chose a motor driver from Pololu based on its 

voltage and amperage specifications. It can deliver 12 A continuously (5.91 A are required 

by the motor), and it operates from 5.5V-24V so it can drive our 12V motor. 

5.4.4 Rack and Pinion Sizing 

To actuate the horizontal motion, our design will use a DC motor mounted to a rack 

and pinion system. In order to minimize chances of  burnout, it is more desirable to operate 

the motor near its rated max speed. Therefore, the diameter of  the pinion must be 
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determined that will generate the required maximum speed on the rack. Given the DC 

motor speed of  179 RPM and the maximum horizontal velocity of  11.1in/s, the necessary 

pinion size was determined to be at least 0.587in. A pinion size of  less than the derived 

value would fail to achieve the required velocity; therefore when looking for the part, a 

pinion of  size equal or greater must be chosen. Steel gears will be chosen and the gear 

stresses are assumed within safe ranges since other more demanding gear analysis has 

yielded huge factors of  safety and also since the horizontal axis experiences loads far less 

than the vertical. The rack will be selected to match the teeth specifications of  the chosen 

pinion. 

5.4.5 Gearbox Selection 

To step down the servo motor speed and increase torque, a gearbox offered the best 

option for a preconfigured package that would be simpler to install than a full gear train 

constructed by us. Knowing that the servo motor will need to be driven at a maximum of  

0.31hp and that the optimal power output occurs at 5000 RPM, a 20:1 gearbox from 

McMaster Carr was selected. Its maximum input power specification is 0.52hp and 

maximum input speed of  4500 RPM. At 4500 RPM, in conjunction with the selected 

driving pulley size, the gear ratio of  20:1 will create the speed and torque we need on the 

belt. In addition, the input speed restriction on the gearbox would mean that the servo 

motor has to speed up to 4500 RPM rather than to 5000RPM and be quicker to reach 

necessary speeds. 

5.4.6 Gear Bending Stress 

To ensure the selected gears do not fail under the expected loads they will be subjected 

to, we compared the yield strength for 1018 steel with the bending stress experienced by the 

drive pulley in the vertical drive system. We used Shigley’s Mechanical Engineering Design, 

9th edition for all necessary factors and material specifications. From the analysis, we 

concluded that the gear has a factor of  safety of  19 against bending stress. We did not 

perform any stress analysis on the rack and pinion set up for the horizontal axis due to the 

extremely large factors of  safety present in the vertical axis. 
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5.4.7 Carriage Loads 

As the payload moves up and down, the cantilevered payload imparts a moment on the 

four carriages on the rails. Carriages are rated for a maximum dynamic load of  336lbs and 

the maximum load experienced on a carriage is 57.8lbs giving a safety factor of  5.8.  

5.4.8 Vertical Rail Deflection  

As the payload moves horizontally, the vertical rails experience a side to side twisting 

moment, which may cause a deflection in the rails. However, the analysis for bending 

showed that the effect is negligible since the loads are minimal. 

5.4.9 10-32 Bolt Pullout 

At the base of  the vertical rails, the horizontal motion of  the payload applies a moment 

and a pulling force onto the bolts. The vertical tension force on each of  the bottom plate 

bolts is 23.4lbs. Since the bolts are made of  steel and the angle supports are made of  

aluminum, the angle brackets are the higher risk of  the two. The internal thread has a thread 

engagement area of  1.5152in^2 where the 23.4lbs of  force creates a stress of  15.44psi. 

Aluminum’s ultimate tensil strength is 45000psi; therefore, there is no risk of  bolt pullout. 

5.4.10 Spring Selection 

Since the damping coefficient of  the rails is unknown and not published, we will wait 

until we have the parts in hand to conduct tests to determine the damping coefficient. Once 

the coefficient is known, we can determine the spring constant required for the horizontal 

axis drive system. 
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6. PRODUCT REALIZATION 

6.1 Manufacturing Process 

 
Figure 18. The final product. 

This project involved a tight integration of both hardware and electronics, thus the 

manufacturing of the mechanics and development of the electronic drive systems occurred 

in parallel. This section outlines the process and outcome of the build phase and is divided 

into sections according to the functional subassemblies. 
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6.1.1 Structural Hardware 

 
Figure 19. (Left) The angle brackets with bearings installed and drive 

shaft attached to the gearbox.  (Right) Rail and carriage assembly 

attached to angle brackets and gearbox. 

Both angle brackets were cut from a single large rectangular plate of aluminum on a 

band saw, and then holes were drilled and tapped in the two perpendicular sides to allow 

the rails and base plate to be attached. Mounting holes for the vertical drive shaft bearings 

were drilled in each bracket, as well as a larger hole for the drive shaft to pass through. 

Carriages were mounted to their corresponding rails via pre-drilled mounting holes after 

the rails were cut to length.  

6.1.2 Payload Plate 

 
Figure 20. (Left) Payload plate being cut on a band saw. (Right) Payload 

plate attached to rail and carriage assembly. 

The payload plate was cut from carbon fiber on a band saw, taking care to vacuum away 

excess carbon dust. Mount holes were then drilled and the plate was bolted to the four 
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carriages that slide in the pair of horizontal rails. These rails were then bolted to the four 

carriages that slide in the pair of vertical rails.  

6.1.3 Vertical Drive System  

 
Figure 21. (Left) Belt clip being made on a mill. (Right) Belt clip attached 

to belt and rail. 

The belt clip was milled out to have 3 grooves corresponding in size and spacing to the 

ridges on the drive belt. Then two holes were drilled and tapped on either side of the 

grooves to allow the clip to be bolted onto the upper horizontal rail. 

 

 
Figure 22. (Left) Drive pulley attached to drive shaft with belt in place. 

(Right) Vertical drive motor mounted to the base plate and connected to 

the gearbox. 

The drive pulley was mounted onto the drive shaft in between the two angle brackets 

using a set screw which fit into the keyway in the drive shaft. 

The vertical drive motor was mounted onto an aluminum angle bracket via four bolts, 

and that bracket was in turn bolted to the base plate. The large circle in the motor bracket 
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was machined out using a mill while being held on a rotary table so the very large diameter 

circle could be cut evenly. 

The gearbox was bolted down to base plate by drilling holes in the base plate matching 

the pattern of holes that came preinstalled in the gearbox housing. 

6.1.4 Horizontal Drive System 

 
Figure 23. (Left) Horizontal drive motor and electronics being tested. 

Tape was used to allow breakaway in case of overextension. (Right) 

Horizontal drive rack and pinion installed on the back of rail and payload 

plate. 

The horizontal drive motor was mounted to the payload plate using the preinstalled 

mounting holes on the face of the motor. One of the holes in the payload plate was extended 

into a slot on the mill to allow the motor to be adjusted closer or further from the rail. 

A potentiometer was mounted between the payload plate and the rail using small bolts 

to allow for positional feedback to the motor control system. 

6.1.5 Vertical Electronics Development 

Developing the vertical drive electronics required understanding the interactions between 

the high tech components and the necessary steps to power-up the drive electronics. 

Powering the Kinetix 300 servo drive and enabling it to power the motor was the most 

difficult part of  this development process. The drive required 240 VAC single phase input 

power, which was only found in one outlet at the AERO Hanger. After building a plug and 

circuit breaker assembly in order to safely power on the drive, it could not be enabled to spin 

the motor. Enabling the drive required a further 24 VDC to be applied to the A3 terminal on 

the drive’s I/O port along with two terminals on the Safe Torque Off  port. 
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Figure 24. I/O Terminal Expansion Block with terminal A3 energized  

The servo drive gives direct commands to the motor. The drive has a built in software, 

MotionView, which allowed for configuration of  the drives 32 indices for a position, 

velocity, and acceleration. Using this method, 30 independent peaks were configured, giving 

15 different cycles to create the pseudo-random motion desired, along with 2 indices used 

for homing the motor. Positions were chosen to replicate a pseudo-random sine wave with 

varied amplitudes ranging from small (2.64inch stroke, 3.2Hz) to large (11inch stroke, 

1.6Hz). 

6.1.6 Horizontal Electronics Development 

The horizontal drive was initially planned to be open loop control with compression 

springs to keep the horizontal motion from drifting beyond the allowable range. However, 

the ease of use of the linear potentiometer enabled for a closed loop positional feedback 

design. One of the first tests conducted was calibration of the linear potentiometer. Then the 

relationship between the Arduino’s analog reader signal and the extension length was 

correlated.  

To drive the DC motor, the Pololu amplifier was connected to an external 12V power 
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source and to the Arduno’s PWM signal to control the speed. Once all the hardware was 

configured, the closed loop P controller on the Arduino was programmed. The early stages 

of controller design were done on temporary fixtures with tape that allowed the pinion to 

break away from the potentiometer in case the motor failed to stop before reaching the 

maximum extension of the potentiometer. The Kp gain was experimentally calibrated to 

create a sufficient position output with overshoot that did not exceed the operating distance 

of the potentiometer.  

 

Figure 25. P controller test setup before hard mounting onto base plate. 

With the position control finalized, a random position generator was created using the 

random number function inherent in C programming language. The random motion 

generator is random in the sense that the single next sinusoidal wave’s amplitude and 

frequency was unpredictable, but there were restrictions on the range of possible amplitude 

and frequency values to match the project requirement. The code also allows for easy 

adjustment of the distribution of randomly chosen amplitudes with the default distribution 

being 70% small amplitudes (0.264inch stroke, 6.4Hz), 10% peak amplitudes (1.1inch 

stroke, 3.2 Hz), and 20% intermediate values that can vary from the minimum values to 

peak. 

Lastly, the electronics and the DC motor were mounted onto the baseplate and tested for 

motor performance. At this stage a software-based stop limit that brakes the DC motor 

when the payload plate travels beyond the user-set safe limit was added into the code. 
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Figure 26. Backside of the payload plate showing the horizontal drive 

components. 
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6.2 Deviations from Final Design 

Several deviations from the planned design occurred due to various part 

incompatibilities. Other changes to design benefitted the end result of  the prototype. 

6.2.1 Vertical Drive Controlled with Indices and Removed Need for PLC 

Vertical drive does not use Ethernet communication in conjunction with PLC. The servo 

motor was originally intended to be powered by a servo drive with a PLC closing the loop 

and giving control to the system. After receiving the components however, the PLC turned 

out to not be capable of motion capabilities due to a lack of Pulse Train Output (PTO). The 

proper PLC for use with the Kinetix 300 drive, a CompactLogix controller, required 

purchasing software which was out of budget, so we had to change our control methods. 

Instead of incorporating a PLC into the system, we chose to use the servo drive to give 

direct commands to the motor. The drive has a built in software, MotionView, which 

allowed for configuration of the drives 32 indices for a position, velocity, and acceleration. 

Using this method, we configured 30 independent peaks, giving 15 different cycles to create 

the pseudo-random motion desired, along with 2 indices used for homing the motor. 

6.2.2 Belt Tensioner Threading Method 

The original plan for the belt tensioner was to have bolts run from the bottom of the 

tensioner to the top, with the axle for the pulley sitting on top of the end of the bolts to allow 

for adjustment. It was planned to simply tap the aluminum of the tensioner and have the 

bolts thread into that. It was later decided that aluminum threads would be insufficient for 

vibration resistance and replacing these threads with a nylock nut would work better. A 

small slot was cut in the side of the tensioner that intersected the bolt holes. These slots were 

sized such that the chosen nut would lightly press fit into the slot, preventing it from falling 

out of place should the bolts be removed. The nuts have steel threads, and a nylon lock so 

thread wear and vibration will not cause problems in the future. 

6.2.3 Closed Loop Position Control for Horizontal 

The planned design for the horizontal motion control involved an open loop controlled 

DC motor with two compression springs keeping the payload plate from drifting from the 

center as random torque was imparted on the rack and pinion. However, the Arduino and 
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linear potentiometer configuration proved to be simple to implement positional feedback. 

Thus, a P controlled closed loop system was implemented to remove the need for springs to 

keep the payload from drifting. 

6.2.4 Incorrect Part Sizes in CAD 

Late in the design phase, we discovered that a more powerful servo was attainable with 

the limited budget, which prompted us to use a lower gear ratio gearbox and change the 

pinion size. However, this change did not get updated in the CAD model and the parts were 

ordered based on the old design. This affected the sizes for the motor-gearbox coupling, 

drive pulley size, and belt length. The correct sizes were purchased and the incorrect parts 

were returned to McMaster. 
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6.3 Recommendations for Future Manufacturing 

During testing it was found that the originally installed drive pulley was too small, and 

needed to be replaced with a larger pulley, but there is not space for due to the presence of  

the base plate. Because the output shaft of  the gearbox determines the height of  the drive 

shaft, the gearbox would need to be shimmed away from the base plate or replaced with a 

taller gearbox in order to use a significantly larger pulley.  

The axle about which the free pulley in the vertical belt drive system spins is a 0.25” steel 

rod, and bends slightly under the tension of  the belt. It could be worthwhile to replace it 

with a larger diameter shaft to eliminate this bending, or use a stronger grade of  steel. 

The main drive shaft is constrained by two bearings and a rigid coupling in the current 

design. Either one of  the bearings should be removed (not recommended) or the coupling 

should be replaced with a flexible coupling to avoid over constraining the system. This issue 

was mitigated in the current design by drilling the bearing mounting holes with significant 

clearance and fixing the bearings in place only after the shaft was attached to the gearbox 

output shaft. 

A recommendation that became apparent while wiring all the electronics is to relieve 

stress on the connection points of  all the wires. Primarily, the 12V power supply wire that 

feeds into the Pololu DC motor driver is susceptible to bending and could become weaker 

due to fatigue or slip out of  the sockets. A method of  clamping down the wires near the 

connection point should prevent the wires from bending. 
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7. DESIGN VERIFICATION 

During the build process and after the completion of subassemblies and the full system, 

tests were conducted to ensure that components were working properly and assemblies were 

behaving as they were intended.  

7.1 Test Descriptions and Results 

7.1.1 Defining User Units 

 

Figure 27. Comparing measured belt travel to desired travel distance. 

The MotionView software that controls the Kinetix 300 servo drive has a built in user 

units function. Using it, the ratio of  revolutions of  the motor to our user units (inches) could 

be specified. This was calculated to be 2.5 rev/inch by taking into account the 20:1 

reduction gear box and the size of  the pulley used. This number was verified by 

commanding the motor to move 10 inches and measuring how far it actually moved via a 

marked location on the belt. Using this method, the position accuracy of  the system in the 

vertical direction was confirmed to be within 1/16”. 

7.1.2 Linear Potentiometer Calibration 

Before the linear potentiometer could be used for positional feedback, its relationship 
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between extension length and resistance had to be measured. To achieve this, the 

potentiometer was connected to the Arduino’s 5V output and ground and an oscilloscope 

was connected to the readout pin to measure the detected voltage. The linear potentiometer 

was rated to 1.5% tolerance and the verification using a ruler only permitted a resolution of 

1/16”, but the potentiometer was determined to be operating correctly. 

 

Figure 28. Correlating extension length to voltage readout. 

7.1.3 Verifying Vertical Motion 

The device is required to be able to create to different motion profiles defined by an 

amplitude and frequency each. These two modes were verified under no load by setting two 

indices at either peak of  the maximum amplitude required and inputting the necessary 

velocities and accelerations to complete each motion’s cycle at the given frequency. The 

amplitudes and frequencies were verified through MotionView’s built in oscilloscope 

function which allowed monitoring of  position and velocity, along with a variety of  other 

inputs and outputs. 
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Figure 29. Oscilloscope plots that shows that the vertical drive system 

achieves the desired small (left) and large (right) amplitudes and 

frequencies.  

7.1.4 Verifying Horizontal Motion 

To test the horizontal motion response of the baseplate, an oscilloscope was connected 

to the linear potentiometer to measure the voltage readout while the device was in motion. 

The two required modes for horizontal motion were first tested independently by running a 

code that moved the payload in a constant sinusoidal motion. 

 

Figure 30. Oscilloscope plot that shows that the horizontal drive system 

achieves the desired small and large amplitudes and frequencies. 
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Once the two independent sine wave motions were verified to be operating correctly, the 

Arduino was set up to generate motions with random combination of the minimum to 

maximum spectrum of modes. Even when the horizontal axis was running in random 

mode, there were waves in the data that showed that the two desired wave frequencies were 

generated. 

 

Figure 31. Oscilloscope plot showing the random motion generator in 

action and successfully outputting a random motion. 

7.1.5 Verifying Combined Motion with Load 

The combined motion test with loading has been postponed pending further input from 

the sponsor regarding information on the geometry and mounting hole location of the 

antenna. However, we are confident that they system will be able to meet the engineering 

requirements even with the 10 lb load due to the fact that the motors were selected with 

power significantly in excess of what was required by the system. 

7.2 Specification Verification 

For DVPR, see Appendix G – Design Verification Plan. 

The table below gives an overview of which requirements were verified to be met with 

our final device. The requirement for no RF reflection is marked as incomplete because we 

do not have the low reflectivity foam nor access to an anechoic chamber for testing and 
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believe that this is a requirement that will be easily met when Raytheon makes the necessary 

modifications. The user manual will be created after the publication of this report. 

Table 4: Specification Checklist 

Spec. # 

Parameter 
Description 

Requirement or 

Target 
Tolerance Compliance 

1 Multi axis movement 2 axis of  motion Min Yes 

2 
Can accelerate load in x 

and y axis 
.6g in x, 1.4 in y Min Yes 

3 
Can produce 4 specific 

motion profiles 
4 profiles Min Yes 

4 
Data refresh rate is 4-10 

times bandwidth 
30Hz Min 

Yes (According 
to DAQ 

Specsheet) 

5 

Impulses can be added 

that will extend vertical 
displacement 

11in 
displacement 

Min Yes 

6 No RF Reflection 
Sensor only 

receives signals 

from transmitter 

Max 
Untested. Proper 
equipment and 

expertise missing 

7 High expected lifetime 10000 cycles Min Yes 

8 Can fit through door 3ft*7ft Max Yes 

9 Accuracy ±5% Max 

±.01” accuracy 

or better in both 
axis 

10 Accommodates payload 
10lbs, 6in 
diameter 

Min 

Untested, but 
calculations 

include factor of  
safety and 

expected to pass  

11 Cost $5,000 Max $4,625 

12 
Multiple independent 

tests per day 
3 tests Min Yes 

13 
Impulses can be added 

that will extend 

horizontal displacement 

1.1" Min Yes 

14 Clarity of  instructions 

Able to fully 

operate system 
after 1 hour 

reading 
instructions 

Max 
Untested, but 

expected to pass 

without issue 

15 Time to set up device 3 hours Max Approx. 40min 
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8. RECOMMENDATIONS AND CONCLUSIONS 

Our wingtip dynamics simulator device successfully met most of  the engineering 

requirements, and for the requirements that we were unable to directly verify, we are 

confident in our initial design which incorporated large factors of  safety, and we expect the 

device to perform to satisfaction. We have attached a user’s manual in Appendix J that will 

explain how to configure this device and operate it for testing.  

Through the process of  building and testing the device, we have observed some design 

choices that may be beneficial for Raytheon to consider and implement and have them listed 

below.  

In the final design, the DC motor was mounted on the payload plate. This resulted in the 

motor needing to move its own mass in addition to the payload. This configuration also 

takes up space on the payload plate for mount holes and radio frequency absorbent foam. To 

remedy this, an attempt was made to mount the motor to the frame, but anywhere it could 

be mounted would have resulted in a collision sometime during the vertical cycle of  motion. 

In future iterations of  this device, an effort should be made to redesign the horizontal drive 

system so the motor is not attached to the front of  the payload plate. 

To create motion in the vertical direction, the drive is configured to rotate through its 32 

indices, each having a position, velocity, and acceleration requirement. For actual 

randomized motion that could be programmed, it is recommended to purchase a 

CompactLogix PLC along with RSLogix 5000 programming software to implement in the 

servo control system. 

In the current design, the electronics box is separate from the device’s platform. To make 

transportation easier, the electronics box should be mounted on the same base plate as the 

rest of  the device. 

Lastly, this senior design project has given us hands-on experience with extensive 

background research, comprehensive design development, weeks of  manufacturing, and 

quick adaptation to challenges. We are very proud of  our work and are very thankful for the 

opportunity presented to us by Raytheon. 
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Appendix B – House of Quality 

Explanation on the House of  Quality: 

The middle room of  the House shows the strength of  the relationships between 

customer requirements and derived specifications. It does this by marking which customer 

requirements each specification is related to and how strongly. The left and bottom sections 

rank each requirement in order of  importance to the project and the customer. The right 

column lists currently available methods for solving the problem and their corresponding 

effectiveness at satisfying each customer requirement. Normally in this area, one of  the 

columns is used to analyze the currently employed solution by the customer. However, since 

this is a new capability we are testing, there are no previous solutions to use as a baseline. 

The roof  shows the positive and negative interactions the requirements have on one another. 

If  satisfying one specification makes it harder or easier to satisfy another, then that 

relationship is marked here.  From the Technical Importance Rating found in the QFD, we 

were able to distinguish which factors were most important to our design and which were 

negligible. For example, the QFD showed that the amplitude and control of  the input 

motion were of  high priority, whereas minimizing the RF emissions was not as pertinent. 
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Table 5. House of Quality Overview. 
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Table 6. Roof of House of Quality. 
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Table 7. Left side of House of Quality. 
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Table 8. Right side of House of Quality. 
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Table 9. Bottom of House of Quality. 
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Table 10. Center of House of Quality. 

 
  



Wingtip Dynamics Simulator Final Report  61 

Appendix C – Weighted Design Matrix 

Table 11. Weighted Decision Matrix. 

 
Weighted Design Matrix Criteria Definitions 

Variable Amplitude-Ease of  impulse introduction to change the payload amplitude 

throughout the run 

Create Multiple Profiles-Ease of  creating a new profile to operate at 

Control of  Driving Frequency-Ease to change frequency of  actuation 

Response Time of  Payload-How quickly the payload responds to a new impulse 

Configurability-Ease to set up a new profile in between runs 

Complexity-Complexity of  components and design including analysis, modeling, and 

construction 
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Appendix D – Design Analysis 

 
Table 12. Servo motor specs for vertical axis 

 
 

 

 

 

 
Table 13. DC motor specs for horizontal axis. 
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Appendix E – Bill of Materials 

Name Part # Source Cost Count Tax Shipping Total 

Servo Motor 
TLY-A2530P-
HJ62AA Allen-Bradley $374.44  1 

 
 $374.44  

Micro Logix 820 PLC 2080-LC20-20QBB Allen-Bradley $249.00  1 
 

 $249.00  

Kinetix 300 Drive 2097-V31PR2 Allen-Bradley $836.00  1 
 

 $836.00  

Power Cable 
2090-CPWM6DF-
16AA02 Allen-Bradley $62.10  1 

 
 $62.10  

Feedback Cable 
2090-CFBM6DD-
CCAA02 Allen-Bradley $110.00  1 $124.00  $21.85  $255.85  

Terminal Expansion 
Block 2097-TB1 Allen-Bradley $148.00  1 $12.06  $12.76  $172.82  

Linear Encoder N/A 
SRA Measurement 
Products $220.44  1 

 
$13.62  $234.06  

Ethernet Switch N/A Best Buy $34.99  1 
 

 $34.99  

Ethernet Cable N/A Best Buy $4.99  3 $4.00   $18.97  

10 gauge wire N/A Home Depot $1.32  4 
 

 $5.28  

10-4 SOOW Cord N/A Home Depot $8.37  1 
 

 $8.37  

60 Amp Main Lug 
Surface N/A Home Depot $13.97  1 

 
 $13.97  

Clamp Connector N/A Home Depot $4.09  1 
 

 $4.09  

20A 2 Pole Circuit 
Breaker N/A Home Depot $9.47  1 $4.49   $13.96  

Power Supply Cord N/A Home Depot $8.47  1 $0.68   $9.15  

20A 250V Plug N/A Home Depot $11.87  1 $0.95   $12.82  

24VDC Power 
Supply N/A Amazon $17.47  1 

 
$3.99  $21.46  

Gearbox 5887K251 McMaster-Carr $369.69  1 $27.73  $10.04  $407.46  

Drive Shaft 1497K141 McMaster-Carr $19.67  1 
 

 $19.67  

Free Shaft 6061K107 McMaster-Carr $4.62  1 
 

 $4.62  

Input Coupling 6408K11 McMaster-Carr $3.61  2 
 

 $7.22  

Input Coupling 
Spider 6408K84 McMaster-Carr $2.35  1 

 
 $2.35  

Output Coupling 6412K42 McMaster-Carr $15.55  1 
 

 $15.55  

24" Rails 6738K73 McMaster-Carr $54.96  1 
 

 $54.96  

1/4"-28 Screws 91251A435 McMaster-Carr $8.68  1 
 

 $8.68  

Drive Pulley 6495K46 McMaster-Carr $59.41  1 $4.46  $8.31  $72.18  

Drive 
Pulley(unreturnable) 6495K44 McMaster-Carr $47.69  1 

 
 $47.69  

Follower Pulley 6495K511 McMaster-Carr $36.20  1 
 

 $36.20  

Bearings 5912K17 McMaster-Carr $13.33  2 
 

 $26.66  

10-32 Screw 91253A008 McMaster-Carr $11.05  1 
 

 $11.05  

1/4" Aluminum 8982K81 McMaster-Carr $22.05  1 
 

 $22.05  
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Plate (90) 

Aluminum Spacers 92510A182 McMaster-Carr $1.90  8 
 

 $15.20  

1/4" Aluminum Base 
Plate 89155K27 McMaster-Carr $92.21  1 

 
 $92.21  

1/2" Aluminum 9057K252 McMaster-Carr $78.19  1 
 

 $78.19  

1/4"-20 Screw 91309A562 McMaster-Carr $6.16  1 
 

 $6.16  

Carriage 6738K41 McMaster-Carr $58.33  8 
 

 $466.64  

3/8" Aluminum 8975K213 McMaster-Carr $20.34  1 
 

 $20.34  

Rack 6295K12 McMaster-Carr $21.17  1 
 

 $21.17  

Pinion 6325K64 McMaster-Carr $21.57  1 
 

 $21.57  

36" Rails 6738K73 McMaster-Carr $82.44  1 
 

 $82.44  

12" Rails 6738K74 McMaster-Carr $27.48  1 
 

 $27.48  

DC Motor 2709K17 McMaster-Carr $249.44  1 $105.98  $23.76  $379.18  

1/2" Bushing 6086K111 McMaster-Carr $12.24  1 
 

 $12.24  

Ball Bearing 57155K304 McMaster-Carr $5.62  2 
 

 $11.24  

56" Timing Belt 6484K412 McMaster-Carr $40.78  1 $4.82  $7.81  $53.41  

Microcontroller Arduino Uno R3 Adafruit Industries $24.95  1 
 

$6.68  $31.63  

Speed Controller 
VNH5019 Motor 
Driver Pololu $24.95  1 

 
$3.95  $28.90  

Potentiometer LCP12Y50-1K Potentiometer.com $142.50  1 
 

$30.00  $172.50  

12VDC Power 
Supply N/A Amazon $16.39  1 

 
 $16.39  

Power Supply Cord N/A Home Depot $8.47  1 
 

 $8.47  

Lock nut/Screw N/A Home Depot $1.18  2 $0.87   $3.23  

Electrical Supplies N/A Miners $7.50  1 $0.61   $8.11  

Fasteners N/A Miners $4.26  1 $0.34   $4.60  

Computer Case N/A Amazon $43.18 1 
 

 $43.18 

24VPower Supply N/A Amazon $22.83 1   $22.83 

      Total: $4,690.98  
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Appendix F – FMEA 

Table 14. Failure Mode and Effects Analysis (FMEA). 
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Table 15. Design Verification Plan (DVP) 

Appendix G – Design Verification Plan 
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Appendix H – Detailed Drawings 
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Note: The Angle Brackets will be cut from one large plate of aluminum. It will be cut diagonally 
on a band saw with a blade width of .125in, leaving two triangles for the brackets.  



Wingtip Dynamics Simulator Final Report  83 

 

 
Note: If possible, all holes should be drilled in the same set up on a mill and indexed to the 
same location. The position of the holes relative to each other is more important than their 
absolute position on the plate. 
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Note: This part will be made from off-fall from the base plate. No additional stock is necessary 
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Note: This part will be made from .25in carbon fiber plate. Care must be taken during 

manufacture, as carbon fiber particles are harmful to people. Wear gloves, a respirator, and 

clothing with long sleeves. Have a second operator standing by with a vacuum to remove 

dust/chips as they form. 

Roughing operations for the shape of the plate will be done with a band saw. Finishing 

cuts can be made with a mill if necessary. All holes will be drilled on a mill. Operator will 

index off the bottom right corner, and locate all holes relative to that location. Then the 

plate will be flipped over, and the operator will again index off the same corner to locate the 

holes that need to be countersunk from the opposite side. 
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Note: Roughing cuts for this part should be made on a band saw, with care taken not to 

remove too much material. Finishing passes will be made on a mill. Interior corners do not 

need to be square, with radii allowable up to .5in at the machinists discretion. If the long 

tapped holes cannot be tapped fully, it is acceptable to drill them as clearance holes up until 

.75in from the top of the part. The remaining area should be tapped. 
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Appendix I – HorizontalMotion Arduino Code 

/*======================================= 

 Horizontal Axis Controller 

 Parts required: 

 Pololu VNH5019 Motor Driver Carrier 

 Pittman 12V DC Motor 

 

 Created 20 November 2014 

 by Eugene Fox 

 foxeugenef@gmail.com 

 

This code must me in a file called ”HorizontalMotion.ino” and be put in a folder called 

“HorizontalMotion” to work with the Arduino IDE  

 =======================================*/ 

 

/*======================================= 

Configuration parameters 

=======================================*/ 

const int peakOccurPercent = 10;                        // "Percent occurence of peak motion" Percent of 

how likely the high amplitide stroke should occur. 

const int midOccurPercent = 10;                         // "Percent occurence of mid range motion" Percent 

of how likely the intermediate motion should occur. 

const int noAmplitudePercent = 15;                      // "Percent occurence of very small motion" 

Practically motionless for an instant. 

const int smallOccurPercent = 65;                       // (unused variable)"Percent occurence of the small 

motion. The sum of these should be kept at 100%. 

 

const int rangeLimit = 600;                             // outer bounds limit in 1000ths of inch. Default 600. 

Suggested maximum 850. Absolute max of 1000 dictated by the 

potentiometer stroke length. 

const float Kp = .43;                                   // "Proportional Gain" Suggested minum of 0.43. Increase in 

small incriments until satisfactory motor response. Response is 

also limited by maxPwm value below. 

const int maxPwm = 80;                                  // "max allowed motor power" Possible values: 0~255. 

Suggested minimum of 80. Increase when motor is unable to 

accelerate load fast enough. 

 

/*======================================= 

ADVANCED Configuration parameters 

=======================================*/ 

const int brakeRange = 1;                               // -/+ value when system is at the desired location to 

apply brake 

const int overcomeSticktion = 5;                        // small number to add to low PWM values so motor 

will overcome friction 

const int motorSpinFlip = 1;                            // -/+ 1 Feedback signal sign to easily flip motor direction 

if DC wiring is backwards. Only needed if rewiring causes 

feedback to be reversed 

const int smallAmplitude = 268/2;                       // zero to peak amplitude for small motion (0.268inch 

@ 6.4Hz) 
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const float smallFreq = 6.4;                            // frequency of small motion 

const int peakAmplitude = 1040/2;                       // zero to peak amplitude for large, peak motion 

(1.1inch @ 3.2Hz) 

const float peakFreq = 3.2;                             // frequencty of large motion 

 

/*======================================= 

***DO NOT EDIT CODE BELOW*** 

=======================================*/ 

 

//const int switchPin = 2;                              // the number of the switchPin 

const int directionAPin = 9;                            // the number of the direction pin A 

const int directionBPin = 10;                           // the number of the direction pin B 

const int pwmPin = 3;                                   // the number of the PWM pin 

const int potPin = 0;                                   // the number of the analog-in pin 

const int ledPin = 13;                                  // select the pin for the LED 

 

const float pi = 3.1416; 

const long accelConst = 223931;                         // 0.58g in 1000*in/s^2 derived from a = 

Amplitude*(2*pi*freq)^2. This max acceleration is used to 

create the intermediate motions since the max accel is the same 

for different frequencies 

int tickState = 1;                                      //  

int waveState = 1;                                      // indicates if wave is in large mode or small 

float wavePeriod = 0.1; 

float periodStart = 0.001; 

int waveAmplitude = 268; 

//float waveFreq = 6.4; 

int maxPwmToggle = 1;                                   //  

 

//int switchState = 0;                                  // variable for reading the switch's state. 0 = off, 1 = on 

 

void setup(){                                           // the setup function runs once when you press reset or 

power the board                                                     

  //pinMode(switchPin, INPUT);                          // initiates the switch pin as an input 

   pinMode(ledPin, OUTPUT);                              // declare the ledPin as an OUTPUT 

   pinMode(pwmPin, OUTPUT);                              // initiates the PWM pin as an output 

  pinMode(directionAPin, OUTPUT);                       // initiates the directionBApin as output 

  pinMode(directionBPin, OUTPUT);                       // initiates the directionB pin as output 

  //pinMode(potPin, INPUT);                             // initiates the pot pin as input 

  digitalWrite(directionAPin, LOW);                     // brake to GND 

  digitalWrite(directionBPin, LOW);                     // brake to GND 

  digitalWrite(ledPin, LOW);                            // turn the ledPin off 

  randomSeed(787); 

  delay(2000);                                          // wait for 2 seconds 

} 

 

///////////////////////////// the loop function runs over and over again forever as long as board is getting 

power 

void loop(){ 

  //int desiredPos = positionGeneration(tickState); 
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  int desiredPos = posRandGen(tickState); 

  int currentPos = getPos(); 

  int error = desiredPos - currentPos;                   // error amount in 1000ths of an inch; 

  if (!posSafeLimitOk(currentPos)){ 

    setMotorVelocity(0);;                               // if position is outside the safe limit, it will freeze the 

motion. 

  } else { 

    setMotorVelocity(error*Kp);                         // P-controller gain 

  } 

  tickState = tickState++; 

  if(tickState > 750) tickState=-750;                   // 600 = 4Hz 

} // end of loop() 

 

 

 

///////////////////////////// returns a sin wave position according to clock 

int posSinGen(int tick){ 

  float secTime = millis()/1000.0; 

  return smallAmplitude*sin(2*pi*peakFreq*secTime); 

} 

 

///////////////////////////// returns the next position. A simple two point travel for initial development 

int positionGeneration(int tick){ 

  if (tickState >= 0) return -0;                      // sample positions 

  if (tickState < 0) return 0;                        // 

} // end of positionGeneration 

  

///////////////////////////// returns the next randomized location within the sinusoidal restrictions 

int posRandGen(int tick){ 

  float secTime = millis()/1000.0; 

   

  if (periodStart + wavePeriod < secTime){ 

    // previous cycle complete. need to random generate the next wave period 

    periodStart = secTime;                            // remember the start time of new period 

    float randValue = random(0,101); 

    if (randValue < peakOccurPercent){                  // peak case desired 

      wavePeriod = 1.0/peakFreq;                         // remember the period length of one cycle 

      waveAmplitude = peakAmplitude;                    // remember the amplitude 

    } else if (randValue < midOccurPercent + peakOccurPercent){                            // mid range case 

desired 

      waveAmplitude = random(smallAmplitude, peakAmplitude); 

                                                       // creates a value of amplitude that is between small and peak 

 

      wavePeriod = 1.0/(sqrt(1.0*accelConst/waveAmplitude)/(2.0*pi)); 

    } else if (randValue < noAmplitudePercent + midOccurPercent + peakOccurPercent){ 

      waveAmplitude = random(smallAmplitude/2,smallAmplitude); 

      wavePeriod = random(300,800)/1000.0; 

    } else {                                            // small range case desired         

      waveAmplitude = smallAmplitude; 

      wavePeriod = 1.0/smallFreq; 
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    } 

    return waveAmplitude*sin(2*pi/wavePeriod*secTime);  // return the first pos of new wave 

 

  } else { 

    // still performing a wave 

    return waveAmplitude*sin(2*pi/wavePeriod*secTime); 

  } 

 

  return 0; 

} 

 

///////////////////////////// returns the position measured with linear potentiometer 

int getPos(){ 

  int pos;                                              // -/+ inches x1000 length from origin 

  float potInputValue;                                  // 0~1023 value from potInput 

  const float potConv = 512.0;                          // 512 pinInput/in 

  const int potZero = 470;                              // centerpoint of potentiometer. Can range from 0 to 

1023, but should be near the halfway point (512) 

  potInputValue = analogRead(potPin);                   // read pot input voltage 

  pos = (potInputValue - potZero)/potConv*1000;         // position in 1000ths of an inch 

   

  return pos; 

} // end of getPos() 

 

////////////////////////////// sets the value of the pwmPin and direction 

boolean setMotorVelocity(int velocity){                 // velocity is -255~255 

  int sign = 0;                                         // determines sign of velocity and sets direction. Default if zero 

  if(velocity >= 0) sign = 1; 

  else if(velocity < 0) sign = -1; 

   

  if(sign*velocity <= brakeRange){                      // checks if velocity is low enough to require braking 

    digitalWrite(directionAPin, HIGH); 

    digitalWrite(directionBPin, HIGH);                  // brake to GND 

    //analogWrite(pwmPin, 0); 

    return false; 

  } 

   

  if(sign == 1*motorSpinFlip){ 

    digitalWrite(directionAPin, HIGH); 

    digitalWrite(directionBPin, LOW); 

  } 

  else if(sign == -1*motorSpinFlip){ 

    digitalWrite(directionAPin, LOW); 

    digitalWrite(directionBPin, HIGH); 

  } 

   

  if (sign*velocity >= maxPwm && maxPwmToggle == 1){ 

      digitalWrite(ledPin, HIGH);                       // turn the ledPin on 

      maxPwmToggle = -1; 

    } else if (sign*velocity >= maxPwm && maxPwmToggle == -1){ 
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      digitalWrite(ledPin, LOW);                        // turn the ledPin on 

      maxPwmToggle = 1; 

    } 

   

  if(sign*velocity > maxPwm){ 

    analogWrite(pwmPin, maxPwm); 

    return true; 

  } else { 

    analogWrite(pwmPin, sign*velocity + overcomeSticktion); 

    return true; 

  } 

  return false;                                         // if it returns this line, something went wrong 

} // end of setMotorVelocity() 

 

boolean posSafeLimitOk(int posValue){ 

  if (abs(posValue) >= rangeLimit){ 

    return false;                                       // position is outside the safe limit!! 

  } else { 

    return true;                                     // position is within the safe limit. 

  } 

}  
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Appendix J – Pictures from Project Expo 

 

Figure 32. Team Dynamica members during the Senior Project Expo. 

From left to right: Steven Rieber, Eugene Fox, and Nick Rodriguez. 
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Figure 33. Screenshot of the poster displayed at the project expo. 
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Appendix K – User Manual 

Starts on next page. 


