
Pl-x (Roborodentia)
Kelly Leung, William Luo, and Jeffrey Tang

Advisor: Bridget Benson
California Polytechnic State University, San Luis Obispo

Computer Engineering Program
June 13th 2015

!1

ABSTRACT
Pl-x is the name of the robot that will be competing in Roborodentia, an annual autonomous robot competition.
This year the competition involves moving rings from one end of a course to the opposite end of the course.

!2

ACKNOWLEDGEMENTS
We would like to thank our advisor (Bridget Benson) and Jeffrey Gerfen for providing us with the knowledge that
we needed about microprocessors and micro-controllers. They had given us a solid foundation and taught us
what steps need to be taken in creating a project of our own.

A special thanks goes to John Seng. Not only does he commit a tremendous amount of his time to ensure that
the competition goes as smooth as possible, but he has also provided us with the guidance we need in
purchasing the necessary material. We greatly appreciate his dedication to his students.

We would also like to thank Hugh Smith - the professor that had introduced us to the Arduino and servos in
CPE200, the class in which the three of us created a robotic teddy bear. Through this exposure we were familiar
with the material that we needed in completing Pl-x.

In addition, we would like to show our thanks to the Computer Engineer Society (CPEs) for opening up their room
for us and allowing us to use their equipment.

Finally, we would like to thank the industry sponsors for making this competition possible every year and the
Computer Engineering department for providing us with the funding that we needed for our robot.

!3

TABLE OF CONTENTS
Abstract	 2 ...
Acknowledgements 	 3 ...
Table of Contents	 4 ...
List of Tables and Figures	 5 ...
Introduction	 7 ...
Requirements	 8 ..

ROBOT SPECIFICATIONS 	 8 ...

SPECIFICATIONS TO WIN	 8 ..

Design	 9 ...
SYSTEM ARCHITECTURE	 9 ..

HARDWARE	 10 ...

SOFTWARE	 13 ..

SYSTEM INTEGRATION	 15 ..

MEETING DESIGN REQUIREMENTS	 16 ...

Testing and Improvisions	 17 ..
TESTING THE HARDWARE	 17 ...

TESTING THE SOFTWARE	 18 ...

Conclusion and future work	 19 ..
References	 20 ..
Appendix of Code	 21..

!4

LIST OF TABLES AND FIGURES
Table 1: Partitioning of Hardware and Software Tasks..	10
Table 2: Sensors to Arduino Connection..	11
Table 3: Arduino to Motor Driver Connection..	11
Table 4: Switches to Arduino Connection...	12
Table 5: Design Requirements...	16
Table 6: Hardware Test Table...	17
Table 7: Software Test Table..	18

Figure 1: Roborodentia Course...	7
Figure 2: High Level Black Box Diagram...	9
Figure 3: Software Flow Diagram..14
Figure 4: System Integration...15
Figure 5: Self-made Course..	18

!5

!6

INTRODUCTION
Pl-x, the robot, will be competing in the Annual Robot Competition hosted by Eta Kappa Nu (HKN), Cal Poly’s
Electrical and Computer Engineering Honor’s Society. The competition will be held in Spring 2015 (April 18th) in
the Mott Gym at Cal Poly’s Campus.

This year’s competition will involve two robots, each on their own side of the course (which can be seen in Figure
1), moving rings across the field and placing them onto pegs. The rings will be moved from the horizontal pegs to
the vertical pegs. Each match will last three minutes. The robot that has the most points is the winner of that
round. Please refer to the Requirements (Specification to Win) section to see how the points are obtained.

The first, second, and third place winners of the competition will win $1000, $600, and $400 respectively.

Figure 1: Roborodentia Course

!7

REQUIREMENTS
In order for a fair competition, there are several specifications that all robots must follow. These specifications
were ones that we had taken to account when construction our robot. The specifications are as follows.

Robot Specifications
1. Fully autonomous

2. Footprint is at most 11” x 11” at the start of the match; may expect after the match has begin, but
can be no larger than 13” x 13”

3. Maximum height of 12” at the start of the match; there is no height restriction after the match begins

4. Cannot disassemble into multiple parts

5. No RF wireless receivers/transmitters can be used

6. Cannot damage the course or the contest rings

7. Adhesives cannot be used to pick up the rings, but no residue can be left behind

8. If RF wireless components are used, the contestant must notify the judges before the start of the
competition and be able to demonstrate that the components will not be used

9. No weapons are allows nor is intentionally jamming the opponent’s sensors

10. Rings on the opponent’s side may not be disturbed  

Specifications to Win
Obtain the most amount of points against your opponent. Points are earned based on the following rules:

Rings are scored once they stay on a scoring peg for 3 seconds without support from a robot

Rings placed on the lowest, middle, and highest scoring pegs are worth 2, 4, and 6 points respectively

When a robot has rings on all 3 scoring pegs simultaneously, it will be awarded a 14 point bonus once the
robot returns to touch the middle line; at that time, all rings will be removed from the 3 scoring pegs

The robot with the highest ring that is completely seated on the center peg at the end of the match will
have its overall score multiplied by 2

A ring dropped into the scoring zone outside the field (shown in green) is worth 1 point; a maximum of 20
points may be scored using this scoring zone

!8

DESIGN
This section describes the hardware and software design elements of Pl-x. The hardware and software work
together to transport rings from the horizontal supply pegs to the vertical scoring pegs. The act of transporting the
rings is broken down into three main parts: picking up the rings, following the line across the course, and safety
unloading the rings.

System Architecture
Pl-x consist of 2 switches, a sensor array, an Arduino Mega 2560, 1 motor driver, 3 servos, and 2 motors, as can
be seen below in Figure 2. The 2 switches are used for wall detection; they are mounted on their respective sides
and will trigger upon impact against the course wall. The reflectance sensor array has 8 IR LED/phototransistor
pairs which are used for line detection. The Arduino Mega interprets the switches and sensors to decide the
positioning and speed of the servos and motors. The motor driver (which drives the two motors) and the Arduino
are powered by their connections to a 12-volt battery. The Arduino then outputs 5-volts to the servos and
sensors.

Figure 2: High Level Black Box Diagram

!9

Table 1 shows what tasks are handled by the hardware or the software.

Table 1: Partitioning of Hardware and Software Tasks

Hardware
HARDWARE COMPONENTS

Arduno Mega 2560

Roller Lever Switch (2)

Pololu QTR-8RC Reflectance Sensor Array

L298N H-Bridge Motor Driver

Hitec 35645S HS-5645MG Digital Hi Torque Metal Gear BB Servo (2)

Hitec 33322S HS-322HD Standard Deluxe Karbonite Gear Servo (2)

70:1 Metal Gearmotor 37Dx54L mm (2)

Pololu Ball Caster with 3/4" Metal Ball

Pololu Wheel 80x10mm Pair - White

Pololu Stamped Aluminum L-Bracket Pair for 37D mm Metal Gearmotors

Pololu Universal Aluminum Mounting Hub for 6mm Shaft, #4-40 Holes (2-Pack)

8-AA Battery Holder

PVC Pipes and Plexiglass

Assortment of Nuts, Screws, Washers, Wires, Jumpers, and Resistors

Hardware Software

Provides power to the components --

Sets input value with switches Interprets switches input values and reacts accordingly

Reflectance sensor senses line deviation Interpret digital values and speeds up motors accordingly

Motor driver allows motors to be driven
bidirectionally --

!10

Table 2 shows the pin connections between the 8 sensors and the Arduino. The ground of the sensors in
connected to the Arduino ground. The Vcc of the sensors is connected to the 5-volt output of the Arduino.

Table 2: Sensors to Arduino Connection

Table 3 shows the connections between the Arduino and the Motor Driver. The Motor Driver is used to control the
speed and the direction of the left and right motor.

Table 3: Arduino to Motor Driver Connection

Sensor Pin Name Arduino Pin Port Name

Sensor 0 PIN 1 DIGITAL IN: 31 PC6

Sensor 1 PIN 2 DIGITAL IN: 33 PC4

Sensor 2 PIN 3 DIGITAL IN: 35 PC2

Sensor 3 PIN 4 DIGITAL IN: 37 PC0

Sensor 4 PIN 5 DIGITAL IN: 39 PG2

Sensor 5 PIN 6 DIGITAL IN: 41 PG0

Sensor 6 PIN 7 DIGITAL IN: 43 PL6

Sensor 7 PIN 8 DIGITAL IN: 45 PL4

Motor Driver Pin Name Arduino Pin Port Name

motor1_enable DIGITAL IN: 8 PH5

motor2_enable DIGITAL IN: 9 PH6

motor1_cw DIGITAL IN: 4 PG5

motor1_ccw DIGITAL IN: 5 PE3

motor2_cw DIGITAL IN: 6 PH3

motor2_ccw DIGITAL IN: 7 PH4

GND POWER: GND GND

!11

Table 4 shows the connections between the switches and the Arduino. PIN 1 is connected to a pull down resistor
to ground of 10KΩ and PIN 2 is connected to 5V out of the Arduino.

Table 4: Switches to Arduino Connection

HARDWARE CONSIDERATIONS
 
Choosing some of the hardware components took careful consideration. The subsections below describe why we
selected the hardware components we did.

Arduino Mega 2560

We decided to go with the Arduino platform due to familiarity and convenience of the available libraries. The
Arduino Mega was chosen over the Arduino Uno due to the additional pulse width modulation (PWM) signals and
digital inputs.

70:1 Metal Gearmotor 37Dx54L mm, Wheels, and Motor Driver

We realized the motor driver was needed to allow the motors to go both ways at varying speeds and independent
power supplies form the signal wires. The 80 mm diameter wheels were chosen because of the increased tire
width, which therefore increases traction. 80 mm will also provide us the ability to mount our motor on top of our
base, providing the adequate amount of clearance for our sensor.

Because we wanted the most amount of torque, the first thing we looked for in a motor that would go at least 2
feet per second. Given that our wheels are 80mm in diameter, we needed 145.5 rpm motor.

The torque was calculated using force x radius. The force in this equation is the friction force between the wheels
and the ground. The friction force is equal to normal force x friction coefficient. To simplify our calculations we
assumed a friction coefficient of 1; this results in friction force being equal to normal force. The motor, which
provided a 150 rpm and 14 kg-cm allows us to have a normal force of 15.87 lbs.

Pololu QTR-8RC Reflectance Sensor Array

This sensor array was very convenient due to its form factor and simplicity. Initially we thought about building our
own circuit but decided that the sensor array meets the same needs and could be easily mounted.

Switch Pin Name Arduino Pin Port Name

Switch 1 PIN 1 DIGITAL IN: 25 PA3

Switch 2 PIN 1 DIGITAL IN: 50 PB3

!12

Software
We wrote all the software for this project in Sketch. This section describes the software flow.  

SOFTWARE FLOW

Pl-x is designed to pick up rings from one side of the course and deliver them to the other side. To do this in the
most efficient way, Pl-x has 3 prongs. The center prong is spaced 4” and 7” from the middle prong. This allows
Pl-x to either pick up or drop off all 3 sets out rings in two of their respective sequences. The fork is initially stored
in a vertical orientation to not exceed the 11” footprint requirement.

After the match starts, the footprint of the robot can now be 13” and there is no height restriction. Pl-x raises its
“Slide Servo” 1.5 inches up to clear the base height and freely rotate, as mentioned in Figure 3, the Software Flow
Diagram. The fork is then rotated from its vertical orientation 90 degrees to a horizontal orientation, by rotating the
“Rotate Servo”. The horizontal orientation will align two of the prongs to their corresponding supply pegs. The
servo pick-up sequence will pick up the rings from the two said supply pegs. After picking up the rings, Pl-x will
back up 5 inches and slide its “Slide Servo” 3 inches to the right. Pl-x will go forward 5 inches and perform the
pick-up sequence again to pick up the rings on the remaining supply peg.

At this time, Pl-x now holds all the supply rings from the supply pegs. Pl-x will spin its “Spin Servo” 180 degrees
to face the scoring pegs. The “Rotate Servo” will also rotate back to its vertical orientation to match the scoring
pegs. The robot will makes its way to the other side of the course, using the reflectance sensor as a line follower.
Pl-x stops when the switch is triggered, indicating impact will the opposite side of the course.

The drop off sequence is then performed. Pl-x backs up 5 inches, slides the “Slide Servo” 3 inches to match with
the remaining pegs and then moves back in to perform the drop off sequence again. The robot then spins 180
degrees and rotates 90 degrees to match the supply pegs and makes its way back to the supply rings to pick up
more rings.

!13

Figure 3: Software Flow Diagram

!14

System Integration
Figure 4 shows the system integration of our design. Refer to tables 2-4 for the exact pin listings.

Figure 4: System Integration

!15

Meeting Design Requirements
Table 5 below lists our design requirements and whether or not they were met.

Table 5: Design Requirements

Requirement Requirement Met

Fully autonomous Yes

Footprint is at most 11” x 11” at the start of the match; may expect
after the match has begin, but can be no larger than 13” x 13”

Yes; 12” fork starts in vertical position to
not exceed footprint limitations

Maximum height of 12” at the start of the match; there is no height
restriction after the match begins

Yes; vertical form moves up after the
match starts

Cannot disassemble into multiple parts Yes

No RF wireless receivers/transmitters can be used Yes; no RF components

Cannot damage the course or the contest rings Yes

Adhesives cannot be used to pick up the rings, but no residue can
be left behind

Yes; no adhesives are used

If RF wireless components are used, the contestant must notify the
judges before the start of the competition and be able to
demonstrate that the components will not be used

Yes; no RF components

No weapons are allows nor is intentionally jamming the opponent’s
sensors

Yes; no weapons or jamming intended

Rings on the opponent’s side may not be disturbed Yes

Winning N/A; we have not yet competed in the
competition

!16

TESTING AND IMPROVISIONS

Testing the Hardware
In order to test the correct operation of our design, we performed the following tests shown in Table 6.

Table 6: Hardware Test Table

Test Tried What We Expected Results

Mounted a motor onto the base The robot to move forward Unsuccessful. There were no
movements; the motor did not have
enough torque to drive the weight of
the robot

Mounted a new motor, which has 15x
the amount of torque as the previous
one

The robot to move forward Successful

Mounted “Slide Servo” to slide the fork
3 inches horizontally

The fork to slide Successful

Mounted “Slide Servo” to lift the fork 3
inches vertically

The fork to lift Unsuccessful. The servo would
slide down but not up because it
wasn’t strong enough; needed more
torque

Modified the “Slide Servo” solution to lift
the fork 3 inches vertically

The fork to lift Successful

Read input switch Read high and low correctly Unsuccessful. Need to add pull-up/
pull-down resistor

Add the necessary resistors and read
input switch again

Read high and low correctly Successful

!17

Testing the Software
We also tested the software portion of our design and performed the following tests shown in Table 7. Our code is
can be seen in the appendix. Since the actual course will not be available until Spring of 2015, we made our own
course. Figure 5 shows the course that we ran our software tests on.

Table 7: Software Test Table

Figure 5: Self-made Course

Test Tried What We Expected Results

Change motor direction when
switch is hit

Motor to change direction Successful

Robot follows black line using
sensor array

Robot stays on line In Progress

If previous test doesn’t work,
calibrate code to correspond to
sensors and then check to see if
robot follows black line

Robot stays on line In Progress

Robot slows down when sensors
detect horizontal line

Robot slows down In Progress

Servo drop off and pick up
sequence for rings

Robot picks up and drops off rings In Progress

Introduced slight offset; check
servo drop off and pick up
sequence for rings

Robot picks up and drops off rings In Progress

!18

CONCLUSION AND FUTURE WORK
	 Pl-x will be competing in Roborodentia during Cal Poly’s Open House on April 18th 2015. In our minds,
the design of Pl-x is built as efficient as possible while still operating within the given size constraints. The 12” fork
is initially stored vertical to not exceed the 11” starting size constraints and is perfectly within the 13” operating size
constraints when horizontally sliding. The two side prongs of Pl-x’s fork are spaced 4” and 7” away from the
center prong, which corresponds to the two set distances for the supply and scoring pegs. Therefore two pick-up
or drop-off sequences must be executed for the respective side; once for two of the pegs and another for the
remaining peg. Pl-x is designed to pick-up all the rings before moving across the field, therefore minimizing
overhead travel time. To minimizing cost and moving parts, the L bend provides a height gain of 4” when the spin
servo moves the fork from the supply side to the scoring side. In addition, the L bend gives Pl-x the ability to not
have to turn around, further increasing efficiency. These design decisions should provide Pl-x a good fighting
chance at this years Roborodentia.  
 	 Roborodentia gave our group the opportunity to work on an open ended design project. We received a
better understanding of the design process and how necessary both brainstorming and physical prototyping were.
During the beginning of the project, we made the mistake of jumping in and just ordering motors that worked for a
similar project without properly doing calculations. Upon testing, the motors could not support the weight of our
robot. We literally had to pay the cost and wait another week for new motors to ship in. There were also other
times where we spent too much time discussing the feasibility of a solution, when we could have just went ahead
and physically tried it. Our senior project also heavily reinforced Cal Poly’s “Learn by Doing” motto, which pushes
us to work on side-projects and not be afraid to break things. We also learned the importance of being open
minded and never dismissing ideas without substantial consideration. Many of our game-changing ideas came
about when one person’s idea triggered another person’s thought process.  
 	 There is still work that needs to be done on Pl-x. Our sliding fork solution did not work the way we
expected; the servo’s torque ended up being exerted on servo’s mount rather than pushing and pulling the fork.
Our current solution in the works involves a string and a spool to slide the fork. This solution would take up a
substantially less space if we had a motor instead of a servo that only goes 180⁰. To further improve our design,
we would remove the nails used for our fork’s prongs and replace them with something lighter but just as rigid.
Also if cost were not a factor, stronger servos could improve the speed and reliability. A distance sensor could
also be used in place of our wall detection switches, allowing Pl-x to speed across the course and slow itself done
as it nears the wall. With our design, we ended up ignoring the special objective of the peg in the center of the
course. However, by swapping some the spin servo to a 360⁰ servo and adding some additional code, we should
be able to accomplish the bonus objective.

!19

REFERENCES
"Arduino - PinMapping2560." Arduino - PinMapping2560. Arduino, n.d. Web. 06 Mar. 2015. <http://arduino.cc/en/

Hacking/PinMapping2560>.

"Pololu - Arduino Library for the Pololu QTR Reflectance Sensors." Pololu - Arduino Library for the Pololu QTR

Reflectance Sensors. Pololu, n.d. Web. 07 Mar. 2015. <https://www.pololu.com/docs/0J19/all>.

"Pololu - QTR-8A and QTR-8RC Reflectance Sensor Array User's Guide." Pololu - QTR-8A and QTR-8RC

Reflectance Sensor Array User's Guide. Pololu, n.d. Web. 07 Mar. 2015. <https://www.pololu.com/

docs/0J12/all>.

"Pololu - QTR-8x Reflectance Sensor Array with 11×1 Connection Pins Labeled." Pololu - QTR-8x Reflectance

Sensor Array with 11×1 Connection Pins Labeled. Pololu, n.d. Web. 07 Mar. 2015. <https://

www.pololu.com/picture/view/0J621>.

Reichenstein7. "Arduino Modules - L298N Dual H-Bridge Motor Controller." Instructables.com. Instructables, n.d.

Web. 07 Mar. 2015. <http://www.instructables.com/id/Arduino-Modules-L298N-Dual-H-Bridge-Motor-

Controll/>.

Seng, John. "Roborodentia 2015." Roborodentia 2015. N.p., 14 Jan. 2015. Web. 04 Mar. 2015. <https://

docs.google.com/document/d/1hEpUtLgn5UAsiko7OFaVtgVSniHXmVvJ0WFP1OPBKhI/pub>.

"The Software Servo Library." Arduino Playground. Arduino, n.d. Web. 07 Mar. 2015. <http://

playground.arduino.cc/ComponentLib/Servo>.

!20

APPENDIX OF CODE

/**
 File:
 Names: Kelly Leung, William Luo, and Jeffrey Tang

 Date: 3/5/15
 Description: This is the code that interprets switches and sensor inputs to  
 drive the motors and servos
**/

/**
 Libraries
**/
#include <QTRSensors.h>

/**
 Constants
**/
#define DEBUG 1

#define NUM_SENSORS 8 // number of sensors used
#define TIMEOUT 2500 // waits for 2500 microseconds for sensor outputs to
go low
#define EMITTER_PIN 2 // emitter is controlled by digital pin 2
#define toSupplyA 4
#define toScoreA 5
#define toScoreB 6
#define toSupplyB 7
#define speedPinA 8
#define speedPinB 9

#define WHITE_BLACK_BOUNDARY 400

#define A_DEFAULT_SPEED 255
#define B_DEFAULT_SPEED 255
#define SPEED_INTERVAL 50

#define SUPPLY_TRIGGER 23
#define SCORE_TRIGGER 52

#define MOVE_STATE 1
#define NO_MOVE_STATE 0

//Sensors 0 through 7 are connected to digital pins 33 35 37 39 41 43 45 47, 
//respectively
//Constructor declares an object of sensors
QTRSensorsRC qtrrc((unsigned char[]) {24, 26, 28, 30, 32, 34, 36, 38},
 NUM_SENSORS, TIMEOUT, EMITTER_PIN);

!21

//Arrays and variables
unsigned int sensorValues[NUM_SENSORS];
unsigned int state = MOVE_STATE;

unsigned char speedA = A_DEFAULT_SPEED;
unsigned char speedB = B_DEFAULT_SPEED;

//Runs once on boot up; defines what is input and output
void setup()
{
 pinMode(toSupplyA, OUTPUT);
 pinMode(toScoreA, OUTPUT);
 pinMode(toScoreB, OUTPUT);
 pinMode(toSupplyB, OUTPUT);
 pinMode(speedPinA, OUTPUT);
 pinMode(speedPinB, OUTPUT);
 pinMode(SCORE_TRIGGER, INPUT);
 pinMode(SUPPLY_TRIGGER, INPUT);

 if (DEBUG) {
 delay(500);
 Serial.begin(9600); // set the data rate in bits per second for serial data
transmission
 delay(1000);
 }

 //SetupFork();

 //testing
 //analogWrite(speedPinA, 70);
 //analogWrite(speedPinB, 70);
}

//Continuously runs; deals with everything - switches, running the motors, etc.
void loop()
{
 /*
 if (digitalRead(SUPPLY_TRIGGER) == high) {
 state = NO_MOVE_STATE;
 PickUpRings();
 digitalWrite(toSupplyA, LOW);
 digitalWrite(toScoreA, HIGH);

 digitalWrite(toSupplyB, LOW);
 digitalWrite(toScoreB, HIGH);
 state = MOVE_STATE;
 }
 else if (digitalRead(SCORE_TRIGGER) == high) {
 state = NO_MOVE_STATE;
 DropOffRings();
 digitalWrite(toSupplyA, HIGH);
 digitalWrite(toScoreA, LOW);

!22

 digitalWrite(toSupplyB, HIGH);
 digitalWrite(toScoreB, LOW);
 state = MOVE_STATE;
 }
 */

 //TESTING
 digitalWrite(toSupplyA, HIGH);
 digitalWrite(toScoreA, LOW);

 digitalWrite(toSupplyB, HIGH);
 digitalWrite(toScoreB, LOW);
 //end testing

 //Read raw sensor values into sensorValue array
 qtrrc.read(sensorValues);

 speedA = A_DEFAULT_SPEED;
 speedB = B_DEFAULT_SPEED;

 if (state == MOVE_STATE) {
 if (sensorValues[0] < WHITE_BLACK_BOUNDARY) {
 speedA = speedA - SPEED_INTERVAL;
 }
 if (sensorValues[7] < WHITE_BLACK_BOUNDARY) {
 speedB = speedB - SPEED_INTERVAL;
 }
 analogWrite(speedPinA, speedA);
 analogWrite(speedPinB, speedB);
 }
 else {
 analogWrite(speedPinA, 0);
 analogWrite(speedPinB, 0);
 }

 //Print the sensor values as numbers from 0 to 2500, where 0 means maximum  
 //reflectance
 if (DEBUG) {
 for (unsigned char i = 0; i < NUM_SENSORS; i++)
 {
 Serial.print(sensorValues[i]);
 Serial.print('\t'); // tab to format the raw data into columns in the
Serial monitor
 }
 Serial.println();
 delay(250);
 Serial.print("Speeds ");
 Serial.print(speedA);
 Serial.print(' ');
 Serial.print(speedB);
 Serial.println();

!23

 delay(250);
 }
}

//Sub Functions
void SetupFork() {

}
void PickUpRings() {

}
void DropOffRings() {

}

//Sub Sub Functions
void Back5Inch() {

}
void Forward5Inch() {

}
void PerformPickSequence() {

}
void PerformDropSequence() {

}

!24

